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Abstract: Advancements in artificial intelligence (AI) for point-of-care ultrasound (POCUS) have
ushered in new possibilities for medical diagnostics in low-resource settings. This review explores
the current landscape of AI applications in POCUS across these environments, analyzing studies
sourced from three databases—SCOPUS, PUBMED, and Google Scholars. Initially, 1196 records were
identified, of which 1167 articles were excluded after a two-stage screening, leaving 29 unique studies
for review. The majority of studies focused on deep learning algorithms to facilitate POCUS operations
and interpretation in resource-constrained settings. Various types of low-resource settings were
targeted, with a significant emphasis on low- and middle-income countries (LMICs), rural/remote
areas, and emergency contexts. Notable limitations identified include challenges in generalizability,
dataset availability, regional disparities in research, patient compliance, and ethical considerations.
Additionally, the lack of standardization in POCUS devices, protocols, and algorithms emerged as a
significant barrier to AI implementation. The diversity of POCUS AI applications in different domains
(e.g., lung, hip, heart, etc.) illustrates the challenges of having to tailor to the specific needs of each
application. By separating out the analysis by application area, researchers will better understand the
distinct impacts and limitations of AI, aligning research and development efforts with the unique
characteristics of each clinical condition. Despite these challenges, POCUS AI systems show promise
in bridging gaps in healthcare delivery by aiding clinicians in low-resource settings. Future research
endeavors should prioritize addressing the gaps identified in this review to enhance the feasibility
and effectiveness of POCUS AI applications to improve healthcare outcomes in resource-constrained
environments.

Keywords: point-of-care ultrasound (POCUS); artificial intelligence (AI); low-resource settings;
resource-limited settings; low- or middle-income countries; rural; remote

1. Introduction

The global diagnostic ultrasound market has seen steady growth, reaching a value
of USD 7.39 billion in 2023, with projections expecting it to reach approximately USD
11 billion by 2033 [1,2]. This growth stems from the strengths of ultrasonography being
portable, affordable, and radiation-free, unlike computed tomography (CT) [3]. Point-of-
care-ultrasound (POCUS) refers to ultrasound performed by the clinician at the bedside
of their patient. Despite concerns that its portability might compromise performance,
POCUS machines largely retain conventional ultrasound features and perform comparably
well [4,5]. POCUS holds immense potential to make medical care more accessible, even
in the most austere conditions, owing to its small size, portability, and affordability. This
makes it an invaluable tool in places with limited resources. Accordingly, the use of POCUS
has been widely adopted in various resource-limited settings, such as developing countries
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and conflict zones, areas affected by war or political instability that disrupt essential services
such as housing, transportation, communication, sanitation, water, and healthcare [6–8].
In this review, low-resource setting refers to, but is not limited to, environments in which
resources for high-quality healthcare (e.g., finances, trained personnel, medical equip-
ment, computing resources) are constrained [9,10]. Specifically, this review focuses on
the following low-resource areas: rural or remote [11], low- and middle-income countries
(LMICs) [7,12], emergency contexts [13], and environments lacking key resources [14].

Artificial intelligence (AI) optimizes processes through automation and in-depth
analyses surpassing human capability and, thus, has important implications for POCUS
used in low-resource settings. As ultrasound machines become more ubiquitous and
portable, more clinicians will continue to adopt ultrasound as the preferred diagnostic
and/or therapeutic modality. This, however, leaves a potential area and gap in medical
training and education. It is within this space that AI presents a unique opportunity
to facilitate both image acquisition and image interpretation when technology outstrips
human skill levels.

Because technology has evolved so rapidly within the last decade, there have been
limited studies on the applications and developments of AI for POCUS, specifically for
POCUS used in or developed for low-resource settings. Previous literature mainly focuses
on POCUS education and training, aiming to nurture proficient POCUS practitioners or
enhance the acceptance and utilization of POCUS in such settings [15–17]. Advanced
technologies including telehealth applications using POCUS for both diagnosis and remote
education have also been proposed but were irrelevant to AI [18–20]. Some articles related
to AI were either on conventional ultrasound but not POCUS or pertinent to broad and
general situations but not particularly to low-resource settings [21–25]. This review aims
to accomplish two research objectives: (1) to examine the current state of POCUS AI
applications in and for low-resource settings using various levels of analysis, including
target population, geography or country, type of low-resource setting, and the objective and
implication of the study; and (2) to identify limitations and barriers that those AI systems
face to leave them for future studies to address.

