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Abstract

It is believed that the acoustic emissions (AE) signal contains potentially valuable information for
monitoring precision cutting processes, as well as to be employed as a control feedback signal. However,
AE stress waves produced in the cutting zone are distorted by the transmission path and the measurement
systems. In this article, a bicepstrum based blind system identification technique is proposed as a valid tool
for estimating both, transmission path and sensor impulse response. Assumptions under which application
of bicepstrum is valid are discussed and diamond turning experiments are presented, which demonstrate the
feasibility of employing bicepstrum for AE blind identification.
r 2004 Published by Elsevier Ltd.

Keywords: Acoustic emissions; Higher-order statistics; Blind identification; Precision machining

1. Introduction

During precision machining operations, material is removed from the work-piece at very low
depths of cut, being uncut chip thickness usually less than a micrometer. At this scale, high
dimensional tolerances are required and nanometer accuracies must be achieved. In order to
improve precision, more sophisticated adaptive controls will be needed in the future, as well as
new on-line process monitoring sensors and systems, which will feedback the new controls.
Nevertheless, monitoring precision cutting processes is difficult by means of some of the sensors
that are commonly employed in conventional machining operations. Power consumption,
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vibration and force signals show very low sensitivity and signal-to-noise ratio (SNR) for small
depths of cut, due to the low-level forces involved in the cutting process. However, the acoustic
emissions (AE) signal has proven to be sensitive enough for precision turning monitoring [1].
AE are considered to be transient elastic waves, from 25 kHz to several MHz s, generated by the

release of energy from localised sources of materials which are suffering irreversible changes in
their structure. During precision metal cutting operations, it is accepted that the main AE sources
are plastic deformation, friction and fracture. Thus, AE sources are directly related to the cutting
process and the work-piece material properties. Besides, in precision cutting AE signal is less
affected by low-frequency mechanical disturbances and the influence of the work-piece material
properties is much larger than in conventional machining. In addition, AE signal is detected by
simply mounting a piezoelectric transducer on the tool holder, thus, detection of AE signals does
not interfere with the cutting process. Therefore, AE technology seems to be promising for
precision cutting monitoring.
The AE signal has already been applied to on-line monitoring the process, the tool condition

and the surface quality in conventional and precision turning operations. During the late 1970s,
different research teams observed that the AE signal was affected by process and tool condition
during conventional metal turning operations [2–4]. Since then, a number of, more or less,
sophisticated techniques, that make use of the AE signal, have been proposed for monitoring
cutting operations. These techniques have been evaluated in several review papers [5–7]. Despite
much effort has been directed towards developing on-line condition monitoring systems that
make use of features extracted from the AE signal, few of them have shown to be reliable enough
as to be implemented in industry. Most of the techniques proposed were based on the root mean
square (RMS) value of the AE signal, Vrms; as defined by,

Vrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

Z T

0

V2ðtÞ dt

s
;

where V ðtÞ is the AE raw signal and T is the integration period. The RMS value carries
information of the AE raw signal power during each interval of time, T ; reducing the dynamic
range and leading to a loss of possibly valuable information. The use of the RMS value can be
understood both by the difficulty of working in the high-frequency range of raw AE and by the
lack of understanding of AE waves sources and propagation.
Nevertheless, spectral analysis was applied from the very beginning to the AE raw signal,

aiming to relate different spectral components or bandwidths mainly to deformation [8] and tool
wear [9]. Recently, more sophisticated time–frequency [10] and time-scale [11] techniques have
also been proposed for the same purposes. However, AE raw signal spectral analysis has had very
limited success, largely due to the following simplifying assumptions.

(a) Most of the times, it has been assumed that the dynamic response of the sensor was flat in its
working frequency range.

(b) Most of the times, it has been assumed that spectral components of waves arriving to the AE
sensor were directly related to AE sources, such as deformation [12] or friction [13],
underestimating the influence of the transmission path filtering.
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The objective in this article is to identify variations in the cutting process by monitoring the
temporal evolution of the estimated AE transmission path, from the cutting zone to the location
where the AE sensor is fixed. In order to estimate transmission path impulse response (IR),
bicepstrum based blind identification techniques are presented as a valid tool for this purpose.
This paper is organised as follows. In Section 2, a brief introduction to AE theory and blind

identification techniques is presented. First, assumptions taken, related to the AE microscopic
source model, the AE transmission path and the measurement system, are discussed. Second, two
identification methods are introduced, the complex cepstrum and the bicepstrum. Section 3
describes the experimental procedure used and discusses the results. Finally, conclusions are
presented in Section 4.

