
UC San Diego
UC San Diego Previously Published Works

Title
Panda: A Compiler Framework for Concurrent CPU+GPU Execution of 3D Stencil
Computations on GPU-accelerated Supercomputers

Permalink
https://escholarship.org/uc/item/2nm2g4fg

Journal
International Journal of Parallel Programming, 45(3)

ISSN
0885-7458

Authors
Sourouri, Mohammed
Baden, Scott B
Cai, Xing

Publication Date
2017-06-01

DOI
10.1007/s10766-016-0454-1

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2nm2g4fg
https://escholarship.org
http://www.cdlib.org/

International Journal of Parallel Programming manuscript No.
(will be inserted by the editor)

Panda: A Compiler Framework for Concurrent
CPU+GPU Execution of 3D Stencil Computations
on GPU-accelerated Supercomputers

Mohammed Sourouri · Scott B. Baden ·
Xing Cai

the date of receipt and acceptance should be inserted later

Abstract This paper describes a new compiler framework for heterogeneous
3D stencil computation on GPU clusters. Our framework consists of a simple
directive-based programming model and a tightly integrated source-to-source
compiler. Annotated with a small number of directives, sequential stencil codes
originally written in C can be automatically parallelized for large-scale GPU
clusters. The most distinctive feature of the compiler is its capability to gener-
ate state-of-the-art hybrid MPI+CUDA+OpenMP code that uses concurrent
CPU+GPU computing to unleash the full potential of powerful GPU clusters.
At the same time, the auto-generated hybrid codes hide the overhead of various
data motion by overlapping them with computation. Test results on the Titan
supercomputer and the Wilkes cluster show that auto-translated codes from
our compiler can achieve about 90% of the performance of highly optimized
handwritten codes, for both a simple stencil benchmark and a real-world ap-
plication in cardiac modeling. We thus believe that the user-friendliness and
performance delivered by our domain-specific compiler framework allow com-

Mohammed Sourouri
Simula Research Laboratory, Norway
Department of Informatics,
University of Oslo, Norway
E-mail: mohamso@simula.no

Scott B. Baden
Dept. of Computer Science and Engineering
University of California, San Diego La Jolla, CA, USA
E-mail: baden@eng.ucsd.edu

Xing Cai
Simula Research Laboratory, Norway
Department of Informatics,
University of Oslo, Norway
E-mail: xingca@simula.no

Click here to download Manuscript panda.tex

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/ijpp/download.aspx?id=48228&guid=d0276316-aa86-4d8c-89d0-d7865afa23c1&scheme=1
http://www.editorialmanager.com/ijpp/download.aspx?id=48228&guid=d0276316-aa86-4d8c-89d0-d7865afa23c1&scheme=1
http://www.editorialmanager.com/ijpp/viewRCResults.aspx?pdf=1&docID=1545&rev=0&fileID=48228&msid={7F443F36-8979-4527-AE10-F9C35CCC5FB3}

2 Mohammed Sourouri et al.

putational scientists to harness the full power of GPU-accelerated supercom-
puting without painstaking coding effort.

1 Introduction

Manycore processors such as GPUs and the Xeon Phis possess high levels of
compute power per Watt, thus causing large clusters that use these acceler-
ators currently in strong demand. Recently revealed plans for future super-
computers, such as ORNL Summit [27] and ANL Aurora [2], show that future
supercomputers will be heterogeneous systems equipped with both general-
purpose CPUs and accelerators. Looking ahead, it is also hypothesized by
Ang et al. [1] that future Exascale systems will continue to adopt a similar
system design.

So far, much attention has been paid to effectively using the accelerators
in heterogeneous clusters. In such systems, the CPU’s role has mainly been
to perform tasks that accelerators are not able to do on their own or cannot
perform effectively. However, as CPUs continue to scale with Moore’s law,
their computational performance and memory bandwidth have reached a level
that can no longer be neglected.

Not surprisingly, the latest research has switched to combining CPUs and
accelerators for improved performance and energy efficiency [25]. A number
of studies have demonstrated the benefit of concurrent CPU+GPU execution,
for example in stencil computations [31,14,38,37].

A well-known feature of stencil applications is that the performance is
often limited by the memory bandwidth [46]. From a practical point of view,
combining CPUs and accelerators means that the memory bandwidth provided
by the CPU and the accelerator can be aggregated. The increase of memory
bandwidth thus motivates involving the CPUs in addition to the accelerators.

Despite the potential advantages of this strategy, there is, to the best of
our knowledge, no programming model or compiler that can reap the benefit
of this approach. To address this challenge, we propose Panda, a framework
comprising a programming model and a compiler that effectively transforms
serial C stencil code for parallel execution on heterogeneous CPU-GPU clus-
ters. Panda uses CUDA and OpenMP to express intra-node parallelism, and
MPI to express inter-node parallelism.

Our primary goal is to provide a tool that is easy to use, and thus promotes
productivity. To make Panda user-friendly, we have developed a programming
model that uses compiler directives to implicitly express parallelism in a se-
quential code, thus guiding the compiler during the subsequent code transla-
tion.

Our secondary goal is to provide a tool that satisfies the performance re-
quirements of both novice and expert users. Frameworks such as OpenACC [29]
and OpenMP [30] have demonstrated that achieving high-performance using
a generic approach is challenging. Previous domain-specific solutions [42,5]
have outcompeted the generic approach. We have therefore decided to restrict
Panda’s applicability to 3D stencil computations on structured grids. While

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 3

we acknowledge that this restriction will limit Panda’s outreach, delivering
high performance in such a large application space is considered important
enough to justify the decision.

This paper makes the following contributions:

– We introduce a programming model that abstracts the complexity of writ-
ing parallel code for heterogeneous CPU-GPU clusters. The model consists
of a set of compiler directives that implicitly express parallelism in serial
C code, allowing the user to focus on the domain science instead of paral-
lelization (Section 2).

– We create a source-to-source compiler that implements the programming
model (Section 3).

– We demonstrate the framework’s versatility by generating code that tar-
gets different cluster scenarios, including pure MPI, MPI+CUDA and
MPI+CUDA+OpenMP for concurrent CPU+GPU execution on het-
erogeneous CPU-GPU clusters (Section 3).

– We experimentally evaluate the performance of our framework. Compared
with highly optimized handwritten code, we observe a performance real-
ization close to 90% under weak scalability experiments for both a simple
stencil benchmark and a real-world application in cardiac modeling (Sec-
tion 4).

2 The Panda Programming Model

In this section we describe the principal design goals of our framework, and
the programming model that adheres to it.

The main goal of our framework is to reduce the complexity of developing
large-scale stencil applications by an automated approach. Our target hard-
ware systems are GPU clusters where each node is equipped with one or more
GPUs.

We regard directive based programming as a developer-friendly model that
requires minimal user programming effort and high level of abstraction [17].
Another benefit of such an approach is backward compatibility. Compilers that
do not implement specific directives will simply ignore them. As a result, the
user will always have a working code base.

2.1 Target Computations

The fundamental assumption of the Panda framework is that 3D stencil com-
putations are done over logically 3D data arrays. Moreover, triple loop nests
are assumed for updating the values of these data arrays, where iterations of
such a triple loop nest can be concurrently carried out, thus giving rise to
full parallelism. A loop nest can have more than three levels, such as a time
loop being the outermost level that has to be carried out in sequence. The

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Mohammed Sourouri et al.

Panda compiler uses static analyses, with support of directives, to automati-
cally identify the parallelism, which is subsequently realized by MPI, CUDA
and OpenMP programming.