2. Materials and Methods

This paper utilized the Cochrane guidelines for conduct and the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses for Scoping Reviews (PRISMA-ScR)
guidelines to minimize bias and provide the review with more structure. The approval
of the Institutional Review Board (IRB) was not necessary as the study did not involve
human participants.

A comprehensive search was conducted on three electronic databases (SCOPUS,
PubMed, and Google Scholars) in June 2024 using the following keywords: ((POCUS) OR
(Point-of-care ultrasound) OR (Portable Ultrasound)) AND ((AI) OR (Artificial Intelligence)
OR (Machine Learning) OR (Deep Learning) OR (NLP) OR (Natural Language Processing)
OR (Large Language Model) OR (LLM) OR (Generative AI)) AND ((low-resource) OR
(resource-limited) OR (rural) OR (remote) OR (austere setting) OR (LMIC) OR (Low-middle
income countries) OR (military) OR (space) OR ((emergency) AND (low-resource))). A
data-charting form was jointly developed by all authors to determine which variables to
extract. The actual extraction of metadata was conducted by two authors (SK and SY). Such
metadata included authors, population, geography or country, type of low-resource settings,
type of AI, and research objectives. We did not impose a time restriction to ensure the
search was systematic [26,27]. The records retrieved from these databases were exported to
Covidence (Melbourne, Australia) a platform that aids scholars with literature reviews [28].
After duplicates were eliminated, the records went through two stages of screening.

During the first stage, the title, abstract, and type of study were examined and a
total of 548 were excluded. A more specific breakdown is available in Figure 1. This
stage was intended to filter out the articles meeting the exclusion criteria and deemed
ineligible based on the title and abstract. More specifically, articles covering non-ultrasound
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applications, topics irrelevant to low-resource settings and AI, manuscripts that were not
peer-reviewed, non-journal pieces (e.g., books), non-English articles, reviews, and any
documents generated by non-humans (e.g., ChatGPT) were not included.
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Figure 1. PRISMA flow diagram. * not peer-reviewed or non-journals (n = 143); reviews (n = 197); not
POCUS-related or irrelevant to ultrasound (n = 214); not low-resource setting (n = 256); not AI-related
(n = 108). ** not POCUS-related or irrelevant to ultrasound (n = 52); not low-resource setting (n =
143); not AI-related (n = 17).

During the second stage, records went through a full-text review. The same exclusion
criteria used in the first stage of screening were equally applied but this time on a full-text
basis. In addition to the studies that used or tested AI applications in low-resource settings,
manuscripts that explicitly alluded to the potential benefits and usefulness of the proposed
AI applications in low-resource settings were also included in our scoping review. Both
stages of screening were conducted based on the inclusion and exclusion criteria in Table 1.
All authors were involved in both stages of the screening process. Conflict resolution when
disagreements arose was conducted jointly by all six authors. Determination of whether
each of the articles extracted was relevant and maintained high enough quality was based
on sufficient discussions among all authors. The protocol used in this review was not
preregistered.
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Table 1. Inclusion and exclusion criteria for screening.

Inclusion Criteria Exclusion Criteria

- Point-of-care ultrasound used
- Low-resource setting
- artificial intelligence (AI)
- application
- Peer-reviewed
- Not reviews

- Irrelevant to ultrasound or only related to
traditional ultrasound

- Not low-resource setting
- Not English-speaking
- Not human
- Not artificial intelligence (AI)-related
- Not peer-reviewed
- Not journals (e.g., books)
- Reviews (e.g., systematic reviews)

3. Results
3.1. Results

A total of 1196 records were retrieved, 37 duplicates were removed, and 918 records
were removed after the initial screening. The remaining 241 records underwent full-text
reviews according to the inclusion and exclusion criteria detailed in Table 1, resulting in
29 unique studies. Figure 1 displays the PRISMA flow diagram, which visualizes this
screening process. Table 2 showcases the metadata of the 29 studies included in this review.
The majority of studies (79%) were conducted from 2021 to 2023. The most frequently
addressed medical departments were pulmonology (31%), obstetrics (21%), emergency
medicine or intensive care units (ICU) (14%), and cardiology (14%). Deep learning was the
most commonly used AI technique, employed in 23 studies (79%) to enhance the operation
of POCUS in resource-limited settings. Other AI techniques utilized were machine learning,
computer vision, and Bayesian machine learning.

