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COMPREHENSIVE REVIEW

Allogeneic and Xenogeneic Transplantation
of Adipose-Derived Stem Cells in Immunocompetent

Recipients Without Immunosuppressants

Ching-Shwun Lin, Guiting Lin, and Tom F. Lue

Mesenchymal stem cells (MSCs) are well known for their immunomodulatory capabilities. In particular, their
immunosuppressive property is believed to permit their allogeneic or even xenogeneic transplantation into
immunocompetent recipients without the use of immunosuppressants. Adipose-derived stem cell (ADSC),
owing to its ease of isolation from an abundant tissue source, is a promising MSC for the treatment of a wide
range of diseases. ADSC has been shown to lack major histocompatibility complex-II expression, and its
immunosuppressive effects mediated by prostaglandin E2. Both preclinical and clinical studies have shown
that allogeneic transplantation of ADSCs was able to control graft-versus-host disease. In regard to xeno-
transplantation a total of 27 preclinical studies have been published, with 20 of them performed with the
investigators’ intent. All 27 studies used ADSCs isolated from humans, possibly due to the wide availability of
lipoaspirates. On the other hand, the recipients were mouse in 13 studies, rat in 11, rabbit in 2, and dog in 1. The
targeted diseases varied greatly but all showed significant improvements after ADSC xenotransplantation. For
clinical application in human medicine, ADSC xenotransplantation offers no obvious advantage over auto-
transplantation. But in veterinary medicine, xenotransplantation with porcine ADSC is a practical alternative to
the costly and inconvenient autotransplantation.

Introduction

First identified in bone marrow, mesenchymal stem
cells (MSCs) have now been isolated from most adult

tissues including the adipose [1,2]. These cells are multi-
potent and have been extensively investigated for their
therapeutic capabilities in a wide variety of diseases in-
cluding brain ischemia, cardiac infarction, osteoarthritis
(OA), urinary incontinence, and erectile dysfunction [3–5].
While most of these clinical and preclinical trials utilized
autologous MSCs, a significant number of studies have
examined the feasibility of allogeneic or even xenogeneic
MSC transplantation. Since bone marrow MSC (BMSC) is the
prototype and also the first MSC type to be investigated for
allogeneic and xenogeneic transplantations, it will be briefly
discussed in the next section. After that, the rest of this re-
view will focus on adipose-derived stem cell (ADSC). In this
review, allogeneic and xenogeneic transplantations are de-
fined respectively as intraspecies and interspecies trans-
plantations in immunocompetent recipients without the use
of immunosuppressants. Studies that used immunocom-
promised recipients and/or immunosuppressants will not
be discussed.

Early Allogeneic and Xenogeneic
Transplantation Studies with BMSC

In year 2000, Liechty et al. [6] reported that human
BMSCs exhibited tissue engraftment and site-specific cell
differentiation when transplanted into immunocompetent
fetal sheep. These authors concluded that BMSCs might
possess immunologic properties that allow their persistence
in a xenogeneic environment. In 2001, Devine et al. [7]
reported that intravenously injected baboon BMSCs were
capable of homing to the bone marrow of allogeneic recipi-
ents and persisted for at least 76 days. In the following year,
a similar group of researchers reported that baboon BMSCs
did not elicit a proliferative response from allogeneic lym-
phocytes in a mixed lymphocyte reaction [8]. Further, an
independent group of researchers reported that human
BMSCs were not just noninductive but actually capable of
suppressing allogeneic T-lymphocyte proliferation [8].

Because the above-mentioned xenotransplantation exper-
iment was performed with fetal recipients, Saito et al. [9]
went a step further to test whether xenotransplantation
could succeed in fully immunocompetent recipients. Adult
rats were IV injected with mouse BMSCs and, 1 week later,
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underwent coronary artery ligation. Twelve weeks later,
mouse cells were found to engraft into the bone marrow
cavities of rats with or without myocardial infarction while
circulating mouse cells were detected only in rats with
myocardial infarction. Moreover, mouse cells were found in
the infarcted myocardium where they appeared to differen-
tiate into immature cardiac cells or integrate into newly
formed blood vessels. Three years later, a similar group of
researchers reported again the successful transplantation of
mouse BMSCs into infarcted rat heart [10]. However, 2 other
studies, both first-authored by Grinnemo, reported unsuc-
cessful transplantation of human BMSCs into infarcted rat
heart [11,12]. The discrepancy could perhaps be explained by
differences in immunological properties between human and
mouse BMSCs. First, murine BMSCs, unlike their human
equivalent, lack major histocompatibility complex (MHC)
class II expression [13], and second, T-cell inhibition by
BMSCs requires cell contact in mice but is mediated by
soluble factors in humans [14,15]. In any event, reports of
successful xenotransplantation with BMSCs from various
species continue to appear frequently; for example, rat BMSC
for bone formation in rabbit [16], human BMSC for spinal
cord injury in rat [17,18], and human BMSC for bone for-
mation in mice [19].