2. Theoretical considerations

2.1. AE sources in precision turning

During a precision cutting operation, it is accepted that AE are mainly generated by plastic
deformation in the primary and secondary zones and by friction related phenomena in the
secondary and the tertiary zones [14]. Mechanisms by which AE are produced by dislocations and
those which are related to friction are fundamentally different. Nevertheless, stress waves
produced by both, a single moving dislocation and those resulting from friction, have been
modelled as very short lifetime stress pulses [12,15,16]. These short life pulses are believed to be
uncorrelated [17] and their probability density function (PDF) is unknown [18]. Rouby et al. [12]
modelled a dislocation AE source as two stress waves with opposite direction, delayed by t ¼
v0=D; where v0 is the speed at which the dislocation is moving between two obstacles on a glide
distance, D: Spectral components associated with these very short duration pseudo-oscillatory
events would be expected to be in the high MHz or GHz range, as pointed by James and
Carpenter [16], far beyond commercially available piezoelectric AE sensor frequency range.
Stephens and Pollock [15] argued that an oscillatory or double pulse model has a mean value of
zero and leads to no change in the static stress level. However, AE are produced during
irreversible changes in the material. Therefore, they proposed a single stress pulse AE source
model. The frequency spectrum of such a source will have a maximum value at zero frequency and
a nearly flat power spectral density along the piezoelectric sensor bandwidth.

2.2. Transmission path and measurement system

Stress waves generated by the AE source pulses propagate from the cutting point to the sensor
location, being distorted by the transmission path. During propagation, these waves suffer
multiple reflections, mode conversions and attenuation. AE waves will also excite the resonances
in small specimens [15], due to the broadband nature of the single pulse stress source.
Therefore, a model for the transmission path seems to be necessary in order to equalise the

distorted stress waves arriving to the sensor location. Nevertheless, a priori knowledge of the
transmission path characteristics is impracticable for most of the applications. Indeed, modelling
the propagation of elastic waves through structures and specimens has been accomplished both
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analytically [19] and numerically by means of finite element analysis (FEA) [20]. However,
analytical approaches are restricted to simple geometries and, the computational cost and the
difficulty for defining material properties and boundary conditions, have limited results obtained
by FEA.
Besides, it seems reasonable to think that changes in cutting conditions, such as tool wear, chip

length contact or material properties of the work-piece, would lead to a change in the direction of
produced stress waves. Changes in the direction of the sources will lead to different propagation
paths for the AE waves. Therefore, an on-line estimation for the transmission system seems to be
more appropriate because it has potentially useful information about the source events.
In addition to the transmission path filtering, distortion caused by the measurement system

response is also of consideration, especially when piezoelectric sensors are employed. The reason
is that piezoelectric sensors high sensitivity is achieved by one single or multiple resonances spread
along their working bandwidth.

2.3. A linear time invariant (LTI) model for blind system identification

Transmission path and piezoelectric sensor response have traditionally been modelled as LTI
systems in ultrasonic non-destructive testing (NDT) applications [21]. The same kind of model is
taken in this article for an AE monitoring application. It is assumed that both path transmission
and sensor response are time invariant over a suitable observation period or only change slightly.
In this model, the measured AE signal, yðtÞ; results from the convolution of the excitation due to
cutting process, pðtÞ; with the path IR, hmðtÞ; and the a AE sensor and measurement system IR,
hSðtÞ; as shown

yðtÞ ¼ hSðtÞ�hmðtÞ�pðtÞ þ nðtÞ; ð1Þ

where � denotes convolution and nðtÞ is added to the system output and it is assumed to be zero
mean white Gaussian noise due to the measurement system. A block diagram of the model is given
in Fig. 1.
Conventional deconvolution methods applied in ultrasonic NDT, such Wiener filter and

minimum variance deconvolution [22], require a priori knowledge of both input, pðtÞ; and output,
yðtÞ; in order to estimate the transfer function. Since only the output data is available in the case of
AE, system model must be estimated from the output, yðtÞ; by taking some statistical assumptions
for the excitation process. This kind of procedure is referred as blind identification.
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Fig. 1. LTI model for an AE monitoring application.
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2.4. Complex cepstrum based blind identification

Let consider an autoregressive moving average (ARMA) energy sequence, hðkÞ; which Z

transform is,

HðzÞ ¼ Kz�rIðz�1ÞOðzÞ ð2Þ

with

Iðz�1Þ ¼
QL1

i¼1ð1� aiz
�1ÞQL3

i¼1ð1� diz�1Þ
; ð3Þ

Oðz�1Þ ¼
YL2

i¼1

ð1� biz
�1Þ; ð4Þ

where K is a constant, r is a integer, IðzÞ is the minimum phase component and OðzÞ is the
maximum phase component. The cepstral parameters, AðmÞ and BðmÞ; are given by