Table 2. Metadata of studies included in the review.

Author Population Geography/
Country

Low-Resource
Setting Type/
Department

AI Used Objective

Nhat et al.,
2023 [29]

Doctors,
clinicians Vietnam LMIC/Intensive care

unit (ICU) Deep learning

Develop an AI solution that assists lung
ultrasound (LUS) practitioners, especially

with LUS interpretation, and assess its
usefulness in a low-resource ICU.

Libon et al.,
2023 [30] Infants Canada Remote/Pediatrics

US FDA-cleared
artificial

intelligence (AI)
screening device

for infant hip
dysplasia (DDH)

Evaluate the feasibility of implementing
an artificial intelligence-enhanced

portable ultrasound tool for infant hip
dysplasia (DDH) screening in primary
care by determining its effectiveness in

practice and evaluating patient and
provider feedback.

Cho et al.,
2023 [31] N/A South

Korea
Lack of computing
resources/Urology Deep learning

Develop a system for measuring bladder
volume in ultrasound images that could
be used in point-of-care settings. Create a
system based on deep learning optimized

for low-resource system-on-chip (SoC)
due to its speed and accuracy, even on
devices with limited computing power.
This could improve bladder disorder
diagnosis by making bladder volume
assessment easier in situations when

access to complex equipment is limited.
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Table 2. Cont.

Author Population Geography/
Country

Low-Resource
Setting Type/
Department

AI Used Objective

Sultan et al.,
2023 [32]

Clinicians,
patients

United
States Remote/Pulmonology Deep learning

Propose the use of teleguided POCUS
supported by AI technologies for
monitoring COVID-19 patients by

non-experienced personnel, including
self-monitoring by the patients
themselves in a remote setting.

Perera et al.,
2021 [33] N/A United

States
Rural and

LMIC/Pulmonology Deep learning

Present an image-based solution that
automatically tests for COVID-19. This
will allow for rapid mass testing to be
conducted with or without a trained
medical professional, which can be
applied to rural environments and

third-world countries.

Aujla et al.,
2023 [34] N/A Canada

Remote and
LMIC/Pulmonology

and
neonatology

Machine learning

Propose an automated point-of-care tool
for classifying and interpreting neonatal

lung ultrasound (LUS) images, which
will be useful in remote or developing
countries with a lack of well-trained

clinicians.

Abdel-
Basset et al.,

2022 [35]
N/A Egypt

Lack of computing
re-

sources/Pulmonology
Deep learning

Present a novel, lightweight, and
interpretable deep learning framework
that discriminates COVID-19 infection

from other cases of pneumonia and
normal cases suitable for deployment in

point-of-care and/or
resource-constrained settings.

Jana et al.,
2020 [36] Patients India

Lack of computing
re-

sources/Cardiology
Machine learning

Develop a smartphone-based portable
continuous-wave Doppler ultrasound

system for diagnosis of peripheral
arterial diseases based on the

hemodynamic features in a way that is
more cost-effective and power-efficient,

making it suitable for low-resource
settings with limited energy and

computing resources.

Hannan
et al., 2023

[37]
N/A United

States
Emergency/Emergency

medicine Deep learning

Develop a deep learning-driven classifier
that can aid medical professionals in

diagnosing whether a patient has
pneumothorax based on POCUS images.

Design the classifier to perform in a
mobile phone using little training data to

train the model, making it suitable for
low-resource settings such as emergency

and acute-care settings.

Ekambaram
and

Hassan,
2023 [38]

Patients South
Africa

LMIC and
rural/Emergency

medicine

Bayesian
machine learning

Propose a novel, Bayesian-inspired,
iterative diagnostic framework that uses
point-of-care-focused echocardiography

to evaluate the conditions of patients
with acute cardiorespiratory failure and

suspected severe left-sided valvular
lesions. This overcomes the current
limitation that diagnostic protocols

cannot perform sufficient quantitative
assessments of the left-sided heart valves.
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Table 2. Cont.