ADSC as an Ideal MSC for Therapy

MSCs are increasingly believed to reside in the vascula-
ture [2,20–23]; therefore, tissues rich in blood vessels, par-
ticularly microvessels (capillaries), are ideal for the isolation
of MSCs in large quantities for clinical applications. The
adipose tissue is endowed with an extensive capillary net-
work [24] and is one of the rare tissues that can be partially
removed from a living person without causing harm. In fact,
this partial removal is desired by many patients seeking to
improve their image and/or health. In addition, its superfi-
cial location makes it easily excisable with virtually no health
consequence. As such, unlike bone marrow, the removal of
which is not only a health risk but also desired by none, the
adipose tissue is routinely abandoned as ‘‘medical wastes.’’
As evidence, a worldwide survey published in 2002 shows
that between 1994 and 2000 zero death was reported on
66,570 liposuction procedures with a serious adverse event
rate of only 0.068% [25]. Further, in the lipoaspirate ap-
proximately 2% of nucleated cells can be recovered as MSCs,
as compared with 0.002% in the bone marrow aspirate [26].
Thus, while ADSC and BMSC are virtually identical in their
therapeutic potential, their difference in clinical applicability
is obvious.

In research laboratories, the most commonly used proce-
dure for ADSC isolation involves mincing the adipose tissue
sample and centrifugation to separate the fatty content from
the stromal vascular fraction (SVF) that forms a reddish
pellet at the bottom. The SVF can be directly used for therapy
or further processed for the isolation of ADSC. In future
clinical applications, adipose tissue mincing will undoubt-
edly be substituted by liposuction, and the SVF isolation
handled by all-in-one devices that are now commercially
available [5,27,28]. The adoption of these automation pro-
cedures has resulted in the high availability of human
ADSCs, which could perhaps explain why many preclinical
studies chose human ADSCs for transplantation in non-

human animals such as rats and mice, thus, intentionally or
unintentionally demonstrating ADSC’s xenotransplantation
potential (Tables 1 and 2).

Evidence for ADSC’s Immunomodulatory
Capacity: Cell Culture Studies

The first report of ADSC’s immunomodulatory and im-
munosuppressive properties appeared in 2005; specifically,
its in vitro experiments showed that ADSC did not provoke
alloreactivity and was able to suppress mixed lymphocyte
reaction [29]. Moreover, the immunosuppressive effect ap-
peared to require cell–cell contact. However, in 2 separate
studies the cell–cell contact requirement was corroborated
[30] and disputed [31], respectively. Regardless of this dis-
agreement, the immunosuppressive effect of ADSC has been
consistently observed in all subsequent relevant studies
[32–36]. Further, in a comparative study, ADSC and BMSC
were found to exhibit the same pattern of immunologically
relevant surface markers (MHC-I, MHC-II, CD40, and
CD40L) [37]. Importantly, both BMSC and ADSC lacked
expression of MHC-II, and both did not stimulate allogeneic
peripheral blood mononuclear cells. Moreover, these char-
acteristics were retained in both cell types during osteogenic
differentiation. As such, it was concluded that allogeneic
transplantation of BMSC and ADSC could be employed for
tissue engineering [37]. In another study the lack of MHC-II
expression in ADSCs was corroborated [31].

While it remains controversial whether cell–cell contact is
required for ADSC’s immunosuppressive effects [29–31],
several studies have demonstrated the importance of soluble
factors, among which the most frequently identified being
prostaglandin E2 (PGE2) [31,38–41]. Specifically, inhibition
of PGE2 by indomethacine effectively abolished ADSC’s
immunosuppressive effects. In addition, specific inhibition of
indoleamine 2, 3 dioxygenase [39] or neutralization of leu-
kemia inhibitory factor [42] has also been shown to abolish
ADSC’s immunosuppressive effects. Further, ADSC’s im-
munosuppressive activity appears to be mediated through
an interleukin-6 (IL-6)-dependent inhibition of dendritic cell
differentiation and downregulation of MHC-II, CD40, and
CD86 on mature dendritic cells [38]. A subsequent study
further showed that ADSC was more potent than BMSC
in suppressing dendritic cell differentiation and down-
regulation of costimulatory molecules on the surface of
dendritic cells [43].

