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1. OBJECTIVES AND SCOPE 

In The Netherlands, households have the opportunity to operate cars on an 

alternative fuel, liquified petroleum gas (L.P.G.). This fuel is priced much lower than 

benzine (gasoline) and is available at service stations throughout the country. Essentially 

any spark-ignition engine car can be converted to L.P.G. use, adding fixed car ownership 

costs either in the form of a retrofit or a premium for L.P.G. cars in the used-car market. 

L.P.G., is composed primarily of propane and butane, which are the heavier compounds 

in natural gas. It can thus be produced as a byproduct of Dutch North Sea natural gas. 

It is stored under low pressure in liquid form and is burned in the engine as a gas with 

approximately 80 percent the energy density of gasoline (Sperling, 1988). The other 

alternative fuel to benzine (gasoline) in the Netherlands is diesel fuel (petroleum distillate). 

The fixed versus operating costs of diesel cars are more similar to benzine than L.P.G. 

cars, but the lower fuel costs and slightly higher fixed costs of diesel cars relative to 

gasoline cars places diesel in between gasoline and L.P.G.. According to the Dutch 

National Mobility Panel, the data source used in the present study, approximately 12 

percent of the cars in general use in the Netherlands in 1984-88 were L.P.G., 8 percent 

were diesel, and the remaining 80 percent gasoline. For single-car households (about 

60 percent of all Dutch households), the approximate fuel type breakdown is 11 percent 

L.P.G., 7 percent diesel, and 82 percent gasoline. 

The first question addressed in this research is: how is fuel type choice related to 

car mobility measured, where mobility is measured in terms of overall usage (kilometers 

per year) and commuting distance? Causality can be anticipated in both directions: a 

high travel demand might explain the purchase of a car with lower fuel costs, but the 

ownership of such a car might result in more travel. The second question is: what are 

the influences of commuting subsidies, public transport season tickets, income and other 

background sociodemographic variables on fuel type choice and car mobility? 



A joint continuous/discrete choice demand model is specified in terms of a set of 

dynamic simultaneous equations. The endogenous (dependent) variables are car fuel 

type, car usage, and commuting distance, each measured at two points in time. Car fuel 

type is treated as a three category discrete variable ordered in terms of fuel cost; usage 

is a continuous variable; and commuting distance is a censored continuous variable 

(having the censoring value zero for households with no workers outside the home 

location). The model is restricted to single-car households, and is estimated on a pooled 

sample of the Dutch National Mobility Panel for the years 1984-1988. Elasticities are 

calculated for each endogenous variable as a function of the other endogenous variables 

and certain exogenous variables. 

2 



2. METHODOLOGY 

2.1 Non-Normal Endogenous Variables 

Classical theory of simultaneous linear equations assumes that the set of 

endogenous variables is multivariate normal distributed. This is clearly not the case in the 

fuel type choice and mobility model: Fuel type is a categorical variable, with an ordering 

in the categories according to the price of the fuel. Yearly kilometrage is a regular 

continuous variable (in principle it is censored at zero, but the censoring does not take 

effect since all single-car households reported some car kilometers each year). 

Commuting distance is censored at zero; if there are no workers in the household this 

variable is zero. Hence, the endogenous variables consist of an ordered three category 

probit (fuel type), a continuous variable (yearly kilometrage) and a tobit variable 

(commuting distance). In these types of cases, techniques can be applied to transform 

the observed non-normal variables into normal latent variables, which is possible under 

certain assumptions. The simultaneous equation system of the transformed normal 

variables can then be estimated using appropriate distribution-free methods. The model 

results can be interpreted in terms of the latent variables, but this has limitations, because 

they cannot be observed. An elasticity calculated for unobserved latent variables is not 

very meaningful in itself. However, it is possible to evaluate the model results in terms of 

their observed non-normal counterparts. 

The transformation of non-normal to normal variables is performed in the so-called 

measurement model (sometimes called the "outer" measurement model, to distinguish it 

from factorial models). The measurement model is discussed for each of the three types 

of variables used in the model, starting with the simplest case. 

For a continuous variable the measurement model linking the observed Y and the 

latent variable y* is simply the identity: 

Y r 
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For an ordered probit it is assumed that there is a latent continuous variable y* 

which is normally distributed with mean zero and unit variance. The latent variable itself 

is not observed, but there is an ordinal indicator Y that is related toy* in the following 

way: 

where 

y = 1 
y 2 

y = K 

if cx0 < Y-<cx1 
if cx 1 < Y°<cx2 

are the threshold values of the cumulative normal distribution corresponding to the 

marginal distribution of the population over the categories. A variable with K categories 

has K-1 unknown thresholds. These are estimated as: 

for k = 1, 2, .. , K-1, where q, denotes the standard cumulative normal distribution function. 

Here, ni is the subsample size falling in category j of the ordinal variable and N is the 

effective sample size. In the transformation from ordinal to normal variables the ordinal 

score Y = k is replaced by the normal score zk, which is the mean of y* in the interval ak_1 

< y* < ak , which is: 

<J>(«k-1)-<J>(a k) 
4>(a k)- cf>(ak-1) 

where </> denotes the standard normal density function. 

In a similar fashion, a censored variable can be transformed to a normal variable. 

