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ABSTRACT OF THE THESIS

Advancing Neural Granger Causality and Penalization Techniques

by

Huy Khanh Nguyen

Masters of Science in Statistics

University of California, Los Angeles, 2024

Professor George Michailidis, Chair

Thanks to its interpretability and absence of experimental data, Granger causality has be-

come one of the most powerful tools in causal discovery. Focusing on temporal data, Granger

causality evaluates where one time series can be predictive (Granger-causal) of another time

series. However, there are several assumptions in traditional Granger causality: no unknown

confounder, stationarity, and linearity. Linearity is especially challenging since linear time

processes don’t happen often in real life. Unlike stationarity which has established meth-

ods such as logarithmic transformation, resolving linearity is a much more difficult task.

To capture these complex relationships, researchers have proposed many methods: additive

nonlinear model, kernel space, and more. To improve interpretability, Structured Neural

Networks is particularly powerful. A crucial component of the method is the regularization

(penalty) as it helps with lag selection and ensures related features are dealt with together.

This thesis first reviews a number of nonlinear Granger causality methods- additive non-

linear Granger causality, independent innovation analysis (IIA), kernel Granger causality,

nonlinear permuted Granger causality- then focuses on neural Granger causality. It also

explores different penalties including hierarchical lasso, group sparse group lasso, and elastic

net which we illustrate on a data set on missing migrants.
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Chapter 1

Introduction

1.1 Traditional Granger Causality

Conceived by Nobel laureate Clive Granger in 1969, Granger causality has been pivotal

in times series analysis. Despite the rapid advancement of new causal methods, Granger

causality is still very popular. The main reason is that experiments are often lengthy, costly,

or impossible to conduct due to ethical issues. Granger causality, by relying on observational

data, is very applicable to many fields. Granger causality is also interpretable and flexible,

which is very important for policy making and modifying the model for robust results.

Despite the name, it is important to understand that Granger causality does not imply causal

interaction among time series. Rather, Granger causality evaluates if one time series can be

useful in predicting another time series. As defined by Shojaie and Fox (2021), a time series

y will Granger-cause another time series x if, by including the past values (history) of x, we

can improve the prediction of y, compared to just the past values of y. We measure such

improvement by reduction in variance (Shojaie & Fox, 2021):

var[xt − P (xt|H<t)] < var[xt − P (xt|H<t\y<t)]

Where H<t is all the historical values up to time t − 1, H<t\y<t is the historical values

excluding the those of y<t, and P (xt|H<t) is the optimal prediction of xt given H<t (Shojaie

& Fox, 2021).
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1.2 Vector Autoregressive (VAR)

A key framework for Granger causality is vector autoregressive (VAR). VAR is very impor-

tant for several reasons. First, VAR can analyze interdependent time series simultaneously.

Second, VAR captures temporal dynamics and significance for Granger causality by including

lagged values and orders. Finally, VAR allows significance testing (most commonly F-test)

to assess Granger causality.

We have the following definition for VAR (Shojaie & Fox, 2021): Let xt := (x1t, x2t, ..., xpt)
T

be the values of x at t, d be the lag - the number of past time steps for predicting current

value, A0, ..., Ad be the p x p lag matrices, et be the p-dimensional error. Now, to identify

a linear model for Granger causality, we apply VAR for when A0 is diagonal and structural

vector autoregression (SVAR) for the general case:

A0xt =
d∑

k=1

Akxt−k + et

One very crucial theorem for VAR is as followed (Shojaie & Fox, 2021):

Theorem 1 Time series xi is Granger-causal to time series xj if and only if Ak
ij ̸= 0 for

1 ≤ k ≤ d.

Despite being very rigid, VAR frameworks require many assumptions that are not applicable

to real world data. First, the data generating process must be linear. Second, the time series

must be stationary - statistical properties stay constant over time. Third, we assume there

are no unknown confounders so there can be correct estimates and inferences. Finally, the

time series are often assumed to be continuous.

Traditional VAR also has many weaknesses. One of which is the limited number of pa-

rameters for the model to execute in a reasonable time frame. This is not applicable to

the complex relations in Granger causality. One way to mitigate this is factor-augmented

VAR, which accounts for the exogenous variables in our model. Another way is to fit VAR
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models for numerous endogenous variables (Shojaie & Fox, 2021). Here, we augment VAR

loss function and utilize sparsity-inducing penalties. This turns many entries of matrix Ak

to 0, and by theorem 1 we can look at non-zero entries to infer Granger causality. Following

Shojaie and Fox (2021), let Ω(.) be the penalty on Ak for k = 1,..., d, T be the time series

length, and λ be the tuning parameter. The least square loss function becomes:

min
A1,...,Ad

T∑
t=d+1

∥xt −
d∑

k=1

Akxt−k∥22 + Ω(A1, ..., Ad)

And to make Granger causality more interpretable, one common penalty choice is group

lasso penalty (Shojaie & Fox, 2021):

Ω(A1, ..., Ad) = λ

p∑
i,j=1

∥(A1
ij, ..., A

d
ij)∥2

Finally, lag selection is another major weakness of VAR. Inappropriate lag lengths can lead

to overfitting or missing Granger causal relationships. Truncating lasso penalty by Shojaie

and Michailidis (2010) can assist in finding the optimal lag. From Ak−1, we will calculate

weights ω to scale penalty Ω(.) for Ak. This will eventually shrink all coefficients of Ak to 0,

with Ak+1 only contains zero entries (Shojaie & Michailidis, 2010):

Ω(A1, ..., AT ) = λ
T∑

k=1

ωk

p∑
i,j=1

|Ak
ij|

Note that ω1 = 1. Otherwise, for k > 1, let I(., .) be the convex indicator function (Shojaie

& Fox, 2021):

ωk = I(Ak−1, A : (T − k)∥A0∥ ≥ p2β)

3



1.3 Granger Causality with Discrete Values

With the discrete nature of missing migrant data, we need to redefine Granger causality to

better fit the situation. Again following the work of Shojaie and Fox (2021), let gi be the

function specifying how the history of p time series map to a time series i. The definition of

general VAR model now becomes:

xti = gi(x<t1, ..., x<tp) + eti

From Shojaie and Fox (2021), we also adjust the theorem:

Theorem 2 Time series xj is non-Granger causal to time series xi if and only if for all

(x<t1, ..., x<tp) and x
′
<tj ̸= x<tj, we have:

gi(x<t1, ..., x<tj, ..., x<tp) = gi(x<t1, ..., x
′
<tj, ..., x<tp)

Specifically for count data, we can analyze using integer-valued autoregressive (INAR) pro-

cesses (Shojaie & Fox, 2021).

1.4 Neural Granger Causality for the Global Migrant

Situation

For many migrants looking for safety and a better life, they will have to venture through

very difficult routes like dense jungles, choppy seas, and barren desserts. Along the way,

they may also have to deal with pirates, human traffickers, cartels, to name a few. With so

many hazards, for many we never hear any news again. To make matters worse, their plights

now become tools to divide governments and organizations. Thus, proper understanding of

the situation is ever critical in this uncertain world. Otherwise, we cannot create effective
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policies and drain the already limited resources.

As we know, the causes of these disappearances are often similar. An exodus stems likely

stems from a combination of factors such as conflict, persecution, environmental degrada-

tion, political crisis,... Unsurprisingly, human trafficking worsens the dire situations day by

day. Finally, environmental factors like harsh weather and terrain can exacerbate the risks

for the migrants as well.

Neural Granger causality can help us understand the migrant situation. As a side note, our

time series will be the aggregate counts of deaths and missing migrants by regions. Since

these time series are discrete and sparse, neural Granger causality will be very helpful in

many ways. First, the discrete nature requires a flexible method to capture the nuanced

dynamics. Second, we can choose the right activation functions specifically for count time

series. We will chose ReLu for this purpose mainly due to its speed. Finally and most im-

portantly, it is very easy to interpret the time series dynamics with neural Granger causality.

However, we have to be careful with our results and final claims. Even with its focus on in-

terpretability, neural Granger causality can still be very difficult to make proper conclusions.

That said, the method can still shed lights for us to resolve the migrant crisis.

