
Lawrence Berkeley National Laboratory
LBL Publications

Title
Evolving to find optimizations humans miss: using evolutionary computation to improve
GPU code for bioinformatics applications

Permalink
https://escholarship.org/uc/item/2np4m99f

Authors
Liou, Jhe-Yu
Awan, Muaaz
Leyba, Kirtus
et al.

Publication Date
2024-11-15

DOI
10.1145/3703920

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2np4m99f
https://escholarship.org/uc/item/2np4m99f#author
https://escholarship.org
http://www.cdlib.org/

Evolving to find optimizations humans miss: using evolutionary
computation to improve GPU code for bioinformatics applications

JHE-YU LIOU, Arizona State University, USA
MUAAZ AWAN, Lawrence Berkeley National Laboratory, USA
KIRTUS LEYBA, Arizona State University, USA
PETR ŠULC, Arizona State University, USA
STEVEN HOFMEYR, Lawrence Berkeley National Laboratory, USA
CAROLE-JEAN WU,META, USA
STEPHANIE FORREST, Arizona State University, USA and Santa Fe Institute, USA

GPUs are used in many settings to accelerate large-scale scientific computation, including simulation, computational biology,
and molecular dynamics. However, optimizing codes to run efficiently on GPUs requires developers to have both detailed
understanding of the application logic and significant knowledge of parallel programming and GPU architectures. This paper
shows that an automated GPU program optimization tool, GEVO, can leverage evolutionary computation to find code edits
that reduce the runtime of three important applications, multiple sequence alignment, agent-based simulation and molecular
dynamics codes, by 28.9%, 29%, and 17.8% respectively.

The paper presents an in-depth analysis of the discovered optimizations, revealing that (1) several of the most important
optimizations involve significant epistasis, (2) the primary sources of improvement are application-specific, and (3) many of
the optimizations generalize across GPU architectures. In general, the discovered optimizations are not straightforward even
for a GPU human expert, showcasing the potential of automated program optimization tools to both reduce the optimization
burden for human domain experts and provide new insights for GPU experts.

CCS Concepts: • Software and its engineering → Compilers; • Computing methodologies → Heuristic function
construction.

Additional Key Words and Phrases: Genetic improvement, Evolutionary programming, Bioinformatics, Genetic programming

1 INTRODUCTION
The use of GPUs (Graphics Processing Units) in bioinformatics applications has become increasingly important
due to the growing size of biological datasets and the complex computations required for their analysis. The
parallel architecture of GPUs can significantly accelerate many bioinformatics algorithms, such as sequence
alignment [Klus et al. 2012; Korpar and Šikić 2013; Liu et al. 2012], protein structure prediction [Mrozek et al.
2014; Pang et al. 2012; Stivala et al. 2010], agent-based simulation [Richmond et al. 2010], and molecular dynamics

Authors’ addresses: Jhe-Yu Liou, Arizona State University, 1151 S. Forest Ave, Tempe, AZ, USA, jhe-yu.liou@asu.edu; Muaaz Awan, Lawrence
Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA, mgawan@lbl.gov; Kirtus Leyba, Arizona State University, 1151 S. Forest
Ave, Tempe, AZ, USA, kleyba@asu.edu; Petr Šulc, Arizona State University, 1151 S. Forest Ave, Tempe, AZ, USA, psulc@asu.edu; Steven
Hofmeyr, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, USA, shofmeyr@lbl.gov; Carole-Jean Wu, META, 1
Hacker Way, Menlo Park, CA, USA, carolejeanwu@meta.com; Stephanie Forrest, Arizona State University, 1151 S. Forest Ave, Tempe, AZ,
USA and Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM, USA, stephanie.forrest@asu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
© 2024 Copyright held by the owner/author(s).
ACM 2688-3007/2024/11-ART
https://doi.org/10.1145/3703920

ACM Trans. Evol. Learn. Optim.

https://orcid.org/0000-0002-2497-7997
https://orcid.org/0000-0003-1233-1862
https://orcid.org/0000-0002-2360-8700
https://orcid.org/0000-0003-1565-6769
https://orcid.org/0000-0002-3299-472x
https://orcid.org/0000-0002-9032-7239
https://orcid.org/0000-0002-5904-1646
https://orcid.org/0000-0002-2497-7997
https://orcid.org/0000-0003-1233-1862
https://orcid.org/0000-0002-2360-8700
https://orcid.org/0000-0003-1565-6769
https://orcid.org/0000-0002-3299-472x
https://orcid.org/0000-0002-3299-472x
https://orcid.org/0000-0002-9032-7239
https://orcid.org/0000-0002-5904-1646
https://doi.org/10.1145/3703920
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3703920&domain=pdf&date_stamp=2024-11-15

2 • Jhe-Yu Liou, Muaaz Awan, Kirtus Leyba, Petr Šulc, Steven Hofmeyr, Carole-Jean Wu, and Stephanie Forrest

simulations [Eastman et al. 2013; Kylasa et al. 2014; Salomon-Ferrer et al. 2013]. This acceleration has led to faster
and more extensive analyses of biological data, which in turn facilitates the discovery of new biological insights
and the development of new treatments for diseases.

However, it is well known that maximizing the potential of GPUs can be a challenging task, for several reasons.
First, GPU programming requires a different mindset compared to traditional CPU programming, including
parallelization, memory management, and data transfer between the CPU and GPU. Second, GPUs often have a
more complex architecture than CPUs, which requires specific optimization techniques. Last, GPU architectures
evolve rapidly. Almost annually, GPU manufacturers, such as Nvidia and AMD, update their products with
improved designs, which often introduce more specific optimization techniques. It is a challenging programming
task for a GPU expert, not to mention for bioinformatics researchers who might not have a deep understanding
of GPU architecture.

To address the aforementioned challenges for GPUs, prior works, such as [Grauer-Gray et al. 2012; van
Werkhoven 2019], explored automated compilation optimization to reduce the programming and performance
optimization burden on application programmers. These approaches mostly apply their search methods on a
predefined search space, such as to find the best combination of compiler flags or kernel configurations for
specific GPU architecture. Another approach uses evolutionary computation (EC) to optimize GPU programs
represented in the LLVM [Lattner and Adve 2004] intermediate representation (LLVM-IR) [Liou et al. 2020a].
The strength of this approach is its ability to freely explore optimization opportunities that don’t preserve exact
program semantics. An earlier study demonstrated that the EC-based approach achieved run-time improvements
on a wide variety of general-purpose, but mostly unoptimized, GPU programs by an average of 51%, performing
especially well on error-tolerant applications. Despite these results, questions remain about what optimizations
such a method can find, how well it performs on hand-tuned production applications, how the optimizations are
discovered, and how the method can be integrated into a production-level GPU application development.

In this paper, we address these research questions with an EC-based tool called GEVO [Liou et al. 2020a]
(Gpu EVOlution), analyzing performance optimization opportunities for bioinformatics applications in three
key fields: sequence alignment, a SARS-CoV-2 agent-based infection simulation, and a molecular dynamics
code. Aligning sequences of DNA, RNA or proteins is a fundamental operation in computational biology and
underpins the success of many bioinformatics and medical applications [Pareek et al. 2011]. The SARS-CoV-2
model (called SIMCoV) simulates how the virus interacts with the immune system while spreading through a
human lung and causing tissue damage. Accelerating the performance of the SARS-CoV-2 simulation is crucial
for understanding the many complexities of COVID-19 and other respiratory infections. The molecular dynamics
application (called oxDNA [Poppleton et al. 2023; Rovigatti et al. 2015; Snodin et al. 2015]) is a coarse-grained
model which represents each nucleotide in a DNA molecule as a single rigid body, with interactions between
them parameterized empirically to reproduce structural, thermodynamic and mechanical properties of DNA. The
model was primarily developed for simulations of designed DNA nanostructures and to handle the large system
sizes and long simulation timescales needed to capture their properties.

All three applications are computation-intensive. For example, in the first six months of 2021, over 6.7 million
CPU hours were used for genome assembly on National Energy Research Scientific Computing Cluster (NERSC)’s
Cori Supercomputer, with roughly 40% of the time spent in the sequence alignment kernel. Because of its
importance, significant effort has been spent developing and manually optimizing ADEPT [Awan et al. 2020],
a state-of-the-art GPU accelerated sequence alignment library which we use in our investigation. Similarly,
on a modern, consumer-level CPU it would take over two weeks for SIMCoV to simulate a single infection
trajectory, even for a single two-dimensional slice of human lung tissue. For oxDNA, sampling a single rigid
DNA nanostructure on one consumer-level CPU, requires on the order of three days to a week, and much longer
more for flexible designs.

ACM Trans. Evol. Learn. Optim.

Evolving to find optimizations humans miss: using evolutionary computation to improve GPU code for bioinformatics applications • 3

The three applications represent three quite different types of bioinformatics applications: sequence alignment
(which forms the core of many widely used bioinformatics tools); simulation (used for studying biological
processes that are difficult or impossible to measure experimentally); and molecular dynamics (used widely for
studying molecular-level genetic). The applications also represent different development stages, which allows us
to observe how GEVO interacts with different stages of software maturity. We applied the GEVO optimization
method to two versions of ADEPT, each downloaded from its public open-source code repository. ADEPT-V0 is
the version of the code before hand-tuning, whereas ADEPT-V1 represents a hand-optimized version. We show
that the performance of ADEPT-V0 can be improved by 30 times on state-of-the-art GPUs—a level of performance
that is similar to the hand-tuned version. On the hand-tuned version (ADEPT-V1), an additional 28.9% speedup is
achieved with GEVO-discovered optimizations. SIMCoV was, at the time of writing, in its early development
stage where porting the CPU implementation to GPU just started. Despite less than participated performance
gain, on SimCoV, GEVO finds optimizations providing 29% performance improvement for the simulation code
running on the P100 GPU. Lastly, oxDNA is considered to have the most mature GPU implementation of over 10
years of development. Still, GEVO improves the performance of oxDNA simulation codes by over 17.8%.

Although GEVO does not enforce exact program semantics and relies instead on extensive test suites, we
demonstrate that the benefits of automated program optimization tools are multi-dimensional, by using a tailored
instrumentation of the program source code to localize the discovered optimizations and through a detailed
performance and optimization analysis. Our results showcase the potential of automated program optimization
tools to reduce the optimization burden for application developers, allowing them to focus on algorithms rather
than details of hardware features and architecture specifics which are often a black box or proprietary, and we
show how such tools can actively influence the development of GPU application codes.

An important contribution of this work is its in-depth analysis of the discovered performance improvements,
which can shed light on under-studied phenomena by slightly relaxing strict adherence to existing program
semantics. Our analysis shows that several of the most impressive performance improvements arise from multiple
interdependent code modifications, or epistasis. To gain insight into how the search process assembles these
interdependent code modifications, we recapitulate and analyze the history of an informative run. We also convert
the discovered code LLVM-IR modifications back to the source code to characterize their contributions. To our
knowledge, this is the first such study to reveal the importance of interdependencies in GPU code as optimization
opportunities, which has implications for automated compiler optimization in general.

The main contributions of the paper are summarized as follows1:

• Although EC methods were shown in prior work [Liou et al. 2020a] to improve the performance of
naive GPU programs, we demonstrate that EC can compete directly with human experts, outperforming
hand-tuned (observed from ADEPT), sometimes even vendor built-in (observed from oxDNA), GPU
programs (Section 4).
• We conduct a detailed study and code analysis to characterize discovered performance improvements

in three bioinformatics applications and explain how the optimizations were discovered and achieved.
Compared to earlier EC-based work on software, which typically uses one or two mutations to repair
small bugs or otherwise improve software, we find optimizations that involve hundreds of mutations,
and we define a multi-step process to identify relevant interdependent clusters, reporting how they were
discovered (Section 5).
• We demonstrate the benefits of using EC methods in earlier stages of GPU program development, identi-

fying performance hot-spots and strengthening a programmer’s understanding of system performance

1This study extends a prior work published in IISWC’22 [Liou et al. 2022]. The code and the benchmarks are available at https://github.com/
lioujheyu/gevo/tree/master/benchmark

ACM Trans. Evol. Learn. Optim.

https://github.com/lioujheyu/gevo/tree/master/benchmark
https://github.com/lioujheyu/gevo/tree/master/benchmark

4 • Jhe-Yu Liou, Muaaz Awan, Kirtus Leyba, Petr Šulc, Steven Hofmeyr, Carole-Jean Wu, and Stephanie Forrest

improvement opportunities. These lessons can suggest further algorithmic improvements to the pro-
grammer and/or manual adjustment of suggested optimizations, e.g., to avoid unwanted side effects if
any.