If Y is a censored variable that is observed only if it is positive, then it is assumed that Y 
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is generated by a latent normal variable y* that is uncensored. Thus: 

y = Y'" 
y = 0 

if Y* > 0 
if Y'" !5: 0 

The latent variable is assumed to be normally distributed with mean µ, and standard 

deviation a. For values below the threshold value, the mean of the normal score of the 

latent variable in this interval is assumed, which is given by: 

z = µ - CJ <l>(-µ/a) 
<P(-µ/a) 

These latent variables are multivariate normally distributed. A simple way of 

computing the variance-covariance matrix of the transformed variables is to use the 

normal scores from the marginal distributions of the variables. However, this is not an 

optimal solution. By using bivariate information of all pairs of variables, polychoric and 

polyserial correlations can be computed; these are consistent estimates of the underlying 

population statistics. 

2.2 The Structural Model 

Having defined the measurement model we now turn to the structural equation 

system itself. The general form of the equation system is given by: 

r = nr + rx + .o_ 

where Y* is a column vector of p endogenous variables, X is a column vector of q 

exogenous variables, and §_ is a column vector of p disturbance terms. The B matrix, of 

order (p x p), contains the structural effects among the endogenous variables, and the 

r matrix, of order (q x p), is the matrix of regression coefficients of all exogenous 
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variables on the endogenous variables. The disturbance (or residual) terms are 

multivariate normally distributed with mean zero and variance-covariance matrix lit. The 

structural model is defined in terms of the latent variables, i.e. after the transformations 

performed in the measurement model. 

An important distinction in simultaneous equation systems is that between direct, 

indirect and total effects. Direct effects are given in the B- and r-matrices. Indirect effects 

may exist if a variable a is related to b, which is in turn related to c. Thus, there is an 

indirect effect from a to c through the causal path involving b. Total effects are simply the 

sum of direct and indirect effects. The formulas for calculating these effects among the 

endogenous variables are: 

Direct effects: 

Indirects effects: 

Total effects: 

Yto Y 

B 

(I-Br1 
- B - I 

(1-8)"1 
- I 

Xto Y 

r 
(l-sr1 f - f 

(1-sr1 r 

Estimation of the parameters in the model is performed using the Generalized 

Weighted Least Squares method developed by Browne (1974; 1982; 1984). This method 

is described in more detail in Golob and van Wissen (1989), and van Wissen and Golob 

(1990). Asymptotically distribution fee estimates are generated by minimizing the function: 

F = (.s-ft)' w-1 (.s-ft) 

where ~ is the vectorized set of all sample variances and covariances (the sample 

statistics generated in the measurement part of the model), '! the vectorized set of 

estimated variances and covariances, and W the asymptotic variance-covariance matrix 

of the sample statistics. 

The value of F times the sample size N is an overall measure of goodness-of-fit. 

It is distributed asymptotically as x2 with degrees of freedom determined as follows: For 

p endogenous variables and q exogenous variables, there are \ (p2 + p) moments among 

the endogenous variables and pq regression slopes from exogenous to endogenous 
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variables; thus, the number of degrees of freedom is \ (p2 +p) + pq - r, where r is the 

number of free parameters in the model. However, with large sample sizes the x2 -test 

will almost always result in a non-fitting model, according to this statistic (Bentler and 

Bonett, 1980). This does not necessarily imply a bad fitting model. Alternative tests have 

been proposed for sample sizes larger than 200. One is the statistic N*F / df. If this 

statistic is less than 3, this indicates a good fit (Carmines and Mciver, 1981). Another test 

is to take the observed N*F value, and calculate the hypothetical sample size, given this 

statistic, that would be needed to make it a good fitting model. If this sample size is 

larger than 200, this indicates a good fitting model (Hoelter, 1983). 
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3. DATA 

The model is estimated on a pooled sample of the Dutch National Mobility Panel, 

1984-1989. This data set, described in J. Golob et al. (1985) and van Wissen and Meurs 

(1989), consists of annual (sometimes biannual) observations on approximately 1,800 

households originally clustered in twenty communities throughout the Netherlands. These 

observations involve one-week travel diaries and personal and household questionnaires. 

For present study, annual measurements conducted in the spring of each of the five years 

1984 through 1988 were used to construct a pooled year triplet sample. The sample was 

restricted to households that had a single car in each of the three years representing 

approximately 63 percent of all panel households. 

The composition of the pooled year triplet sample is shown in Table 1. Each 

subsample represents the observation of households for three consecutive years. In the 

model structure, these years are denoted by t0 (the initial conditions) for year one, t1 for 

year two, and t2 for year three. There were 494 single-car households in the panel for the 

three years 1984, 1985, and 1986. Similarly, there were 606 single-car households for 

1985, 1986, and 1987; and 693 single-car households for 1986, 1987, and 1988. A 

random selection of 494 households was made for each of the larger two subsamples, 

resulting in a pooled sample size of 1482 observations of households over three adjacent 

years. 