2.2 Panda Directives

panda distribute(list) size(list)

For performance reasons, Panda supports only flattened arrays that are logi-
cally 3D. We can consequently not assume that the iterators of a triple loop
nest (such as lines 3-10 in Listing 1) are directly used as array index expres-
sions. This performance-oriented design decision makes reference extraction
difficult. Therefore, the distribute directive of Panda (such as line 1 in List-
ing 1) allows the user to annotate all the logically 3D arrays while, more
importantly, explicitly marking the variables used to define the length of the
arrays through the size clause.

1 #pragma panda distribute(u old, u new) size(Nx+2,Ny+2,Nz+2)
2 for(int t = 0; t < iterations; t++) {
3 for (int k = 1; k < Nz+1; k++)
4 for (int j = 1; j < Ny+1; j++)
5 for (int i = 1; i < Nx+1; i++) {
6 int idx = i + j∗(Nx+2) + k∗(Nx+2)∗(Ny+2);
7 u new[idx] = kC1 ∗ u old[idx] + kC0 ∗
8 (u old[idx−1] + u old[idx+1] + u old[idx−(Nx+2)]
9 + u old[idx+(Nx+2)] + u old[idx−(Nx+2)∗(Ny+2)]

10 + u old[idx+(Nx+2)∗(Ny+2)]); }
11 #pragma panda wait
12 std::swap(u old, u new);
13 }

Listing 1 A sample 7-point stencil computation benchmark annotated with Panda direc-
tives.

panda boundary(list) size(list)

Panda assumes that a double loop nest is used to enforce the boundary con-
dition on each side of the physical boundary (six possibilities in total). Unlike
an automatically detected triple loop nest that traverses the entire 3D volume
of an array, Panda relies on the user to insert a special boundary directive on
top of each double loop nest that updates one side of the physical boundary.

1 #pragma panda boundary(zmin) size(n,n)
2 for (int j=1; j <=n; j++)
3 for (int i=1; i <=n; i++)
4 int index = i + j ∗ (n+2) ∗ 0 + (n+2)∗(n+2);
5 E prev[index] = E prev[index+2∗(n+2)∗(n+2)];

Listing 2 Computations on the physical boundary that is annotated with the special
boundary directive.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 5

The input to the boundary directive is a list that consists of the following
variables: xmin, xmax, ymin, ymax, zmin and zmax, which represent the three
directions in a Cartesian coordinate system. With help of (a subset of) these
variables, Panda can detect the applicable spatial direction, and thus auto-
generate the correct parallel code in the context of distributed memory. The
size clause is used both for validation purposes and for deriving the correct
indices inside the boundary-condition double loop nest. Listing 2 illustrates
the use of the boundary directive.

Currently, the boundary region is limited to boundaries that does not re-
quire off-node communication such as periodic boundary conditions. We plan
to extend the functionality of the Panda framework to handle physical bound-
ary conditions that require off-node communication in the future.

panda reduction(operator:list)

Many stencil applications need reduction operations, for example, to compute
an inner product. Interactions (implicitly) enforced between the threads of a
CPU or a GPU are needed to carry out a local reduction. Globally, on dis-
tributed memory, a reduction requires additional interaction with MPI, which
a novice user may not be aware of. Thus, Panda supports (like OpenMP and
OpenACC) a reduction directive, which automatically takes care of necessary
intra-node and inter-node data exchanges.

panda wait

Code regions that can only be executed sequentially on either the host or the
GPU are marked by the wait directive. The translated implementation de-
pends on the translator’s mode of operation. For example, when generating
MPI+CUDA code, the wait directive translates into a
cudaDeviceSynchronize call. When generating MPI+CUDA+OpenMP
code, the wait directive will result in the insertion of a call to
cudaDeviceSynchronize plus an OpenMP #pragma omp master direc-
tive, followed by #pragma omp barrier.

3 The Panda Source-to-Source Compiler

The fundamental building blocks of our framework are a programming model
(described in the preceding section) and a compiler. In this section we will
describe the source-to-source compiler that translates Panda-annotated serial
stencil code to parallel and distributed forms.

3.1 Overview

Panda generates three types of parallel code: pure MPI for homogeneous CPU
clusters, MPI+CUDA for GPU clusters, and MPI+CUDA+OpenMP for con-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Mohammed Sourouri et al.

Fig. 1 An architectural view of the Panda source-to-source compiler, which adopts a mod-
ular design. Each module may consist of numerous sub-modules, but for brevity, only the
most important sub-modules are depicted.

current CPU+GPU execution on GPU clusters. A common trait for these ver-
sions is that they gradually extend each other. For example, the MPI+CUDA
version is similar to the pure MPI version, but the main difference is that
Panda generates CUDA kernels instead of CPU functions (i.e. the CPUs do
no computations). In the MPI+CUDA+OpenMP version, both CPU func-
tions annotated with OpenMP directives and CUDA kernels are generated by
Panda.

In order to deal with the generation of different code versions, a command
line interface (CLI) will parse the options passed to the compiler. A command-
line “translation mode” flag determines which modules of the Panda source-
to-source compiler are utilized to ensure that correct analyses are performed.
Currently, three command-line options are allowed:

– –mpi generates pure MPI (CPU only) code
– –gpu generates MPI+CUDA (GPU-only) code
– –hybrid generates MPI+CUDA+OpenMP (CPU+GPU) code

The user input to our compiler is a serial C source file, annotated with
Panda directives. Panda makes use of the EDG front-end bundled with
ROSE [15] to construct an abstract syntax tree (AST), which expresses the
structure of the input code as a graph.

Panda adopts a modular design, and the workflow between the different
modules is shown in Figure 1. Once the AST has been generated, the CLI will
pass the translation mode to the Directive Manager module.

The role of the Directive Manager module is twofold: verification and ex-
traction. First, it traverses the AST to verify the correctness of the directives.
Assuming that all directives are correctly formulated, the Directive Manager
will proceed to extract information from them. The extracted information is
used to generate local C++ objects that are stored for future access by other
modules.

Once the Directive Manager has completed its tasks, it will call the Parti-
tioner module to decompose the global domain. The default domain partition-
ing strategy is 3D, meaning that the global domain is partitioned into smaller
cuboids. Moreover, in the CPU+GPU mode, each subdomain is partitioned
an additional time using 1D decomposition along the z-axis, as described by

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 7

Sourouri et al. [38]. In the CPU+GPU mode, the user can dynamically control
the partitioning and thus the workload distribution via the command line, be-
cause the Partitioner will generate command line arguments code that reads
user input from argc and argv at runtime.

Before the domain can be successfully partitioned, the MPI Manager mod-
ule is called to inject the required <mpi.h> header and to generate calls to
functions such as MPI Init, MPI Comm rank, MPI comm size and
MPI Finalize. Some of these MPI function calls require the generation of
additional variables that the Partitioner module depends on. These variables
are needed to complete the domain partitioning. Once the domain has been
successfully partitioned, the Transformer module ensures that for example
references to the global domain are substituted with references to local sub-
domains.

Next, the Panda compiler calls the Stencil Analyzer. The task of this mod-
ule is to reveal important details about the stencil reach, which are needed to
generate CPU functions/GPU kernels for halo boundary computations, and
corresponding MPI function calls. For example, if the stencil shape reaches
beyond 7 points, it is necessary to generate additional CPU functions/GPU
kernels for corner accesses. Furthermore, information about the stencil is es-
sential for performing domain-specific code optimizations.

Panda stores array descriptors in a table and uses it to count the number of
read-only references to each array. When it has finished tallying the references,
Panda subsequently sorts the arrays in the order of most-to-least-frequently
accessed. A description of the stencil is then stored as a Stencil object, which
can be used by other modules for transformation purposes. Stencil description
is typically adopted by domain-specific languages (DSLs) [23,47] to deal with
this problem. However, while DSLs typically require the user to explicitly
define the stencil, the Panda compiler is capable of detecting it automatically,
like several existing tools [3,12,42,8].

