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Precision medicine has the potential to revolutionize cancer care by identifying promising 

treatment strategies specific to each patient’s disease. While advances in genome sequencing 

have facilitated the identification of mutations within tumors, only a small number of strict 

relationships between gene alterations and drug response have been established. Functional 

precision medicine is an emerging paradigm that exposes living patient-derived tissue to drugs to 

observe response. The work presented in this thesis will describe the development and 

implementation of high-throughput platforms for organoid screening. First, I will discuss the varied 

approaches that have been used to model tumors in vitro. Then, I will present our findings from 

screening organoids derived from 127 patients with sarcoma specimens collected at UCLA. Next, 

I describe the development of a pipeline for screening bioprinted organoids with high-speed live 

cell interferometry to enhance consistency and assess response to treatment with single-organoid 

resolution. Finally, I will detail the development of new methods for screening radiotherapy and 

liver-metabolized prodrugs on tumor organoids. This work contributes to the overall goal of 

creating robust, automated, and informative organoid screening pipelines for the implementation 

of functional precision medicine in clinical oncology. 
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Chapter 1: Introduction to functional precision medicine 

 Precision medicine is based on the concept that each patient is unique and requires 

tailored treatment to achieve the best possible clinical outcomes1,2. Though precision medicine 

strategies are becoming commonplace in some aspects of clinical care3, treatment decisions for 

patients with cancer are rooted in clinical trials examining the efficacy of therapeutic regimens 

across large patient cohorts4. Personalized medicine solutions tailoring treatment to individual 

tumors are attractive, especially given the enormous heterogeneity found across patients5–10, 

amongst tumors from the same patient11–13, and even within individual lesions11–14. Traditionally, 

these techniques have tailored treatment to individuals based on genetic aberrations found 

through sequencing15. While advances in next-generation sequencing have facilitated the 

identification of mutations within tumors, only a small number of actionable alterations, genetic 

aberrations with a well-defined relationship to patient response to a specific drug, have been 

established16.  

One of the major studies investigating these relationships is the NCI-MATCH trial. The 

NCI-MATCH trial is a landmark Phase II clinical trial that is designed to investigate the genomic 

precision medicine approach to cancer treatment17,18. Each tumor is screened for genetic 

aberrations and patients are assigned to a trial arm that matches a targeted therapy to their 

specific abnormality. Though any cancer patient that has failed at least one prior line of therapy 

qualifies for enrollment, the proportion of patients harboring the aberrations of interest are 

relatively low (Figure 1.1). Amongst study arms with results available, the range of genetic 

aberration prevalence was 0.03% (ALK translocations) to 3.47% (PIK3CA mutations) in the 

cancer patient population19. The scarcity of actionable mutations significantly limits the number of 

patients that can benefit from the genomic precision medicine approach. The more sobering 

finding, however, has been the broad lack of efficacy of the targeted treatments. Across the 20 

trial arms with publicly available results, only four have met the primary benchmark of a 16% 
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overall response rate20–23.  Several of the trial arms failed to see a complete or partial response 

in a single patient (Figure 1.1) 24–27. While this trial does have limitations such as a pretreated 

patient population, relatively low power in individual subprotocols, and a limited set of targeted 

drugs for the genetic abnormalities found, the lackluster results demonstrate that genomic 

precision medicine, in its current form, is largely ineffective. For the majority of cancer patients, 

genomic analyses are unable to inform clinical decisions regarding treatment (Figure 1.1) 28–30. 

 

 

Despite the underwhelming results based on genomic insights, new approaches to 

precision medicine, including functional assays, have shown promise31,32. Functional precision 

 
Figure 1.1: Summary of current NCI-MATCH Clinical Trial results. The NCI-MATCH trial is a Phase 

II clinical trial investigating the efficacy of drugs within a cohort of pretreated cancer patients. Arm 

assignment is exclusively based on the presence of pre-specified genetic characteristics of patient 

tumors. The prevalence of each mutation found within the first 6000 patients screened in the NCI-

MATCH trial (left). The number of responsive versus non-responsive patients for each trial arm based 

on data available for completed trial arms as of September 16, 2022 (right). 
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medicine differs from traditional genomics-based personalized medicine in that it exposes living 

patient-derived tissue to drugs to observe response33. One model used for this purpose is patient-

derived tumor organoids. Tumor organoids are three-dimensional (3D), multicellular tissue 

constructs representative of native cancer physiology and histopathology33–35. Compared to two-

dimensional (2D) cell cultures, 3D models better recreate cell-matrix and cell-cell interactions and 

generate more representative phenotypes, gene expression profiles, and responses to 

treatment36–38. The leading in vivo models used for personalized drug testing are patient-derived 

xenografts (PDXs); these are generated by injecting patient cells into immunodeficient animals 

(most often mice)33. While PDX models have been shown to recapitulate patient response to 

therapy39, they become less representative over time due to genetic mutations and clonal 

selection40 and are resource-intensive, requiring months to yield potentially actionable 

information33. The key to implementing functional precision medicine into clinical oncology lies 

within the development of high-throughput systems for the creation, screening, and analysis of 

personalized tumor models. 

 This doctoral thesis describes progress towards making such a platform a reality. In the 

coming pages, I will discuss the diverse approaches taken to model tumors, the utility of organoids 

in functional precision medicine for sarcoma patients, a platform that synergizes bioprinting and 

high-speed live cell interferometry for organoid screening, and additional work towards expanding 

functional screening to different treatment modalities. 

Chapter 2 features a section from Kirsten Fetah*, Peyton Tebon*, Marcus J. Goudie, 

James Eichenbaum, Li Ren, Natan Barros, Rohollah Nasiri, Samad Ahadian, Nureddin 

Ashammakhi, Mehmet Dokmeci, Ali Khademhosseini. (2019). "The emergence of 3D bioprinting 

in organ-on-chip systems." Progress in Biomedical Engineering 1(1): 012001. I wrote and edited 

the featured section under the direction of corresponding author and principal investigator Ali 

Khademhosseini. 
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Chapter 3 is a version of Ahmad Al Shihabi*, Peyton J Tebon*, Huyen Thi Lam Nguyen*, 

Jomjit Chantharasamee, Sara Sartini, Ardalan Davarifar, Alexandra Jensen, Miranda Diaz-

Infante, Hannah Cox, Alfredo Enrique-Gonzalez, Nasrin Tavanaie, Sarah Dry, Arun Singh, 

Bartosz Chmielowski, Joseph Crompton, Anusha Kalbasi, Fritz Eilber, Fran Hornicek, Nicholas 

Bernthal, Scott D Nelson, Paul C Boutros, Noah Federman, Jane Yanagawa, Alice Soragni. 

(2022). “The landscape of drug sensitivity and resistance in sarcoma organoids”. I was 

responsible for the conducting experiments, performing data analysis, and preparing the 

manuscript under the direction of principal investigator Alice Soragni. 

Chapter 4 is currently under review at Nature Communications as Peyton J Tebon*, 

Bowen Wang*, Alexander L Markowitz*, Graeme Murray, Huyen Thi Lam Nguyen, Nasrin 

Tavanaie, Thang L Nguyen, Paul C Boutros, Michael A Teitell, Alice Soragni. (2022). High-speed 

live cell interferometry for screening bioprinted organoids. Submitted, Nature Communications. I 

was responsible for conducting experiments, developing analytical methods, and preparing the 

manuscript under the direction of co-corresponding authors Michael Teitell and Alice Soragni. 

Chapter 5 is original work conducted with Miranda Diaz-Infante, Hannah Cox, Jie Deng, 

Scott Chin, and Anusha Kalbasi under the direction of principal investigator Alice Soragni. This 

collective body of work joins that of millions of scientists, engineers, and clinicians across the 

globe searching for ways to combat cancer and improve patient lives. 
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Chapter 2: Studying cancer through tumor models 

 

“All models are wrong, but some are useful.” 

-George Box, 1987 

 Models provide a method to simplify the complexity of intricate systems into 

approximations that are easier to understand and easier to use. When it comes to the abstraction 

of biological systems for the purpose of investigating tumors, the models that have been 

developed are abundant and diverse41–43. From basic 2D cell cultures to microfluidic systems, 

tumor models have supported the investigation of tumor physiology and have played an integral 

role in moving treatments from bench to bedside. Each model has unique utility and may be 

suitable for investigating specific biological questions. Simple models, though not entirely 

representative of native tissue, are typically easier to handle, sample, and analyze44,45. More 

complex models may allow the interrogation of cellular behavior in niche biological environments, 

but often come with added economic and usability costs45. In theory, the simplest model that can 

accurately answer the scientific question is the best choice. In practice, the diversity in the models 

implemented is demonstrative of the varying opinions on the fine line between too simple and too 

complex. The remainder of this chapter provides an overview of the commonly used tumor models 

and their respective roles in understanding cancer (Figure 2.1).  
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Two-dimensional cell culture 

 Though 2D cell cultures were central to the development of our current understanding of 

tumors44, the utility of these cultures has diminished due to their limited capability to recapitulate 

typical physiological behavior45. As the simplest tumor model used in research, cell lines cultured 

on treated glass and plastics have the benefits of being inexpensive, broadly accessible, and 

amenable to high-throughput techniques44,45. These models fall short in capturing the genetic 

heterogeneity of tumors45 and fail to recreate physiologically relevant microenvironments that are 

fundamental to in vivo-like cell behavior46,47.  

 Several studies have investigated whether in vivo response of patient-derived cell lines to 

treatment correlate with clinical outcomes for the patient48,49. For example, Wagner et al. studied 

a small cohort of colorectal cancer patients by screening commonly used chemotherapies48. The 

results were mixed, as one cell line correctly predicted patient response patient to 5-FU and 

oxaliplatin but another failed to predict the resistance of a second patient to 5-FU and irinotecan. 

Brodin et al. conducted a similar study investigating the utility of patient-derived cell lines from 

bone and soft-tissue sarcomas49. While the cell lines derived from the specimens maintained the 

genetic mutations unique to each tumor in early passages, these unique features were lost over 

extended culture times. Patient-specific drug response profiles were observed, and the cell lines 

were largely able to predict the negative clinical responses of patients to standard-of-care drugs. 

 Though there is a strong argument to be made for the utility of using broad panels of 

cancer cell lines for the identification of new drugs and early pre-clinical testing44, the data 

Figure 2.1: In vitro models of cancer. Cancer cell lines cultured in 2D are widely accessible and easy 

to scale but lack the complexity of native tissue. Microfluidic devices are capable of recapitulating 

specific microenvironmental features but are often used in low-throughput settings. Organoids are a 

3D alternative that balance the scalability of 2D models while maintaining some of the complexity in 

microfluidic devices. 
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collected thus far on the use of patient-derived cell lines for precision medicine suggests that 

these models may be too simple to successfully predict patient-response to treatment. 

  

Organoid models 

 Tumor organoids are multicellular, three-dimensional constructs that incorporate both cell-

cell and cell-matrix interactions found in physiological conditions50. Standard organoid models 

typically involve the suspension of tumor cells harvested from cell lines or derived from primary 

tissue in a hydrogel matrix46,51. Traditional organoid cultures are centered around hydrogel 

droplets deposited in well plates cultured over extended periods of time. The theory is that given 

sufficient time, space, and nutrients, these suspended cells will self-assemble into the tissue-

mimicking structures known as organoids47,52. Organoids have been developed for both healthy 

and diseased models, both of which have been shown to recapitulate key structures and functions 

of the native tissues47,52,53. This added complexity makes them an attractive candidate for 

modelling cancer as they better match the behavior of native tissue compared to 2D cell cultures45 

with marginal increases in cost and difficulty of use. Organoids have been developed for a variety 

of cancer types including colorectal54–60, sarcoma10,61, breast cancer6,62, head and neck 

cancer46,63, and ovarian cancer9,64.  

 Given their enhanced ability to model native tissue and relative ease to work with, the use 

of organoids has exploded in recent years. Because of their ability to recapitulate the molecular, 

histological, and behavioral features of the tissue of origin, many groups have investigated the 

utility of organoids to predict patient response to therapy; a thorough review of these studies to 

date has been published by Wensink et al51. Based on the data available thus far, organoids have 

great promise to revolutionize clinical cancer care. For example, Vlachogiannis et al. 

demonstrated that organoids representing colorectal and gastroesophageal cancers matched 

patient clinical outcomes when treated with regorafenib. These organoids resulted in 100% 
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sensitivity and 93% specificity with 88% positive predictive value and 100% negative predictive 

value59. Yao et al had similar findings from a larger cohort of patients and found the organoids to 

be 84.43% accurate, 78.01% sensitive, and 91.97% specific when it came to matching 

chemoradiation outcomes clinically65. 

 Organoids also have the potential to go beyond investigating chemotherapies and 

targeted drugs. Forsythe, et al developed a platform to seed immune-competent sarcoma 

organoids in a hyaluronic acid and collagen-based hydrogel for drug screening purposes. They 

included three immunotherapies in their drug screening panel (pembrolizumab, nivolumab, and 

ipilimumab) and found two unique responders to nivolumab and four responders to 

pembrolizumab61. In another example, Park et al. developed rectal cancer organoids for screening 

radiotherapy. This study is one of several that demonstrates the feasibility of radiating organoids 

for precision medicine applications. They found that the organoids not only recapitulated the 

characteristics of the parent tumor, but also showed a positive correlation with patient response 

to radiation60. 

 Organoids represent a powerful and versatile model for studying patient-specific response 

to treatment across a variety of therapeutic interventions. As a result of the promising findings 

published thus far, clinical trials are underway aiming to rigorously characterize the fidelity of 

organoids at recapitulating patient-specific features and assess their predictive value as a 

biomarker (for example, NCT04555473, NCT04859166, NCT05351983, and NCT04931381). 

Should these trials provide additional evidence to support the clinical use of organoids to gain 

actionable information, organoids are poised to play a foundational role in the future of precision 

cancer care. 
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Microfluidic models 

Organ-on-chip platforms are fluidic devices containing organized biological structures that 

emulate the physiological function, behavior, and response of their analogous organs in the 

human body66,67. While there is extensive diversity amongst organ-on-chip platforms, each of 

them shares the same goal: to recreate the structure and physiological behavior of human organs 

outside of the body. Though organ-on-chip systems can be used to recreate healthy tissue, 

extensive effort has also been devoted to recreating diseases within microfluidic devices68,69. 

Perhaps the most well studied disease with organ-on-chip technology is cancer. Cancer-on-chip 

systems are designed for three main purposes: to understand the role of the tumor 

microenvironment in cancer progression, to study the biological processes associated with 

metastasis, and examine the efficacy of drug therapies. While the governing phenomena of these 

three areas vary greatly, the use of microfluidic devices allows customized geometries that 

facilitate the study of specific biological and environmental factors in each domain. Most 

microfluidic devices study recreated 2D tissue interfaces, which allow optimal observation of 

artificially created gradients and cell mobility. Though they are easy to observe, 2D models do not 

incorporate the necessary 3D architecture and cellular interactions that are prerequisites for 

demonstration of physiologically relevant behavior70,71. The tumor spheroid has been the most 

widely adopted 3D construct for studying each factor as they are easy to observe, provide 

quantitative data, can be composed of several cell types, produce their own ECM, and can exhibit 

metastatic events70. These spheroids have been studied in a variety of environments ranging from 

well plates to microfluidic devices and have potential to contribute to precision oncology. 

The application of cancer-on-chip models for drug screening may yield excellent tools for 

the development of high-throughput assays used to identify compounds as potential drugs or to 

evaluate the toxicity and efficacy of existing pharmaceuticals72. While current industrial practice 

primarily uses 2D culture systems and research is being conducted on well-based spheroid 
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assays73, microfluidics has the potential to revolutionize drug screening. Lab-on-chip platforms 

such as the system developed by Yu et al show potential for creating 3D cell aggregates for drug 

screening74. This device both creates the aggregates and organizes them into an easily 

observable array of breast cancer models for pharmaceutical testing. Another device created by 

Fan et al formed and analyzed glioblastoma multiform (GBM) spheroids in a poly(ethylene) glycol 

diacrylate (PEGDA) chip75. This system facilitated the study of concurrent application of two 

common anti-GBM drugs, pitavastatin and irinotecan, and observed cell detachment and death 

on the surface of the spheroids. With the increased complexity of microfluidic systems comes 

greater diversity in the models developed and the research questions addressed with each one; 

this topic is comprehensively reviewed in Fetah, Tebon, et al41.  

Though the number of clinical trials implementing organ-on-chip devices for precision 

oncology is limited, there are ongoing studies evaluating the utility of microfluidic models in 

formulating custom treatment regimens for patients with cancer (NCT04996355). The early 

success of organoids has drawn attention from sophisticated cancer-on-chip devices for 

personalized tumor models thus far, but these models have maintained interest due to their 

unique ability to recreate controlled physiological microenvironments to study the multiple aspects 

of cancer progression. 
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Chapter 3: The utility of 3D organoid models in sarcomas 

 

One of the primary goals of our work was to establish the feasibility and utility of patient-

derived organoids as a means for providing clinically actionable information. We focused our effort 

on studying bone and soft tissue sarcomas, a family of rare malignancies with enormous 

heterogeneity7–9,76 and persistently low 5-year survival rates77. Given the scarcity of tumor models 

for bone and soft tissue sarcomas, studying the underlying biology and identifying effective 

therapies remain difficult. Patient-derived tumor organoids (PDTOs) are representative of the 

native physiology of tumors across an array of malignancies, including sarcoma9,10. For patients 

diagnosed with bone and soft tissue sarcomas, these organoids can be used as an important tool 

to better understand their disease and identify treatments most likely to be effective. We collected 

tumor specimens from 127 patients diagnosed with sarcomas, spanning 25 distinct subtypes of 

these rare tumors. We generated organoids from over 100 samples collected from biopsies, 

resections, and metastasectomies. We use our mini-ring platform9,78 to create an array of three-

dimensional tumor models for high-throughput drug screening aimed at identifying drug 

susceptibilities of chemotherapeutics, targeted agents, and combination therapies. Here, we 

describe our organoid pipeline from sample procurement to organoid analysis. We share our 

findings from screening sarcoma organoids with a drug library of over 500 compounds and assess 

drug sensitivity across cancer types and patient demographics. Our findings further support the 

feasibility of generating organoid models from bone and soft tissue sarcomas to facilitate drug 

discovery and predict patient response to treatment, especially in the context of rare sarcoma 

subtypes. Furthermore, we demonstrate that functionally testing organoids derived from clinical 

specimens provides actionable information to clinicians selecting treatment regimens. Our work 

is exemplary of the potential of functional precision medicine to provide additional insight into the 

biology of rare tumors that may contribute to improving patient outcomes. 



12 
 

Introduction 

Sarcomas are a family of rare and heterogeneous tumors of mesenchymal origin79. 

Clinically, these tumors primarily present in bone and soft tissue and disproportionately impact 

young patients79–81. Despite a low case count, with ~13,000 soft tissue sarcoma and ~4,000 bone 

sarcoma diagnoses annually in the United States81, fatalities remain high. Bone sarcomas for 

instance are the third leading cause of cancer deaths in patients under 20 years old81. The 

treatment regimen varies greatly by disease subtype and stage; therapeutic options include 

surgical resection, chemotherapy, targeted systemic therapy, and radiotherapy in certain cases1,2. 

Despite some significant advances for specific subtypes, current treatment approaches are rarely 

curative and contribute to aggregate overall 5-year survival rates of ~65% in soft tissue sarcoma 

and ~50-60% for bone cancers. 

The heterogeneity of sarcoma manifests in over 100 distinct subtypes. Diversity is 

observed across and within sarcoma diagnosis: for instance, classifications include over 10 

distinct osteosarcoma subtypes. About a third of sarcoma cases are driven by specific 

chromosomal fusions, such as subsets of Ewing sarcoma, synovial sarcoma, infantile 

fibrosarcoma and rhabdomyosarcoma82. Other key genetic events across bone and soft tissue 

sarcomas are thought to impact cell cycle regulation, growth factor signaling, and angiogenesis83. 

Specific high-prevalence mutations include RTK/RAS driver mutations among epithelioid 

sarcomas84, CDK aberrations in liposarcomas84, and PI3K mutations in PEComa and myxoid 

liposarcomas84. This vast heterogeneity compounds the challenge to identify effective regimens 

for this family of rare and ultra-rare cancers and contributes to persistently low survival rates.  

Precision medicine approaches are attracting increasing interest as tools to identify 

actionable characteristics and improve outcomes on a per-patient basis85. Technologies such as 

next-generation sequencing (NGS) and immunohistochemistry are widely used to identify 
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molecular alterations and druggable targets85–87. In the case of fusion-positive sarcoma, most of 

the aberrant oncogenes cannot be targeted directly, with the notable exception of NTRK82. 

Studies have evaluated the theoretical utility of NGS findings in 6’693 patients with bone and soft 

tissue sarcomas and found an average of ~42% of tumors harboring actionable alterations85. 

Despite this, few sarcoma patients show clinical benefit when treated with drugs selected via 

NGS83,85,88,89. 

Because of this genetic diversity and the limited efficacy of chemotherapeutic and targeted 

agents both in the conventional or precision medicine setting, alternative approaches are needed 

to both evaluate the landscape of drug sensitivity and resistance in sarcoma and to identify 

individualized therapeutic solutions. Here, we leverage patient-derived tumor organoid-based 

functional assays as an alternative yet complementary approach to genetic-based precision 

medicine in sarcoma78. Previous studies have shown that patient-derived organoids (PDTOs) are 

an effective model to predict response to treatment for patients with various types of epithelial 

cancers58,59,90–94. The development of sarcoma PDTOs has lagged, with limited applications so 

far95,96.  

We have procured n=193 specimens from n=127 patients undergoing biopsies or surgical 

resections at UCLA Health hospitals and successfully generated PDTOs from over 100 samples 

so far originating from primary, recurrent, or metastatic bone and soft tissue sarcomas. Here we 

describe our pipeline in procuring and generating sarcoma PDTOs and we characterize both the 

parent tumor and PDTO through histopathology, genetic sequencing and high-throughput drug 

screening to gain insight on the biology of rare sarcomas. By performing high-throughput drug 

screening on the generated organoids we can identify patient-specific and subtype specific 

vulnerabilities. We discuss the trends of drug sensitivity and resistance that we have observed 
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across the landscape of sarcoma samples and highlight the heterogeneity of sarcoma drug 

sensitivity. We also discuss the utility of these organoids for sarcoma precision medicine. 

