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Investigating structural and occupant drivers of annual

residential electricity consumption using regularization

in regression models

Aven Satre-Meloy

Environmental Change Institute, University of Oxford, South Parks Road, Oxford OX1
3QY, UK

Abstract

Achieving further reductions in building electricity usage requires a detailed
characterization of electricity consumption in homes. Understanding drivers
of consumption can inform strategies for promoting conservation and effi-
ciency. While there exist numerous approaches for modeling building energy
demand, the use of regularization methods in statistical models can address
challenges inherent to building energy modeling while also enabling more
accurate predictions and better identification of variables that influence con-
sumption.

This paper applies five regularization techniques to regression models of
original survey and electricity consumption data for more than one thousand
households in California. It finds that of these, elastic net and two extensions
of the lasso—group lasso and adaptive lasso—outperform other approaches
in terms of prediction accuracy and model interpretability. These findings
contribute to methodological approaches for modeling energy consumption in
buildings as well as to our understanding of key drivers of consumption. The
paper shows that while structural factors predominate in explaining annual
electricity consumption patterns, habitual actions taken to save energy in
the home are important for reducing consumption while pro-environmental
attitudes and energy literacy are not. Implications for improving building
energy modeling and for informing demand reduction strategies, are discussed
in the context of the low-carbon transition.
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1. Introduction1

The U.S. is the second largest energy market and emitter of greenhouse2

gases (GHG) in the world after China, and buildings hold the largest share3

of U.S. energy consumption at 41%, more than half of which comes from4

the residential sector [1]. Residential energy demand has remained relatively5

stable since 1990, yet the sector still accounted for 20% of CO2 emissions6

from fossil fuel combustion in 2015. 68% of these emissions were attributable7

to electricity consumption for lighting, heating, cooling, and operating ap-8

pliances, with the remainder due to consumption of other fuels for heating9

and cooking [2]. Electricity demand is projected to grow over the next thirty10

years, in part because of an increase in the adoption of cooling technologies11

due to future warming [3, 4].12

Demand reduction is believed to play an important role in the effort to13

reduce emissions from the residential building sector. The U.S. Environ-14

mental Protection Agency (EPA) predicts that demand-side efficiency and15

saving measures could result in a net cumulative demand reduction of 7.83%16

by 2030 [5]. These measures are also some of the most cost effective for re-17

ducing emissions from the power sector, delivering savings at a fraction of18

the retail cost of electricity [6]. Only recently have demand-side strategies19

begun to receive closer scrutiny in national and global scenarios for limiting20

warming to the 1.5◦C target agreed in Paris [7]. This emerging literature21

stresses the importance of demand-side measures for achieving ambitious cli-22

mate goals and delivering societal co-benefits for health, equity, and security23

[8].24

The residential building sector’s large share of electricity consumption and25

sizable potential for reducing emissions warrant detailed investigations into26

the drivers of consumption. A deeper understanding of the characteristics27

of electricity consumption in homes can inform strategies and policies for28

promoting conservation and efficiency. This is especially important given that29

much of the existing quantitative research on building energy consumption30

and prediction has focused on non-residential buildings [9].31

Approaches to investigating drivers of building electricity consumption32

have proliferated in recent years alongside a similar expansion in available33
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data to analyze these drivers. Both statistical and engineering techniques are34

increasingly applied to diverse, multivariate data to quantify the contribution35

of different factors to household electricity consumption. These methods36

benefit from improved computing power, access to large datasets, and new37

algorithmic approaches for modeling electricity consumption.38

Yet despite their proliferation, statistical and engineering methods for39

modeling building energy consumption face numerous challenges, especially40

in the context of informing policy development. Hsu [10] summarizes key41

challenges that are shared across energy analysis research, and several of42

these are highlighted here.43

First the number of factors that possibly influence energy consumption,44

including structural factors, such as physical dwelling characteristics and ef-45

ficiency standards, as well as economic, social, and behavioral dimensions,46

is almost limitless. Understanding the comparative contributions of these47

different factors to consumption patterns can improve intervention efforts48

to promote conservation. Second, although the availability of data is im-49

proving, it is still difficult and expensive to gather comprehensive data on50

these factors, so results are often based on small datasets specific to par-51

ticular geographic, economic, and social contexts. Third, statistical models52

based on small samples often do not have high out-of-sample predictive ac-53

curacy. Especially when the set of possible predictive factors is large (and in54

‘high-dimensional’ problems, larger than the number of observations), models55

often ‘overfit’ the data, meaning they do not generalize well to new data and56

lead to poor predictions and inferences. Fourth, including a large number of57

predictors in statistical models increases the likelihood of multicollinearity,58

where multiple predictors have high degrees of pair-wise correlation, which59

can inflate the standard errors of coefficients in statistical models and lead60

to misinterpretation [11]. Finally, an additional challenge is the prevalence61

of missing data, which is common in datasets pulled together from numerous62

sources, especially from household surveys where completion is not manda-63

tory. Missing data, if not handled properly, can result in loss of information64

and introduce bias [12].65

Overcoming these analytical challenges is important for interpreting model66

results accurately and properly informing strategies for delivering energy sav-67

ings, but many of these issues are not well addressed in the energy consump-68

tion literature, and statistical techniques to handle these challenges are rarely69

applied in empirical energy consumption studies [10]. As the following re-70

view of literature will show, numerous modeling techniques exist to estimate71
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residential energy consumption, but many of these are geared toward im-72

proving predictive performance without also yielding interpretable results.73

This phenomenon has become increasingly common with advanced machine74

learning approaches, especially those in the field of deep learning. While75

improvements in prediction are certainly important for numerous purposes,76

developing better solutions for reducing energy demand require interpretable77

models that identify important factors explaining consumption. Thus, statis-78

tical approaches that can improve predictive performance while also ensuring79

a more robust variable selection process are especially relevant for residential80

electricity consumption research..81

This paper therefore makes two primary contributions. First, it con-82

tributes to the literature on model selection for electricity consumption by83

applying regularization techniques to linear regression models of annual elec-84

tricity consumption. Following Hsu’s introduction of these techniques to85

the energy consumption literature several years ago [10], they continue to86

be seldom-used despite their demonstrable benefits for improving statistical87

models and identifying key variables. This paper will show how the use of88

regularization techniques should be guided by the analysis objective and the89

structure of the data. It shows how several recent extensions to these meth-90

ods can improve results for prediction and interpretation objectives when91

the data contain many different types of variables, which is common in resi-92

dential energy demand research. The second aim of this paper is empirical,93

demonstrating the use of these techniques on an original dataset of annual94

electricity usage data and a wide range of structural and occupant factors95

for over 1,000 households in California.96

The paper is organized as follows: Section 2 reviews related work, both97

on statistical modeling of energy consumption in buildings as well as on de-98

terminants of consumption. It highlights areas of uncertainty and gaps in our99

knowledge. Section 3 describes the use of regularization methods, including100

several recent extensions, and the statistical motivations for the modeling101

approach undertaken in this paper. Section 4 describes data collection, or-102

ganization, and preprocessing procedures. Section 5 presents results. Impli-103

cations for both modeling and policy are discussed in Section 6, and Section104

7 concludes with a discussion of how the methods used in this paper can105

inform further research in building energy consumption analysis.106
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2. Related work107

This review of related work is split into two sections. Section 2.1 describes108

the high-level taxonomy of approaches for building energy consumption mod-109

eling and then provides a more detailed review of statistical methods and110

several key issues that are present, including the competing aims of predic-111

tion and interpretation and the need for robust variable selection techniques.112

Section 2.2 reviews the literature on determinants of household electricity113

consumption.114

2.1. Approaches for modeling building energy consumption115

Swan and Ugursal [11] review residential energy consumption models and116

show that several approaches are appropriate, depending on the scale of in-117

terest. These approaches are either top-down or bottom-up, and Figure 1118

shows the methods common to each. Top-down models use large, statisti-119

cal databases to quantify regional or national energy supply requirements.120

Econometric models use macroeconomic indicators, such as price and income,121

whereas technological models generally use characteristics of the entire hous-122

ing stock, such as appliance ownership. These models are useful for predicting123

trends in consumption for national planning purposes, but they require little124

detail beyond these broad indicators and thus provide limited insight into the125

micro-scale factors that influence consumption, including occupant behavior.126

Figure 1: Modelling techniques for estimating residential energy consumption. Adapted
from [11].

Bottom-up models, on the other hand, account for energy consumption127

due to individual end-uses and can use a variety of input data. These data128
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can include socio-demographic, occupant behavior, or technology factors.129