Author Population Geography/
Country

Low-Resource
Setting Type/
Department

AI Used Objective

Khan et al.,
2016 [39]

16 to 41-
week-old

fetuses
Norway LMIC and

rural/Obstetrics

Computer vision
(OpenCV,

Kalman-based
tracker)

Develop an automatic method for
localization of the presented section

through the abdomen and measurement
of the mean abdominal diameter (MAD)
of a fetus designed to be operational in
both traditional ultrasound settings and

the rural areas of low- and
middle-income countries.

Heuvel
et al., 2019

[40]

Pregnant
women Ethiopia LMIC/Obstetrics Deep learning

Present a system that can automatically
estimate the fetal head circumference

(HC) from the point-of-care ultrasound
image data obtained using the obstetric
sweep protocol (OSP) to overcome the

limitation of pregnant women in
developing countries having no access to

ultrasound imaging as it requires a
trained sonographer to acquire and

interpret the image.

Jafari et al.,
2019 [41] N/A Canada

Lack of computing
re-

sources/Cardiology
Deep learning

Present a computationally efficient deep
learning-based application for accurate
left ventricular ejection fraction (LVEF)

estimation. This application runs in real
time on Android mobile devices that

have either a wired or wireless
connection to a cardiac POCUS device,

making it suitable for a resource-limited
environment.

Al-Zogbi
et al., 2021

[42]
N/A United

States Emergency/PulmonologyDeep learning

Propose an autonomous robotic solution
that enables point-of-care ultrasound

scanning of COVID-19 patients’ lungs for
diagnosis and staging through the

development of an algorithm that can
estimate the optimal position and

orientation of an ultrasound probe on a
patient’s body to image target points in

lungs. This is useful in low-resource
settings such as emergency situations

where contact between healthcare
workers and patients is not feasible (e.g.,

COVID-19 infection risk).

Blaivas
et al., 2020

[43]
N/A

United
States,

Canada

Lack of computing
resources/Various

departments
Deep learning

Create and test a “do-it-yourself” (DIY)
deep learning algorithm to classify

ultrasound images to enhance the quality
assurance workflow for POCUS

programs to enable those in low-resource
settings to leverage AI applications for
medical images usually owned by large

and well-funded companies.
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Table 2. Cont.

Author Population Geography/
Country

Low-Resource
Setting Type/
Department

AI Used Objective

Baloescu
et al., 2020

[44]
N/A United

States

Lack of trained per-
sonnel/Emergency

medicine
Deep learning

Develop and test a deep learning (DL)
algorithm to quantify the assessment of
B-lines in point-of-care lung ultrasound,
which helps in diagnosing shortness of

breath, a very common chief complaint in
the emergency department (ED). This is
useful in resource-limited settings where

not enough experienced users are
available as B-line identification and

quantification can be a challenging skill
for novice ultrasound users.

Cheema
et al., 2021

[45]
Patients United

States
Lack of trained per-
sonnel/Cardiology Deep learning

Present the novel use of a deep
learning-derived technology trained on
the skilled hand movements of cardiac

sonographers that guides novice users to
acquire high-quality bedside cardiac

ultrasound images. This technology can
have a role in resource-limited settings

where cardiac sonographers are not
readily available.

Blaivas
et al., 2021

[46]
N/A United

States
Lack of

data/Cardiology Deep learning

Uses unrelated ultrasound window data
(only apical 4-chamber views) to train a

point-of-care ultrasound (POCUS)
machine learning algorithm with fair

mean absolute error (MAE) using data
manipulation to simulate a different

ultrasound examination. The outcome
measured is the left ventricular ejection
fraction. This may help future POCUS

algorithm designs to overcome a paucity
of POCUS databases.

Cho et al.,
2024 [47] Fetuses South

Korea

Lack of computing
re-

sources/Obstetrics
Deep learning

Proposes deep learning-based efficient
automatic fetal biometry measurement
method for the system-on-chip (SoC)
solution. Results show feasibility in

low-resource hardware settings such as
portable ultrasound systems.