By focusing on three computation-intensive workloads, our analysis reveals the importance of manipulating
interdependencies to find performance enhancements at the LLVM-IR level, highlighting why stochastic methods
like EC are particularly suitable for accelerating execution time performance of domain-specific computations
beyond what is currently achievable by algorithm and hardware domain experts.

2 PRELIMINARIES
This section first reviews how a GPU is programmed and what challenges a programmer might face, then it
describes how our evolutionary algorithm, GEVO, searches for optimizations in GPU programs. We then provide
relevant background on the three bioinformatic applications: ADEPT, SIMCoV, and oxDNA, and give details
about their corresponding GPU implementations.

2.1 The challenges of GPU programming
GPU programming, like most parallel programming, requires programmers to define the kernel, a function that
is repeatedly computed with different data input. The calculation is similar to a loop in which loop iterations
are distributed as threads to different computing cores on the GPU for parallel execution. The first challenge for
a programmer is to find a suitable property in their application and rewrite that part of the code into a kernel
for the GPU to accelerate. During this process, programmers must decide how many iterations or threads (how
many times the kernel executes) are needed, how they will be mapped to the GPU thread model, and how data
are transferred into the kernel, including the pattern of data movement between CPU and GPU.

Up to this point, programmers do not need to know much about GPU hardware beyond the size of the GPU
memory and the size of the kernel that can be executed on the target GPU. There are some common approaches,
such as reducing 8 5 /4;B4 statements as much as possible due to inefficient execution on GPU hardware, but how
much this can achieve is constrained by the application logic. The situation becomes more complex, however,
if data are communicated between threads. Programmers can separate calculations into multiple kernels and
use global data communication between kernels, but this incurs high overhead. Or, if data communication is
limited to a small area of threads, programmers can optimize the code with shared memory along with an
in-kernel synchronization point, or even with private register sharing. Each of these options requires a certain
understanding of GPU architecture, and in many cases details about the particular GPU are important. For
example, the Nvidia V100 GPU can achieve fine-grain synchronization compared to its prior generation, P100
GPU, which allows the programmer to control the degree of synchronization for a smaller performance impact.

2.2 Evolutionary Search for GPU Code Optimizations
There is considerable interest in methods that automatically tune code after traditional compiler passes. Our work
uses EC because it generalizes to large code sizes and can be applied generically to many software problems,
including automated bug repair [Le Goues et al. 2011; Yuan and Banzhaf 2020], energy reduction [Bruce et al.
2015; Schulte et al. 2014a], and run-time optimization [Langdon and Harman 2010; White et al. 2011]. Many tools
have been developed over the past decade for evolving program text [Le Goues et al. 2011; Marginean et al. 2019;
Sitthi-Amorn et al. 2011; Walsh and Ryan 1996; Yuan and Banzhaf 2020], and the vast majority of them operate on
source code. In a nutshell, these methods start with a single program, generate an initial population of program
variants using random mutation operators, validate each variant by running it on multiple test cases, evaluate
the valid variants according to a fitness metric (usually test cases), and use this information to select the best
individuals, which are then subjected to further mutation and recombined with one another to produce novel

ACM Trans. Evol. Learn. Optim.

Evolving to find optimizations humans miss: using evolutionary computation to improve GPU code for bioinformatics applications • 5

GEVO

Fig. 1. The GPU program compilation flow with GEVO interposed to dynamically modify and evaluate variants of the kernel
code.

variants. This process is iterated until a time-out is reached or an acceptable solution is discovered. Mutation
operators that are readily implemented in source code or assembly (e.g., those that modify a single program
statement) are more complex for the single static assignment discipline of LLVM-IR. The only mature EC tool
that operates on LLVM-IR is GEVO (Gpu EVOlution) [Liou et al. 2020a], which we adapted for the present work.

GEVO takes as input a GPU program, user-defined test cases, and a fitness function to be optimized, which in
our case is runtime. Kernels that run on the GPU are first separated and compiled into LLVM-IR by the Clang
compiler. GEVO takes these kernels as input, applies mutation and crossover to produce new kernel variants, and
translates the implementations into PTX files. The mutations can either operate on an instruction (copy, delete,
move, replace, or swap)

or replace the operands between instructions. Although operand replacement can be an independent mutation,
its primary use is for repairing mutations that break a value-use chain or to allow a value generated by a newly
inserted instruction to be used in the computation. The host code running on the CPU is then modified to load
the generated PTX file into the GPU. Finally, GEVO evaluates the kernel variant according to the fitness function.
This process is illustrated in Figure 1. A full description of GEVO is given in [Liou et al. 2020a].

2.3 Sequence Alignment
ADEPT implements Smith-Waterman, a widely used sequence alignment algorithm based on dynamic program-
ming which guarantees an optimal local alignment between two given sequences [Smith et al. 1981].

2.3.1 Smith-Waterman Algorithm. Given two sequences � = (01, 02, ..., 0=), � = (11, 12, ..., 1<) to be aligned, a
scoring matrix � is calculated with size (= + 1) × (< + 1), where = and< are the length of � and � respectively
(Figure 2(a)). The cell �8 9 in the scoring matrix � represents the highest alignment score with sequences ending
in the pair of 08 and 1 9 .

The cell score �8 9 is calculated by maximizing over the values from three directions of prior alignments
(�8−1, 9−1, �8, 9−1, �8−1, 9) (Figure 2(b)). The diagonal direction considers the similarity score B of the current pair
08 , 1 9 in the sequences, awarding the cell score (+2) if the paired 08 , 1 9 is matched and penalizing it (-2) otherwise.
The vertical or horizontal direction introduces a gap in the current location of one sequence or another. Gap
insertion penalizes the cell score with a smaller penalty (-1) than a sequence pair mismatch. How the score is
awarded or penalized is arbitrarily determined and can be changed based on particular scenarios.

ACM Trans. Evol. Learn. Optim.

6 • Jhe-Yu Liou, Muaaz Awan, Kirtus Leyba, Petr Šulc, Steven Hofmeyr, Carole-Jean Wu, and Stephanie Forrest

G C

G 3 2

C
2

5 1
1

-1

A T G C T

0 0 0 0 0 0

A 0 2 1 0 0 0

G 0 1 0 3 2 1

C 0 0 0 2 5 4

T 0 0 2 1 4 7

A T G C T

A - G C T

A T G C T

0 0 0 0 0 0

A 0 2 1 0 0 0

G 0 1 0 3 2 1

C 0 0 0 2 5 4

T 0 0 2 1 4 7

+2 -1

(a) (b) (c)

max

Fig. 2. Example of the Smith-Waterman algorithm aligning two sequences, ATGCT and AGCT. (a) The forward pass calculates
the scoring matrix with arrows showing how the scores are derived. (b) A single score calculation from the three neighboring
cells. (c) The reverse pass from the calculated scoring matrix determines the alignment, with the final alignment result shown
in the red text under the matrix.

After the scoring matrix is obtained by iterating the cell score calculation from top left to bottom right, the
optimal alignment is generated by tracing back from the highest score in the matrix � , traversing along the
highest score in the region in the reverse direction from how the matrix was calculated, until score zero is reached
(Figure 2(c)).

2.3.2 GPU-accelerated Smith-Waterman Algorithm. ADEPT parallelizes Smith-Waterman by offloading the
computation of each column of the scoring matrix into one thread. As Figure 3 shows, the computation in each
cell also depends on the scores of neighboring cells. Thus, the threads must be delayed, following the order of
column index so the dependent values are ready to be shared from other threads.

In the GPU CUDA programming model, developers can exchange thread data through global/host memory,
GPU device memory, shared memory, or private-thread register [NVIDIA 2017]. The first two memory types
have no restriction on which threads can exchange data, but data stored in the shared memory and private
thread register are visible only within a thread block and a warp, respectively. Despite much faster data access
latency, private registers are unfriendly to programmers because they involve low-level, intrinsic instructions. To
reduce data movement latency, ADEPT optimizations exploit both shared memory and private registers for data
exchange.

2.4 Coronavirus Simulation Model
Moses et al. developed a computationally intensive, spatially explicit model (SIMCoV) to study why SARS-CoV-2
infection trajectories vary so widely across different patients, even those with identical comorbidities. [Moses
et al. 2021]. SIMCoV simulates both the spread of virus (SARS-CoV-2) through the complex physical structure of
the lung and important aspects of the immune response. The model represents the spatio-temporal dynamics of
four important elements: epithelial cells, virions, inflammatory signals, and T cells. Given a simulation space, the
model is initialized with an epithelial cell at each relevant grid point (voxels containing lung tissue), and a set of
infection sites. For simplicity in the following, we will consider a grid that represents a two-dimensional slice of
lung tissue. On each iteration, the model simulates four tasks for each occupied grid point:
• Circulating T cells extravasate from the vascular system into the epithelial tissue with a probability

determined by the presence of inflammatory signals.

ACM Trans. Evol. Learn. Optim.

Evolving to find optimizations humans miss: using evolutionary computation to improve GPU code for bioinformatics applications • 7

A T G C T

0 0 0 0 0 0

A 0

G 0

C 0

warpwarp

Thread block

Grid

A T G C T

t0 A

t1 G A

t2 C G A

t3 C G A

t4 C G A

warpwarp

Shared mem

Fig. 3. Illustration of the GPU-accelerated Smith-Waterman algorithm. The kernel runtime performance can be improved
depending on the data communication patterns: spatial (bottom, left) vs. temporal (bottom, right).

• If the grid point contains a T cell, the T cell moves randomly to an adjacent location.
• Each epithelial cell’s state is updated to one of: healthy, infected, apoptotic (in the process of dying), or

dead. Virions (individual viruses) cause healthy cells to become infected, and infected cells eventually die.
T Cells trigger cell death by binding to cells, preventing the further production of the virus.
• Virus and inflammatory signals diffuse from established sites of infection to neighboring grid points.

2.4.1 GPU-accelerated SIMCoV. SIMCoV’s GPU implementation parallelizes its multi-core CPU implementation
to use GPU kernels by assigning each grid point’s calculation to a thread. This leverages the fact that over 90% of
the GPU kernel runtime is spent moving T cells and spreading virus and inflammatory signals.

2.4.2 Stochastic Nature of the SIMCoV Simulation. Many components of SIMCoV are stochastic, e.g., T cell
generation and movement. This mimics biology but also poses validation challenges for GEVO, which must
determine the correctness of any code modification. Fixing the random seed removes most of the stochasticity,
but not all. For example, the simulation does not allow two T cells to move into the same grid point, which can
cause a race condition. When such race conditions occur, the outcome is determined by the implementation of the
GPU thread scheduler. This is an architecture-dependent approach and not transparent to application developers.

2.5 DNA simulation model using molecular dynamics
Simulating nucleic acids is important from the fundamental point of view for understanding how biomacro-
molecules behave, and, from an application standpoint, it is important for predicting their behavior under
particular conditions. However, detailed simulations of molecular dynamics are so computationally expensive
that coarser-grained models have been developed, which describe nucleic acids at the nucleotide level [Doye et al.
2013]. oxDNA is an example of a coarse-grained model, and its software package has become a popular choice
for investigating the dynamics, thermodynamics, and self-assembly behavior of DNA and RNA systems [Pop-
pleton et al. 2021; Šulc et al. 2014]. To date, oxDNA has been used in more than a hundred publications2, but
computational cost remains a challenge.

2https://www.webofscience.com/wos/author/record/14753

ACM Trans. Evol. Learn. Optim.

https://www.webofscience.com/wos/author/record/14753

8 • Jhe-Yu Liou, Muaaz Awan, Kirtus Leyba, Petr Šulc, Steven Hofmeyr, Carole-Jean Wu, and Stephanie Forrest

Initially developed for a single CPU platform, oxDNA has supported GPU acceleration since 2014. Its GPU
implementation is considered to be mature, has been optimized over several years of development, and is thus an
appealing example application for evaluating our GEVO-based approach. oxDNA leverages the GPU to parallelize
the model in an edge-based approach. A thread is mapped for each interacting pair of particles, using atomic
operations and Newton’s third law to calculate the resulting force acting on each particle. For more details about
the oxDNA implementation, the interested reader is referred to [Rovigatti et al. 2015].

3 EXPERIMENTAL SETUP
This section describes how we set up our system for GEVO to optimize target applications. This includes how the
applications are compiled, what hardware and system software we used, and how GEVO was configured for the
experiments.

3.1 Compilation Preprocessing
First, we compile the ADEPT, SIMCoV, and oxDNA GPU kernels from CUDA into LLVM-IR using the Clang
compiler with full optimization (Compiler flag: -O2). Additionally, to enable code correspondence between the
CUDA source and the GEVO-transformed codes, we instrumented the Clang compiler to enable source code
debugging information (Compiler flag: -g1) and modified GEVO’s mutation operator to encode source code
location for each mutation. Note that this additional step only adds source code information using the LLVM
meta field without additional debugging instructions, meaning that performance isn’t affected.