There are two distinct categories of bottom-up models, which use different130

approaches for estimating consumption. Engineering methods, also called131

building physics models, use detailed data on dwelling characteristics, power132

ratings and use of appliances, and thermodynamic principles to predict con-133

sumption. Statistical methods instead use mathematical principles to de-134

scribe the relationship between predictive variables and household electricity135

consumption.136

The benefits of engineering methods include the use of physically measur-137

able data to determine the consumption of specific end-uses and technologies.138

Measurements and simulations are useful for describing existing technologies139

in greater detail and modeling the prospective impact of new technologies.140

The drawback of using these models is that they rely on assumptions about141

occupant behavior, do not include other socio-demographic or economic data,142

and usually require a lot of technical data and measurements of building char-143

acteristics while requiring more computational power for analysis [13].144

Statistical methods, on the other hand, can incorporate more varied socio-145

demographic and behavioral data, are often less computationally intensive,146

and are somewhat easier to develop and use. Several exceptions include147

nonlinear models, which are discussed in greater detail below. Given that148

statistical models represent a purely mathematical relationship between en-149

ergy consumption and predictive variables, however, they are often prone to150

more error and uncertainty than engineering models [11, 14]. Given recent151

advances in statistical modeling, and given that statistical modeling tech-152

niques are employed in this paper, a brief review of these is provided in the153

following section.154

2.1.1. Statistical and data-driven models155

The main approaches for statistical modeling highlighted in Swan and156

Ugursal [11] are regression analysis, conditional demand analysis (CDA),157

and artificial neural networks (ANN). More recent reviews include additional158

methods such as support vector machines (SVM) and decision trees (DT)159

[15, 9, 16]. Each of these are briefly described in turn. For a more complete160

review of these methods and their mathematical properties, see Wei et al.161

[16].162

Regression analysis is one of the most common approaches for model-163

ing building energy consumption. In its simplest form, regression analysis164

determines the size and direction of associations between predictive factors165
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and electricity consumption. Predictors are selected based on expectations166

of what drives consumption and data that is available or collected. Selecting167

predictors is the subject of a broad statistical literature, which is further168

discussed in Section 2.1.2. Models are evaluated using goodness-of-fit mea-169

sures and model predictive error. Key predictors and their coefficients are170

examined to determine the strength and statistical significance of their re-171

lationships with consumption. Regression models are simple to develop and172

use, yet they require access to large sets of historical data and do not often173

achieve the predictive accuracy of other methods.174

Conditional demand analysis (CDA) uses regression analysis but only in-175

cludes as predictors the various end-use appliances owned in the dwelling.176

The coefficients in the model thus represent the use level and rating of the177

appliances. While this technique is relatively simple to use, it requires de-178

tailed data on household appliance ownership and a large sample of dwellings179

[11].180

Artificial neural networks (ANNs) have grown in popularity with the rise181

of machine learning disciplines and, especially, deep learning approaches. The182

method is based on analytic techniques originally developed for studying hu-183

man neurophysiology. The simplest ANNs include three layers: an input184

layer, a hidden layer, and an output layer, each of which has interconnected185

neurons that send signals to the neurons in sequential layers using an acti-186

vation function [9]. The reason ANNs have gained such popularity is their187

ability to model incredibly complex, nonlinear relationships. The trade-off188

for this gain in model complexity is that the coefficients in the model do not189

have physical significance, so interpreting the influence of different factors in190

neural networks is challenging.191

Another popular method in machine learning is the SVM, which also192

performs particularly well when the relationship between the inputs and the193

response is nonlinear. Support Vector Regression (SVR) is the application of194

SVM principles to regression problems. SVR works by mapping data inputs195

to a higher dimensional feature space using a kernel function and then con-196

structing a linear model that keeps the error within a predefined threshold. It197

has shown improved predictive capabilities for building energy consumption198

[14]. An additional benefit of SVMs is that they require fewer parameters199

and less training data. Like ANNs, however, SVMs are more complex mod-200

els that suffer from computational inefficiencies, though optimization of these201

algorithms is the subject of research [e.g. 15].202

Decision trees (DT) work by partitioning data into groups based on pre-203
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defined predictor variables, where each variable represents a root or branch in204

the tree, and the data is partitioned into smaller groups along the branches.205

The modeler chooses which variables to use as nodes and can decide where206

to trim the DT. In this way, a DT visually represents the data partitioning207

decisions made at each branch, and for this reason DTs are simple to under-208

stand and interpret, which is one of their main advantages. They have also209

proven effective in building energy prediction [17]. With larger numbers of210

predictors, DTs can become overly complex, but ensemble methods such as211

Random Forests can help prevent overfitting [18].212

These methods are some of the most common for statistical modeling213

of energy consumption, but there are many others and many variations on214

each of these. One of the key differences between these methods, however,215

is whether they are used primarily for prediction of building energy con-216

sumption or explanation of factors that influence consumption. Much of the217

research interest in machine learning methods such as ANNs, SVMs, and DTs218

is improving the ability to predict consumption. While this is certainly im-219

portant in building energy research, the pursuit of more accurate predictions220

can hamper interpretation efforts. Increasing gains in model accuracy often221

relies on increased model complexity, which is commonly the case for ANNs222

and SVMs. This complexity makes it difficult to understand the relation-223

ships between data inputs and the response. While regression models may224

not match the predictive accuracy of complex, nonlinear models, they are225

interpretable and can clearly describe relationships between variables and226

energy consumption. When this is the aim, model simplicity is essential.227

This gives the model practical significance for informing strategies to reduce228

demand.229

For the interested reader, an insightful essay comparing the objectives230

of prediction and explanation in statistical models is given by Shmueli [19].231

The essay concludes that while these objectives often delineate the choice of232

variables, methods, and approaches for selecting, validating, and evaluating233

statistical models, in most cases it is appropriate to consider both the pre-234

dictive and explanatory power of models. Even when the objective is not235

primarily prediction, the predictive qualities of a model should be reported236

in research, and vice versa. Model performance can then be judged based on237

both of these criteria.238
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2.1.2. Variable selection and related challenges in statistical models239

Variable selection is a key issue in statistical modeling, especially when240

the number of candidate variables is large. For data with p variables, the241

number of possible models with subsets of the p variables is 2p. A seem-242

ingly simple dataset with 10 variables gives over 1,000 possible models with243

subsets of variables. Even with modern computing capabilities, constructing244

every possible model and comparing each using some evaluative criteria is245

impractical as the number of candidate variables grows.246

Two additional challenges are more likely to be present when the number247

of candidate variables increases. The first is multicollinearity between pre-248

dictors. Multicollinearity exists when one predictor variable has a near linear249

relationship with another [20]. When this is the case, the coefficient estimates250

for the regressors become unstable and are susceptible to erratic changes with251

small changes to the model or data. Multicollinearity has been identified as a252

challenge in energy consumption modeling in numerous instances [11, 21, 22].253

It is a challenge unique to the objective of constructing explanatory models254

and interpreting variable size and significance, as predictive accuracy does255

not suffer when multicollinearity effects are present [19].256

The second challenge for models with many potential predictors is over-257

fitting. Overfitting occurs when the model is overly complex or includes258

more variables than necessary. In high-dimensional cases, where models have259

more predictors (p) than observations (n), approaches such as ordinary least260

squares (OLS) regression do not have well-defined solutions. The result of261

overfitting is a model that fits so well to the existing data that it does not262

generalize to new data. When models are overfit, they suffer from high vari-263

ance, meaning they capture the noise inherent in the data along with the264

underlying patterns. High bias models, on the other hand, are too simple265

and do not fit well to the existing data. There is a well-researched trade-off266

between bias and variance in the statistics literature [23]. In the energy mod-267

eling literature, efforts to address overfitting are most common in predictive268

modeling or forecasting studies (e.g. [24, 25]).269

These challenges stand out in efforts to model energy consumption, es-270

pecially for explanatory purposes, because of the sheer number of potential271

factors that influence usage and because of their potential for high pair-272

wise correlation. Certainly, domain knowledge and previous research should273

guide the selection of relevant variables, but analyses that explore large sets274

of untested variables are also valuable, and statistical techniques that can275
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address the challenges of large predictor sets, multicollinearity, and overfit-276

ting can aid in variable selection efforts. For this reason, there is a rich and277

active literature in statistics on variable selection [26].278

Some of the most popular statistical techniques for selecting variables fall279

under the stepwise family of approaches, which includes forward selection,280

backward elimination, and stepwise selection [26]. These procedures itera-281

tively construct regression models by adding or removing predictors based282

on a test statistic or minimizing an evaluative criterion, such as the Akaike283

information criterion (AIC) or Bayesian information criterion (BIC), until284

a final model is attained. Stepwise regression techniques have been applied285

in numerous studies of energy consumption to identify relevant predictors286

[27, 28, 29, 30]. Other approaches for variable selection in energy consump-287

tion studies include principal components regression (PCR) and partial least288

squares regression (PLSR) [31, 32, 33].289

Stepwise regression as an approach to variable selection has been derided290

in the statistics literature for violating statistical theory and causing impor-291

tant practical consequences for analysis [34, 35]. Some of these issues include292

R-squared values and regression coefficients that are biased on the high side,293

severe problems handling multicollinearity, and predicted values that are294

falsely narrow. PCR and PLSR do not have these same issues but do present295

challenges for interpretation because they transform predictor variables into296

linear combinations of the original predictor variables.297

A separate class of variable selection techniques that can address many of298

these issues is regularization. Regularization methods, also called penalized299

regression methods, have received substantial attention in statistical research300

[23], but their application to statistical modeling of energy consumption is301

still surprisingly rare. When Hsu [10] first showed how the application of302

regularization methods could improve efforts to identify key factors influ-303

encing consumption, his review of three prominent energy journals (Energy,304

Energy Policy, and Applied Energy) showed only a few papers applying these305

methods, mostly in economic analyses. An updated search in these journals306

confirms they continue be seldom used. Fewer than a total of 20 papers in307

these journals (including Energy and Buildings) use regularization methods308

in modeling energy consumption, and much of their use is concentrated in309

recent machine learning analyses [36, 37] or in energy forecasting studies310

[38, 39, 40, 41]. In two cases, these techniques have been used to analyze311

drivers of residential energy consumption in the U.K. and France [22, 42].312

Regularization methods are primarily used to prevent overfitting, but313
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in some cases they are appropriate for handling multicollinearity and also314

variable selection. They also have consistently shown improved predictive315

ability in statistical models because they sacrifice some model bias for a316

sizable reduction in the variance of predicted values. A full description of317

these methods and several recent extensions is given in Section 3.1.318

2.2. Determinants of residential electricity consumption319

While the previous section provided a review of related work in the energy320

modeling literature, this section will provide a review of literature investi-321

gating determinants of residential electricity consumption.322

Jones et al. [43] provided the first systematic review of international re-323

search investigating the determinants of electricity consumption and found324

that at least 62 factors have been studied, but only 20 of these were shown to325

unambiguously and consistently show a significant positive effect on electric-326