Zemi et al.,
2024 [48] N/A United

States Remote/Oncology Deep learning

Explores the feasibility of integrating
artificial intelligence algorithms for

breast cancer detection into a portable,
point-of-care ultrasound device.

Achieved a performance benchmark of at
least 15 frames/second and suggests the
usefulness of the proposed framework in

remote settings.
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Table 2. Cont.

Author Population Geography/
Country

Low-Resource
Setting Type/
Department

AI Used Objective

Karlsson
et al., 2023

[49]
N/A United

States

Lack of computing
resources and

LMIC/Obstetrics
Deep learning

Early detection of breast cancer is crucial
for reducing morbidity and mortality, yet
access to breast imaging is limited in low-
and middle-income countries. This study
explores the use of pocket-sized portable
ultrasound devices (POCUS) combined

with deep learning algorithms to classify
breast lesions as a cost-effective solution.

This study utilized a dataset of 1100
POCUS images, enhanced with synthetic

images generated by CycleGAN, and
achieved a high accuracy rate with a 95%

confidence interval for AUC between
93.5% and 96.6%.

MacLean
et al., 2021

[50]

COVID-19
patients Canada

Lack of computing
re-

sources/Pulmonology
Deep learning

Introduces COVID-Net US, a deep
convolutional neural network for

COVID-19 screening using lung POCUS
images. This network is a highly efficient

and a high-performing deep neural
network architecture that is small enough
to be implemented on low-cost devices,

allowing for limited additional resources
needed when used with POCUS devices

in low-resource environments.

Adedigba
et al., 2021

[51]

COVID-19
patients Nigeria

Lack of computing
re-

sources/Pulmonology
Deep learning

Develops a tele-operated robot to be
deployed for diagnosing COVID-19 at
the Nigerian National Hospital, Abuja,

driven by a deep learning-based
algorithm that automatically classifies

lung ultrasound images for rapid,
efficient, and accurate diagnosis of

patients. The gantry-style positioning
unit of the robot combined with the

efficient deep learning algorithm is less
costly to fabricate and is better suited for
low-resource regions than robotic arms

used in the status quo.

Pokaprakarn
et al., 2022

[52]

Pregnant
women

United
States,

Zambia

Lack of computing
resources and

LMIC/Obstetrics
Deep learning

Ultrasound is crucial for estimating
gestational age but is limited in

low-resource settings due to high costs
and the need for trained sonographers.
This study develops a deep learning

algorithm based on the blind ultrasound
sweeps acquired from 4695 pregnant

women in North Carolina and Zambia,
showing a mean absolute error (MAE) of

3.9 days compared with 4.7 days for
standard biometry. The AI model’s
accuracy is comparable to trained

sonographers, even when using low-cost
devices and untrained users in Zambia.
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Table 2. Cont.

Author Population Geography/
Country

Low-Resource
Setting Type/
Department

AI Used Objective

Karnes
et al., 2021

[53]

COVID-19
patients

United
States

Lack of computing
resources and

LMIC/Pulmonology
Deep learning

Introduces an innovative ultrasound
imaging point-of-care (PoC) COVID-19

diagnostic system that employs few-shot
learning (FSL) to create encoded disease
state models. The system uses a novel
vocabulary-based feature processing

method to compress ultrasound images
into discriminative descriptions,

enhancing computational efficiency and
diagnostic performance in PoC settings.

The results suggest the ability of the
FSL-based system in extending the

accessibility of rapid LUS diagnostics to
resource-limited clinics.

Viswanathan
et al., 2024

[54]
Fetuses

United
States,

Zambia

Lack of computing
resources and

LMIC/Obstetrics
Deep learning

Develops a deep learning AI model to
estimate gestational age (GA) from brief
ultrasound videos (fly-to cineloops) with

the aim of improving the quality and
consistency of obstetric sonography in

low-resource settings by the model,
which outperformed expert

sonographers in GA estimation and can
flag grossly inaccurate measurements,

providing a no-cost quality control tool
that can be integrated into both low-cost
and commercial ultrasound devices. This

innovation is crucial for enhancing
ultrasound access and accuracy,
particularly for novice users in

low-resource environments.

