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Abstract
The analysis of time-varying activity and connectivity patterns (i.e., the chronnectome) using resting-

state magnetic resonance imaging has become an important part of ongoing neuroscience discus-

sions. The majority of previous work has focused on variations of temporal coupling among fixed

spatial nodes or transition of the dominant activity/connectivity pattern over time. Here, we intro-

duce an approach to capture spatial dynamics within functional domains (FDs), as well as temporal

dynamics within and between FDs. The approach models the brain as a hierarchical functional archi-

tecture with different levels of granularity, where lower levels have higher functional homogeneity

and less dynamic behavior and higher levels have less homogeneity and more dynamic behavior.

First, a high-order spatial independent component analysis is used to approximate functional units. A

functional unit is a pattern of regions with very similar functional activity over time. Next, functional

units are used to construct FDs. Finally, functional modules (FMs) are calculated from FDs, providing

an overall view of brain dynamics. Results highlight the spatial fluidity within FDs, including a broad

spectrum of changes in regional associations, from strong coupling to complete decoupling. More-

over, FMs capture the dynamic interplay between FDs. Patients with schizophrenia show transient

reductions in functional activity and state connectivity across several FDs, particularly the subcortical

domain. Activity and connectivity differences convey unique information in many cases (e.g., the

default mode) highlighting their complementarity information. The proposed hierarchical model to

capture FD spatiotemporal variations provides new insight into the macroscale chronnectome and

identifies changes hidden from existing approaches.
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1 | INTRODUCTION

Neuronal populations interact with each other at different spatial

scales (from micro to macro). At the macroscale, studying functional

interactions using functional magnetic resonance imaging (fMRI) has

significantly enhanced our knowledge of brain functional systems.

Examining functional connectivity across the brain using univariate

and multivariate analyses has revealed replicable, large-scale brain

networks, also known as functional domains (FDs). Alterations of FDs

may be significantly associated with different physiological and psy-

chological conditions (Arbabshirani, Plis, Sui, & Calhoun, 2017; Garrity

et al., 2007; Greicius, 2008; Iraji et al., 2015; Menon, 2011; Seeley,

Crawford, Zhou, Miller, & Greicius, 2009; Sorg et al., 2007). Each FD

is comprised of a set of spatially distinct and temporally covarying

functional units (sub-networks), which putatively orchestrate various

brain functions (van den Heuvel & Hulshoff Pol, 2010). A functional

unit can be defined as a pattern of regions with very similar functional

activity over time given the associated imaging modality. Hierarchical

models of brain function posit that the brain has different levels of

functional granularity, where lower levels are associated with reduced

complexity. In other words, lower levels of the hierarchy display less

functional dynamic behavior and higher functional homogeneity

(Blumensath et al., 2013; Felleman & Van Essen, 1991; Meunier, Lam-

biotte, & Bullmore, 2010; Zhou, Zemanova, Zamora, Hilgetag, &

Kurths, 2006).

At the same time, given the dynamic nature of the brain, recent

studies have focused on capturing the time-varying information of the

blood oxygenation-level dependent (BOLD) signal (Calhoun, Miller,

Pearlson, & Adali, 2014; Hutchison et al., 2013; Preti, Bolton, & Van

De Ville, 2017). Several strategies have been proposed to study

time-varying information of BOLD signal, but most can be divided

into one of two major categories. The first identifies reoccurring

temporal coupling among fixed spatial nodes/networks (Allen et al.,

2014; Barttfeld et al., 2015; Chen, Cai, Ryali, Supekar, & Menon,

2016; Damaraju et al., 2014; Hutchison et al., 2013; Leonardi et al.,

2013; Sakoglu et al., 2010; Shine, Koyejo, & Poldrack, 2016; Yaesoubi,

Adali, & Calhoun, 2018). The most common approach for this category

is the sliding-window technique (Allen et al., 2014; Sakoglu et al.,

2010). The second category extracts the moment-to-moment dominant

spatial co-activation or connectivity pattern without capturing the spa-

tiotemporal variations within and between functional organizations

(Karahanoglu & Van De Ville, 2015; Liu, Chang, & Duyn, 2013; Liu &

Duyn, 2013; Preti & Van De Ville, 2017; Tagliazucchi, Balenzuela,

Fraiman, & Chialvo, 2012; Trapp, Vakamudi, & Posse, 2018; Vidaurre,

Smith, & Woolrich, 2017). The co-activation patterns (CAPs) approach

and its derivatives are used most frequently within this category

(Karahanoglu & Van De Ville, 2015; Liu et al., 2013). However, these

approaches do not capture the ongoing spatial variations of brain func-

tional organization, such as FDs, over time. These approaches are not

dissimilar to EEG microstate analyses, which identify global stable spa-

tial states over time (space × time). Microstate EEG studies could bene-

fit from this work by adding another dimension (i.e., functional

organization) and identify microstates for individual functional organiza-

tions (space × time × functional organization) (Khanna, Pascual-Leone,

Michel, & Farzan, 2015; Koenig et al., 2002; Lehmann, Strik, Henggeler,

Koenig, & Koukkou, 1998).

In early work, Kiviniemi et al. (2011) used sliding-window ICA and

observed spatial variations in the default mode network. Different

spatial patterns were also observed for CAPs of the posterior cingu-

late cortex and the intraparietal sulcus over time (Liu & Duyn, 2013).

Ma, Calhoun, Phlypo, and Adali (2014) shows fluctuations in spatial

couplings by measuring residual mutual information between spatial

components derived from independent vector analysis (IVA). These

findings justify the need for an approach to measure variations in spa-

tial patterns of brain functional organization over time. Additionally,

given that the brain reorganizes its activity at different interacting spa-

tial and temporal scales, investigating spatial dynamics (spatiotemporal

variations) within and between different spatial scales provides a

broader perspective of how the brain functions naturally. Here, we

propose a novel, data-driven approach to capture and characterize

both the spatiotemporal variations of FDs and the dynamic interac-

tions between them. The approach utilizes the concept of the func-

tional hierarchy and encapsulates the spatiotemporal variations of

each FD from its associated functional units. We suggest high-order

intrinsic connectivity networks (hICNs) obtained from a high-order

spatial independent component analysis (ICA) are good approxima-

tions of functional units of macroscale brain communication.

Using hICNs, we construct the elements of the higher hierarchical

level (i.e., FDs) and study their spatial dynamics. Our findings highlight

that FDs evolve spatially over time, (i.e., spatially vary over time). We

characterize highly reproducible and distinct activity patterns called

spatial domain states, within each FD. At various times, the interac-

tions within and between FDs involve different spatial regions of

the brain. Furthermore, evaluating the associations between FDs

(i.e., functional state connectivity) identified distinct coupling patterns,

called functional modules (FMs). FMs represent the transient patterns

of temporal coupling between FDs and provide information of global

brain temporal dynamics. One key advantage of the approach is its

ability to successfully capture spatiotemporal changes of FDs, without

applying constraints on their spatial and/or temporal couplings. The
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approach does not require a sliding-window technique, so it can cap-

ture the maximum temporal frequency variations in the temporal pro-

file (Yaesoubi et al., 2018). Furthermore, it allows the detection of

fluctuations in the spatial coupling of FDs up to the maximum spatial

resolution of the data.