AðmÞ ¼
XL1

i¼1

am
i �

XL3

i¼1

dm
i ;

BðmÞ ¼
XL2

i¼1

bm
i : ð5Þ

The complex cepstrum was defined by Oppenheim and Shaffer [23] as

chðmÞ ¼ Z�1½log½HðzÞ�� ð6Þ

and it has been demonstrated elsewhere [24] that it is related to the cepstral parameters, AðmÞ and
BðmÞ as,

chðmÞ ¼

logjAj; m ¼ 0;

�
AðmÞ

m
; m > 0;

Bð�mÞ

m
; mo0:

8>>>>><
>>>>>:

ð7Þ

It can also be demonstrated [24] that the IR for the minimum phase component, iðkÞ and the
maximum phase component, oðkÞ; of HðzÞ can be obtained from the cepstral parameters by means
of

iðkÞ ¼ �
1

k

Xkþ1

m¼2

Aðm�1Þiðk � m þ 1Þ; kX1; ð8aÞ
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oðkÞ ¼
1

k

X0
m¼kþ1

Bð1�mÞoðk � m þ 1Þ; kp� 1 ð8bÞ

taking ið0Þ ¼ oð0Þ ¼ 1: Finally, the system IR is obtained convolving both minimum phase and
maximum phase IRs, hðkÞ ¼ iðkÞ�oðkÞ:
The complex cepstrum is a homomorphic transformation that satisfies the generalised principle

of superposition [25]. It has been applied to separate signals that have been combined by
convolution, first by transforming convolution into product by the Z transform, then by
transforming product into sum by taking the logarithm and finally returning to the time domain
by the inverse Z transform. If the convolved signals have frequency components concentrated in
different ranges, signal separation is achieved taking a cut-off time and zeroing, or liftering, the
high time complex cepstrum (filtering the low-frequency components) or the low time components
(filtering the high time frequencies).
Rice and Wu [26] proposed the complex cepstrum as a technique to accomplish the

deconvolution of AE signal during interrupted milling operations. They assumed that AE bursts
during this process were associated with the fracture phenomena. Each of these bursts was
modelled at the source as a deterministic wavelet, with frequency components in the range of the
AE sensor. These wavelets were then convolved with the transmission path IR, consisting of
multiple echoes. Rice and Wu assumed that low time components in the complex cepstrum
domain were related to the source wavelet. They took a cepstral cut-off and high time liftered the
complex cepstrum, so that the components related to the transmission path were removed. Then,
the source wavelet was reconstructed by computing the inverse complex cepstrum after high
liftering the complex cepstrum.
However, for the complex cepstrum to be valid as a deconvolution technique, the combined

signals need to have their spectral energy concentrated at different frequency ranges. Moreover,
the complex cepstrum can only be applied when excitation signals are deterministic. Certainly, this
seems not to be the case for diamond precision turning. Indeed, the process excitation signal is
more likely to be a random flat spectrum white noise in the sensor frequency range as stated in
Section 2.1.

2.5. Bicepstrum based blind identification

Bicepstrum has already been successfully utilised as a technique for blind deconvolution in
many seismic and ultrasonic applications [27]. The bicepstrum is defined in Eq. (12), as the inverse
2D Z transform of the log bispectrum, CH

3 ðz1; z2Þ; and it is related to the cepstral parameters by
Eq. (13). See Appendix A for a brief introduction of the bispectrum properties

bHðm; nÞ ¼ Z�1
2 ½log½CH

3 ðz1; z2Þ��; ð12Þ
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bh m; nð Þ ¼

logjA3j; m ¼ 0; n ¼ 0;

�
1

n
AðnÞ; m ¼ 0; n > 0;

�
1

m
AðmÞ; n ¼ 0; m > 0;

1

m
Bð�mÞ; n ¼ 0; mo0;

�
1

n
Bð�nÞ; m ¼ 0; no0;

�
1

n
BðnÞ; m ¼ n > 0;

1

n
Að�nÞ; m ¼ no0;

0; otherwise:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð13Þ

Let HðzÞ be a LTI system driven by a zero-mean, independent identically distributed (i.i.d.)
signal with skewness, gp

3 (see Appendix A). Then, its bispectrum, CH
3 ðz1; z2Þ; exists and is given by

CH
3 ðz1; z2Þ ¼ gp

3Hðz1ÞHðz2ÞHðz�1
1 � z�1

2 Þ: ð14Þ

Without loss of generality, it can be assumed that gp
3 ¼ 1 in order to identify HðzÞ phase and

magnitude relation among the different spectral components, because it will be embedded as a
constant in the bispectrum.
The bicepstrum can be applied to deconvolve both deterministic and stochastic signals [27].