Results 

Sarcoma Patient Characteristics 

We collected a total of n=193 sarcoma specimens between February 2018 and May 2022 

from 127 patients treated at UCLA for a sarcoma diagnosis (Figure 3.1). Tissue was obtained 

from biopsies (n=10) or surgical resections (n=183) of primary, recurrent, and metastatic lesions 

(Figure 3.1A and 3.1B). The patient population was majority adult (n = 65/127) with 35% of 

patients in the adolescent and young adult (AYA) age group (n = 45/127) and 13% of pediatric 

patients in the pediatric cohort (n = 17/127) at time of diagnosis (Figure 3.1B, Figure S3.2). We 

collected samples from 79 (62%) male and 48 (38%) female patients, which closely resembles 

the proportion of incidence of bone and soft tissue sarcomas in the United States (57% male, 

43% female)77. While the majority of patients identified as white, 15% identified as Asian, 5% as 

Black, 1% as Pacific Islander: Samoan and 18% as other. 

Our study includes tumor samples from 25 distinct subtypes of bone and soft tissue 

sarcomas. The most common diagnosis in this cohort is osteosarcoma, for which we collected 72 

samples from 28 patients, followed by chordoma (14 samples from 10s patients), 

chondrosarcoma (13 samples from 12 patients), and leiomyosarcoma (12 samples from 10 

patients) (Figure 3.1C). The proportion of patients enrolled generally reflects the proportional 

incidences of the major subtypes with the exceptions of chordoma (over-represented in our study) 

and leiomyosarcoma (under-represented in our study)97.  

In 20% of cases (n = 26 patients), we collected multiple specimens from the same patient, 

either from different anatomical locations (12/26), time (20/26) or both (6/26). We collected 
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samples from metastatic and primary lesions most frequently, composing 45% and 42% of our 

specimens, respectively, while recurrent tumors represent 13% of the total. The tumors in this 

study were heavily pretreated with only 31% (n = 59/193) naïve to systemic treatment and 22% 

(n = 43/193) of tumors exposed to three or more prior lines of systemic therapy. Most tumors 

(70%) were treated with various systemic regimens while 30% were treated with radiotherapy 

(Figure 3.1D). The proportion of tumors treated with each modality varied widely across 

diagnostic subtypes, reflecting the heterogeneity in the clinical management of each unique 

sarcoma subtype (Figure 3.1E)1,2. For instance, myxoid liposarcomas are commonly known for 

their radiosensitivity and are treated with radiation pre-operatively which is captured in all of the 

myxoid liposarcoma specimens we have procured (Figure 3.1E)98. 
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PDTOs can be routinely established and characterized for both soft tissue and 
bone sarcoma. 

We processed the tissue according to our published protocols and described in the 

Methods section (Figure 3.1A)78,95,99–101. We built a custom relational model database to store 

and organize the high-throughput screening results along with the clinical attributes of the patients 

and specimens we procured (Figure S3.1). The analytical pipeline includes data from external 

databases such as PubChem102 and WikiPathways103 for data analysis purposes95 (Figure S3.1). 

We assessed the histopathology of both parent tumors and organoids (Figure 3.2). We 

observed diverse histopathological features across the sarcoma subtypes, such as small round 

blue cells in Ewing sarcoma, vacuolated cells with round nuclei in chordoma, and spindle cells in 

rhabdomyosarcoma, some types of osteosarcoma and malignant peripheral nerve sheath tumor 

(MPNST, Figure 3.2). Thin, hyperchromatic nuclei were visible in MPNST while heterogeneous 

nucleus sizes and structures were found in undifferentiated pleomorphic sarcoma (UPS). Across 

all subtypes, the organoids largely recapitulate all the salient features of the native tissue (Figure 

3.2). For instance, both organoids generated from small cell osteosarcoma and Ewing Sarcoma 

show the characteristic small, round nuclei, with Ewing sarcoma organoids capturing the 

ambiguous cytoplasmic borders found in the native tissue. Consistent with our prior work95, 

Figure 3.1: Overview of the patient-derived tumor organoid pipeline, patient demographics and 

sample characteristics. (A) Tissue is collected from biopsies or surgical resections of bone and soft 

tissue sarcomas. Organoids are generated by digesting the tissue and culturing the harvested cells in 

a 3D matrix. Organoids are molecularly and functionally profiled. (B) Demographics of pan-sarcoma 

study patients. Pediatric: 0-14 years old, AYA: 15-39 years old, adults: 40 years old and above. (C) 

Demographics divided by diagnosis. (D) Clinical characteristics of tumors from which tissue was 

collected. Prior systemic therapies include chemotherapy, targeted agents, and immunotherapy. (E) 

Tumor characteristics divided by disease subtype. 
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chordoma organoids grew in clusters with extensive production of vacuoles as seen in the 

parental tumors. 

Daily brightfield imaging provided the opportunity to monitor organoid morphology and to 

quantify growth95 (Figure 3.2). We used a high-content imaging system to scan each plate once 

every 24 hours and monitor organoid behavior and then assessed growth by applying a U-net 

based machine learning-based segmentation approach that quantifies the cross-sectional area 

occupied by organoids95,104 (Figure 3.2). We observed four distinct growth patterns. Organoids 

derived from UPS, LMS, and chordoma had minimal increases in normalized area after five days 

as the cells showed a tendency to change morphology and aggregate with neighboring cells with 

less pronounced proliferation. This is in line with what we have previously observed for chordoma 

organoids, with cell rearrangement and limited proliferation in PDTOs established from multiple 

patients95. Exponential growth was observed in myxofibrosarcoma, RMS, epithelioid sarcoma, 

and CIC-rearranged sarcoma PDTOs. Simultaneous aggregation and proliferation of the 

organoids leads to extensive networks of multicellular clusters with large cross-sectional areas 

(Figure 3.2). Ewing sarcoma organoids show a variation of the exponential growth profile as 

growth increases exponentially between days one and three and then plateaus in days four and 

five of culture. These organoids show the unique behavior of proliferating while also maintaining 

the characteristic round morphology observed clinically. Finally, we observed a set of PDTOs with 

near-linear growth dynamics. These included MPNST, well-differentiated liposarcoma, and small 

cell osteosarcoma (Figure 3.2). 

Overall, our data suggests that PDTOs established from very different soft and bone 

sarcoma subtypes maintain the key histological characteristics of the tumor of origin while 

exhibiting unique morphological characteristics and growth dynamics. This suggests that PDTOs 
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maintain histology-specific and patient-specific tumor-specific within our standardized approach 

for organoid culture. 

 



20 
 

 

The landscape of drug sensitivity in sarcoma. 

 We performed high-throughput drug screenings on n=127 samples, encompassing 19 

different sarcoma diagnoses. The drug library used includes up to 500 drugs in different stages 

of development such as FDA approved, in clinical trials or pre-clinical development95,99,101. For 

each sample, we personalized the panel of drugs to be screened on the basis of on a priori 

information and clinical data. We considered diagnosis, suspected or confirmed genetic 

alterations, anticipated clinical course of treatment, regimens in clinical trials for the indication and 

drugs of interest to the treating oncologist. Sarcoma PDTOs were tested for sensitivity against 

both monotherapy chemotherapeutic or targeted agents and clinically relevant combination 

therapies such as sorafenib and everolimus, gemcitabine and docetaxel, and methotrexate, 

doxorubicin, and cisplatin (MAP) (Figure 3.3). We used the Z’ factor and robust Z’ factor to assess 

the quality of drug screening results105,106. To reduce the likelihood of identifying false positive and 

negative results, we included plates with a Z’ factor or robust Z’ factor greater than 0.2 in 

downstream analyses (Figure S3.3). This filter includes 231 plates, corresponding to 75% of all 

screened samples. 

 To investigate the spectrum of organoid responses to treatment with a given drug, we 

normalized organoid viability for each sample to the mean viability of all samples treated with the 

drug of interest at the same concentration, in this case 1 μM (Figure 3.3A). This was done to 

Figure 3.2: Sarcoma organoids grow in culture and recapitulate key morphological features of 

the parental tumors. Representative images of sarcomas and corresponding organoids stained with 

H&E (columns 1 and 2). Representative brightfield images of the same sarcoma cells in culture on Day 

1 (column 3) and Day 5 (column 4). Growth was tracked over time by segmenting in-focus organoids in 

the brightfield images using a machine learning-based pipeline and by normalizing the cross-sectional 

area covered by organoids to that measured on the first day of culture. Scale bars: 40 μM for H&E 

images, 100 μM for brightfield pictures. 
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reduce the impact of broadly cytotoxic drugs and more easily identify the exceptional responders 

to each treatment107. As corroborated by previous studies95,99, we identify unique sets of organoids 

sensitive to each therapy. This suggests that the functional response of organoids to treatment 

yields useful information for gaining additional insight into tumor-specific behaviors that cannot be 

found through histopathology and molecular analyses alone.  

Everolimus is a commonly used mTOR inhibitor that has shown modest effect across a 

variety of bone and soft tissue sarcomas108. Our drug screening results indicate that the most 

sensitive organoids were derived from different metastatic lesions of an epithelioid sarcoma 

patient (SARC0075_4 and SARC0075_1). The organoids showed 51.4% and 51.5% viability 

relative to the mean response of 77 total samples screened. Despite the efficacy of the drug on 

these samples, organoids derived from other epithelioid sarcoma patients showed modest 

sensitivity (SARC0075_2 and SARC0128) or relative resistance to therapy (SARC0078_1 and 

SARC0005) (Figure 3.3A). Alternatively, organoids derived from chordoma and chondrosarcoma 

samples composed four of the five most resistant samples to treatment (Figure 3A). When 

comparing the drug screening results of everolimus to another mTOR inhibitor, rapamycin, we 

observe a similar, but distinct, set of specimens among the top responders. Organoids from 

SARC0129, SARC0137, SARC0017, SARC0024B, SARC0039, SARC0010_2 and SARC0135_2 

appear in the top quartile of responders to both everolimus and rapamycin. However, organoids 

derived from SARC0133 and SARC0014 show remarkable sensitivity to rapamycin, and rank 

among the most resistant samples treated with everolimus. High-throughput drug screening on 

organoids has the unique ability to identify unexpected patterns in response to treatment with 

similar mechanisms of action across subtypes, in addition to individually identifying samples that 

exhibit heightened sensitivity or resistance to a therapeutical agent. 
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Analyzing the relative viability of samples also allows us to detect exceptional responders 

to specific drugs. For example, SARC0021, a synovial sarcoma, was found to be the most 

sensitive to trametinib, a MEK inhibitor109, with a normalized viability of 55%. This sample is not 

broadly susceptible to all treatments though, as it appears among the most resistant samples to 

pazopanib, palbociclib, rapamycin, and everolimus. A similar observation can be made for the top 

responder to palbociclib, SARC0086_3. Organoids derived from this PEComa sample showed 

superior sensitivity to palbociclib, despite showing moderate responses against trametinib, 

panobinostat, and gemcitabine/docetaxel and strong resistance to pazopanib and combination 

therapy sorafenib and everolimus. The uniqueness of the samples with the greatest sensitivity to 

each drug as well as the varied behavior in response to alternative treatments gives us confidence 

that the tumor organoids are recapitulating patient- and tumor-specific features that may dictate 

clinical response to therapy. 

Another apparent trend is the tendency of samples derived from similar histologic 

subtypes to cluster together. For example, pazopanib is most effective against osteosarcoma 

samples with 6 of the top 8 responders originating from osteosarcoma lesions. However, our 

platform allows us to look beyond subtype with a closer lens to the individual samples, where we 

see significant heterogeneity in the response of other osteosarcomas such as SARC0069_2 and 

SARC0036 that appear amongst the most resistant samples. Similarly, we observe 5 epithelioid 

sarcoma samples group among the responsive samples to palbociclib; however, we see 

organoids derived from SARC0128, another epithelioid sarcoma, show resistance to treatment. 

Organoid response to panobinostat is yet another example in which most osteosarcoma samples 

tend to be more responsive and chordoma samples tend to be more resistant. However, across 

all of these trends, we identify specific samples that do not follow the behavior of the subtype as 

a whole. The power to identify these individuals is the goal of comparing organoid response 

across all sarcoma subtypes. 
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While collecting data on the unique organoid response to single agent treatments is useful, 

we can also screen combination therapies that are used clinically as a combinational regimen. As 

in the drug screening results for single agents, we identified samples that were uniquely sensitive 

to combination therapies such as the CIC-rearranged tumor, SARC0095, to gemcitabine and 

docetaxel and osteosarcoma organoids derived from SARC0028_O to sorafenib and everolimus. 

We found that samples SARC0085_6 and SARC0085_7 that were collected from different 

anatomical regions of the patient during the same procedure had highly similar response to 

gemcitabine and docetaxel. Though these separate lesions showed similar response, this is not 

always the case. Organoids derived from multiple lesions (SARC0075_1, 2, and 4) show polarized 

responses to sorafenib and everolimus with SARC0075_1 showing excellent sensitivity and the 

remaining samples having average response to treatment (Figure 3.3). Though anecdotal, this 

evidence suggests that tumor organoids derived from different lesions of the same patient may 

be able to capture the spatial and temporal heterogeneity in a patient’s disease. 

 To validate our results from single concentration screenings, we screened multiple 

concentrations of each drug when possible. The standard doses for our experiments were 0.1, 1, 

and 10 μM with drugs such as cisplatin and carboplatin screened at 25, 50, and 100 μM due to 

their reduced potency in our organoid models. Tumor specific behavior becomes apparent when 

plotting dose-response curves of organoids derived from similar tumors of origin (Figure 3.3B). 

Organoids derived from osteosarcoma specimens SARC0103 and SARC0135_2 showed greater 

sensitivity to receptor tyrosine kinase (RTK) inhibitor, pazopanib, across all tested treatment 

doses. We observed a similar trend in rhabdomyosarcoma organoids with SARC0133 showing 

greater sensitivity to treatment across all tested concentrations. We observed less variability in 

the response of organoids derived from resected primary osteosarcoma tumors as the dose-

response curves show a greater degree of overlap. Despite the overlap, we see distinct 
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separation of SARC0131 and SARC0135_2 from the other samples with viabilities of 57.5% and 

50.9% at 1 μM, respectively. 

Sarcoma PDTOs demonstrate subtype-specific responses to treatment. 

 Though we observed enormous heterogeneity in the response of organoids to treatment 

when comparing to other individual samples across subtypes, we also observed disease-subtype 

specific trends in response to some therapies. We ranked each sample by its relative viability and 

compared the mean rank of samples of each diagnosis against all other samples to further 

investigate this phenomenon (Figure 3.3C). For ceralasertib, topotecan, cabozantanib, and 

everolimus, we found osteosarcoma organoids to be significantly more sensitive than the other 

pan-sarcoma samples (p-values of 0.0021, 0.028, 0.027, and 0.0085, Wilcoxon Rank Sum Test). 

In accordance with their well-documented resistance to treatment110,111, chordomas were 

significantly less sensitive than the pan-sarcoma population to everolimus (p = 0.015). However, 

we identified two drugs for which chordoma organoids showed greater sensitivity than the broader 

population: ribosomal S6 kinase (RSK) inhibitor, BI-D1870 (p = 0.027), and AMP-activated protein 

kinase (AMPK) activator, A-769662 (p = 0.0021). Despite relatively small sample sizes, we also 

identified increased sensitivity of epithelioid sarcoma organoids to palbociclib (p = 0.033), 

chondrosarcoma organoids to FAK/Pyk2 inhibitor, TAE226 (p = 0.043), and PDK1 inhibitor, BX-

912 (p = 0.038), rhabdomyosarcoma organoids to pazopanib (p = 0.049) and trametinib (p = 

0.014), leiomyosarcoma organoids to dovitinib (p = 0.0099), and UPS organoids to IGF-1R 

inhibitor, BMS-754807 (p = 0.044). Notably, we also found leiomyosarcoma organoids to be more 

resistant to topotecan than the pan-sarcoma population (p = 0.031) (Figure 3.3C). 
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Clinical features associated with drug responses. 

 We integrated our drug screening results with the clinical features of each tumor and 

compared organoid sensitivity against factors such as patient age at diagnosis, lesion type, 

treatment history, and disease progression (Figure 3.4). We found patient age to be significantly 

related to organoid response to treatment for n = 19 drugs. Sarcoma organoids derived from adult 

patients showed greater resistance to cediranib, everolimus, and masitinib, whereas ruxolitinib 

and panobinostat appear to be most effective on organoids derived from adolescent and young 

adults (AYA) patients. One important consideration is that the differences in response between 

age groups may be driven by the prevalence of a histological subtype. In the case of cediranib, 8 

of 13 samples in the pediatric and AYA populations were osteosarcomas whereas there were no 

cases of osteosarcoma among adult patients in our analysis. Samples treated with everolimus 

had a similar pattern in which rhabdomyosarcomas and osteosarcomas made up 12 of 13 

pediatric cases, 19 of 35 AYA cases, and 0 of 29 adult cases. When looking at the lesion type of 

the parent tumor, sarcoma organoids that were sourced from metastatic lesions showed a greater 

response to cediranib than organoids from primary or recurrent tumors (p = 0.025 and p = 0.019, 

Figure 3.3: Sarcoma organoid sensitivity to treatment in high-throughput drug screening 

experiments shows a range of responses. (A) Heatmaps of organoid sensitivity to selected drugs of 

interest at 1 μM. The viability score represents each organoid model’s viability normalized to the mean 

response to treatment across all samples. Each column is a unique specimen, red indicates higher 

sensitivity to treatment than average. Colored bars underneath each heatmap represent the Z-score, 

lesion type, and diagnosis of each sample. (B) Dose-response curves of organoid viability when treated 

with selected therapeutic regimens. Percent viability is reported compared to vehicle-treated organoids 

for each individual sample. (C) Sensitivity rank plots comparing the response of organoids derived from 

the indicated diagnoses (left) against pan-sarcoma specimens (right). Samples are ranked from low 

residual viability percentile (most responsive samples) to highest residual viability percentile (least 

responsive samples). Primary drug targets are indicated next to each drug’s name. The color of each 

point represents the diagnosis of the individual samples. 
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respectively). We observed the same pattern for the deubiquitinase (DUB) inhibitor, degrasyn, in 

which all five metastatic samples screened ranked in the lower 25th percentile of organoid viability. 

For the IGF-1R inhibitor, GSK1904529A, we observed a unique trend in that organoids derived 

from recurrent tumors showed greater sensitivity than those from primary samples (p = 0.028) 

(Figure 3.4). 

 We also investigated the effects of each specimen’s prior treatment history on organoid 

response. Of the 501 total monotherapies screened, 23 drugs yielded statistically significant 

reductions in organoid viability for tumors that had been exposed to prior systemic therapies of 

any kind compared to tumors that were not treated systemically. Crizotinib, dasatinib, everolimus, 

lenvatinib, and pazopanib (p = 0.013, 0.034, 0.017, 0.013, 0.025, respectively) were all more 

effective on organoids derived from tumors that were pre-treated systemically compared against 

systemic-treatment naïve samples. We further tested the relationship between the number of prior 

systemic therapies and the organoid response to treatment (Figure 3.4). A total of 16 treatments 

yielded significant differences between the number of prior systemic treatments, categorized as 

zero, one or two, and three or more treatment lines. We observed in the case of pazopanib and 

danusertib that organoids derived from patients exposed to three or more lines of systemic 

therapy were more sensitive than systemic-treatment naïve tumors (p = 0.0054, and 0.011, 

respectively). Linsitinib, and lenvatinib demonstrated significant reduction in viability in samples 

that were treated with one or two lines of systemic therapy compared with samples that were 

never treated systemically (p = 0.031, 0.029, respectively). In the case of these drugs, we 

observed no statistically significant differences in organoid viability between samples that were 

treated with three or more lines of therapy and samples with a history of just one or two lines of 

treatment (Figure 3.4). Beyond systemic treatment, we investigated the correlation between 

organoid viability and prior exposure to radiotherapy. Similar to our other findings regarding 

systemic treatment history, we identified 16 drugs that were more effective against organoids from 
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previously radiated tumors out of a total of 17 that were deemed significant. Fimepinostat, 

nilotinib, and vinorelbine (p = 0.036, 0.035, and 0.012, respectively) all led to statistically 

significant reductions in viability among organoids from patients clinically treated with radiation. 

AZ 960, a JAK2 inhibitor, was the only drug to yield the opposite relationship in which radiation-

naïve samples were significantly more sensitive to therapy (p = 0.012) (Figure 3.4). 

 Lastly, we compared organoid viability with respect to changes in a patient’s disease 

status at time of follow-up. A change in status was characterized as either tumor recurrence 

following resection or the identification of metastatic lesions from previously primary or localized 

recurrent tumors. A total of 24 drugs showed significant differences in organoid response across 

change in status. Organoids derived from patients who later developed progressive disease were 

significantly more resistant to treatment with dasatinib (p = 0.016), rapamycin (p = 0.01), 

trametinib (p = 0.028), and vistusertib (p = 0.034). The one exception to this trend was the lignin, 

honokiol. Organoids derived from patients with progressive disease tended to be more responsive 

to treatment (p = 0.033) (Figure 3.4). Additional drugs we screened and were associated with 

significant differences between organoid viability and the clinical attributes discussed above can 

be found in Figure S3.4-S3.9. 
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Target analysis of drug responses highlights vulnerable biological pathways in 
sarcoma. 

 Using the drug sensitivity profile of each sample, we identified the molecular pathways 

that contributed the most to organoid sensitivity (Figure 3.5). We first mapped each drug we 

screened to their gene targets and genetic pathways from the WikiPathways database103. We 

then calculated a score for all pathways to quantify the extent to which drugs targeting the pathway 

led to reductions in organoid viability. We then ranked each scored pathway for each sample from 

most impactful (Figure 3.5, red) to least impactful (Figure 3.5, blue) and clustered the pathways 

and samples by their similarity. 

 We first observed that samples derived from the same patient tended to cluster together. 