ity use. The authors found that the number of papers confirming a positive327

effect on consumption is much higher than the number showing a signif-328

icant negative effect. Factors considered in the literature include: socio-329

demographic, physical dwelling characteristics and appliance ownership, oc-330

cupant attitudinal factors and energy literacy, and occupant behavior. Each331

of these factors will be reviewed in turn in the following sections.332

2.2.1. Socio-demographic factors333

Of the many possible occupant socio-demographic indicators to investi-334

gate, most studies focus on gender, age, and number of occupants, household335

income, and tenure of the dwelling (whether it is owned or rented). Nearly336

all studies reviewed show that the number of occupants has a significant,337

positive effect on household electricity consumption [e.g. 44, 32]. The pres-338

ence of young adolescents tends to amplify this trend [45, 46]. Wiesmann339

et al. [47] show that per capita electricity consumption is lower in households340

with more occupants, and Kavousian et al. [48] find that the rate of usage341

increase slows with every doubling in occupancy.342

The gender of the homeowner is not often statistically significant in re-343

gression models for household electricity usage, though Brounen et al. [46]344

find per capita usage to be lower in dwellings occupied by females even after345

controlling for wealth.346

Age of the occupants shows conflicting associations to usage. Several347

studies find a negative correlation between age and consumption [46, 48, 49],348

while others find a positive correlation [50, 22, 51]. Researchers attribute349
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these disparities to the fact that, in some cases, older occupants tend to be350

more aware of their consumption and use fewer electronic gadgets, but, in351

others, they spend more time in the home and are thus likely to consume352

more electricity.353

Two other socio-demographic indicators that have often shown signif-354

icant effects on household electricity consumption are income and tenure.355

The results on household income are also mixed: numerous studies find a356

monotonic and positive relationship between household income and electric-357

ity consumption [44, 46, 52, 53, 54, 55], but others find that the effect is358

small when controlling for other variables [44, 48, 47].359

Home ownership is associated with higher electricity usage in [45] and360

[47], but it shows no significant relationship in [48].361

2.2.2. Physical dwelling characteristics362

The size of a dwelling explains a large percentage of the variance in con-363

sumption [46, 56, 22, 48, 45], with detached dwellings using more electricity364

than apartments or flats [22, 48, 45, 55].365

Older houses are shown to consume more electricity, likely due to less366

efficient building fabrics [57, 45], but some studies do not find this effect367

statistically significant [46, 48].368

Even efficiency measures, such as insulation or double-glazed windows,369

are shown to have mixed relationships with consumption. Some studies find370

that they do reduce usage [58, 59, 48]; others find no correlation [53] or even371

a positive correlation [54]. One explanation given is that insulation measures372

are often correlated with house size and income.373

Ownership of air conditioning (AC) significantly and consistently in-374

creases electricity usage [53, 32, 60, 61], more so for central AC than window375

units. Results are sensitive to the climatic conditions where the study took376

place [62].377

Ownership of more appliances generally correlates to greater electricity378

consumption [44, 22, 47, 43].379

Ownership of devices that are intended to save electricity, including pro-380

grammable and smart thermostats, smart meters and in-home displays, LED381

lighting, and others, are not as often included in empirical studies. The role382

of feedback and its affect on consumption is an area of growing interest383
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[63, 64, 65, 66, 67]. These studies suggest potentially significant savings.1384

Electric vehicles (EV) are a new class of electricity use and can lead to385

significant increases in household electricity consumption [69]. DOE [70] find386

that ownership of some EV models can double the electricity consumption387

of a single-family home.388

2.2.3. Occupant attitudinal factors and energy literacy389

The literature includes occupant attitudes on care for the environment,390

concern for climate change, and support for energy conservation and renew-391

able energy. Energy literacy, or the extent to which individuals are familiar392

with and understand key concepts and issues related to energy, and its rela-393

tionship with electricity usage has not been studied extensively.394

Several studies that measure pro-environmental attitudes by asking re-395

spondents to rate their level of agreement with environmental statements396

find that attitudes cannot explain historical electricity consumption patterns397

but can explain savings in intervention studies or the occupant’s self-reported398

engagement in energy-saving behavior [71, 72, 73]. Vringer et al. [74] find399

no significant differences in consumption for groups of households with dif-400

ferent value patterns, and Bartiaux and Gram-Hanssen [75] conclude that401

it would generally be difficult to use attitudes toward the environment to402

explain differences in electricity consumption between countries.403

In the few studies where it is included, energy literacy is not found to sig-404

nificantly correlate to either historical consumption or energy conservation405

behavior [76]. The National Environmental Education & Training Founda-406

tion (NEETF) gave a short energy knowledge quiz to a nationally representa-407

tive sample of 1,503 Americans to determine the public’s basic knowledge of408

energy issues. NEETF’s report claims that “higher levels of knowledge of en-409

ergy production, consumption, and conservation. . . have a positive effect on410

the likelihood of engaging in day-to-day activities that directly or indirectly411

conserve energy or benefit the environment” [77, p. v]. However, the actual412

reduction in demand was not measured, leaving a gap in our knowledge of413

the potential of more energy-informed citizens to reduce demand. Only 12%414

of Americans passed a basic quiz on energy topics, even though 75% rated415

themselves as having either ‘a lot’ or ‘a fair amount’ of knowledge about416

1See Ehrhardt-Martinez et al. [68] for a meta-review of 36 energy feedback studies from
1995–2010.
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energy. Energy literacy has likely not been included in empirical studies as417

often as other factors because it is inherently difficult and subjective to mea-418

sure. Most studies that measure energy literacy rates, including the NEETF419

study, do so with quizzes that ask questions about how and where energy is420

generated and consumed.421

2.2.4. Occupant behavioral factors422

Occupant behaviors influence electricity usage [78], and some studies in-423

vestigating this relationship conclude that reductions of 10–20% in consump-424

tion are achievable by modifying behaviors alone [79].425

Studies of conservation behavior generally examine either ‘habitual’ ac-426

tions or ‘purchasing’ activities [80]. Gardner and Stern [81] distinguish be-427

tween these by specifying the former as ‘curtailment’ behaviors and the latter428

as ‘efficiency’ behaviors. They suggest that efficiency-improving actions yield429

greater savings than curtailing the use of appliances, lights, or inefficient430

equipment. The other main difference between the two is that curtailment431

actions must be repeated continuously over time, whereas efficiency measures432

need only be taken once or a few times and do not require continuing atten-433

tion and effort. The authors’ list of the most effective behaviors inside the434

home includes turning down the thermostat during the night and curtailing435

AC use during the day.436

A number of studies find that occupant behaviors are important in ex-437

plaining usage when controlling for structural elements [82, 83, 84, 85]. Hueb-438

ner et al. [86] warn that similar findings from their study may not be gener-439

alizable.440

Long-term curtailment behavior is also measured in Kavousian et al.’s [48]441

research with inconclusive findings on its impact. They find that, contrary to442

their expectations, the behavior of ‘Purchasing Energy-Star Appliances and443

Air Conditioners’ is positively associated with households’ daily minimum444

electricity consumption. They offer, as a possible explanation, the much-445

studied ‘rebound effect’ where increases in appliance or device efficiencies446

result in increased use of them [87]. They also find that those who report a447

long-term habit of ‘Turning Off Lights When Not in Use’ consume more elec-448

tricity on average. This gap between individuals’ intentions is investigated449

by Kennedy et al. [88], who find that 72% of respondents self-reported a gap450

between their intentions and their actions related to the environment.451
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3. Methodology452

The above literature review highlights a notable gap in the use of reg-453

ularization methods for energy use models and inconclusive findings on de-454

terminants of consumption. The challenge of variable selection looms large455

in studies of residential electricity usage, and related analytical challenges456

present difficulties for model interpretation. This section describes the fun-457

damental regularization methods and their application to multiple linear re-458

gression models. It first introduces these methods and then describes the459

motivations for using regularization in this study. It then describes two re-460

cent extensions and how they improve on some of the shortcomings of the461

original regularization methods. Next, it describes the model training, test-462

ing, and validation procedures. Lastly, it describes an important step taken463

during data preprocessing to address the issue of missing data.464

3.1. Regularization: overview and motivation465

Regularization methods are known as shrinkage methods because they466

shrink the coefficients of regression predictors, which trades off a small in-467

crease in model bias for a greater reduction in variance. The methods do468

this by applying a penalty term to the least squares estimator, hence the469

name ‘penalized regression’. In the typical regression situation, we have data470

(xi, yi), i = 1, 2, ..., n, where xi and yi are the regressors and response for471

the ith observation, respectively, and where xj denotes the jth predictor,472

j = 1, 2, ..., p. In OLS regression, we aim to estimate predictor coefficients473

(βj) by minimizing the residual sum-of-squares with respect to β:474

RSS(β) =
n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

(1)

Penalized regression methods constrain this optimization problem by adding475

a penalty term in the estimation of model coefficients. Because the penalties476

depend on the magnitude of these coefficients, the predictors and response477

are centered and standardized to have mean zero and a standard deviation478

of 1.479

The three fundamental methods in regularization are ridge regression,480

developed by Hoerl and Kennard [89], lasso regression, introduced by Tib-481

shirani [90], and the elastic net, introduced by Zou and Hastie [91]. The482

penalty term in each case is slightly different. In ridge regression, the penal-483

ized optimization problem is:484
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β̂ridge = argmin
β

(
RSS(β) + λ

p∑
j=1

β2
j

)
(2)

where λ ≥ 0 is the parameter that controls the amount of shrinkage.485

As λ increases, so does the penalty, which in ridge regression is the sum-of-486

squares of the coefficients. For this reason, ridge regression is also called l2-487

regularization because it constrains coefficients by their l2 norm. Penalizing488

by
∑p

j=1 β
2
j has the effect of shrinking model coefficients but never to zero.489

An interest in yielding sparse, interpretable models is what motivated the490

introduction of the lasso, which constrains coefficients by their l1 norm, and491

is given by:492

β̂lasso = argmin
β

(
RSS(β) + λ

p∑
j=1

| βj |

)
(3)