We further evaluate the clinical utility of our approach by

studying alterations in spatial dynamics within patients with

schizophrenia (SZ) relative to healthy controls. Schizophrenia is a

functionally heterogeneous disorder which can include delusions,

hallucinations, disorganized speech, disorganized or catatonic

behavior, and negative symptoms (e.g., apathy, blunted affect;

American Psychiatric Association, 2013). It has been suggested

that schizophrenia is related to a reduced capacity to integrate

information across different regions (Kahn et al., 2015; Stephan,

Baldeweg, & Friston, 2006), which can lead to reduced functional

connectivity (Damaraju et al., 2014; Kahn et al., 2015). However,

previous work does not provide much information regarding how

this reduced integration manifests. The application of our hierar-

chical approach to study the spatial dynamics of FDs could poten-

tially identify underlying mechanisms that define how patients

with SZ integrate information. Furthermore, the approach has the

unique ability to not only detect nuanced transient alterations in

the spatial patterns of FDs, whereas previous functional connectiv-

ity analyses report hypoconnectivity among patients with SZ, our

approach is in line with this trend, but also detects transient reduc-

tions in the functional activity within specific FDs. Importantly,

alterations in functional activity can occur in the absence of

changes in functional connectivity and vice versa suggesting the

complementarity of these two phenomena. Furthermore, func-

tional state connectivity, measured for the first time, displayed

similar but also distinct differences between healthy controls and

patients with SZ compared to previous functional connectivity

analyses, including: decreased functional state connectivity

between subcortical and somatosensory and somatomotor

domains within the FMs.

In summary, we introduce an innovative framework to shed new

light on time-varying spatial characteristics of brain function. The

approach provides the backbone for examining spatiotemporal varia-

tions of brain functional organizations and the hierarchy of spatial

dynamics which can improve our understanding of brain function.

Results also show the potential of further leveraging this time-varying

behavior for characterizing mechanisms of clinical features in patient

groups.

2 | MATERIALS AND METHODS

2.1 | Glossary and outline of the approach

There have been many terms and jargon used to define the functional

architectures of the brain, for example, “network,” “circuit,” “module,”

“domain,” and “system” have all been used to define the same func-

tional structure. At the same time, each term can also refer to differ-

ent functional structures across studies. For instance, the term

“network” has referred to a collection of elements but at different

levels from a set of anatomically separated regions to a cluster of

functionally homogeneous voxels to cell-specific regulatory pathways

inside of neurons (Erhardt, Allen, Damaraju, & Calhoun, 2011;

Petersen & Sporns, 2015). As described in Erhardt, Allen, et al. (2011),

the way to avoid confusion is to ensure that all terms are clearly

defined, thus here we provide a glossary of key terms used through-

out this article (Figure 1).

1. High-order intrinsic connectivity network (hICN): An hICN is

composed of a set of voxels (pattern of regions) with very similar

functional activity over time (high functional homogeneity) that

can be approximated as one functional unit. hICNs were obtained

by applying high-order spatial ICA. The use of high-order ICA to

generate hICNs instead of predefined anatomical locations allows

us to detect functionally homogeneous regions from data itself

(Calhoun & de Lacy, 2017).

2. Functional domain (FD): An FD is a formation of functionally linked

hICNs. Focusing on cortical and subcortical regions, we define

nine FDs based on a priori knowledge and results of low-order

static spatial ICA. hICNs were categorized into FDs through a

semi-automatic process. FDs, at a given point in time, were recon-

structed from the associated hICNs and their time courses at that

time point.

3. State of FD: The spatial patterns of FDs vary over time due to the

dynamic nature of neural activity. Spatial dynamics of FDs can be

summarized as a set of spatial domain states using a clustering

approach, in which each cluster (i.e., state) includes time points

with a similar activity pattern.

4. Functional module (FM): The chronnectome occurs at different

scales. At a global scale, the chronnectome can be captured by

evaluating variations in temporal coupling of FDs. States of FDs

that reoccur together more often than with others in a distin-

guishable manner are designated FMs, which are estimated using

the Newman modularity detection approach.

2.2 | Data acquisition and preprocessing

Data collection was performed at seven imaging sites across the

United States and passed data quality control. All participants were at

least 18 years old and written informed consent was given prior to

enrollment. Data were collected from 160 healthy controls including

46 females and 114 males (average age: 36.71 ± 10.92; range:

19–60 years) and 149 age- and gender-matched patients with SZ

including 36 females and 113 males (average age: 37.95 ± 11.47;

range: 18–60 years). Further details can be found in our earlier work

(Damaraju et al., 2014).

MRI data were collected using a 3-Tesla Siemens Tim Trio

scanner for six of the seven sites and on 3-Tesla General Electric

Discovery MR750 scanner for the seventh site. Resting-state fMRI

data was collected using a standard gradient echo EPI sequence

with following imaging parameters: pixel spacing size = 3.4375 ×

3.4375 mm, FOV of 220 × 220 mm, matrix size = 64 × 64,

slice thickness = 4 mm, slice gap = 1 mm, TR/TE = 2000/30 ms,

flip angle = 77�, number of excitations (NEX) = 1, and acquisition
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time ≈ 5.4 minutes. During the resting-state fMRI scans, partici-

pants were instructed to keep their eyes closed.

Data were preprocessed using a combination of SPM (http://

www.fil.ion.ucl.ac.uk/spm/) and AFNI (https://afni.nimh.nih.gov) soft-

ware packages including brain extraction, motion correction using the

INRIAlign, slice-timing correction using the middle slice as the refer-

ence time frame, and despiking using AFNI's 3dDespike. The data of

each subject was subsequently registered to a Montreal Neurological

Institute (MNI) template and resampled to 3 mm3 isotropic voxels, and

spatially smoothed using a Gaussian kernel with a 6 mm full-width at half-

maximum (FWHM = 6 mm). Finally, voxel time courses were z-scored

(variance normalized), as z-scoring has displayed improved parcellation of

functional organizations structures (hICNs) compared to other scaling

methods for ICA analysis.