Multiple samples from SARC0103, SARC0078, SARC0075, SARC0139, and SARC0053 

clustered tightly suggesting that tumors of the same origin tend to show similarities even if the 

tissue was collected over different anatomical regions or surgical procedures. Beyond the 

similarities identified in samples from the same patient, we also found groups of samples that 

shared vulnerable pathways. We found a cluster of 21 samples with significant sensitivity in the 

proteasome degradation and parkin-ubiquitin proteasomal system pathways, primarily due to their 

Figure 3.4: Organoid sensitivity correlates with clinical attributes. Sensitivity rank plots comparing 

the sensitivity of organoids derived from specimens with varying clinical features including patient age 

at diagnosis, lesion type, number of prior systemic therapies, prior systemic or radiotherapy, and change 

in disease status. All samples screened with a drug are ranked from lowest viability (low viability 

percentile) to highest viability (high viability percentile) and plotted according to the rank. Primary drug 

targets are shown next to each drug name. The color of each point represents the diagnosis of the 

individual samples screened with the drug of interest. Statistical significance is tested by performing a 

Kruskal-Wallis test with post-hoc Wilcoxon Rank Sum Test for pairwise comparisons with Bonferroni 

correction for comparisons across three classifications. For comparisons across two categories, a 

Wilcoxon Rank Sum Test was performed. 
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strong response to the proteasome inhibitors, bortezomib and carfilzomib. This same group of 

samples showed sensitivity to a lesser extent in pathways associated with the suppression of 

HMGB1-mediated inflammation, canonical NF-κβ, and altered glycosylation of MUC1. 

Interestingly, the samples of this cluster were not derived from a single histological subtype and 

included 12 osteosarcoma, 3 epithelioid sarcoma, 2 rhabdomyosarcoma, 1 synovial sarcoma, 1 

spindle cell sarcoma, 1 MPNST, and 1 dedifferentiated liposarcoma. Another group of mixed 

histological subtypes had increased sensitivity to oxylipin metabolism pathways with some 

samples also showing susceptibility in insulin signaling pathways. Organoids derived from a 

chordoma patient (SARC0053) clustered with another chordoma patient (SARC0049) due to 

strong sensitivity to treatments targeting genes in the serotonin receptor 2 and STAT3 signaling 

pathways as well as genes associated with TCA cycle nutrient use. We observed that these same 

pathways are vulnerable for a second group of samples encompassing subtypes of both bone 

and soft tissue sarcomas (SARC0038 to SARC0024_B, Figure 3.5). Another group of samples 

comprised of chordoma, DSRCT, leiomyosarcoma showed increased susceptibility in blood 

vessel-related pathways such as angiogenesis and Robo4 and VEGF signaling (SARC0119_2 to 

SARC0046_3, Figure 3.5). We identified five samples (SARC0018, myxofibrosarcoma; 

SARC0114, osteosarcoma; SARC0022, UPS; SARC0111, Ewing sarcoma; SARC0035_F, 

osteosarcoma) that showed elevated response to drugs targeting pathways associated with 

neural crest differentiation, histone modification, and SKIL protein partners. Another group of 

specimens composed of osteosarcoma, UPS, Ewing sarcoma, rhabdomyosarcoma, 

chondrosarcoma, leiomyosarcoma, and radiation-associate sarcoma (SARC0114 to 

SARC0139_1, Figure 3.5) demonstrated vulnerability in pathways associated with dietary 

restriction and aging and histone acetylation. A subset of these samples (SARC0115 to 

SARC0139_1, Figure 3.5) also showed sensitivity to drugs targeting inflammation-related 

pathways. These inflammation pathways were ranked high across a broader set of 17 samples 
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originated from a variety of histological subtypes. Overall, the pathway analysis shows that 

organoids capture features unique to each individual tumor and suggests that the response of 

each tumor transcends the histological subtype that currently dictates its treatment.  
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Clinical availability of organoid-indicated drugs: a roadmap to actionability. 

We considered the normalized viability of the sarcoma organoids across all subtypes to 

generate a list of the most effective drugs for each sample. For the drugs that were ranked as 

most effective and as organoid-indicated treatments, we annotated the FDA status, and their 

guideline for use in each sarcoma subtype from the NCCN1,2 guidelines, if listed (Figure 3.6). For 

more details on how we ranked the drugs please refer to the methods. 

Our analysis shows that only 38.3% of organoid-indicated treatments are FDA-approved 

(Figure 3.6B). Moreover, a miniscule 4.5% of these drugs are currently FDA-approved for the 

histological subtype identified as sensitive in organoid drug screens. Beyond drugs with existing 

FDA approval, just under one-third of the organoid-identified drugs are currently in clinical trials. 

Given the rarity of sarcomas as a whole and the scarcity of specific subtypes, only 0.8% of the 

drugs are in trial for the organoid-directed indication while 24.1% are in trial for other indications. 

Finally, 36.8% of the drug screening-identified compounds are unavailable clinically as they are 

in pre-clinical development or have been terminated, suggesting that full implementation of 

precision medicine practices in the clinic may require giving physicians greater access to 

investigational compounds through mechanisms such as n=1 clinical trials. 

 We also investigated the current clinical use of the compounds for each histologic subtype 

by referencing the NCCN Guidelines for patients with bone1 and soft tissue2 sarcoma. The 

Figure 3.5: Drug screening reveals vulnerable molecular pathways. Heatmap showing the 

molecular pathways most sensitive to drug targeting for each screened sample. Similar pathways are 

clustered together using the Jaccard distance and samples are clustered together by their Euclidian 

distance. Pathways are ranked independently for each sample based upon the results of drug screening 

experiments. Pathways targeted by the most effective drugs are ranked highest (red). Opaque squares 

indicate pathways in which more than 50% of the constituent genes were targeted in the drug panel. 

Only pathways ranked in the top 50 for 20 or more samples are plotted. White squares indicate that the 

pathway was not targeted by any drugs in the screening experiments. 
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inclusion of a therapeutic regimen in these broadly used clinical guidelines requires substantial 

evidence that the drug is both safe and effective for each sarcoma subtype. Due to the limitations 

on clinical trials imposed by small patient populations and highly heterogeneous disease, the vast 

majority (93%) of promising drugs as identified through our drug screening experiments are not 

incorporated in the current guidelines. Only 3% of the organoid-indicated drugs are listed as 

preferred regimens by the NCCN for their corresponding histological subtype. These include 

etoposide, cisplatin, sorafenib, and regorafenib for osteosarcoma, cyclophosphamide for 

rhabdomyosarcoma, and doxorubicin for osteosarcoma and Ewing sarcoma (Figure 3.6A). An 

additional 4% of drugs are considered recommended for their respective diagnosis including 

cabozantinib, gemcitabine, docetaxel, and everolimus for osteosarcoma, doxorubicin and 

vinorelbine for rhabdomyosarcoma. The remaining 93% of drugs are beyond the 

recommendations of the NCCN Guidelines further supporting the notion that the implementation 

of functional precision medicine may require moving beyond the current clinical standards for drug 

selection in order to match each patient to the optimal therapeutic regimens. 

We then focused on investigating the efficacy of clinically utilized regimens in the NCCN1 

guidelines on osteosarcoma organoids (Figure 3.6C, Figure S3.10, Table 3.1). We categorized 

the drugs as listed in the guidelines to first and second line, and preferred, recommended, and 

useful in certain circumstances regimens. The first line combination regimen of methotrexate, 

doxorubicin, and cisplatin, known as MAP, was not among the most effective organoid treatments 

in any of the osteosarcoma samples. Among the second line preferred regimens, combination of 

gemcitabine and docetaxel exhibited the most effective response across about 15% (3/20) of the 

osteosarcoma organoids. Various second line treatments showed limited effective responses 

among the osteosarcoma samples, this includes etoposide (1/18), regorafenib (1/26), 

cabozantinib (1/23), docetaxel (1/21), methotrexate (1/15), gemcitabine (1/21), and everolimus 

(1/28). We also found that some regimens exhibited no effective response in any of the 
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osteosarcoma organoids, such as the combination regimens, cisplatin and doxorubicin, 

cyclophosphamide and topotecan or etoposide. Similar analysis for drugs that are not currently 

FDA approved and for the combinational regimens we screened can be found in Figure S3.11. 
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Functional screenings provide orthogonal and complementary information to 
genomic sequencing.  

 On several occasions, the organoid screening results led to rapid identification of 

targetable genomic mutations. We collected resected tumor tissue from a patient with metastatic 

spindle cell sarcoma and performed drug screening on the organoids (SARC0117) (Figure 3.7). 

Within one week of surgery, we identified that the sample was highly sensitive to alpelisib, a PI3K 

inhibitor. Upon follow up months later, we found that the tumor had been sequenced with a 

targeted panel (Tempus) and an H1074L mutation was found in PIK3CA. This mutation has been 

frequently associated with sensitivity to alpelisib in the literature112–114. We validated this finding 

by performing targeted sequencing on the sample we procured and found that it too harbored the 

PIK3CA mutation. Another patient in our study diagnosed with an MPNST was also found to 

harbor the same PIK3CA mutation (SARC0134) based on clinical molecular testing of the 

Figure 3.6: Drug availability and NCCN Guidelines status by histological subtype. We selected 

drug-diagnosis pairs of interest by cross-referencing the five most effective drugs for each sample with 

the 25% most responsive samples for each drug. (A) The current FDA approval status and NCCN 

Guidelines recommendation are shown for each unique drug-diagnosis combination. Green points mark 

drugs that are indicated for treating a specific histological subtype by the FDA. Yellow marks drugs 

approved for other indications including sarcoma and other cancer types. Blue marks indicate drugs 

currently in trial for the specified indication. Purple marks show drugs in trial for other indications. The 

shape of the point indicates the current NCCN Guidelines for each drug. Triangles indicate drugs that 

are indicated as a preferred regimen. Squares signify drugs that are recommended for the subtype of 

interest and circles indicate that the drug is not currently discussed in the NCCN guidelines1,2. Diamond 

shape signifies that the histologic subtype has no guidelines, such as DSRCT and CIC rearranged 

sarcoma. The size of the marker indicates whether a single sample or multiple samples of a given 

histologic subtype was found to be among the five most effective for a drug. Drugs are clustered by 

similarity in gene targets using Jaccard distance. The number of samples screened for each histologic 

subtype is shown above. (B) Pie charts on the bottom summarize the overall percentage of drugs that 

fall into each category for FDA approval and NCCN recommendation. (C) Percentage of responsive 

osteosarcoma organoids to NCCN recommended treatment regimens. 
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resected primary tumor. When we procured tissue from a recurrent lesion of the same patient, we 

screened the organoids for sensitivity to alpelisib. We found the organoids to be insensitive to 

alpelisib and hypothesized that the original PIK3CA mutation was not present in the recurrent 

lesion. We confirmed our suspicions by performing targeted sequencing on tissue from the 

recurrent lesion and did not find any aberrations in PIK3CA. While the functional screening results 

do align with genomic characteristics in some cases, this is not universally true. We performed 

targeted sequencing on SARC0069_2, the most sensitive sample to alpelisib, and did not find 

mutations in the PIK3CA gene (Figure 3.7). These cases emphasize the potential for functional 

organoid screening to rapidly provide information regarding drug sensitivity that cannot be 

predicted by current genomic biomarkers alone. 

 An additional benefit of functional screening is the ability to screen different drugs with 

similar targets. We screened eight drugs targeting the mTOR/AKT/PI3K pathway on SARC0117, 

a sample harboring a PI3K mutation (Figure 3.7). SARC0117 ranked among the top three most 

sensitive samples to apitolisib, alpelisib, copanlisib, BGT226, and vistusertib demonstrating its 

strong response across the entire class of mTOR/PI3K inhibitors (Figure 3.7C, Figure S3.12). 

However, we do not always observe this broad response across a drug class. SARC0133 showed 

the greatest sensitivity to the FGFR targeting drug, infigratinib, relative to 11 other samples 

screened. Sequencing revealed that SARC0133 harbors an FGFR1 gain on chromosome 8 

contributing to its exceptional response to treatment. When we screened another FGFR-targeting 

agent, dovitinib, on the same sample, we found that the organoids did not show any sensitivity to 

treatment (Figure S3.12). These examples highlight the important ability of functional screening 

to differentiate effective agents from ineffective drugs within the same class. 

Our screening platform can also be leveraged for diagnostic purposes. For instance, we received 

tumor tissue from a patient with clinical characteristics consistent with infantile fibrosarcoma 
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(SARC0127). One of the hallmarks of infantile fibrosarcoma is the presence of NTRK 

fusions115,116. We established organoids from tissue obtained from a biopsy of the treatment-naïve 

tumor and tested it for sensitivity to the FDA-approved NTRK inhibitor, larotrectinib. The results 

show how SARC0127 was resistant to larotrectinib. Given the clear relationship between NTRK 

alterations and larotrectinib sensitivity both in vitro and in patients117, we suspected that the tumor 

was not an infantile fibrosarcoma. Following further pathology review, the tumor was classified as 

consistent with high grade sarcoma. Subsequent fluorescence in situ hybridization (FISH) results 

for ETV6 rearrangement returned negative after 5 days. Following the tumor resection 18 days 

after the biopsy, the pathologist definitively diagnosed the tumor as a high-grade spindle 

cell/sclerosing rhabdomyosarcoma. Organoids established from the resection (SARC0127_2) 

showed a similar pattern of drug sensitivity and resistance, including comparable response to 

Larotrectinib (Figure 3.7). We validated the findings by performing FISH for NTRK 1, 2, and 3 

fusions and confirmed that no abnormalities were present. Our platform provided diagnostic clues 

within a week from the biopsy procedure, confirming the ability to rapidly yield information on the 

characteristics of each tumor. 
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Evidence of correlation between PDTO and patient responses for matched treatment 

regimens. 

 Two samples, SARC0064‡ and SARC0135‡, were biopsies collected from treatment 

naïve patients. Both patients received neo-adjuvant MAP clinically between the time of biopsy 

and tumor resection. Upon resection, tumor tissue from SARC0064‡ was found to be 95% 

necrotic while tumor tissue from SARC0135‡ was only 60% necrotic. Though SARC0064‡ was 

not the most responsive sample screened, its normalized viability of 57% was less than 

SARC0135‡ (73%) (Figure 3.7E). In this instance, the relative sensitivity of the organoids 

matches the clinical observations of necrosis percentage for these two patients.  

The primary goal of developing personalized tumor organoid models is to leverage them 

to predict response to treatment. We screened four cases (SARC0088, SARC0103_2, 

SARC0105, SARC0125) in which the organoids were treated with the same regimen the patient 

received immediately after sample procurement. Though the sample size is limited (n =4) we see 

a negative trend (95% confidence interval of slope between -0.048 and 0.000, R2 = 0.902, p = 

0.051) between normalized organoid viability and time to next systemic therapy (TTNT), which 

can be used as a metric for clinical response (Figure 3.7F). 

Table 3.1: Response of osteosarcoma specimens to NCCN Guideline treatments. The responsive 

samples meet the following criteria: the regimen was among the top 5 most effective regimens for a 

given sample and the sample was among the 25% most responsive samples to the listed regimen. 
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Discussion 

 We implemented a systems approach to determine the landscape of drug sensitivity and 

resistance in sarcoma, leveraging tumor organoids derived from tumor biopsies and resections 

across 25 diagnoses. Our study includes patients across many stages of disease with diverse 

treatment histories. We demonstrate the feasibility of implementing functional precision medicine 

at scale by developing systematic protocols for identifying candidate patients, preserving tissue 

following resection, transporting samples between the procedure and laboratory sites, and 

generating organoids for high-throughput screening. This process requires support from 

physicians and nurses interacting with patients, pathologists and core facility staff assessing and 

providing excess tissue, and researchers carrying out the drug screening protocols. Sarcomas 

make up less than 1% of cancer diagnoses annually81, and are notorious for their heterogeneity 

which makes them difficult to study in timely and well-powered clinical trials7. Our work supports 

the ability to perform these studies in the context of rare cancers. 

We generated organoids from 25 distinct histological subtypes of bone and soft tissue sarcoma 

illustrating that our methodology is agnostic to diagnosis. Organoids generated with our protocol 

Figure 3.7: Organoids provide genomic and diagnostic information. (A) Summary of the genetic 

features of selected specimens. Sequencing was performed using OncoPanel and plotting was 

performed using R. (B) Tumor mutational burden (TMB) for selected specimens. (C) Organoid viability 

heatmaps of alpelisib, larotrectinib, and infigratinib. Black arrows indicate samples of interest. (D) 

Comparison of organoid sensitivity profiles for SARC0117 and SARC0134. The black box outlines a 

region of similar drugs that have variable efficacy across the two samples. (E) Correlation between 

normalized organoid viability and percent necrosis determined by a pathologist following tumor resection 

for two osteosarcoma biopsies. (F) Normalized time to next systemic therapy (TTNT) compared to tumor 

organoid viability for therapeutic regimens screened on organoids and administered to the patient 

immediately following sample procurement. TTNT of the matching therapeutic regimen is normalized to 

the TTNT of the regimen used immediately preceding specimen collection. TTNT greater than 1 

indicates that the treatment of interest yielded longer TTNT compared to the previously administered 

treatment. Sample diagnosis and therapeutic regimen are annotated for each point. 
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accurately recapitulate the histological features of the tumor of origin and show unique growth 

patterns independent of histological subtype. Histological analysis of the organoids shows distinct 

growth patterns across diagnostic subtypes and between patients within the same subtype. We 

observed further diversity in brightfield image analysis of sarcoma organoids including differences 

in organoid morphology, aggregation patterns, and growth dynamics (Figure 2). The 

implementation of a neural network to analyze brightfield imaging data allows us to non-invasively 

identify unique behaviors of tumor organoids and provides additional value in assessing the 

response of organoids to treatment. The use of machine learning with organoids facilitates the 

implementation of new analytical methods such as single organoid tracking to increase the 

resolution of the functional assay118. 

 One of the major challenges associated with performing functional drug screens on 

patient-derived material is the procurement of representative tumor tissue. Due to the low volume 

of tissue collected during biopsy procedures, a relatively small amount of tissue remains after the 

majority is allocated to pathology for standard diagnostic protocols. Because of this, drug screens 

on biopsied tissue were restricted in the number of drugs and drug concentrations that could be 

tested despite the feasibility of establishing organoids from biopsy samples. This is unfortunate, 

as biopsies are the ideal samples for organoid drug screening as they are typically treatment 

naïve and are most feasible to directly correlate with patient response due to the availability of 

subsequent imaging and necrotic assessment data. For example, we screened the MAP regimen 

on organoids derived from two treatment-naïve osteosarcoma biopsies (SARC0064 and 

SARC0135). Both patients were treated with neo-adjuvant MAP prior to tumor resection. We 

found that the percentage of necrotic cells in the resected tissue (as assessed by the pathologist) 

correlated with the biopsy organoid viability. Percent necrosis is an important prognostic factor in 

osteosarcoma patients with neo-adjuvant treatment119, and this data suggests organoid drug 

screening may also be used as a biomarker of response to therapy. 
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The power of sarcoma organoid models that recapitulate the physiology and features of the parent 

tumor, is demonstrated by the various downstream applications on organoids to gather insightful 

information on the biology, genomic and molecular profiles, and functional screening profiles on 

various rare sarcoma subtypes. By applying automated pipelines, we can perform large scale 

high throughput screening on sarcoma organoids to screen over 500 drugs and build an 

expanding database of drug sensitivity profiles for rare sarcomas (Figure 3). Collecting drug 

sensitivity data across patients with multiple subtypes of sarcoma allows for the identification of 

unique patterns of response both within and across subtypes through normalizing drug response 

across all samples tested. Sarcoma organoids capture the same heterogeneity observed in 

clinical trials of sarcoma patients120 (Figure 3). The ability to screen many drugs at many stages 

of development, such as FDA approved, in clinical trials or pre-clinical stages that target different 

pathways, coupled with the short timeline of our pipeline allows oncologists to obtain actionable 

information within a week of biopsy or surgery. The quantitative assessments of response within 

a specific sub-type may be useful in guiding future drug development and clinical trials for these 

rare tumors (Figure 3C). Furthermore, by harnessing the growing database of sensitivity profiles 

of sarcoma organoids, drugs with different mechanisms of action can be compared to identify the 

pathways most impacted on an individual sample basis (Figure 5). The ability to compare 

responses to drugs within the same class of targets provides us with an additional tool to 

overcome the heterogeneity of sarcomas, as we have observed that genomic aberrations or 

perturbances in certain pathways in a sample can be targeted more effectively by certain drugs 

in a class. This is highlighted by infigratinib, a selective FGFR1-3 inhibitor109, and dovitinib, which 

also targets FGFR109. We observed selective organoid response in sample SARC0133 which 

harbored an FGFR1 amplification to infigratinib (Figure 7), but not to dovitinib (Figure S12).   

By leveraging data from high-throughput sarcoma organoid screening and our expanding 

sarcoma biobank, we can perform statistical tests to investigate the relation between subtypes 
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with increased organoid sensitivity to drugs and relevant clinical attributes such as age, lesion 

type, treatment history, and progression of disease in follow up (Figure 4). The identification of 

clinical attributes associated with significant resistance or sensitivity to certain drugs, can 

potentially help identify biomarkers in bone and soft tissue sarcomas to treatment response, as 

sarcomas currently lack reliable biomarkers121. 

The power of any precision medicine method lies within its ability to provide actionable information 

leading to the selection of the optimal therapeutic regimen for each patient. The major caveat to 

this approach is that physicians must have access to the drugs recommended by the precision 

medicine platform. Furthermore, the rarity of cases presents a challenge in conducting clinical 

trials. One goal of our study is to demonstrate the feasibility of using organoids to provide 

recommendations for treatment, so we assessed the availability of the drugs indicated by 

organoid screening. While approximately two-thirds of drugs were currently being tested in clinical 

trials or already FDA approved, fewer than 5% are currently approved for the histological subtype 

identified. Furthermore, only 8% of drugs were listed in the NCCN Guidelines as preferred or 

recommended therapies. Our analysis foreshadows a coming challenge towards adopting 

functional precision medicine in the clinical setting. For precision medicine to have its maximum 

impact, barriers to physician selection and administration of treatment must be modified to 

account for precision medicine assays. 