In lasso regression, this penalty constraint delivers sparsity, meaning some493

coefficients are set exactly to zero. In this way, beyond improving prediction,494

lasso performs variable selection and thus provides a level of interpretability495

in the model.496

The motivation for the third regularization method is due to the behavior497

of lasso given highly correlated predictors. In lasso regression, the penalty498

tends to set only one of the predictor’s coefficients to zero, and this procedure499

can yield non-unique solutions as well as poorer predictions when important500

but correlated predictors are removed from the model. A combination of501

both ridge and lasso penalties is the elastic net penalty:502

λ

p∑
j=1

(αβ2
j + (1− α) | βj |) (4)

where α is an additional tuning parameter that can be tuned to constrain503

the optimization by both the l1 and l2 norms. Eq 4 is a generalized formula-504

tion of the three regularization penalties. If α = 1, this penalty is the ridge505

penalty, and if α = 0, it is the lasso penalty.506

These three methods have properties that make them useful in different507

situations, so it is important that their use is guided by the objective of the508

analysis. Several points on the motivations for using regularization in this509

study are thus provided here.510

While all three methods are able to reduce model variance and prevent511

overfitting, the most important difference between the three is whether or512
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not they give a sparse solution. Both lasso and the elastic net penalties can513

yield sparsity in the model, whereas ridge cannot.514

In addition, because ridge regression penalizes coefficients by adding the515

sum-of-squares of the coefficients, it penalizes the largest βs more than it516

does the smaller ones. This is sometimes important when inspecting ridge517

solutions, as it may be difficult to interpret which predictors are influential in518

the model. As was mentioned previously, the behavior of the regularization519

methods when multicollinearity is present is somewhat different. The elastic520

net is said to have a grouping effect, which follows the intuition that highly521

correlated predictors will likely have similar estimated coefficients, and by522

combining ridge and lasso penalties, it keeps groups of correlated predictors523

in the model Zou and Hastie [91]. Ridge regression shrinks highly correlated524

predictors’ coefficients toward one another, but this effect is still preferable525

to the situation with lasso, which tends to arbitrarily set one of the highly526

correlated predictors to zero. Elastic net is thus the preferred method when527

both multicollinearity is present and sparsity is an objective of the analysis.528

When multicollinearity is not an issue and pairwise correlations between pre-529

dictors are low, there is often little difference in predictive accuracy between530

lasso and elastic net.531

In high-dimensional situations where p � n, lasso can at most select n532

predictors, which was shown by Zou and Hastie [91] to be a limiting feature533

in variable selection. In these situations, both elastic net and ridge can select534

more than n predictors and are preferable for more accurate models. Again,535

the elastic net is preferred over ridge in situations where sparsity is a goal.536

The motivations for using regularization in this paper are thus guided537

by the following characteristics of the data. First, the number of predictors538

(p = 60) is not larger than the number of observations (n = 1008), so the539

data are not ‘high-dimensional’ even though the predictor set is quite large.540

Second, multicollinearity among predictors does not appear to be an is-541

sue. Multicollinearity can be investigated by inspecting variance-inflation542

factors (VIFs), which signal whether regression coefficients are inflated due543

to correlation between predictor variables; if they are uncorrelated, VIF =544

1. Traditionally, VIFs greater than 10 indicate high multicollinearity [92],545

but recent work suggests that the cut-off point for VIFs should be much546

lower—Diamantopoulos [93] set the limit at 3.3. The VIFs for the predictors547

in the present data range from 1.08—2.44 with a mean of 1.48, well below548

the cut-off point that signals potential issues.549

This study has the stated aims of addressing overfitting to improve pre-550
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dictive performance while also performing variable selection to construct a551

more parsimonious model for interpretation purposes. The data are not high-552

dimensional (though still include more predictors than would be tractable553

using best-subsets methods), and pair-wise correlations between predictors554

are low. For this reason, lasso and elastic net are expected to perform sim-555

ilarly. As the next section will show, however, two extensions of the lasso556

may be expected to improve on both aims stated in this paper, given several557

additional aspects of the data.558

3.2. Extensions of the lasso: group and adaptive lasso559

The previous section discussed some of the situations where lasso regres-560

sion does not perform adequately, such as when multicollinearity effects are561

present or in p � n situations. An additional challenge for lasso regres-562

sion is handling categorical predictors. Yuan and Lin [94] showed that lasso563

is designed to select individual predictors rather than groups of predictors.564

As categorical predictors are normally coded as multiple dummy variables,565

where each dummy represents a different category, it makes sense in analysis566

to consider these variables together rather than separately when applying567

the shrinkage penalty. It would be inappropriate to include some of these568

variables in the model but not others. Especially in the building energy do-569

main, categorical predictors are quite common (e.g. type of building, type570

of heating system, ownership structure).571

To address this drawback of the lasso, Yuan and Lin [94] introduced572

the group lasso (gLasso), a generalization of the standard lasso optimization573

problem. With p predictors divided into L groups, where pl is the number574

in group l, and where, for ease of notation, Xl represents the predictors575

corresponding to the lth group, with corresponding coefficients βl, the group576

lasso solves the convex optimization problem:577

β̂gLasso = argmin
β

(
‖y −

L∑
l=1

βlXl)‖2
2 + λ

L∑
l=1

√
pl‖βl‖2

)
(5)

where
√
pl accounts for the varying group sizes, and ‖βl‖ denotes the l2578

(Euclidean) norm of the coefficients, which is not squared. Thus, instead of579

constraining the optimization by the sum of the absolute value of individual580

coefficients, group lasso constrains by the l2 norm of groups of coefficients.581

Like in lasso, depending on the value of λ, entire groups of predictor coeffi-582

cients may be set to zero.583
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A second challenge with lasso is that variable selection can be inconsistent584

and that many noise variables can be included in the estimate, especially with585

increasingly large p. Meinshausen and Bühlmann [95] and Zhao and Yu [96]586

show that this shortcoming leads to conflict between optimal prediction and587

consistent variable selection. They show that the optimal λ for prediction588

can give inconsistent variable selection results, including noise variables in589

the model and biased estimates for large coefficients. These studies confirm590

that under certain conditions, lasso does not possess the ‘oracle’ property. In591

the context of linear regression, a method possesses the oracle property if it592

consistently and correctly selects the nonzero coefficients, and their estimates593

are the same as they would be if the zero coefficients were known in advance594

[97].595

Zou [98] confirm that there are scenarios in which lasso selection cannot596

be consistent and thus does not possess the oracle property. They propose597

a new version of the lasso, the adaptive lasso (adLasso), which addresses598

this problem. It does so by including adaptive weights to penalize different599

coefficients in the l1 penalty. Estimates for adaptive lasso are given by:600

β̂adLasso = argmin
β

(
RSS(β) + λ

p∑
j=1

ŵj | βj |

)
(6)

where ŵj is a vector of adaptive weights assigned to the different coeffi-601

cients. The weights vector is defined as:602

ŵj =
1

(| β̂j |)γ
(7)

where β̂j here is an initial estimate of coefficients, usually either β̂OLS,603

β̂ridge, or β̂lasso, and γ is a positive constant for adjustment of the adaptive604

weights vector. Zou [98] suggest values of 0.5, 1, and 2. Given this ad-605

ditional weights multiplier, adaptive lasso penalizes coefficients with lower606

initial estimates more than it does larger coefficients. The authors explain607

that in p� n situations, l2 regularization can be used to compute the initial608

estimates of coefficients, given that both l1 regularization and OLS are not609

appropriate estimators in high-dimensional settings. This paper uses β̂OLS610

estimates and γ = 1 for the adaptive weights vector.611
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3.3. Model training, selection, and validation612

All five of these regularization methods are applied to multivariate survey613

and annual electricity consumption data for a large sample of U.S. households614

in California. In addition, a stepwise regression method is also applied for615

comparison purposes. This section explains the procedures to train the mod-616

els, select models using cross-validation, and test these on hold-out data.617

Models for each regularization method are trained on a sample of 80%618

of the observations, subsequently referred to as the ‘training set’, with 20%619

held out as the ‘test set’. Motivations for this split and for holding out the620

test set are given in [23].621

Whereas best-subset and stepwise methods use test statistics for model622

selection, these are less appropriate for regularization methods. Instead,623

cross-validation is used for model selection. In cross-validation, we fit the624

model using a sample of 90% of the observations and then use it to predict625

the remaining 10% of the data in order to obtain the mean-squared error626

(MSE). This is repeated for k (usually 10) ‘folds’, and the MSE is averaged627

over these folds.628

In regularization, it is typical to use cross-validation as a means of com-629

puting model MSE for a range of different λ values in order to see how630

increases in the strength of the penalty term relate to trade-offs between the631

bias and variance of the model. Plotting the relationship between λ and632

MSE error obtained through 10-fold cross-validation enables the modeler to633

select a final model that minimizes MSE error or (given the objective of634

analysis), select a more parsimonious model that still gives an MSE within635

one standard error of the minimum. This last piece of guidance is given in636

Friedman et al. [99, p. 17]. In elastic net regularization, both λ and α are637

tuned simultaneously across a range of values to find the combination of l1638

and l2 penalties that minimizes the MSE.639

After selecting a model for a given value of λ, the model is applied to the640

test set, and fitted values for the response are compared with actual values to641

determine prediction error. To evaluate each of the regularization models, we642

compare three criteria: model root mean-squared error (RMSE), R-squared643

for the test set, and the number of nonzero coefficients. These criteria permit644

an evaluation of the competing aims of prediction and sparsity for the models.645