2.3 | hICNs extraction

ICA analysis was applied to obtain hICNs. Group ICA was performed

using the GIFT software package from MIALAB (http://mialab.mrn.

org/software/gift/) (Calhoun & Adali, 2012; Calhoun, Adali, Pearlson, &

Pekar, 2001). First, data dimensionality reduction was performed

using subject-specific spatial principal components analysis (PCA) fol-

lowed by group-level spatial PCA (Erhardt et al., 2011). The 200 princi-

pal components that explained the maximum variance were selected

as the input for a high-order group-level spatial ICA to calculate

200 group independent components (Figure 2a). High-order ICA

allows us to segment the brain into a set of spatial patterns with very

similar functional activity (high functional homogeneity) at the macro-

scale called hICNs (Allen et al., 2011; Kiviniemi et al., 2009). Infomax

FIGURE 1 Hierarchical functional architectures of the brain and notations used in this work [Color figure can be viewed at

wileyonlinelibrary.com]
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was chosen as the ICA algorithm because it has been widely used and

compares favorability with other algorithms (Correa, Adali, & Calhoun,

2007; Correa, Adali, Li, & Calhoun, 2005). Infomax ICA was repeated

100 times. The estimated components from all runs were clustered

together, and the centrotype of each cluster was selected as the “best

run” as part of the ICASSO framework, which was used for further

analyses (Calhoun & Adali, 2002; Calhoun, Liu, & Adali, 2009; Correa,

Adali, & Calhoun, 2007; Du, Ma, Fu, Calhoun, & Adali, 2014; Himberg,

Hyvarinen, & Esposito, 2004; Ma et al., 2011). Sixty-five cortical and

subcortical hICNs were selected and categorized into nine FDs based

on their anatomical and common functional properties, and their rela-

tionships (spatiotemporal similarity) with independent components

obtained from low-order spatial ICA (Figure 2b). The selected hICNs

should have peak activations in the gray matter and their time-courses

be dominated by low-frequency fluctuations evaluated using dynamic

range and the ratio of low-frequency to high-frequency power (Allen

et al., 2011).

2.4 | FD construction

At any given time point, FDs were constructed from the associated

hICNs and their contributions as follows. First, subject-specific

hICNs and their time courses were calculated via a spatially con-

strained ICA approach using the group-level hICNs as references

(Figure 2c; Lin et al., 2010). The time course of each hICN describes

its temporal evolution and represents its contributions to the

BOLD signal over time. Next, to reduce noise, a post hoc cleaning

procedure was also performed. For this purpose, various cleaning

procedures were compared. The evaluated post hoc cleaning pro-

cedures include (C1) orthogonalizing with respect to estimated

subject motion parameters, linear detrending, despiking, and band-

pass filtering using a fifth-order Butterworth (0.001–0.15 Hz),

(C2) replacing the Butterworth filter with a Gaussian moving aver-

age filter with different window sizes (10 × TR to 90 × TR) and

keeping the rest of cleaning steps the same as the first procedure,

(C3) using only a Gaussian moving average (with different window

size from 10 × TR to 90 × TR), and (C4) no post hoc cleaning pro-

cedure. The cleaning procedures were also evaluated for two sce-

narios: (a) cleaning procedures were applied on the time courses of

hICNs and (b) cleaning procedures were applied on voxel-level

after reconstructing the spatial maps of FDs. The various

approaches resulted in almost identical spatial domain states (the

definition of spatial domain states in Section 2.5) suggesting that

post hoc cleaning procedures do not substantially alter the

dynamic properties of FDs. Given the similarity of the two scenar-

ios, we suggest utilizing the first and applying cleaning procedures

on the time courses of hICNs as the computational load is much

lower. C1 procedure was selected a post hoc cleaning procedure,

as it is commonly used as a cleaning procedure and has previously

demonstrated its effectiveness at noise reduction (Damaraju et al.,

2014). Finally, after the post hoc cleaning step, each FD was recon-

structed using the linear combination of the associated hICNs and

their contributions at any given time point resulting in 49,749

(309 subjects × 161 time points) spatial maps for each FD

(Figure 2d and Equation (1)).

FDk t, vð Þ ¼
XNk

ik¼1

wik tð Þ × hICNik vð Þ ð1Þ

Where FDk(t, v) is the FD k at the time point t, v is voxel index, Nk

is the number of hICNs belongs to the FD k, hICNik vð Þ is the hICN #ik

of the FD k, and wik tð Þ is the contribution of ICNik at the time point t.

2.5 | Spatial domain states identification and
verification

The spatial dynamics of FDs were captured via spatial domain states.

The spatial domain states for a given FD are a set of distinct spatial

patterns and can be obtained using a clustering approach (Figure 2e).

Here, we used k-means clustering, and the correlation distance metric

was used as the distance function because it detects spatial patterns

irrespective of voxels' intensities. The number of states (clusters) for

each FD was determined using the elbow criterion by searching for

the number of clusters from 3 to 15 (Damaraju et al., 2014; Yaesoubi,

Miller, & Calhoun, 2017). Similar to what we have done previously

(Allen et al., 2014), initial clustering was performed on a subset of the

data exhibiting maximal deviation from the mean (called exemplars)

and was repeated 100 times with different initializations using k-

means++ (Arthur & Vassilvitskii, 2007). Exemplars are the data points

in which the amount of variance explained by either of hICNs is signif-

icantly (p < 0.001) higher than the average amount of variance

explained by hICNs across the whole dataset (49,749 fMRI volumes).

The estimated centroids from initial clustering using exemplar were

then used as cluster center initializations to cluster the whole dataset.

We further verified the spatial domain states by evaluating the

average BOLD signal of associated regions across states. In other

words, we examine how well variations in the FDs reflect the underly-

ing BOLD signal. Let us assume region j is only associated with FD k.

Then, if the association of region j to FD k is positive/negative at state

i, the neural activity of region j measured by the BOLD signal at the

state i of FD k should be above/below its average (i.e., the average

BOLD signal of region j). We expect to observe a very similar pattern

of agreement between the regions' associations to FDs and their

amplitude of BOLD signals even if regions are simultaneously involved

in different FDs at a given spatial domain state.

2.6 | Spatial dynamic evaluation

To study the spatial dynamics of FDs, we first evaluated variations in

regions' associations with each FD across different spatial domain

states. A voxel-wise, one sample t test was applied to the data of each

state (i.e., the spatial maps of a given FD at time points belongs to the

spatial domain state), and the average t value was calculated for

246 regions of the Brainnetome atlas (Fan et al., 2016). A region was

assigned to a spatial domain state if its average t value falls outside

the Tukey inner Fences (below lower inner fence or above upper

fence). A Tukey inner fence is defined as [Q1 − 1.5 × (Q3 − Q1)

Q3 + 1.5 × (Q3 − Q1)], where Q1 and Q3 are the first and third quar-

tiles (Hoaglin, Iglewicz, & Tukey, 1986). Next, we investigated the

overall spatiotemporal variations within each FD. Previously, Cole

et al. (2013) developed an index called the “global variability

IRAJI ET AL. 1973



coefficient (GVC)” to evaluate variations in the connectivity of the

brain networks across different tasks using multi-task fMRI data.

Here, we introduced a related measure called the variability index

(VI) to evaluate the level of variability for each FD. Similar to GVC,

VI is defined as the standard deviation (SD) of a region's association

to an FD which can be estimated using the standard deviation

equation of binomial distribution. For example, if FD i has five

states, and region j is involved in only one state, the SD of the

region j being associated with the FD i is (5 × 0.2 × 0.8)0.5. The

average of VI values within each FD characterizes the overall spa-

tiotemporal variability of the FD.