Triplet 

1 

2 

3 

Year 1 

1984 

1985 

1986 

TOTAL OBSERVATIONS 

Year 2 

1985 

1986 

1987 

Year 3 

1986 

1987 

1988 

Table 1 Pooled Year Triplet Sample 
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Total Randomly 
Households Selected 

494 494 

606 494 

693 494 

1793 1482 



Pooled panel sampling is discussed in van der Eijk (1987) and Golob (1989). One 

major advantage is that two types of effects can be separated and estimated with such 

a sample: (1) panel conditioning effects due to temporal biases in response, and (2) 

period effects due to conditions that influence all respondents uniformly at a given point 

in time. The second advantage is that attrition bias is less in a pooled sample than in a 

"stayers" sample of only those households that participated in all waves of the panel (in 

this case 1984 through 1988). This is because households added as panel refreshment 

(in 1985 and 1986) are included, as are households that dropped out of the panel after 

three or four years. The disadvantage is that there is sample redundancy, but we feel this 

disadvantage is outweighed by the advantages of including period effects and reducing 

sample attrition bias. In particular, the ability to estimate period effects, potentially due 

to fuel prices, other costs of living, and trends in taste, is central to this study. It is not 

possible to identify period effects in a cross-sectional model. 

The model variables are listed in Tables 2A (the endogenous variables) and 2B (the 

exogenous variable. The six endogenous variables (Table 2A) represent measurements 

of the same three travel behavior variables at two points in time, one year apart. Through 

use of the measurement model (Section 2.1 ), the endogenous variables (Fuel Type) at 

t1 and t2 are treated as ordered probits. The car usage (Year KM) variables at t1 and t2 

are treated as continuous variables. And the commuting distance (Comm. Dis.) variables 

at t1 and t2 are treated as tobits. 

VARIABLE ABBREVIATION 

Fuel Type T = 1 
Year KM T=1 
Comm. Dis. T = 1 
Fuel Type T =2 
Year KM T=2 
Comm. Dis. T=2 

DESCRIPTION 

3-category fuel type (benzine, diesel, L.P.G.) in year t1 

Car usage in km/year in year t 1 

Average commuting distance of primary worker in year t1 

3-category fuel type (benzine, diesel, L.P.G.) in year~ 
Car usage in km/year in year t2 

Average commuting distance of primary worker in year ~ 

Table 2A The Endogenous Variables 
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The sixteen exogenous variables (Table 2B) are subdivided into three groups: (1) 

initial conditions, (2) time invariant background variables, and (3) dynamic background 

variables. The three exogenous variables in the initial conditions group are simply the 

three endogenous behavioral variables measured one year prior to year t = 1. These 

variables are taken as given because there is no way to explain these variables in terms 

of state dependence from a previous year, nor is there any way of specifying 

autocorrelated disturbance terms. These are the initial conditions in the dynamic process 

being modeled. 

The time invariant group of exogenous variables is divided into three subgroups: 

The first subgroup (2.1) is comprised of four household economic and sociodemographic 

variable that remain constant for the vast majority of households over the three-year time 

horizon. The lack of temporal variation in these variables means that they must be 

treated the same as variables in a cross-sectional model. These include household size, 

one life-cycle dummy variable, and two income class dummy variables. Dummy variables 

for the remaining life-cycle and categories (J. Golob et al., 1984) were tested, but were 

found to add no explanatory power to the model; they were either not related to the 

endogenous variable or were redundant with other variables in the model. In addition, 

the distinction in residential location (between Major urban centers, Regional centers, 

Suburban cities and Other municipalities) turned out to be unimportant. 

The second subgroup (2.2) consists only of the single variable, the natural 

logarithm of years-to-date in the panel. The use of this variable in reducing panel 

conditioning and attrition biases is discussed in Golob (1989). The logarithm form is 

consistent with the biases detected as a function of panel longevity by Meurs et al. 

(1989). 

Finally, subgroup (2.3) is comprised of two dummy variables capturing period 

effects, one for each of the first and last of the three year-triplet subsamples listed in 

Table 1. With three pooled panel subsamples it is possible to have two such variables. 

The variables measure uniform trends over the population that are not explained by the 

remaining variables (Golob, 1989), with the base period being 1985-1987: links from the 

PERIOD '84-'86 variable to endogenous variables at t1 measure period effects for 1985 
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relative to 1986; links from this same variable to endogenous variables at t2 variables 

measure period effects for 1987 relative to 1986, and those from PERIOD '86-'88 to t2 

variables measure period effects for 1988 relative to 1987. 

The final group (3) of dynamic exogenous variables consists of three variables 

measured at each of the two years t1 and t2. These three variables are: the number of 

household workers receiving car commuting subsidies from their employers, the number 

of adult rail season tickets (including a general rail pass, a public transport pass, or a 

pass for a specific rail travel corridor), and the number of household workers with non­

fixed work locations. The first two of these variables are important for policy evaluation 

purposes. The third variable was found to be important in explaining the endogenous 

variables. 
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VARIABLE TYPE 

Initial conditions 
Initial conditions 
Initial conditions 
Time invariant 
Time invariant 
Time invariant 
Time invariant 
Time invariant 
Time invariant 
Time invariant 
Dynamic 
Dynamic 
Dynamic 
Dynamic 
Dynamic 
Dynamic 