Next, we modified all three applications’ (ADEPT, SIMCoV, and oxDNA) host code to invoke the GPU kernel
from an external PTX file—the final product of a mutated LLVM-IR which is executable by the CUDA binary.
The host code is compiled using NVIDIA’s nvcc compiler [NVIDIA [n.d.]a]. Figure 1 illustrates the compilation
process.

3.2 Application Code
To study GEVO’s effectiveness at different code development stages, we considered two versions of ADEPT:

• ADEPT-V0 is the original parallel implementation (423 lines of source code from one CUDA kernel, 1097
LLVM-IR instructions)
• ADEPT-V1 is a manually-optimized version by an expert in both the application and GPU domains (623

lines of code from two CUDA kernels, 1707 LLVM-IR instructions).
ADEPT-V1 contains NVIDIA hardware-specific intrinsics, which use both shared memory and private registers
for data exchanges (Section 2.3). ADEPT-V1 executes twenty to thirty times faster than ADEPT-V0 across the
GPUs used in this paper.

For SIMCoV, the only available GPU code was an initial GPU port from its multi-core CPU implementation,
similar to ADEPT-V0, with 1197 lines of source code from 8 GPU kernels, translating to 1712 LLVM-IR instructions.

For oxDNA, we asked GEVO to search for optimizations in almost all of its twelve GPU kernels, except for
three kernels using the texture function which are not compilable by LLVM CUDA compiler. The targeted GPU
kernels cover over 97% of the total runtime spent on GPU computation, and they comprise 1023 lines of source
code, although this count excludes many auxiliary functions which we have a hard time counting accurately
(a rough estimation is that they contain 2000+ lines of code in them). Nevertheless, the compiled GPU kernels,
including those auxiliary functions mentioned above, have 13,748 LLVM-IR instructions.

3.3 Validating Code Transformations
It is important to verify that any code transformations imposed through mutation and crossover generate the
same behavior as the original code. This is achieved by running a set of test data through both the modified and

ACM Trans. Evol. Learn. Optim.

Evolving to find optimizations humans miss: using evolutionary computation to improve GPU code for bioinformatics applications • 9

unmodified programs and comparing their results. However, this process also dominates the time cost of running
GEVO on the three bioinformatics applications. To speed up the process, for each application, we divide the test
sets into training sets and held-out sets. GEVO uses only the training tests during the search process. The training
test sets are fairly small so that GEVO can run within a reasonable time budget (recall that we have to rerun the
tests on each program variant that GEVO considers). After GEVO completes its optimization run, we manually
verify the final optimized code using the held-out test sets. This ensures that the optimized application behaves
the same as the original applications.

For ADEPT, We used the 30,000 pairs of DNA gene sequences in the ADEPT repository for fitness evaluation,
holding out 4.6 million pairs of sequences to validate the final optimized ADEPT code. Each pair of DNA gene
sequences is run through the alignment process once per fitness evaluation and generates one aligned sequence.
Although GEVO can trade off error tolerance against performance objectives, gene sequence alignment usually
requires strict accuracy, so we require 100% accuracy on the validation tests.

SIMCoV does not have a formal testing dataset for verification. Therefore, we controlled the simulation
environment by fixing the initial random seed so the simulation’s trajectory, including virus spread, epithelial
cell state, and number of T cells was as similar as possible across runs. We use the simulation output generated
from the unmodified SIMCoV as ground truth.

To evaluate the fitness of a SIMCoV variant, we run the simulation on a small, 100x100 grid for 2500 simulation
steps, which is generally insufficient for the simulation to reach a steady state. To accommodate the simulation
non-determinism, we introduce the concepts of per-value mean and per-value variance to measure how close
the output is to ground truth. Initially, GEVO will run the unmodified SIMCoV ten times to collect the mean
and variance of various metrics, such as virus or T cell count, on a per-gridpoint basis. The verification process
then compares whether each metric generated by the GEVO-optimized simulation falls into its corresponding
<40= ± 3 ∗ E0A80=24 . Similar to ADEPT’s held-out tests, after the run completes we further validate the final
GEVO-optimized SIMCoV program by first running the same 100x100 grid size for 10,000 simulation steps
and then by simulating a much larger, 2500x2500, grid. We were unable to run our optimized SIMCoV on a
10,000x10,000 grid, as the original paper did, due to the size limit of our GPU memory.

For oxDNA, we set up a fairly small simulation environment, with 32,768 nucleotides simulated for 1000 steps,
as the test set for GEVO to use for fitness evaluation. This small simulation environment is included in the oxDNA
repository. The simulation output contains the calculated energy and position on each nucleotide after a set
number of steps. Due to a similar non-determinism issue to the one we faced in SIMCoV, We again apply the
same per-value mean and per-value variance for the verification process. The same number of 32,768 nucleotides,
but run longer for 100,000 simulation steps to a final steady state was then used as the held-out test.

Unlike CPU compiler, because of the lack of coverage statistics from both Nvidia CUDA compiler and Clang/L-
LVM, GEVO may modify the code outside the execution path of these test sets. Also, despite the use of both
training and testing sets, the code transformation could potentially overfit the data. The former can be mitigated
by the edit-minimization as a post-processing step introduced in Section 5.1. Still, careful analysis of the code
transformation is required to make sense of their purpose and function (Section 6).

3.4 System Hardware and Software
We evaluated and analyzed performance improvement using three generations of NVIDIA GPUs: P100 [NVIDIA
[n.d.]e], 1080Ti GPU [NVIDIA [n.d.]c], V100 [NVIDIA [n.d.]f], and A100 [NVIDIA [n.d.]d], summarized in Table 1.
We disabled the GPU Boost Technology [NVIDIA [n.d.]b] to maintain constant GPU operating frequency for
the experiments. The machine equipped with a P100 GPU features a 20-core CPU and 256GB of memory, and
the one with the A100 GPU has a 32-core CPU and 384GB of memory. For the V100 GPU, we used the NERSC

ACM Trans. Evol. Learn. Optim.

10 • Jhe-Yu Liou, Muaaz Awan, Kirtus Leyba, Petr Šulc, Steven Hofmeyr, Carole-Jean Wu, and Stephanie Forrest

Table 1. Architectural characteristics of the GPUs

GPU P100 1080Ti V100 A100

Architecture
Family Pascal Pascal Volta Ampere

CUDA cores 3584 3584 5120 6912
Core Frequency 1386 MHz 1999 MHz 1530 MHz 1410 MHz
Memory Size 16GB HBM 11GB GDDR5X 16GB HBM2 40GB HBM2e

Cori Supercomputer’s GPU instances [NERSC [n.d.]], which have one V100 GPU with 10 CPU cores and 16GB
memory in each instance.

All systems are configured with CUDA 11.4 with the Nvidia driver 470 installed. In addition, we developed
our own profiling tool using Nvidia CUDA Profiling Tools Interface (CUPTI) instead of using Nvidia’s default
profiling tools (e.g., nvprof or nsight) to measure the kernel execution time. This reduced the overhead of the
Nvidia profilers and made the profiling process consistent across Nvidia GPU generations. Nvidia requires two
profilers, nvprof and nsight, to profile a GPU before and after Pascal architecture.

3.5 GEVO Specification
Kernel execution time is the fitness target, averaged across all test cases in the test set. Individuals that fail one or
more tests are deleted and not included in the calculation. We set the population size to 256, retained the four
best individuals into the next generation (elitism), applied crossover with 80% probability for each individual, and
used a mutation probability of 30% per individual per generation. These parameters are taken from the original
GEVO paper, where they were determined empirically. Different search budgets were given to GEVO for ADEPT
(7 days), SIMCoV (2 days), and oxDNA (7 days), which roughly translates to between 130 to 300 generations for
each application.

4 PERFORMANCE EVALUATION RESULTS
Figures 4, 5, and 6 report the performance improvements found by GEVO for ADEPT-V0, ADEPT-V1, SIMCoV,
and oxDNA on four generations of the GPUs. Execution time improved for ADEPT-V0 by 32.8X, 32X, 18.36X, and
30.2X on the P100, 1080ti, V100, and A100 GPUs, reducing the kernel runtime from 2,362 ms to 72 ms, from 1442
ms to 45 ms, from 918 ms to 50 ms, and from 638 ms to 21 ms, respectively. For the hand-tuned, well-optimized
version, ADEPT-V1, GEVO found an optimization that achieves 1.28X, 1.31X, 1.17X, and 1.37X performance
improvement on the P100, 1080ti, V100, and A100 GPUs. The performance improvements for SIMCoV and oxDNA
are 1.29X and 1.18X on P100; 1.42X and 1.19X on 1080ti; 1.16X and 1.09X on V100; and 1.56X and 1.06X on A100
GPU. oxDNA developers report that the observed performance improvement on oxDNA through one Nvidia
GPU generation is roughly 20%. Although the improvement that GEVO achieved on oxDNA is small compared to
other applications, it is significant enough for consideration and analysis.

Because GEVO implements a stochastic search, we next ask how much variation there is across experimental
runs. Each experiment is computationally expensive, so we focused our analysis on on the P100 GPU, conducting
ten independent runs for each configuration (Figure 7). For ADEPT-V1, compared to the initial run (1.29X
improvement indicated by the solid blue line in Figure 7(a)), the highest speedup found was 1.33X while the
lowest was 1.1X. The mean is 1.20X and the variance is ±0.08. Figure 7(b) shows that for SIMCoV the highest
speedup is 1.35X and the lowest is 1.18X, with a mean of 1.28X and variance of ±0.06. And, Figure 7(c) shows
that for oxDNA, the highest speedup was 1.22X and the lowest was 1.13X, with a mean of 1.17X and variance of
±0.03. These results convey the value of running GEVO multiple times to discover the best possible optimization.

ACM Trans. Evol. Learn. Optim.

Evolving to find optimizations humans miss: using evolutionary computation to improve GPU code for bioinformatics applications • 11

(2362 ms) (1442 ms) (918 ms) (638 ms)

32x
30x

35x

24x

0

10

20

30

40

P100 1080Ti V100 A100

S
p
ee

d
u
p
 (

n
o
rm

a
li
ze

d
 t

o

A
D

E
P

T
-V

0
 w

it
h
in

 e
a
ch

 G
P

U
) ADEPT-V0 ADEPT-V0-GEVO ADEPT-V1 ADEPT-V1-GEVO

Fig. 4. Performance results for GEVO-optimized ADEPT on four generations of the GPUs.

(716ms) (512 ms) (344 ms) (452 ms)

1.29x
1.43x

1.17x

1.56x

0

1

2

P100 1080Ti V100 A100

S
p
ee

d
u
p
 (

n
o
rm

a
li
ze

d
 w

it
h
in

ea
ch

 G
P

U
)

SIMCoV SIMCoV-GEVO

Fig. 5. Performance results for GEVO-optimized SIMCoV on
four generations of the GPUs.

(326 ms) (365 ms) (225 ms) (173 ms)

1.17x 1.19x
1.09x 1.06x

0

1

2

P100 1080Ti V100 A100

S
p
ee

d
u
p
 (

n
o
rm

a
li
ze

d
 w

it
h
in

ea
ch

 G
P

U
)

oxDNA oxDNA-GEVO

Fig. 6. Performance results for GEVO-optimized oxDNA on
four generations of the GPUs.

1

1.1

1.2

1.3

1.4

1 31 61 91 121 151 181 211 241 271 301

G
P

U
 K

er
n
el

 S
p
ee

d
u
p

Evolution Generation

1.33

1.28

1.20

1.10

1 21 41 61 81 101 121

Evolution Generation

1.35

1.29

1.28

1.18

(a) ADEPT-V1 (b) SIMCoV

0 20 40 60 80 100 120 140

Evolution Generation

Distribution

Mean

Reported

(c) oxDNA

1.22

1.17

1.13

Fig. 7. Distribution of performance improvements across ten GEVO runs for (a) ADEPT-V1 (b) SIMCoV and (c) oxDNA GPU
kernels on the P100 GPU. The shaded area encloses the historical path for all runs, while the dashed line indicates the
average.

The sources of performance improvement for ADEPT, SIMCoV, and oxDNA are quite distinct, which we analyze
and discuss in detail in Section 6.

To assess the portability of the discovered optimizations, we ran ADEPT-V0 (GEVO optimized for the P100) on
the V100 GPU and compared its performance to ADEPT-V0 which GEVO optimized natively for the V100. The
former achieves 99% of the performance gain of the latter and similarly for the 1080Ti and A100 GPUs, suggesting

ACM Trans. Evol. Learn. Optim.