At this stage the Panda source-to-source compiler has sufficient informa-
tion about the stencil to perform the necessary transformation, which is spear-
headed by the respective Generator modules.

3.2 MPI Code Generation

Although the Partitioner module breaks the global domain into smaller cuboids,
it does not generate the MPI function calls necessary for inter-node commu-
nication. This responsibility is delegated to the MPI Manager by the Trans-
former module.

The main objective of MPI Manager is to generate non-blocking asyn-
chronous MPI calls to realize inter-node communication that overlaps halo
boundary exchange with computation. However, before the exchange takes
place, the respective boundaries must be computed and stored in dedicated
send buffers (packing). The send buffers are then passed to the MPI Isend
function that communicates the content of the send buffer to a receiving neigh-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Mohammed Sourouri et al.

bor. Data received by a neighboring subdomain is stored in a receive buffer
before it is unpacked. Additionally, an MPI Waitall is also inserted to ensure
that associated MPI requests have completed before the unpacking starts.

3.3 Communication Optimizations

The Panda compiler performs two communication optimizations in order to
improve the application performance.

1. All data movement between a host CPU and its device GPU is performed
by the cudaMemcpyAsync function, which guarantees that the intra-node
data movement between the CPU and the GPU happens in the background,
thus having the possibility of being overlapped with computation.

2. In the context of MPI+CUDA+OpenMP code generation, Panda creates
separate MPI requests for the CPU and the GPU that are used by the
designated MPI function calls. By introducing separate MPI requests, we
decouple CPU and GPU MPI requests from each other, thus in effect creat-
ing two independent communication channels. The benefit of this approach
is that the GPU does not need to wait on the CPU’s messages to arrive
(or vice versa) before it can start unpacking its received data.

3.4 MPI+CUDA Code Generation

For computation of the interior points, Panda generates CUDA kernels based
on the pipelined wavefront technique [35], but does not perform register block-
ing nor loop unrolling. This implementation decision is for simplifying the ac-
tual code generation. However, in future work we will investigate auto tuning
of cache and register blocking and other optimizations, such as loop unrolling
for CPUs [45,28] and warp specalization for GPUs [22]. Listing 3 displays the
generated CUDA kernel for computing the interior points.

1 global void ComputeInteriorPoints(
2 double ∗ restrict const u old,
3 double ∗u new, int nsdx, int nsdy, int nsdz, double kC0,
4 double kC1, int offset) {
5 unsigned int i = 1+threadIdx.x + blockIdx.x ∗ blockDim.x;
6 unsigned int j = 1+threadIdx.y + blockIdx.y ∗ blockDim.y;
7 unsigned int k start = 1+blockIdx.z ∗ offset;
8 unsigned int k stop = k start + offset;
9

10 if (k stop > (nsdz+2)−1) { k stop = (nsdz+2)−2; }
11

12 if (i > 1 && i < (nsdx+2)−2 && j > 1 && j < (nsdy+2)−2)
13 for (int k = k start; k < k stop; k++) {
14 int idx = i + j∗(nsdx+2) + k∗(nsdx+2)∗(nsdy+2);
15 u new[idx] = kC1 ∗ u old[idx]
16 + (kC0 ∗ u old[idx−1] + u old[idx+1]
17 + u old[idx−(nsdx+2)] + u old[idx+(nsdx+2)]
18 + u old[idx−(nsdx+2)∗(nsdy+2)]

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 9

19 + u old[idx+(nsdx+2)∗(nsdy+2)]);
20 }}

Listing 3 Auto-generated CUDA kernel for computing interior points using a 7-point sten-
cil. The code has been formatted for brevity.

One important assumption of Panda is that all stencil-compute loops (i.e.
triple loop nests) require inter-node MPI communication. Since we wish to
overlap communication with computation, the inter-subdomain halo bound-
aries are computed separately from the interior points for every identified
stencil-compute loop nest. Panda thus generates unique halo boundary func-
tions for every stencil-compute loop nest.

When generating the kernels for computing the different halo boundaries,
Panda assumes that a subdomain is a box and thus has six sides (up to six
MPI neighbors). Specifically, Panda first enumerates the six different sides,
and then iterates over them using the stencil analysis process described in
Section 3.1. At the same time, Panda is able to distinguish stencil-compute
loops from non-stencil-compute loops.

Each halo boundary, which is a 2D plane, is handled by a double loop nest.
The Panda compiler simplifies this part of CPU code generation by performing
a deep copy of the original triple loop nest, while removing one loop layer that
is not needed for a specific halo boundary. The benefit of such a deep copy
technique is that we automatically obtain the loop range (condition statement)
of the for-loops.

It is straightforward to accommodate the deep copied for-loops when gen-
erating CUDA kernels, by simply modifying the for-loops to iterate over the
respective mesh points that are assigned to one CUDA thread. This technique
is better known as grid-stride loops [21]. As Listing 4 shows, the generated
halo boundary loop nest in a CUDA kernel is very similar to a regular CPU
double loop nest.

1 global void ComputePackEast(
2 double∗ u new, double∗ restrict const u old,
3 double∗ d send buffer, int nsdx, int nsdy, int nsdz,
4 double kC0, double kC1) {
5

6 int z = 1+threadIdx.y + blockIdx.y ∗ blockDim.y;
7 int y = 1+threadIdx.x + blockIdx.x ∗ blockDim.x;
8

9 for (int k = z; k < (nsdz+2)−1; k += blockDim.y ∗ gridDim.y)
10 for (int j = y; j < (nsdy+2)−1); j += blockDim.x ∗ gridDim.x)
11 int idx = (nsdx) + j∗(nsdx+2) + k∗(nsdx+2)∗(nsdy+2);
12 int idx2d = (k−1) ∗ nsdy + j − 1;
13

14 u new[idx] = kC1 ∗ u old[idx]
15 + (kC0 ∗ u old[idx−1] + u old[idx+1]
16 + u old[idx−(nsdx+2)] + u old[idx+(nsdx+2)]
17 + u old[idx−(nsdx+2)∗(nsdy+2)]
18 + u old[idx+(nsdx+2)∗(nsdy+2)]);
19

20 d send buffer[idx2d] = u new sd[idx];
21 }

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Mohammed Sourouri et al.

Listing 4 Auto-generated CUDA kernel for computing a halo boundary (the xy-plane in
the “east”). The code has been formatted for brevity.

The Panda compiler takes advantage of the Kepler architecture’s read-only
cache [26] to further improve the performance. The read-only cache is a 48 kB
on-chip memory that can be used to cache data that is known to be read-only
during the lifetime of a kernel. Data to be placed in the read-only cache must
be flagged with the const and restrict keywords. Thus, upon CUDA
kernel generation, the MPI+CUDA Generator module will use information
from the Stencil object to identify read-only arrays. These arrays are then
automatically flagged with the const and restrict keywords.

Choosing a good CUDA thread block size might impact the performance
of a kernel. Our solution is to generate three variables block x, block y
and block z, one per dimension. Each variable (having a default value) is
then connected to the command-line interface, allowing the user to experiment
with different block configurations at runtime (as opposed to compile time).
However, auto-tuning to determine optimal block sizes remains as future work.

3.5 MPI+CUDA+OpenMP Code Generation

So far, much of the attention in accelerator-based computing has been put
on the accelerators, while the CPU’s role has mostly been serving as a host
for the accelerator. However, as CPUs have gradually become more powerful,
researchers have started to study how CPUs and GPUs can be cleverly com-
bined for further performance gains. In our scenario, the trick is to properly
divide the computational workload between the CPU and the GPU, so that
the CPU can aid the GPU in sharing the computational costs.