VARIABLE 

Fuel Type T = 0 
Year KM T=0 
Comm. Dis. T = 0 
H H size 
HD> 35 0 K D 
INC 24 -38 K 
INC> 38 K 
Ln (YRS PANEL) 
PERIOD '84-'86 
PERIOD '86-'88 
TRAVEL SUBS. T=1 
RAIL CARD T = 1 
NON-FIX W.l.T=1 
TRAVEL SUBS.T=2 
RAIL CARD T=2 
NON-FIX W.l.T=2 

Table 28 The Exogenous Variables 

DESCRIPTION 

3-category fuel type in year prior to year t1 
Car usage in year prior to year t1 
Average commuting distance in year prior to year t1 

Household size 
Life cycle dummy: head of household > 35, no children 
Income dummy: 24-38,000 fl/year 
Income dummy: > 38,000 fl/year 
Natural log of years in panel 
Dummy: year t O = 1984 (t1 = 1985, t2 = 1986) 
Dummy: year t O = 1986 (t1 = 1987, t2 = 1988) 
No. of workers with car commuting subsidized by the t1 employee 
No. of rail (NS or OV) season tickets in year t1 
No. of workers with non-fixed work locations in year t1 
No. of workers with car commuting subsidized by employer in t2 
No. of rail (NS or OV) season tickets in year t2 
No. of workers with non-fixed work locations in year t2 

12 



4. MODEL SPECIFICATION 

4.1 Structural Equations 

Our goal is to develop and estimate a dynamic model of fuel type choice and car 

mobility. In a dynamic context it is likely that fuel type and total mobility will show a more 

complicated pattern of causality than can be specified in a single equation model of fuel 

type as a function of total mobility. Moreover, commuting distance plays an important 

role in determining total mobility and fuel type, especially when travel reimbursements and 

subsidies are taken into account. Therefore, the following variables were defined to be 

endogenous: (1) fuel type (2) yearly kilometrage, and (3) commuting distance. This 

implies a simultaneous model system with three endogenous variables per time period. 

The number of time periods chosen depends on the length of the relevant time lags in the 

process on the one hand and the constraints of the sample on the other hand. As 

explained in the data description section we have used a pooled household data file 

where each observation covers three time periods, each one year apart. Further, in order 

to estimate a dynamic model we have to control for a number of effects that might 

otherwise bias our results. These effects are the initial conditions, panel effects and 

period effects. We have used the first time point as initial conditions: fuel type, yearly 

kilometrage and commuting distance for year t0 are treated as exogenous variables, 

leaving time periods t1 and t2 to be determined in the model. Thus, the model can 

estimate time lags of at most one year. The second factor that has to be controlled for 

is the panel conditioning effect. In previous research (Meurs et al, 1989) it has been 

shown that the number of years a respondent has participated in the panel is an 

important conditioning factor for mobility reporting. Consequently, this variable, in log 

transform, was included as an exogenous variable. Finally, due to the pooling of our 

sample, we can distinguish pure time effects from period (i.e., pooling subsample) effects. 

As explained in the data section, there are three pooling subsamples. 

The longitudinal character of the data allows inclusion of individual-specific time 

invariant effects (see Meurs, 1989, or Hensher, 1988, for a detailed exposition of these 
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effects). These effects are included in terms of decompositions of the residual terms in 

the model. Suppose we have a model of the form: 

This model could be thought of as predicting yearly kilometrage for household i in year 

t. Of course the set of predictors X will not be complete. Each household and time point 

has its own characteristics that determine its mobility level and which are not known to 

the modeller. Some of these omitted variables are time invariant, e.g. specific habits and 

tastes that characterize the household's behavior at any point in time. Therefore, the 

residual error term can be decomposed in a household specific, time invariant part and 

a "truly random" part: 

By decomposing the error term in this way, we control for possible spurious serial 

correlation or spurious state dependence effects that might obscure the "true" causal 

pattern underlying the data. 

Summarizing, the fuel type and mobility model is defined as follows: 

1. It is multivariate, i.e., it treats fuel type, yearly kilometrage and commuting distance 

as joint endogenous variables. 

2. It is dynamic. This involves a number of model features. First, by introducing 

multiple time periods it is possible to estimate lagged effects among the key 

variables. Further, the longitudinal character of the data allow estimation of 

individual, time invariant effects. 

3. Initial conditions are controlled for by using data from the first time period as 

exogenous, rather than endogenous, variables. 
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4. Panel effects and period effects can be separated using a number of exogenous 

variables, i.e., the (log of the) number of years participated in the panel, and 

pooling subsample dummies. 

5. The model incorporates the possible conditioning effects of a number of 

exogenous variables, i.e., travel cost subsidy, income, life cycle, employment 

variables and other household characteristics. 

We can specify the fuel type and mobility model within this general framework. It has the 

following form: 

Ya 
~ B11 B12 B1,a: ~ r1.o r1.1 0 0 r14 ~ §..i . . . 
~ = B2,1 B2,2 B2,a: -~ + 0 0 r2.2 0 r2.4 -~ + ~ 

«. 0 0 0 «. 0 0 0 r3,3 0 JJ. ~ 

B 

where the following symbols have been used (see Table 2A for endogenous variable 

abbreviations): 

Yt = [FT*, YK*,CD*] T t= o, 1,2 

«. = [aFT,cxYK•"co] T 

E@.) = E@_J = a 
E@_p~ = 11" t (=1,2 

E@i,~ = 0 

E@_p~ = 0 

E@a_,~ = 1:P a: 

There are six endogenous variables in total, three for each time period. The B 
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matrix, broken down into nine submatrices, three of which are null submatrices, contains 

the causal effects of the endogenous variables upon each other. In B1,1 and B2,2 the 

contemporaneous, or instantaneous effects are contained, while in B2,1 the lagged effects 

of period 1 to period 2 are given. The submatrix B1,2 is relevant only if anticipatory effects 

are present. Furthermore, the B matrix contains the individual specific effects a, one for 

each endogenous variable. The Bt,a matrices are diagonal matrices. For pure individual­

specific effects these matrices should be identity matrices. However, as will be explained 

in Section 5, it was necessary to release one diagonal element of B2,a. 