5



Chapter 2

Background

As emphasized, the linearity of VAR greatly limited the applications of traditional Granger

causality. Below are some predecessors of Neural Granger Causality that address certain

aspects of nonlinearity.

2.1 Additive Nonlinear Granger Causality

2.1.1 Additive Non-linear Model

First, we establish what is an additive nonlinear time series model. Chu and Glymour (2008)

provided this definition: Let Xt = {Xt1, ..., Xtp} a p-dimensional observed time series, Ut

a q-dimensional unobserved time series, ϵt a p-dimensional error like above. Then, they

denoted {X}t = {..., X1, ..., XT , ...}. For {X}t to be generated from a lag T additive non-

linear model, Chu and Glymour (2008) outlined 4 conditions. They state the main condition

is that for i = 1,..., p:

Xti =
∑

1≤j≤p,j ̸=i

cjiXtj +
∑

1≤k≤p,1≤l≤T

fkil(Xt−l,k) +

q∑
m=1

bmiUtm + ϵti

Here, cji, bmi are constants and fkil are smooth univariate functions. We also have two of

the many ways to think about causality here. Chu and Glymour (2008) stated Xtj is causal

to Xti if and only if cji ̸= 0. Chu and Glymour (2008) also stated Xt−l,k is causal to Xti if

and only if fjil ̸= 0.
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2.1.2 Conditional Independence Test

One great advantage of additive time series models is their resistance to the curse of dimen-

sionality. This is due to the inherent nature of additive regression method. As a result, we can

efficiently test conditional independence for nonlinear series to see if potential causal links are

indeed valid. Chu and Glymour (2008) provided the following: Let X1
t , X

2
t be two entries of

Xt, X
c
t be any subset of Xt\{X1

t , X
2
t }, Xd

t be any subset of Xt\{X1
t }, X l = {Xt−T , ..., Xt−1},

Xt−i,j ∈ X l, and Xe = X l\{Xt−i,j}. Here, Chu and Glymour (2008) emphasized two impor-

tant results. First, X1
t is independent of Xt−i,j if and only if the conditional expectation of

X1
t on Xd

t and X l is constant in xlj. Second, X1
t is independent of X2

t conditional on Xc
t

and X l if and only if the conditional expectation of X1
t on X2

t ,X
c
t , X

l is constant in x2t the

conditional value of X2
t .

Most importantly, Chu and Glymour (2008) asserted additive model regression as a con-

sistent estimator of conditional expectations, which combines with the above findings make

conditional independence test possible.

2.1.3 Causal Graphs

A causal graph represents the causal relationships among observed or unobserved variables.

Next, a directed acyclic graph (DAG) is the most common way to demonstrate the causal

graph. In the case of our causal graph, the vertices and directed edges represent variables and

causal link between variables, respectively. Focusing on additive non-linear, causal graphs

expand our understanding of the procedure, whether capturing causal relationships, finding

causal paths and confounders, or simplifying analysis for causal effect estimation.

We now provide details for causal graph in our case. Let G =< V,E > be our causal graph,

e =< Vi, Vj > be edge of G (also indicates Vi is causal to Vj), Vm subset of V, Gm subgraph of

G induced by Vm (Chu & Glymour, 2008). Next, they defined d-seperation and faithfulness.

Vertices X, Y (random variables) are d-separated with respect to vertex set Z if and only if

7



between X and Y every undirected path contains a collider with no directed path into any

vertex of Z or contains a non-collider that is a vertex of Z. Subsequently, a joint distribution

on the vertices of a DAG is faithful if and only if all conditional independence relations

(through d-separation property) applied to the DAG.

Chu and Glymour (2008) also underscored three important propositions. First, d-separation

among the variables in Xt conditional on Xl in Gc the repetitive causal graph are the same

as those in Xt in the subgraph of Gc induced by Xt. Second, let faithfulness be true. If there

exists Xt−i,j ∈ X l such that X2
t and Xt−i,j are independent conditional on X

e but not Xt−i,j

and X1
t , then X

1
t is not causal to X2

t .

The third proposition is complicated, so we denoted some new terms. Let all the previous

notations be unchanged, and Xd
t be the set of all observed contemporary direct causes of X1

t .

If faithfulness is true, then Xt−i,j and X
1
t are dependent on Xd

t and Xe if and only if one of

these two are true. First, Xt−i,j is causal to X
1
t . Otherwise, there exists path P between X1

t ,

Xt−i,j where the ordered set < W1, ...,Wm > of vertices between X1
t , Xt−i,j that satisfies the

5 causal and graph conditions outlined by Chu and Glymour (2008).

One last step before we go into causal inference procedure of additive non-linear models is

its output named Partial Ancestral Graph (PAG). PAGs are a class represent the causal

relationships among a set of variables, capturing both the observed and latent variables’

interactions. In essence, PAG is an extension of DAG that encode conditional independence

relations. In PAG, there is list of vertices (observed variables), 3 types of end points which

combined form 4 types of edges representing causal relations between random variables.

2.1.4 Causal Inference Procedure

We will summarize the 3 main steps for the procedure. Note that There are more details

and descriptions provided by Chu and Glymour (2008):

First Step - Identify contemporary causal relations: Determine if X1
t is independent of X2

t

conditional on Xc
t and X l through X1

t , X
2
t , X

c
t . Then, treat these relations the same as

8



conditional independence relations between X1
t , X

2
t given Xc

t . To do this, generate a PAG

denoted as πt G for the contemporary causal structure among variables in Xt. From this,

create set PCDC(X1
t ) of possible contemporaneous direct causes of X1

t .

Second Step - Identify lagged causal relations: We create πf with the vertex set {Xt, ..., Xt−T}

and πt’s edges. Determine if X1
t , Xt−i,j are independent given Xe and Xb

t through all of

X1
t , Xt−i,j, X

b
t . Finally, add the lagged causes (the edges) of each variable in Xt to πf .

Third Step - Follow the conditions from Chu and Glymour (2008) to adjust contemporary

PAG: Repeat edge orientation until no more change to πf . Subsequently, apply causal

inference algorithm FCI (or similar) to orient if still needed our contemporary PAG πf .

2.1.5 Strengths and Shortcomings

Because its components are linear, non-linear additive causal inference’s biggest strength is

interpretability. In addition, non-linear additive causal inference is also less complex to other

methods which is very important as time series data can be very large.

The primary limitation of non-linear additive causal inference is its reliance on additive forms.

This may not capture more intricate or multiplicative interactions between variables. Our

data is count time series, so the additive non-linear model itself is not very applicable. Finally,

additive nonlinear Granger causality assumes temporal independence. Such assumption can

lead to numerous hidden errors. As a result, we need to estimate errors for more arbitrary

non-linear VAR (NVAR). This brings us to the next topic: Independent Innovation Analysis.
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2.2 Independent Innovation Analysis (IIA) for Granger

Causality

2.2.1 Augmented NVAR model

Because NVAR uses past values to make future predictions, we also call NVAR a mixing

model. On the other hand, independent innovation analysis (IIA) focuses on finding the

inverse (demixing) of NVAR. The main goal of this demixing is to understand causal mech-

anism and hidden errors better.

To begin, Morioka et al (2020) denoted xt = [x1(t), ..., xn(t)]
T and st = [s1(t), ..., sn(t)]

T as

the observations and innovations at time t respectively. In its most basic form, the NVAR(1)

model f : R2n → Rn is: xt = f(xt−1, st). As before, we assume temporal independence for

the errors. From the formula, we can see unlike additive nonlinear VAR, NVAR allows non-

linear interaction between the observations and errors. Subsequently, the authors wanted to

estimate innovations s only from observations x through NVAR. One thing to our advan-

tage is that we can extend the model, algorithm, and theorem for NVAR(1) to NVAR(p) by

replacing xt−1 with [xt−1, ..., xt−p] (Morioka et al, 2020).