There are several reasons why typical inferential constructs such as con-646

fidence intervals and p-values are not calculated in this analysis. One reason647

is that inference is not entirely appropriate given the non-random sample of648
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households studied. Additionally, these inferential constructs do not gener-649

ally exist for penalized regression estimates. Taylor and Tibshirani [100] state650

this problem in simple terms: if we use a regularization method for variable651

selection, we have already searched for the strongest associations in the data652

and selected these. This means the bar for declaring associations significant653

must be set higher. There is an emerging literature on post-selection infer-654

ence [101, 100, 102], but in this paper, given the nature of the sample and655

the aim to identify and describe factors that have strong associations with656

electricity usage, inference is not part of the analysis.657

3.4. Multiple imputation for missing data658

The penalized regression approaches introduced in the previous section659

can improve the performance of statistical models when many of the chal-660

lenges discussed are present. The final challenge mentioned in the introduc-661

tion was that of missing data, which is not addressed through regularization.662

Issues of missing data are well-documented and quite common in social663

science research. Several authors conducted a review of literature employing664

surveys in political science journals and found that “approximately 94% use665

listwise deletion to eliminate entire observations (losing about one-third of666

their data, on average) when any one variable remains missing. . . ” [103,667

p. 45]. Statisticians and methodologists agree that this is a poor approach to668

handling missing data because it can both result in the loss of information669

and introduce bias into regression models [12]. In the case of this study, 126670

full observations would have been deleted following this approach (a loss of671

13% of the data). For this reason, a multiple imputation (MI) method is672

used to handle missing data.673

Multiple imputation (MI) extracts information from the observed vari-674

ables with a statistical model (for instance, a linear model), uses the model675

to predict multiple values for each missing data point, and then uses these to676

construct multiple completed datasets [104, 105]. In each imputed dataset,677

the observed values are the same while the imputed values vary based on the678

uncertainty in predicting each missing value. The analysis can then proceed679

as it normally would on each of these full datasets, afterwards combining or680

‘pooling’ the results.681

Improved computational power has made MI relatively easy to implement.682

This paper uses the Expectation-Maximization with Bootstrapping (EMB)683

method to create and implement an imputation model with m datasets. For684
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the sake of brevity, algorithmic details are not included here, but they are685

available in detail in Honaker et al. [106] and Takahashi [107].686

Missing values are assumed to be missing at random (MAR), meaning687

“the probability of missing data on a particular variable may depend on688

other observed variables (but not itself)” [12, p. 22]. This differs from miss-689

ing completely at random (MCAR), where missing data are missing due690

to random error, and not missing at random (NMAR), where missing data691

are due to respondents refusing to answer questions for specific reasons, and692

these answers cannot be predicted from the other data. A relevant example is693

household income, where refusal to answer this question may be non-random.694

This analysis assumes income can reliably be predicted from other variables695

in the data, such as age, size of dwelling, and others.696

3.5. Software697

The statistical software R Statistics is used for all analyses [108]. Ridge,698

lasso, and adaptive lasso are all computed using the glmnet package [100].699

Group lasso is computed using gglasso [109], and elastic net is computed using700

caret [110]. This is also the package used to evaluate final models. MASS is701

used to compute a stepwise regression model for comparison purposes [111].702

Finally, Amelia II handles multiple imputation [106].703

4. Data704

The data for this study come from a detailed survey and a database of705

electricity usage for utility customers in Palo Alto, California. This section706

introduces the data collection procedures and then presents tables of descrip-707

tive statistics for all variables.708

4.1. Palo Alto residential profile709

Palo Alto is a city in the California Bay Area. It has 66,500 residents,710

a mild, Mediterranean climate, and an average of 2,832/304 heating/cooling711

degree days [112]. The city has a target of reducing emissions 80% by 2030712

and has already achieved reductions of 36% from 1990 levels [113]. It aims to713

achieve 16% of these reductions from reducing energy use in existing homes.714

Palo Alto’s average residential electricity use is 529 kWh per month,715

similar to the state-wide average of 557 kWh [114] but well below the U.S.716

average of 900 kWh [115].717
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4.2. Data collection718

A detailed household survey was delivered by e-mail to customers of the719

city’s municipal utility, City of Palo Alto Utilities, which is the sole provider720

of electric, gas, and water utilities for most of the city’s residents. The721

survey covers 56 questions on occupant socio-demographics, physical dwelling722

characteristics, occupant attitudes toward the environment, knowledge of723

energy issues, occupant curtailment behaviors, and energy efficiency program724

participation. Survey questions were refined with the help of a focus group725

of the utility’s customers.726

Utility customers for whom an e-mail address was on record received an727

invitation to participate. Of 11,963 emails, 4,639 were opened and 1,247728

surveys were completed. The completion rate was 8% without incentive,729

15% when offered entry into a lighting retrofit lottery, and 27% when offered730

an LED lightbulb.731

Historical billing data for all of the utility’s customers was shared with732

the researcher. Households were excluded from analysis if their home address733

was incomplete or did not match the utility records (79 cases). Households734

with PV installations were removed to avoid erroneous use of net-demand735

data (160 cases), leaving N = 1, 008 for use in this analysis.736

4.3. Independent variables737

Independent variables are grouped into categories matching those re-738

viewed in the literature. In the tables below, variables are presented along739

with their coded numerical ranges and descriptive statistics (where variables740

are continuous, means are presented as ‘M’ and standard deviations as ‘SD’;741

for categorical variables, the categories in bold indicate reference categories742

for regression analyses).743

Tables 1 and 2 show the socio-demographic variables and characteristics744

of dwellings in the sample. Where data is available, these tables also include745

variable frequencies for the full city-wide population from the American Com-746

munity Survey (ACS) [116]. Overall, the sample is a good representation of747

the Palo Alto population, while property owners, elderly households, and748

detached dwellings are overrepresented.749

Energy literacy is assessed with the questions in Table 3. Correct re-750

sponses to each question are bolded in the table. These items are based751

on similar work by DeWaters and Powers [117], DeWaters et al. [118], Coyle752

[119], Brounen et al. [76], and Southwell et al. [120]. On average, participants753

scored 4 out of 7 possible correct answers.754
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Description (codes) Response Sample
frequency

Population
frequency

Gender (0–1) Female
Male

39%
61%

49%
51%

Age range (1–8) 18–25
26–35
36–45
46–55
56–65
66–75
76–85
86 and above

<1%
3%
10%
22%
25%
25%
12%
2%

29%
12%
14%
15%
11%
9%
5%
3%

Highest level of education obtained
(1–3)

Some college or less
College graduate (four-year degree)
Postgraduate

4%
26%
69%

20%
28%
52%

Tenure: own or rent (1–2) Own
Rent

87%
13%

55%
45%

Number of occupants (1–5) M = 2.53,
SD = 1.13

M = 2.53

Total household income before
taxes during past 12 months (1–5)

<$50,000
$50,000–$99,999
$100,000–$199,999
$200,000–$499,999
>$500,000

8%
16%
34%
34%
8%

20%
18%
28%
34%‡

Electric rate schedule (1–2) Regular electric
Time-of-use

98%
2%

Note: Population N = 66, 478. Population data are from the American Community Survey (ACS) [116].

‡ Includes ‘$200,000 and above’.

Table 1: Summary and descriptive statistics for socio-demographic variables.
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Description
(codes)

Response Sample
frequency

Population
frequency

Size range of home in square feet (1–6) Less than 1000
1001-1500
1501-2000
2001-2500
2501-3000
More than 3000

11%
23%
29%
19%
10%
8%

Year of construction
(1–3)

Pre-1950
1950-1989
1990–present

28%
57%
15%

23%
59%
18%

Type of home (1–2) Attached or apartment building
Detached home

20%
80%

56%
44%

Number of bedrooms (1–5) 1 or 2
3
4
5 or more

19%
36%
33%
11%

42%
31%
20%
7%

Home has double- or triple-glazed win-

dows (0–1)†
No
Yes

30%
70%

Home has floor insulation (0–2) Not sure
No
Yes

21%
54%
25%

Home has roof insulation (0–2) Not sure
No
Yes

10%
14%
76%

Home has wall insulation (0–2) Not sure
No
Yes

18%
24%
58%

Presence or not of an air conditioning sys-
tem (0–1)

Does not have AC
Has AC

61%
39%

Energy devices present in the home (0–1) Solar water heating
LED lighting
Smart meter
Wi-Fi thermostat
Programmable thermostat
Plug-in electric vehicle
In-home energy display
Other energy device

4%
77%
5%
14%
58%
13%
2%
2%

Note: Population N = 27, 555 households. Palo Alto data are from the ACS [116].

† ‘Not Sure’ combined with ‘No’ responses given low frequencies in these categories.

Table 2: Summary and descriptive statistics for physical dwelling variables.
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Energy literacy quiz question Response option Frequency

1. Who owns your utility company? A private entity
The State of California
City of Palo Alto
Pacific Gas & Electric (PG&E)

0.7%
0.3%
97%
2%

2. How much do you pay per kWh for electric-
ity?

Less than 5 cents
5 - 10 cents
11 - 20 cents
21 - 30 cents
More than 30 cents

6%
25%
56%
8%
5%

3. How much electricity do you think an aver-
age Palo Alto single-family household consumes
each month?

0 to 10 kilowatt-hours (kWh)
11-100 kWh
101-500 kWh
501-1,000 kWh
1,001-5,000 kWh

1%
9%
42%
41%
7%

4. Which of the following resources generates
the most electricity in California?

Oil
Coal
Natural gas
Nuclear
Hydroelectric
Solar
Wind

8%
5%
49%
4%
29%
3%
2%

5. What percentage of the electricity supplied
by City of Palo Alto Utilities is carbon neutral?

20
30
50
70
100

16%
23%
19%
16%
25%

6. Which of the following uses the most energy
in the average Palo Alto home over the course
of a year?

Lighting
Powering household appliances
Heating water
Heating and cooling rooms
Refrigerating food