The r matrix contains the regression, or conditioning effects of exogenous 

variables upon fuel type, yearly kilometrage and commuting distance. Several 

submatrices can be discerned. First, we have the conditioning effects of period tc,, which 

correspond to Y..o in the vector of regressors. Next, there are dynamic variables that have 

instantaneous effects on the endogenous variables. These coefficients are given in r 1, 1 

and r 2,2 and the corresponding regressors are given in X1 and X2• A fourth set of 

regressors is time invariant. They have an influence through the individual specific effects. 

One could say that they 'explain' part of the time invariant individual specific dispersion 

in the data. These time invariant regressors are denoted by U. Finally, we have a set of 

time dummy variables, R, as explained previously, that influence the endogenous variables 

at year t1 and time year t2 through the coefficient submatrices f 1,4 and f 2,4 . 

4.2 Elasticity Formulas 

In this section we will translate the model specifications into elasticities, 

concentrating on the elasticities among the endogenous variables, i.e., fuel type, year 

kilometrage and commuting distance. The notion of elasticity is in principle 

straightforward, but here we deal with both normal and non-normal variables which make 

the calculation and interpretation of elasticities more complicated. Therefore, some 

attention will be given to the calculation and interpretation of elasticities in a simultaneous 

model of non-normal variables. 

Elasticity is defined as the percentage change in the dependent variable due to a 
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unit percent change in the independent variable. For probit and tobit variables (that can 

occur both as dependent and independent variables) some difficulties arise in applying 

the concept of elasticity. Therefore, each of the relevant causal links among the 

endogenous variables in the model will be discussed. The structural model defines 

relationships among the multivariate normal latent variables. These latent variables are 

equal to the observed variables only with continuous variables. For tobit and probit 

variables there is a non-linear measurement relation between observed and latent variable, 

as described in Section 2.1. The model structure is among the latent variables. However, 

elasticities need to be defined in terms of observed variables. 

In developing observed-variable elasticities, it is convenient to introduce the 

following notation. We deal with three endogenous variables of different measurement 

type: yearly kilometers YK; fuel type FT and commuting distance CD. We denote the 

expected value of the latent underlying variables by n(YK) for yearly kilometers; n(FT) for 

fuel type; and n(CD) for commuting distance. The expected values of the latent variables 

for our structural model system can be calculated using the reduced form of the structural 

equation system: 

.a = (I-Bt1 r X 

Due to the non-linearities it will be necessary to calculate the elasticities for each 

observation. Evaluation of the elasticity functions at sample mean points is not correct. 

Instead we will calculate mean elasticities by evaluating the elasticity formulas for each 

observation in the sample. Thus, if c i is the elasticity evaluated for observation i we 

calculate the total elasticity as 

e = 

Disregarding the lagged effects of all variables upon themselves, the following causal 

relations are important: 
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1. The elasticity of year kilometrage on fuel type: This is an effect from a regular 

linear variable to an ordered probit. The elasticity of this link is defined as: the 

percentage change in the probability of having a particular fuel type due to a percent 

change in year kilometrage. Thus, for the three category fuel type variable there are three 

elasticities, one for each fuel type. Normally we would expect to find opposite signs of 

elasticities among the cells, since the respective cell probabilities cannot all increase 

simultaneously. More kilometers traveled will increase the probability of having a cheaper 

fuel type but decrease the probability of having regular benzine. The elasticity formula is 

given by: 

or more compactly: 

X;k pk{ q>( <Xk-1- ,/;7})-q>(cxk-11 ~F1))} 

<JJ(cx k-11 <;7))-<JJ(cxk-1-11 <;7)) 

<JJ i,k-<JJ i,k-1 

where the following notational simplifications have been made: 

q> i,k = q>( <X k- 11 <;n) 

<JJ i,k = <JJ ( <X k-11 ~F1)) 
The index k denotes fuel type category. 

2. The elasticity of commuting distance on year kilometrage. Here, we deal with 

the effects of an independent probit variable (commuting distance) on a continuous 

variable (year kilometrage). Since the tobit variable is censored at zero, the elasticity of 

households without commuting distance will be zero. Therefore we have chosen to use 

the conditional elasticity: the percentage change in year kilometrage due to a one 

percent change in commuting distance, given the information of non-zero commuting 

distance. The corresponding conditional elasticity is given by: 
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A { (CD) + <J cp(v 1) } 
.., 11 / ~(v ;) 

where the term between brackets in the numerator is the conditional expectation of 

commuting distance, given that it is non-zero. Further, 11 is the standardized latent 

variable of the tobit: 

(CD) 
11 , 

(J 

where a is the standard deviation of the latent variable. 