Rheumatoid arthritis (RA) is due to a loss in immuno-
logical self-tolerance that leads to the activation of auto-
reactive T cells against joint components. In a 2009 study
Gonzalez-Rey et al. [44] found that allogeneic ADSCs were
able to suppress the antigen-specific response of T cells from
patients with RA. Specifically, ADSC inhibited the prolifer-
ative response and the production of inflammatory cytokines
by collagen-activated CD4 and CD8 T cells. In addition,
ADSC treatment significantly increased the numbers of
IL-10-producing T cells and monocytes. ADSC also stimu-
lated the generation of regulatory T cells that can suppress
collagen-specific T-cell responses. Together, these findings
suggest that allogeneic ADSC transplantation could treat RA
by suppression of T-cell and inflammatory responses and by
generation and/or activation of antigen-specific regulatory
T cells. This dual immunomodulatory effect of suppressing
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overall T-cell proliferation while promoting the generation of
regulatory T cells has also been observed more recently in
cocultures of allogeneic ADSC and T cells [45].

Th17 lymphocytes are a subset of CD4 + T cells that pro-
duce the proinflammatory cytokine IL-17. These cells have
been found to play important roles in the pathogenesis of
many autoimmune diseases, including RA and systemic
lupus erythematosus (SLE). Thus, it has been proposed that
controlling Th17 cells or neutralizing IL-17 may offer thera-
peutic benefits for these autoimmune diseases [46,47]. In
2011, Lai et al. [48] investigated the effects of allogeneic
ADSCs on Th17 cells by coculturing ADSCs with peripheral
blood mononuclear cells of SLE patients. The results showed
that ADSCs from passage 3 decreased the proportion of Th17
cells and suppressed their production of IL-17; however,
ADSCs from passage 8 had the opposite effects. Thus, while
allogeneic ADSC may have therapeutic potential toward
SLE, their prolonged culturing should be avoided.

The above-mentioned studies suggest that, due to its im-
munomodulatory capability, ADSC might be suitable for
allogeneic transplantation for the treatment of various dis-
eases. However, a recent study showed that, despite being
immunosuppressive, ADSCs were susceptible to lysis by
allogeneic CD8 + T cells and NK cells [49]. Indeed, in an
earlier study these authors also showed that ADSCs induced
explosive T-cell proliferation [50]. Thus, whether allogeneic
transplantation of ADSC offers therapeutic benefits requires
further testing, especially in preclinical and clinical settings.

Immunomodulatory Therapy

In 2006, Yanez et al. [33] reported that allogeneically
transplanted ADSCs were able to control experimentally
induced graft-versus-host disease (GVHD) in mice. In the
same year, Fang et al. [51] reported successful treatment of
GVHD in a female patient by using ADSC isolated from an
unrelated male donor. In the following year, Fang et al. re-
ported a total of 7 cases of successful GVHD treatment with
allogeneic ADSCs in 9 patients [52–54]. Two additional years
later Fang et al. published 2 other clinical studies. In one
study, a male patient was successfully treated with ADSC
isolated from his brother, resulting in the resolution of re-
fractory chronic autoimmune thrombocytopenic purpura [55].
In the other study, 2 patients were successfully treated with
ADSCs isolated from unrelated donors, resulting in the res-
olution of refractory pure red cell aplasia due to major ABO-
incompatible hematopoietic stem cell transplantation [56].

Allotransplantation

In a canine spinal cord injury model, injection of allogeneic
ADSC into the injured site resulted in significant improve-
ment in both hind limb function and nerve conduction [57].
Histological examination identified expression of neural
markers GFAP, Tuj-1, and NF160 in the transplanted cells,
suggesting neural differentiation. In another study, alloge-
neic ADSC seeded on a biomaterial scaffold were found to
accelerate spinal fusion in a rat model of lumbar compression
fracture [58]. In the recipient rats T-cell priming was unde-
tectable, but significant antibody responses were observed
[59]. However, the antibodies were determined to be non-
cytotoxic and thus not expected to impede the prospective
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implementation of allogeneic ADSC for spinal fusion. In an
allergic rhinitis mouse model IV injected ADSCs were found
to migrate to the nasal mucosa, reduce allergic symptoms,
and inhibit eosinophilic inflammation in the nasal mucosa
[60]. ADSCs also significantly decreased the allergen-specific
IgE level and IgG1/IgG2a ratio, suggesting the inhibition of
eosinophilic inflammation was due to a shift from a Th2
immune response to a T-helper response.

Xenotransplantation

A total of 27 studies have performed xenotransplantation
with ADSCs. Twenty of these studies mentioned the inves-
tigators’ intent to conduct xenotransplantation while the
other 7 did not (Tables 1 and 2). Without exception, all 27
studies used ADSCs isolated from humans, possibly due to
the wide availability of lipoaspirates. On the other hand, the
recipients were mouse in 13 studies, rat in 11, rabbit in 2, and
dog in 1.