Zeng et al.,
2024 [55]

COVID-19
patients Canada

Lack of computing
resources and lack of

trained person-
nel/Pulmonology

Deep learning

Proposes COVID-Net L2C-ULTRA, a
deep neural network framework

designed to handle the heterogeneity of
ultrasound probes by using extended

linear-convex ultrasound augmentation
learning. Experimental results show

significant performance improvements in
test accuracy, AUC, recall, and precision,
making it an effective tool for enhancing

COVID-19 assessment in
resource-limited settings owing to its

portability, safety, and cost-effectiveness.
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Table 2. Cont.

Author Population Geography/
Country

Low-Resource
Setting Type/
Department

AI Used Objective

Abhyankar
et al., 2024

[56]
N/A India

Lack of computing
resources/Various

departments
Machine learning

Presents an intelligent decision support
system for point-of-care ultrasound

imaging, emphasizing resource-limited
healthcare settings. Utilizing a decision

tree algorithm on a Raspberry
Pi-powered portable ultrasound device
enhances image quality and diagnostic
accuracy by making informed decisions

during image capture and processing.
Continuous data collection and user

input allow for adaptive learning and
optimization, ensuring reliability and

regulatory compliance. This system aims
to provide cost-effective, high-quality

ultrasound imaging, improving
healthcare accessibility and quality in

underserved areas.

Madhu
et al., 2023

[57]

COVID-19
patients India Lack of equip-

ment/Pulmonology Deep learning

Proposes an optimized Xception
convolutional neural network (XCovNet)

for COVID-19 detection from POCUS
images. Depth-wise spatial convolution
layers are used to accelerate convolution

computation in the XCovNet model,
which performs better on POCUS

imaging than on other models, including
COVID-19 classification. The results of
the trial demonstrate that the proposed

technique achieves the best performance
among recent deep learning studies on

POCUS imaging. POCUS is a viable
option for developing COVID-19

screening systems based on medical
imaging in resource-constrained settings
where traditional testing methods may be
scarce and where CT or X-ray screening

is unavailable.

3.2. Types of Populations and Locations

Almost half of the studies (45%) did not specify target populations. The population
column in Table 2 is labeled “N/A” for these studies. Instead of focusing on particular
populations, these studies proposed and assessed high-level AI algorithms or architecture
that can automatically measure medical entities (e.g., bladder volume), assist in diag-
nosing or classifying conditions, and improve quality assurance of operations related to
POCUS in low-resource environments. Examples of such health measurements included
left ventricular ejection fractions and bladder volume [31,46]. Conditions for automatic
POCUS image-based diagnosis varied from pneumothorax to COVID-19 and breast can-
cer [33,37,44,49]. Other populations covered in the remaining studies included infants
or neonates (14%), pregnant women (17%), and COVID-19 patients (17%). In regards to
the location of research, the United States was where most of research studies (45%) were
conducted followed by Canada (21%). Other countries included Vietnam, India, Zambia,
South Korea, Egypt, Norway, and Ethiopia.
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3.3. Types of Low-Resource Settings

Four broad categories were identified regarding the types of low-resource settings:
LMIC, rural or remote, emergency, and lack of key resources. Seven studies (24%) pertained
to rural and remote settings. Two studies (7%) focused on emergency situations. Ten
studies (34%) targeted LMICs.

A total of 18 studies (62%) aimed to address limitations due to the scarcity of key
resources. Key resources included experienced personnel, computing resources, and data
for training AI models. Cho et al. developed a deep learning-based system to measure
bladder volume from POCUS images. This system was designed to operate on devices
with limited computing power, which is typical in LMICs and rural areas [31]. This may
aid clinicians in assessing bladder volume even in low-resource settings with limited access
to complex equipment.

Baloescu et al. addressed the lack of experienced staff with sonography experience
needed to assess B-lines in point-of-care lung ultrasound, which is crucial for diagnosing
shortness of breath in the emergency department (ED) [44]. The study developed and
evaluated a deep convolutional neural network-based deep learning algorithm that quan-
tified the assessment of B-lines in lung ultrasound by utilizing 400 ultrasound clips from
an existing database of ED patients. The model achieved a decent performance of 93%
sensitivity and 96% specificity in identifying B-lines compared with expert evaluations,
suggesting that the system could empower inexperienced personnel in low-resource hos-
pitals to perform B-line identification and quantification, which may be challenging for
novice users.