One programming strategy is based on the “nested” implementation strat-
egy, as described by Sourouri et al. [38], where a hybrid MPI+CUDA+OpenMP
programming model is used to realize concurrent CPU+GPU computations.
The principal idea for the strategy is to overlap computation with commu-
nication using OpenMP’s nested parallelism capability to generate two inde-
pendent groups of threads. The first thread group handles the CUDA, MPI
communication and computation of the halo boundary points on the CPU us-
ing OpenMP threads. The second thread group computes the interior points
on the CPU.

Generating MPI+CUDA+OpenMP code requires only incremental changes
to the MPI+CUDA code. The main difference is that the generated
MPI+CUDA code is augmented with additional CPU code annotated with
OpenMP directives. Moreover, an additional 1D subdomain partitioning along
the z axis is applied to divide the computational workload between the CPU
and the GPU in every subdomain. Code generation is realized in three passes.
First, Panda generates pure MPI code for performing communication and com-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 11

8
(2
×2
×2
)

16
 (

2×
2×

4)

32
 (

2×
4×

4)

64
 (

4×
4×

4)

12
8
(4
×4
×8
)

Number of GPUs

0

1000

2000

3000

4000

5000

6000

7000

GF
LO
P/
s

3D Laplace (5123)

Handwritten (GPU-only)
Handwritten (CPU+GPU)
Panda (GPU-only)
Panda (CPU+GPU)

(a) Weak scaling on Wilkes using one GPU
per node

8
(2
×2
×2
)

16
 (

2×
2×

4)

32
 (

2×
4×

4)

64
 (

4×
4×

4)

12
8
(4
×4
×8
)

25
6
(4
×8
×8
)

Number of GPUs

0

1000

2000

3000

4000

5000

6000

7000

8000

GF
LO
P/
s

3D Laplace (5123)

Handwritten (GPU-only)
Handwritten (CPU+GPU)
Panda (GPU-only)
Panda (CPU+GPU)

(b) Weak scaling using two GPUs per node

Fig. 2 Weak scaling results on the Wilkes cluster, each MPI process is responsible for 5123

mesh points.

8 16 32 64 128 256 512 1024 2048 4096

Number of GPUs

102

103

104

105

106

Pe
rf
or
ma
nc
e
[G
FL
OP
/s
]

3D Laplace (5123)

Handwritten (GPU-only)
Ideal
OpenACC (GPU-only)
Panda (GPU-only)

(a) MPI+CUDA weak scaling on Titan

8 16 32 64 128 256 512 1024 2048 4096

Number of GPUs

0

20

40

60

80

100

120

Pa
ra
ll
el
 e
ff
ic
ie
nc
y
(%
)

3D Laplace (5123) GPU-only (MPI Disabled)

Handwritten
Handwritten (No MPI)
Ideal
OpenACC
OpenACC (No MPI)
Panda
Panda (No MPI)

(b) MPI+CUDA weak scaling on Titan with
MPI disabled

Fig. 3 Weak scaling results on the Titan supercomputer, each MPI process is responsible
for 5123 mesh points.

putation on the CPU. Next, MPI+CUDA code is generated, and in the final
pass the two codes are stitched together.

As a number of studies [43,13,6,38,14] have already shown, one of the
most challenging aspect of CPU+GPU codes is related to assigning work to
the different processing units of a heterogeneous node. Because CPU+GPU
codes are extremely sensitive to the workload ratio, Panda’s CLI will auto-
generate command-line arguments at the start of the translated code so that
the user can specify the CPUs workload ratio.

4 Experimental Results

This section investigates the performance of the GPU-only and CPU+GPU
code generated by Panda. The two auto-generated code versions are compared
against the corresponding handwritten implementations for two cases of stencil

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Mohammed Sourouri et al.

Titan (Cray XK7) Wilkes
CPU Opteron 6274 Xeon E5-2630v2

Clock frequency 2.2 GHz 2.6 GHz
cores 16 6

sockets 1 2
L3$ per chip 16 MB 15 MB

Theoretical DP 142 GFLOP/s 249.6 GFLOP/s
Theoretical BW 70.4 GB/s 119.4 GB/s

STREAM 31.9 GB/s 72.95 GB/s
Compiler cce 8.1.0.144 icc 15.0.5.223

Accelerator Tesla K20X Tesla K20c
GPUs per node 1 2

Theoretical DP 1310 GFLOP/s 1170 GFLOP/s
Theoretical BW 250 GB/s 208 GB/s

STREAM 180 GB/s 151 GB/s
Compiler nvcc 6.5 nvcc 6.5

Table 1 Experimental platform overview.

computation: the well-known 7-point 3D Laplacian stencil benchmark and a
real-world 3D application in cardiac modeling.

Two hardware platforms have been used for our study. The Wilkes clus-
ter at University of Cambridge is the former No. 2 system on the Green500
list [40], and consists of 128 compute nodes. Each Wilkes node is equipped
with two 6-core Intel Xeon E5-2630v2 “Ivy Bridge” CPUs and two Tesla K20c
GPUs. The second platform is the Titan supercomputer, currently ranked the
second fastest supercomputer on the TOP500 list [41]. Each Titan node is
equipped with a single 16-core AMD Opteron 6274 CPU and a Tesla K20X
GPU. A complete overview of the two GPU clusters are detailed in Table 1.
Under the weak scaling experiments, the problem size for each MPI process
was fixed at 5123 for both the 3D Laplacian stencil benchmark and the Car-
diac elctrophysiology simulator. The global problem size for the strong scale
experiment was 512×512×1024. All experiments were conducted with double
precision.

4.1 3D Laplacian Stencil Benchmark

As the first numerical case, let us consider the simplest diffusion equation,
∂u/∂t = ∇2u, to be discretized by finite differences combined with explicit
time stepping. The resulting 3D numerical scheme straightforwardly computes
a new time level of u by applying a standard 7-point stencil over the previous
time level of u. That is, the computation involved in each time step is the
same as the well-known 7-point 3D Laplacian stencil, as shown in Listing 1.
Moreover, this simple benchmark application assumes that u remains con-
stant on the entire physical boundary. Hence, during the whole time-stepping
procedure, no computation is needed on any of the physical boundary points.

For this 3D benchmark, both of our handwritten implementations use a
highly optimized single-GPU kernel that can realize 78% of the realistic mem-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 13

ory bandwidth on a K20 GPU, which is measured by the STREAM Triad mem-
ory benchmark [24]. More precisely, the handwritten CUDA kernel is based
on the technique presented by Su et al. [39], which combines plane sweeping
along the z axis with chunking along the y axis. In comparison, the Panda
auto-generated GPU kernel can achieve about 72% of the realistic memory
bandwidth. The performance difference is due to the fact that the handwrit-
ten GPU kernel is more aggressively optimized with register blocking along
the z dimension, which is not adopted automatically by the Panda compiler.