3. The elasticity of commuting distance to fuel type. This is an indirect link in the 

model, since there is no direct causal relation from commuting distance to fuel type 

(Section 5). Again, if the household has no commuting distance, the elasticity will be 

zero. Therefore we use the conditional elasticity which is defined as: the percentage 

change in the probability of having a particular fuel type due to a one percent change in 

commuting distance, given the information of a non-zero commuting distance. Thus, there 

are three elasticities, one for each fuel type category. The formula is given by: 

€1,k = 

where k is the index of the fuel type category. 

4. The elasticity of fuel type at t1 to year kilometrage at t2. The elasticity of this 

dynamic link is a good indicator of the travel generating effect of cheaper fuel types and 
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is defined as: the percentage change in year kilometrage due to a percent change of 

the probability of having a particular fuel type. Since there are three fuel types, we have 

three elasticities. These are given by: 

with I the index of the fuel type category. 

5. The elasticity of fuel type at t1 to commuting distance at t2• This is also a 

dynamic travel generating effect of fuel type. For zero commuting distance, this elasticity 

is not defined. Therefore we define the conditional elasticity as follows: the percentage 

change in commuting distance, due to a one percent change in the probability of having 

a particular fuel type, given the information of non-zero commuting distance. The formula 

for this elasticity is: 

A{<f> <1> } {1 <l>(v 1) ( <l>(v 1) )2} 
"' ,., - 1,1-1 • - v '<J>(v ;) - <J>(v 1) 

(CD) ( <l>(v ;) l 
{<l>i.l-1 - <1>1,,} ·{111 + 0 <J>(v ;) } 
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5. RESULTS 

The model X2 value was 212.78 with 76 degrees-of-freedom (df) and a sample size 

of 1482. The X2 
/ df ratio is 2.8, indicating an acceptable goodness of fit (Carmines and 

Mciver, 1981). The critical sample size for non-rejection of this model at the p=.05 level 

is 583. According to Hoelter (1983) this also indicates an acceptable model because the 

critical sample size is greater than 200. The R2 values were 0.35 for Year Km at period 

t1, 0.35 for Comm. Dis. at t1, 0.60 for Year Km at t2 and 0.37 for Comm. Dis. at t2 . For 

the fuel type probit variables, the variances are not identified, and thus no R2 statistic is 

available. With few exceptions, all parameter estimates are significant at the p = .05 level. 

5.1 Parameter Estimates 

The final model form is depicted in the flow diagrams of Figures 1 through 4, and 

coefficient estimates are listed in Tables 3 and 4. In this section we will focus on the 

qualitative results of the model, i.e., the sign and significance of the causal links between 

variable pairs. The scale of the coefficients is only interpretable when discussing 

continuous variables. In the next section we have attempted to give a more substantive 

interpretation to the model coefficients by calculating elasticities. 

Income, although retained in the final model, turned out to be a difficult variable. 

Initially it was specified as a linear variable, by taking class-midpoints. This resulted in 

non-interpretable results. Finally, income dummies were used as time invariant 

conditioning effects. 

First we turn to the causal structural relations among fuel type, yearly kilometrage 

and commuting distance (Figure 1 and Table 3). The interpretation of the instantaneous 

links is clear: the type of fuel used is a direct function of yearly kilometrage, which, in turn 

is determined to a high degree by commuting distance. So, commuting distance does 

not have a direct effect upon fuel type. It is yearly kilometrage, the sum of all travel, that 

has a direct influence on the fuel type. The coefficients have the correct sign: more 

travel leads to a higher probability of owning a car with a cheaper fuel type. The co-
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T = 0 

INITIAL 
CONDITIONS 

T 1 

Figure 1 Dynamic Structure of Fuel Type Model 

KM 

T 2 

efficient of commuting distance to yearly kilometrage varies over time (0.100 in period t1, 

versus 0.038 in period t2l. 

There is an important lagged influence of fuel type on commuting distance in the 

next period. Cheaper fuels encourage people to start making longer commuting trips, 

according to this model. There is also an effect of fuel type on total yearly kilometrage, 

but this effect is much weaker and has a t-value of 1.136, which is questionable. The 

results seem to imply that commuting distance, and to a lesser extent non-work mobility, 

is increased as a consequence of cheaper fuel types. (fhe estimated consequences in 
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Submatrix: From: To: Estimate: T-value: 

81 1 Year KM Fuel Type 0.191 8.428 
' Comm. Dis. Year KM 0.100 12.385 

822 Year KM Fuel Type 0.191 8.428 
' Comm. Dis. Year KM 0.038 12.385 

821 Fuel Type Fuel Type 0.714 26.476 
' Fuel Type Year KM 0.014 1.136 

Fuel Type Comm. Dis. 0.153 5.048 
Year KM Year KM 0.816 36.254 
Comm. Dis. Comm. Dis. 0.751 30.340 

B1,a alphaFT Fuel Type 1.000 
alphavK Year KM 1.000 
alphaco Comm. Dis. 1.000 

B2,a alphaFT Fuel Type 1.000 
alphaYK Year KM 1.000 
alphaco Comm. Dis. 0.251 5.146 