To make it possible for demixing, Morioka et al (2020) emphasized we need the invertible

augmented NVAR model f̃ : R2n → Rn since NVAR f is not invertible. Note that we do

not make any constraint on f (Morioka et al, 2020):

 xt

xt−1

 = f̃


 st

xt−1


 =

 f(xt−1, st)

xt−1


To start with demixing, let g(xt, xt−1) ∈ Rn be the sub-space of the demixing model (Morioka

et al, 2020). This sub-space shows the mapping from two temporally consecutive xt, xt−1

to the innovation at time t. From Morioka et al (2020), the augmented demixing model for

10



innovation estimation is: st

xt−1

 = g̃


 xt

xt−1


 =

 g(xt−1, xt)

xt−1


For NVAR, identifiability is an important condition. Identifiability makes sure a unique

estimate for the model’s parameters given sufficient data is possible. This is a requirement

if we want to accurately understand nonlinear causal dynamics. Beyond that, identifiability

makes statistical inference of causal relationships consistent, and provides reliable model

evaluation.

To ensure identifiability for NVAR, Morioka et al (2020) required to make one important

assumption. The distribution of innovations are time-dependent, and modulated through

an auxiliary information about the error. Morioka et al (2020) denoted this auxiliary in-

formation at time t as random variable ut. To be more specific, innovation si is dependent

on m-dimensional random auxiliary variable u. However, si is conditionally independent of

other innovations sj. Finally, si has a univariate exponential family distribution conditioned

on u formulated by Morioka et al (2020):

p(s|u) =
n∏

i=1

Qi(si)

zi(u)
exp[

k∑
j=1

qij(si)λij(u)]

Here, Qi is the base measure, Zi is the normalizing constant, k is the model order, qij is the

sufficient statistics, and λij is a scalar function of u per Morioka et al (2020). Now that we

have the innovation model, we can talk about the learning frameworks.

2.2.2 Learning Frameworks

There are 3 frameworks to consider: General Contrastive Learning Framework, Time-

Contrastive Learning Framework, and Hidden Markov Model Framework. De-

pending on the scenarios, they will be useful estimators of various causal structures.
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General Contrastive Learning Framework (IIA-GCL): In IIA-GCL, the main goals

are to train a feature extractor and a logistic regression classifier (Morioka et al, 2020). This

classifier will distinguish a real dataset composed of the true observations of (xt, xt−1, ut)

from one where u is randomized. Morioka et al (2020) denote u∗ the random value drawn

from the distribution of u while also independent of xt, xt−1. They next write these two

datasets as:

x̃t = (xt, xt−1, ut); x̃
∗
t = (xt, xt−1, u

∗)

Morioka et al (2020) also defined our estimator the nonlinear logistic regression system as:

r(x̃t) =
n∑

i=1

k∑
j=1

ψij(hi(xt, xt−1))µij(ut) + ϕ(xt−1, ut) + α(ut) + β(hi(xt, xt−1)) + γ(xt−1)

Where ψij, hi, µij, ϕ, α, β, γ are scalar-valued functions. These functions are designed to

match the difference of the log-pdfs of xt, xt−1, ut) in the two datasets (Morioka et al, 2020)

and satisfy universal approximation capacity of Hornik et al (1989). We always take into

account the innovation model outlined above. Finally, we will use neural network to learn

these functions.

The main advantage of IIA-GCL is the certain identifiability of the innovations, up to a

permutation and component-wise invertible nonlinearities Morioka et al (2020). This is

because of the guaranteed convergence of the learning framework from the following theorem

detailed by the above authors:

Theorem 3 We have 6 assumptions to make: 1) The augmented model is invertible and

(sufficiently) smooth; 2) The innovations are temporally independent, follow innovation

model. Also, qij are twice differentiable; 3) Exist nk+1 distinct u0, ..., unk so nk × nk matrix

L = (λ(u1)− λ(u0), ..., λ(unk)− λ(u0)) is invertible (note that λ(u) = (λ11(u), ..., λnk(u))
T );

4) Regression system has universal approximation capability to distinguish x̃ and x̃∗; 5) Aug-

mented function h̃(xt, xt−1) = [h(xt, xt−1), xt−1] is invertible; 6) ψij are twice differentiable.

Also for each i, exist θ ∈ Rk such that for all y if
∑k

j=1 ψij(y)θj is constant, then θ = 0. If

12



all of these 6 assumptions are satisfied, then hi(xt, xt−1) give the independent innovations,

up to permutation and scalar (component-wise) invertible transformations. In short, h(., .)

in the regression function provides a consistent estimator of our IIA method.

Time-Contrastive Learning Framework (IIA-TCL): If ut is within a finite number of

class [1, T ], IIA-TCL is our choice. IIA-TCL learns through a multinomial logistic regression

(MLR) classifier using softmax function (Morioka et al, 2020):

p(ut = τ |xt, xt−1) =
exp(

∑n
i=1

∑k
j=1 zijτ )∑T

l=1 exp(
∑n

i=1

∑k
j=1 zijl)

zijl = ωijlψij(hi(xt, xt−1)) + ϕ(xt−1, ut = l) + bl

With ωijτ , bτ the class-specific weight and bias of MLR classifier respectively. Also, ψij, hi, ϕ

is the same as IIA-GCL. The theorem for IIA-TCL now becomes (Morioka et al, 2020):

Theorem 4 We have 7 assumptions similar to IIA-GCL with some additions and modifi-

cations: 3) u the auxiliary variable is an integer in [1, T ]; 4) the nk × (T-1) modulation

matrix L = (λ(2) − λ(1), ..., λ(T ) − λ(1)) is full rank row-wise (note that λ(τ) = (λ11(u =

τ), ..., λnk(u = τ))T ); 5) MLR system has universal approximation capability to distinguish

ut (class label) from (xt, xt−1). If all of these 6 assumptions are satisfied, then hi(xt, xt−1)

give the independent innovations, up to permutation and scalar (component-wise) invertible

transformations. In short, h(., .) in the regression function provides a consistent estimator

of our IIA method.

Hidden Markov Model Framework (IIA-HMM): When u is not observed, IIA-HMM

is the method of choice. Morioka et al (2020) stated we assume the nonstationarity is

described by hidden states following a discrete-time Markov model. To be more specific, the

temporal structure for u is as followed. The auxiliary ut ∈ 1, ..., C shows a hidden random

states at t. Next, Morioka et al (2020) described ut by a Markov chain governed by a time-

invariant transition-probability matrix A ∈ RC×C . Here, they denote Aij as the probability
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of transitioning from state i to j.

With hidden Markov chain ut, NVAR observation model which generates the innovations at

time t has likelihood (Morioka et al, 2020):

p(x0, ..., xT ;A, θ) = p(x0)
T∏
t=1

|Jg̃(xt, xt−1)| ×
∑

u1,...,uT

πu1p(s1|u1; θ)
T∏
t=2

Aut−1,utp(st|ut; θ)

We have λ the parameters of innovation model, g the demixing model with augmented g̃,

π = (π1, ..., πC) the stationary distribution of latent state u, p(x0) the marginal distribution

of x0, Jg̃ the Jacobian matrix of g̃, θ = {λ, g} (Morioka et al, 2020).

EM algorithm is often used to identify the innovations. E-step will try to find the optimal

(u1, ..., uT ). M-step will parameters of the model so as to have MLE. The work for better

understanding of identifiability for IIA-HMM is still in progress (Morioka et al, 2020).

2.2.3 Strengths and Shortcomings

In essence, IIA is a versatile method to uncover subtle or hidden causal connections. More

importantly, the use of demixing models make causal mechanisms more interpretable.

On the other hand, EM algorithm and neural network can make IIA difficult to implement.

There are numerous assumptions for each type of IIA. All of these can be a major issue

with the variety in the real world. Finally, IIA may not be suitable for every types of

nonlinear data. This is especially when facing with heteroskedasticity or non-independency.