To address the lack of data for training AI systems for POCUS-related tasks, Blaivas
et al. presented a new method of using unrelated ultrasound window data (only apical
4-chamber views) to train a POCUS machine learning algorithm to measure the left ven-
tricular ejection fraction. This approach is expected to guide the development of future
POCUS and deep learning algorithms to mitigate the data paucity common in LMICs.

4. Discussion

This review aims to understand the current landscape of AI applications for POCUS
in low-resource settings. It seeks to identify gaps in these AI applications in order to inform
future research and, ultimately, benefit both the clinicians and the patients in resource-
constrained environments.

A major gap identified in the studies included in this review was the potential inability
of AI systems to generalize to other health conditions, populations, or settings. With
ongoing training and adjustments, the generalizability of ultrasound AI models is expected
to improve. Many of the articles reviewed were based on pilot studies. Consequently,
the experiments, conducted under restricted conditions, may not fully account for all
variables in real-world scenarios. Nhat et al. presented an AI-enabled point-of-care lung
ultrasound (LUS) solution that assists non-expert clinicians in LMIC intensive care units
(ICU) with LUS interpretation [29]. The AI system, however, was only trained on data from
patients with severe dengue or sepsis. Future studies, therefore, are needed to investigate
whether this AI solution is equally helpful in interpreting point-of-care LUS images for
other diseases. Libon et al. sought to assess the feasibility of implementing a US FDA-
cleared AI screening device for developmental dysplasia of the hip (DDH) for infants ages
6 to 10 weeks [30]. This pilot study was limited in scale, involving 306 infants from a
suburban Western Canadian area with a substantial Indigenous population. Researchers
may want to initiate a separate study in the future that employs a greater number of infants
with more racial and geographical diversity.

Furthermore, the performance of some algorithms proposed in the studies may di-
minish with more complex datasets. For example, Aujila et al. developed a machine
learning framework to automatically diagnose neonatal lung pathologies in low-resource
and, particularly, remote settings [34]. Linear discriminant analysis (LDA) was used as the
main classifier algorithm, but for larger datasets, this linear classifier may not be the most
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appropriate. Therefore, deep learning-based classifiers that can capture more convoluted
patterns may prove beneficial. Nevertheless, this simple linear classifier was selected over
the more complex classifiers in this study to extract and interpret meaningful features
relevant to clinical markers and keep the outcomes conservative and realistic. The trade-off
between the interpretability and complexity of AI systems should be a key consideration
for future research on this topic.

Regional disparities in research activities on the applications of AI for POCUS in
low-resource settings may be concerning. Only 30% of the studies included in this review
were conducted in LMICs. Even when some AI application is designed for low-resource
settings, bringing it to resource-limited settings for testing and assessment is crucial for
ensuring its usefulness in such settings. The concentration of studies in the U.S. and Canada
suggests a need for increased research investment and collaboration in LMICs and other
underserved regions to ensure that the benefits of AI applications for POCUS are globally
accessible. Pokaprakarn et al. and Viswanathan et al. may serve as exemplary models to
address this issue of regional disparities [52,54]. Researchers from both studies were based
in the U.S. but proceeded with their testing and evaluation of the developed AI systems in
not just the U.S. but also in Zambia.

Patient compliance and research ethics may be notably critical issues in studies con-
ducted in remote settings. These challenges may arise because researchers and patients are
not co-located, which complicates supervision, interaction, and rapport building. Sultan
et al. performed a pilot analysis to evaluate the performance of AI-powered COVID-19
detection systems based on point-of-care lung ultrasound images [32]. This study primarily
focused on inexperienced users, who comprise most of the workforce in low-resource
settings. The study anticipates that patient compliance within the remotely monitored sub-
group will be a significant limitation. Expected barriers to compliance include reluctance
to self-administer daily POCUS due to discomfort, fear of inadequate care, and misunder-
standings of the study protocols. Ensuring the security of ultrasound imaging data and
other health records to protect patient privacy and confidentiality must be prioritized in
future, larger-scale studies.