Table 3 Parameter Estimates and T-values of B Matrix 

terms of elasticities are presented in Section 5.2.) Another important feature of the 

dynamic character of the model is state dependence, expressed through the autolags 

present in the B-matrix. Fuel type, yearly kilometrage and commuting distance all exhibit 

a genuine state-dependency, because we have controlled for heterogeneity in the model 

by means of the individual specific effects. 
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The time invariant factors, the a's, control for everything that does not change over 

time for each household. Figure 2 depicts the structure. The estimated coefficients of 

the time invariant exogenous variables on the a's is given in Table 4. Figure 2 shows the 

conditioning effects of exogenous variables and a covariance between avK and ac0 , the 

time invariant components of yearly kilometrage and commuting distance. Strictly 

speaking, we do not have a time invariant structure on commuting distance, since the link 

from aco to commuting distance at time t2 is different from that at time t1• Instead, we 

have a factor structure on these error terms. 

The time invariant component of fuel type is influenced by four variables. 

Household size (HHSIZE) is positively related to cheaper fuel types. Larger households 

tend to have a cheaper fuel type. Households with heads older than 35, without children 

at home, on the other hand are more related to more expensive fuel types (a negative 

sign), as well as total length of participation in the panel (the variable controlling for panel 

effects). Finally, household income in the range 24-38K (average to slightly below 

average incomes) implies usage of more expensive fuels. This is a somewhat puzzling 

result. In prior model runs various alternative specifications with income were tried, 

.090 

HD>35 0KD 

Ln{YRS PANEL) 

INC 24-38K . 105 

INC > 38K 

Figure 2 Structure of Individual Specific Effects 
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specifically with continuous income (class midpoints), or income as an endogenous 

variable. However, this did not lead to meaningful results. The results with income as a 

set of four dummy variables (0-1 ?K, 17-24K, 24-38K and 38 + K) does not lead to very 

satisfactory results with respect to fuel type either. It appears that the relation between 

income and fuel type is a rather complex one. The highest income category (38 + K) has 

a positive effect on yearly kilometrage, which is a more plausible relationship than that on 

fuel type. Finally, the a for commuting distance is influenced by household size (larger 

households have longer commuting trips) and the total years of participation in the panel 

(the weights of these variables for time t2 have to be multiplied by .251 due to the factor 

structure). 

Decomposition of the variances of each endogenous variable are shown in Table 

5 in terms of total variance, time invariant component and residual variance. The time 

invariant factors account for a large share of the total variance of each variable. For the 

four continuous variables with known sample variance, the estimated variance of the time­

invariant individual-specific effects (a factors) accounts for between 16% and 37% of the 

total variance. The sample variances of the categorical fuel type is not identified in a 

probit model, but the residual (unexplained) variances of these two variables was fixed 

at the conventional standardization value of 1.0. Comparing the estimated variance of the 

a factor to this fixed residual variance, the variance of the a factor is slightly more than 

half of the variances of the residuals. This is similar to the result for the four continuous 

endogenous variables; for these four variables, the estimated variance of the a factors 

ranges between 38% and 58% of the estimated residual (unexplained) variance of each 

variable. 
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Sub matrix: From: To: Estimate: T-value: 

r1,o Fuel Type Fuel Type 1.611 27.973 
(initial Fuel Type Year KM 0.182 8.689 
conditions) Year KM Year KM 0.442 36.895 

Year KM Comm. Dis. 0.314 10.410 
Comm. Dis. Comm. Dis. 0.639 39.748 

r1,1, r2,2 Travel Subs. Year KM 0.137 5.709 
(instantaneous Travel Subs. Comm. Dis. 0.682 10.256 
effects) Rail Card Fuel Type -0.154 -2.260 

Rail Card Year KM -0.032 -1.146 
Non-Fix W.Loc. Comm. Dis. 0.573 6.356 

r3,3 

(time invariant HH. Size a;FT 0.090 4.110 
effects) HH. Size «co 0.318 7.922 

Head <35 OK. a;FT -0.212 -2.692 
Log(Y.in Panel) a:FT -0.285 -1.791 
Log(Y.in Panel) «co 0.440 1.737 
Income 24-38K a:FT -0.178 -2.952 
Income 38+K O:yK 0.047 1.434 

r1,4 

(period effects Period '84-'86 Year KM -0.273 -6.158 
ont=1 vars) Period '86-'88 Year KM -0.096 -2.277 

r2,4 

(period effects Period '84-'86 Fuel Type 0.218 2.753 
on t=2 vars) Period '84-'86 Year KM 0.195 5.053 

Period '84-'86 Comm. Dis. 0.350 3.102 

Table 4 Parameter Estimates and T-Values of r-Matrix 

Next we turn to the effects of the time varying exogenous variables on the three 

endogenous variables (Figure 3 and Table 4). There are three exogenous variables 

specified for two time periods. No lagged effects are present and the structure was 

equated for the two time periods t1 and t2. An important exogenous variable is whether 

there is a subsidy provided by the employer. This variable has no direct effect on the 

type of fuel used but does have a positive effect both on commuting distance and car 
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Variable Total Sample Estimated Variance of Time-Invariant R2 
Variance Residual (Individual-Specific) Effects 