Bicepstrum contains phase information and it can be applied to obtain the system IR and the
inverse filter. Another advantage of bicepstrum based blind identification is that the bispectrum of
a zero skewness signal is zero, thus, bispectrum filters any additive Gaussian noise term (see Ref.
[27] and Appendix A). The bicepstrum can be used for minimum and non-minimum white-noise
non-zero skewness driven LTI system blind identification and it does not require a priori
knowledge of the order of the system to be identified. Moreover, the inverse IR, f ðkÞ; could be
easily computed from the cepstral parameters obtained from the bicepstrum by means of

fiðkÞ ¼ �
1

k

Xkþ1

m¼2

½�Aðm�1Þ�fiðk � m þ 1Þ; kX1; ð15aÞ

f0ðkÞ ¼
1

k

X0
m¼kþ1

½�Bð1�mÞ�f0ðk � m þ 1Þ; kp� 1 ð15bÞ

taking fið0Þ ¼ f0ð0Þ ¼ 1 and then convolving, f ðkÞ ¼ fiðkÞ�f0ðkÞ:
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3. Experiments

3.1. AE sensor calibration

In order to evaluate the relative influence of propagation path and sensor response in the AE
signal spectrum, two different tests were carried out. For the first test, two SE-900-MWB Deci,
Inc. AE sensors were positioned face-to-face and coupled with petroleum jelly, one of them acting
as a transmitter and the other one as a receiver (Fig. 2a). The driving transducer was excited by
constant amplitude sinusoidals. Frequencies from 1 up to 500 kHz were swept with steps of
100Hz. The excitation signal was generated with a HP33120A function generator. The output
signal from the receiver sensor was first amplified (40 dB) and filtered from 20 kHz to 1MHz with
the AESMART302A signal conditioner, and then digitalised at a 2MHz sampling frequency with
a 12 bits Adlink PCI9812 acquisition card. For the second test, both sensors were separated by a
1� 1� 5 in size beam and coupled with petroleum jelly to the same face of the beam, as shown in
Fig. 2b. Both tests were repeated 10 times and the average frequency magnitude response for both
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Fig. 2. (a) Sensors positioned face-to-face, (b) sensors separated by a beam.
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tests is shown in Fig. 3, where an averaged version curve of the response obtained in the second
test is included.
Fig. 3 shows that the frequency response of the SE-900-MWB AE sensor has three mean lobes

in the range from 25 up to 500 kHz centred at 133, 295 and 430 kHz. One large resonance at
295 kHz, and several peaks located at 34, 120, 175, 290 and 430 kHz.
As it can be observed in Fig. 3, for the second test, the obtained power spectrum is largely

influenced by the sensor frequency response. Nevertheless, superposed to it there are multiple
peaks that can be attributed to the transmission path transfer function. Attenuation in the second
test is also attributed to AE transmission through the interposed beam. Therefore, AE spectra
seems to be primarily determined by sensor response and transmission path.

3.2. Precision turning experiments

3.2.1. Experimental set-up
A series of experiments were conducted in order to verify the validity of bicepstrum for AE

signal blind deconvolution during precision diamond turning. Experiments were conducted on a
Rank Pneumo MSG-326 precision lathe, equipped with an air-bearing spindle and precision air-
bearing lays. An HP laser interferometer was used to measure tool position in the feed direction,
and a Heidenhain linear encoder for measuring spindle rotation angle. Material was single crystal
(1 1 1) orientation Cu, grown via the Bridgman technique, rated at 5N (99.999% pure). The work-
piece was clamped onto the spindle of the lathe by means of vacuum and machined by a single
crystal diamond tool with 0� rake angle, 10� clearance angle, 0.274 mm nose radius. Cutting
parameters were maintained constant in all tests to 1000 rpm, 21.6mm/rev feed and a nominal
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depth of cut of 2 mm. Cutting zone was continuously lubricated with alcohol during cutting
operation. The measurement system was the same as that described for the calibration preliminary
tests and both, encoder pulses and AE raw signal, were low pass filtered to prevent aliasing and
continuously digitalised at a 1.2MHz sampling frequency during three cycles of the spindle in
each test. Signals were acquired from three different sensor locations, A, B and C, one on the tool-
holder and two on the tool-post, as it can be seen in Fig. 4. The AE signals were measured by one
SE-900-MWB Deci Inc. sensor which was fixed onto the different positions by means of a mixture
of petroleum jelly and glue.