12 • Jhe-Yu Liou, Muaaz Awan, Kirtus Leyba, Petr Šulc, Steven Hofmeyr, Carole-Jean Wu, and Stephanie Forrest

that many of the optimizations generalize across the three GPUs, even though they feature distinct compute
and memory architectures. We observed similar generality with optimized SIMCoV and oxDNA. However, with
ADEPT-V1, the same analysis showed that a small subset of the optimized code from the P100 GPU cannot run
directly on the V100 and A100 GPU, suggesting that some performance optimizations are GPU architecture-
dependent.

5 UNDERSTANDING THE OPTIMIZATIONS
To study the GEVO-discovered optimizations, we first define a multi-step process which eliminates edits that
contribute less than 1% performance improvement (weak mutations), then separates out mutations (edits) that
are independent, i.e. those that achieve greater than 1% fitness improvement independent of the other edits in the
set. We can then conclude that the remaining mutations are interdependent (epistatic), but we do not know if
the entire set is mutually interdependent, or if there are subsets. To find the subsets, we conduct an exhaustive
search of all possible combinations of the epistatic edits, which is feasible because the total number of epistatic
edits is small. For example, the edit number is reduced to 12 from 1394 on ADEPT-V1. The following subsections
describe each step in detail, primarily using ADEPT-V1 on P100 as an example.

5.1 Edit Minimization
Overall, the best performing code variants from ADEPT-V1, SIMCoV, and oxDNA on a P100 GPU contained a
total of 1394, 384, and 489 mutations, respectively. It is remarkable that the code is robust to so many mutations
while preserving the ability to pass the validation test suite, especially because the total number of instructions
in each kernel is relatively small. To focus on the performance-critical changes, and to avoid side effects, we
removed weak edits from consideration (Algorithm 1).
Algorithm 1 Identify weak edits

Parameter: Edit set (= {41, ..., 4=}, Performance threshold)%
Function 5 ((): measure the fitness (performance) of the program with edit set (applied

1: F40:B ← ∅
2: for each 48 ∈ (do
3: if 5 ((−F40:B − 48) fails then
4: continue
5: if

5 ((−F40:B) − 5 ((−F40:B − 48)
5 ((−F40:B − 48)

<)% then

6: F40:B ← F40:B + 48
We systematically measured the performance difference between the optimized program with and without each

target mutation, in the context of all the remaining mutations. Any individual edit may not have an immediate
impact on kernel execution time, but it could enable other higher-performing program mutants, serving as a kind
of stepping stone to better fitness. Our systematic reduction identified these false-negative cases for weak edits.
It is possible, however, that multiple weak edits can have an identical effect. For example, suppose edits 41 and
42 are both stepping stones leading to 43. In this case, 41 and 42 are redundant, and one of the two can be safely
removed from the edit set without performance impact. Our implementation removes whichever one is tested
first.

With the performance threshold set to 1%, the process outlined above reduces the number of code edits in our
set from 1394 to 17 for ADEPT-V1, with a minimal reduction of performance (0.9%) from 28.9% to 28%. However,
when we applied the 1% threshold to oxDNA’s edits, our procedure reduced the number of edits from 489 to 8
and eliminated half of the performance improvements (17.8% to 8%). We then experimented with a more relaxed
threshold of 0.5% for oxDNA, which only reduced the number of edits to 101 from 489, corresponding to a

ACM Trans. Evol. Learn. Optim.

Evolving to find optimizations humans miss: using evolutionary computation to improve GPU code for bioinformatics applications • 13

Force data to be stored in shared memory

Modify two if-else statements to “if” always, which is
equivalent to solely rely on the shared memory of

Modify the data access pattern that associating with the else
clause of and

Similar to but in a different code region

Similar to and but rely on

0

11

5

6

108

Exec failed

< 1% perf imprv

2%

10%

15%

17% (all)

Dependent

6

8 10

5

11

0

6

8 10

6

8

0

10

Fig. 8. Relationships among epistatic edits for GEVO-optimized ADEPT-V1 on P100 GPU, together with their corresponding
performance improvement. Each node represents a single edit labeled with its index, and the table on the right briefly
describes each edit’s behavior. The different backgrounds indicate the performance improvement for the different edit
combinations, where orange color denotes edits that have execution failures when applied individually, e.g., edit 8.

performance improvement of 14.3% instead of 17.8%. This result reveals that much of the improvement for oxDNA
arises from many weak edits. This led us to study nearly all of oxDNA’s edits to understand how the weak edits
contribute to performance improvement (Section 6.5.)

5.2 Edit Interactions
Algorithm 2 Separate independent and epistatic edits.

Parameter: Edit set (= {41, ..., 4=}
Function 5 ((): measure the fitness (performance) of the program with edit set (applied

1: �=34? ← ∅
2: for each 48 ∈ (do
3: if 5 (48) or 5 ((− �=34? − 48) fails then
4: continue
5: %4A 5 �=2A ← 5 (∅) − 5 (48)

5 (∅)
6: %4A 5 �42A ← 5 ((− �=34? − 48) − 5 ((− �=34?)

5 ((− �=34? − 48)
7: if %4A 5 �=2A ' %4A 5 �42A then
8: �=34? ← �=34? + 48
9: �?8BC0B8B ← (− �=34?
Next, we describe how to identify particular interactions (epistasis) among edits, producing a set of independent

edits and a set of epistatic edits (Algorithm 2). The algorithm first identifies the set of independent edits, and
whatever remains after the procedure is considered to be epistatic. An independent edit must individually be both
applicable and removable from the edit set (lines 4 and 5 of Algorithm 2) without causing an error. If it passes this
check, we next evaluate how performance changes with and without the edit applied, first to the empty set of
edits (i.e. to the original program) and then in the context of the remaining edit set (lines 6 to 9 of Algorithm 2). If
the run-time from the above two tests agrees, the edit is identified as independent. In our running example, this
algorithm divided the 17 significant edits from Section 5.1 into 5 independent and 12 epistatic edits. The two
sets contribute 7% and 17% performance improvement to ADEPT-V1, respectively. Interestingly, we did not find
performance-impactful epistatic edits for ADEPT-V0, SIMCoV, or oxDNA.

ACM Trans. Evol. Learn. Optim.

14 • Jhe-Yu Liou, Muaaz Awan, Kirtus Leyba, Petr Šulc, Steven Hofmeyr, Carole-Jean Wu, and Stephanie Forrest

1

1.05

1.1

1.15

1.2

1.25

1.3

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301

S
p
ee

d
u
p

Evolution Generation

6

6, 8

6, 10

6, 8, 10

5, 6, 8, 10

Fig. 9. The discovery sequence for edits in the largest epistasis set (edits 5, 6, 8, and 10) across 303 generations. These are the
same edits to ADEPT-V1 shown in Figure 8. The group of edits in each box indicates in which generation this group was
found, and edits colored red indicate the first time that edit was discovered.

5.3 Epistatic Edit Set Analysis
While prior work in EC for software improvement rarely discovers epistasis (e.g., in bug repair there are usually
only one or two relevant mutations and when there are two, they rarely interact), epistasis is common in
biology [Bateson 1909]. Our analysis of epistasis in ADEPT-V1 identified twelve edits that interact with others in
some way. Here, we show the dependency graph (Figure 8) for the most significant epistatic clusters—determined
by evaluating every subset of the epistatic set. The numbers in circles represent the edit index, and the black lines
indicate a dependency relation.

There are two independent epistatic subgroups. One subgroup (edits 5, 6, 8, and 10) is the most significant,
contributing 88.2% of the overall 17% performance improvement. Edits 8 and 10 both depend on the success of
edit 6. The program mutants with either edit 8 or edit 10 individually fail the verification step. Edit 5 also fails
individually and requires all three remaining edits (6, 8, and 10), to function properly. We consider this most
significant cluster in detail. Figure 9 shows when the edits were discovered and how the discovery affected fitness.
As expected, edit 6 with no dependencies was discovered first, followed by edit 8 in the 47th generation, edit 10
in the 213th generation, and edit 5 in the 221st generation.

The performance variation from run to run (figure 7(a)), was affected by the completeness of the discovered
epistatic subgroups. For example, in the best run, GEVO further expanded the epistatic subgroup (e0, e11) to a
4-edit cluster similar to the subgroup (e5, e6, e8, e10). In the lowest performing run, GEVO discovered (e6, e10)
but missed e8 and e5.

6 FUNCTIONAL ANALYSIS OF THE OPTIMIZATIONS
This section explores the functional impact of the key mutations identified in Section 5. We do so by tracing
each relevant code edit in the LLVM-IR level back to its corresponding CUDA source code. Although requiring
significant manual effort, this is an important step in understanding the performance optimization opportunities
that EC can uncover. We first consider important ADAPT-V1 optimizations (sections 6.1, 6.2, and 6.3), then
SIMCoV (section 6.4), and finally oxDNA (section 6.5).

6.1 Rearrange Usage of Sub-Memory Systems on GPU
The epistatic edits identified in Section 5.3 alter how ADEPT-V1 uses the GPU’s shared memory and private
registers. By doing so, 15% performance improvement is achieved on the P100. These edits are applicable on
the V100 as well, achieving similar performance improvement. Recall that, in Section 2.3, ADEPT-V1 uses both

ACM Trans. Evol. Learn. Optim.

Evolving to find optimizations humans miss: using evolutionary computation to improve GPU code for bioinformatics applications • 15

private registers and shared memory to exchange data. Its implementation is shown in Figure 10 with GEVO
mutations indicated in red. These edits essentially eliminate the use of private registers and rely only on shared
memory.

The 4;B4 clauses at lines 19 and 28 are for the thread that meets the conditions to share data through private
registers using the Bℎ5 ;_B~=2 function. Due to a limitation of the GPU architecture, GPU threads that cannot
exchange data through private registers communicate through shared memory. The effect of edits 8 (line 17) and
10 (line 26) is to drop the use of private registers. It is achieved by replacing the corresponding 8 5 condition with
the existing boolean expression from line 14. If the boolean expression in line 14 is true, both lines 17 and 26 are
evaluated as true. This effectively causes every relevant GPU thread in the code snippet to write/read the data
to/from the shared memory regardless of any other condition. However, edits 8 and 10 cannot be applied alone
without edit 6 that implicitly enables every thread to write its data to the shared memory named local_prev_XX.
After applying the three aforementioned edits, the shared memory named sh_prev_XX is not required, leading
to edit 5. At this stage, a human developer would likely remove the entire 8 5 clause at lines 3 since the shared
memory within the if clause is no longer referred to. Instead of removing the shared memory, edit 5 is introduced
that only changes which thread will access the shared memory. This modification achieves the same performance
improvement as if the affected code snippet were removed. We suspect that by changing the memory access
pattern, as edit 5 does, the GPU can schedule the memory access differently to hide the memory latency of this
particular access [Lee and Wu 2014].

Accessing private registers on GPUs is much faster than the shared memory. So then, how do edits that
leverage shared memory achieve performance advantage? This might be related to branch divergence. Recall from
Section 2.3 and Figure 3, while some threads in a warp can use private registers for data sharing, there is often
one thread, usually the first thread in the warp, that must communicate through shared memory. Combining
with the GPU lock-step execution model, i.e., every thread in the same warp executes the same instruction at the
same time, the aforementioned behavior guarantees branch divergence in the if-else region between lines 17-23
and 26-32. This essentially forces every thread in the same warp to run through both if and else regions, and
whichever thread uses private registers has to wait for the slowest thread that accesses the shared memory to
finish. As a result, the advantage of the fast access latency using the private registers is lost.

6.2 Remove Warp-Level Synchronization
The CUDA programming guide suggests that, before exchanging data through the private register, programmers
should invoke a query function, such as activemask or ballot_sync, in order to return a mask indicating which
threads are still alive in the warp. In particular, after the NVIDIA Volta GPU architecture (V100 and A100 GPU in
our evaluation environment), ballot_sync should be used as the query function inside any conditional branch
where branch divergence can happen. The reasoning is that the Volta architecture allows GPUs to subdivide a
warp into subgroups to be scheduled independently, and ballot_sync implicitly forces the GPU to synchronize
threads in the same warp.

Perhaps to be conservative, the developers of ADEPT used both activemask and ballot_sync before accessing
the private registers in a conditional branch. An independent edit shows that removing ballot_sync yields 4%
performance improvement on the V100 GPU but not on the P100 GPU. This supports the idea that ballot_sync
performs warp-level synchronization on the Volta GPU architecture but not on the older GPU architectures. This
edit is interesting because it violates the CUDA programming guide [NVIDIA 2018]. Yet, the edit passes all the
verification tests. However, due to the proprietary design of the Volta GPU warp scheduler, we cannot conclude
in which situations it is safe to remove warp-level synchronization.

ACM Trans. Evol. Learn. Optim.