2.7 | Functional state connectivity and FMs

Like other structures of this hierarchical functional architecture, FDs

interact with each other. To evaluate these interactions, we need to

calculate functional connectivity between FDs. Functional connectiv-

ity is defined as the temporal dependency of neural activity (Friston,

Frith, Liddle, & Frackowiak, 1993). In fMRI, functional connectivity is

typically measured by calculating the temporal coherence between

BOLD time series or time series associated with brain networks. Using

the same strategy, we can estimate functional connectivity between

FDs by calculating the temporal coherence (coupling) between states

FIGURE 2 Schematic of the analysis pipeline. (a) High-order group-level spatial ICA (# components = 200) was applied on the processed resting-

state fMRI data from 309 individuals. (b) Sixty-five components were identified as the high-order intrinsic connectivity networks (hICNs) of
interests and assigned to one of nine cortical and subcortical functional domains (FDs) including attention, auditory, default mode, frontal default
mode, frontoparietal, language, somatomotor, subcortical, and visual domains (Figure 3). (c) Spatially constrained ICA (Lin, Liu, Zheng, Liang, &
Calhoun, 2010) was used to estimate the time courses of hICNs and their spatial maps for each individual. The time course of a hICN indicates
the contribution of the hICN at different time points. (d) FDs were reconstructed using the linear combination of the associated hICNs and their
contributions at any given time. (e) Spatial domain states associated with each FD were estimated using k-means clustering on the spatial maps of
the FD [Color figure can be viewed at wileyonlinelibrary.com]
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of FDs. For this purpose, we calculate the level of concurrency

between pairs of states using a coincidence index known as the Dice

similarity coefficient (DSC; Dice, 1945). The functional inter-domain

state connectivity (called functional state connectivity for clarity) is

defined as the ratio between the number of time points in which two

states from different FDs occur simultaneously and the average

occurrence of both states. In other words, functional state connectiv-

ity between state i of FD m (FDm, i) and state j of FD n (FDn, j) was

calculated as the ratio of the number of the time points that state i of

FD m and state j of FD n occurred simultaneously to the average

occurrence of state i of FD m and state j of FD n (Equation (2)).

Functionl inter− domainð Þ state connectivity FDm, i, FDn, j
� �

¼ DSC FDm, i, FDn, j
� � ¼ 2 × FDm, i \ FDn, j

�� ��
FDm, i
�� �� + FDn, j

�� �� ð2Þ

We further used functional state connectivity values to identify

FMs. A FM is defined as a set of spatial domain states of FDs that

reoccur together frequently in a distinguishable manner. In other

words, a set of spatial domain states with higher connectivity with

each other than with other states. FMs can be extracted using graph-

based community detection approaches like the Newman modularity

detection approach (Newman, 2006).

2.8 | Group comparison analysis

The clinical utility of our approach was evaluated by comparing spatial

domain states of FDs between patients with SZ and healthy controls.

For each region associated with a given spatial domain state, the aver-

age value of the FD was compared between patients with SZ and

healthy controls using a general linear model (GLM) with age, gender,

data acquisition site, and mean framewise displacement (Power,

Barnes, Snyder, Schlaggar, & Petersen, 2012) as covariates. Framewise

displacement measures instantaneous head motion as a single scalar

value by calculating changes in the six rigid body transform parame-

ters (framewise displacement (t) = jΔdx(t)j + jΔdy(t)j + jΔdz(t)j +
jΔα(t)j + jΔβ(t)j + jΔγ(t)j) and was included as a covariate to mitigate

effects of head motion (Power et al., 2012). Statistical comparison

was further performed on FMs by comparing each pair of functional

FIGURE 3 Composite maps of nine functional domains (FDs) generated from the 65 high-order intrinsic connectivity networks (hICNs). Each

color in a composite map corresponds to one of hICNs associated with the given FD. The detailed information of hICNs can be found at
Supporting Information File S1 [Color figure can be viewed at wileyonlinelibrary.com]
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state connectivity between patients with SZ and healthy controls

using the previously explained procedure. For all analysis, statistical

results were corrected for multiple comparisons using a 5% false dis-

covery rate (FDR; Benjamini & Hochberg, 1995).

3 | RESULTS

3.1 | hICN extraction

Figure 3 displays the composite view of the hICNs selected from the

group-level spatial ICA results. Among 200 independent components,

65 were selected as cortical and subcortical hICNs and categorized

into nine FDs. The nine FDs were defined based on the prior knowl-

edge from previous studies (Allen et al., 2011, 2014; Damaraju et al.,

2014; Iraji et al., 2016) and large-scale brain networks obtained

from low-order ICA. The nine FDs are attention (Allen et al., 2011;

Damoiseaux et al., 2006; Lee, Smyser, & Shimony, 2013), auditory

(Allen et al., 2011, 2014; Damoiseaux et al., 2006), default mode

(Allen et al., 2011;Iraji et al., 2016 ; Zuo et al., 2010), frontal default

mode (Iraji et al., 2016; Zuo et al., 2010), frontoparietal (Allen et al.,

2011; Iraji et al., 2016; Lee et al., 2013; Zuo et al., 2010), language

(Lee et al., 2013; Tie et al., 2014), somatomotor (Allen et al., 2011;

Damoiseaux et al., 2006; Iraji et al., 2016), subcortical (Allen et al.,

2011, 2014), and visual (Allen et al., 2011; Damoiseaux et al., 2006;

Iraji et al., 2016; Zuo et al., 2010). hICN selection and FD labeling

were performed using the anatomical and presumed functional prop-

erties of hICNs, and their relationships with large-scale brain net-

works obtained from low-order ICA. Detailed information of the

hICNs including spatial maps, coordinates of peak activations, and

temporal information can be found in Supporting Information File

S1. The selected hICNs are primarily in cortical and subcortical gray

matter and show high spatial similarity with hICNs identified in pre-

vious works (Allen et al., 2011; Damaraju et al., 2014). After selecting

hICNs of interest, spatially constrained ICA was utilized to calculate

the subject-specific hICNs and their time courses (Figure 2c) which

were further used to reconstruct the FDs for each individual and

time point.