Consequently, kernel Granger causality is often more powerful since kernel methods are

non-parametric and flexible.
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2.3 Kernel Granger Causality

2.3.1 Connection with Information Theory

To understand how we can quantify kernel causal tests, we need to establish the relationship

between kernel Granger causality and information theory. First, Schreiber (2008) defined

transfer entropy as a measurement of the amount of information transferred from one system

to another. It also indicates the flow of information between these systems. Now, consider

two time processes X and Y. Denote the past k states of X and past l states of Y as xkt and

ylt respectively. Let yn+1 the next state of Y, TX→Y be the transfer entropy from X to Y

given the past states of X and Y. From Marinazzo et al (2008) we have:

TX→Y =
∑

p(yn+1, y
l
t, x

k
t )log(

p(yn+1|ylt, xkt )
p(yn+1|ylt)

)

With transfer entropy established, let us focus on time series. Marinazzo et al (2008) denoted

time series {ξn}n=1,...,N+m. For this time series, we can approximate using p(ξn|ξn−1, ...ξn−m) =

p(ξn|ξn−1, ...ξn−m−1). This is the stationary Markov process of order m. Next, the au-

thors denoted for i = 1, ..., N the N realizations of stochastic variables X and x as Xi =

(ξi, ..., ξi+m−1)
T and xi = ξi+m respectively. Finally, they defined R[f ] =

∫
dXdx(x −

f(X))2p(X, x) the risk functional. Marinazzo et al (2008) provided that the minimizer

of R[f ]- the best estimate of x given X- is f ∗(X) =
∫
dxp(x|X)x. Similarly, they let

{ηn}n=1,...,N+m be defined the same as {ξn}n=1,...,N+m. So, Yi = (ηi, ..., ηi+m−1)
T . Marinazzo et

al (2008) provided that the best estimate of x given X, Y is now g∗(X, Y ) =
∫
dxp(x|X, Y )x.

This also means Y does not provide any useful information to predict x. Now, the Markov

property is p(x|X) = p(x|X, Y ). It then follows that (Marinazzo et al, 2008):

f ∗(X) = g∗(X, Y )
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From the formula for TX→Y , clearly then TX→Y = 0. In other words, if causality exists,

TX→Y ̸= 0.

2.3.2 Granger Causality Index

For traditional linear Granger causality, we evaluate causal connections based on established

test statistics such as F-test. However, sample size, amount of parameters, and lack of cross

validation can make these tests prone to overfitting. Thus, Marinazzo et al (2008) introduced

a new estimator - filtered linear Granger causality index. We will outline the procedure

for Granger causality index below.

We start with linear Granger causality. Note that the empirical risk ER[f ] is our choice

instead R[f ] since N < ∞. To minimize ER[f ], consider α ∈ {1, ...,m}. Marinazzo et al

(2008) wrote uα ∈ RN as the vector generated by the samples of the α-th component of X

with mean 0. Now, they denoted normalized x = (x1, .., xN)
T with mean 0 and defined the

linear regression of xi versus X at Xi as x̃i. Then, the space to look for the minimizer is the

span of u1, ..., um. They called this space H, meaning x̃ = {x̃1, ..., x̃m} is the projection of x

on H. Marinazzo et al (2008) emphasized H coincides with the range of the N × N matrix

K = XTX, where X consists of uα as rows. Finally, Marinazzo et al (2008) stated the

prediction error given X is ϵx = 1− x̃T x̃. Subsequently, let vα ∈ RN be the vector generated

by the samples of the α-th component of Y with mean 0. Follow previous steps, they denoted

the space spans by u1, ..., um, v1, ..., vm as H ′ and the projection of x on H’ as x′. Similarly,

the authors let H ′ be the range of the N × N matrix K’ = ZTZ, where Z consists of uα and

vα as rows. they also stated that ϵxy = 1− x̃′
T
x̃′. It is clear that H ′ = H ⊕H⊥. From all of

the above, for linear case Marinazzo et al (2008) defined Granger causality index as:

δ(Y → X) =
ϵx − ϵxy
ϵx

=
∥P⊥x∥2

1− x̃T x̃

16



Where P and P⊥ are the projector on H and H⊥ (Marinazzo et al, 2008). The authors

asserted the orthonormal basis ofH⊥ is the eigenvectors of K̃ = K′−PK′−K′P+PK′P with

non-zero eigenvalues. They labeled these eigenvectors t1, ..., tm and denote ri the Pearson

correlation between x and ti. Overall, Marinazzo et al (2008) obtained: ∥P⊥x∥2 =
∑m

i=1 r
2
i .

However, we also have to filter out some ri to prevent false causality by combining t test and

Bonferroni correction. In the end, the filtered Granger causality index is (Marinazzo et al,

2008):

δ(Y → X) =

∑
i′ r

′2
i

1− x̃T x̃

2.3.3 Extension to Kernel

We extend Granger causality index for nonlinear case. According to Marinazzo et al (2008),

let k be kernel function: k =
∑

a λaΨa(X)Ψa(X
′) with λ the eigenvalues associated with the

kernel function, Ψ(.) the eigenfunction corresponding to the eigenvalue. Now, they stated the

search space H is the range of the N x N Gram matrix K where Kij = k(Xi, Xj). Following

the same definitions and steps for linear case, Marinazzo et al (2008) stated x̃ coincides with

the linear regression of x in the feature space spanned by
√
λaΨa.

Next, to predict x using both X and Y, Marinazzo et al (2008) constructed Z with samples

Zi = (XiYi)
T , Gram matrix K′ with K ′

ij = k(Zi, Zj). Subsequently, x′ the regression value

is same as the range of K′. We can find filtered non-linear Granger causality index. We have

two common kernel choices detailed below.

Inhomogeneous polynomial (IP): An IP kernel of order p is kp(X,X
′) = (1+XTX ′)p. In

this case, Ψa are the monomials up to the p-th degree in the input variable (Marinazzo et al,

2008). The authors let K̃ = K′ −PK′ −K′P+PK′P. By choosing only the eigenvectors of

K̃ that meet the Bonferroni test, we obtain the filtered non-linear Granger causality index.

For IP kernel, not only the index can help us evaluate causality without fear of overfitting,

but also the degree of interaction (linear, quadratic,...). This is because our choice of order

p can maximixe δF (X → Y ) (Marinazzo et al, 2008).
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Gaussian: A Gaussian kernel is kσ(X,X
′) = exp(− (X−X′)T (X−X′)

2σ2 ). One major distinction

compared to linear or IP kernel is that H ⊆ H ′ is not always true. We must adjust H

accordingly. Marinazzo et al (2008) considered H the span of the eigenvectors of K whose

eigenvalue is at least µλmax. Here, µ is a very small number of our choice and λmax is the

largest eigenvalue of K. We follow similar steps to assess and obtain K′, but this time denote

w the eigenvectors of K′. Marinazzo et al (2008) also let ρi be eigenvalues of K′ where ρi is

at least µλ′max (λ′max is the largest eigenvalue of K′). Subsequently, they define K∗:

K∗ =

m2∑
i=1

ρiwiw
T
i

Finally, redefine K̃ = K∗−PK∗−K∗P+PK∗P and obtain filtered Granger causality index

as before.

2.3.4 Strengths and Shortcomings

Kernel Granger causality is a step up in resolving non-linear Granger causality. The filtered

Granger causality index can perform regardless of the degree of nonlinearity and thus not

suffer from overfitting. Also, we can see that kernel Granger Causality is an extension of

traditional linear Granger causality, so it is more interpretable than other advanced methods.

However, the weakness of kernel Granger causality is in choosing the appropriate kernel.

Thus, for some case such as count time series the method can be not as flexible. Kernel

Granger causality may also suffer from overfitting and is sensitive to noises. Thus, we will

need a method that can have robust causal tests and reduce overfitting. Nonlinear permuted

Granger causality fits these criteria well.
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2.4 Nonlinear Permuted Granger Causality

2.4.1 Redefining Granger Causality

We will first make some modifications for Granger causality to fit the work of Gade and Rodu

(2023). Let xt be our time series which we use to predict future of time series yt. The authors

denote P the optimal prediction function and I<t the information prior to t. Finally, X<t

is a matrix consisting of xt ∈ Rp prior to t. Now, they define Granger causality as we often

understand: xt is Granger-causal for yt if Var[yt − P(yt|I<t)] < Var[yt − P(yt|I<t\X<t)].

From Gade and Rodu (2023), information isolation will happen when we screen through

penalized variable selection. Thus, we will disregard the collective covariate set and likely

up-weight contributions of the nonzero covariates. It is important then for us to redefine

Granger causality to a permuted framework with out-of-sample testing (NPGC). This way,

we can have both learning flexibility and improving identifiability.