Thus far, we have observed correlations between the genetic features of tumors and the organoid 

response to treatment. However, the primary goal remains the correlation of organoid response 

to treatment with long-term patient outcomes. Beyond the scope of a clinical trial with regular 

follow-up and standardized measurements of progress through imaging and functional 

assessments, these relationships are difficult to discern. We are currently evaluating patients for 

which we have screening results for the therapy used immediately after tissue procurement and 

are collecting information on disease progression and treatment history to assess the utility of the 
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organoid screening results. Our hypothesis is that organoids sensitive to the administered 

treatment will lead to longer response durations relative to prior therapies. Given the complex 

treatment history of many of the patients included in our study, there are significant confounding 

factors such as prior radiotherapy and the independent response of different metastases that may 

obscure a potential relationship. As we continue to track the progress of patients throughout the 

course of their treatment, we gain further evidence to test the relationship between organoid 

screening results and patient outcomes. In conclusion, the tumor-specific drug sensitivity profiles 

of the organoids established in our study demonstrate that functional precision medicine 

approaches can provide clinically relevant data to support the selection of treatment for sarcomas. 

For patients battling rare tumors, approaches like ours provide new information with the potential 

to identify effective treatments, avoid ineffective therapies, and improve patient outcomes overall. 

Methods 

Patient Sample Collection 

The protocol for collecting and processing tumor tissue has been previously described9,18. 

In summary, fresh tumor specimens are obtained from consenting patients (UCLA IRB #10-

001857, 19-002214). Solid tumors are minced and digested with collagenase IV (200 U/mL) to 

yield a suspension of single cells/small clusters. The cells are then transferred to a new tube, 

followed by red blood cell lysis with Ammonium Chloride Solution (Stem Cell Technology). Cells 

are then strained using a 100µm filter before counting and viability assessment using a Cellometer 

Auto 2000 (Nexcelom). 

Organoid Generation 

Primary cells are resuspended in a 3:4 solution of Mammocult medium (Stem Cell 

Technology) and Matrigel (Corning)78,95,99. The mixture is kept on ice throughout the organoid 

seeding process to prevent premature crosslinking. We seed the organoids for drug screening by 
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distributing 10µL of solution around the perimeter of the bottom of each well of a 96-well plate. 

We incubate the material for 30 minutes at 37°C to solidify the gel before adding 100µL of 

Mammocult medium to each well. Organoids cultured for histological and molecular analyses are 

seeded in 24-well plates. We seed 100,000 cells in 70µL of the Mammocult-Matrigel solution 

around the perimeter of each well of a 24-well plate. Each well plate is imaged using a high-

content microscope (Celigo, Nexcelom) every 24 hours. 

Drug Screening 

After allowing the organoids to grow and develop for 3 days, we perform drug treatments 

using a panel of targeted agents and chemotherapies to assess sensitivity following our published 

protocols9,18. First, we remove the medium from each well using an automated fluid handler 

(Microlab NIMBUS, Hamilton or epMotion 96, Eppendorf) and replace it with pre-warmed 

Mammocult containing the desired drug concentration and 1% DMSO. Each plate contains its 

own positive and negative controls for normalization. The positive control is 10 µM staurosporine 

and the negative control is 1% DMSO. Organoids are incubated at 37°C and 5% CO2 throughout 

drug treatment. After 24 hours, we exchange the medium with fresh, drug-loaded medium. After 

2 days of treatment total, organoid viability is assessed with an ATP assay (CellTiter-Glo, 

Promega). The organoids are released from the matrix with dispase followed by addition of the 

CellTiter-Glo reagent. After 30 minutes, luminescence is measured using a SpectraMax iD3 plate 

reader (Molecular Devices). 

Database 

We maintain a PostgreSQL relational database that stores coded non-identifiable patient 

and sample information of our biobank. We implemented several external databases to our 

database such as gene pathway data from WikiPathways103, and mechanistic targets of our drug 

library from PubChem102 and literature (Figure S3.1). After organoid plates undergo drug 

screening, we use a Python-based, custom XML parser to upload the luminescence data to the 
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database. This data is then connected to a sample collection that contains additional information 

about the patient and sample procurement using Django, a Python-based web framework. The 

drug treatment used for each well is also manually uploaded to the database. All downstream 

analysis is performed using R (v4.2) and begins by querying the database. 

Drug Screening Analysis 

We screened each drug with either n = 1 or 2 at a concentration of 1 μM, with the 

exceptions of platinum agents, cisplatin and carboplatin, which we screened at 25 and/or 50 μM. 

Plate-level statistics including the Z’-factor122, and robust Z’-factor106, are calculated for 

each plate of organoids and are used as inclusion metrics for subsequent analysis. The thresholds 

for inclusion in this study are the following: Z’-factor > 0.2 or robust Z’-factor > 0.2. These criteria 

were selected to exclude plates that have an insufficient statistical effect size which are prone to 

false positives and negatives in high-throughput assays. We used the luminescence values of 

staurosporine screened at 10 μM as a positive control and substituted with 1 μM when not 

available. For plates that were screened with only one well of staurosporine 1 μM, the values were 

pooled across the plates as a positive control for the experiment. 

For plates that were included in the analysis, the luminescence measurements from the 

ATP assay are normalized to the mean luminescence of the negative control (1% DMSO) wells 

to calculate percent viability. For each drug treatment, the viability of each sample is normalized 

to the mean response of all samples treated with the drug of interest. Response rank percentile 

is calculated by dividing the rank of each sample and dividing it by the total number of samples 

screened with each drug. 

Histopathology 

Histopathology analysis is performed on the tissue of origin and the organoids derived 

from the collected specimens. Sections of the tissue of origin are obtained through the 
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Translational Pathology Core Laboratory (TPCL) at UCLA. The sections received are 5µm slices 

of formalin-fixed, paraffin-embedded (FFPE) tissue mounted on glass slides. 

Organoids are prepared for histopathology after 5 days of culture. Each well is washed 

with 1 mL of phosphate buffered saline (PBS) prior to fixation with 500 µL of 10% buffered formalin 

(VWR, 89379-094). After at least 24 hours of fixation, the organoids are removed from the 24-

well plate and transferred to a conical tube. They are washed with PBS prior to the addition of 5 

µL of Histogel (Thermo Fisher Scientific, HG-40000-012) to suspend the organoids. The Histogel 

is then transferred to a cassette and sent to TPCL for paraffin embedding. We section organoid 

blocks at 8µm and mount them on Superfrost Plus Microscope Slides (12-550-15, Fisher 

Scientific). 

Hematoxylin and eosin staining was performed on the parent tumor and the resulting 

organoids derived from tissue collection. Our slides were stained by TPCL in accordance with 

their standard protocol. All images were acquired using the Revolve Upright and Inverted 

Microscope System (Echo Laboratories). 

Growth Quantification with Image Analysis 

We image the organoids daily using a high-content microscope that scans two focal planes 

per well. The resulting whole-well images are exported in TIF format at a resolution of 1 µm/pixel. 

We then implement our previously developed methodology to segment and quantify regions of 

the image containing organoids95. We use a convolutional neural network with a U-Net 

architecture104 to segment the regions of the images containing organoids. This model is based 

on a ResNet-34 model123 trained on 223 manually-labelled images spanning an array of tumors 

of origin to capture the diverse organoid morphologies observed in this study. In the manually-

labelled dataset, only in-focus organoids are marked for inclusion in the area calculation; this is 

done to minimize measuring the same organoid across both focal planes. The original weights 

were derived from a model pretrained on the ImageNet dataset124 and the final model was trained 
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over 80 epochs using a cross-entropy loss function. The trained model was then used to segment 

each image by splitting the image into 512x512 pixel sections, applying the model to each section, 

and reassembling the sections to recreate the whole segmented image (16,896x16896 pixels). 

We then implement OpenCV to calculate the total area of the organoids in each focal 

plane. This area is then averaged across both focal planes and growth is measured by normalizing 

to the area covered by organoids on the first day of imaging of the same well. The resulting data 

was then plotted using GraphPad Prism as normalized area over time. 

Targeted Sequencing 

Select samples were sent to the Center for Advanced Molecular Diagnostics (CAMD) at 

Brigham and Women’s Hospital for analysis using the OncoPanel v3125. Sequencing was 

performed on pre-sectioned 10 slides from non-decalcified FFPE tissue blocks. Slides are then 

shipped to CAMD for sequencing and analysis. We plotted the results in a circos plot using R. 

Fluorescence In Situ Hybridization (FISH) 

We identified NTRK 1, 2, or 3 fusions by performing Fluorescence In Situ Hybridization 

(FISH). Pre-sectioned slides from non-decalcified FFPE tissue blocks from select samples were 

sent to NeoGenomics for performing their NTRK 1, 2, 3 FISH Panel (88374x3). 

Pathway Analysis 

Protein targets for each drug in our library were annotated and obtained from PubChem102 

and literature. We selected only targets that are within 10-fold of the second-lowest reported value 

for Kd (dissociation constant) or IC50 (median inhibitory concentration) among the targets. To 

perform the pathway analysis, we mapped each drug and their protein target with values of 0 and 

1, with 1 indicating that a drug targets a protein, and 0 indicating the lack of protein among the 

drug targets. We filled the values in a matrix composed of ndrugs x mprotein. 
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To adjust for the degree of impact of protein targets on the viability of samples, we 

multiplied each row in the matrix by a weight proportional to the mean viability of the organoids 

treated by each drug [1 − (mean viability/100)]. We then multiplied this matrix by a vector of 1s to 

obtain a row-wise summation of the protein target viability values. To adjust for protein targets 

that are targeted by multiple drugs in our library compared to targets associated with drugs that 

are less represented in our panels, we normalized the row vector by dividing each element by the 

sum of non-zero column entries in the ndrugs × mprotein matrix. 

We then mapped this list of proteins to the canonical pathways defined by the 

WikiPathways Database [version 20220710]103. We excluded pathways that are not biologically 

pertinent to cancer, such pathways related to microorganisms and pathogens, as well as the 

newly added coronavirus disease (COVID)–related pathways.  

We populated a new matrix comprised of npathway x mprotein, with 1s indicating the presence 

of a protein in a particular pathway or 0s indicating its absence. We then normalized the rows in 

the pathway matrix to account for the differences in the number of proteins included in each 

pathway. To obtain the relative effect that targeting a specific pathway has on the viability of 

sarcoma organoids, we multiplied the npathway × mprotein mapping matrix by the 

normalized ndrugs × mprotein vector. The resulting vector represents the relative impact that targeting 

a given pathway has on the viability of the organoids. We then ranked the scored pathways for 

each sample to compare the impact of each pathway on a viability of a sample between organoids 

of different sarcoma subtypes. 

Assessment of Drug Availability 

Based on our drug screening data, we created a list of the five most effective therapeutic 

agents for each sample screened. We then created a second list of the top 25% most responsive 

samples to each drug. We considered only sample-drug pairs that appeared in both lists for further 
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analysis and mapped each sample to its diagnostic subtype. For each drug-diagnosis pair, we 

manually annotated the inclusion of each therapy in the NCCN Guidelines1,2 as well as the current 

FDA approval status for each drug with respect to the histological subtype. 

Supplemental Information 

 

 

 

 

Figure S3.1: Analytical pipeline and sources of data for the relational database used for storing 

and analyzing drug screening data. 

Figure S3.2: Age distribution by subtype. 
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Figure S3.3: Distribution of Z’ factor and robust Z’ factor of the screened sarcoma plates. Dotted 

vertical line indicates cutoff of 0.2 for both Z’ factor and robust Z’ factor. 
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Figure S3.4: Additional drugs with correlation between organoid sensitivity and patient age at 

diagnosis. All samples screened with a drug are ranked from lowest viability (low viability percentile) to 

highest viability (high viability percentile) and plotted according to the rank. The color of each point 

represents the diagnosis of the individual samples screened with the drug of interest. Statistical 

significance is tested by performing a Kruskal-Wallis test with post-hoc Wilcoxon Rank Sum Test for 

pairwise comparisons with Bonferroni correction. 
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Figure S3.5: Additional drugs with correlation between organoid sensitivity and lesion type. All 

samples screened with a drug are ranked from lowest viability (low viability percentile) to highest viability 

(high viability percentile) and plotted according to the rank. The color of each point represents the 

diagnosis of the individual samples screened with the drug of interest. Statistical significance is tested 

by performing a Kruskal-Wallis test with post-hoc Wilcoxon Rank Sum Test for pairwise comparisons 

with Bonferroni correction. 
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Figure S3.6: Additional drugs associated with correlation between organoid sensitivity and 

number of prior systemic therapies. All samples screened with a drug are ranked from lowest viability 

(low viability percentile) to highest viability (high viability percentile) and plotted according to the rank. 

The color of each point represents the diagnosis of the individual samples screened with the drug of 

interest. Statistical significance is tested by performing a Kruskal-Wallis test with post-hoc Wilcoxon 

Rank Sum Test for pairwise comparisons with Bonferroni correction. 
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Figure S3.7: Additional drugs with correlation between organoid sensitivity and prior radiation 

therapy. All samples screened with a drug are ranked from lowest viability (low viability percentile) to 

highest viability (high viability percentile) and plotted according to the rank. Primary drug targets are 

shown next to each drug name. The color of each point represents the diagnosis of the individual 

samples screened with the drug of interest. Statistical significance is tested by performing Wilcoxon 

Rank Sum Test. 
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Figure S3.8: Additional drugs with correlation between organoid sensitivity and prior systemic 

therapy. All samples screened with a drug are ranked from lowest viability (low viability percentile) to 

highest viability (high viability percentile) and plotted according to the rank. Primary drug targets are 

shown next to each drug name. The color of each point represents the diagnosis of the individual 

samples screened with the drug of interest. Statistical significance is tested by performing Wilcoxon 

Rank Sum Test. 
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Figure S3.9: Additional drugs with correlation between organoid sensitivity and change in 

disease status. All samples screened with a drug are ranked from lowest viability (low viability 

percentile) to highest viability (high viability percentile) and plotted according to the rank. Primary drug 

targets are shown next to each drug name. The color of each point represents the diagnosis of the 

individual samples screened with the drug of interest. Statistical significance is tested by performing 

Wilcoxon Rank Sum Test. 
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Figure S3.10: Osteosarcoma organoid sensitivity to treatment of NCCN recommended regimens. 

Heatmaps of organoid sensitivity to selected drugs from the NCCN recommendations were screened at 

1 μM. Organoid viability for each sample is normalized to the mean organoid response to treatment with 

the selected drug across samples. Each column is a unique specimen, darker shades of red indicate 

greater sensitivity to treatment. Colored bars underneath each heatmap indicate the Z-score, lesion 

type, and diagnosis of each sample. 
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Figure S3.11: Drug availability and NCCN Guidelines status by histological subtype. We selected 

drug-diagnosis pairs of interest by cross-referencing the five most effective drugs for each sample with 

the 25% most responsive samples for each drug. (A) Single agent drugs that are not FDA approved are 

shown for each unique drug-diagnosis combination. The shape of the point indicates the current NCCN 

Guidelines for each drug. Triangles indicate drugs that are indicated as a preferred regimen. Squares 

signify drugs that are recommended for the subtype of interest and circles indicate that the drug is not 

currently discussed in the NCCN guidelines1,2. Diamond shape signifies that the histologic subtype has 

no guidelines, such as DSRCT and CIC rearranged sarcoma. The size of the marker indicates whether 

a single sample or multiple samples of a given histologic subtype was found to be among the five most 

effective for a drug. Drugs are clustered by similarity in gene targets using Jaccard distance. The number 

of samples screened for each histologic subtype is shown above. (B) Similar analysis is performed for 

combinational regimens and their NCCN recommendations across sarcoma histological subtype. 
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Figure S3.12: Organoid sensitivity to treatment of mTOR/PI3K targeting drugs, dovitinib, 

apitolisib, copanlisib, BGT226, and vistusertib. Heatmaps of organoid sensitivity to selected drugs 

from the NCCN recommendations were screened at 1 μM. Organoid viability for each sample is 

normalized to the mean organoid response to treatment with the selected drug across samples. Each 

column is a unique specimen, darker shades of red indicate greater sensitivity to treatment. Colored 

bars underneath each heatmap indicate the Z-score, lesion type, and diagnosis of each sample. 
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Chapter 4: Bioprinted organoids for high-content analysis with interferometry 

 

As established in Chapter 3, high-throughput drug screening using tumor 

organoids is a viable approach to investigate tumor biology and identify therapeutic leads. 

However, organoid models suffer from difficulty in scale up and analysis. For example, 

manually seeded organoids coupled to destructive endpoint assays allow for the 

characterization of response to treatment, but do not capture the transitory changes and 

intra-sample heterogeneity underlying clinically observed resistance to therapy. We 

therefore developed a pipeline to generate bioprinted tumor organoids linked to label-

free, real-time imaging via high-speed live cell interferometry (HSLCI) and machine 

learning-based quantitation of individual organoids. Bioprinting cells gives rise to 3D 

organoid structures that preserve tumor histology and gene expression. HSLCI imaging 

in tandem with machine learning-based image segmentation and organoid classification 

tools enables accurate, label-free parallel mass measurements for thousands of 

bioprinted organoids. We demonstrate that our method quantitatively identifies individual 

organoids as insensitive, transiently sensitive, or persistently sensitive to specific 

treatments. This opens new avenues for rapid, actionable therapeutic selection using 

automated tumor organoid screening. 

Introduction 

Functional precision oncology involves exposing tumor cells from individual 

patients to candidate therapeutic interventions ex vivo33,35,126,127. By monitoring response, 

treatment regimens with a higher probability of success can be prioritized9,10,59,128,129. 
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These types of assays can provide useful sensitivity profiles even for tumors that lack 

currently actionable genomic alterations, and are thus incompatible with genomic-based 

precision medicine approaches130, By directly measuring the effect of drugs on tissues or 

cells, functional assays can inform on the therapeutic resistance and sensitivity landscape 

of tumors without requiring full knowledge of the underlying molecular vulnerabilities a 

priori31,32.  

The broadly adopted model systems used in screening assays to identify possible 

leads all have limitations. Two-dimensional cell lines are relatively simple and inexpensive 

to culture but fail to represent the architecture, behavior and drug response of native 

tissue131,132. Mouse models have additional complexity but carry inherent, species-

specific variations that limit their translation to human patients133. Patient-derived 

xenograft (PDX) models aim to better recapitulate human cancers yet are constrained by 

the large cost and time associated with their use, making large drug screening studies 

practically challenging134. Three-dimensional (3D) tumor organoids are promising models 

for precision medicine that can be established rapidly and effectively from a variety of cell 

types and tissue sources, and accurately mimic a patient’s response to 

therapy9,10,32,59,127,129,135. They are physiologically-relevant, personalized cancer models 

well-suited for drug development and clinical applications36,136. The key outstanding 

limitations to the broad adoption of organoid-based screenings remain the time-intensive 

and operator-to-operator susceptibility of the cell seeding steps as well as destructive, 

population-level approaches required for subsequent organoid analysis137.  

To overcome these limitations, we developed an organoid screening pipeline that 

combines automated cell seeding via bioprinting with high-speed live cell interferometry 
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(HSLCI) and machine learning-based image segmentation and classification and for non-

invasive, label-free, real-time organoid imaging. The new pipeline is based on our 

previously developed screening approach that takes advantage of patient-derived tumor 

organoids seeded in a mini-ring format to automate high-throughput drug testing, with 

results available within one week from surgery9,10,138. We automate cell seeding by 

including bioprinting, a technique for precise, reproducible deposition of cells in bioinks 

onto solid supports, to seed the organoids139. Bioprinting has rapidly gained traction in 

cancer biology as embedded cells can interact with physiological microenvironment 

components in the bioink to create physiologically-representative tumor models137,139–143.  

We then implement HSLCI to rapidly monitor changes in dry biomass and biomass 

distribution of single organoids over time. HSLCI, a type of quantitative phase imaging 

(QPI)144–149, measures the phase shift of light transmitted through the sample using a 

wavefront sensing camera147,150. Due to the defined linear relationship between the 

refractive index and mass density of biomolecules in solution, which is invariant with 

respect to changes in cellular content151–155, measured phase shifts can be integrated 

across the area of an image and multiplied by a conversion factor to obtain the dry 

biomass of imaged cells150. Biomass is an important metric of organoid fitness as its 

dynamics are the direct result of biosynthetic and degradative processes within cells150. 

In previous work, QPI measurements of biomass changes allowed resolution of drug-

resistant and drug-sensitive cells in 2D cell culture models within hours of treatment144–

146,148,149,156,157. HSLCI-measured response profiles have also been shown to match drug 

sensitivity from patient-derived xenograft (PDX) mouse models of breast cancer145. 

However, HSLCI has been applied exclusively to screening cancer lines grown in 2D or 
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single-cell suspensions of excised PDX tumors thus far144–149. We demonstrate here that 

bioprinted organoids deposited in uniform, flat layers of extracellular matrix allow label-

free, real-time, non-destructive quantification of growth patterns and drug responses at 

single-organoid resolution. 

Results 

Bioprinting enables seeding cells in Matrigel in suitable geometries for 

quantitative imaging applications.  

To address current limitations9,10,138 and facilitate non-invasive, label-free, real time 

imaging of 3D organoids by HSLCI, we created an automated cell printing protocol using 

an extrusion bioprinter. As a base, we used an organoid platform that seeds cells in mini-

rings of Matrigel around the rim of 96-well plates, with the empty center allowing the use 

of automated liquid handlers, facilitating media exchanges and addition of 

perturbagens9,10,138. We retained the empty center architecture but altered the geometry 

to bioprint mini-squares of cells in Matrigel (Figure 4.1A). Positioning the sides of the 

square in the HSLCI imaging path allows sampling of a larger area and limits imaging 

artifacts caused by uneven illumination at well edges147 (Figure 4.1A). Our bioprinting 

protocol entails suspending cells in a bioink consisting of a 3:4 ratio of medium to Matrigel. 

This material is then transferred to a print cartridge, incubated at 17°C for 30 minutes, 

and bioprinted into each well at a pressure between 12 and 15 kPa, resulting in ~200 µm 

prints on standard glass-bottom plates (Figure 4.1B). 