3.2 | Functional domain construction

At each time point, FDs were reconstructed using the associated

hICNs and their contributions at that time point, resulting in 49,749

(309 subjects × 161 time points) spatial maps for each FD. Figure 2d

illustrates an example of FD reconstruction for the default mode

domain which contains nine hICNs shown in Figure 2d(III). At each

time point, the default mode domain (Figure 2d[IV]) was calculated

using the linear combination of the nine hICNs, and their contribu-

tions (Figure 2d[I]). In Figure 2d(IV), hot and cold colors represent

positive and negative associations to the default mode domain. The

spatial maps of FDs over time for randomly selected individuals are

provided as Supporting Information Movies S1–S9 and also at the

following link https://www.youtube.com/playlist?list=PLZZPPK0O_

qFuil41n4U_HSZ668cFDuG7l. FDs display highly dynamic behav-

iors, and the contributions of brain regions to FDs vary significantly

over time. Brain regions show both strong positive and strong nega-

tive associations to FDs over time. Moreover, as will be demon-

strated later in Section 3.4., variations in regional association to FDs

go beyond amplitude modulation. For example, some brain regions

which are strongly involved in FDs at a given time point become

dissociated at other time points.

3.3 | Spatial domain state identification and
verification

K-means clustering was applied to the spatial maps of each FD and

summarized into a set of reoccurring spatial patterns called spatial

domain states. Figure 4 and Supporting Information File S2 show the

spatial maps of cluster centroids as representations of spatial domain

states. The number of clusters (k) for each FD was determined using

the elbow criterion. Additionally, exploratory analyses over a large

range of k demonstrate that these clusters are fully reproducible and

spatial domain states are very similar (Supporting Information File

S3). In general, we can categorize the states into voxel-wise coherent

and incoherent states. In voxel-wise coherent states, the regions

associated with FDs show a similar pattern of association, either

positive or negative, while voxel-wise incoherent states contain

regions with both positive and negative associations to FDs. In

Figure 4 and Supporting Information File S2, the total number and

percentage of states occurrences are listed above each centroid.

Occurrence rates range from 10% to 25%. For all FDs, the top two

dominant states are voxel-wise coherent states with occurrence

rates above 20%.

Investigating the relationships between BOLD signal of regions

and their contributions to FDs exhibit overall the same pattern that

regions have higher/lower activity when they have positive/negative

association to their corresponding FDs. We observe this agreement

between BOLD signals and regions associations to FDs for 96.02% of

the cases. An example of the relationship between BOLD signal and

regional association is presented in Figure 5 and Supporting Informa-

tion File S4. Further investigation determined that different direction-

alities between regions associations to FDs and the amplitude of their

BOLD signals only occur in regions with a weak contribution to FDs

and/or small BOLD signal difference from the baseline (Supporting

Information File S5).

3.4 | Spatial dynamic evaluation

Our analysis reveals that FDs are spatially fluid, and brain regions are

transiently associated with FDs. FDs display distinct spatial patterns

across their spatial states which include changes in the regions associ-

ated with them. Figure 6 and Supporting Information File S6 summarize

variations in regions associations to FDs in which t value indicates the

strength of each association. The results highlight changes in regions'

memberships and the strengths of their associations to FDs over time.

As an example, CG4 (cingulate gyrus subregion 4) is positively associ-

ated with the default mode in State 2 and 3 (presented in hot color),

negatively associated with the default mode at States 1 and 5 (pre-

sented in cold), and becomes dissociated at States 4 and 6 (presented

in gray). The list of associated regions, their coordinates, and the
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strengths of their associations to FDs can be found at Supporting Infor-

mation File S7. The variations in regions membership to FDs over time

can potentially explain inconsistencies in findings of previous static

analyses regarding regions memberships to brain networks. Further-

more, examining the overall spatiotemporal variations of FDs using a

variability index (VI) reveals that the FDs such as the frontoparietal and

attention which are engaged in a wide variety of cognitive functions

have higher variations than other FDs. The mean and standard error of

VI values are listed above the chart of each functional domain in

Figure 6 and Supporting Information File S6. Interestingly, in a previous

multi-task fMRI study, the same patterns variations were observed

across a variety of tasks in which frontoparietal, attention and auditory,

in order, show the highest variation, and the subcortical has the lowest

changes in their connectivity patterns (Cole et al., 2013).

FIGURE 4 Examples of spatial domain states associated with three functional domains (FDs) including frontoparietal, default mode, and

subcortical domains. Orthogonal views of spatial domain states, thresholded at |Z| > 1.96 (p = 0.05). Each spatial map represents the centroid of a
cluster; and sagittal, coronal, and axial slices are shown at the peak activation of the centroids. Hot and cold colors represent positive and
negative association of voxels to the FDs. The total number and percentage of occurrences are listed above each centroid. Voxel-wise coherent
states were marked using green asterisks. In voxel-wise coherent states, the associated regions show a similar pattern of association (either
positive or negative), and voxel-wise incoherent states contain both regions with positive and negative associations to FDs. The spatial domain
states for all nine FDs can be found at Supporting Information File S2. For further details regarding variations in regions associations to FDs
please see Figure 6 [Color figure can be viewed at wileyonlinelibrary.com]
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3.5 | Group differences in spatial domain states

The spatial domain states of FDs were compared between patients with

SZ and healthy controls using a regression model including age, size, gen-

der, and mean framewise displacement as covariates. Several FDs reveal

significantly weaker activity across different states in patients with SZ

compared to healthy controls. In general, patients with SZ showed

reductions in the regions' dynamic associations with FDs, except the dor-

solateral region of Brodmann area (BA) 37 in State 5 of the language

domain. Among all FDs, the visual, subcortical and attention domains are

most affected. For the visual domains, all states except State 5 show sig-

nificant differences between two groups. The most affected regions in

the visual domain include the ventromedial occipital cortex, the lateral

occipital cortex, and the ventromedial fusiform gyrus. In the subcortical

domain, the thalamus showed significant differences in States 1, 2, and

3. For the attention domain, the left insula and the opercular area of left

BA 44 in States 1 and 2, and the lateral area of BA 38 in State 4 show

the highest differences. The other regions with significant differences in

the language domain including right BAs 41/42 and the rostral area of

left BA 22 demonstrated decreased associations in patients with SZ simi-

lar to the general pattern. Exploratory analyses on a subsample of the

data with little head motion and no significant difference in mean frame-

wise displacement between two groups (p = 0.5) displayed a similar pat-

tern in group differences as using the full dataset. The full details of

spatial comparison and regions with statistical differences can be found

in Supporting Information File S8. Finally, in an exploratory analysis, we

calculated the average spatial maps of FDs over time and compared

them between two groups, healthy controls, and patients with

SZ. No significant difference was observed between the two groups.