On the Wilkes cluster, which has more powerful CPUs than those on the
Titan cluster, we compare the auto-generated CPU+GPU (i.e.,
MPI+CUDA+OpenMP) code with the handwritten CPU+GPU counter-
part, as well as a comparison between the two GPU-only versions. If only
one GPU is used per Wilkes node, the achievable GPU memory bandwidth
is about 2× that of the aggregate CPU memory bandwidth. Figure 2(a) dis-
plays the measured performance of the four implementations (two handwritten
versions versus two Panda auto-generated versions), in the context of using
one GPU per node on the Wilkes cluster. The most efficient implementa-
tion is the handwritten MPI+CUDA+OpenMP code, followed by the auto-
generated MPI+CUDA+OpenMP code. The best CPU workload ratios for
the two CPU+GPU codes are 15% for the handwritten version and 8% for
the auto-generated version, respectively. This difference in the CPU workload
ratio is primarily because that the handwritten version performs a highly effi-
cient 3D cache-blocking [32] technique for computing the interior points on the
CPU, and uses non-temporals for computing the halo boundary points. The
auto-generated code does not implement these optimizations, which implic-
itly means that the CPU workload must be smaller. Nevertheless, the auto-
generated CPU+GPU code is still capable of outperforming the highly opti-
mized handwritten GPU-only implementation.

Using both GPUs per Wilkes node brings a new challenge, because the
number of MPI processes is now two per node (one per CPU socket), effectively
reducing the number of CPU cores available per GPU from 12 to 6. This in
turns widens the memory bandwidth difference to a factor of 4×, between
one GPU and one CPU socket. Consequently, we reduce the CPU’s workload
ratio from 15% to 10% for the handwritten version, and from 8% to 5% for
the auto-generated version. Despite the CPU workload reduction, it is evident
from Figure 2(b) that the auto-generated CPU+GPU code is still faster than
the hand optimized GPU-only version, in the context of using two GPUs per
Wilkes node.

Moving to the Titan platform, Figure 3(a) shows the performance of three
GPU-only implementations. That is, in addition to the handwritten version
and the Panda auto-generated version, we also adopt a highly optimized Ope-
nACC kernel, which has been kindly reviewed and improved by NVIDIA. The
OpenACC implementation makes use of CUDA-aware MPI (not used by the
other two implementations), and thus achieves slightly better communication
performance on Titan. Despite this advantage of OpenACC, the GPU-only
code generated by Panda is able to beat the OpenACC implementation. This

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 Mohammed Sourouri et al.

is because the Panda translator is domain-specific, thus able to leverage the
knowledge of the domain of stencil computations to generate more optimized
kernels. The performance of the OpenACC code is largely determined by the
generic approach taken by OpenACC, which divides the loop nest into smaller
thread blocks, and then executes each thread block in a SIMD fashion on each
GPU. Another performance weakness of the OpenACC code arises from a very
high register usage that limits the occupancy, thus impeding the performance.

On Titan, the Panda auto-generated code realizes nearly 90% of the per-
formance of the handwritten counterpart. The primary reason why the auto-
generated code cannot realize the full performance of the handwritten code is
largely because of less efficient compute kernels including the kernels responsi-
ble for computing the halo boundary points. Furthermore, the auto-generated
code performs unnecessary packing/unpacking of halo boundary data that is
actually laid out contiguously in memory.

In Figure 3(b) we have repeated the same weak-scaling study outlined in
Figure 3(a), but the MPI calls now are disabled. In other words, there is no
inter-node communication overhead. The purpose is to quantify the amount of
time spent on communicating, and thereby reveal how well the code is able to
hide inter-node communication. As Figure 3(b) shows, the handwritten code
does a good job of hiding the MPI communication. It is only when the num-
ber of GPUs exceeds 1024 that the MPI communication becomes a decisive
bottleneck. The difference between the performance results without inter-node
communication and the performance results with communication can help to
quantify the impact of inter-node communication. For example, at 2048 GPUs,
23% of the total time of the handwritten code is spent on MPI communication,
while 33% is spent on MPI communication when 4096 GPUs are used. Simi-
larly for Panda, MPI communication is well hidden up to 512 GPUs. After 512
GPUs, communication becomes a more pressing issue affecting scalability. At
1024 GPUs, 10% of the time is spent on MPI, 21% at 2048 GPUs, and finally
at 4096 GPUs, 31% is spent on communication.

The reason that we only present the GPU-only performance measurements
on Titan is that CPU+GPU versions were unsuccessful on Titan. Recall that
each Titan node is equipped with a single 16-core AMD Opteron 6274 CPU
and a Tesla K20X GPU. The performance difference between the GPU and the
CPU, by comparing the realistic memory bandwidth performance, is approxi-
mately 5.6×. Closing this performance gap is challenging, especially since the
16 CPU cores share 8 floating point units. Thus, it is not possible to delegate
enough threads to the two thread groups responsible for computing the halo
boundary and interior points.

The lesson learned from clusters such as Titan is that CPU+GPU codes
do not pay off, if the performance gap between the CPU and the GPU is too
big. In such a scenario, GPU-only code might be a better alternative. Luckily,
Panda is capable of generating both GPU-only and CPU+GPU code. Hence,
the user can freely choose the best option that suits a given hardware platform.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 15

8
(2
×2
×2
)

16
 (

2×
2×

4)

32
 (

2×
4×

4)

64
 (

4×
4×

4)

12
8
(4
×4
×8
)

Number of GPUs

0

1000

2000

3000

4000

5000

6000

7000

8000

GF
LO
P/
s

Cardiac Electrophysiology Simulator (5123)

Handwritten (GPU-only)
Handwritten (CPU+GPU)
Panda (GPU-only)
Panda (CPU+GPU)

(a) Weak scaling on Wilkes using one GPU
per node

8
(2
×2
×2
)

16
 (

2×
2×

4)

32
 (

2×
4×

4)

64
 (

4×
4×

4)

12
8
(4
×4
×8
)

25
6
(4
×8
×8
)

Number of GPUs

0

2000

4000

6000

8000

10000

GF
LO

P/
s

Cardiac Electrophysiology Simulator (5123)

Handwritten (GPU-only)
Handwritten (CPU+GPU)
Panda (GPU-only)
Panda (CPU+GPU)

(b) Weak scaling on Wilkes using two GPUs
per node

Fig. 4 Weak scaling results on the Wilkes cluster, each MPI process is responsible for 5123

mesh points.

8 16 32 64 128 256 512 1024 2048 4096

Number of GPUs

102

103

104

105

106

Pe
rf
or
ma
nc
e
[G
FL
OP
/s
]

Cardiac Electrophysiology Simulator (5123)

Handwritten (GPU-only)
Panda (GPU-only)

(a) MPI+CUDA weak scaling on Titan

2 4 8 16 32 64 128 256 512 1024

Number of GPUs

102

103

104

105

Pe
rf

or
ma

nc
e

[G
FL

OP
/s

]

Cardiac Electrophysiology Simulator

Handwritten (GPU-only)
Panda (GPU-only)

(b) MPI+CUDA strong scaling on Titan

Fig. 5 Weak and strong scaling results on the Titan supercomputer. Under the weak scaling
experiment, each MPI process is responsible for 5123 mesh points, while under the strong
scaling experiment, the global problem size is 512× 512× 1024.

4.2 Cardiac Electrophysiology Simulator

We have also applied Panda to a real-world 3D cardiac electrophysiology sim-
ulator, which simulates the propagation of electrical signals in the cardiac
tissue. The purpose of such a simulator is to study complicated cardiac fea-
tures, such as spiral waves, which may lead to life threatening situations such
as ventricular fibrillation.

The mathematical model of concern was derived by Aliev and Panfilov [10].
Without going into details, it suffices to mention that the model consists of
a 3D reaction-diffusion equation, coupled with a two-state ordinary differen-
tial equation (ODE) system per spatial mesh point. In comparison with the
preceding 7-point Laplacian stencil benchmark, the cardiac simulator has ad-
ditionally implemented an ODE solver, as well as enforcing a homogeneous
Neumann condition on the entire physical boundary.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 Mohammed Sourouri et al.