Note that P(yt|I is hard to obtain. We will need to add an inherent explanatory covariate

set zt ∈ Rq. We redefine Granger causality - xt is Granger-causal for yt given zt and history

of response if (Gade & Rodu, 2023):

V ar[yt − P(yt|Y<t, Z<t, X<t)] < V ar[yt − P(yt|Y<t, Z<t)]

In essence, this new definition means that if we reject the null hypothesis, xt is truly causal to

yt as it provides information beyond that of zt. Next, we also define conditional independence

where zt is an extension (Gade & Rodu, 2023): At a specific time t, xt does not Granger

cause yt if and only if given Y<t then Y<t+1 ⊥ X<t. One very important remark is that we

cannot simply use this statement to conduct independent test because it may not be true

for all time t.

Overall, these definitions matter because we have to understand the limitations of Granger

causality. Often, we focus on the influence of individual variables which is affected by hidden
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multiplicity. This is when we look too much into individual causal relationships and forget

how a group of variables can collectively influence our prediction.

2.4.2 Out-of-sample Predictability

For many existing methods, Gade and Rodu (2023) emphasized that they rely on in-sample

tests to assess causal relationships. The issue of this is that neural networks, under the right

setting, can give approximations to any functional relationship between covariate sets. As

such, we may connect two variables with no predictive relationship especially with overfitting

situations where noises are mistaken for significant patterns.

To identify useful functional relationships, then, out-of-sample predictability is necessary.

To accomplish this, the authors use a permutation structure which once more requires mod-

ifications to the definition of Granger causality. Permutation is very effective as it prevents

dependence structure with response and maintain dependence among covariates (Gade &

Rodu, 2023). Now, we have a null model and a restricted model. The authors denoted X̃<t

as the copy of X<t with random permutations of rows (ie time). We now have two crucial

definitions of conditional Granger causality (Gade & Rodu, 2023):

Definition 1: xt is not conditional Granger causal for yt given zt and the history of Y<t if

and only if

Y<t+1|Y<t, Z<t, X<t
d
= Y<t+1|Y<t, Z<t, X̃<t

Definition 2: xt is not conditional Granger causal for yt given zt and the history of Y<t if

V ar[yt − P(yt|Y<t, Z<t, X<t)] < V ar[yt − P(yt|Y<t, Z<t, X̃t)]

2.4.3 Structure

Gade and Rodu (2023) denoted ω as the set of possible realizations, and the data from ω as

(X, Y,X)ω. Also, they denote ωobs = {1, ..., φ} our set of observations.
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We will describe the structure from Gade and Rodu (2023). First, select an appropriate γ

lag values of yt. This will give us representative history Ylag ∈ R(T+γ)×γd (act as Y<t per

our two definitions). We can only use the last T rows of X, Y, Z because the data length is

finite (T +γ). Because feed forward networks (FNNs) is used to capture nonlinear functional

dependence, individual variables (columns) are standardized.

Next, create M permutations X̃m = ΠmX (row shuffling for X). For m = 1, Π1 = I i.e

X̃1 = X. This will be for our original model. Otherwise they will be for permuted model.

Next, generate predictor matrix [1YlagZX̃m] ∈ RT×(1+γd+q+p). Combine W 0, b0 to create

W ∈ R(1+γd+q+p)×N with conditions specified in Gade and Rodu (2023). With activation

function g = tanh, the FNN model becomes (Gade & Rodu, 2023)::

Hm = tanh([1YlagZX̃m]W )

Next, the featurizations Wr (r=1, ...,R) have their behaviors aggregated to help with un-

certainty. Now, the authors let Um,r be the variation in Y not captured by the functional

relationship with the feature space Hm,r:

Y = Hm,rW
L
m,r + Um,r

Next, Gade and Rodu (2023) let Θm be the covariance matrix for predicting Y given

Ylag, Z, X̃m. Over ω all possible realization, they also let ϑm = tr(Θm) be our out-of-sample

variation parameter for estimation. Given realization (X, Y, Z)ω and true functional form

f, they define the specific covariance matrix of the prediction as
∑

m,ω. Given a random

featurization r, the estimate of
∑

m,ω is Sm,ω,r (Gade & Rodu, 2023).

Finally, we will use cross validation for each permutation to estimate ϑm.
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2.4.4 Granger Causal Influence Test

We will detail Granger Causal influence test as our estimator for the influence. From

Gade and Rodu (2023), we first choose sufficiently large featurization dimension N to linearize

functional relationships. Then, split data to K sets for modelling and testing. For each set

k = 1, ..., K, they state the number of observation is Tk = ⌊T/K⌋+ 1(TmodK) ≥ k.

Again from Gade and Rodu (2023), let us generate R FNNs and fix Wr for consistent error

estimation. Now, let training data have subscript -k and R be the out-of-sample prediction

residuals. We have then (Gade & Rodu, 2023):

Rm,ω,r,k = Hm,ω,r,k(H
′
m,ω,r,−kHm,ω,r,−k)

−1H ′
m,ω,r,kYω,−k − Yω,k

Next, the authors denote ϑ̂m the estimate for the out-of-sample variation in prediction resid-

uals. They measure the estimate as:

ϑ̂m =
1

φRK

φ∑
ω=1

R∑
r=1

K∑
k=1

1

Tk
tr(R′

m,ω,r,kRm,ω,r,k)

Now, we approximate the null distribution of variation from each model m using the described

permutation structure. Next, Gade and Rodu (2023) draw the variation estimates from:

ϑ̂m ∼ Ĥ(s) = (T !)−1

T !∑
i=1

1{ϑ̂i ≤ s}

The empirical distribution from a size M subsample is (Gade & Rodu, 2023):

Ĥ(s) =
1

M

M∑
m=1

1{ϑ̂m ≤ s}

In addition, they let Q̂M = Ĥ(ϑ̂1) = 1
M

∑M
m=1 1{ϑ̂m ≤ ϑ̂1}. With this, given test level α,

rejecting H0 : Q̂M ≤ α means X is Granger causal to Y conditional on Z and Ylag.
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2.4.5 Strengths and Shortcomings

Of all the methods in this paper, nonlinear permuted Granger causality (NPGC) is the most

advanced and reliable because of its focus on out-of-sample predictability. It tackles specifi-

cally towards overfitting issues. This way, NPGC is more likely to have correct assessment

of Granger causal effects. More so, the structure of NPGC means it prioritizes collective

inference which has been disregarded previously.

For NPGC, its shortcoming is being computationally expensive. The permutation method

may play a huge part in this. More importantly, the results are too advanced and convoluted

for interpretations. While not as good in dealing with overfitting, our method of interest is

one with strong interpretability: Neural Granger causality.
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Chapter 3

Neural Granger Causality

3.1 Neural Networks Adaptation

Let the past of series i be x<ti = (..., x(t−2)i, x(t−1)i) (Tank et al 2022). As before, the

nonlinear autoregressive model is:

xt = g(x<t1, ..., x<tp) + et

Where et is additive zero mean noise. Note that there are shortcomings of the original version.

First, it is difficult to assign correct weights to have one series Granger-cause another series

but not Granger-cause anything else. Second, it assumes we can apply the same past lags

to every time series which rarely is the case in practice.

Thus, it is best to focus on how the past K lags are mapped to time series i (Tank et al

2022):

xti = gi(x<t1, ..., x<tp) + eti

From Tank et al (2022), time series j is Granger non-causal to time series i if for all

x<t1, ..., x<tp and x<tj ̸= x′<tj:

gi(x<t1, ..., x<tj, ..., x<tp) = gi(x<t1, ..., x
′
<tj, ..., x<tp)
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3.2 Multilayer Perceptron (MLP)

3.2.1 Definition

As the focus is on the components, we call the method component-wise MLP (cMLP).