Furthermore, we have also compared the static spatial independent com-

ponents obtained from low-order ICA. Similar to dynamic analysis,

FIGURE 5 The relationship between the amplitude of the BOLD signal and regions associations with functional domains (FDs). Examples of average

BOLD signal of regions across spatial domain states for the same three FDs as Figure 4. Example for all nine FDs can be found at Supporting
Information File S4. Each violin plot represents the average BOLD signal of a region for spatial domain states of a given FD. The μ (green dashed line)
and σ are the average and standard deviation of BOLD signal for each region across all time points, and the black line represents the average of the
BOLD signal of a region across all subjects in the corresponding state. Red and blue colors represent the states with positive and negative associations
of regions to FDs, the light gray color indicates no association between corresponding FD and region. The results suggest regions associations to FDs
are related to their neural activities measured by the amplitude of BOLD signal. When regions are positively/negatively associated with FDs, their

average BOLD signals are above/below their own average across all time points. This suggests the variations in a region's association to an FD are
related to its neural activity, as observed by the amplitude of BOLD signal. The abbreviation and regions labels listed above each violin plot are based
on the Brainnetome atlas (Fan et al., 2016). Amyg (amygdala), BG (basal ganglia), CG (cingulate gyrus), IFG (inferior frontal gyrus), INS (insular Gyrus), IPL
(inferior parietal lobule), MFG (middle frontal gyrus), PCun (precuneus), PhG (parahippocampal gyrus), PrG (precentral gyrus), SPL (superior parietal
lobule), and Tha (thalamus) [Color figure can be viewed at wileyonlinelibrary.com]
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differences were observed in independent components associated with

the subcortical, language, and attention domains, but the static analysis

missed most of the changes identified in this work, such as alterations in

the visual domain due to the assumption of spatially static networks. This

suggests the static approach gives a good approximation some of the

major alterations but is unable to detect nuanced alterations and infor-

mation, highlighting the added utility of using spatial dynamics to exam-

ine the spatial patterns of FDs.

3.6 | Functional state connectivity and FMs

The functional state connectivity matrix was estimated by calculating

the temporal coupling between the states of FDs using DSC index

(Figure 7). Using the Newman modularity detection approach (Newman,

2006), seven FMs were detected (Figure 8). Investigating group differ-

ences reveals an overall decrease in functional state connectivity within

FMs in patients with SZ (Figure 8, green lines). Differences between

patients with SZ and healthy controls are the most pronounced in FM 1,

which mainly includes hypoconnectivity between the subcortical and

others domains (Figure 8). Hypoconnectivity of the subcortical domain,

which is also observed in other FMs, is the largest patient/control differ-

ences between groups. Note that the subcortical domain demonstrates

alterations in both its activity patterns and its connectivity with other

FDs in States 1, 2, and 3, which suggests it was the major source of the

observed hypofunction in schizophrenia. Alteration in functional state

connectivity of the default mode within FMs is another interesting

FIGURE 6 Spatiotemporal variations of functional domains (FDs). The chart represents the regions associated with the frontoparietal, default

mode, and subcortical domains. Spatiotemporal variations of all nine FDs can be found at Supporting Information File S6. The brain anatomical
parcellation is based on the Brainnetome atlas. The total number associated regions and the mean and standard error of variability index (VI) are
listed above each chart. The results show different regions are associated with FDs at different states. Hot and cold colors represent positive and
negative associations and gray represents dissociation of the regions at the states. t value indicates the strength of the region's association to
FDs. VIs represent the overall variability of each FD where the frontoparietal and subcortical domains show maximum and minimum variations.
The abbreviation and regions labels are the same as defined in the Brainnetome atlas. SFG (superior frontal gyrus), MFG (middle frontal gyrus),
IFG (inferior frontal gyrus), OrG (orbital gyrus), PrG (precentral gyrus), MTG (middle temporal gyrus), ITG (inferior temporal gyrus), PhG
(parahippocampal gyrus), SPL (superior parietal lobule), IPL (inferior parietal lobule), PCun (precuneus), PoG (postcentral gyrus), INS (insular gyrus),
CG (cingulate gyrus), MVOcC (medioventral occipital cortex), LOcC (lateral occipital cortex), Amyg (amygdala), Hipp (hippocampus), BG (basal
ganglia), and Tha (thalamus) [Color figure can be viewed at wileyonlinelibrary.com]
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finding. Although the comparisons of the spatial domain states of the

default mode between two groups did not reveal any significant differ-

ence (3.5, Group Differences in Spatial Domain States), hypoconnectivity

between the default mode and several FDs was observed within FMs.

Interestingly, we observed hypoconnectivity between State 2 of the

default mode domain and State 5 of the auditory domain, even though

neither show significant change in their activity patterns in patients with

SZ. This suggests that alterations in functional connectivity can occur in

the absence of change in functional activity and vice versa.

4 | DISCUSSION

The brain reorganizes itself at different temporal and spatial scales

which manifest at the macroscale variations in both temporal and spa-

tial couplings of brain functional organizations. Recent findings display

the ability of fMRI to capture time-varying information of the brain

(Calhoun et al., 2014; Hutchison et al., 2013; Preti et al., 2017). How-

ever, the majority of these studies have overlooked the spatial varia-

tions of brain functional organizations. In this study, we propose an

approach that captures the spatiotemporal variations of FDs, that is,

spatial dynamics, using the brain functional hierarchy model at macro-

scale. In agreement with our hypothesis, we observed that FDs are

evolving spatially over time. Evaluating the spatial dynamics of individ-

ual FDs revealed a set of distinct, reoccurring spatial patterns (spatial

domain states) within each FD. Variations in the spatial patterns of

FDs over time were further accentuated by changes in regions' mem-

berships to FDs. For example, brain regions join FDs and dissociate

from them over time. In early work, Cole et al. (2013) used multi-task

fMRI data and predefined anatomical regions and showed changes in

the spatial patterns of brain networks across various task scenarios.

Here, we demonstrate that spatial variations exist even in a resting

state of the brain due to the dynamic nature of the brain. Interestingly,

we observe similar results to task data in which the frontoparietal,

attention and auditory domain, in order, show the highest variation,

and the subcortical has the lowest changes in its connectivity pattern.

Spatial dynamics may also explain the inconsistencies observed in pre-

vious static analyses regarding regions' memberships to FDs (also

known as large-scale brain networks). For example, previous static

analyses reported different sets of regions for each brain network,

including different sets of regions for the default mode (Andrews-

Hanna, Reidler, Sepulcre, Poulin, & Buckner, 2010; Buckner, Andrews-

Hanna, & Schacter, 2008; Damoiseaux et al., 2006; Fox et al., 2005;

Garrity et al., 2007; Greicius, Krasnow, Reiss, & Menon, 2003; Lee &

Xue, 2018; Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012;

Wang et al., 2014; Zuo et al., 2010). We suggest that different sets of

regions are associated with a given FD at different time points, and

only an overall dominant pattern is identified in the static analysis. In

our opinion, alternative interpretations for the observed inconsistency

in the spatial patterns of FDs can be the interdigitated parallel net-

works observed in a previous single-subject study (Braga & Buckner,

2017). Their findings suggest that each brain network may consist of

parallel networks that work simultaneously, and only one or combina-

tion of them is captured in group-level analysis. The concept of the

spatial dynamic is not against the existence of interdigitated networks

within each FD, as they can be extracted using the time points during

which they contribute the most in the spatial patterns of the given

FD. For instance, Braga & Buckner, 2017, observed two district pat-

terns for the default mode. One includes the parahippocampal cortex

and posterior inferior parietal lobule, while the other includes anterior

FIGURE 7 Functional state connectivity was estimated by calculating the level of concurrency between spatial domain states using DSC index.