We next coupled these bioprinted organoids to an HSLCI platform. HSLCI uses a 

wavefront sensing camera and a dynamic focus stabilization system to perform 
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continuous, high-throughput, label-free, quantitative phase imaging of biological samples, 

tracking their biomass changes over time144,145. However, efficient high-throughput QPI 

of 3D organoids using HSLCI is hindered by geometry considerations; when an object of 

interest is out of focus, measured phase shifts cannot be assumed to maintain a direct 

relationship with mass density147. Thus, we attempted to generate thinner layers of 

Matrigel to yield a relatively greater number of organoids in focus that can be 

quantitatively assessed at any given time. To generate thinner (100 µm) constructs 

amenable to efficient, label-free HSLCI imaging, we increased the hydrophilicity of the 

surface of 96-well glass-bottom plates by oxygen plasma treatment158. We developed 3D 

masks composed of BioMed Amber Resin (FormLabs) to selectively functionalize the 

region of interest (Figure S4.1). Bioprinting post-plasma treatment generated uniform 

mini-squares with organoids closely aligned on a single focal plane at ~70 µm thickness 

(Figure 4.1B). These thin, printed mini-squares are amenable to massively parallel QPI 

by HSLCI as we aligned the legs of the bioprinted mini-square construct with the HSLCI 

imaging path (Figure 4.1C).  

Lastly, we verified that the printing parameters used did not altered cell viability by 

directly comparing MCF-7 cells manually seeded according to our established 

protocol9,10,138 to cells printed through a 25G needle (260 µm inner diameter) using 

extrusion pressures ranging from 10 to 25 kPa. We did not observe any reduction in cell 

viability as measured by ATP release assay (Figure 4.1D). These results are consistent 

with the existing literature as reductions in cell viability are often associated with higher 

print pressures (50-300 kPa)159,160. Taken together, this describes a method for 

bioprinting layers suitable for high-throughput HSLCI imaging without impacting cell 
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viability, while supporting automated liquid-handling for high-throughput 

applications9,10,138,161,162. 
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Bioprinted tumor organoids maintain histological features of manually seeded 

organoids.  

To verify that bioprinting did not perturb tumor biology, we directly compared the 

histology and immunohistochemical profiles of bioprinted and hand-seeded organoids 

from two breast cancer cell lines, BT-474 and MCF-7. These lines were selected for their 

differing molecular features such as their human epidermal growth factor receptor 2 

(HER2) and estrogen receptor (ER) status163. We seeded cells as maxi-rings (1×105 

Figure 4.1: Bioprinting enables seeding of Matrigel-encapsulated organoids optimized for 

efficient HSLCI. (A) Schematic of wells with mini-rings (top) and mini-squares (bottom) relative to 

HSLCI imaging path (blue arrows). The top views (left) demonstrate that transitioning from rings to 

squares increases the area of material in the HSLCI imaging path. The side views (right) show that 

organoids in the square geometry align to a single focal plane better than organoids in a ring.  (B) 

Plasma treatment of the well plate prior to printing optimizes hydrogel construct geometry. Bioprinting 

Matrigel onto untreated glass (left) generates thick (~200 µm) constructs that decreases the efficiency 

of organoid tracking by increasing the number of organoids out of the focal plane. Whole well plasma 

treatment (middle) increases the hydrophilicity of all well surfaces causing the Matrigel to spread thin 

(~50 µm) over the surface; however, the increased hydrophilicity also draws bioink up the walls of the 

well. Plasma treatment with a well mask facilitates the selective treatment of a desired region of the 

well (right). This leads to optimal constructs with a uniform thickness of approximately 75 µm across 

the imaging path. (C) Individual organoids can be tracked over time across imaging modalities. Five 

representative HSLCI images are traced to the imaging path across a brightfield image. (D) Cell 

viability of printed versus manually seeded MCF-7 cells in a Matrigel-based bioink. A one-way ANOVA 

was performed (p = 0.0605) with post-hoc Bonferroni’s multiple comparisons test used to compare all 

bioprinted conditions against the manually seeded control. Adjusted p-values were 0.0253, 0.6087, 

>0.9999, 0.1499 for print pressures 10, 15, 20, 25 kPa, respectively. (E) H&E staining shows the 

development of multicellular organoids over time regardless of seeding method. The prevalence and 

size of multinuclear organoids increase with culture time. Ki-67/Caspase-3 staining demonstrates that 

most cells remain in a proliferative state throughout culture time. While apoptotic cells were observed 

in organoids cultured for 72 hours, the majority of cells show strong Ki-67 positivity. All images are 40X 

magnification and insets are 80X magnification. Ki-67 is stained brown, and caspase-3 is stained pink.  
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cells/ring) to obtain sufficient material for downstream characterization. Cells were either 

manually seeded into 24 well plates9,10,138 or bioprinted into 8-well plates at an extrusion 

pressure of 15 kPa. The bioprinted cells and resulting organoid structures were 

morphologically indistinguishable from manually seeded ones in brightfield images and 

hematoxylin and eosin (H&E)-stained sections taken 1, 24 and 72 hours after seeding 

(Figure 4.1E). Both bioprinted and manually seeded samples grew in size over time and 

bioprinting did not alter proliferation (Ki-67 staining) or apoptosis (cleaved caspase-3; 

Figure 4.1E). Hormone receptor status was unaltered, as shown by IHC for HER2 

(Figure S4.3) and ER (Figure S4.4), and in agreement with literature reports for both cell 

types164–167. Thus, bioprinting did not influence organoid histology. 

 

Bioprinted and manually seeded organoids are molecularly indistinguishable. 

While bioprinted organoids are histologically indistinguishable from manually-

seeded ones, this does not preclude molecular changes caused by the printing process. 

We therefore performed a detailed analysis of the transcriptomes of manually seeded and 

bioprinted cells 1-, 24- and 72-hours post-seeding. We assessed the distributions of 

27,077 transcripts and clustered these into deciles based on their median abundance and 

found no significant differences between seeding approaches (Figure 4.2A). The overall 

transcriptomes of manually seeded and bioprinted organoids were extremely well-

correlated (Figure 4.2B), with no individual transcripts differing significantly in abundance 

in either cell line even at very permissive statistical thresholds (0/27,077 genes, q <0.1, 

Mann-Whitney U-test, Figure 4.2C).  
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We next examined pre-mRNA alternative splicing events since these can induce 

functional changes even in the absence of variations in mRNA levels168–170. The density 

of exon-inclusion and exon-skipping isoforms was unchanged, with no individual fusion 

isoforms associated with the organoid printing method in either cell line (0/8,561, q <0.1, 

Mann-Whitney U-test; Figure 4.2D). Similarly, the number of fusion transcripts were not 

associated with seeding method (p = 0.17, Mann-Whitney U-test), although large 

numbers of fusions were detected in only one or two samples, reflecting the wide-spread 

trans splicing and genomic instability of immortalized cell lines171 (Figure S4.5A). Finally, 

there were no significant differences in the number or nature of RNA editing sites between 

printed and manually developed organoids (p = 0.48, Mann-Whitney U-test; Figure 

S4.5B). These findings demonstrate that our bioprinting protocol does not significantly 

impact the molecular characteristics of tumor organoids. 
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Machine learning-based image segmentation and organoid classification enables 

single-organoid analysis.  

Our complete pipeline includes cell bioprinting (day 0), organoid establishment 

(day 0-3), full media replacement (day 3, Figure 4.3A) followed by transfer to the HSLCI 

incubator. Within 6 hours of media exchange, the plates are continuously imaged through 

72 hours post-treatment. At the end of the imaging period, we perform an endpoint ATP 

assay to assess cell viability (Figure 4.3A). Interferograms collected by HSLCI are first 

converted to phase shift images using the SID4 software development kit (GPU version, 

v741)147. These images are then analyzed using two types of machine-learning 

algorithms.  

To reliably identify unique organoids within each imaging frame despite the 

presence of background noise, debris, and out-of-focus organoids, we performed image 

Figure 4.2: Bioprinting does not significantly alter organoid transcriptomes. (A) Distributions of 

total number of transcripts detected (above) and transcript abundances (below) measured as transcripts 

per million (TPM) organized into groups of deciles based on median abundance. (B) RNA abundances 

(log2 TPM) of manually seeded and bioprinted organoids at three different time points (t = 1, 24, and 72 

hours). Spearman′s ρ was assessed for each association. We found strong associations between RNA 

abundances derived from printed and manually seeded organoids for both cell lines. (C) Volcano plots 

of Mann-Whitney U-test results for MCF-7 and BT-474 organoids with unadjusted p-values (left) and false 

discovery rate (FDR) adjusted p-values (right) comparing the RNA abundances of transcripts between 

manually seeded and printed tumor organoids. Fold change of RNA transcripts were assessed and log2 

transformed. No transcripts were preferentially expressed based upon seeding method for organoids of 

either cell line (n = 0 out of 27,077 genes, q-value <0.1, Mann-Whitney U-test). (D) Median percent 

spliced in (PSI) of exon skipping isoforms were similarly distributed among BT-474 (top) and MCF-7 

(bottom) derived organoids. Distribution of isoforms is consistent between manually seeded (left) and 

bioprinted (right) organoids. PSI of 1 indicates that the isoform is exclusively an exon inclusion isoform, 

while a PSI of 0 indicates that the isoform is exclusively an exon skipping isoform. 
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segmentation using a U-Net architecture104 with a ResNet-3410,123 as the backbone. U-

Net, a type of convolutional neural network (CNN), consists of an encoder that extracts 

rich feature maps from an input image and a decoder that expands the resolution of the 

feature maps back to the image’s original size. The long skip connections between the 

encoder and decoder propagate pixel-level contextual information into the segmented 

masks. The resulting segmentation images are very detailed even when provided small 

training datasets. The training dataset consisted of manually labeled organoids in 100 

randomly selected imaging frames. This model created binary masks indicating whether 

each pixel of the image belonged to an organoid or the background with a mean Jaccard 

Index of 0.897 ± 0.109 at the 95% confidence level (Figure S4.6). The CNN reliably 

created masks omitting phase artifacts resulting from aberrant background or out-of-focus 

organoids (Figure S4.6). 

Next, we determined the mass of each organoid in segmented masks by 

integrating the phase shift over the organoid area and multiplying by the experimentally 

determined specific refractive increment146,151,153,154,172. Organoids in subsequent frames 

were assembled into time coherent tracks using TrackMate173,174 and filtered using an 

XGBoost classifier175 we developed to exclude organoids moving in and out of focus, 

frequently overlapping and/or separating from neighboring organoids, or incorporating 

debris. We validated the model via cross-validation with 3-fold resampling of the sample 

population. The 3-fold resampling cross-validation score of the classifier was 91% with 

93.5% accuracy. We also observed trends in the features used to classify each track, with 

excluded tracks typically have an increased number of missing frames as well as smaller 

interquartile ranges, and smaller initial and final sizes (Figure S4.7). 
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Trends in mass accumulation of bioprinted organoids can be quantified by HSLCI 

with single-organoid resolution.  

HSLCI-based imaging allowed continuous tracking of n=921 MCF-7 organoids in 

12 replicate wells (median: 78.5 organoids/well) and n=438 BT-474 organoids in 12 

replicate wells (median: 36 organoids/well, Figure 4.3B). Due to organoids moving in and 

out of the field-of-view, the number of organoids tracked at each time point varied slightly. 

Overall, we tracked an average of 821 ± 28 MCF-7 organoids and 412 ± 9 BT-474 

organoids at any given time throughout imaging (Figure 4.3B). 

 Unlike chemical endpoint assays or other live imaging modalities, HSLCI-based 

imaging facilitates parallel mass measurements of individual organoids. The initial 

average organoid mass was larger for MCF-7 (1.36 ± 0.84 ng) than BT-474 organoids 

(1.12 ± 0.61 ng, Figure 4.3C). The difference persisted throughout the entire imaging 

duration (Table S4.1). BT-474 cells grew at a rate of 0.80 ± 6.07% per hour while MCF-7 

Figure 4.3: Bioprinting enables single-organoid tracking with high-speed live cell 

interferometry. (A) Extrusion-based bioprinting is used to deposit single-layer Matrigel constructs into 

a 96-well plate. Organoid growth can be monitored through brightfield imaging. After treatment, the 

well plate is transferred to the high-speed live cell interferometer for phase imaging. Coherent light 

illuminates the bioprinted construct and a phase image is obtained. Organoids are tracked up to three 

days using the HSLCI and changes in organoid mass are measured to observe response to treatment. 

(B) Total number of organoid tracks (left) and mean number of tracks per well (right) at each time point. 

The total number of organoid tracks across interpretable, replicate wells was 67 for MCF-7 organoids 

(n = 8), and 101 for BT-474 organoids (n = 12). (C) Mass distribution of tracked organoids 6 and 48 

hours after treatment. Black bars represent the mean with error bars representing the standard 

deviation. (D) Hourly growth rate (percent mass change) of tracked MCF-7 (left) and BT-474 (right) 

organoids cultured in 1% DMSO. (E) Representative images of MCF-7 and BT-474 organoids tracked 

with HSLCI. Brightfield images of organoids taken immediately before treatment are shown on the left. 

(F) Calculated mass of each representative organoid over time. 
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organoids demonstrated slower average hourly growth rates (0.33 ± 4.94% per hour, 

Figure 4.3D). The growth rate of the 3D BT-474 organoids is slightly slower than that 

observed after 6 hours in 2D culture (approximately 1.3%), while the MCF-7 organoids 

showed a much lower growth rate than previously reported 2D cultures (approximately 

1.7%)156. We also observed positive associations between initial organoid mass and 

growth rate in both cell lines; however, the association between these factors is stronger 

for MCF-7 organoids (Figure S4.8). The varying degrees of association provide evidence 

of cell-line specific growth characteristics that cannot be measured using any other 

analytical method. 

Drug responses of organoids can be quantified by HSCLI.  

We then tested the utility of our platform in detecting drug responses in high-

throughput 3D screenings (Figure 4.3A). As proof-of-principle we tested staurosporine, 

a non-selective protein kinase inhibitor with broad cytotoxicity176, neratinib, an irreversible 

tyrosine kinase inhibitor targeting EGFR and HER2177, and lapatinib, a reversible tyrosine 

kinase inhibitor also targeting EGFR and HER2178. Staurosporine and neratinib were 

tested at 0.1, 1, and 10 µM, while lapatinib was screened at 0.1, 1, 10, and 50 µM (Figure 

4.4 and S4.9). These concentration ranges include and extend beyond the maximum 

plasma concentration reported for both lapatinib (4.2 μM)179 and neratinib (0.15 µM)180.  

 Representative HSLCI images demonstrate a range of responses to treatment 

(Figure 4.4A). The average masses at the start of the imaging window (6 hours post-

treatment) did not significantly differ from the vehicle control (Figure 4.4B, Table S4.1). 

After 24, 48, and 72 hours, we observed significant differences in a number of treated 
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samples (Table S4.1). After 24 hours, control MCF-7 organoids averaged 1.56 ± 1.05 ng, 

while those treated with 1 μM and 10 μM staurosporine showed significant reductions in 

average masses to 1.18 ± 0.77 ng (p = 1.93 x 10-9, Mann-Whitney U-test) and 1.11 ± 0.69 

ng (p = 1.49 x 10-13, Mann-Whitney U-test), respectively. BT-474 organoids showed a 

similar pattern after 24 hours with control organoids averaging masses of 1.27 ± 0.69 ng 

while staurosporine-treated organoids averaged 0.76 ± 0.39 ng (1 μM, p = 2.27 x 10-32, 

Mann-Whitney U-test) and 0.79 ± 0.44 ng (10 μM, p = 1.59 x 10-28, Mann-Whitney U-test). 

The normalized growth curves (Figure S4.10) rapidly show response to treatment with 1 

μM staurosporine.  

Responses to lapatinib and neratinib reflected cell-specific trends. BT-474 

organoids quickly showed sensitivity to both neratinib and lapatinib, while MCF-7 

organoids only exhibited sensitivity to 10 µM lapatinib and neratinib (Figures 4.4B and 

4.5A, Tables S4.1 and S4.2). After 24 hours, the mean mass of the BT-474 organoids 

treated with 0.1 µM neratinib decreased to 0.97 ± 0.44 ng from 1.27 ± 0.69 ng (p = 4.86 

x 10-6, Mann-Whitney U-test) and organoids treated with 1 µM lapatinib decreased to 1.00 

± 0.49 (p=3.37 x 10-5, Mann-Whitney U-test). 
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Figure 4.4: HSLCI enables high-throughput, longitudinal drug response profiling of 3D organoid 

models of cancer. (A) Representative images of organoids treated with 10 µM staurosporine, 10 µM 

neratinib, and 10 µM lapatinib. (B) Mass of tracked MCF-7 and BT-474 organoids by treatment. Each 

bar represents the mass distribution at 6-, 24-, 28-, and 72-hours post-treatment (left to right). Black 

horizontal bars represent the median with error bars representing the interquartile range of the 

distribution. (C) Hourly growth rate comparisons (percent mass change) between organoids treated with 

10 µM staurosporine and vehicle, 10 µM neratinib and vehicle, and 10 µM lapatinib and vehicle. p<0.05 

is denoted by *, p<0.01 is denoted by **, and p<0.001 is denoted by ***. 
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Intra-sample heterogeneity of organoid drug responses. 

Our combination of HSLCI with ML-based organoid tracking provides per-organoid 

mass tracking, allowing quantitation of intra-sample heterogeneity (Figure 4.3E-F, 

Supplementary Videos 4.1 & 4.2). We assessed the ratio of organoids that gained, lost, 

and maintained mass over 12, 24, 48, and 72 hours for both control and treated samples 

(Figure 4.5A, Table S4.2). In the absence of drug treatment, 11.9% of BT-474 organoids 

lost more than 10% of their initial mass and 80.9% gained more than 10% of their initial 

mass over 72 hours. In contrast, only 50.8% of MCF-7 organoids gained mass and 32.6% 

lost mass. This heterogeneity in organoid populations increases over time, with 23.2% of 

MCF-7 organoids gaining more than 10% mass within 12 hours. This proportion nearly 

doubles to 44.8% after 24 hours but remains consistent at 48.6% and 50.8% after 48 and 

72 hours, respectively. This pattern differs from BT-474 organoids as the population of 

organoids that gained mass continually increases over the first 48 hours before plateauing 

between 48 and 72 hours. BT-474 organoids that gained >10% mass increased from 

30.1% after 12 hours, to 62.4% after 24 hours, and 80.9% after 48 and 72 hours.  

Upon treatment, we could observe both inter-sample (MCF-7 vs BT-474) as well 

as intra-sample heterogeneity. In the presence of the HER2-targeting lapatinib (10 µm), 

37.7% of MCF-7 continued to grow and an additional 10.0% maintained their mass after 

72 hours of treatment (Figure 4.5A, Table S4.2). When treated with 10 µM neratinib, only 

4.5% of MCF-7 organoids gained mass, while 18.1% remained stable. In contrast, BT-

474 organoids showed greater sensitivity to both drugs, with 11.4% growing and 73.7% 

losing mass with 10 µM lapatinib treatment (vs 11.9% for controls), and no organoids 

growing after 10 µM of neratinib for 72 hours (Figure 4.5A, Table S4.2). A subset of BT-

474 organoids showed high sensitivity to 0.1 µM of both lapatinib and neratinib. In 

response to lapatinib, 12.8% of BT-474 organoids lost mass, while 17.9% maintained 

stable mass. When treated with neratinib, 49.1% lost mass and 22.4% had stable mass. 

Both responses contrasted with organoids treated with vehicle, of which 11.9% lost mass 

and 7.2% maintained mass. The heightened sensitivity of BT-474 cells to lapatinib and 

neratinib is expected given the higher expression of HER2 found in these cells163 (Figure 

S4.3). 
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A fraction of organoids in all treatment-cell combinations were unresponsive to the 

drugs tested (Figure 4.5A, Figure S4.10, Table S4.2). These organoids grew at similar 

rates to vehicle-treated cells and comprised between 7.8 and 87.1% of all organoids 

depending on the cell line and drug. For example, 37.7% of MCF-7 organoids treated with 

10 µM lapatinib grew after 72 hours, while an additional 10% maintained stable mass 

(Table S4.2). Similarly, when treated with 10 µM neratinib for 72 hours, nearly 8% of BT-

474 organoids maintained their mass, and when exposed to 10 µM lapatinib for 72 hours, 

the proportion increases to over 25% (Table S4.2). Our findings are indicative of a 

resistant population of organoids that can be rapidly identified by HSLCI imaging. These 

persisters may provide a unique model for understanding de novo and acquired treatment 

resistance. 

Lastly, to validate the responses measured by HSLCI, we performed an endpoint 

ATP-release assay on the same plates used for HSLCI imaging and assessed organoid 

viability at the end of the 72-hour treatment (Figure 4.5B). The ATP assay confirmed that 

both cell lines are highly sensitive to staurosporine with near-zero viability at the 1 and 10 

µM concentrations. Additionally, BT-474 organoids show significant reductions in viability 

when treated with 0.1 µM lapatinib and 0.1 µM neratinib for 72 hours (Table S4.3). 

Overall, the results of the cell viability assay after 72 hours confirm the trends observed 

in as little as 6 hours by HSLCI but fail to capture intra-sample variability. 
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Discussion 

Every newly diagnosed human cancer reflects a unique set of germline variation, 

somatic mutations, and microenvironmental influences181. Cancer therapy attempts to 

address this by personalizing treatment for individual patients182,183. The most common 

approach to date has been molecular precision medicine, which links therapeutic efficacy 

to molecular features of a tumor16,33,184. Functional precision medicine approaches, by 

contrast, bypass the need to learn drug-molecular associations by relating ex vivo 

response to clinical outcomes6,59,185. Key limitations towards the broad adoption of 

functional precision medicine have been the creation of physiological culture models, the 

development of high-throughput systems, and the difficulty in measuring organoid 

heterogeneity126,186,187. Here, we describe a new pipeline that overcomes these barriers 

by incorporating a robust 3D organoid bioprinting protocol and an imaging approach that 

facilitates single-organoid analysis of response to treatment. 