According to Tank et al (2022), let MLP gi have L-1 layers, hlt ∈ RH contain values at

time t for m-dimensional l-th hidden layer, W = {W 1, ...,WL} be weights at each layer,

b = {b1, ..., bL} be biases at each layer. For the first layer, they let weight W 1 ∈ RH×pK be

W 1 = {W 11, ...,W 1K}. For 1 < l < L, W l ∈ RH×H . Also from the authors, WL ∈ RH ,

bl ∈ RH for 1 < l < L, and bL ∈ R. Finally, let σ be the activation function of choice such

as logistic or tanh. Now, at time t, for the first layer (Tank et al 2022):

h1t = σ(
K∑
k=1

W 1kxt−k + b1)

Note that j does not Granger-cause i if for all k, W 1k
:j is always a zero matrix. For the

remaining L-2 layers (Tank et al 2022):

hlt = σ(W lhl−1
t + bl)

The authors next denotedWL the linear output decoder, hLt the hidden output from (L-1)-th

layer. From them, our time series xti after passing through L-1 layers:

xti = gi(x<t) + eti = WLhL−1
t + bL + eti

Now, from h1t we know j does not Granger-cause i when for all k x(t−k)j has no impact on h1t

and xti. So, to select Granger causality our objective is (Tank et al 2022):

minW

T∑
t=K

(xti − gi(x(t−1):(t−K)))
2 + λ

p∑
j=1

Ω(W 1
:j)
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Tank et al (2022) emphasized the penalty Ω will shrink W 1
:j = (W 11

:j , ...,W
1K
:j ) to 0 and λ

controls group sparsity. With that, there are three choices of penalties: group lasso, group

sparse group lasso, hierarchical group lasso.

Group lasso will shrink equally the weights associated with lags for input series j (Tank et

al 2022). It can only detect very few Granger causal connections estimations:

Ω(W 1
:j) = ∥W 1

:j∥F

Group sparse group lasso can better help find lags with Granger causal effects. It can provide

sparsity across groups and within each group (Tank et al 2022), and we control the tradeoff

through α ∈ (0, 1):

Ω(W 1
:j) = α∥W 1

:j∥F + (1− α)
K∑
k=1

∥W 1
:j∥2

Hierarchical group lasso can resolve Granger causality and lag order of interaction at the

same time. The penalty is particularly powerful form large K as Granger causal relationships

for higher lags are still accounted for (Tank et al 2022):

Ω(W 1
:j) =

K∑
k=1

∥(W 1k
:j , ...,W

1K
:j )∥F

From Tank et al (2022), hierarchical group lasso can also do two things. First, it makes sure

for each j, there exists lag k such that W 1k′
:j = 0 for k′ > k and W 1k′

:j ̸= 0 otherwise. Second,

for all k, the penalty also sets many W 1k
:j columns to zero.

3.2.2 Optimization of Objectives

To interpret Granger non-causality, the input matrices columns must be exactly zero. As a

result, proximal gradient descent is the algorithm of choice. In addition, we can incorporate

line searches to guarantee convergence to a local minimum (Tank et al 2022). The authors

denoted L =
∑T

t=K(xti − gi(x<t))
2 the prediction loss, proxλΩ the proximal operator for
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penalty Ω, γ(m) the step size. Starting with W (0), Tank et al (2022) updated network

weights W as followed:

W (m+1) = proxγ(m)λΩ(W
(m) − γ(m)∇L(W (m)))

Note that at higher levels the proximal steps for weights is the identity function (Tank et al

2022).

Specifically for group lasso, we use soft thresholding:

proxγ(m)λΩ(W
i
:k) = soft(W i

:k, γ
(m)λ)

Denote (x)+ = max(0, x), we then have that (Tank et al 2022):

proxγ(m)λΩ(W
i
:k) =

(
1− γ(m)λ

∥W 1
:j∥F

)
+
W 1

:k

For step-by-step pseudocodes of proximal gradient descent as well as proximal steps with

different penalties, we refer to the work of Tank et al (2022).

3.3 Recurrent Neural Network (RNN)

3.3.1 Definition

Even if we will not use it, component-wise RNN, specifically component-wise long short-term

memory (cLSTM), can be another powerful option. We will only work with single-layer RNN

since generalizations take similar forms. At time t, let ht be H-dimensional hidden output.

To update ht, we may apply long short-term memory (LSTM). The details of LSTM formulas

for ht are in the paper of Tank et al (2022). LSTM works well for Granger causality as it

can represent real nonlinear connections between time series which may also be long-range.
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Now, xti the output for series i at time t is (Tank et al 2022):

xti = gi(x<t) + eti = W 2ht + eti

For details, they described the construction of input weight W 1, output weight W 2, and

weight matrix W. To detect Granger causality using group lasso penalty, the objective is

(Tank et al, 2022):

minW

T∑
t=2

(xti − gi(x<t))
2 + λ

p∑
j=1

∥W 1
:j∥2

3.3.2 Optimization of Objectives

Similar to cMLP, we also optimize the objective of cLSTM through proximal gradient de-

scent. To compute the gradient, we use full or truncated back-propagation through time

(BPTT) (Tank et al 2022). Again, the authors provided more pseudocodes of proximal

gradient descent for objective optimization in the case of general group lasso penalty.

3.4 Strengths and Shortcomings

Both cMLP and cLSTM are powerful tools depending on our needs. For cLSTM, it can

capture long range dependencies between time series which is very effective in sequence

prediction. For cMLP, it is useful when our computational resources are limited. Overall,

their main strengths are in interpreting complex causal connections. Such interpretability is

possible thanks to flexible design architecture, inherent advantages of neural networks, and

penalization schemes that ensures the network to represent non-causal relationships in the

inputs’ outgoing weights instead of other configurations (Tank et al 2022).

The main downside of NGC is the input parameter or penalty. Different combinations

often lead to varied results, which in turn makes our conclusions unreliable. Predictability

assessment can turn bad for a variety of reasons: overfitting, in-sample tests, individualistic
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inferences,... Despite all this, the interpretability makes Neural Granger Causality the most

useful method for our studies.

3.5 Additional Remarks

In the study, we will only consider cMLP over cLSTM for several reasons. cLSTM is much

more computationally expensive. cMLP is simpler for modifications and additions so we can

see how the different penalties perform. Also thanks to its simplicity cMLP can be more

interpretable. Finally, the number of time points of 115 is quite small, so we can leave aside

long-term dependencies for now.

Beside the penalties from Tank et al (2022), we can also use elastic net penalty. Unlike

the above penalties, elastic net disregard the potential grouping of input features. In this

case, the regularization term will be (Parikh & Boyd, 2014):

λ(||W ||1 +
ν

2
||W ||22)

Where ν > 0. From Parikh and Boyd (2014), the proximal gradient descent will have two

steps: soft thresholding (for L1), then multiplicative shrinkage (for L2). Elastic net penalty

can be more flexible, faster though may hinder interpretability. For our study, we will choose

three penalties - group sparse group lasso, hierarchical lasso, and elastic net.
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Chapter 4

Analysis and Results

4.1 Data Introduction, Cleaning, and Transformation

4.1.1 Introduction

Taken from Kaggle, our missing migrant dataset came from Kaggle user Nidula Elgiriye-

withana. For more details, the reference section of our thesis provided the respective link.

We credited that Elgiriyewithana (2023) scraped his data was from the Missing Migrants

Project. It is an initiative of the International Organization for Migration (IOM) to record

these tragic cases around the world. The main mission of the Missing Migrants Project is

bring about more coordinated and united efforts among nations, an aspirations that we also

hope to carry in this paper.

There are 13020 incidents (the rows) and 20 attributes (the columns) in the data set. We are

only interested in the following 4 attributes: Reported Month, Incident Year, Region

of Origin, Total Number of Dead and Missing. Here, we want to focus specifically

on the origin of the dead and missing migrants. This way, we can better understand the

dynamics among the origins of the migrants. Finally, there are 34 regions of origin for mi-

grants. However, many of them only have a few time points. Thus, we will outline our data

cleaning and transformation below.
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4.1.2 Data Cleaning and Transformation

We will first combine Month and Year to a new variable called Date. We will next create

time series based on the regions of origins. For each region, we sum the number of dead

and missing migrants in each month-year pair of Date. To have sufficient data for analysis,

each time series must have at least 50 non-zero counts. In the end, we have 14 such time

series following this order: Caribbean (1), Central America (2), Eastern Africa (3),

Eastern Africa (P) (4), Latin America / Caribbean (P) (5), Mixed (6), Northern

Africa (7), South America (8), Southern Asia (9), Sub-Saharan Africa (P) (10),

Unknown (11), Western / Southern Asia (P) (12), Western Africa (13), Western

Asia (14). Note that (P) stands for presumed, so we still keep these times separate from

the confirmed region of origins. Subsequently, the maximum number of time points T is 115.