VIS (visual domain), SUB (subcortical domain), ATN (attention domain), LAG (language domain), MTR (somatomotor domain), fMD (frontal default
mode domain), PFN (frontoparietal domain), DM (default mode domain), and AUD (auditory domain) [Color figure can be viewed at
wileyonlinelibrary.com]

1980 IRAJI ET AL.

http://wileyonlinelibrary.com


inferior parietal lobule regions. We found similar variations in the

parahippocampal gyrus and inferior parietal lobule, along with many

other regions across default mode states.

In addition to interdigitated parallel networks, there are several

fMRI studies demonstrating the distributed, large-scale networks

occur in subportions across mental states and tasks supporting the

spatial reconfiguration observed over time in this study's scenarios

(Andrews-Hanna et al., 2010; Cole et al., 2013; Dixon et al., 2018;

Leech, Kamourieh, Beckmann, & Sharp, 2011). Furthermore, intracra-

nial electrophysiology studies demonstrate different patterns of activ-

ity across multiple regions of the default mode over time [for review

please read Fox, Foster, Kucyi, Daitch, and Parvizi (2018)]. The

concept of spatial dynamics and variations in regions' associations

over time was also confirmed via the amplitude of BOLD signal. We

observed a direct relationship between the activities of regions

measured by the BOLD signal and their contributions to FDs which

supports our proposition that regions have higher/lower activity than

their baseline when they have positive/negative association to their

corresponding FDs. It should be noted that despite the high agree-

ment between a region's association to FDs and its BOLD signal, the

spatial dynamics of FDs cannot be captured by directly applying a

clustering approach to the BOLD signal. (High-order) ICA enables us

to parcellate the brain to the functional units from the data itself to

assure functional homogeneity, something which is not provided

when using predefined regions from atlases (Yu et al., 2017). More-

over, using predefined spatial nodes instead of hICNs ignores simulta-

neous roles for brain regions. Using predefined atlases instead of hICNs

also limits our ability to detect the spatial variations of FDs over time as

the variations would become limited to sets of predefined regions.

Most importantly, the goal of this study is to capture the spatial dynam-

ics of FDs, which cannot be achieved by directly using the BOLD signal

of a set of predefined regions as the unprocessed BOLD signal does

not convey information regarding their contributions to a given

FD. Therefore, using the BOLD signal directly only measures variations

in activity patterns of regions over time rather than spatiotemporal vari-

ations of FDs.

It is worth mentioning that the concept of spatial domain states is

aligned with that of previous work on EEG microstates. EEG studies

have shown that neuronal electric activity can be clustered as a set of

distinct states, each remaining stable for 80–120 ms (Khanna et al.,

2015; Koenig et al., 2002; Lehmann et al., 1998). While using fMRI,

we cannot achieve such high temporal resolutions, but the distinct

reoccurrence of spatial patterns are indicative of a similar phenome-

non. In contrast to EEG microstate analysis, which identifies the

distributed spatial patterns for overall neuronal activity, spatial domain

states propose the existence of distinct, distributed spatial patterns

FIGURE 8 Functional modules (FMs) and functional state connectivity comparisons between healthy controls and patients with schizophrenia

(SZ). Seven FMs were detected using Newman modularity detection approach. The green lines represent higher functional state connectivity in
healthy controls than patients with SZ, and the silver one shows a higher functional state connectivity in patients with SZ [Color figure can be
viewed at wileyonlinelibrary.com]
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within individual brain functional organizations. The presence of

distinct spatial distributions within each microstate should also be

examined using EEG data. This can potentially improve our under-

standing of EEG microstates.

4.1 | Hierarchical approach: Strengths, limitations,
and future directions

Our proposed approach to capture the spatiotemporal variations of

FDs is based on the well-accepted assumption that the brain can be

modeled as a hierarchical functional architecture with different

levels of granularity. Each level of this architecture includes several

elements, where each element is involved in a set of specific func-

tions, and higher level elements have less functional homogeneity

and increased dynamic behavior. Constructing functional hierarchy

requires identifying functional units, which is quantified as a pattern

of regions with the same functional activity over time (high func-

tional homogeneity) and can be extracted from the data. We suggest

hICNs are good approximations for functional units. Estimation of

functional units and spatially fluid properties are limited by data

quality, such as spatial and temporal resolutions, and the properties

of the imaging modalities. Although one advantage of the proposed

approach is capturing the spatiotemporal variations of FDs up to the

maximum temporal and spatial resolutions exist in the data, we can

improve the functional granularity and reconstruct the hierarchy

from lower levels, such as cortical columns, by adjusting the data

acquisition and analytical approaches. We can also use other imaging

modalities, such as calcium imaging (Matsui, Murakami, & Ohki,

2018) or photoacoustic tomography (Nasiriavanaki et al., 2014), to

estimate functional units and construct functional hierarchy, which

can help to improve our understanding of the spatially fluid proper-

ties and information processing. Another advantage of the approach

is employing both spatial and temporal information of ICNs rather

than only using either ICNs' spatial patterns or their time courses as

it is the common strategy in previous work.

Moreover, our approach provides information about each FD

at every time point. Because at any given time point, FDs are con-

structed from hICNs' contributions of the same time point in contrast

to being influenced by other time points, the approach can capture

spatial dynamic information regardless of temporal resolution. In fMRI,

this means the approach has the ability to detect dynamic patterns

independent of TR. Of course, having data with high temporal resolu-

tions and/or for a longer period of time can potentially provide us

more information regarding dynamic behavior of FDs, including the

detecting new dynamic patterns. In addition to spatial dynamics of

FDs, we also demonstrate the ability of the approach in capturing

time-varying properties at a global scale. For this purpose, we devel-

oped an index called functional (inter-domain) state connectivity to

compute temporal coupling between FDs and calculate FMs. Future

studies are required to capture spatial and temporal dynamic proper-

ties within and between different levels of hierarchy. As the first step,

future studies should investigate time-varying temporal coupling of

intrinsic connectivity networks within and between different ICA

model-orders. This can provide new insight both into how the ele-

ments of brain functional hierarchy interact with each other, and how

changes in the associations between functional units reform brain

functional activity at a larger scale. For instance, examining the associ-

ation between low-order and high-order ICA can further our under-

standing of the reconfiguration of large-scale brain networks over

time. A future study should investigate the temporal properties of

spatial domains states and associated dynamic indices such as dwell

time, leave time, fraction rate, and transition matrix. It is apropos to

mention that, in this study, k-means clustering was used as a tool to

examine variations existing in brain functional domains, but other

methods are equally applicable. While k-means clustering yields valu-

able results, neither the states identified using k-means clustering are

likely to be the true origins of time-varying behavior of FDs, nor the

assumption that there is only one active state per time point, as activ-

ity patterns of a given FD occurs simultaneously. Further studies are

therefore needed to find improved representations of the time-

varying behavior of FDs.