3.2.2. Results and discussion
The strategy followed was first to estimate the whole IR from the cutting point, including

transmission path and sensor transfer functions. Then, the Fourier transform of the estimated IR
was compared with the sensor response, which it was known because it was previously obtained
by calibration in Section 3.1.
It was assumed that measured data, yðtÞ; was a convolution of the excitation process, pðtÞ; with

the combined transmission path and the sensor IR, hmsðtÞ;

yðtÞ ¼ hmsðtÞ�pðtÞ þ nðtÞ; ð16Þ

where nðtÞ is a zero skewness white noise and pðtÞ is a i.i.d. non-zero skewness white noise due to
the measurement system. This assumption of zero skewness for the added noise was
experimentally demonstrated. AE signal was recorded when the lathe was completely turned on
but no cutting operation was taking place. The AE signal power spectral density was observed to
be flat for the acquired noise signal and the Hinich’s test was performed [28] in order to find out
whether if the noise PDF had zero skewness. According to the Hinich’s test the noise signal had
zero skewness with 1% error probability.
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Data collected during each test was divided in successive 10 segments of 1024 samples and
cepstral parameters were calculated for each set. The 2D fast Fourier transform (FFT2) method
(see Ref. [24] and Appendix B) described by Eq. (17) was utilised for computational efficiency to
compute the bicepstrum,

n � bHðn;mÞ ¼ F�1
2

F2½n � mH
3 ðn;mÞ�

F2½mH
3 ðn;mÞ�

� �
; ð17Þ

where mH
3 ðn; cÞ is the third-order moment function, F2½�� is the FFT2 and F�1

2 ½�� is the inverse
FFT2. The FFT2 estimation method is recommended for systems with pronounced resonances
[24]. Then, cepstral parameters were calculated by means of Eq. (13), which were employed to
compute the estimated system IR, hmsðtÞ by means of Eq. (8).
Some results are shown in Figs. 5–7, where the magnitude frequency responses obtained by the

Fourier transform of the estimated IRs are illustrated, for the three different sensor locations. It
can be observed that the sensor response still influences the estimated log spectrum, especially
when the sensor is positioned directly on the tool holder (Fig. 7). In the same figure, it can also be
observed that high-frequency AE waves are much less attenuated than when the sensor is fixed far
from the cutting point (positions A and B). For the three different sensor locations, apart from the
influence of the sensor response, there are several peaks along the whole analysed frequency range.
It is to be mentioned the energy of those peaks located in the low-frequency range, up to 100 kHz,
where sensor response is expected to be poor.
It is clear that the estimated frequency responses differ not only from the sensor frequency

response function but also from one sensor location to another. It can be argued that these
differences could be related to the mechanical system vibration modes excited by the cutting
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Fig. 6. Log magnitude spectrum for location B (solid line) compared to the log magnitude response for the SE-900-

MWB sensor attenuated 70 dB (dashed line).

Fig. 7. Log magnitude spectrum for location C (solid line) compared to the log magnitude response for the SE-900-

MWB sensor attenuated 70 dB (dashed line).
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process. The excited mechanical system modes influence changes from one sensor location to
another, which is the same as saying that the transmission path differs from one location to
another. Especially, it must be emphasised the low-frequency range peaks which could be
attributed to a larger influence of the lower frequency mechanical modes. On the other hand, the
magnitude of some of the peaks change depending on where the sensor was fixed on, due to
variations in the transmission path. Respecting attenuation, it must be mentioned that the
mechanical system generally acts as a low-pass filter for the AE waves. When the sensor is fixed on
the tool post, the distance between the cutting point and the sensor location is larger and AE
waves go through an interface in their way to the sensor. Therefore, attenuation for high
frequencies is larger as it can be observed in Figs. 5 and 6 (positions A and B, respectively). On the
contrary, for Fig. 7, where the sensor is positioned directly on the tool holder, high-frequency AE
waves are much less attenuated and the influence of the sensor response can be better appreciated
in the high-frequency range.