For each time series, will fill empty time points with 0 assuming no dead or missing victims

in that month and year.

When using the untransformed time series count data, the results showed the loss value

remained high. Worse, the potential causal link plot looked very unsatisfactory. We believe

we did not adjust the parameters enough. Through looking at Dr. Covert’s Neural-GC

NVAR simulation as well as trials and errors (standardization, min-max normalization, and

unit length normalization), we would transform each time series withmean normalization:

r̃ =
r − r̄

max(r)−min(r)

This way each time series will center around 0 and the effects of outliers are minimized. We

now have the mean normalized count time series plots below:
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Figure 4.1: Plots of the 14 Time Series when T = 115 (Left) and when T = 50 (Right)

4.2 Results

4.2.1 Algorithms and Parameters

We have two training algorithms to consider which are ISTA and GISTA. They are both

designed to promote sparsity. Note that ADAM was considered but we eliminated it due

to bad results. This is because ADAM does not promote sparsity. Unsurprisingly, ADAM

converges too quickly when our data contains many zero values.

Iterative Shrinkage-Thresholding Algorithm (ISTA): To begin, ISTA finds the first

loss through mean squared error and controls the weights through ridge regularization. Next,

it performs gradient descent with backpropagation. Now, ISTA combines this with a learning

rate to calculate the parameters. The sparsity of these parameters are encouraged through

the proximal update from L1 regularization. Then, as ISTA reaches the look back checkpoint

after specific number of iterations, it promotes sparsity once more through a new smooth

loss calculation and appropriate addition of non-smooth loss penalty. This checkpoint also

ensures early stopping so we don’t overfit.

Generalized Iterative Shrinkage-Thresholding Algorithm (GISTA): In order to im-

prove ISTA especially after parameter update, GISTA employs line search mechanism. This

can help the GISTA find a better learning rate and lead to earlier convergence. More over,
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GISTA will handle the convergence of every single network. This means that for each com-

ponent, the control and optimization will be refined and nuanced.

Coupled with hierarchical penalty being the most interpretable, we will mainly use Hierarchical-

GISTA results. However, we may use other penalty-algorithm pairs to have a consensus when

making key points.

4.2.2 ISTA

Elastic Net

Since elastic net is the inferior penalty as outlined above, we will start with it. The loss

function below shows rapid convergence with less than 1000 iteration needed. This is not

a good sign as it indicates overfitting, extreme learning rate,... As such, we will not go too

deeply into the Granger-causal relationships here and just consider it for consensus later.

Figure 4.2: Loss Function: Elastic Net - ISTA

Below is figure 4.3 showing the potential causal relationships of time series. The column is

our time series, and the row is the affected time series. For instance, last (14th) row, second

column has a blue square. This means time series 2 (Central America) may Granger cause

time series 14 (Western Asia). The results are very unrefined because the map indicate

Granger causality almost everywhere.
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Figure 4.3: General Granger Causality: Elastic Net - ISTA

Going into greater detail, figure 4.4 below will show Granger causal effects of each time

series on others. The order of the time series are row by row. Similarly, the lag order of each

time series is row by row in each plot. The lag order indicates how far back (in months)

of information we used when predicting. For instance, the plot in the 4th row, 1st column

is that of time series 7 (Northern Africa). Here, we look at the second column (Central

America) and observe the green outer squares for all 5 lags. This means that for up to 5

months, time series 7 has predictive power (Granger-causal) over time series 2. The color

of the inner squares indicate how large the Granger causal estimates are. For time series 7,

we see the blue colors of row 2 and 3 in column 2. This means the data from two and three

months ago play a huge role in predicting the ”current” data of time series 2.
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Figure 4.4: Granger Causality with Lag Order: Elastic Net - ISTA

Finally, we have forecasting plots for the time series in figure 4.5. The orange line shows

the predicted time series using the Granger causal model, and the blue line is the true time

series. We observe that many orange lines is almost horizontal, meaning elastic net is not a
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good choice in forecasting.

Figure 4.5: Forecasting Time Series: Elastic Net - ISTA

Group Sparse Group Lasso

The loss function for GSGL is much better now as there are more iterations. This will allow

for more exploration of solution space and improved learning rate.
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Figure 4.6: Loss Function: GSGL - ISTA

For figure 4.7, the Granger causal estimations are now more refined. That said, we only want

to focus on the most influential time series. Thus, we will only focus on those that affected

at least 7 series or half of all series. These time series are: 7 (Northern Africa), 9 (Southern

Asia), 10 (Sub-Saharan Africa (P)), 14 (Western Asia).

Figure 4.7: General Granger Causality: GSGL - ISTA

For figure 4.8, we can see that the Granger causal estimations are all over the lags. As such,

we will not elaborate further and instead will rely on hierarchical penalty for interpretation.
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Figure 4.8: Granger Causality with Lag Order: GSGL - ISTA

The forecasting plots are also better than those of elastic net. However, we can see hori-

zontal forecast for series 3 (Eastern Africa) and 13 (Western Africa). They seem to have no

connections with other regions of origin.
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Figure 4.9: Forecasting Time Series: GSGL - ISTA

Hierarchical Lasso

The loss function below is again what we expected.
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Figure 4.10: Loss Function: Hierarchical - ISTA

Figure 4.11 demonstrates hierarchical penalty is even more refined. The influential time

series are: 7 (Mixed), 9 (Southern Asia), 10 (Sub-Saharan Africa (P)), 14 (Western Asia).

Figure 4.11: General Granger Causality: Hierarchical - ISTA

Figure 4.12 shows where hierarchical penalty truly shines. The lag order is clear now for

interpretation. We will incorporate figure 4.12 with figure 4.21 of Hierarchical - GISTA for

a more comprehensive interpretation in the Key Points section.
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Figure 4.12: Granger Causality with Lag Order: Hierarchical - ISTA

Like GSGL, hierarchical penalty has decent forecast as shown in figure 4.13. Since hierarchi-

cal penalty is our choice, we want to make a comment. The model does not forecast very well

when there are large peaks. This can be due to two reasons. First, we keep the parameters
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the same as Dr. Covert’s Neural-GC Git because forecasting is not our main goal. Second,

mean normalization may not be enough or need further adjustments. These are the things

we can do in the future.

Figure 4.13: Forecasting Time Series: Hierarchical - ISTA
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4.2.3 GISTA

Elastic Net

Here, figure 4.14 shows some improvements. The influential time series are: 2 (Central

America), 4 (Eastern Africa (P)), 6 (Mixed), 7 (Northern Africa), 8) (South America), 9

(Southern Asia), 12 (Western / Southern Asia (P)), 14 (Western Asia).

Figure 4.14: General Granger Causality: Elastic Net - GISTA

Figure 4.15 also shows substantial improvement compared to figure 4.4 (Elastic Net - ISTA).

However, elastic net penalty is not our best option in general so we will not go further.
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Figure 4.15: Granger Causality with Lag Order: Elastic Net - GISTA

Figure 4.16 shows many horizontal forecast since many time series are not affected by others.
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Figure 4.16: Forecasting Time Series: Elastic Net - GISTA

Group Sparse Group Lasso

Figure 4.17 indicates influential time series are: 7 (Mixed), 9 (Southern Asia), 10 (Sub-

Saharan Africa (P)), 14 (Western Asia).
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Figure 4.17: General Granger Causality: GSGL - GISTA

Figure 4.18 shows that for our study case, GISTA makes GSGL more interpretable. The lag

order looks especially great for time series 4 (Eastern Africa (P)).
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Figure 4.18: Granger Causality with Lag Order: GSGL - GISTA

Figure 4.19 shows forecasting is slightly more complex since parameter tuning is more nu-

anced in GISTA.
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Figure 4.19: Forecasting Time Series: GSGL - GISTA

Hierarchical Lasso

Figure 4.20 shows the influential time series are: 2 (Central America), 7 (Mixed), 9 (Southern

Asia), 10 (Sub-Saharan Africa (P)), 14 (Western Asia). Now, after consulting with other

results, we will examine all these 5 time series.
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Figure 4.20: General Granger Causality: Hierarchical - GISTA

Figure 4.21 is very similar to figure 4.12 of Hierarchical - ISTA. For our 5 time series of

interest, only 2 are slightly different: 2 (Central America) and 10 (Sub-Saharan Africa (P)).