16 • Jhe-Yu Liou, Muaaz Awan, Kirtus Leyba, Petr Šulc, Steven Hofmeyr, Carole-Jean Wu, and Stephanie Forrest

1 ...
2 // if (laneId == 31)
3 if (landId == 0) { // edit 5
4 sh_prev_E[warpId] = _prev_E;
5 sh_prev_prev_H[warpId] = _prev_prev_H ;}
6
7 // if(diag >= maxSize)
8 if (tID < minSize) { // edit 6
9 local_prev_E[tID] = _prev_E;
10 local_prev_prev_H[tID] = _prev_prev_H; }
11
12 __syncthreads ();
13
14 if (is_valid[tID] && tID < minSize) {
15 ...
16 // if(diag >= maxSize) {
17 if (is_valid[tID]) // edit 8
18 eVal = local_prev_E[tID -1] + extendGap;
19 else {
20 if (warpId != 0 && landId == 0)
21 eVal = sh_prev_E[warpId -1];
22 else // private register
23 eVal = __shfl_sync (...); }
24
25 // if(diag >= maxSize) {
26 if (is_valid[tID]) // edit 10
27 final_H = local_prev_prev_H[tID -1];
28 else {
29 if (warpId != 0 && landId == 0)
30 final_H = sh_prev_prev_H[warpId -1];
31 else // private register
32 final_H = __shfl_sync (...);
33 } ...

Fig. 10. Simplified code snippet from ADEPT-V1 for how data is exchanged using both private registers and shared memory.
In edits 5, 6, 8, and 10 (red text, lines 3, 8, 17, and 26), GEVO eliminates private registers and uses shared memory instead.

6.3 Remove Unnecessary Memory Initialization and Synchronization Procedures
For ADEPT-V0, GEVO removed a small code region consisting of memset and syncthread functions for shared
memory initialization and synchronization. This change improved the kernel performance by more than thirty-
fold. In this case, it appears that we can completely ignore shared memory initialization, even on the algorithm
level, because other edits were not engaged to compensate for the behavior change. In fact, the human expert
also removed this code region in ADEPT-V1. Even if the initialization is required, the way it was implemented
is vastly inefficient. The original code asks all the GPU threads to perform memory initialization on the same
memory region. Combined with synchronization, GPU threads block each other to initialize the same memory
region over and over again, creating a significant performance bottleneck. The common practice is to initialize the
memory through the CUDA API outside the kernel or through the in-kernel code using only one active thread.
For application developers, the ability to quickly identify promising performance hot-spots that are challenging
to discover using conventional tools is valuable, and this example highlights how GEVO supports this task.

ACM Trans. Evol. Learn. Optim.

Evolving to find optimizations humans miss: using evolutionary computation to improve GPU code for bioinformatics applications • 17

Grid DataSIMCoV

GPU memory

Other
application

small grid large grid

(b)(a)

0 0 0
0
0
0
0
0
0

0 0 0 0

(c)

Fig. 11. (a) illustrates that boundary check is a necessary step in the SIMCoV code. (b) illustrates how the boundary check
removal is acceptable in a small grid but would fail for a large grid, which can be resolved by (c) padding the grid borders
with extra grid points of 0 manually.

Table 2. Edits distribution across the mathematic functions in oxDNA

sine cosine arccos log sincos abs

158 78 14 13 4 1

6.4 Boundary Check Removal and Grid Padding
In SIMCoV, GEVO removed multiple conditional branches, which disabled a grid boundary check. Its purpose is
to prevent errors when accumulating inflammatory signals from the neighboring grid points (the fourth task
in Section 2.4). As Figure 11(a) shows, the boundary check prevents the edge grid points from attempting to
accumulate values from points outside of the grid (illegal memory accesses). The performance analysis presented
in this section addresses the following questions: (1) The boundary check optimization alone achieves 20%
performance improvement. How does a simple boundary removal achieve such disproportional execution time
improvement? (2) How can out-of-bound memory access not break the program’s behavior?

To answer the first question, we examined the kernel with the modified code region. Surprisingly, a significant
portion (31%) of the kernel instructions were performing logic operations related to the boundary comparison,
although, as shown in Figure 11(a), the vast majority of the grid points are not located on the boundary. Removing
the boundary check, however, is only legitimate if there is a compensating code modification to prevent illegal
access outside the boundary. This example demonstrates how the GEVO approach can inform application
developers. By actively searching through the code for performance optimization opportunities, the search can
expose promising performance hot-spot regions that may be overlooked otherwise.

We answer the second question using validation test sets. That is, by running the SIMCoV simulation at a
larger grid size: 2500x2500. Even though the SIMCoV code passes the initial test using a smaller simulation
area, the boundary check optimization triggers a segmentation fault on this larger held-out test (Figure 11(b)).
It is not surprising that larger held-out tests are needed during the optimization search process to detect such
out-of-bound memory accesses, and this is a routine part of our evaluation strategy. After probing the code and
the boundary check optimization more deeply, we observed that, by simply padding the grid borders with extra
points of value 0 (Figure 11(c)), the application can achieve a 14% performance improvement with a negligible
increase in the memory requirement.

ACM Trans. Evol. Learn. Optim.

18 • Jhe-Yu Liou, Muaaz Awan, Kirtus Leyba, Petr Šulc, Steven Hofmeyr, Carole-Jean Wu, and Stephanie Forrest

0

5

10

15
S1 S2 S3

0

5

10

15

N
u
m

b
er

 o
f
ed

it
s

Fig. 12. Distribution of GEVO mutational edits across sine and cosine function instances and code section each edit falls in.
S1, S2, and S3 are the code sections explained in Figure 13. For example, there are 14 edits in sin1 instances. 13 out of 14 edits
are in section 2, 1 in section 3, and none in section 1. This figure shows that every sine function call in oxDNA receives at
least one GEVO edit while there are ten cosine function calls with zero edits, implying that certain cosine functions cannot
be optimized.

6.5 Optimizing Nvidia’s Built-in Math Library
In oxDNA there were many weak edits, each contributing a small amount to the performance improvement. For
each such edit we identified its source code location and discovered that 268 out of 489 of them were modifying
functions inside the Nvidia built-in math library. Table 2 shows how the edits are distributed across the various
functions in the library. This raises two additional questions:
• Why does GEVO modify the built-in math library with such a large number of edits?
• What are the optimizations doing?

We addressed the first question by examining the Nvidia built-in math library (libdevice.bc) and found that
it is not in binary format. Instead, it is in the LLVM bitcode format which can be converted back to LLVM-IR
format using the llvm-dis command-line tool. Inspection of the converted math library showed that these math
functions are inline functions in which function invocations (the function call instruction) are replaced by the
function body. As it happens, oxDNA uses a large number of inline sine/cosine functions (32 sine and 23 cosine
separate function calls) to determine the relative position and orientation of nucleotides, compute the direction
of the bonding force, and calculate their movement. Thus, each of the 228 out of 268 edits (as Table 2 shows) to
the sine/cosine function apparently modifies a separate copy of the same sine/cosine code. Further investigation
of these mutations showed that GEVO modified the function instances in different ways. And, certain cosine
function calls remained unmodified, as figure 12 shows.

Without access to the source code, it is challenging to fully characterize GEVO’s optimizations, but reverse
engineering provides some insight into how GEVO edits improved runtime. The Nvidia built-in sine and cosine
functions have nearly identical code structures, which can be separated into three logical sections as shown
in Figure 13. Notably, the majority of edits appear in Section 2 of the code path which is executed only when
the input argument (angle) is larger than 105,615. We suspect that this code handles the rounding error of huge
argument reduction. Since here are only 2cA0380=B in a circle, any input to a sine/cosine function is equivalent

ACM Trans. Evol. Learn. Optim.

Evolving to find optimizations humans miss: using evolutionary computation to improve GPU code for bioinformatics applications • 19

%1 = %a*2/pi

if (%a == 0)

…

if (%a == infinite)

…

%1 = %a …

if (%a > 105615) {

…

%2 = %a …

}

%3 = %1 or %2

…

%4 = %3 …

Ret %4

Section 1 (S1), corner case check
and normal argument reduction

9 edits

Section 2 (S2), Huge argument
reduction

205 edits

Section 3 (S3), real sine calculation
14 edits

sinf/cosf (float %a)define float @__nv_sinf(float %a) #0 {

%result.i.i.i = alloca [7 x i32], align 4

%1 = fmul float %a, 0x3FE45F3060000000

...

%33 = fcmp ogt float %.06, 1.056150e+05

...

br %__internal_trig_reduction_kernel.exit.i

...

ret float %z.i.i.0

000

001

002

080

238

384

(b) Manual decompile(a) sine in libdevice.bc in LLVM-IR

Fig. 13. (a) shows the original sine function in LLVM-IR representation found in Nvidia built-in math library (libdevice.bc).
The numbers on the left are the line numbers in the code. (b) is the author’s manual decompilation from (a). Based on this
understanding the code structure falls naturally into 3 sections, and the GEVO edits are categorized into each section. (In
the original code, 0x3FE45F3060000000 in line 2 is the double-precision floating-point representation of 2

c), but many other
magic hexadecimal numbers similar to this appear in the code, which the authors could not decipher. The cosine function
shares identical code structures except for a few instructions with different parameters.

to some angle in [−c
4 ,

c
4]. Arguments that are outside this range are computed by reduction, subtracting integral

multiples of c
2 as shown in equation 1.

G − : · c
2
= A, : ∈ /, A < 1 (1)

For example, instead of computing sin(x), the function computes sin(r) where r is in [−c
4 ,

c
4]. When performing

floating-point operations with a huge input argument x, the accuracy of computing r is dominated by the rounding
error of G − : · c2 , which is limited by the mantissa bits of floating-point representation. In short, the larger x
is, the less accurate r that is produced. This is a well-known problem discovered in 1992 [Ng 1992], with many
follow-up discussions [Boldo et al. 2008; Brisebarre et al. 2005; De Dinechin et al. 2019; Henderson 2000] and
solutions that are incorporated into compilers such as gcc and clang.

Eliding many details about how rounding errors are managed in huge argument cases, we believe that the
modifications GEVO made to the Section 2 code region disables this functionality using various strategies. We
scanned all oxDNA input values to the sine function and discovered that they are always smaller than the Nvidia
threshold value for activating fixed-point argument reduction. Thus, it is safe for oxDNA to disable argument
reduction. Next, we manually disabled the argument reduction of the sine function in the Nvidia math library,
and tested it in a standalone CUDA kernel where only the sine function is invoked with a large input range.
This standalone test shows that the observable error, compared to the unmodified sine function, increases only
after the input is greater than 105,615. More importantly, the performance of the sine function in the standalone
environment on P100 improved by 54%, regardless of the input value. It is surprising that the performance
improvement is so large, even when the input values do not require reduction. Finally, disabling huge argument
reduction through directly modifying in the sine function in Nvidia math library and then recompiling oxDNA
improved the performance by 4.7%.

Recall that certain cosine functions in oxDNA received zero edits as Figure 12 shows. We discovered that,
unlike the sine functions, some oxDNA cosine functions do receive input arguments larger than 105,615, which
likely prevents GEVO from optimizing these parts of the code.

ACM Trans. Evol. Learn. Optim.

20 • Jhe-Yu Liou, Muaaz Awan, Kirtus Leyba, Petr Šulc, Steven Hofmeyr, Carole-Jean Wu, and Stephanie Forrest

There are some small edits in section 1 of figure 13(b) similar to those discussed above, but they disable checks
on other corner cases. For example, one edit disables checking for infinite input arguments in the floating-point
format. Notably, shown in Figure 12, only certain function instances receive such edits, meaning they are only
applicable based on the different use cases of those function instances. In hindsight, a human expert might devise
cleaner ways to streamline these corner cases, but these results show that GEVO can discover many optimization
opportunities in built-in functions per function usage.

6.6 Dead Code Removal
In oxDNA, all calculations are performed in three-dimensional space. For historical reasons dating to the early
development of oxDNA, some important variables are defined in a BCAD2C with four elements, and the last element
is never used. In the past, GPU programmers often used internal data structures for color space with RGBA 4
elements to store vector-like data. However, this is no longer required. GEVO discovered this redundancy and
removed a few load instructions for the 4th element when passing variables between functions.

Normally, such redundant code could be detected and optimized by the compiler as part of the dead code
removal pass. We are unsure what condition in this case prevents the LLVM compiler from performing or
detecting the dead code.

6.7 Remaining Edits
We attempted to analyze every GEVO edit that has a performance impact greater than 1%, but there are some
that we were unable to decipher. For example, one edit duplicates a memory write operation to a region that no
subsequent code ever accesses. Such an operation seems redundant and should slow down program runtime.
Surprisingly, it improves the kernel performance by 1% when run on the P100 GPU.