3.2.2.1. Comparison with tool-holder natural frequencies. In order to find out whether if any of
these peaks are really related to tool-holder modes. A finite element model for a fixed tool-holder
was developed and a numerical modal analysis was performed by FEA, using IDEAS as FEA
software. Boundary conditions were taken so that tool-holder nodes in contact with the support
had restrained all the translations while the rotations were free. The type of elements utilised were
solid elements of parabolic order. Most of the elements were 1mm side bricks. Natural
frequencies were obtained up to 100 kHz, which are listed in the table bellow.
Despite results of the numerical modal analysis can only be interpreted in a qualitative manner,

due to the simplifications taken, it is at least shown in Table 1 that tool-holder modes higher than
the second one are in the frequency range associated with AE.
Fig. 8 compares the magnitude of the Fourier transform of the estimated IR, for the test when

the sensor was fixed directly on the tool-holder, with the natural frequencies associated with the
tool-holder modes up to 100 kHz. In this figure there can be observed three main peaks at 34, 49
and 75 kHz.
While the spectral peak centred on 34 kHz could be associated with a sensor resonance (see Fig.

3), both the peak at 49 kHz and that located at 75 kHz are associated to the mechanical system
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Table 1

Natural frequencies for the tool-holder

Mode Frequency (Hz)

1 8066

2 8326

3 30,857

4 39,059

5 39,571

6 48,994

7 79,234

8 88,709

9 91,908

10 92,131
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mode 3 and mode 6, respectively. These peaks correspond to those modes that contribute
significantly to surface displacements at the sensor location. The rest of the modes have no relative
influence at the sensor location.

3.2.2.2. Influence of process variations in the transmission path. Positioning the AE sensor on
different location will certainly change the transmission path for the AE produced in the cutting
zone. The question that arises is whether if the estimation of the IR is sensible enough for
monitoring variations in the process. These variations would modify the distribution of the AE
sources directions, so that the propagation paths would be affected.
Although exhaustive tests were not conducted to demonstrate this relation between process

condition and the transmission path IR, time evolution for the ratio between spectral energy
concentrated around two distinctive peaks was analysed. These two peaks, at 49 kHz and at
75 kHz, were observed when positioning the sensor on the tool-holder and they can not be
attributed to sensor resonances as it can be observed in Fig. 3. The AE energy changed cyclically
with a period equal to 120� of the spindle rotation angle during the all tests. This cyclic change
could be attributed to a change in the cutting forces due to different crystal orientation during one
rotation [29]. Fig. 9 shows how variations in the ratio seem to be correlated the variations in the
AE raw signal and the AE RMS value. The ratio in Fig. 9 is scaled so that it can be compared to
the variations in the AE energy.

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

Frequency (kHz)

34 kHz

49 kHz

75 kHz

no
rm

al
iz

ed
 s

pe
ct

ru
m

Fig. 8. Estimated frequency response (solid curve) and location for the tool-holder natural frequencies calculated by

FEA (vertical lines).
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Fig. 9. (a) AE raw signal (solid line) and ratio between two spectral peaks located at 49 and 75 kHz (dashed line). (b)

Normalised AE RMS signal (solid line) and normalised ratio between two spectral peaks located at 49 and 75 kHz

(dashed line).

A. Iturrospe et al. / Mechanical Systems and Signal Processing ] (]]]]) ]]]–]]] 15

YMSSP : 1671



UNCORRECTED P
ROOF

Taking the following assumptions: that spectral and statistical properties of excitation, sensor
response is time invariant and linear and that mechanical system properties do not vary
significantly with time. Then, estimated IR spectral variations should only be attributed to
variations in the direction of excitation, and therefore to changes in the propagation path. In the
present experimental study, excitation direction has changed due to variation of the work-piece
crystal orientation. Nevertheless, the same blind identification technique could be used in the
future for detecting and monitoring variations in the cutting process which are supposed to
change the direction of the excitation, such as increase in the tool wear.

4. Conclusions

Precision diamond turning condition monitoring by means of AE has been presented as a blind
identification problem. A bicepstrum based technique has been proposed for obtaining the
transmission path IR.
Experimental tests and FEA simulations have been conducted which demonstrate that AE raw

signal spectral characteristics are, to a great extent, influenced by the transmission path and the
sensor response.
The bicepstrum is a valid tool for obtaining the transmission path transfer function under the

assumption taken in this article.
Finally, it has been experimentally observed that AE transmission path IR change with

variations in the cutting conditions.
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Appendix A

A.1. Moments and cumulants for random variables

Given a set of n real random variables fx1;x2;y;xng their joint moments of order r ¼
k1 þ k2 þ?þ kn are defined as

Mom½xk1

1 ; x
k2

2 ;y; xkn
n �

¼ Efxk1

1 xk2

2 yxkn
n gð�jÞr

@rFðo1;o2yonÞ
@ok1@ok2y@okn

����
o1¼o2¼?on¼0

; ðA:1Þ

where Fðo1;o2yonÞ ¼ Efejðo1x1þo2x2þ?þonxnÞg is their joint characteristic function.
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The joint cumulants of order r of the same set of random variables are defined as follows:

Cum½xk1

1 ;xk2

2 ;y; xkn
n �

¼ ð�jÞr
@rlnFðo1;o2yonÞ
@ok1 @ok2y@okn

����
o1¼o2¼?on¼0

: ðA:2Þ

An important property of cumulants is that if a set of random variables fx1;x2;y;xng is jointly
Gaussian, all joint cumulants of order n > 2 are identical to zero.