Future research must tackle the challenge of standardizing POCUS devices, protocols,
and algorithms. Four popular handheld POCUS devices are currently available on the mar-
ket: Butterfly iQ+ by Butterfly Network Inc. (Burlington, MA, USA), Kosmos by EchoNous
(Redmond, WA, USA), Vscan Air by General Electric (Boston, MA, USA), and Lumify by
Philips Healthcare (Andover, MA, USA). All of these devices have different functionalities
and views with no single handheld ultrasound device perceived to have all the desired
characteristics [58]. In one study evaluating the performance of deep learning algorithms
on 21 videos obtained from each of the two novel POCUS machines, performance was
significantly worse than the performance from a common POCUS machine in widespread
use [59]. Lack of algorithm standardization also leads to degrading model performance.
Blaivas et al. developed a “do-it-yourself” (DIY) deep learning algorithm for classifying
POCUS images (pelvis, heart, lung, abdomen, musculoskeletal, ocular, and central vas-
cular access) to enhance the quality assurance workflow for POCUS programs [43]. This
algorithm, which processed ultrasound images from various POCUS programs, exhibited
high-performance variability across different systems. This implied that the aforementoned
algorithm would require further training on new image data samples when used in dif-
ferent POCUS programs. This algorithm has difficulty with classifying musculoskeletal
ultrasound images, for instance, while performing well in other domains. Standardizing de-
vices, protocols, and algorithms is crucial in resource-limited settings with limited options.
A standardized all-in-one solution may be a better alternative.

The diversity of POCUS AI applications across different domains, including lung, hip,
and bladder, illustrates the challenges of tailoring solutions to meet the specific needs of
each application. For instance, the ability of AI to enhance diagnostic precision through
the quantitative measurement of DDH in infants showcases the direct and reproducible
benefits of AI in well-defined clinical measures in hip dysplasia screening, as demonstrated
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by Libon et al. [30]. Similarly, bladder volume estimation using AI in low-resource settings
exemplifies the potential for AI to provide significant operational efficiencies in routine
diagnostics [31]. Conversely, lung ultrasound applications, such as those explored by
Nhat et al. LUS in intensive care, present greater challenges due to the qualitative nature
of assessments and the subtlety of visual cues, which impact the reproducibility and
consistency of AI predictions [29]. These examples underscore the necessity for AI systems
that are specifically adapted to the complexities of each medical imaging domain, ensuring
that AI tools augment clinical workflows effectively without leading to misinterpretation or
overreliance. By analyzing the impact separately by application area, researchers will better
understand the distinct impacts and limitations of AI, aligning research and development
efforts with the unique characteristics of each clinical condition.

This review is not without limitations. The protocol was not preregistered as men-
tioned in the Methods section. Preregistration of the review protocol will be desirable for
similar future studies to ensure further rigor and consistency in the protocol. Furthermore,
readers of this review may encounter difficulties in applying the insights drawn from this
review due to the broad scope of applications covered in this review. Future research may
warrant focusing on applications for specific departments (e.g., cardiology) so that the role
of AI systems for POCUS may be robustly validated, at least for that particular department
or domain of application.

5. Conclusions

This review examined the current state of AI in POCUS, employing filters such as
medical departments, countries, research geographies, AI types, and low-resource set-
tings. The limitations of various POCUS AI applications, implemented and evaluated in
low-resource settings, were extensively analyzed. Identified limitations include limited gen-
eralizability, insufficient datasets for training AI systems, regional disparities in research on
AI applications for POCUS, potential patient noncompliance, ethical challenges in remote
settings, and a lack of standardized POCUS protocols, algorithms, and devices. Despite
these challenges, the findings demonstrate that POCUS AI systems are both feasible and
effective in aiding patients and clinicians to overcome barriers such as scarce computing
resources and a lack of trained personnel in low-resource settings. Future research should
focus on developing new POCUS AI applications that both address the gaps identified in
this review and prove cost-effective, using fewer computational resources without sacrific-
ing performance. Lastly, if new POCUS AI applications could become more user-friendly,
this would effectively empower the most inexperienced users in low-resource settings to
perform point-of-care ultrasound with high fidelity.
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