4%
14%
11%
63%
9%

7. Of the following household appliances, which
do you think consumes the most electricity while
being used?

Dishwasher
Fridge/freezer
Laptop computer
LED light bulb
Electric space heater

7%
19%
2%
1%
71%

Table 3: Energy literacy quiz questions and response frequencies.
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Table 4 shows the occupant attitude variables and frequencies. These are755

either measured on a 5-point Likert scale (‘Strongly disagree’ to ‘Strongly756

agree’) or are dummy coded. The final variable in this section is binary757

coded and thus measures whether respondents believe renewable energy is758

beneficial primarily for environmental impact (1) or other reasons (0). The759

mean correlation coefficient between all attitude variables is r = 0.17. The760

Likert scale questions show slightly stronger correlations, with a mean cor-761

relation coefficient of r = 0.29.762

Description (codes) Mean (SD) or
Response (frequency)

Saving energy is important 4.62 (0.64)

I would do more to save if I knew how 3.81 (0.88)

We don’t have to worry about conserving energy because

new technologies will be developed to solve problems†
4.17 (0.91)

California should produce more electricity from renew-
ables

4.39 (0.80)

Laws protecting the natural environment should be made

less strict to produce more energy†
4.03 (1.08)

The way I personally use energy does not really make a

difference to the energy problems in California†
3.74 (1.02)

My decisions to participate in energy efficiency pro-
grammes are mostly driven by the amount of money I

can save†

2.91 (1.10)

Renewable energy is still too expensive to be practical for

California†
3.55 (1.09)

When you think about energy, what are the most impor-
tant values to you? (0–1)

Comfort (46%)
Ease of use (31%)
Expense (71%)
Safety and security (49%)
Ability to go off-grid (7%)
Environmental stewardship and protection (67%)

What do you see as the most important benefit of renew-
able energy? (0–1)

Reducing impact on environment (80%)
Reducing personal energy costs (7%)
Decreasing dependence on foreign energy imports (6%)
Helping support ‘green’ job creation (2%)
Enabling off-grid capabilities (2%)
I do not see any benefits to renewable energy (1%)
Other (2%)

† Likert scale is reverse coded.

Table 4: Summary and descriptive statistics for occupant attitude variables.

Behavioral variables are shown in Table 5. Except for the efficiency and763

rebate variables, which are measured as continuous predictors, these variables764

are measured on a 3-point Likert scale (‘Never’, ‘Sometimes’, ‘Always’). Cor-765

relations are generally low, with a mean correlation coefficient of r = 0.11.766

While the means for the curtailment variables indicate high frequencies of767

energy saving behavior, especially curtailing AC use, both energy efficiency768

program participation and rebate uptake are low.769
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Description (codes) Mean (SD)

How often do you. . .

Turn off lights and electrical appliances when not in use 1.70 (0.47)

Unplug electrical appliances when not in use for an extended period 0.87 (0.71)

Take a shorter shower to conserve energy used for heating water 1.33 (0.66)

Purchase appliances that are ENERGY STAR R© or energy efficiency la-
beled

1.58 (0.56)

Only run the dishwasher or clothes washer/dryer when full 1.75 (0.50)

Turn down thermostat while asleep in the winter† 1.76 (0.54)

Turn off AC when no one is home in the summer† 1.86 (0.37)

Talk with other members of your household about your energy bill† 1.49 (0.72)

Talk with your friends or neighbours about your energy bill 0.78 (0.76)

Talk with your friends or neighbours about ways to conserve energy 1.02 (0.76)

Talk with your friends or neighbours about your own energy efficient de-
vices or technologies

1.01 (0.78)

Number of energy savings programmes respondent participated in (0–3)‡ 0.63 (0.82)

Number of energy rebates respondent has received (0–3)‡ 0.40 (0.74)

† N/A response frequencies (TurnDownTherm = 29; TurnOffAC = 618; TalkAboutBillFam = 79).

‡ Includes ‘3 and above’.

Table 5: Summary and descriptive statistics for occupant behavior variables.
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4.4. Missing data770

Table 6 shows the frequency of missing data for the socio-demographic771

variables, which were made optional on the survey. Income has the most772

missingness, while missingness amongst the other data is generally low.773

Variable Missing (%)

Gender 2
Age 2
Education 1
Tenure 1
Occupancy 1
Income 13

Table 6: Missing value frequencies for socio-demographic variables (N = 1, 008).

After specifying these variables and setting their logical bounds from the774

variable codes, MI using the EMB method described in Section 3.4 was used775

to impute five completed datasets.2 Plots for each of the socio-demographic776

variables across these five sets were inspected and compared with the original777

data, which show similar distributions, thus providing a degree of validation.778

Distributions for the income variable across the five imputed datasets can be779

found in Appendix A.780

Again, because listwise deletion would reduce the number of observations781

by 13%, the goal for imputation is to avoid losing this important information782

when conducting subsequent analyses. The total missingness of the data783

is low, however, so the additional step of ‘pooling’ results across the five784

imputed sets is not taken due to computational complexities. Instead, one785

of the five imputed datasets is randomly selected and used in all subsequent786

analyses.787

4.5. Dependent variable: Annual electricity consumption788

The dependent variable for the regression analyses is 2016 annualized789

electricity consumption in kilowatt-hours (kWh). Table 7 shows electricity790

usage summary statistics for both the sample and the utility’s full customer791

population. The sample includes 12 households with more than 18,000 kWh792

2The authors of Amelia II recommend a standard value of m = 5 [106].
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for the year. The correct operation of their meters was validated, and they793

are kept in the sample.794

N Mean SD 1st Quantile Median 3rd Quantile

Sample 1,008 6,116 3,656 3,759 5,449 7,585
Population 20,006 6,040 5,596 3,130 4,930 7,430

Table 7: Electricity usage summary statistics for sample and customer population.

To address the heteroscedasticity of regression errors, the dependent vari-795

able is log-transformed prior to analysis. While the log-transformed electric-796

ity usage distribution still exhibits some skew, it is more normally distributed.797

The log transformation is chosen to improve the regression residuals while798

still enabling a relatively simple interpretation of results.3 The sample’s mean799

electricity consumption before transformation is M = 6, 166 with a standard800

deviation of SD = 3, 656. Considering the wider California Bay Area, the801

mean annual electricity consumption across eight Bay Area counties in 2015802

was 6,096 kWh [114, 116].803

5. Results804

The five regularization methods introduced in Sections 3.1—3.2 are ap-805

plied to the dataset of household survey responses and log-transformed an-806

nual electricity consumption. A stepwise regression is also computed to pro-807

vide some comparison between regularization and other variable selection808

techniques. The total number of predictors included in the data is 58.809

Figures 2–3 show the results for 10-fold cross-validation to tune the penalty810

parameter λ and select an optimal model using each regularization method.811

These plots show how cross-validation MSE varies as a function of the penalty812

parameter. High bias models are expected on the right side of these plots813

where the values of λ are higher, whereas high variance models are expected814

3The dependent variable changes by 100 × (coefficient) percent on average for each one
unit increase in the predictor variable while all other predictor variables are held constant.
If the predictor is a dummy variable, when its value switches from 0 to 1, the percent
change of the dependent variable is [100(eB1−1] while the reverse is [100(e−B1−1], where
B1 is the predictor’s coefficient [121].
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on the left side where the values of λ are lower. In the cases shown here, the815

characteristic U-shape of the the bias-variance trade-off is very slight (and in816

some cases absent altogether). This suggests the models are not overfitting817

much, even with very small amounts of regularization. This may be due to818

the number of predictors being large but not in comparison to the number of819

observations. The plots do, however, show that models with heavy penalties820

have high bias and greater cross-validation MSE as a result.821

The plots also show that there is not a sizable difference in the regulariza-822

tion paths for the five methods, and each is able to achieve similar minimum823

cross-validation MSE (albeit at different strengths of the penalty parameter).824

The main difference between the methods, then, can be seen in their825

sparsity or number of nonzero coefficients, which is indicated along the top826

horizontal axis. While ridge regression does not set any variable coefficients827

to zero, retaining all 58 predictors in the final model, both lasso and elastic828

net achieve similar levels of sparsity, though elastic net reaches a model with829

minimum MSE needing 20% fewer predictors than lasso (left vertical dotted830

lines). For the most sparse models that have a cross-validation MSE within831

one standard error of the minimum (right vertical dotted lines), elastic net832

and lasso methods both select 21 predictors, which is a 60% reduction from833

the original total.834

Group and adaptive lasso select even more parsimonious models. The835

plots in Figure 3 show that group lasso finds a model within one standard836

error of the minimum containing 16 predictors, while adaptive lasso selects837

a model containing just 11 predictors, a reduction of 81% of the original838

predictor set.839

In order to compare the performance of these methods with other variable840

selection approaches, a forward stepwise regression is computed using AIC841

as the criteria for model selection. Next, each of these six models is applied842

to the test set. For all regularization models, the model within one standard843

error of the minimum is the model used on the test data. The rationale for844

this is that selecting the most parsimonious model across each method per-845

mits comparisons between predictive error and model interpretability, which846

is the key objective of this analysis.847

Models are compared across several criteria, including root mean-squared848

error (RMSE) and R-squared for predictions given the test data, as well as849

the number of nonzero coefficients in the model. RMSE is measured in units850

of the dependent variable, in this case log-transformed annual electricity con-851

sumption, which has a mean of 8.57 and a standard deviation of 0.56. Table852
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Figure 2: Plots of cross-validation MSE for ridge, lasso, and elastic net models. The
horizontal bottom axis shows the logarithm of the tuning parameter λ, while the top
horizontal axis shows the number of nonzero coefficients in each model. Points and error
bars represent the mean and standard error of cross-validation MSE, respectively. The
vertical dotted lines give the model with the minimum MSE (left) and with the fewest
nonzero coefficients within one standard deviation of the minimum MSE (right).
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Figure 3: Plots of cross-validation MSE for group and adaptive lasso. Axes and plot
elements are the same as in Figure 2.