The most challenging step of the approach requiring future inves-

tigation and further improvement is the estimation of functional units

and their FD labeling. Although our approach allows the detection of

spatial variations over time regardless of a selected partitioning proce-

dure (i.e., selecting functional units and associated FDs), good parti-

tioning is essential to fully capture the dynamic characteristics of the

data. High-order ICA has several advantages over predefined atlases

including (a) high-order ICA allows the segregation of functional roles

of individual regions; (b) each hICN is a pattern of functionally homo-

geneous regions extracted from data itself, which is closer with the

definition of functional units than predefined anatomical regions; and

(c) the spatial variations of high-order ICA are not limited to fixed

regions as with predefined atlases and allow for individual variability

in the spatial maps (Allen, Erhardt, Wei, Eichele, & Calhoun, 2012;

Calhoun & Adali, 2012). However, despite the advantages of hICNs,

the level of parcellation (i.e., a number of components) requires fur-

ther investigation. In addition to the number of hICNs, hICN group-

ing (i.e., FD labeling) is another key piece of the hierarchical

approach. In our current work, hICNs were grouped into nine FDs

using a semi-automatic process approach including (a) our prior

knowledge from anatomical and functional properties; (b) the rela-

tionship of hICNs with results of low-order ICA; and (c) similarity

between their timecourses of hICNs. While different grouping

approaches are acceptable, a robust, data-driven approach is recom-

mended for FD identification and hICN assignment. Furthermore,

changes in hICNs' memberships to FDs over time are another crucial

factor that needs to be considered. The present study limits assign-

ing each hICN to one FD; however, hICNs can also change their

memberships to different FDs over time. Ongoing work is assigning

hICNs to FDs at any given time point using the information of the

data at that time point.

4.2 | Schizophrenia

Schizophrenia is a heterogeneous disorder characterized by symptoms

of impaired reality testing such as hallucinations, delusions, and fre-

quently disorganized speech and behavior, as well as impairments in

cognition across a range of domains (American Psychiatric Associa-

tion, 2013). It has been suggested that schizophrenia is related to the
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brain's reduced capacity to integrate information across the different

regions (Kahn et al., 2015; Stephan et al., 2006). The reduced capacity

to integrate information has been associated with several phenomena

in schizophrenia, including reductions in functional and structural con-

nectivity, and reductions in gray and white matter volumes. The most

reported deficit is lower global functional connectivity between many

regions, including subcortical regions; and the frontal, temporal, and

occipital cortices. However, a replicated exception to this trend is

increased functional connectivity between the thalamus and somato-

sensory and motor areas (Argyelan et al., 2014; Damaraju et al., 2014;

Giraldo-Chica & Woodward, 2017; Skudlarski et al., 2010; Tu et al.,

2015). Reduction in functional connectivity is suggested to be the

result of alterations in brain structural connectivity at different levels

from impaired synaptic plasticity (Friston, 1998) to reduction in the

capacity of the structural connections at macroscale (Kahn et al.,

2015; van den Heuvel, Mandl, Stam, Kahn, & Hulshoff Pol, 2010).

Reductions in gray and white matter volumes have been also reported

across whole brain including thalamus, frontal, temporal, cingulate,

and insular cortex in patients with SZ (Ellison-Wright & Bullmore,

2010; Kahn et al., 2015; Segall et al., 2009; Staal et al., 2001). Our

approach adds another piece to this global deficient phenomenon and

reveals for the first time that there is also a transient reduction in the

activity patterns of FDs. Furthermore, reduced functional state con-

nectivity within FMs is in agreement with the hypoconnectivity

observed in previous studies among brain regions. While we did not

investigate functional connectivity between brain regions, we

observed decreased functional state connectivity between subcortical

and somatosensory and somatomotor domains within the FMs, which

could be an important window into a link between increased func-

tional connectivity among these regions and decreased functional

connectivity with the rest of the brain.

We propose that our approach is well-suited to examine the alter-

ations in the brain's capacity to integrate information because it

models the brain as a hierarchical functional architecture in which ele-

ments of each level of the hierarchy constructed from integrating the

information of the lower level. This proposition was also supported by

our findings. There is substantial evidence that there are distinct pat-

terns for schizophrenia as detected by our analysis. In our analysis,

the most affected regions and domains include the thalamus of the

subcortical domain; BA 38 of the attention domain; the left insula, left

BA 44, right BAs 41/42, and the rostral area of left BA 22 of the lan-

guage domain; and the fusiform gyrus, medioventral, and lateral occip-

ital cortex of the visual domain. The thalamus is known as a major

brain structure affected both structurally and functionally in patients

with SZ (Cheng et al., 2015; Damaraju et al., 2014; Giraldo-Chica &

Woodward, 2017). Disruption in attention associated areas is fre-

quently reported in patients with SZ (Bowie & Harvey, 2006). Particu-

larly, temporal pole area (BA38) is a key part of the theory of mind

(ToM) network, which is classically impaired in patients with SZ and

autism spectrum disorder (Assaf et al., 2010). Furthermore, BAs 41/42

is primary auditory cortex, and together with the BA22 (auditory asso-

ciation cortex/Wernicke's area), has been repeatedly implicated in the

pathophysiology of auditory hallucinations in schizophrenia (Barta,

Pearlson, Powers, Richards, & Tune, 1990; Gavrilescu et al., 2010;

Shinn, Baker, Cohen, & Ongur, 2013; Vercammen, Knegtering, den

Boer, Liemburg, & Aleman, 2010). Alterations in the visual domain

have been also observed as ocular convergence deficits (Bolding et al.,

2012) and reduce amplitude of low-frequency fluctuations (ALFF) was

observed across visual areas including the cuneus and lingual gyrus

(Hoptman et al., 2010). Therefore, our findings are further buttressed

by previous literature, suggesting spatial dynamics can provide a new

dimension/level of schizophrenia-related alterations in the brain,

which can potentially be leveraged to characterize clinical features in

other patient groups.

5 | CONCLUSION

We proposed a novel framework that, for the first time, exploits the

well-accepted brain functional hierarchical model to capture the spa-

tial dynamics of brain functional organization. The present work

reveals strong evidence that FDs evolve spatially over time including

a broad spectrum of changes in regional associations from strong

coupling to complete decoupling. Additionally, given that the brain

reorganizes its activity at different interacting spatial and temporal

scales, our hierarchical framework opens a new avenue to evaluate

spatiotemporal variations within and between levels of the brain func-

tional hierarchy providing a broader perspective of how the brain natu-

rally functions. Preliminary assessments of the approach using healthy

controls and patients with SZ demonstrate the ability of the approach to

obtain new information of the brain function and detect alterations

among patients with SZ. However, further investigations using different

datasets and various cohorts should be performed to evaluate the bene-

fits of studying spatiotemporal variations of brain functional domains for

both basic and clinical neuroscience applications.
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