7 DISCUSSION
The mutational edit analysis (Section 6) showed that many performance-enhancing mutations are related to the
GPU architecture. This implies that, although the GPU programming model has matured in the past decade or two,
it is still difficult to master hardware-related programming language features. Bioinformatic applications, such as
those we consider here, are often written by domain experts who are not necessarily trained as software developers.
In these circumstances, an approach such as GEVO is an appealing choice for GPU code optimization [Liou
et al. 2019a,b, 2020a,b]. When we discussed GEVO’s optimizations with the original developers of both ADEPT
and SIMCoV, they were both surprised that EC could discover code modifications with such large performance
improvements. The main developer of ADEPT told us, ”If I was aware such an automatic optimization tool existed,
it might have saved a couple of months of effort, especially for optimizing toward a specific GPU architecture!” And,
from the developer of SIMCoV, ”When I looked at the optimizations found for SIMCoV, I saw how I could change my
algorithm to improve its performance at scale. On CPUs, SIMCoV requires many cores to run useful simulations in a
reasonable time. The CPU implementation bogs down when the simulated lung contains many agents, but the GPU
version always loops over the full space so it does not suffer in this scenario.”

Our results and the developer feedback illustrate two scenarios in the software development cycle where
EC-based optimization can help: rapid prototyping in the early development stage and advanced fine-tuning in
the final development stage. In the prototyping stage, the developer can quickly implement a workable but less-
optimized version of the software and let EC perform code optimization searches, identify potentially-interesting
performance critical regions, and address those inefficiencies. In the late development stage, EC can be deployed
after hand-tuning by experts to search for additional optimizations.

Although the developers of oxDNA have requested our assistance to incorporate GEVO’s optimizations into
their latest code release, modifying built-in libraries is generally beyond the scope of most developers, particularly,

ACM Trans. Evol. Learn. Optim.

Evolving to find optimizations humans miss: using evolutionary computation to improve GPU code for bioinformatics applications • 21

without access to source code. In this context, GEVO provides an opportunity for library or compilers developers,
including engineers inside a GPU manufacturer like Nvidia, discover optimization opportunities. In fact, we
learned that LLVM provides a series of instruction flags for floating operations to individually control many
fast-math flags such as disabling checking infinite or not-a-number 3, which the Nvidia compiler does not support.
Neither LLVM or Nvidia compiler can individually disable the argument reduction discussed in Section 6.5. Using
the comprehensive fast-math flag (-ffast-math for LLVM or -use_fast_math for Nvidia compiler) does evidently
disable argument reduction for both compilers, but the resulting accuracy also changes even for small input
values.

Our approach does not require programmer domain knowledge for optimization. We acknowledge that EC-
driven GPU optimization does not necessarily preserve exact program semantics, which is both a strength and a
limitation. It is a strength because small changes in semantics can lead to large runtime reduction, often without
sacrificing functionality. Perhaps the most striking examples of this in our study were the removal of the boundary
check in SimCoV and the disabling of huge argument reduction in oxDNA’s sine function. Relaxing semantics
is a limitation because test suites are often used to evaluate fitness and verify program behavior. With domain
knowledge, developers can reason about the discovered optimizations, and either adopt them for better program
performance, use them to improve the test suite, or use the insights to inspire related code enhancements, e.g., by
introducing zero padding (Section 6.4). The results reported here for ADEPT did not require us to augment the
test suite, an advantage of working with a deterministic program with an extensive test suite. However, if there
are mutations that improve performance but do not make sense to programmers, like the one that introduced an
additional memory write into an unused code location (Section 6.7), the programmer can choose to eliminate the
edit or design new tests.

GPUs are complex hardware with an equally complex programming environment. This is one reason why auto-
mated code optimization can be effective. Performant code can easily fail to live up to performance expectations,
sending developers on a lengthy performance debugging journey. There is no golden rule for finding optimal
performance on GPUs. For instance, higher concurrency does not guarantee better performance, because in some
cases using larger shared memory per block while minimizing occupancy may yield better throughput. Similarly,
as demonstrated in the case of ADEPT, using a faster method of inter-thread communication (register-to-register
transfer) does not imply the best performance. In applications like oxDNA, humans would look first for high
payoff optimizations and might never consider the hundreds of individual modifications, which each contributed
a small improvement. EC can automate this search for counter-intuitive optimizations while exploring hundreds
of times more code modifications than a human developer can reasonably consider. We expect that the results
achieved for ADEPT and oxDNA may generalize to other bioinformatics kernels and programs.

Beyond its contribution to automated optimization, GEVO’s results are striking from the EC perspective. The
optimized ADEPT program we analyzed in detail contained 1395 mutations, each of these is neutral with respect
to the test cases. Most of the mutations are weak (contribute less than 1% performance improvement), but it is
still remarkable that it is even possible to apply that many random mutations to a program that is only 1700
instructions long and not break the program. We don’t yet understand why GEVO produces so many neutral
mutations. It was built on NSGA-II, and an area for future investigation is disentangling the effect of our EC
algorithm from the properties of the LLVM-IR. Once we discarded the weak mutations, the remaining contain a
large number of interacting edits, which is vastly more than what has been reported by any earlier EC work for
software (one or two edits is much more typical). This could arise from several factors: basic properties of the
LLVM-IR representation and the mutation operators, properties of GPU architectures, opportunities presented
by the particular algorithms, or the implementation choices made by the developer—an avenue for future work.
In particular, more effective epistasis is discovered in ADEPT-V1 than in ADEPT-V0. The developer-optimized

3https://llvm.org/docs/LangRef.html#fastmath

ACM Trans. Evol. Learn. Optim.

https://llvm.org/docs/LangRef.html#fastmath

22 • Jhe-Yu Liou, Muaaz Awan, Kirtus Leyba, Petr Šulc, Steven Hofmeyr, Carole-Jean Wu, and Stephanie Forrest

codes in ADEPT-V1 might provide more paths for epistasis to surface since those optimized codes seem to be
more resilient to our mutation operators. More generally, high-level languages are designed to help programmers
express algorithms in a modular way that minimizes interactions between different parts of the code. So, it would
not be surprising if their very structure works against epistasis. At the same time, the search space defined for
a lower-level program representation like LLVM-IR is much larger than it is for source code, and could even
include space beyond the application, like in oxDNA where GEVO modified Nvidia math library functions. This
would intuitively make search problems more challenging. How these factors balance out, and how to measure
them remains an open question.

Regardless of their source, the fact that we found improvements with such a high number of interacting edits
shows how automated methods can discover complex modifications to the target program. There is significant
variability across programs in terms of the success that GEVO had in improving runtime, although we found
significant improvements in all three examples that we studied. We do not yet understand the source of this
variability and leave that for future work. As expected, there is also variability in the performance gains that are
found by GEVO in different runs on the same program. However, some programs such as ADEPT-V1 had much
higher variability than the others, as shown in Figure 7 and explained in Section 5.3. Finally, reverse engineering
the discovered optimizations is challenging and to a large extent remains a manual process. We presented a
procedure that identifies a set of edits that interact with each other, but the final step of the process involves
testing all their combinations to find epistatic subsets. This will not scale well beyond the roughly twenty edits
we considered. How to reliably discover edit interactions and effectively analyze them remains unsolved and
warrants future study.

8 RELATED WORK
Code generation optimization has been actively investigated in the compiler community. This includes, but is not
limited to, peephole methods [Bansal and Aiken 2006], loop-unrolling using machine learning techniques [Leather
et al. 2009], loop perforation [Sidiroglou-Douskos et al. 2011] auto-vectorization [Mendis et al. 2019], and profile-
guided optimization [Pettis and Hansen 1990]. Traditionally, most of these techniques are achieved through
pattern matching to ensure that exact program semantics are preserved. More recently, the need for compilers to
optimize domain-specific languages has become important. For example, Halide [Ragan-Kelley et al. 2013] targets
image processing, XLA [TensorFlow 2018] developed for TensorFlow [Abadi et al. 2016], Glow [Rotem et al. 2018]
for PyTorch [Paszke et al. 2017], TVM [Chen et al. 2018] for MXnet [Chen et al. 2015], and so forth. Because
GPUs provide unparalleled performance in this domain, all of these examples are capable of generating GPU
kernels for acceleration and optimization. A major component of these frameworks is identifying efficient loop
partitioning and unrolling patterns tailored for target hardware memory configuration to achieve better memory
access locality. Domain-specific compilers can perform further optimizations when lowering neural-network
operators onto machine-specific implementations using optimized libraries. However, all of these approaches are
still primarily based on human-derived pattern-matching, although, in certain domains, search algorithms are
used when the target problem is unrelated to program semantics. For example, Halide uses the genetic algorithm
to search for improved pipeline scheduler decisions, which translates to determining the order of loop partitioning
and unrolling.

Beyond these traditional compiler techniques, other methods are designed to be generic in the sense that they
are agnostic about the particular application being optimized. There are three main approaches that have been
used: program synthesis [Alur et al. 2013; Barthe et al. 2013; Buchwald et al. 2018; Gulwani et al. 2011; Jia et al.
2019; Manna and Waldinger 1980], superoptimization [Churchill et al. 2017; Schkufza et al. 2013, 2014; Sharma
et al. 2015], and evolutionary computation [Koza 1994; White et al. 2011]. One key difference among the branches
is the validation method. Program synthesis and superoptimization typically use a SAT/SMT solver [Moura and

ACM Trans. Evol. Learn. Optim.

Evolving to find optimizations humans miss: using evolutionary computation to improve GPU code for bioinformatics applications • 23

Bjørner 2008] to check the logical equivalence of program rewrites, while EC relies on test suites to encode the
intended program specification. The trade-off is that the SAT/SMT approaches can guarantee exact program
semantics but they do not scale well, while test-based methods sacrifice strict semantic equivalence for improved
scalability. As a result, most earlier work in this domain applies only to programs of a limited length, usually
under 200 lines of code.

Deep learning methods have recently been used to analyze programs as well, including neural-network based
logical reasoning [Evans et al. 2018; Paliwal et al. 2020] and SAT solvers [Selsam et al. 2019; Si et al. 2019] and
superoptimization [Bunel et al. 2017]. However, for optimizing parallel codes like GPU programs, EC may be
more viable because logical reasoning about thread communications in a SAT solver requires deducing the entire
parallel programming model in a logical form which is time-consuming and challenging.

Large language models (LLM) have emerged recently as a new tool for program synthesis. Although many
language models were originally developed to solve natural language processing tasks such as translation,
researchers have discovered that by increasing the degree of language model architecture with a larger, albeit
huge, training dataset, they can unlock many interesting properties including natural language reasoning and
interaction, and even logical reasoning. One of LLMs’ capabilities is generating simple programs even though
the LLM was not explicitly trained on programming languages [Brown et al. 2020]. Since then, using LLMs for
program-related tasks has become an active research area. Jacob et al. explored and evaluated general program
synthesis using Python docstrings as input for behavior specification [Austin et al. 2021]. Other examples include
CodeBert [Feng et al. 2020], Codex [Chen et al. 2021], and many more [Ahmad et al. 2021; Clement et al. 2020;
Wang et al. 2021] were trained specifically for programming and coding, eventually leading to the popular and
well-known commercial application, Github Copilot [Microsoft 2023].

The only related LLM work in program optimization to date is from Cummins et al. [Cummins et al. 2023],
which uses Meta the LlaMa 2 model [Touvron et al. 2023] to learn how the LLVM compiler optimizes code in
LLVM-IR format. The learned LLM model can predict the least amount of compiler flags needed to optimize a
target program or even directly generate the optimized code without using a traditional compiler. It is unknown,
however, whether the trained LLM can generate code or optimize code that is unseen in the training data.

EC is a popular approach for improving computer programs, e.g., to automatically repair bugs [Debroy and
Wong 2010; Forrest et al. 2009; Le Goues et al. 2012, 2011; Weimer et al. 2009]. Surprisingly, prior analysis [Schulte
et al. 2014b] showed that 20% to 40% of randomly generated program mutations (edits) have no observable
functional effect (even when limited to only regions of the code that are actively tested), which suggested the
possibility of using EC to optimize non-functional properties of software. As a result, EC has also been adopted
to optimize software properties such as performance [White et al. 2011] and energy cost [Brownlee et al. 2021;
Bruce et al. 2015, 2018; Schulte et al. 2014a].