We introduced bioprinting to enhance the throughput and consistency of our 

previously published organoid screening approaches9,10,138. We opted to print a Matrigel-

based bioink due to its ability to preserve tumor characteristics ex vivo9; however, its weak 

mechanical integrity and its temperature-dependent viscosity and crosslinking behavior 

complicate its suitability for bioprinting188. To circumvent these limitations, we optimized 

a protocol that takes advantage of its temperature-dependent behavior to yield consistent 

mechanical properties for bioprinting. While the existing consensus is that consistent 

bioprinting with Matrigel is difficult to achieve, we show that simple, single-layer structures 

are attainable with strict temperature regulation. We further enhanced the quality of the 

Matrigel deposition by selectively modifying the print substrate with oxygen plasma 

treatment. The introduction of 3D plasma masks (Figure S4.1) facilitated the selective 

treatment of a square region in each well. The increased hydrophilicity of the substrate in 

Figure 4.5: HSLCI enables identification of resistant and sensitive organoid subpopulations and 

discerns response to treatment earlier than a standard endpoint assay. (A) Plots showing the 

percentage of organoids in each condition that gain (green) or lose (black) more than 10% of their initial 

mass 12, 24, 48, 72 hours after treatment. (B) Percent cell viability of treated wells determined by an 

ATP-release assay. Statistical significance was assessed using an unpaired t-test with Welch’s 

correction. p<0.05 is denoted by *, p<0.01 is denoted by **, and p<0.001 is denoted by ***. 
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the exposed region guides the spreading of the material to ensure maximize consistency 

in deposition volume and construct thickness while preventing obstruction of the center 

of the well. Bioprinting allowed us to finely control the size and shape of the deposited gel 

constructs, facilitating the use of HSLCI for downstream analysis (Figure 4.1). 

To our knowledge, this is the first reported use of live cell interferometry for label-

free, time-resolved quantitative imaging of 3D organoid cultures. Previous studies have 

used interferometry to quantify the mass of individuals cells cultured on 2D substrates to 

study cell division189, cytoskeletal remodeling190, mechanical properties191, and response 

to treatment144–146. Tomographic QPI has also been used to obtain high-resolution images 

of 3D objects such as cerebral organoids192. The primary challenge of adapting live cell 

interferometry for the mass quantitation of 3D organoids is maintaining the organoids in 

a single focal plane. The mass of organoids outside of the focal plane cannot be 

accurately calculated as phase information for out-of-focus planes is difficult to 

interpret147. We were able to circumvent this challenge by introducing bioprinting to 

generate uniform, thin constructs that maximize the number of organoids that could be 

tracked in parallel, and a machine-learning based organoid classifier to exclude out-of-

focus and non-organoid objects from our analysis. By introducing region-specific 

reference images and machine-learning based methods for image segmentation and 

track filtering, we have been able to increase the number of organoids tracked 

approximately 15-fold from initial analyses where only approximately 1% of organoids 

analyzed were retained per well using standard approaches. Further improvements will 

include shortening the 6-hour delay between drug treatment and imaging start, which will 

allow us to capture highly sensitive organoids undergoing cell death within that timeframe. 

Lastly, due to the large amount of data generated using HSLCI (approximately 250 GB 

per plate/day), data analysis remains a time-limiting factor. 

Despite the development of 3D cancer models with varying extents of complexity 

and scalability, functional screening assays have been hindered by their inability to 

consider the heterogeneity of tumor response. Genomic characterization of tumors has 

demonstrated that these malignancies are collections of evolutionarily-related subclones, 

rather than homogeneous populations11,13,14,193. This genetic diversity is one of the 

several factors that contributes to differential response to treatment. Endpoint assays, 
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such as live-dead staining or ATP-release quantification, characterize the average 

response to treatment. Though they may be useful for identifying drug sensitivity in 

majority cell populations, they fail to account for the response of resistant populations that 

may also be present. In the clinical setting, failure to treat the resistant populations may 

lead to initial response, followed by recurrence and long-term disease progression194–196. 

HSLCI allows us to non-invasively track various features of the bioprinted organoids over 

time, including size, motility, and mass density. Because of the ability to quantitatively 

measure mass changes in response to treatment, it is possible to identify and isolate 

responsive and resistant subpopulations of cells, which can in turn lead to better informed 

clinical decision making. 

Methods 

2D Cell Culture 

MCF-7 and BT-474 breast adenocarcinoma cell lines were obtained from the 

American Type Culture Collection (ATCC). All cell lines were grown for a maximum of 10 

passages in RPMI 1640 (Gibco 22400-089) supplemented with 10% fetal bovine serum 

(FBS, Gibco 16140-071) and 1% antibiotic-antimycotic (Gibco 15240-062). Both cell lines 

were periodically authenticated by short tandem repeat profiling using the GenePrint 10 

kit (Laragen). 

Manually Seeded 3D Organoids 

Organoids were seeded manually according to our previously published 

protocols9,10,138. Briefly, single cells suspended in a 3:4 mixture of Mammocult (StemCell 

Technologies 05620) and Matrigel (Corning 354234) were deposited around the 

perimeter of the wells of either 24-well or 96-well plates. The cell suspension was kept on 

ice throughout the seeding process to prevent gelation of the Matrigel. To seed organoids 

in a 96-well plate (Corning 3603), a pipette was used to distribute 5 µL of cell suspension 

(5×105 cells/mL) along the bottom perimeter of each well. Once all mini-rings are 

generated, plates were incubated at 37°C and 5% CO2 for 20 minutes to solidify the 

Matrigel, and 100 µL of pre-warmed Mammocult was added to the center of each well 

using an epMotion 96 liquid handler (Eppendorf). To generate larger rings (maxi-rings) in 
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24-well plates (Corning 3527), 70 µL of cell suspension (1.4×106 cells/mL) was deposited 

around the perimeter of each well. Following seeding, the plate was incubated at 37°C 

and 5% CO2 for 45 minutes to solidify the Matrigel, and 1mL of pre-warmed Mammocult 

was added to the center of each well. 

3D Printing Plasma Masks 

Custom well masks were designed to meet the specifications of the well plates that 

were used in these experiments (Figure S4.1). The design was generated in Inventor 

2020 (Autodesk) and printed using a Form3B (FormLabs) using the Biomed Amber resin 

(FormLabs). The design was exported as an STL file and imported into the PreForm 

(FormLabs) software to arrange the parts. After printing, parts were post-processed in 

two washes of isopropanol, air-dried for at least 30 minutes, and cured for an additional 

30 minutes at 70°C in the Form Cure (FormLabs). 

Bioprinted 3D Organoids 

Cells were bioprinted using a CELLINK BioX with a Temperature-Controlled 

Printhead. Gcode files were written to print the desired single-layer geometry. MATLAB 

(MathWorks, Inc.) was used to integrate these standardized blocks into full Gcode files 

with the defined coordinates for each well. We used 8-well plates when printing the maxi-

rings for IHC and RNA sequencing (RNAseq) as the depth of the well in a standard 24-

well plate prohibited the use of 0.5” length needles. Four rings with a diameter of 14.5mm 

were printed for RNAseq (~2×105 cells total), while four sets of concentric 14.5mm, 

12.5mm, and 10.5mm diameter rings were used for IHC analysis (~5×105 cells total). We 

printed mini-squares with side length 3.9mm for drug screening and HSLCI imaging. The 

mini-squares were inscribed within the circular well with sides parallel to the sides of the 

well plate. All bioprinting processes utilized the same material deposited for manually 

seeded organoids: a single-cell suspension in a 3:4 mixture of Mammocult and Matrigel 

on ice. After vortexing briefly, the mixture was transferred into a 3 mL syringe to remove 

air bubbles. The mixture was then transferred to a room temperature 3 mL bioprinter 

cartridge (CELLINK) by connecting the syringe and cartridge with a double-sided female 
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Luer lock adapter (CELLINK). The loaded cartridge was incubated in a rotating incubator 

(Enviro-Genie, Scientific Industries) for 30 minutes at the print temperature. 

During the incubation period, the printer was sterilized with the built-in UV 

irradiation function, the printhead was set to the print temperature and the masked 96-

well plates treated with oxygen plasma.  Briefly, well masks were autoclaved prior to use, 

inserted into the well plate, and pressed in contact with the glass surface. Masked plates 

were treated with oxygen plasma in a PE-25 (Plasma Etch) for 30-90 seconds, 15 minutes 

prior to bioprinting. After plasma treatment, the well plate was placed in the bioprinter and 

Automatic Bed Levelling (ABL) was performed. 

Once the incubation period ended, we attached a 0.5” 25-gauge needle and loaded 

the cartridge into the pre-cooled printhead. We primed the needle by extruding a small 

volume of material at 15 kPa prior to calibrating the printer. The material in the needle 

gelled during the printer calibration which takes approximately 2 minutes. After calibration, 

we performed a second extrusion using 40 kPa to clear the needle of the gelled material 

prior to starting the print, this step ensured that we achieved unobstructed material 

extrusion. To create constructs of the appropriate thicknesses, prints in 8-well plates were 

extruded at 15 kPa while prints in 96-well plates were extruded at 12-15 kPa. The 

bioprinter completes the deposition process for 96-well plates in approximately four 

minutes. After printing, the constructs were incubated at 37°C for at least 30 minutes to 

solidify the matrix and 100μL of Mammocult medium was then added. 

Sample Preparation for RNA Sequencing 

Organoids were released from the Matrigel in preparation for RNAseq. After 

aspirating the media from each ring, 1 mL of cold Dispase was added per ring. After a 20-

minute incubation at 37°C, the cell suspension was collected and pelleted by 

centrifugation at 1500g for 5 minutes and washed with 45 mL of PBS before centrifuging 

again at 2000g for an additional 5 minutes. Once all liquid was aspirated, the tubes were 

rapidly frozen and stored at -80°C. Frozen cell pellets (~2×105 cells) were then transferred 

to the Technology Center for Genomics & Bioinformatics (TCGB) at UCLA for RNAseq. 

Sequencing was performed on a NovaSeq SP (Illumina) using the 2 x 150 bp paired-end 

protocol. 
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RNA Sequencing Data Processing and Analysis 

FASTQ files were processed using UCLA-CDS pipelines to align, quantify and call 

RNA-sequencing reads. Pipeline-align-RNA v6.2.2 aligns paired-end, reverse stranded 

RNA-seq reads using STAR v2.7.6197 and HISTA2 v2.2.1198. Genome reference file, 

CRCh38.p13, was used for aligners STAR and HISTA2. Annotations were performed 

using Gencode v34 reference GTF. FASTP v0.21.0199 was included in the pipeline to trim 

reads for low-quality bases and remove adaptor sequences. Next, the pipeline marked 

duplicate reads using the GATK Spark tools200 (MarkDuplicates Spark v4.1.4.1200) that 

allowed for parallel processing on multiple computing clusters. Lastly, the pipeline runs 

dupRader v1.24.0201 to check the duplication rate. 

We used pipeline-quantitate-RNA to quantify RNA at the gene and transcript 

isoform level. The pipeline used RSEM v1.3.3202 to quantify RNA using GRCh38.p13 as 

the reference index file. RSEM quantifies aligned RNA-seq in BAM format. The output is 

a quantitated RNA at the RNA and transcript isoform level. Quality control procedures 

include running FastQC v0.11.9 on input FASTQ files to control for low quality reads that 

may lead to low quality mapping. Transcripts with low abundance in all samples (TPM < 

0.1; transcripts per million) were excluded resulting in 27,077/67,060 transcripts included 

in the analysis.  

Pipeline-quantitate-SpliceIsoforms was used to quantitate the relative usage of 

splice isoforms using aligned RNA-seq data. The pipeline validates inputs and used 

rMATS v4.1.0203 on individual RNA-seq aligned data in BAM format. The output includes 

information on the alternative splicing event types. We excluded splice isoforms with 

missing data in five or more samples (8,561/17,449) due to low power. 

Pipeline-call-RNAEditingSite uses REDItools2 v1.0.0204 to call RNA editing events. 

Pipeline-call-FusionTranscripts calls gene fusion events using a combination of Arriba 

v2.1.0205, STAR-Fusion v1.9.1206 and fusioncatcher v1.33207. Arriba detects gene fusions 

from RNA-seq data using the STAR aligner. The STAR-Fusion caller is a component of 

the Trinity Cancer Transcriptome Analysis Toolkit (CTAT). Fusioncatcher calls somatic 

fusion genes in paired-end RNA-seq data files. RNA editing sites were filtered to include 

adenosine to inosine events with sufficient coverage (q30 >10) and frequencies above 
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0.9. Poly-A depleted RNA included annotated microRNAs (miRNA), while poly-A enriched 

RNA included coding mRNAs. Raw and processed data will be made available in GEO. 

We used a Mann-Whitney U-test to perform non-parametric hypothesis statistical 

testing of RNA abundances, number of transcript fusions, and editing sites between 

bioprinted and manually seeded tumor organoids. We adjusted for multiple hypothesis 

testing using the false discovery rate (FDR) method, setting q < 0.1 as the criterion for 

strong associations. Statistical analyses and data visualization were performed in the R 

statistical environment (v4.0.2) using the BPG208 (v6.0.1) package. 

Immunohistochemistry 

Immunohistochemical staining was performed on manually seeded and bioprinted 

organoids seeded in 24 or 8-well plates, respectively. A detailed procedure has been 

published138. Briefly, samples were prepared for histological analysis by carefully 

aspirating all media from the well without disrupting the construct and fixing in 10% 

buffered formalin (VWR 89370-094). The fixed organoids were harvested, transferred to 

a conical tube and pelleted by centrifugation at 2000xg for 5 minutes. HistoGel (Thermo 

Scientific HG-40000-012) was then added to the pellet. Once solidified, the cell pellet in 

HistoGel was placed in a histologic cassette and sent to the UCLA Translational 

Pathology Core Laboratory (TPCL) for dehydration and paraffin embedding.  

Slides (8 µm thin sections) were baked for 20 minutes at 45 °C and de-paraffinized 

in xylene followed by washes in ethanol and deionized water. For H&E staining, a 

Hematoxylin and Eosin Stain Kit (Vector Labs H-3502) was used according to the 

manufacturer’s protocol. For Ki-67/Caspase-3, HER2, and ER staining, Peroxidazed-1 

(Biocare Medical PX968M) was applied for 5 minutes at room temperature to block 

endogenous peroxidases. Next, antigen retrieval was performed using Diva Decloaker 

(Biocare Medical DV2004LX) in a 2100 Retriever (Prestige Medical) heating at 110 °C for 

15 minutes. Blocking was performed at room temperature for 5 minutes with Background 

Punisher (Biocare Medical BP947H), Primary Ki-67/Caspase-3 staining was performed 

overnight with pre-diluted Ki-67/Caspase-3 (Biocare Medical PPM240DSAA) solution at 

4°C after an additional 2-minute Background Punisher treatment post-antigen retrieval, 

and secondary staining was performed with Mach 2 Double Stain 2 (Biocare) solution for 
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40 minutes at room temperature. Primary antibodies for HER2 (Novus Biologicals, 

CL0269) and ER (Abcam, E115) staining were diluted 1:100 in Da Vinci Green Diluent 

(Biocare Medical PD900L). The HER2 antibody was incubated overnight at 4°C while the 

ER antibody was incubated at room temperature for 30 minutes. Secondary staining was 

performed with Mach 3 Mouse Probe and Mach 3 Mouse HRP-Polymer for HER2 and 

Mach 3 Rabbit Probe and Mach 3 Rabbit HRP-Polymer for ER (10 minutes). Chromogen 

development was performed with Betazoid DAB (Biocare Medical, BDB2004) followed by 

counterstaining with 20% hematoxylin (Thermo Scientific #7221). Slides were dehydrated 

in ethanol and xylene and coverslipped with Permount (Fisher Scientific SP15-100). 

Imaging was performed with a Revolve microscope (Echo Laboratories). Whole image 

white balancing was performed in Adobe Photoshop. 

Drug Screening 

A detailed protocol for the drug screening has been published previously9,138. 

Briefly, the culture medium was fully removed three days after seeding and replaced with 

100 µL of Mammocult medium containing the indicated drug treatments using a liquid 

handler (EpMotion® 96). After treatment, we transferred the plates to the HSLCI platform 

for imaging. 

High-Speed Live Cell Interferometry 

HSLCI has been described previously144,145. The HSLCI platform is a custom-built 

inverted optical microscope coupled to an off-axis quadriwave lateral shearing 

interferometry (QWLSI) camera (SID4BIO, Phasics, Inc.)147. This wavefront sensing 

camera incorporates a modified Hartmann mask that splits the incident wave front into 

four tilted replica wavefronts that interfere with one another. The resulting interferograms 

are recorded and used to recover phase gradients along two perpendicular directions, 

allowing for reconstruction of a phase shift map and subsequent calculation of dry mass 

of discrete objects within imaging fields of view (FOVs)147,150. Illumination is provided by 

a 660 nm fiber-coupled LED (Thorlabs). The HSLCI platform captures images from 

standard-footprint (128×85 mm) glass-bottom multiwell plates. Motorized stages 

(Thorlabs) control the XY-motion of a single glass-bottom plate above the microscope 
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objective, and in combination with a piezo-actuated dynamic focus stabilization system, 

enable continuous and repeated image collection over many FOVs within each row of 

wells. The HSLCI platform is installed inside of a standard cell culture incubator to enable 

long-term imaging of samples in physiology-approximating conditions (37°C, 5% CO2). 

All hardware and software components are available commercially. 

For all growth kinetics and drug screening studies, organoids were imaged in 96-

well glass-bottom plates (Cellvis P96-1.5H-N) using a 40× objective (Nikon, NA 0.75). 

Plates were prepared as described and wrapped with parafilm to limit evaporation during 

imaging. Organoids were imaged continuously from 6 hours to 72 hours following 

administration of drug treatments. During imaging, the sample plate was translated along 

each row of wells such that about 25 images per well were collected on each imaging 

loop, and that imaging FOVs overlapped with areas of wells in which bioprinted matrix 

and organoids were present. The typical imaging interval was 10 minutes between 

successive frames at the same FOV. 

Machine Learning-Based Analysis of HSLCI Images 

Images were acquired using the SID4Bio software (v2.4.2.93, Phasics). After 

image collection, interferograms captured by the QWLSI camera were converted to phase 

shift images using the SID4 software development kit for MATLAB (GPU version, v741, 

Phasics), in a process called phase unwrapping. For every frame at each FOV, phase 

shift maps were processed by converting to optical path difference147, and then 

subtracting the fourth-order Zernike polynomial209 fit to each frame using least-squares 

over a cartesian grid to remove refractive aberrations. 

The processed images were then segmented into individual cells or organoids 

using a convolutional neural network (U-Net architecture104 with a ResNet-34 

encoder10,123). We initialized our model with weights derived from a model pretrained on 

the ImageNet dataset124. The training dataset consisted of a randomly selected set of 50 

images from the BT-474 dataset, and 50 from the MCF-7 dataset encompassing images 

taken at all wells, intra-well imaging positions, and timepoints within each experiment. 

Each 514x514 pixel image was overlaid with a binary mask that marks each pixel as either 

part of an organoid or the background. Using the training dataset, the weights were 
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refined using a cross-entropy loss function over 80 epochs. We organized phase images 

and their corresponding masks into one stack per imaging FOV and sorted each layer by 

time of imaging. We used TrackMate (v7.6.1)173,174 to track the organoids over time using 

a Sparse LAP Tracker with a maximum linking distance of 90 pixels and feature penalties 

of 4.0 for both the major ellipse axis and organoid area. These parameters were selected 

based on optimal performance on a set of 12 representative image stacks. We tolerated 

gaps of up to 30 frames to maximize track continuity between organoids. Tracks 

composed of fewer than 10 frames were excluded. Labeled image stacks were exported 

and mass was extracted from the segmented regions by integrating the phase shift over 

the area and multiplying by the refractive increment of 1.8×10-3 m3/kg 146,151,153,154,172.   

We developed an XGBoost-based classifier (v1.5.2.1, probability prediction type, 

log-loss evaluation metric)175 to predict permissibility of organoid tracks using R package 

mlr3 (v0.13.2). For the supervised learning model, we labelled a subset of tracks for 

permissibility (n = 846) from four wells: 1) BT-474 well treated with vehicle, 2) BT-474 well 

treated with 10 µM staurosporine, 3) MCF-7 well treated with vehicle, and 4) MCF-7 well 

treated with 10 µM staurosporine and manually determined that n = 250/846 tracks were 

acceptable for downstream analysis. We extracted a set of time-series based features 

from the mass reconstruction data to use in our classifier model. The features were 

number of missing frames, initial size, interquartile range (IQR), IQR of the first 12 points, 

and IQR of the last 12 points. Initial size was calculated based on the median mass of the 

first two timepoints (Figure S4.2). Area under the curve (AUC) measurements were 

calculated using R package (bayestestR v0.11.5). Pair-wise correlation plots comparing 

the void and valid track features were generated using mlr3viz R package (v0.5.7). We 

used probability as the learner prediction type and log-loss (log10) as the evaluation 

metric. To validate the model, we performed k-fold cross-validation protocols with 3-fold 

resampling. The classifier predicted n = 8,590/29,137 to be permissible organoid tracks 

for downstream analysis with an accuracy of 93.5% and a cross-validation score of 91%. 

ATP release assay 

 Manually seeded organoids were prepared in accordance with the protocol 

described above and published9,10,138. To assess the viability of bioprinted organoids, we 
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prepared the bioink and bioprinter as described. We extruded 100 µL of bioink into and 

Eppendorf tube for each print pressure (10, 15, 20, and 25 kPa). We seeded four 10 µL 

rings in a 96-well plate using the extruded bioink. For drug screenings, plates were 

retrieved from the HSLCI incubator and processed as briefly described. After a PBS wash, 

50 µL of 5 mg/mL Dispase (Life Technologies 17105-041) solution was added to each 

well and incubated for 25 minutes. After shaking for 5 minutes on an orbital shaker at 800 

RPM, we added 75 µL of CellTiter-Glo® Luminescent Cell Viability Reagent (Promega 

G968B) to each well and followed the manufacturer’s instructions. Luminescence was 

measured using a SpectraMax iD3 (Molecular Devices) plate reader (parameters: read 

all wavelengths, signal integration of 500ms). The viability of each well was calculated by 

normalizing the luminescent signal to the average signal from the manually seeded 

control wells. An unpaired t-test with Welch’s correction was performed in GraphPad 

Prism. P-values less than 0.05 were deemed significant. 
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Supplemental Information 

 

 

Figure S4.1: Schematics of well mask. (A) Side view. (B) Bottom view. (C) Plasma masks inserted 

into 96-well plate viewed from bottom. 
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Figure S4.2: Pair-wise correlation matrix of classifier data. Extracted time-series analytical features 

of tumor growth patterns over recorded time. The number of missing frame (NA count), initial size, final 

size and interquartile range (IQR) was measured for each tracked tumor organoid. We labelled (n = 250 

out of 846) tracked organoids as valid for downstream analysis. Pair-wise correlations are shown of the 

valid (label = 1) and void (label = 0) tracked organoids. Void tracks showed an increased number of 

missing frames and smaller IQR, initial and final size. Correlation of the classification data are shown 

within the paired subplots. Initial and final size were strongly correlated (R2 = 0.89). An XGBoost 

classifier was used to train a model to classify organoids as valid or void. We validated the model via 

cross-validation with 3-fold resampling of the sample population. The cross-validation score of the 

classifier was 91% with 93.5% accuracy. 
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Figure S4.3: HER2 expression in BT-474 and MCF-7 organoids. Immunohistochemistry staining of 

3D cultures for HER2. BT-474 cells have amplified HER2 expression164,167 while MCF-7 cells express 

lower levels of HER2 and lack HER2 amplification164–166. 
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Figure S4.4: Estrogen Receptor Expression in BT-474 and MCF-7 organoids. 