We will explore these results in greater details in the Key Points section.
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Figure 4.21: Granger Causality with Lag Order: Hierarchical - GISTA

Finally, figure 4.22 shows the forecasting is as we expected. We already elaborated on the

issue with time series peaks in Hierarchical - ISTA.
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Figure 4.22: Forecasting Time Series: Hierarchical - GISTA

4.3 Key Points

In the end, our 5 influential time series are: Central America (2), Northern Africa

(7), Southern Asia (9), Sub-Saharan Africa (P) (10), Western Asia (14). We

will explore each of them below. Note that we ignore the Granger causal effects of a time

series on itself. Also, we will indicate the lag order and which lag has large Granger causal
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estimate. One caveat is that our choice of blue which can be objective:

Central America (2) has predictive power over time series 1 (Caribbean) - order 1; 3

(Eastern Africa) - order 2, lag 1; 5 (Latin America / Caribbean (P)) - order 1, lag 1; 8

(South America) - order 3 or 4; 10 (Sub-Saharan Africa (P)) - order 3 or 4, lags 1 and

2; 14 (Western Asia) - order 1, lag 1.

Northern Africa (7) has predictive power over time series 2 (Central America) - order 3,

lag 2 and 3; 6 (Mixed) - order 1; 8 (South America) - order 5; 9 (Southern Asia) - order

1, lag 1; 12 (Western / Southern Asia (P)) - order 1; 13 (Western Africa) - order 2, lag 1

and 2; 14 (Western Asia) - order 4.

Southern Asia (9) has predictive power over time series 2 (Central America) - order 3, lag

1; 5 (Latin America / Caribbean (P)) - order 2; 7 (Northern Africa) - order 5; 13 (Western

Africa) - order 1.

Sub-Saharan Africa (P) (10) has predictive power over time series 1 (Caribbean) - order

1; 3 (Eastern Africa) - order 2, lag 1; 6 (Mixed) - order 1; 9 (Southern Asia) - order 3 or

5; 11 (Unknown) - order 2 or 3; 13 (Western Africa) - order 3, lag 2; 14 (Western Asia) -

order 5.

Western Asia (14) has predictive power over time series 3 (Eastern Africa) - order 2, lag

1 and 2; 5 (Latin America / Caribbean (P)) - order 2; 7 (Northern Africa) - order 3.

Above, we highlighted affected time series with significant lags or having lag order of at least

4 since there are too many considerations. In addition, we use both Hierarchical - ISTA and

Hierarchical - GISTA for lag order. With this, we will attempt to provide some possible

reasons for these Granger causal links.

4.4 Possible Explanations

Now, we need to reiterate that Granger causality is not true causality. So, we can only say

the time series of a region of origin may help predict that of another region. Additionally,
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many of our explanations below are more hypotheses than concrete reasons. With that, we

will divide our explanations into two categories: those that are intuitive and those that are

otherwise.

Intuitive explanations: It makes sense to see the predictive power of Central America

over South America, of Central America over Latin America / Caribbean (Presumed), of

Northern Africa over Western Asia, of Northern Africa over Southern Asia, of Southern

Asia over Northern Africa, of Northern Africa over Western Asia, of Sub-Saharan Africa

(Presumed) over Eastern Africa, of Sub-Saharan Africa (Presumed) over Western Africa, of

Sub-Saharan Africa (Presumed) over Western Asia, of Sub-Saharan Africa (Presumed) over

Southern Asia, of Western Asia over Eastern Africa. These regions are either adjacent to

one another or share the migration paths to North America and Europe.

Besides proximity, one likely reason is how these migration paths contain choke points. Here,

many migrants have a higher chance of death and missing. For example, Schrank (2019)

described the dangerous Mexican “La Bestia” train ride to reach the US border with cartels,

extortionists, kidnappers, train accidents. With the vast desert of Mexico, they could die

with no trace ever again. From what the lag orders showed, we believe South American mi-

grants took 3 to 4 months to reach these points where tragedies struck. We assume the same

for presumed Latin American / Caribbean victims who might sail to Mexico and traveled

north.

Unprecedented crisis is another possibility. Africa and the Middle East currently face numer-

ous civil wars, religious extremism, famine, and poverty. These hardships only exacerbated

after the Arab Spring. Norman (2023) described the perils along migration journeys, from

forced disappearance to sexual violence. Looking at time series Northern Africa and South-

ern Asia, we have another interesting finding. The lag order often depends on the distance

between the two regions of origins. Like above, this may come from migrants reaching danger

zones like the Sahara dessert or Mediterranean Sea. Finally, migrants faced no less danger

even when they were not moving and staying in refugee camps. O’Callaghan (2021) high-
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lighted Libya and Turkey were main jumping points to Europe. These countries, especially

Libya after its civil war, could not cope with so many refugees. Hygiene, violence, disease,

malnutrition,... all took a toll on migrants. Numerous significant lags of North Africa and

Sub-Saharan Africa (P) for predictions seem to agree with this hypothesis: the migrants

likely tried to reach the North African coast.

Non-intuitive explanations: Here, we are discussing the predictive power of Central

America over Eastern Africa, of Central America over Sub-Saharan Africa (Presumed), of

Central America over Western Asia, of Northern Africa over Central America, of North-

ern Africa over South America, of Southern Asia over Central America. These regions are

oceans apart, yet the lag order and significant lags are about 2-3 months. Indeed, this is

a new phenomenon where migrants outside of the Americas tried to reach the US through

South America. Yates (2019) detailed an increasing volume of Asians and Africans through

the Darien Gap in Panama. Paradoxically, the author emphasizes these long journeys are

actually cheaper and less risky because of lax enforcement, easy plane travel with lenient

visa policies, and fewer conflict zones.
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Chapter 5

Conclusion

5.1 Summary

The interpretability of Neural Granger Causality by Tank et al (2021) is a major break-

through for observational studies. We believe our migrant analysis effectively demonstrate

that. The visualizations are very simple to make Granger causal connections. Also, it is

straightforward to understand time series dynamics when using hierarchical penalty. In ad-

dition, neural Granger causality is flexible with so many options for parameters, training

models, and penalties.

Thanks to our study, we learn a lot about migration connections and try to explain despite

the caveats of Granger causality. We observe that many migrants had close regions of origins.

This is unsurprising given that these regions face very similar and intertwined circumstances.

Moreover, we discovered a recent issue which is cross-Atlantic migration.

From all of the above, we also want to provide some proposals. First, we have to ensure the

stability of each and every country. Many of us agree that the migrant crisis is a worldwide

issue, yet we often blame solely on specific governments for the instability of their nation.

Whether such criticism is justified or not, we have to realize chaos from one place can spread

widely. Our results indeed implied that. We believe only a serious international effort can

bring peace and prosperity to each nation. For this to happen, dialogue and political unity is

key. Next, we need our resources to concentrate on dangerous choke points such as the Darien

Gap or the Mediterranean sea. Instead of providing resources to migrants only when they

reach the borders, we should save lives in these critical junctions. Preventing the tragedies
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of these migrants, even in these seemingly distant and remote areas, should be part of our

strategy.

5.2 Discussion

Currently, our biggest shortcoming is the input parameters. The forecasting visualizations

confirmed this. With time, we hope to improve these parameters likely through cross vali-

dation.

With more time, we may also want to analyse the Granger causal influence of more regions.

Our choice of significant lags and lag orders seem arbitrary, but our paper is substantial

already. Another interest we have is to use another attribute such as the region of incident

or migration route. These attributes will be more applicable for our study. For now, we

disregarded them since they did not have enough amount of time series. This would not

have demonstrated the power of neural Granger causality.

If you want to see my new codes besides the main source (Dr. Ian Covert’s Neural-GC Git),

please contact me at huynguyen012016[at]gmail.com
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