A.2. Moments and cumulants of stationary processes

Let fX ðkÞg; with k ¼ 0;71;72;y; be a real stationary random process and its moments up to
order n; mX

n ; exist and be defined, depending on time differences, by,

mX
n ðt1; t2;y; tn�1Þ ¼ Mom½X ðkÞ;X ðk þ t1Þ;y;X ðk þ tn�1Þ�

¼ EfX ðkÞX ðk þ t1ÞyX ðk þ tn�1Þg ðA:3Þ

and its cumulants up to order n by,

cX
n ðt1; t2;y; tn�1Þ ¼ Cum½X ðkÞ;X ðk þ t1Þ;y;X ðk þ tn�1Þ�: ðA:4Þ

Combining Eqs. (A.2)–(A.4) the following relationship between first-, second- and third-order
cumulants and moments can be obtained,

cX
1 ¼ mX

1 ¼ EfX ðkÞg ðmean valueÞ; ðA:5Þ

cX
2 ¼ mX

2 ðt1Þ � ðmX
1 Þ

2 ðcovariance sequenceÞ; ðA:6Þ

cX
3 ðt1; t2Þ ¼mX

3 ðt1; t2Þ � mX
1 ½m

X
2 ðt1Þ

þ mX
2 ðt2Þ þ mX

2 ðt2 � t1Þ� þ 2ðmX
1 Þ

3

ðthird-order cumulant sequenceÞ: ðA:7Þ

According to Eqs. (A.6) and (A.7), for a zero-mean stationary random process, second- and
third-order cumulants are equal to second- and third-order moments, respectively.
Zeroing t1 ¼ t2 ¼ t3 ¼ 0 in Eqs. (A.6) and (A.7) and by putting mX

1 ¼ 0 we obtain the variance
and the skewness for process fX ðkÞg; which are defined as follows:

gX
2 ¼ EfX 2ðkÞg ¼ cX

2 ð0Þ ðvarianceÞ;

gX
3 ¼ EfX 3ðkÞg ¼ cX

3 ð0; 0Þ ðskewnessÞ:

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

A. Iturrospe et al. / Mechanical Systems and Signal Processing ] (]]]]) ]]]–]]] 17

YMSSP : 1671



UNCORRECTED P
ROOF

A.3. Cumulant spectra: bispectrum

The nth order cumulant spectrum for a real strictly stationary process, fX ðkÞg; is defined as,

CX
n ðo1;o2;y;on�1Þ

¼
XþN

t1¼�N

y

XþN

tn�1¼�N

cX
n ðt1; t2;y; tn�1Þe�jðo1t1þo2t2þ?þon�1tn�1Þ;

joijpp; for i ¼ 1; 2;y; n � 1 and jo1 þ o2 þ?þ on�1jpp:
Particular cases of cumulant spectra are power spectrum (n ¼ 2) and bispectrum (n ¼ 3). In the

same way that power spectrum is defined as the second-order cumulant spectrum by,

CX
2 ðoÞ ¼

XN
t¼�N

cX
2 ðtÞe

�jot with jojpp

bispectrum is defined as the third-order cumulant spectrum as follows:

CX
3 ðo1;o2Þ ¼

XN
t1¼�N

XN
t2¼�N

cX
3 ðt1; t2Þe

�jðo1t1þo2t2Þ

jo1jpp; jo2jpp and jo1 þ o2jpp; ðA:8Þ

where cX
3 ðt1; t2Þ is the third-order cumulant sequence described by Eq. (A.7). From moment

properties [27] and Eq. (A.7) it can be demonstrated the following symmetries for cX
3 ðt1; t2Þ:

cX
3 ðt1; t2Þ ¼ cX

3 ðt2; t1Þ ¼ cX
3 ð�t2; t1 � t2Þ

¼ cX
3 ðt2 � t1;�t1Þ ¼ cX

3 ðt1 � t2;�t2Þ

¼ cX
3 ð�t1; t2 � t1Þ:

By these symmetry properties and the definition of bispectrum, we can also obtain a series of
symmetries for the bispectrum, as follows:

CX
3 ðo1;o2Þ ¼CX

3 ðo2;o1Þ ¼ CX
3 ð�o2;�o1Þ

¼CX
3 ð�o1 � o2;o2Þ ¼ CX

3 ðo1;�o1 � o2Þ

¼CX
3 ð�o1 � o2;o1Þ ¼ CX

3 ðo2;�o1 � o2Þ:

Therefore knowledge of the bispectrum in the region o2X0; o1Xo2 and o1 þ o2pp; is enough to
define the entire bispectrum.