8 shows results for all six methods, ordered by increasing RMSE. The table853

shows that elastic net and group lasso achieve the lowest test data RMSE.854

The stepwise method gives a lower test set error than either adaptive lasso855

or lasso, while ridge gives the highest error. In general, however, the errors856

are narrowly distributed, signaling not much difference between methods for857

prediction (which is similar to the results from cross-validation). Note that858

R-squared is not adjusted, meaning this value does not take into account859

the number of predictors in the model. Those models with more coefficients860

would have lower adjusted R-squared values.861

Variables selected by elastic net, group lasso, and adaptive lasso and862

their standardized coefficients are shown in Table 9. Both elastic net and863

lasso select the same predictors without much variation in their coefficients,864
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Method RMSE R-squared Nonzero
Coefficients

Elastic Net 0.4457 0.3959 21
Group Lasso 0.4475 0.3893 16
Stepwise 0.4481 0.3978 27
Adaptive Lasso 0.4535 0.3789 11
Lasso 0.4538 0.3733 21
Ridge 0.4562 0.3751 58

Table 8: Model root mean-squared error (RMSE), R-squared, and number of nonzero
coefficients for methods applied to test data.

while both group lasso and adaptive lasso achieve more parsimonious models,865

which is why variables in these models are inspected. The table separates866

predictors of high and low usage and lists these in order of standardized867

coefficient magnitude (averaged across the three model selection methods).868

Unstandardized coefficients are measured in the original units of each inde-869

pendent variable and thus cannot be accurately compared with coefficients870

of other independent variables measured on different scales. Because most871

of the variables included in this model are measured in different units (e.g.872

Age in years and Income in dollars), standardized coefficients allow for a873

comparison of each predictor’s relative importance in explaining household874

electricity consumption.4875

The positive predictors selected by all three methods are EV ownership,876

size of home, home occupancy levels, type of home, and AC ownership. Other877

positive predictors include valuing comfort in relation to energy use, house-878

hold income, solar water heating, being on a time-of-use rate, and respondent879

age.880

The frequency with which respondents report turning off AC when not881

home, unplugging appliances when not in use, and taking a shorter shower882

to save energy are associated with lower use, as is renting versus owning a883

home. Because less than half of the study sample reported ownership of AC,884

4Standardized regression coefficients are measured in standard deviations rather than
in the original units of the independent variable, so the coefficient indicates the number of
standard deviation changes expected in the dependent variable for a one standard deviation
change in the independent variable.
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to examine the effect of the AC curtailment variable, the three methods are885

used to fit models to survey data for only those households that own AC886

(N = 390). Both elastic net and adaptive lasso select models including the887

variable measuring AC curtailment. Cross-validation curves for these models888

are included in Appendix B.889

Other behavioral and attitudinal variables exhibiting a negative relation-890

ship with consumption have relatively small standardized coefficients.891

Of these selected variables, nine measure characteristics of the dwelling892

and appliance or energy-related device ownership. Seven measure occupant893

socio-demographics, six measure attitudinal factors, and six measure behav-894

ioral factors. For the top ten variables with the strongest associations to895

electricity consumption, seven are either dwelling characteristics or socio-896

demographics, two are behavioral variables, and one is an attitude variable.897

6. Discussion898

6.1. Summary of results and comparison to previous research899

The methodological results of this study show that the regularization900

methods introduced in this paper achieve a RMSE on the test set ranging901

from 0.4562–0.4457, which is equivalent to 0.81–0.79 of the response variable’s902

standard deviation. In other words, the prediction error of these methods903

is 20% smaller than the standard deviation of log-transformed annual elec-904

tricity consumption. These prediction error results compare favorably with905

those of other studies employing regularization methods for building energy906

consumption prediction [10, 36, 37]. Across methods, the other goodness-907

of-fit measure, R-squared (ranging from 0.375–0.396) is consistent with or908

surpasses results of many previous studies of household electricity usage909

[71, 72, 22, 49, 122, 47].910

Returning to the question of comparing model predictive accuracy with911

sparsity, the regularization methods (excluding ridge regression) yield a siz-912

able reduction in the number of variables needed to achieve similar predictive913

accuracy. Comparing adaptive lasso and stepwise regression, for instance,914

adaptive lasso selects a model that has less than a 2% greater prediction er-915

ror than stepwise regression but reduces the number of variables in the model916

by a further 27%. Trading off a small increase in prediction error for a large917

reduction in the number of variables that needs to be collected is favorable918

when the objective of analysis includes a simpler, more interpretable model.919
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Predictor β̂elastic β̂gLasso β̂adLasso

High usage predictors
EV ownership 0.155 0.102 0.214
Size of home 0.115 0.136 0.138
Occupancy level 0.080 0.109 0.089
Type of dwelling 0.098 0.036 0.109
Important value: comfort 0.053 0 0.055
Household income 0.039 0.063 0
Solar water heating 0.028 0 0.064
Time-of-use rate 0.023 0 0.057
AC ownership 0.025 0.021 0.018
Age 0.002 0.041 0
Roof insulation 0.013 0.027 0
Number of bedrooms 0.023 0.016 0
Other device ownership 0 0 0.023
Renewables too expensive 0 0.015 0
Talk with family about bill 0.001 0.011 0
Smart thermostat ownership 0.011 0 0
Gender 0.010 0 0
Talk with family about conservation 0 0.003 0

Low usage predictors
Behavior: turn off AC −0.094 0 −0.186
Behavior: unplug appliances −0.075 −0.089 −0.062
Rents home −0.071 0 −0.077
Behavior: take a shorter shower −0.006 −0.023 0
Important value: cost of energy −0.019 0 0
New technologies will solve problems 0 −0.018 0
Benefit of renewables −0.010 0 0
Behavior: turn off lights −0.008 0 0
Would do more to save if I knew how 0 −0.001 0

Table 9: Variables selected across elastic net, group lasso, and adaptive lasso models.
Variables are split by the sign of their effect and are ordered by the magnitude of their
standardized coefficient.
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The empirical results of this study confirm that the size of home and920

number of occupants are two of the strongest determinants of residential921

electricity use patterns [43, 46, 22, 48, 45].922

Type of dwelling [55, 45, 22] and income [53, 55, 46] can be confirmed as923

strong predictors even though results from other studies are mixed on their924

effect [e.g. 44, 48]. Previous findings on the associations between tenure925

type and electricity consumption are similarly mixed, with some supporting926

this study’s findings of higher consumption in privately-owned residences927

[47, 45, 55], while others report either higher consumption in rented buildings928

or no significant effect [44, 61, 48, 32].929

Unsurprisingly, EV ownership and presence of AC in the home both ex-930

hibit positive associations with annual electricity use. Given the growing931

uptake of these technologies around the world, a detailed understanding of932

their impact on total consumption is increasingly important.933

Occupant attitudes toward energy conservation and renewable energy,934

the values occupants consider important in relation to energy use, and their935

knowledge of energy concepts do not exhibit strong associations with electric-936

ity consumption. These results support those of previous studies that do not937

find a notable link between environmental attitudes and electricity consump-938

tion [75, 74, 76]. Furthermore, rates of energy knowledge as demonstrated939

by performance on an energy quiz bear little association to electricity usage,940

which is similar to the findings of Brounen et al. [76]. One attitude variable is941

particularly strong in comparison to other predictors: listing ‘comfort’ as one942

of the most important values related to energy use is associated with higher943

consumption. This supports Wilhite et al.’s [123] argument that notions of944

comfort and convenience may have considerable implications for electricity945

demand and are not sufficiently addressed in energy demand research.946

From the set of behavior variables, unplugging appliances when not in947

use for extended periods and turning off AC when not needed are selected as948

predictors of lower usage in the model. These results confirm those of Wallis949

et al. [84], who find a statistically significant association between habitual950

energy saving behaviors and reduced annual consumption.951

Participation in energy efficiency programs and uptake of rebates for effi-952

cient appliances are not among the significant predictors in the model. This953

may be due to very low rates of participation and uptake reported amongst954

the survey sample.955
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6.2. Implications of results956

These results have implications both for statistical approaches for model-957

ing building electricity consumption as well as for understanding factors that958

influence consumption.959

Given the complexities of residential electricity consumption, statistical960

methods that reduce large predictor sets without sacrificing much predictive961

accuracy are advantageous in studies of domestic electricity demand. The962

regularization methods introduced in this paper, including extensions to the963

lasso that take into consideration some of its methodological weaknesses,964

are useful in this regard. Furthermore, these methods are computationally965

efficient and can address several important statistical challenges, such as966

model overfitting, multicollinearity, and high-dimensional data. Even in the967

absence of these issues, the methods presented here can effectively identify968

key variables in models of building energy consumption, and they do not969

suffer from the same statistical weaknesses as do other variable selection970

approaches. For these reasons, they are especially suitable for building energy971

modeling, give the specific challenges faced in this discipline.972

This paper has stressed the importance of letting the analysis objectives973

and the characteristics of the data guide the use of regularization methods.974

It has explained why, for instance, both elastic net and lasso are likely to975

show similar results given the absence of strong multicollinearity effects and976

high-dimensionality, and it has confirmed this empirically (lasso and elastic977

net select the same variables, although prediction error is somewhat higher978

for lasso). The extensions to the lasso are introduced to improve upon these979

results, and we see that they do (in terms of yielding simpler models without980

much loss in predictive accuracy).981

The empirical implications of this study are best understood in the con-982

text of the study location. Palo Alto’s population is projected to grow at a983

rate of 1.1% annually over the next 20 years. The city’s senior population984

(65 and over) is one of its fastest growing demographics [124]. In this region,985

large, detached homes are commonplace, occupancy levels are growing, and986

the city’s average median family income is the third highest in the U.S. [125].987