The input serial code of the cardiac simulator to Panda is annotated simi-
larly to Listing 1, with the addition of the panda boundary directive in order
to deal with the Neumann boundary condition, as outlined in Section 2.2. For
comparison, we have also implemented two handwritten versions: GPU-only
and CPU+GPU.

Figure 4(a) and Figure 4(b) show the performance results of the cardiac
simulator on the Wilkes cluster using both handwritten and auto-generated
CPU+GPU and GPU-only implementations. Like the 7-point Laplacian stencil
benchmark, the most efficient implementations for the cardiac simulator are
the two that involve concurrent CPU+GPU computations.

The performance upper-hand of the handwritten code comes largely from
the faster kernels for the halo boundaries, and for computing the PDE and
the ODE parts. The computations involve many coefficients, which easily cap
the occupancy due to high register usage. The handwritten code makes use
of the GPU’s constant memory for this purpose. Moreover, it also uses plane
sweeping and loop unrolling to achieve high performance. These optimization
techniques are not exploited in the kernels generated by Panda.

The performance difference between the handwritten GPU-only code and
the Panda GPU-only version is more visible under the strong scaling experi-
ments conducted using up to 1024 GPUs on Titan, as shown in Figure 5(b). We
observe that already at 32 GPUs the two performance curves start to diverge.
Profiling reveals that there are two reasons for this behavior. The first reason
is that Panda does unnecessary halo boundary packing and unpacking on the
xy planes. This is avoided by the handwritten code. The second reason is that
the Panda generated kernels for the halo boundaries and the interior points
are not as fast as the handwritten kernels, which may constitute a bottleneck
under strong scaling experiments when each subdomain becomes very small.
One side effect of the generalizations that Panda makes is the introduction
of additional overheads. However, we believe that these overheads are modest
enough that we do not see them as the main obstacle to scalability.

5 Related Work

The number of prior works conducted by other researchers is large. To help the
reader, we will categorize the related work into three types: compiler directives,
libraries and DSLs.

Compiler directives

A developer friendly approach is to use compiler hints to guide the compiler in
generating parallelized code. Thanks to the support from numerous vendors,
OpenACC and OpenMP have rapidly established themselves as the de facto
solutions for directive-based code development. Although capable of deliver-
ing acceptable performance [44,19] in a broad range of applications, neither
OpenACC nor OpenMP targets an entire cluster. Users are thus left to their
own to write code that deals with MPI.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 17

Our work is closely related to [29,30,16,42], which all use compiler di-
rectives to automatically offload computation to a single accelerator. Ope-
nACC [29] is known to provide good performance on Nvidia GPUs, while
OpenMP [30] is known to deliver particularly good performance on CPUs
and Xeon Phi co-processors. Mint [42] by Unat et al. is a domain-specific
translator for stencil methods by transforming serial stencil C/C++ code to
CUDA code. OpenMPC [16] by Lee and Eigenmann provides an extension
of OpenMP, so that code annotated with OpenMP directives is translated to
CUDA code. OpenMPC also includes an auto-tuner for performance tuning.
Like OpenACC and OpenMP, both Mint and OpenMPC target only a single
accelerator.

OpenMP-D [4] by Basumallik and Eigenmann provides a set of custom
directives that extends OpenMP for translating OpenMP code to MPI code.
Similar to OpenMPC, OpenMP-D takes a generic approach, and is not re-
stricted to stencil computations. Dathathri et al. [6] have developed a compiler
for auto-generation of regular computation on structured grid for heteroge-
neous CPU-GPU clusters. OpenCL is chosen as the programming model to
generate code for both CPUs and GPUs. The compiler by Dathathri et al. can
also generate CPU+GPU code using an asymmetric work distribution similar
to ours. The authors however are not able to make their CPU+GPU code
scale beyond a single node, believing that the CPU is the bottleneck. Rav-
ishankar et al. [33] have developed a compiler framework of code generation
for mixed irregular/regular computations targeting homogeneous distributed
memory systems. Our Panda compiler framework shares several similarities
with the work by Ravishankar et al., such as static analyses of partitionable
loops, use of compiler directives to annotate distributed data structures, etc.
However, one important distinction is that our tool is capable of targeting
GPU-enhanced clusters in addition to homogeneous CPU clusters.

Libraries

PARTANS [20] by Lutz et al. provides a C++ template library to ease the
burden of OpenCL programming of stencil code targeting multiple GPUs.
The authors have also developed an extensive auto-tuner for performance op-
timizations. PARTANS supports multiple GPUs per node, but its scalabil-
ity is limited because the library only supports 1D domain decomposition.
Shimokawabe et al. [36] have developed a C++ library for performing large-
scale weather forecast simulations on the TSUBAME 2.5 supercomputer. The
library of Shimokawabe et al. supports various domain decompositions, and
also takes advantage of multiple GPUs on the same node using GPUDirect v2
(peer-to-peer) memcopies for fast intra-node data transfers. Both PARTANS
and the framework of Shimokawabe et al., however, lack the ability to perform
pure CPU or concurrent CPU+GPU computations. Furthermore, users with
sequential implementations must rewrite their code in order to take advantage
of these libraries.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 Mohammed Sourouri et al.

DSLs

DSLs constitute a compromise by giving up some of the language generality
for performance. Since a DSL is restricted to a particular application domain,
it can leverage on this knowledge to deliver excellent performance. Contrary to
a directive-based approach, DSLs require considerable effort in code develop-
ment. A similar investment in code redevelopment is also required if the user
has an existing parallel implementation.

The DSLs that lie quite close to Panda are [5,11,31,23,13,47,9]. PATUS [5]
is a CPU-GPU stencil code generation and auto-tuning framework developed
by Christensen et al. PATUS depends on user-provided description files, be-
cause it lacks a stencil analyzer that can automatically recognize stencil shapes.
Code generation for different architectures is explicitly defined in a machine ar-
chitecture description file. Holewinski et al. [11] have developed a single-GPU
stencil code generator using overlapped tiles in OpenCL. Neither PATUS nor
the work by Holewinski et al. generates code for concurrent CPU+GPU exe-
cution.

The Halide [31] DSL represents a compiler and auto-tuner framework by
Ragan-Kelley et al. It generates stencil code for 2D image processing on
CPUs, GPUs, and CPUs+GPUs. Like PATUS and the framework developed
by Holewinski et al., Halide targets CPUs and manycore processors within a
single node.

Physis [23] by Maruyama et al. is an embedded DSL that targets large-scale
GPU clusters. A dedicated compiler translates input code that is implemented
in the Physis DSL into MPI+CUDA code, which overlaps inter-node data
transfers with computation. However, Physis cannot generate heterogeneous
CPU+GPU code. The SnuCL [13] framework by Kim et al. can run a wide
range of OpenCL applications on GPU clusters. SnuCL abstracts the process-
ing units, such as CPUs and GPUs, across an entire cluster to make it appear
as a single processing unit on a single machine. Applications transformed by
SnuCL are capable of concurrent CPU+GPU computations, but due to the
workload distribution strategy adopted by SnuCL, the performance benefit of
this approach is limited. Another limitation is that SnuCL does not take serial
code as input, only parallel OpenCL code. The auto-generation and auto-
tuning stencil framework [47] by Zhang and Mueller generates high-quality
stencil code that can be executed on GPU clusters. The framework however
cannot generate pure MPI or CPU+GPU code nor can it handle physical
boundary conditions.

STELLA [9] is a recent DSL/library that targets atmospheric stencil codes
discretized on structured grids. Like the library developed by Shimokawabe
et al. [36], STELLA is particularly optimized for a specific weather prediction
and regional climate model called COSMO. Similar to Panda, STELLA is
able to handle physical boundary conditions, but unlike Panda, it is not able
to produce codes that can perform concurrent CPU+GPU computations.