The first ADSC xenotransplantation study was published
in 2003, in which intracerebral transplantation of human
ADSCs was found to improve neurological functions in a
cerebral ischemic rat model [61]. Interestingly, despite
being a xenogeneic transplantation, the investigators ob-
served no evidence of inflammation or rejection. They thus
offered several explanations including the brain being
partially immunoprivileged and ADSCs being lacking
MHC-II expression. Two years later, another study con-
ducted a more detailed examination of ADSC’s potential
for xenogeneic transplantation [62]. First, in cell culture
experiments human ADSCs were shown not to induce
proliferation of murine splenocytes; then, in animal trans-
plantation experiments human ADSCs were found not to
cause murine CD3 lymphocyte infiltration. This study’s
main purpose, however, was to show that ADSC had the
potential for treating muscular dystrophy. Specifically,
transplantation of human ADSCs into a murine model of
muscular dystrophy resulted in high-level expression of
human dystrophin and long-term engraftment of the
transplanted cells. In a more recent study of using human
ADSCs to treat experimentally induced atrial injury in
dogs, intravenous administration of human ADSCs caused
virtually no changes in the composition of peripheral blood
lymphocytes of the recipient dogs, thus indicating im-
munocompatibility [63].

The feasibility of using ADSC (and BMSC) for xenoge-
neic transplantation was specifically investigated in a 2008
study [64]. Undifferentiated and osteogenically differentiated
ADSCs (and BMSCs) were subcutaneously injected into
immunocompetent mice and then tracked at 4 and 8 weeks
postinjection. The results show that undifferentiated
ADSCs/BMSCs survived for at least 8 weeks while osteo-
genically differentiated ADSCs/BMSCs were eliminated at
4 weeks. The authors thus concluded that undifferentiated
ADSCs/BMSCs were suitable for xenogeneic transplanta-
tion. However, in another study differentiated insulin-
producing cells from human ADSCs were found to survive
for a remarkable period of 1 year following subrenal capsule
transplantation into streptozotocin-induced diabetic mice
[65]. Thus, it appears that under certain conditions both
undifferentiated and differentiated ADSCs could be used for
xenotransplantation.

Prospective Clinical Application of Allogeneic
and Xenogeneic ADSCs

Liposuction is a well-established clinical practice in human
medicine, and processing the liposuction material into SVF
can be done expeditiously with commercially available de-
vices [5,27,28]. Therefore, the future application of ADSCs in
human medicine will be conducted mostly, if not exclusively,
in an autologous fashion. On the other hand, liposuction is
not a standard procedure in veterinary medicine, and the
manual isolation of SVF or ADSC from each dog or cat is an
impractical proposition for most veterinary clinics. Thus, the
allogeneic or xenogeneic application of ADSCs in veterinary
medicine is worthy of consideration.

In the mainstream media and in the Internet there have
been thousands of claims about ADSC’s ‘‘miraculous’’
therapeutic efficacy in treating animal diseases, especially
canine OA. In the scientific literature, there have been
3 studies that used autologous ADSCs to treat canine OA
[66–68], and the results all indicated ADSC’s efficacy in
ameliorating OA symptoms. However, the adoption of this
novel OA treatment into veterinarian practice faces many
challenges, including (1) most veterinary clinics lack the
equipment and expertise for ADSC isolation, (2) excision of
adipose tissue causes donor site morbidity, (3) individually
made ADSC isolation is costly and time-consuming, and (4)
at least 2 veterinarian appointments are needed for adipose
tissue procurement and ADSC injection. However, these
obstacles can be overcome if the therapeutic ADSCs are
from an allogeneic or xenogeneic source. For example,
canine and porcine ADSCs can be prepared in commercial-
scale quantities, portions of which are stored in liquid
nitrogen or further propagated. Upon receiving an order
from a vet clinic, the cells can be shipped in a syringe via an
express courier; and upon its arrival, the cell preparation
can be injected by the veterinarian into the diseased joint of
a patient dog. Thus, there is no need for the veterinary clinic
to purchase expensive equipment or hire cell-isolation
technicians. The demand on the veterinarian is minimal as
well.

From an immunological point of view, allotransplantation
is perhaps a better choice than xenotransplantation. How-
ever, from an ethical point of view, the harvest of canine
tissues for commercial purpose is definitely less acceptable
than the harvest of porcine tissues. Thus, xenotransplanta-
tion of porcine ADSC for veterinary uses is expected to have
a better chance to succeed. In addition, the practice of por-
cine organ transplantation in humans has been extensively
investigated with the establishment of strict guidelines [69].
Thus, the breeding of donor pigs and the harvest of their
adipose tissue can follow these established guidelines. It
should be further pointed out that, in more than 2 centuries
of investigation there has been no documentation of transfer
of viruses from donor pig tissues to recipient humans [70].
Thus, it is reasonable to expect that porcine ADSC will be
safe for transplantation into dogs and cats. If so, xeno-
transplantation of porcine ADSC should provide great
therapeutic benefits to our best friends.
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