Given the demonstrated effects of dwelling size and type, occupancy levels,988

and household income on residential electricity consumption, these trends are989

important to consider when determining ways to meet the city’s ambitious990

energy savings targets.991

This study provides evidence that policies or programs that further im-992

prove the thermal performance and efficiency of residential buildings are993
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necessary to achieve substantial emissions reductions. This evidence may994

be especially relevant for single-family, detached homes in Palo Alto. Given995

the study’s findings that energy efficiency program uptake is low, more effort996

is needed to engage residential customers in this regard. Encouraging reg-997

ular home energy audits through building codes and regulations could help998

determine where home efficiencies are lacking. A target audience for these999

initiatives should be the city’s older residential population, as a link was1000

found between age and electricity consumption in the models.1001

Despite Palo Alto’s relatively mild climate (less than half the sample1002

owned AC), the significance of AC for consumption suggests that reducing1003

AC use deserves special attention. This is even more pressing given the antic-1004

ipated rise in home AC ownership in middle-income countries with additional1005

warming. Davis and Gertler [126] predict near-universal saturation of AC in1006

all warm areas in just a few decades, and their findings suggest AC impacts1007

on energy usage will be larger than previously believed. AC adoption and use1008

must be met with even greater energy efficiency gains or behavioral changes1009

to reduce its projected impact, especially considering the effect of AC use on1010

peak demand.1011

The same applies to EV ownership. Palo Alto has one of the highest1012

rates of EV ownership in the country (around 3–4% of registered vehicles)1013

and aims for 90% of registered vehicles to be electric by 2030. This study1014

provides further evidence that EV ownership must be met with vehicle-to-1015

grid integration projects and smart charging policies to lessen the substantial1016

burden this transformation will place on local electricity networks [127].1017

This study provides evidence that households can decrease their electric-1018

ity usage by engaging more frequently in energy saving behaviors, especially1019

those related to appliances and AC. While 70% of respondents report they1020

‘Always’ turn off lights and appliances when not in use, only 20% report the1021

same for unplugging their appliances. Further savings could be achieved1022

given that standby power consumption is responsible for around 15% of1023

household electricity usage in California [128]. Much of the focus in reducing1024

residential electricity consumption has been on deploying energy efficiency1025

measures rather than motivating changes in behavior, but this study high-1026

lights the important role of habitual actions taken to save energy in the home1027

and reaffirms previous findings that these can contribute towards reducing1028

carbon emissions [129].1029
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6.3. Limitations1030

This study has limitations to its design, methods, and data. In terms1031

of its design, the sampling methodology is non-random, and participation is1032

limited to utility customers with emails on record. Some of the biases, such as1033

underrepresentation of renters and people in the 18–35 age group, have been1034

discussed. This means that the findings are not necessarily generalizable.1035

The self-reporting of behaviors and attitudes could mean social desirability1036

bias is present and may have influenced results [130].1037

The regularization methods applied in this study show promise for im-1038

proving building energy prediction and selecting sparse models that highlight1039

key variables. Their application in this study, however, does not showcase1040

their suitability for addressing other issues, such as multicollinearity and over-1041

fitting, since these challenges are muted in the data. The cross-validation re-1042

sults suggest the models do not exhibit high variance, even without applying1043

much regularization. This is likely because the sample size is large compared1044

to the number of predictors. With a smaller sample size, or with an increas-1045

ingly large number of predictors, the regularization methods introduced here1046

are likely to improve in performance, especially in their prediction error on1047

the test set. Some evidence of this is seen when fitting the models to the1048

data including only those households with AC (N = 390). Cross-validation1049

curves for these data are slightly more U-shaped (see Appendix B). One1050

further methodological limitation is that the analysis did not consider inter-1051

actions between predictors. Evidence from previous research suggests these1052

methods and several extensions can handle high numbers of pair-wise inter-1053

actions, which could enable further insight into the drivers of building energy1054

consumption [10].1055

Regarding the limitations to the data, additional details on appliance1056

ownership and use may increase the explanatory power of the models and1057

yield deeper insights into how occupant behavior is associated with electricity1058

consumption. Other specific factors not investigated include more detailed1059

efficiency measures taken in the home, data on the type of AC (central versus1060

window unit), pool ownership, and fuel used for space heating. The last1061

of these may be particularly important, given an estimated 25% of Palo1062

Alto households use electricity for heating [116]. Nine respondents indicated1063

ownership of air source heat pumps on the ‘Other’ device survey question, but1064

a specific question on fuel used for heating could have revealed the influence1065

of electric heating on annual consumption.1066
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Furthermore, this paper is limited in explaining the drivers of specific1067

electricity end-uses, such as space heating and cooling, water heating, or1068

appliances, lighting and electronics, which makes comparing results to other1069

study contexts more difficult [43]. Similarly, the analyses presented here1070

only consider electricity and not natural gas consumption. The modeling1071

techniques presented could be applied to natural gas usage data for further1072

insight on how to reduce residential building emissions from space heating1073

and cooking.1074

7. Conclusions1075

This paper discusses the use of regularization methods in linear regression1076

analysis for improving both prediction and interpretation in residential build-1077

ing energy models. It identifies key challenges in energy modeling and ex-1078

plains how regularization methods can address these. Next, it demonstrates1079

these methods empirically on multivariate survey and household electricity1080

data for a sample of 1,008 households in Palo Alto, California. It tests a1081

wide range of structural and occupant factors across several distinct variable1082

types to determine those exhibiting the strongest associations with annual1083

electricity use.1084

The results show that regularization methods can improve upon tradi-1085

tional variable selection approaches, such as stepwise regression, both in1086

terms of prediction error and model interpretability. Elastic net and group1087

lasso make better predictions on hold-out test data than the other methods1088

while reducing the number of nonzero coefficients in the models. Adaptive1089

lasso selects the most sparse model with 11 predictors, a reduction of over1090

80%, with only a 1-2% higher prediction error than the other methods.1091

The analysis finds that household electricity use is best explained through1092

a combination of socio-demographic and physical dwelling characteristics.1093

Size of home, occupancy levels, and ownership of an EV and AC are signifi-1094

cantly associated with increased electricity usage. While occupants’ attitudes1095

toward the environment and their level of energy knowledge do not generally1096

show strong associations with consumption, this paper does find that specific1097

occupant curtailment behaviors, such as unplugging appliances when not in1098

use for extended periods and turning off AC when no one is home, are strong1099

predictors of lower electricity use.1100

These findings can inform Palo Alto’s energy strategy as it embarks on1101

ambitious usage reduction targets over the next several decades. Results are1102
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also informative for other cities and regions that want to understand the1103

key variables influencing consumption, or want to use these to better predict1104

future patterns of consumption.1105

While the evidence presented here does not refute the importance of im-1106

proving the structural efficiency of the building stock in order to achieve these1107

targets, it also presents evidence that occupant factors related to curtailment1108

behavior are drivers of electricity consumption. This insight is particularly1109

important for designing energy policy in places that expect rapid increases in1110

EV and AC ownership. In Palo Alto, these are expected to be near-universal1111

in the California Bay Area by 2050 [113]. Reducing home size and occupancy1112

levels are more challenging policy changes to implement than are encouraging1113

energy curtailment behaviors. Of course, understanding the most effective1114

ways to do this is of equal importance and is the subject of much ongoing1115

research. Here, especially, is where other disciplinary approaches that ex-1116

amine the socio-technical structures surrounding behaviors or practices may1117

add the most insight.1118

Situating these results within a growing body of research on the factors1119

that drive household electricity consumption will contribute to future lines1120

of empirical inquiry in this field. The purpose of future research should be to1121

further investigate the links between the factors identified and tested in this1122

paper as well as to explore any number of additional influential factors that1123

influence household electricity consumption. The methods demonstrated in1124

this paper are applicable to a wide variety of energy and building data, and1125

they can be used successfully in contexts where other statistical methods1126

fail (e.g. where the issues of multicollinearity and high-dimensionality are1127

present). Of particular interest for further research is the application of these1128

methods to higher-resolution electricity data. Drivers of electricity consump-1129

tion across months and years may be different than those that influence daily1130

or hourly consumption patterns. Understanding these differences through the1131

use of regularization in statistical models can inform strategies for reducing1132

demand on both of these time-scales, which is increasingly important for a1133

low-carbon transition.1134
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Appendix A.1148

Figure A.4: Distributions for Income variable across five imputed datasets compared with
original distribution.
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Appendix B.1149

Figure B.5: Plots of cross-validation MSE for elastic net, group lasso, and adaptive lasso
applied to the data filtered for AC ownership (N = 390). Axes and plots elements are the
same as in Figures 2–3.

44



References1150

[1] P. Nejat, F. Jomehzadeh, M. M. Taheri, M. Gohari, M. Z. Abd. Majid,1151

A global review of energy consumption, CO2 emissions and policy in1152

the residential sector (with an overview of the top ten CO2 emitting1153

countries), Renewable and Sustainable Energy Reviews 43 (2015) 843–1154

862.1155

[2] EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-1156

2015, Technical Report, U.S. Environmental Protection Agency, 2017.1157

[3] U.S. EIA, Annual Energy Outlook 2018 with Projections to 2050, Tech-1158

nical Report, U.S. Energy Information Administration, Washington,1159

D.C., 2018.1160

[4] J. L. Reyna, M. V. Chester, Energy efficiency to reduce residential1161

electricity and natural gas use under climate change, Nature Commu-1162

nications 8 (2017) 14916.1163

[5] EPA, Regulatory Impact Analysis for the Clean Power Plan Final Rule,1164

Technical Report EPA-452/R-15-003, U.S. Environmental Protection1165

Agency, Research Triangle Park, NC, 2015.1166

[6] I. M. Hoffman, C. A. Goldman, S. Murphy, N. A. Frick, G. Leventis,1167

L. C. Schwartz, The Cost of Saving Electricity Through Energy Effi-1168

ciency Programs Funded by Utility Customers: 2009–2015, Technical1169

Report 1457014, Lawrence Berkeley National Laboratory, 2018.1170

[7] A. Grubler, C. Wilson, N. Bento, B. Boza-Kiss, V. Krey, D. L. McCol-1171

lum, N. D. Rao, K. Riahi, J. Rogelj, S. De Stercke, J. Cullen, S. Frank,1172

O. Fricko, F. Guo, M. Gidden, P. Havĺık, D. Huppmann, G. Kiesewet-1173
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