Earlier EC work targeting GPU programs dates back to Sitthi-Amorn’s work [Sitthi-Amorn et al. 2011], which
began with a basic lighting algorithm and used EC to gradually modify the shader program into a form that
resembles an advanced algorithm proposed by domain experts. Later, Langdon et al. applied EC to a series of CUDA
programs, ranging from compression methods [Langdon and Harman 2010] to RNA and DNA analysis [Langdon
and Harman 2015; Langdon et al. 2015]. Specifically, BarraCUDA [Klus et al. 2012], a DNA sequence alignment
program, was one of the target programs in the DNA analysis study [Langdon et al. 2015]. However, their
approach is different and less general than the one we used here. For example, the above works searched for
parameter configurations outside the CUDA kernel such as the number of threads per thread block. The work
manually parsed and transformed the CUDA kernel code into a custom-designed, line-based Backus Normal Form
grammar as the code representation, where EC was applied. The performance improvements were attributed
almost entirely to parameter tuning rather than modifying the kernel code. Orthogonal to the prior work, our
approach finds performance optimization opportunities by transforming the implementation of functions. We

ACM Trans. Evol. Learn. Optim.

24 • Jhe-Yu Liou, Muaaz Awan, Kirtus Leyba, Petr Šulc, Steven Hofmeyr, Carole-Jean Wu, and Stephanie Forrest

instrument the modern LLVM compiler infrastructure to preprocess the CUDA program into LLVM-IR, a more
general approach that can be applied to any LLVM-IR program.

9 CONCLUSION
Optimizing GPU codes is a time-consuming process that requires deep knowledge in both the application domain
and GPU architectures. This paper demonstrates the performance optimization potential of GEVO applied to
three different types of bioinformatics workloads: ADEPT, a GPU-accelerated bioinformatics sequence alignment
library; SIMCoV, an agent-based COVID simulation of viral spread; and oxDNA, a DNA model using molecular
dynamic simulation. We find improvements between 17% and 29% for ADEPT-V1 (the expert-optimized version of
ADEPT), SIMCoV, and oxDNA on various GPU platforms. Moreover, on ADEPT-V0, an earlier and less-optimized
version, we find a 30X improvement. This demonstrates the excellent potential of stochastic search methods such
as GEVO to augment developer efforts to optimize GPU codes.

While we did not find optimizations that are generalizable to all three applications, the diverse optimizations
that GEVO discovered demonstrate its strength to tailor optimizations to particular applications based on their
characteristics. The interdependent modifications (epistasis) found for ADEPT, the boundary check removal
for SIMCoV, and the built-in math library optimizations for oxDNA are all distinct, unanticipated, and more
importantly, challenging to achieve by the application developers alone. As GPU architectures continue to evolve,
the availability of an automated code optimization tool that can discover hidden performance optimization
opportunities will continue to be useful as an aid to the code development process. We expect such methods to
play an increasingly important role in reducing the developer burden of developing efficient code, especially for
application areas such as bioinformatics and other scientific domains.

ACKNOWLEDGMENTS
We gratefully acknowledge support from ONR grants N000142012094, N000142112876, NSF DMR-2239518, NSF
CCF-2211750, NSF OAC-2115075, ARPA-H(SP4701-23-C-0074), and the Santa Fe Institute; We thank Lorenzo
Rovigatti for helpful discussions.

REFERENCES
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay
Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-scale Machine Learning.
In Proc. of the 12th USENIX Conf. on Operating Systems Design and Implementation.

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Unified Pre-training for Program Understanding and Generation.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, Online, 2655–2668. https://www.aclweb.org/anthology/2021.naacl-main.211

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama,
Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry,
Quoc Le, et al. 2021. Program synthesis with large language models. arXiv preprint arXiv:2108.07732 (2021).

Muaaz G Awan, Jack Deslippe, Aydin Buluc, Oguz Selvitopi, Steven Hofmeyr, Leonid Oliker, and Katherine Yelick. 2020. ADEPT: a domain
independent sequence alignment strategy for gpu architectures. BMC bioinformatics 21, 1 (2020), 1–29.

Sorav Bansal and Alex Aiken. 2006. Automatic generation of peephole superoptimizers. SIGARCH Comput. Archit. News 34, 5 (2006), 394–403.
Gilles Barthe, Juan Manuel Crespo, Sumit Gulwani, Cesar Kunz, and Mark Marron. 2013. From Relational Verification to SIMD Loop Synthesis.

In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (Shenzhen, China) (PPoPP ’13).
Association for Computing Machinery, New York, NY, USA, 123–134. https://doi.org/10.1145/2442516.2442529

William Bateson. 1909. Mendel’s Principles of Heredity. Cambridge: Cambridge University Press.
Sylvie Boldo, Marc Daumas, and Ren-Cang Li. 2008. Formally verified argument reduction with a fused multiply-add. IEEE Trans. Comput. 58,

8 (2008), 1139–1145.

ACM Trans. Evol. Learn. Optim.

https://www.aclweb.org/anthology/2021.naacl-main.211
https://doi.org/10.1145/2442516.2442529

Evolving to find optimizations humans miss: using evolutionary computation to improve GPU code for bioinformatics applications • 25

Nicolas Brisebarre, David Defour, Peter Kornerup, J-M Muller, and Nathalie Revol. 2005. A new range-reduction algorithm. IEEE Trans.
Comput. 54, 3 (2005), 331–339.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in neural information processing systems 33 (2020),
1877–1901.

Alexander Brownlee, Jason Adair, Saemundur Haraldsson, and John Jabbo. 2021. Exploring the Accuracy-Energy Trade-off in Machine
Learning. In Genetic Improvement Workshop at 43rd International Conference on Software Engineering. ACM.

Bobby R. Bruce, Justyna Petke, and Mark Harman. 2015. Reducing Energy Consumption Using Genetic Improvement. In Proceedings of the
17th Annual Conference on Genetic and Evolutionary Computation (Madrid, Spain).

Bobby Ralph Bruce, Justyna Petke, Mark Harman, and Earl T Barr. 2018. Approximate oracles and synergy in software energy search spaces.
IEEE Transactions on Software Engineering (2018).

Sebastian Buchwald, Andreas Fried, and Sebastian Hack. 2018. Synthesizing an Instruction Selection Rule Library from Semantic Specifications.
In Proceedings of the 2018 International Symposium on Code Generation and Optimization (Vienna, Austria) (CGO 2018). Association for
Computing Machinery, New York, NY, USA, 300–313. https://doi.org/10.1145/3168821

Rudy Bunel, Alban Desmaison, M. Pawan Kumar, Philip H. S. Torr, and Pushmeet Kohli. 2017. Learning to superoptimize programs. In
International Conference on Learning Representations.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. 2021. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374 (2021).

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet:
A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274 (2015).

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
et al. 2018. {TVM}: An automated end-to-end optimizing compiler for deep learning. In 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18). 578–594.

Berkeley Churchill, Rahul Sharma, JF Bastien, and Alex Aiken. 2017. Sound Loop Superoptimization for Google Native Client. SIGARCH
Comput. Archit. News 45, 1 (2017), 313–326.

Colin B Clement, Dawn Drain, Jonathan Timcheck, Alexey Svyatkovskiy, and Neel Sundaresan. 2020. PyMT5: multi-mode translation of
natural language and Python code with transformers. arXiv preprint arXiv:2010.03150 (2020).

Chris Cummins, Volker Seeker, Dejan Grubisic, Mostafa Elhoushi, Youwei Liang, Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Kim
Hazelwood, Gabriel Synnaeve, et al. 2023. Large Language Models for Compiler Optimization. arXiv preprint arXiv:2309.07062 (2023).

Florent De Dinechin, Luc Forget, Jean-Michel Muller, and Yohann Uguen. 2019. Posits: the good, the bad and the ugly. In Proceedings of the
Conference for Next Generation Arithmetic 2019. 1–10.

Vidroha Debroy andW EricWong. 2010. Using Mutation to Automatically Suggest Fixes for Faulty Programs. In Proceedings of 3rd International
Conference on Software Testing, Verification and Validation.

Jonathan PK Doye, Thomas E Ouldridge, Ard A Louis, Flavio Romano, Petr Šulc, Christian Matek, Benedict EK Snodin, Lorenzo Rovigatti,
John S Schreck, Ryan M Harrison, et al. 2013. Coarse-graining DNA for simulations of DNA nanotechnology. Physical Chemistry Chemical
Physics 15, 47 (2013), 20395–20414.

Peter Eastman, Mark S Friedrichs, John D Chodera, Randall J Radmer, Christopher M Bruns, Joy P Ku, Kyle A Beauchamp, Thomas J Lane,
Lee-Ping Wang, Diwakar Shukla, et al. 2013. OpenMM 4: a reusable, extensible, hardware independent library for high performance
molecular simulation. Journal of chemical theory and computation 9, 1 (2013), 461–469.

Richard Evans, David Saxton, David Amos, Pushmeet Kohli, and Edward Grefenstette. 2018. Can neural networks understand logical
entailment?. In International Conference on Learning Representations.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020.
Codebert: A pre-trained model for programming and natural languages. arXiv preprint arXiv:2002.08155 (2020).

Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. 2009. A Genetic Programming Approach to Automated Software
Repair. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (Montreal, Québec, Canada).

Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John Cavazos. 2012. Auto-tuning a high-level language targeted to
GPU codes. In 2012 Innovative Parallel Computing (InPar). 1–10. https://doi.org/10.1109/InPar.2012.6339595

Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011. Synthesis of loop-free programs. SIGPLAN Not. 46, 6 (2011),
62–73.

Darrall Henderson. 2000. Elementary functions: Algorithms and implementation. Mathematics and Computer Education 34, 1 (2000), 94.
Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken. 2019. TASO: Optimizing Deep Learning

Computation with Automatic Generation of Graph Substitutions. In Proc. of the 27th ACM Symp. on Operating Systems Principles (SOSP
’19).

Petr Klus, Simon Lam, Dag Lyberg, Ming Sin Cheung, Graham Pullan, Ian McFarlane, Giles SH Yeo, and Brian YH Lam. 2012. BarraCUDA-a
fast short read sequence aligner using graphics processing units. BMC research notes 5, 1 (2012), 1–7.

ACM Trans. Evol. Learn. Optim.

https://doi.org/10.1145/3168821
https://doi.org/10.1109/InPar.2012.6339595

26 • Jhe-Yu Liou, Muaaz Awan, Kirtus Leyba, Petr Šulc, Steven Hofmeyr, Carole-Jean Wu, and Stephanie Forrest

Matija Korpar and Mile Šikić. 2013. SW#–GPU-enabled exact alignments on genome scale. Bioinformatics 29, 19 (2013), 2494–2495.
John R Koza. 1994. Genetic programming as a means for programming computers by natural selection. Statistics and computing 4, 2 (1994),

87–112.
Sudhir B Kylasa, Hasan Metin Aktulga, and Ananth Y Grama. 2014. PuReMD-GPU: A reactive molecular dynamics simulation package for

GPUs. J. Comput. Phys. 272 (2014), 343–359.
William B Langdon and Mark Harman. 2010. Evolving a CUDA kernel from an nVidia template. In Proceedings of IEEE Congress on Evolutionary

Computation.
William B. Langdon and Mark Harman. 2015. Grow and Graft a Better CUDA pknotsRG for RNA Pseudoknot Free Energy Calculation. In

Proceedings of the Companion Publication of the 17th Annual Conference on Genetic and Evolutionary Computation (Madrid, Spain).
William B. Langdon, Brian Yee Hong Lam, Justyna Petke, and Mark Harman. 2015. Improving CUDA DNA Analysis Software with Genetic

Programming. In Proceedings of the 17th Annual Conference on Genetic and Evolutionary Computation (Madrid, Spain).
Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation. In International

Symposium on Code Generation and Optimization, 2004. CGO 2004. IEEE, 75–86.
Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer. 2012. A Systematic Study of Automated Program Repair:

Fixing 55 out of 105 Bugs for $8 Each. In Proceedings of the 34th International Conference on Software Engineering (Zurich, Switzerland).
Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2011. Genprog: A generic method for automatic software repair.

IEEE transactions on software engineering 38, 1 (2011), 54–72.
Hugh Leather, Edwin Bonilla, and Michael O’Boyle. 2009. Automatic feature generation for machine learning based optimizing compilation.

In 2009 Intl. Symp. on Code Generation and Optimization. 81–91.
Shin-Ying Lee and Carole-Jean Wu. 2014. Characterizing the latency hiding ability of GPUs. In 2014 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS).
Jhe-Yu Liou, Muaaz Awan, Steven Hofmeyr, Stephanie Forrest, and Carole-Jean Wu. 2022. Understanding the Power of Evolutionary

Computation for GPU Code Optimization. In 2022 IEEE International Symposium on Workload Characterization (IISWC). 185–198. https:
//doi.org/10.1109/IISWC55918.2022.00025

Jhe-Yu Liou, Stephanie Forrest, and Carole-Jean Wu. 2019a. Genetic Improvement of GPU Code. In 2019 IEEE/ACM International Workshop on
Genetic Improvement (GI). 20–27. https://doi.org/10.1109/GI.2019.00014

Jhe-Yu Liou, Stephanie Forrest, and Carole-Jean Wu. 2019b. Uncovering Performance Opportunities by Relaxing Program Semantics of
GPGPU Kernels. In Proceedings of the ACM International Conference on Architectural Support for Programming Languages and Operating
Systems: Workshop on Wild and Crazy Ideas (WACI).