In summary, the related work reveals the lack of a developer-friendly pro-
gramming model that can realize high performance on accelerated clusters

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Title Suppressed Due to Excessive Length 19

by auto-generating CPU+GPU code based on serial input code written in a
general-purpose programming language such as C. This gap in the compiler
toolchain represents a particular obstacle to domain scientists who wish to har-
ness the computational powers of CPU-GPU clusters. The Panda framework
is thus an effort to close the gap.

6 Limitations

Panda is a domain-specific compiler that targets 3D stencil computations on
regular grids. While some might see domain-specific translation as a restric-
tion, we see the opportunity of carrying out meaningful optimizations that
would not be possible in a more generic approach.

At the moment of writing, Panda is not equipped with a dedicated runtime
system that can automatically detect the number of CPU cores available on
a target system. This means that the default numbers of OpenMP threads
needed in the context of MPI+CUDA+OpenMP code generation must be
defined as command-line arguments. The lack of such a runtime system makes
it difficult for the user to know exactly how many OpenMP threads should be
dedicated to the two thread groups. As a rule of the thumb, we recommend that
2
3 of the spawned OpenMP threads are dedicated to computing the interior
points, while the remaining 1

3 are dedicated to computation of the boundary
points.

Finally, to further improve the performance of the CPU+GPU code pro-
duced by Panda, it is necessary to generate more optimized CPU code for
computations of the interior and boundary points. High-performance CPU
code is an important ingredient in CPU+GPU implementations to reduce the
computational performance gap between the CPU and the GPU. As numer-
ous works have already shown [34,7,18], techniques such as cache blocking are
effective to optimize stencil codes on CPUs.

Other features currently not handled in Panda include I/O and checkpoint-
ing, which remain as future work. Users with serial applications that rely on
these features must manually modify the generated code.

7 Conclusion

In this paper we have presented the Panda compiler framework, consisting of
a directive-based programming model and a source-to-source translator. From
annotated serial C code, Panda can automatically generate various forms of
parallel code that can efficiently run on GPU-accelerated distributed-memory
systems.

We have demonstrated that the MPI-supported GPU-only code generated
by Panda can realize 90% of the performance of a highly optimized handwrit-
ten counterpart. Moreover, Panda’s GPU-only code scales nicely on more than
4000 GPUs on the Titan supercomputer.

With respect to concurrent CPU+GPU computation, coding is notoriously
hard due to many fine-grained details. The Panda framework fills the missing

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20 Mohammed Sourouri et al.

gap in automated generation of hybrid MPI+CUDA+OpenMP code for stencil
computations. The automatically generated CPU+GPU code from Panda can
in many cases outperform handwritten GPU-only code. We thus believe that
Panda can satisfy the performance requirements of many domain scientists, so
that they can focus on the science instead of tedious programming details. At
the same time, Panda generates code with high readability, so advanced users
can use Panda as a springboard to quickly generate parallel and hybrid code
that can later be manually modified for further performance enhancements.

Future work will mainly address some of Panda’s current limitations, such
as handling stencils with a wider reach than 7 points. Another topic is periodic
physical boundary condition, which in the context of MPI parallelization re-
quires implementing wrap-around communication. We also plan to construct
a runtime system to provide a better user experience with respect to adjusting
input, such as the CPU workload ratio, to the translated application.

We will also explore better support for future GPU clusters that are equipped
with multiple GPUs per node. In the current version of Panda, an MPI process
is spawned per GPU. However, a more promising approach is to use only a
single MPI process, but adopting multiple CPU threads to control the GPUs.

Currently, the Panda source-to-source compiler is specifically designed for
GPU clusters, but we will consider extending Panda with respect to Xeon Phi
clusters. Such an extension will involve fine-grained use of OpenMP on Xeon
Phis as opposed to using CUDA on GPUs. Our preliminary study suggests
that the extension can be implemented in a straightforward manner.

Acknowledgements

This work was supported by the FriNatek program of the Research Council of
Norway, through grant No. 214113/F20. The authors thank High Performance
Computing Service at the University of Cambridge, UK. This research used
resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

References

1. Ang, J., Barrett, R., Benner, R., Burke, D., Chan, C., Cook, J., Donofrio, D., Hammond,
S., Hemmert, K., Kelly, S., Le, H., Leung, V., Resnick, D., Rodrigues, A., Shalf, J., Stark,
D., Unat, D., Wright, N.: Abstract machine models and proxy architectures for exascale
computing. In: Proceedings of the 1st International Workshop on Hardware-Software
Co-Design for High Performance Computing (Co-HPC), pp. 25–32 (2014)

2. Argonne Leadership Computing Facility: Aurora. http://aurora.alcf.anl.gov/
(2015). [Online; accessed 1-June-2015]

3. Baskaran, M.M., Ramanujam, J., Sadayappan, P.: Automatic C-to-CUDA code gener-
ation for affine programs. In: Proceedings of the 19th Joint European Conference on
Theory and Practice of Software, International Conference on Compiler Construction,
pp. 244–263 (2010)

4. Basumallik, A., Eigenmann, R.: Towards automatic translation of OpenMP to MPI.
In: Proceedings of the 19th Annual International Conference on Supercomputing, pp.
189–198 (2005)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://aurora.alcf.anl.gov/

Title Suppressed Due to Excessive Length 21

5. Christen, M., Schenk, O., Burkhart, B.: PATUS: A code generation and autotuning
framework for parallel iterative stencil computations on modern microarchitectures.
In: Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE International, pp.
676–687 (2011)

6. Dathathri, R., Reddy, C., Ramashekar, T., Bondhugula, U.: Generating efficient data
movement code for heterogeneous architectures with distributed-memory. In: Proceed-
ings of the 22nd International Conference on Parallel Architectures and Compilation
Techniques, pp. 375–386 (2013)

7. Frigo, M., Strumpen, V.: Cache oblivious stencil computations. In: Proceedings of the
19th Annual International Conference on Supercomputing, pp. 361–366 (2005)

8. Grosser, T., Cohen, A., Holewinski, J., Sadayappan, P., Verdoolaege, S.: Hybrid hexag-
onal/classical tiling for GPUs. In: Proceedings of Annual IEEE/ACM International
Symposium on Code Generation and Optimization, pp. 66:66–66:75 (2014)

9. Gysi, T., Osuna, C., Fuhrer, O., Bianco, M., Schulthess, T.C.: STELLA: A domain-
specific tool for structured grid methods in weather and climate models. In: Proceedings
of the International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 41:1–41:12 (2015)

10. Hanslien, M., Artebrant, R., Tveito, A., Lines, G.T., Cai, X.: Stability of two time-
integrators for the Aliev-Panfilov system. International Journal of Numerical Analysis
and Modeling 8, 427–442 (2011)

11. Holewinski, J., Pouchet, L.N., Sadayappan, P.: High-performance code generation for
stencil computations on GPU architectures. In: Proceedings of the 26th ACM Interna-
tional Conference on Supercomputing, pp. 311–320 (2012)

12. Kamil, S., Chan, C., Oliker, L., Shalf, J., Williams, S.: An auto-tuning framework for
parallel multicore stencil computations. In: Parallel Distributed Processing (IPDPS),
2010 IEEE International Symposium on, pp. 1–12 (2010)

13. Kim, J., Seo, S., Lee, J., Nah, J., Jo, G., Lee, J.: SnuCL: An OpenCL framework for
heterogeneous CPU/GPU clusters. In: Proceedings of the 26th ACM International
Conference on Supercomputing, pp. 341–352 (2012)