A.4. Bispectrum of non-Gaussian linear processes with additive Gaussian noise

Let HðoÞ be the frequency response of a finite dimensional exponentially stable LTI system
function, as defined by Eqs. (2)–(4), and the system input, X ðoÞ; be a stationary non-Gaussian
process, white, i.i.d., with skewness gX

3 : Let also consider its output is corrupted by an additive
Gaussian noise, NðoÞ; as follows:

Y ðoÞ ¼ HðoÞX ðoÞ þ NðoÞ:

Then the bispectrum of its output with an additive Gaussian noise, Y ðoÞ; is given in the
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frequency domain [27] by,

CY
3 ðo1;o2Þ ¼ gX

3 Hðo1ÞHðo2ÞH�ðo1 þ o2Þ þ CW
3 ðo1;o2Þ: ðA:9Þ

As we have assumed that NðoÞ is Gaussian, then its bispectrum will be equal to zero for all
frequency pairs, CW

3 ðo1;o2Þ ¼ 0: From Eq. (A.9), it follows that the bispectrum magnitude will be
given by,

jCY
3 ðo1;o2Þj ¼ jgX

3 jjHðo1ÞjjHðo2ÞjjHðo1 þ o2Þj

and its phase by,

cY
3 ðo1;o2Þ ¼ fHðo1Þ þ fHfðo2Þ � fHðo1 þ o2Þ;

where fH is the phase of HðoÞ: Therefore, the bispectrum conserves HðoÞ phase information.

Appendix B. FFT2 based algorithm for computing bicepstrum

Bicepstrum is defined as the inverse 2D z-transform of log bispectrum [27], as follows:

bHðn;mÞ ¼ Z�1
2 ½log½CH

3 ðo1;o2Þ��:

Defining Bhðo1;o2Þ ¼ log½Ch
3 ðo1;o2Þ�; and taking partial differentiation we obtain,

@BHðo1;o2Þ
@o1

¼
1

CH
3 ðo1;o2Þ

@CH
3 ðo1;o2Þ
@o1

or

CH
3 ðo1;o2Þ

@BHðo1;o2Þ
@o1

o1 ¼
@CH

3 ðo1;o2Þ
@o1

o1: ðA:10Þ

From Eq. (A.10) it follows that third-order moment sequence, mH
3 ðn;mÞ; is related to

bicepstrum, bHðn;mÞ; by the following convolutional formula [27]:

�n � mH
3 ðn;mÞ ¼ mH

3 ðn;mÞ�½�mbhðn;mÞ�: ðA:11Þ

According to Eqs. (A.10) and (A.11) the bicepstrum can be evaluated by Eq. (17), which is
presented below again for convenience,

n � bHðn;mÞ ¼ F�1
2

F2½n � mH
3 ðn;mÞ�

F2½mH
3 ðn;mÞ�

� �
:

Therefore, the FFT2 based algorithm steps are,

1. Segment data into K records of M samples and subtract the average value of each record.
2. For each of the records, estimate third-order moment sequence, mH

3 ðn;mÞ;

mH
3 ðn;mÞ ¼

1

M

Xs2

k¼s1

xðkÞxðk þ mÞxðk þ nÞ;

where
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s1 ¼ maxð0;�m;�nÞ

s2 ¼ minðM � 1;M � 1� m;N � 1� nÞ

with jmjpL1; jnjpL1;

L1 determining the region of support for the estimated third-order moment sequence.
3. Average estimates moment sequences of all records and obtain the 2D FFT, for F2½n � mH

3 ðn;mÞ�
and for the estimated third-order moment sequence, mH

3 ðn;mÞ:
4. Compute bicepstrum coefficients by Eq. (17).
5. Obtain cepstral parameters by Eq. (13), from bicepstrum coefficients.
6. Initialise ið0Þ ¼ oð0Þ ¼ 1 and evaluate maximum, oðkÞ; and minimum phase, iðkÞ; IR according

to recursive Equations (8a) and (8b).
7. Compute estimated system IR by convolving oðkÞ and iðkÞ:
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