Jhe-Yu Liou, XiaodongWang, Stephanie Forrest, and Carole-JeanWu. 2020a. GEVO: GPU Code Optimization Using Evolutionary Computation.
ACM Trans. Archit. Code Optim. 17, 4, Article 33 (Nov. 2020), 28 pages. https://doi.org/10.1145/3418055

Jhe-Yu Liou, XiaodongWang, Stephanie Forrest, and Carole-JeanWu. 2020b. GEVO-ML: A Proposal for OptimizingML Code with Evolutionary
Computation. In Proceedings of the Genetic and Evolutionary Computation Conference Companion.

Yongchao Liu, Bertil Schmidt, and Douglas L Maskell. 2012. CUSHAW: a CUDA compatible short read aligner to large genomes based on the
Burrows–Wheeler transform. Bioinformatics 28, 14 (2012), 1830–1837.

Zohar Manna and Richard Waldinger. 1980. A deductive approach to program synthesis. ACM Transactions on Programming Languages and
Systems (TOPLAS) 2, 1 (1980), 90–121.

Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia, Ke Mao, Alexander Mols, and Andrew Scott. 2019. SapFix:
Automated end-to-end repair at scale. In 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 269–278.

Charith Mendis, Cambridge Yang, Yewen Pu, Saman Amarasinghe, and Michael Carbin. 2019. Compiler Auto-Vectorization with Imitation
Learning. In Advances in Neural Information Processing Systems. 14598–14609.

Microsoft. 2023. Github Copilot. https://github.com/features/copilot.
Melanie E Moses, Steven Hofmeyr, Judy L Cannon, Akil Andrews, Rebekah Gridley, Monica Hinga, Kirtus Leyba, Abigail Pribisova, Vanessa

Surjadidjaja, Humayra Tasnim, et al. 2021. Spatially distributed infection increases viral load in a computational model of SARS-CoV-2
lung infection. PLoS computational biology 17, 12 (2021), e1009735.

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: an efficient SMT solver. In Proceedings of the Theory and practice of software, 14th
International Conference on Tools and algorithms for the construction and analysis of systems.

Dariusz Mrozek, Miłosz Brożek, and Bożena Małysiak-Mrozek. 2014. Parallel implementation of 3D protein structure similarity searches
using a GPU and the CUDA. Journal of molecular modeling 20 (2014), 1–17.

NERSC. [n.d.]. Cori GPU Nodes. https://docs-dev.nersc.gov/cgpu/hardware/
Kwok C Ng. 1992. Argument reduction for huge arguments: Good to the last bit. Unpublished draft, available from the author (kwok. ng@ eng.

sun. com) (1992).
NVIDIA. [n.d.]a. CUDA LLVM compiler. https://developer.nvidia.com/cuda-llvm-compiler/.
NVIDIA. [n.d.]b. GPU Boost. https://www.nvidia.com/en-us/geforce/technologies/gpu-boost/technology/.

ACM Trans. Evol. Learn. Optim.

https://doi.org/10.1109/IISWC55918.2022.00025
https://doi.org/10.1109/IISWC55918.2022.00025
https://doi.org/10.1109/GI.2019.00014
https://doi.org/10.1145/3418055
https://github.com/features/copilot
https://docs-dev.nersc.gov/cgpu/hardware/
https://developer.nvidia.com/cuda-llvm-compiler/
https://www.nvidia.com/en-us/geforce/technologies/gpu-boost/technology/

Evolving to find optimizations humans miss: using evolutionary computation to improve GPU code for bioinformatics applications • 27

NVIDIA. [n.d.]c. NVIDIA 1080ti GPU. https://www.nvidia.com/en-in/geforce/products/10series/geforce-gtx-1080-ti/.
NVIDIA. [n.d.]d. NVIDIA A100 Tensor Core GPU. https://www.nvidia.com/en-us/data-center/a100/.
NVIDIA. [n.d.]e. NVIDIA Tesla P100 GPU. https://www.nvidia.com/en-us/data-center/tesla-p100/.
NVIDIA. [n.d.]f. NVIDIA V100 Tensor Core GPU. https://www.nvidia.com/en-us/data-center/v100/.
NVIDIA. 2017. Register Cache: Caching for Warp-Centric CUDA Programs. https://developer.nvidia.com/blog/register-cache-warp-cuda/.
NVIDIA. 2018. Using CUDA Warp-Level Primitives. https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/.
Aditya Paliwal, Sarah Loos, Markus Rabe, Kshitij Bansal, and Christian Szegedy. 2020. Graph representations for higher-order logic and

theorem proving. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 2967–2974.
Bin Pang, Nan Zhao, Michela Becchi, Dmitry Korkin, and Chi-Ren Shyu. 2012. Accelerating large-scale protein structure alignments with

graphics processing units. BMC research notes 5, 1 (2012), 1–11.
Chandra Shekhar Pareek, Rafal Smoczynski, and Andrzej Tretyn. 2011. Sequencing technologies and genome sequencing. Journal of applied

genetics 52, 4 (2011), 413–435.
Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,

and Adam Lerer. 2017. Automatic differentiation in PyTorch. In NeurIPS Autodiff Workshop.
Karl Pettis and Robert C Hansen. 1990. Profile guided code positioning. In Proc. of the ACM SIGPLAN Conf. on Programming language design

and implementation.
Erik Poppleton, Michael Matthies, Debesh Mandal, Flavio Romano, Petr Šulc, and Lorenzo Rovigatti. 2023. oxDNA: coarse-grained simulations

of nucleic acids made simple. Journal of Open Source Software 8, 81 (2023), 4693.
Erik Poppleton, Roger Romero, Aatmik Mallya, Lorenzo Rovigatti, and Petr Šulc. 2021. OxDNA. org: a public webserver for coarse-grained

simulations of DNA and RNA nanostructures. Nucleic acids research 49, W1 (2021), W491–W498.
Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: a language

and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines. ACM SIGPLAN Notices (2013).
Paul Richmond, Dawn Walker, Simon Coakley, and Daniela Romano. 2010. High performance cellular level agent-based simulation with

FLAME for the GPU. Briefings in bioinformatics 11, 3 (2010), 334–347.
Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Summer Deng, Roman Dzhabarov, James Hegeman, Roman Levenstein, Bert Maher, Satish

Nadathur, Jakob Olesen, et al. 2018. Glow: Graph Lowering Compiler Techniques for Neural Networks. arXiv preprint arXiv:1805.00907
(2018).

Lorenzo Rovigatti, Petr Šulc, István Z Reguly, and Flavio Romano. 2015. A comparison between parallelization approaches in molecular
dynamics simulations on GPUs. Journal of computational chemistry 36, 1 (2015), 1–8.

Romelia Salomon-Ferrer, Andreas W Gotz, Duncan Poole, Scott Le Grand, and Ross C Walker. 2013. Routine microsecond molecular dynamics
simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. Journal of chemical theory and computation 9, 9 (2013),
3878–3888.

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic superoptimization. In Proceedings of ACM SIGARCH Computer Architecture
News.

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2014. Stochastic optimization of floating-point programs with tunable precision. SIGPLAN Not.
49, 6 (2014), 53–64.

Eric Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and Westley Weimer. 2014a. Post-compiler Software Optimization for
Reducing Energy. In Proceedings of the 19th International Conference on Architectural Support for Programming Languages and Operating
Systems.

Eric Schulte, Zachary P. Fry, Ethan Fast, Westley Weimer, and Stephanie Forrest. 2014b. Software Mutational Robustness. Genetic Programming
and Evolvable Machines (2014).

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L. Dill. 2019. Learning a SAT Solver from
Single-Bit Supervision. In International Conference on Learning Representations.

Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. 2015. Conditionally Correct Superoptimization. In Proceedings of ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications.

Xujie Si, Yuan Yang, Hanjun Dai, Mayur Naik, and Le Song. 2019. Learning a Meta-Solver for Syntax-Guided Program Synthesis. In
International Conference on Learning Representations.

Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard. 2011. Managing Performance vs. Accuracy Trade-offs with
Loop Perforation. In Proc. of the 19th ACM SIGSOFT Symp. and the 13th European Conf. on Foundations of Software Engineering.

Pitchaya Sitthi-Amorn, Nicholas Modly, Westley Weimer, and Jason Lawrence. 2011. Genetic Programming for Shader Simplification. In
Proceedings of the 2011 SIGGRAPH Asia Conference.

Temple F Smith, Michael S Waterman, et al. 1981. Identification of common molecular subsequences. Journal of molecular biology 147, 1
(1981), 195–197.

Benedict EK Snodin, Ferdinando Randisi, Majid Mosayebi, Petr Šulc, John S Schreck, Flavio Romano, Thomas E Ouldridge, Roman Tsukanov,
Eyal Nir, Ard A Louis, et al. 2015. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA.

ACM Trans. Evol. Learn. Optim.

https://www.nvidia.com/en-in/geforce/products/10series/geforce-gtx-1080-ti/
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/tesla-p100/
https://www.nvidia.com/en-us/data-center/v100/
https://developer.nvidia.com/blog/register-cache-warp-cuda/
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/

28 • Jhe-Yu Liou, Muaaz Awan, Kirtus Leyba, Petr Šulc, Steven Hofmeyr, Carole-Jean Wu, and Stephanie Forrest

The Journal of chemical physics 142, 23 (2015), 06B613_1.
Alex D Stivala, Peter J Stuckey, and Anthony I Wirth. 2010. Fast and accurate protein substructure searching with simulated annealing and

GPUs. BMC bioinformatics 11 (2010), 1–17.
Petr Šulc, Flavio Romano, Thomas E Ouldridge, Jonathan PK Doye, and Ard A Louis. 2014. A nucleotide-level coarse-grained model of RNA.

The Journal of chemical physics 140, 23 (2014), 06B614_1.
TensorFlow. 2018. XLA is a compiler that optimizes TensorFlow computations. https://www.tensorflow.org/xla/.
Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal

Bhargava, Shruti Bhosale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023).
Ben van Werkhoven. 2019. Kernel Tuner: A search-optimizing GPU code auto-tuner. Future Generation Computer Systems 90 (2019), 347–358.

https://doi.org/10.1016/j.future.2018.08.004
Paul Walsh and Conor Ryan. 1996. Paragen: a novel technique for the autoparallelisation of sequential programs using gp. In Proceedings of

the 1st annual conference on genetic programming. 406–409.
Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. Codet5: Identifier-aware unified pre-trained encoder-decoder models for code

understanding and generation. arXiv preprint arXiv:2109.00859 (2021).
Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009. Automatically Finding Patches Using Genetic Programming.

In Proceedings of the 31st International Conference on Software Engineering.
David R. White, Andrea Arcuri, and John A. Clark. 2011. Evolutionary Improvement of Programs. IEEE Transactions on Evolutionary

Computation 15, 4 (2011), 515–538.
Yuan Yuan and Wolfgang Banzhaf. 2020. ARJA: Automated Repair of Java Programs via Multi-objective Genetic Programming. Transactions

on Software Engineering 46, 10 (2020), 1040–1067.

ACM Trans. Evol. Learn. Optim.

https://www.tensorflow.org/xla/
https://doi.org/10.1016/j.future.2018.08.004

	Abstract
	1 Introduction
	2 PRELIMINARIES
	2.1 The challenges of GPU programming
	2.2 Evolutionary Search for GPU Code Optimizations
	2.3 Sequence Alignment
	2.4 Coronavirus Simulation Model
	2.5 DNA simulation model using molecular dynamics

	3 Experimental Setup
	3.1 Compilation Preprocessing
	3.2 Application Code
	3.3 Validating Code Transformations
	3.4 System Hardware and Software
	3.5 GEVO Specification

	4 Performance Evaluation Results
	5 Understanding the Optimizations
	5.1 Edit Minimization
	5.2 Edit Interactions
	5.3 Epistatic Edit Set Analysis

	6 Functional Analysis of the Optimizations
	6.1 Rearrange Usage of Sub-Memory Systems on GPU
	6.2 Remove Warp-Level Synchronization
	6.3 Remove Unnecessary Memory Initialization and Synchronization Procedures
	6.4 Boundary Check Removal and Grid Padding
	6.5 Optimizing Nvidia's Built-in Math Library
	6.6 Dead Code Removal
	6.7 Remaining Edits

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