14. Langguth, J., Sourouri, M., Lines, G.T., Baden, S.B., Cai, X.: Scalable heterogeneous
CPU-GPU computations for unstructured tetrahedral meshes. Micro, IEEE 35(4), 6–15
(2015)

15. Lawrence Livermore National Laboratory: ROSE compiler infrastructure. http://
rosecompiler.org (2015). [Online; accessed 04-June-2015]

16. Lee, S., Eigenmann, R.: OpenMPC: Extended OpenMP programming and tuning for
GPUs. In: Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–11 (2010)

17. Lee, S., Vetter, J.S.: Early evaluation of directive-based GPU programming models for
productive exascale computing. In: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, pp. 23:1–23:11 (2012)

18. Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A.D., Satish, N.,
Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal, R., Dubey, P.: Debunk-
ing the 100X GPU vs. CPU myth: An evaluation of throughput computing on CPU
and GPU. In: Proceedings of the 37th Annual International Symposium on Computer
Architecture, ISCA ’10, pp. 451–460 (2010)

19. Levesque, J.M., Sankaran, R., Grout, R.: Hybridizing S3D into an exascale application
using OpenACC: An approach for moving to multi-petaflops and beyond. In: Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 15:1–15:11 (2012)

20. Lutz, T., Fensch, C., Cole, M.: PARTANS: An autotuning framework for stencil com-
putation on multi-GPU systems. ACM Trans. Archit. Code Optim. 9(4), 59:1–59:24
(2013)

21. Mark Harris: CUDA pro tip: Write flexible kernels with grid-stride loops. http://goo.
gl/b8Vmkh (2015). [Online; accessed 12-November-2015]

22. Maruyama, N., Aoki, T.: Optimizing stencil computations for NVIDIA Kepler GPUs.
In: Proceedings of the 1st International Workshop on High-Performance Stencil Com-
putations, pp. 89–95 (2014)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://rosecompiler.org
http://rosecompiler.org
http://goo.gl/b8Vmkh
http://goo.gl/b8Vmkh

22 Mohammed Sourouri et al.

23. Maruyama, N., Nomura, T., Sato, K., Matsuoka, S.: Physis: An implicitly parallel pro-
gramming model for stencil computations on large-scale GPU-accelerated supercomput-
ers. In: Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 11:1–11:12 (2011)

24. McCalpin, J.D.: Memory bandwidth and machine balance in current high performance
computers. IEEE Computer Society Technical Committee on Computer Architecture
(TCCA) Newsletter pp. 19–25 (1995)

25. Mittal, S., Vetter, J.S.: A survey of CPU-GPU heterogeneous computing techniques.
ACM Comput. Surv. 47(4) (2015)

26. NVIDIA: NVIDIA’s next generation CUDA compute architecture: Kepler GK110.
http://goo.gl/9ju84x (2013). [Online; accessed 12-November-2015]

27. Oak Ridge Leadership Computing Facility: Summit. https://olcf.ornl.gov/
summit/ (2015). [Online; accessed 29-May-2015]

28. Olschanowsky, C., Strout, M.M., Guzik, S., Loffeld, J., Hittinger, J.: A study on bal-
ancing parallelism, data locality, and recomputation in existing PDE solvers. In: Pro-
ceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 793–804 (2014)

29. OpenACC - Directives for Accelerators: The OpenACC Application Program Interface.
http://openacc-standard.org (2015). [Online; accessed 23-May-2015]

30. OpenMP Architecture Review Board: OpenMP Application Program Interface. http:
//openmp.org (2015). [Online; accessed 23-May-2015]

31. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.: Halide:
A language and compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines. In: Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 519–530 (2013)

32. Rahman, S.M.F., Yi, Q., Qasem, A.: Understanding stencil code performance on multi-
core architectures. In: Proceedings of the 8th ACM International Conference on Com-
puting Frontiers, pp. 30:1–30:10 (2011)

33. Ravishankar, M., Dathathri, R., Elango, V., Pouchet, L.N., Ramanujam, J., Rountev,
A., Sadayappan, P.: Distributed memory code generation for mixed irregular/regular
computations. In: Proceedings of the 20th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2015, pp. 65–75 (2015)

34. Rivera, G., Tseng, C.W.: Tiling optimizations for 3D scientific computations. In: Pro-
ceedings of the 2000 ACM/IEEE Conference on Supercomputing (2000)

35. Schäfer, A., Fey, D.: High performance stencil code algorithms for GPGPUs. In: Pro-
ceedings of 2011 International Conference on Computational Sciences (ICCS), vol. 4,
pp. 2027–2036 (2011)

36. Shimokawabe, T., Aoki, T., Onodera, N.: High-productivity framework on GPU-rich
supercomputers for operational weather prediction code ASUCA. In: Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 251–261 (2014)

37. Shimokawabe, T., Aoki, T., Takaki, T., Endo, T., Yamanaka, A., Maruyama, N.,
Nukada, A., Matsuoka, S.: Peta-scale phase-field simulation for dendritic solidification
on the TSUBAME 2.0 supercomputer. In: Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, pp. 3:1–3:11
(2011)

38. Sourouri, M., Langguth, J., Spiga, F., Baden, S.B., Cai, X.: CPU+GPU programming
of stencil computations for resource-efficient use of GPU clusters. In: Computational
Science and Engineering (CSE), 2015 IEEE 18th International Conference on, pp. 17–26
(2015)

39. Su, H., Wu, N., Wen, M., Zhang, C., Cai, X.: On the GPU performance of 3D sten-
cil computations implemented in OpenCL. In: Proceedings of the 28th International
Supercomputing Conference, vol. 7905, pp. 125–135 (2013)

40. Top500.org: June 2015 — the green500 list. http://www.green500.org/lists/
green201506 (2015). [Online; accessed 04-Sept-2015]

41. Top500.org: November 2015 — top500 supercomputer sites. http://top500.org/
lists/2015/11/ (2015). [Online; accessed 18-Nov-2015]

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://goo.gl/9ju84x
https://olcf.ornl.gov/summit/
https://olcf.ornl.gov/summit/
http://openacc-standard.org
http://openmp.org
http://openmp.org
http://www.green500.org/lists/green201506
http://www.green500.org/lists/green201506
http://top500.org/lists/2015/11/
http://top500.org/lists/2015/11/

Title Suppressed Due to Excessive Length 23

42. Unat, D., Cai, X., Baden, S.B.: Mint: Realizing CUDA performance in 3D stencil meth-
ods with annotated C. In: Proceedings of the International Conference on Supercom-
puting, pp. 214–224 (2011)

43. Venkatasubramanian, S., Vuduc, R.W.: Tuned and wildly asynchronous stencil kernels
for hybrid CPU/GPU systems. In: Proceedings of the 23rd International Conference on
Supercomputing, pp. 244–255 (2009)

44. Wienke, S., Springer, P., Terboven, C., an Mey, D.: OpenACC - First Experiences with
Real-World Applications. In: Euro-Par 2012 Parallel Processing - 18th International
Conference, vol. 7484, pp. 859–870 (2012)

45. Williams, S., Kalamkar, D.D., Singh, A., Deshpande, A.M., Van Straalen, B., Smelyan-
skiy, M., Almgren, A., Dubey, P., Shalf, J., Oliker, L.: Optimization of geometric multi-
grid for emerging multi- and manycore processors. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, pp.
96:1–96:11 (2012)

46. Williams, S., Waterman, A., Patterson, D.: Roofline: An insightful visual performance
model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

47. Zhang, Y., Mueller, F.: Auto-generation and auto-tuning of 3D stencil codes on GPU
clusters. In: Proceedings of the Tenth International Symposium on Code Generation
and Optimization, pp. 155–164 (2012)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