Immunohistochemistry staining of 3D cultures for ER. Both BT-474 and MCF-7 cell lines are ER-

positive164–167. 



101 
 

 

 

Figure S4.5: RNA Fusions and Editing Sites. (A) Number of RNA fusions detected by FusionCatcher 

by tumor organoid seeding method. The number of RNA fusions did not significantly differ between 

manually seeded and bioprinted organoids (pBT-474 = 0.179, pMCF-7 = 0.179). (B) The number of 

adenosine-to-inosine (A-to-I) RNA editing sites detected by REDItools were not associated with tumor 

organoid development method (p = 0.48, Mann-Whitney U-test). By cell line, the number of A-to-I RNA 

editing sites did not differ between printed and manually seeded organoids (pBT-474 = 0.1, pMCF-7 = 0.7). 
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Figure S4.6: Image segmentation using a U-Net convolutional neural network.  Representative 

masks (left) predicted by the U-Net-based segmentation algorithm for the background-corrected phase 

images (right). 
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Figure S4.7: Growth patterns of MCF-7- and BT-474-derived tumor organoids among 

pharmacological treatments. We assessed the growth patterns of tumor organoids derived from MCF-

7 and BT-474 breast cancer cell lines. Tumor organoids of both cell line types were grown in various 

pharmacological concentrations of lapatinib, neratinib and staurosporine ranging from 0.1 to 10 µM. (A) 

Growth patterns of tumor organoids are arranged by area under the curve (AUC) metric measured by 

the integration of a fitted time-series step function. Z-transformed measurements of organoid AUC, 

linear growth pattern (R2 of a linear fit), initial size, final size and interquartile range (IQR) varied among 

sample population. (B) Overall growth patterns, measured as AUC, of MCF-7- and BT-474-derived 

organoids differed among each pharmacological treatment condition. (C) Fold change of growth patterns 

features were found to be significantly different among MCF-7 and BT-474 derived organoids in all three 

well treatment condition under various concentrations. 
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Figure S4.8: Specific growth rate correlates to initial organoid mass. Specific growth rate (growth 

in mass as a percentage of total mass) versus initial organoid mass was plotted for all organoids tracked. 

For both cell lines, we observe a positive relationship between initial organoid mass and specific growth 

rate. The association is stronger for MCF-7 organoids (Spearman’s ρ = 0.33, p < 2.2 x 10-16) compared 

to BT-474 organoids (ρ = 0.10, p = 4.6 x 10-2). 
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Figure S4.9: Response of bioprinted organoids to 50 µM lapatinib. (A) Representative images of 

organoids treated with 50 µM lapatinib. (B) 100 organoid tracks are shown on each plot. The mean 

normalized mass  standard deviation is also shown in orange (MCF-7) and blue (BT-474). (C) Mass 

distribution of tracked MCF-7 and BT-474 organoids by treatment. Each column represents the mass 

distribution at 6-, 24-, 28-, and 72-hours post-treatment (left to right). Black horizontal bars represent 

the median with error bars representing the interquartile range of the distribution. (D) Hourly growth rate 

comparisons (percent mass change) between organoids treated with 50 µM lapatinib and vehicle. 
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Figure S4.10: Representative normalized mass tracks by treatment condition.  100 organoid tracks 

for each treatment condition are shown on each plot. The mean normalized mass  standard deviation 

is also shown in orange (MCF-7) and blue (BT-474). 
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Figure S4.11: Comparison of BT-474 organoid datasets. Experiment A and B followed the same 

protocols with three exceptions. Experiment A was only imaged with the HSLCI for 48h hours after 

treatment, while Experiment B was imaged for 72 hours. Experiment A did not include neratinib in the 

drug screen. Experiment A was analyzed using our legacy pipeline as described in our original pre-print, 

while Experiment B was analyzed using the machine-learning based pipeline. (A) Representative 

images of organoids treated with 10 µM staurosporine and 10 µM lapatinib. (B) Mass distribution of 

tracked BT-474 organoids by treatment. The left column (pale blue) represents the mass distribution 6 

hours post-treatment, while the right column (dark blue) represents the organoids 48 hours after 

treatment. Black horizontal bars represent the median with error bars representing the interquartile 

range of the distribution. (C) Hourly growth rate comparisons (percent mass change) between organoids 

treated with 50 µM lapatinib and vehicle. (D) Percent cell viability of treated wells determined by an ATP-

release assay. p<0.05 is denoted by *, p<0.01 is denoted by **, and p<0.001 is denoted by ***. 
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Supplementary Results 

Mass reconstruction data extracted for classifier 
 
Mass reconstruction data of (n = 8,590) tumor organoid tracks derived from BT-474 and 

MCF-7 breast cancer cell lines were assessed for change in tumor size over 72 hours 

following treatment. Each cell line was treated with a series of concentrations of 0.1 to 50 

µM of vehicle (n = 1,593), lapatinib (n = 1,650), neratinib (n = 1,626) and staurosporine 

(n = 2,920). We assessed the organoid growth patterns using z-transformed 

measurements of area under the curve (AUC), linear growth rate, interquartile range, 

initial and final size (Supplementary Figure 8A). Sample population of tumor organoids 

from BT-474 and MCF-7 under various pharmacological treatments display a diverse set 

of growth patterns, arranged by AUC metric. Cell line and treatment type were dispersed 

across the sample population, thus supporting our decision to use a single set of classifier 

training data for both cell lines and all treatment conditions. We tested whether tumor 

organoids derived from BT-474 displayed differences in their growth patterns compared 

to organoids derived from MCF-7 (Supplementary Figure 8B). We found significant 

differences in growth patterns of BT-474 and MCF-7 derived organoids across treatments 

(Supplementary Figure 9C). In most conditions (10 out of 12 conditions), the initial size, 

final size and linear growth rate of MCF-7 derived organoids were larger than BT-474 

organoids in all three pharmacological treatment conditions (Supplementary Figure 9B-

C) (p < 0.0001, Mann-Whitney U-test). In two conditions, the linear growth rate of BT-474 

derived organoids in 1 µM lapatinib (fold change = -0.70, p = 2.76 x 10-2) and 0.1 µM 

neratinib (fold change = -0.82, p = 3.82 x 10-3) were found to be greater than MCF-7 

derived organoids. We did not find strong differences in growth patterns among BT-474 

and MCF-7 derived tumor organoids in 0.1 µM lapatinib treated wells. 
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Table S4.1: Organoid mass distributions. (A) Comparisons of mean mass of MCF-7 organoids 

calculated via HSLCI. We first performed a Kruskal-Wallis test to determine if one sample stochastically 

dominates another. If the p-value was less than 0.05, we then performed Mann-Whitney U-tests for each 

sample against the vehicle control at the respective time point. Data is presented in Figure 4.3B. (B) 

Comparisons of mean mass of BT-474 organoids calculated via HSLCI. We first performed a Kruskal-

Wallis test to determine if one sample stochastically dominates another. If the p-value was less than 

0.05, we then performed Mann-Whitney U-tests for each sample against the vehicle control at the 

respective time point. Data is presented in Figure 4.3C.  
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Table S4.2: Proportions of organoids that gained, lost, and maintained mass by treatment 

condition. (A) Proportions of MCF-7 organoids. (B) Proportions of BT-474 organoids. Data is plotted in 

Figure 5A. 
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Table S4.3: Organoid viability analysis by endpoint ATP assay. Comparisons of cell viability 

measured by ATP assay. P-values calculated by unpaired t-test with Welch’s correction. Data is 

presented in Figure 5B. 
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Video S4.1: MCF-7 organoids treated with the vehicle control. Scan the QR code to access the 

video or visualize at the following link: https://youtu.be/bUBq-ZChFM0 

Video S4.2: BT-474 organoids treated with the vehicle control. Scan the QR code to access the 

video or visualize at the following link: https://youtu.be/AzSc8WW5KBA 
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Chapter 5: Beyond traditional drug panels: screening alternative treatment 
modalities 

 

One of the key limitations to the drug screening methodologies described in the previous 

chapters is the type of therapies that can be studied. For instance, drugs that have an indirect 

mechanism of action against tumors, such as prodrugs, stromal cell targeting compounds, and 

immunotherapies, require modified models to yield useful information. We have focused on 

developing a high-throughput system for screening clinically used prodrugs on sarcoma organoids 

to provide a wholistic picture of organoid drug response. Another existing challenge in the field is 

the assessment of non-systemic therapies such as radiation. The investigation of radiotherapy 

requires the development of new treatment protocols and accompanying analytical methods to 

identify response. By building platforms for the investigation of prodrugs and radiotherapy, we 

provide a more comprehensive view of the functional outcomes of the available treatment options 

for patients with cancer. 

Investigating prodrugs with organoids 

Introduction 

Several therapies are delivered as prodrugs, requiring chemical modification to become 

active anti-tumor compounds210. These molecules are particularly difficult to study in vitro or ex 

vivo as many are metabolized in the liver by a family of Cytochrome P450 enzymes, oxygenases 

responsible for the degradation of compounds for clearance211. A considerable amount of these 

metabolites cannot be synthesized in vitro due to their instability and reactivity212. Even those that 

can be produced are susceptible to deactivation by undesirable side reactions, and can precipitate 

in solution213. The existing methods for reproducing drug metabolism in vitro include Transwell 

assays, custom-designed bioreactors, and even microfluidic devices214–216; however, these 
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systems rarely have the scalability required for high-throughput screening. Additionally, the 

current gold standard for studying drug metabolism is the use of mouse models that are time and 

resource intensive making them less than ideal candidates for high-throughput assays. By 

developing an ex vivo system to metabolize therapeutics, we can circumvent the need to test 

liver-metabolized drugs in low-throughput in vitro systems and PDX models.  

We are working to develop a platform that permits screening of drugs such as ifosfamide, 

cyclophosphamide, irinotecan, and imatinib. Each of these is currently a part of the guidelines for 

the clinical management of bone cancer as described by the National Comprehensive Cancer 

Network®1,217. Ifosfamide, cyclophosphamide, and irinotecan are part of first- and second-line 

therapies for osteosarcoma and Ewing sarcoma, while imatinib is one of the few drugs 

recommended for the treatment of chordomas. The ability to screen these drugs both alone and 

in combination therapies will better inform clinicians on their efficacy for individual patients. We 

elected to pursue a co-culture model that incorporates hepatocytes within our current screening 

platform so prodrugs can be metabolized and exert their cytotoxic effects within the same well. 

Results 

Development of a novel tumor-liver co-culture system compatible with laboratory 
automation 

 We set to develop an automation-compatible system for co-culturing tumor and hepatic 

organoids. To meet this need, we developed the miniature liver insert (MLI), a custom-designed 

3D printed well insert, capable of introducing a 3D organoid culture in a mini-ring and automation-

compatible format (Figure 5.1A). Unlike Transwell inserts, the MLI leaves the center of the well 

accessible by fluid handlers for media changes and the addition of treatments (Figure 5.1B). The 

MLI is portable and automation compatible as it can be easily added or removed to wells of 

interest. The low profile of the rim ensures that the MLI does not interfere with the lid of the well 

plate. We use a commercially available 3D printer and biocompatible resin to print over 100 inserts 
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simultaneously (Figure 5.1C) that can then be autoclaved for sterility. The MLI is designed to hold 

10 µL of hydrogel between two concentric circular plates (Figure 5.1A). Both the top and bottom 

of the hydrogel are exposed to the media in the well to maximize the surface area available for 

diffusion between the hydrogel and external environment. Once crosslinked, the hydrogel remains 

stable between the concentric rings until the gel and its cellular contents can be removed via 

centrifugation. The concentric ring design also facilitates imaging within the MLI to monitor 

organoid growth and morphology (Figure 5.1D). Using this system, we have successfully 

maintained co-cultures of hepatic and tumor organoids for up to 10 days. 
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Figure 5.1: Design and manufacturing of the MLI. (A) Labeled schematics of the miniature 

liver insert (MLI) in a 96-well plate. The 3D-printed structure hangs from the rim of the well and 

immerses a 3D culture of hepatic organoids into the media within the well plate. Tumor 

organoids cultured in the mini-ring format can be cultured in the well below the MLI. (B) 

Schematic depicting the compatibility of the MLI with automated fluid handling. The pipette tip 

used to exchange media does not touch the MLI or the mini-ring seeded in the plate below. 

(C) Image of the production of over 100 MLIs through stereolithography printing of 

biocompatible resin. (D) Whole-well and magnified brightfield images showing the 

simultaneous culture of MCF-7 organoids and HepaRG cells co-cultured in the system. 
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Optimization of Cytochrome P450 enzyme expression in the MLI 

 The next task we pursued was identifying the optimal culture conditions for ensuring 

consistent expression of the metabolic proteins needed to activate the prodrugs. In our preliminary 

experiments, we tested both HepaRG (Thermo-Fisher) and HepG2 cell lines (Hera BioLabs). 

HepaRG cells are terminally differentiated human hepatocytes while HepG2 cells originate from 

a patient with hepatocellular carcinoma. The specific type of HepG2 cells used in our studies have 

been genetically modified to express only the 3A4 isoform of Cytochrome P450 (CYP). We opted 

to use the HepG2-204 cells instead of the HepaRG (Figure S5.1) and unmodified HepG2 cells to 

reduce the likelihood of undesirable metabolic inactivation mediated by other CYP isoforms. 

 Once the cell line was selected, we assessed the impact of multiple cell seeding densities 

and hydrogel concentrations on CYP3A4 expression (Figure 5.2A). We assayed the activity of 

the CYP3A4 enzymes in the HepG2-204 cell line compared to another HepG2 with all CYP 

isoforms knocked out (HepG2-hPORKO) as a negative control. We found that the knockout cell 

line showed no CYP3A4 activity after eight days of culture (Figure 5.2A). We did not observe any 

difference in the metabolic capacity of HepG2-204 organoids seeded at different densities within 

variable ratios of media to Matrigel. These findings suggest that the organoids in the MLI grow to 

a similar extent over eight days despite the initial number of cells seeded initially (Figure 5.2B). 

We serially imaged the organoids every 24 hours throughout the experiment and found that MLIs 

seeded at 15,000 cells/insert tended to lose hepatocytes as they became overgrown (Figure 

5.2B). Based upon the similar metabolic capacity across all tested conditions and the loss of cells 

due to overgrowth, we elected to proceed with using 10,000 cells per MLI in our standard (3:4) 

mixture of media to Matrigel. 
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Figure 5.2: Optimizing culture conditions for hepatocyte culture in the MLI. (A) Metabolic 

activity of cytochrome P450 3A4 in hepatic organoid cultures in the MLI 4, 6, and 8 days after 

seeding. CYP3A4 activity is normalized to the 15,000 cells/well condition in a 3:4 mixture of 

media and Matrigel for each day. (B) Representative images of the hepatic organoids formed 

from HepG2-hPORKO and HepG2-204 cells 0-, 4-, 6-, and 8-days post-seeding at 10,000 or 

15,000 cells per insert. 
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Screening prodrugs with the MLI 

 To test the viability of using the MLI within the context of drug screening, we co-cultured 

tumor organoids derived from fibrosarcoma (HT-1080) and osteosarcoma (HOS) cell lines. We 

assessed the viability of both the hepatic organoids and the tumor organoids after X days of 

treatment with two concentrations of cyclophosphamide and ifosfamide (Figure 5.3). Although we 

were unable to identify a signal of response amongst the tumor organoids (Figure 5.3A, B), we 

observed minor reductions in hepatic organoid viability when treated with ifosfamide. This trend 

appeared in HepG2-204 organoids co-cultured with both HT-1080 and HOS organoids but was 

only statistically significant (p-value = 0.0007 and 0.0025, 50 and 100 µM, respectively) for those 

in co-culture with HOS. These results led us to form the hypothesis that the hepatic organoids 

were capable of metabolizing ifosfamide into its active cytotoxic metabolite; however, the active 

metabolite was not reaching the tumor organoids in a sufficient concentration to induce organoid 

death. 

 We decided to test this hypothesis by reducing the barriers to metabolite diffusion 

throughout the system. Both the distance between the organoid cultures and the hydrogel 

encapsulating the organoids act as limiting factors to the diffusion of active metabolites. We 

addressed both of these issues by modifying the design of the MLI to suspend the organoid culture 

closer to the bottom of the well plate (Figure 5.3B). This adjustment changed the distance from 

the MLI to the bottom of the plate from 1.8mm to 0.5mm, reducing the distance of diffusion by 

more than a factor of three. The second modification we made was to invert the co-culture. We 

cultured the tumor organoids in the MLI and the hepatocytes in 2D on the bottom of the plate, 

thus eliminating the need for embedding hepatic organoids in a diffusion-limiting hydrogel. Prior 

literature demonstrated that the HepG2-204 cells showed excellent metabolic activity in 2D 

culture218. When performing pilot experiments using the inverted arrangement, we tested 

ifosfamide at a concentration of 50 and 100 μM. By reducing the diffusion distance, we were able 
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to see indications of response to ifosfamide treatment. Though we observed a trend of decreasing 

tumor organoid viability in response to treatment, there was notable variability between the 

organoid responses in each co-culture. Because of this variability, we have been unable to 

confirm the dose-dependent effects of ifosfamide treatment on tumor organoids cultured with 

hepatocytes. 

 

 

Figure 5.3: Prodrug screening on co-cultures of tumor organoids and MLI. (A) (i) Viability of HT-

1080 organoids when treated with 50 and 100 µM cyclophosphamide or 50 and 100 µM ifosfamide in 

the presence of the MLI. (ii) Viability of HOS organoids when treated 50 and 100 µM cyclophosphamide 

or 50 and 100 µM ifosfamide in the presence of the MLI. (iii) Viability of HepG2-204 organoids seeded 

in the MLI when co-cultured with HT-1080 organoids and exposed to 50 and 100 μM cyclophosphamide 

and ifosfamide for 5 days. (iv) Viability of HepG2-204 organoids seeded in the MLI when co-cultured 

with HOS organoids and exposed to 50 and 100 µM cyclophosphamide and ifosfamide for 5 days. (B) 

Viability of tumor organoids (HOS) seeded in the MLI cultured in wells with 2D HepG2-204 cells. 

Treatment with 50 and 100 µM ifosfamide led to reduced organoid viability in tumor organoids cultured 

0.5 mm from the hepatocytes compared to tumor organoids separated by 1.8 mm after 5 treatments 

over 5 days of co-culture. Renderings of the modified MLI design used to minimize the distance between 

the hepatic organoid cultures and the tumor organoid rings are shown below. 
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Discussion and Outlook 

The major benefit of the MLI over other in vitro methods for introducing drug metabolism 

is that it is designed for high-throughput automation. Batches of 100 inserts are printed with a 

stereolithography printer using biocompatible resin and autoclaved before use. The open center 

of the insert allows the use of automated fluid handlers without risk of disrupting the tumor or 

hepatic organoids. Additionally, the MLI design allows for continuous, noninvasive imaging of cells 

cultured on the bottom of the well and within the MLI by simply changing the focal plane. 

Though the logistical aspects of the platform are performing as expected, we have yet to 

see definitive data that suggests hepatocytes seeded in the MLI can reproducibly and reliably 

metabolize prodrugs into their active, cytotoxic forms for uptake by co-cultured tumor organoids. 

We hypothesized that this could be a result of limited metabolic capacity of the hepatic organoids, 

sub-optimal culture conditions relating to the cell density and ECM, or to the distance that must 

be bridged by diffusing active metabolites. Despite extensive work investigating each of these 

hypotheses, we are unable to make claims regarding the efficacy of the platform in studying these 

drugs. One of the leading hypotheses as to the lack of efficacy of the platform is that the 

hepatocytes are metabolizing the compounds into inactive formulations. Though we have 

attempted to control this by using hepatocytes genetically modified to express only the CYP3A4 

isoform, outside environmental conditions and metabolite instability may still cause inactivation.  

Moving forward, we have identified three primary directions for further development. The 

first is to expand the number and concentration ranges of drugs tested. We plan to add irinotecan, 

a prodrug topoisomerase inhibitor, which has a stable metabolite SN-38 that can be screened 

independently as a positive control219.  The second is altering the environment in which the 

hepatocytes are cultured to reduce the oxygen tension to levels found within the pericentral zone 

of the liver where most drug metabolism occurs in vivo220,221. Another approach that will be studied 

is the use of microsomes, subcellular fractions of hepatocytes, that contain the metabolic 
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enzymes of interested222. These microsomes can be derived from homogeneous cell populations 

to maintain consistency while eliminating other cellular machinery that may interfere with the 

metabolism and exportation of the active compound. Though our work thus far has yet to achieve 

the goal of metabolizing prodrugs for drug screening, it does support the notion that tumor models 

must capture enough complexity of the biological system to be useful. Our results thus far suggest 

that additional modifications to the drug treatment, co-culture conditions, or microenvironment will 

be needed to make this screening approach a reality. 

Methods 

Design and Manufacturing of the MLI 

 The MLI was designed in Inventor (Autodesk) and 3D printed using a Form3B (Formlabs). 

The object was exported as an STL file from Inventor before being loaded for slicing and printing 

in PreForm (Formlabs). In PreForm, the model was oriented to print with the rim touching the 

surface of the build platform to maximize resolution of the features suspended within the well. The 

parts were then printed using biocompatible BioMed Amber resin (Formlabs) and post-processed 

by removing excess resin with two 10-minute washes in isopropyl alcohol followed by drying with 

compressed air. Parts were allowed to fully dry in ambient conditions for at least 30 minutes prior 

to curing them in the Form Cure lightbox for 30 minutes at 70C. Once cured, all MLIs were 

autoclaved for sterility prior to use. 

Cell Lines 

 Multiple hepatocyte cell lines were used in this study. HepaRG cells (Thermo-Fisher) were 

cultured per the distributor’s recommendations using two media variants: Thaw, Plate, and 

General Purpose, and Maintenance and Metabolism medium. Three genetically modified HepG2 

cell lines (HepG2-204, HepG2-206, and HepG2-hPORKO) (Hera BioLabs) were cultured in 
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EMEM medium supplemented with 10% FBS. Cell lines were maintained in culture below 

passage 10 for use in experiments. 

Cytochrome P450 Metabolic Activity Analysis 

 The metabolic capacity of the MLI was assessed using the P450-Glo™ assay (Promega) 

used in accordance with the manufacturer's instructions. We suspended hepatocytes (either 

HepaRG or HepG2-204) in the media-Matrigel mixture at the prescribed density. We then loaded 

10 µL of the cell-matrix suspension to the MLI by depositing material in the concentric rings. We 

incubated the MLIs at 37°C to crosslink the gel prior to adding medium. The loaded MLIs were 

placed in a 96-well plate and medium was added using an automated fluid handler (Nimbus, 

Hamilton). Medium was replenished daily beginning on day 3 and proceeding to day 7. On the 

final day, media containing the P450-Glo™ reagent was added to each well. After 24 hours, we 

transferred the medium to a new well plate and added the luciferase detection reagent and 

measured the luminescence on a plate reader (Molecular Devices).  

Drug screening experiments with the MLI 

 Both tumor cells and hepatocytes were seeded on day 0 and allowed to grow into 

organoids over three days. Cells were suspended in a 3:4 solution of medium to Matrigel per our 

standard protocol9,138. Tumor cells were seeded around the periphery of each well of a 96-well 

while hepatocytes were seeded in the MLI as described above. On day 3, we initiated the co-

culture of the organoids by transferring the MLIs to the well plate with the tumor organoids. Drug-

loaded medium was then supplied to each well and replaced every 24 hours. Brightfield images 

were also acquired using a high-content imaging system (Celigo, Nexcelom) daily. After 5 days 

of co-culture, the MLIs were transferred to a separate plate and spun at 800xg for 5 minutes to 

remove the gel from insert. The viability of both tumor and hepatic organoids were measured 

using an ATP-release assay (Promega). 
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Investigating radiotherapy and chemoradiation treatment 
modalities with organoids 

Introduction 

 Radiotherapy (RT) is one of the primary treatment options for many types of cancer, 

especially advanced and non-surgical cases1,2. Because of its broad clinical utility, functional 

precision medicine platforms that identify lesions sensitive to radiotherapy would be useful in 

crafting treatment plans. External beam radiation methods, such as stereotactic body radiation 

therapy (SBRT) are indicated for bone and soft tissue sarcomas1,2. SBRT treats tumors by delivery 

high-doses of X-rays that cause DNA damage that lead to cell death over time. Unlike cytotoxic 

drugs, radiation therapies may not be immediately effective at causing cell death as treatment 

relies upon the gradual accumulation of DNA mutations in the tumor over multiple fractions 

leading to different mechanisms of cell death223. Beyond the differing mechanisms of action 

against cancer cells, radiotherapy also requires the use of specialized equipment to generate and 

deliver X-rays to the tissue. Because of the differences in the mechanism of action and method 

for delivering therapy, we sought to develop a protocol for screening radiotherapy in tumor 

organoids. 

 Several other studies have studied radiotherapy on tumor organoids with the same goal 

of predicting patient-response to treatment64,90,224. Pasch et al. developed organoids from patients 

with colorectal cancer and tested combination chemoradiation with 5-fluorouracil (5-FU). They 

observed a variety of patient-specific responses to treatment including organoid death, 

stagnation, and growth. Moreover, they observed a varying extent of synergism between the 

treatment modalities in each patient. Another study of nasopharyngeal organoids by Lucky et al 

had similar findings using larger organoids224. They identified hypoxia and varied 

microenvironmental conditions as key drivers of resistance to treatment. They also found that 

varied dosing schedules with multiple fractions led to different outcomes. Hsu et al built upon this 
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work and were successfully able to generate colorectal cancer organoids that predicted response 

to radiotherapy in patients90. In a panel of five cases, patient response as measured using 

RECIST criteria correlated with the extent of organoid response in vitro and the organoids 

effectively predicted two patients with complete responses to therapy.  

Existing studies have demonstrated the predictive power of organoids for testing RT in 

small groups of patients. Our goal was to build upon these results to create a system for screening 

larger panels of combination drug and radiotherapies. The pipeline we have developed for the 

investigation of radiation therapy on tumor organoids builds upon our existing mini-ring platform. 

By building the protocol around the existing high-throughput framework for evaluating treatments, 

our platform has the unique ability to accommodate combination chemotherapy and radiotherapy 

that can better mimic the treatment regimens prescribed clinically.  

Results 

Organoids show molecular and cellular response to radiotherapy 

 Our first goal was to verify that organoids cultured in our system were susceptible to 

radiotherapy. We used a UPS-like cell line, KP3172R, that had shown sensitivity to RT in 2D 

experiments (unpublished data, Kalbasi Lab UCLA). We seeded KP3172R organoids at a density 

of 2,500 cells per well in our standard mini-ring conformation9,138 in three separate 96-well plates. 

Each plate was treated with a varying dose of radiation up to 12 Gy (Figure 5.4A). We found that 

organoids radiated with a single fraction of 12 Gy radiation showed numerous γH2AX foci 45 

minutes after treatment compared to untreated organoids indicating extensive DNA damage 

within some cells (Figure 5.4A). Interestingly, we observed significant heterogeneity in the 

number of γH2AX foci in radiated nuclei amongst individual cells within larger organoids (Figure 

5.4A). After 72 hours of culture, we assessed the viability of the organoids with an ATP assay and 

found a reduction in organoid viability for treated specimens (Figure 5.4B). 
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 Once establishing that the model showed sensitivity to RT, we proceeded to test the 

impact of multiple radiotherapy fractions on viability. We plated organoids in a 96-well plate and 

radiated each column of organoids with up to 5 fractions of 6 Gy RT. To collect time-resolved data 

regarding response to treatment, we measured organoid viability using serial brightfield imaging 

every 24 hours. Using these images, we segmented each image using a neural network, 

calculated the surface area covered by in-focus organoids, and normalized the covered area of 

each well to the covered area in the same well prior to treatment10. We found a clear separation 

between the growth of radiated and untreated organoids; however, there was no additional 

inhibition of organoid growth from added radiation doses over time (Figure 5.5A).  

An open question following the preliminary RT studies was the impact of location within 

the hydrogel on organoid growth. We used a high-content imaging system (Celigo, Nexcelom) to 

take three images per position at varying focal distances. The first plane would focus on the 

organoids growing near the surface of the plate, the other two imaging planes were 100 and 150 

μm above the surface of the plate. The lowest imaging plane tended to capture 2D cell growth on 

Figure 5.4: UPS organoids respond to radiation therapy. (A) Immunofluorescent staining of γH2AX 

shows DNA damaged only in irradiated KP3172R cells. (B) Radiation-dependent reduction in cell 

viability in the same cells 72h post-exposure. 
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the well bottom, while the focal planes away from the surface focused on organoids in 3D. We 

found the middle plane to provide the most representative data regarding 3D organoid growth as 

the lowest plane was skewed by the exponential 2D cell growth and the higher plane captured 

too few organoids within the gel to provide a reliable signal (Figure 5.5B). 

While our previous data suggested that we were capable of measuring organoid response 

to RT alone, we were also interested in testing the platform’s utility for combination therapies. Our 

collaborators in the Kalbasi Lab (UCLA) identified a dsRNA drug, BO-112225,226, that showed 

synergistic behavior with RT when tested on KP3172R cells in 2D culture and PDX models. We 

screened three radiation doses (0, 4, and 8 Gy) in tandem with three doses of BO-112 (0, 0.5, 

and 1 mg/mL) on organoids seeded at two densities (500 and 1000 cells/well) (Figure 5.5C). We 

first assessed the toxicity of BO-112 in the absence of RT and found that organoids seeded at 

1000 cells/well showed a dose-response with the 1 mg/mL dose of BO-112 leading to a strong 

inhibition of growth during treatment (Figure 5.5C). Surprisingly, KP3172R organoids seeded at 

500cells/well demonstrated the inverse trend in which increasing doses of BO-112 stimulated 3D 

organoid growth over time. When assessing the impact of RT alone, we observed similar patterns 

of decreased organoid growth across both seeding densities (Figure 5.5D). Finally, we calculated 

the normalized area under the growth curves (normalized AUC) to compare the combinatorial 

effects of RT and BO-112. Our results were consistent with the experiments above in that we 

observed different responses based on cell density. For sparsely seeded organoids, treatment 

with BO-112 was a driver of growth in the absence of RT, but also conferred radioprotective 

effects when used concurrently with RT (Figure 5.5E). While 1mg/mL was able to maintain net 

organoid growth despite 8 Gy RT, BO-112 delivered at 0.5 mg/mL was unable to overcome the 8 

Gy RT dose (Figure 5.5E). Combination BO-112 and RT for organoids seeded at 1000 cells/well, 

however, was effective in augmenting the response of either treatment alone (Figure 5.5E). 
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Concurrent drug and radiotherapy interventions yield synergistic responses in 
organoids 

 Given the promising results of our pilot investigation with one drug, we pursued a study 

incorporating a subset of drugs that are either currently used or under investigation as 

radiosensitizers. We cultured organoids for three days prior to administering one dose of RT (0, 

4, or 8 Gy) and drug. Drugs were screened at 1uM, except for BO-112 that was tested at 1 mg/mL, 

cisplatin tested at 50 μM, and carboplatin tested at 25 μM. We performed both image analysis to 

measure growth (Figure 5.6A) and an ATP assay to measure organoid viability (Figure 5.6B). 

As seen in previous experiments, we observed a cell density dependent response to treatment 

with organoids seeded at 5000 cells/well showing greater resistance to 4 Gy radiation than their 

less dense counterparts (Figure 5.6A). We observed broad drug-related toxicity in our positive 

control, staurosporine, in addition to trabectedin and lurbinectedin (Figure 5.6A). Prexasertib, a 

checkpoint kinase inhibitor indicated for platinum-resistant tumors, showed a synergist effect 

when co-administered with 8 Gy radiation at both cell densities. Doxorubicin showed a similar 

additive effect of both modalities of treatment; however, this can only be seen in organoids seeded 

at 2000 cells/well (Figure 5.6A). To further investigate the effects of treatment, we performed an 

ATP assay on each plate. Due to experimental limitations, all organoids seeded in a single plate 

Figure 5.5: Effect of RT on sarcoma organoids. (A) Effect of multiple fractions of RT over time. Each 

dose was 6 Gy and doses were 24 hours apart. Cross-sectional area of organoids within each well were 

measured by segmenting brightfield images with a trained U-Net model. Organoid area was normalized 

to the organoid coverage immediately preceding treatment on day 3. (B) Organoid growth differs by 

position within the 3D hydrogel. Images were taken at three focal planes: directly above the glass 

bottom, 100 μm above the glass, and 150 μm above the glass. (C-E) Comparison of combination RT 

and BO-112 treatment on KP3172R cells. Cells were seeded at 500 and 1000 cells/well and treated 

with 0, 4, or 8 Gy RT and 0, 0.5, or 1 mg/mL BO-112. (C) Organoid response to treatment with BO-112 

treatment in the absence of RT. (D) Organoid response to treatment with RT in the absence of BO-112. 

(E) Heatmaps of the normalized area under curve (AUC) of organoids treated with combinations of BO-

112 and RT. 
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were exposed to a given dose of radiation. This limits our ability to effectively normalize the data 

outcomes to effectively compare viability across radiation doses. Despite this limitation, we still 

observed an added combinatorial effect of prexasertib on organoids seeded at 5000 cells/well 

(Figure 5.6B). Likewise, carboplatin, doxorubicin, and gemcitabine also showed stronger 

responses to combination 8 Gy RT and drug treatment in the denser organoid cultures. In the 

2000 cells/well condition, we only see a reliable additive effect of doxorubicin and 8 Gy treatment 

(Figure 5.6B). 
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Discussion 

Though we are not the first group to radiate organoids60,64,90,93, the novelty of our work lies 

within the ability to do so within the context of a high-throughput screening system. Pasch et al. 

and Hsu et al. have demonstrated the ability to correlate organoid response to radiotherapy and 

patient response to treatment in a small subset of patients64,90. Our goal is to build upon our 

existing drug screening pipeline to develop a system to identify combination chemoradiotherapies 

likely to be effective for individual patients. Our drug screening data showing variable efficacy of 

treatments across four patient-derived cell lines provides the foundation for launching further 

investigations on organoids derived directly from surgical biopsies and resections. 

One of the key advancements that enables this work is the use of our brightfield image 

segmentation technique to track organoid growth over time (Figure S5.1). This analysis is best-

suited for radiated organoids as it allows for more frequent sampling of growth and it eliminates 

the need for endpoint viability assays that may be unable to detect changes in growth rate for 

slow-growing samples. Though it does have advantages, the measurements are more sensitive 

to variability due to debris in the well, hydrogel folding, and different patterns of organoid growth 

in each well. While the current model is trained on 200 images across an array of tumor types, 

broader models may need to be trained to accommodate the enormous heterogeneity in organoid 

morphology. ATP assays, though effective for making comparisons within a single well plate, are 

difficult to adapt to multi-plate experiments as untreated negative controls would be needed on 

Figure 5.6: Combination RT and drug screening on sarcoma organoids. (A) Normalized area of 

organoids on day 5 post-seeding. Treatment was administered on day 3. Cells were plated at both 

2,000 and 5,000 cells/well. Red bars correspond to non-radiated organoids, green and blue 

correspond to 4 and 8 Gy treatment, respectively. (B) Organoid viability measured by ATP assay. 

Viability values normalized to the luminescence of DMSO-treated organoids for each radiation dose. 

Each color represents a different drug, the three bars in each group represent the escalating radiation 

dose. 
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each plate. Though we have successfully used lead blocks to shield portions of the plate from 

radiation, these blocks are not effective and preventing exposure to scattered X-rays and can be 

logistically challenging to implement when trying to shield a handful of wells. Moving forward, we 

intend to investigate the use of other endpoint assays, such as fluorescent live/dead stains, to 

make absolute measurements that can be compared across plates. 

Though the preliminary drug screening results establish the feasibility of testing drug-

radiotherapy combinations, additional testing will be required to identify the optimal drug 

concentrations and seeding densities. For example, the cytotoxic effects of trabectedin and 

lurbinectedin were sufficient in the absence of RT to kill most organoids and must be tested at 

lower concentrations to identify additive or synergistic effects between treatments. In addition, the 

striking differences in response to BO-112 in KP3172R cells based upon the seeding density 

provide an important lesson that response to therapy is heavily dependent on the environmental 

conditions. One potential solution is to perform drug screens on organoids seeded at a variety of 

densities, however this option may be limited as this work proceeds to screening patient-derived 

organoids originating from scarce and precious samples. 

Overall, the body of work conducted thus far shows that the mini-ring drug screening 

platform can be adapted to screen combination chemoradiotherapies with the assistance of 

machine learning-based image analysis. Though the optimal seeding densities, drug 

concentrations, and radiation doses can be further optimized in future experiments, we have 

established basic parameters and the chemoradiation HTS organoid platform will be a powerful 

tool to functionally screen an additional treatment modality crucial for soft tissue sarcoma and 

other tumor types. 
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Methods 

Cell Culture 

KP3172R and USARC2 cells were cultured in petri dishes with DMEM supplemented with 10% 

FBS and 1% penicillin-streptomycin up to passage 10. Medium was changed every three days 

and cells were passaged when approaching 80% confluence. 

Immunofluorescence 

 We performed immunofluorescence on radiated organoids to confirm the presence of 

γH2AX foci indicative of DNA damage. We fixed the organoids by adding 10% buffered formalin 

and incubating for 5 minutes at 37°C. Organoids were then placed on ice for 30 minutes and 

stored overnight at 4°C. Samples were permeabilized using 0.5% Triton X-100 in PBS for 1 hour 

with gentle agitation. We then added an FBS-based blocking buffer for 3 hours followed by 

overnight incubation with the primary antibody (ab195188, Abcam). Images were acquired with a 

fluorescent microscope (Zeiss) and post-processed in Zen Blue (Zeiss). 

Growth analysis in brightfield images using U-Net 

We image the organoids daily using a high-content microscope that scans two focal planes 

per well. The resulting whole-well images are exported in TIF format at a resolution of 1 µm/pixel. 

We then implement our previously developed methodology to segment and quantify regions of 

the image containing organoids95. We use a convolutional neural network with a U-Net 

architecture104 to segment the regions of the images containing organoids. This model is based 

on a ResNet-34 model123 trained on 223 manually-labelled images spanning an array of tumors 

of origin to capture the diverse organoid morphologies observed in this study. In the manually 

labelled dataset, only in-focus organoids are marked for inclusion in the area calculation; this is 

done to minimize measuring the same organoid across both focal planes. The original weights 

were derived from a model pretrained on the ImageNet dataset124 and the final model was trained 
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over 80 epochs using a cross-entropy loss function. The trained model was then used to segment 

each image by splitting the image into 512x512 pixel sections, applying the model to each section, 

and reassembling the sections to recreate the whole segmented image (16,896x16896 pixels). 

We then implement OpenCV to calculate the total area of the organoids in each focal 

plane. This area is then averaged across both focal planes and growth is measured by normalizing 

to the area covered by organoids on the first day of imaging of the same well. The resulting data 

was then plotted using GraphPad Prism as normalized area over time. 

Drug Screening Experiments 

 Cells were suspended in our standard hydrogel matrix composed of 3 parts medium to 4 

parts Matrigel and deposited around the periphery of each well of a 96-well plate9,138. Organoids 

were allowed to grow for three days prior to treatment and were imaged daily for the duration of 

the experiment. Organoids were radiated using an X-ray cabinet and treatment was added 

immediately after RT using an automated liquid handler. Radiation schedules varied as described 

in the Results section above for each experiment. 
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Supplementary Information 

 

 
 
  

Figure S5.1: Hepatocyte viability and Cytochrome P450 expression in the MLI after 72 hours. (A) 

Fluorescent image of viable HepaRG cells loaded in the MLI. Live cells are stained with acridine orange 

(green), and dead cells are stained with propidium iodide (red). (B) Immunohistochemical staining of 

Cytochrome P450 3A4 of HepaRG cells cultured in the MLI for 72 hours. Brown staining indicates 

cytoplasmic expression of the cytochrome P450 enzyme. 
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Figure S5.2: U-Net performance on spindle-morphology and high-density organoid networks. 

Machine-learning based segmentation of UPS organoids is effective at low cell densities but has 

difficulty when segmenting extensive networks of cells across multiple focal planes. 
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Chapter 6: Conclusions and Outlook 

  

While precision medicine is not a new concept, the technology that enables its use in 

clinical care is developing at a rapid pace. Thanks to massive reductions in cost, genomic 

sequencing is now a standard component of the cancer diagnosis strategy for many tumors227. 

While the full potential of genomic precision medicine has yet to be reached, approaches like 

functional precision medicine may fill the gap. Thus far, patient-derived tumor organoids have 

been the leading tool in functional precision medicine assays testing therapies on live tissue. 

Several studies have demonstrated promising early results in using organoids as surrogates of 

patient response to treatment50,51,55,90,93 and multiple groups abroad are proceeding with clinical 

trials to rigorously evaluate their utility. 

 The platforms used to establish and analyze organoids used in functional assays differ 

from group to group. We have developed our mini-ring screening methodology9,78 to be scalable 

with laboratory automation and have applied the system to organoids derived from a variety of 

tumor types. Chapter 3 describes our work with sarcoma organoids and demonstrates that a 

clinical functional precision medicine pipeline is not only feasible, but also informative. Our 

findings highlight the heterogeneity found amongst the different histologic subtypes of sarcoma 

and anecdotal evidence suggests that functional approaches can predict genomic features and 

patient response. 

 The clinical implementation of organoid-based assays will require further advances in 

automation and analysis to provide wholistic understandings of tumor response to treatment. To 

address this need, we developed a bioprinting pipeline to automate the seeding of our organoid 

models. This also allowed us to optimize each model for imaging using a high-speed live cell 

interferometer capable of providing time-resolved mass data with single-organoid resolution. This 
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platform has the unique ability to probe the heterogeneity in organoid response to treatment that 

may lead to more informed drug selection in clinical practice. 

The further development of systems for screening prodrugs and radiotherapy will expand 

the utility of functional precision medicine beyond traditional drug libraries. Platforms like these 

will allow for a comprehensive investigation of all treatment options available to patients and 

physicians. The limited early success of our MLI platform stands as an important reminder that 

not all physiological phenomena can be captured easily in simplified models. However, an in-

depth understanding of the biological processes at play can provide clues as to how to intelligently 

increase the complexity of the model without sacrificing the ease of use and throughput of the 

system. Additionally, our radiation screening results highlight the need for the proper selection of 

both the model and the analytical methods to fully understand response to treatment. Other 

treatment modalities that also require new development include immunotherapies and stromal 

cell-targeting drugs, but the expansion of the capabilities of in vitro platforms will be a necessary 

step in recommending the best possible treatment for each patient. 

As this field of research progresses, clinical trials evaluating the relationship between 

organoid and patient response will be essential in driving progress. Open questions regarding the 

optimal environmental conditions, duration of culture, and required complexity of the models used 

remain to be answered. While these platforms are currently in the early stages of investigation, 

commercial systems have already started to appear and will further attract funding to make the 

vision of functional precision medicine a reality. Just as genome sequencing made its transition 

from laboratory bench to patient bedside, organoid screening systems are destined to take a 

similar path. As the search for improved clinical outcomes continues, precision medicine - in all 

of its forms - will be instrumental in guiding the selection of treatments and providing hope to 

patients battling cancer. 
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