Variance Estimate T-value 

Fuel Type 1.000 0.519 
Year KM 0.492 0.322 0.124 49.467 0.346 
Comm. Dis. 3.982 2.571 1.501 33.943 0.354 

Fuel Type 1.000 0.519 
Year KM 0.763 0.307 0.124 31.628 0.598 
Comm. Dis. 4.134 2.591 1.501 33.900 0.373 

Table 5 Variance Decomposition of Endogenous Variables 

usage. Taking into account the different scales of yearly kilometers (in thousands of 

kilometers per year) and commuting distance (in one way distance from home to work) 

it can be seen that the effect of travel subsidy on commuting distance is almost twice that 

on yearly kilometerage. Nevertheless, travel subsidies, provided by the employer to cover 

commuting and business travel costs, have a significant effect on non-work travel. Next, 

the number of persons in the household having some form of season-ticket or long term 

discount ticket for the train (identifying the regular train users) is associated with more 

expensive fuel types (i.e. a negative correlation), and also negatively with the total car 

usage. This result is intuitively clear: regular train users have a lower usage level of cars 

and therefore do not shift to lower variable cost, but higher fixed cost cars. There is a 

clear relation between public transport usage and the level of car operating costs. 

The third time varying exogenous variable is the number of workers with a non­

fixed work location in the household. As expected, this variable has a high positive 

influence on commuting distance. 

Another set of exogenous variables is the period effect (Figure 4 and Table 4). 

These are mainly to control for differences among the pooling subsamples. These results 

indicate that, for car usage, there was an unexplained increase from 1985 to 1986, a 

flattening of growth from 1986 to 1987, and an accelerated increase from 1987 to 1988. 
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For fuel type, there was an unexplained increase in the probability of owning L.P.G. and 

diesel cars over the 1985-1986 interval. Finally, there was a similar unexplained increase 

in commuting distance over the 1985-1986 interval. 

The total effects among the endogenous variables are given in Table 6. All 

variables at time point t1 have an effect on variables at time t2• Moreover, commuting 

distance has an effect on fuel type through the intermediary variable total yearly 

kilometrage. These total effects are important in the calculation of elasticities. 
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Figure 3 

Figure 4 
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Submatrix: From: To: Estimate: 

E1,1 Year KM Fuel Type 0.191 
Comm. Dis. Year KM 0.100 

Comm. Dis. Fuel Type 0.100 

E2,2 Year KM Fuel Type 0.191 
Comm. Dis. Year KM 0.038 
Comm. Dis. Fuel Type 0.100 

E2,1 Fuel Type Fuel Type 0.714 
Fuel Type Year KM 0.014 
Fuel Type Comm. Dis. 0.153 
Year KM Fuel Type 0.816 
Year KM Year KM 0.816 
Year KM Comm. Dis. 0.816 
Comm. Dis. Fuel Type 0.751 
Comm. Dis. Year KM 0.751 
Comm. Dis. Comm. Dis. 0.751 

Table 6 Total Effects Matrix E Among the Endogenous Variables 

5.2 Elasticities 

In this section we will apply the elasticity formulas of Section 4.2 to the set of 

endogenous variables, to calculate the mean elasticities for the entire sample. It is 

necessary to distinguish between direct elasticities, calculated from the direct effects 

(matrix B) and total elasticities, calculated from the total effects (matrix E). The latter 

elasticities are more relevant for policy evaluation. In addition, we will use the dynamic 

exogenous variables, which are relevant for transportation policy, to parameterize the 

mean elasticities over the population: these variables are car commuting subsidies, rail 

season tickets, and nonfixed work locations (Table 28). 
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The mean direct and total elasticities for each pair of endogenous variables is listed 

in Table 7. Each relevant elasticity will be discussed separately. 

Car Usage to Fuel Type Periods t1 and t2 . As discussed in Section 5.1, the model 

results indicate that increasing car usage increases the probability of owning a car with 

lower operating cost (cheaper fuel type). The three elasticities from car usage in the 8 1,1 

submatrix in Table 7 show the quantitative strength of this relationship. Both diesel and 

L.P.G. have positive elasticities (0.16 and 0.45 respectively), but L.P.G. is much more 

sensitive to usage changes than is diesel. A one percent increase in kilometers per year 

decreases the probability of owning a benzine (gasoline) engine car by 0.21 percent. 

Total elasticities are equal to the direct elasticities, and the computed elasticities at time 

t2 are somewhat lower than those at t1. 

Next we clarify the sample according to the dynamic exogenous variables. Car 

usage elasticities for households with and without travel costs subsidy are graphed in 

Figure 5. Travel subsidy leads to a stronger negative elasticity for benzine and much 

lower positive elasticity for diesel. There is also a slightly higher positive elasticity for 

L.P.G .. Thus, travel cost reimbursements give rise to a stronger negative effect of yearly 

kilometrage on benzine but a much less positive effect on diesel fuel. The effect of a non­

fixed work location on elasticities is graphed in Figure 6. Households with a variable work 

location react much more strongly to changes in yearly kilometrage with respect to 

ownership of benzine cars. There is also a negative effect on the probability of using 

diesel, whereas in households with fixed work locations this elasticity is positive. For 

workers with non-fixed work locations, a desirable alternative is L.P.G. when usage 

justifies. 

Finally, Figure 7 gives the mean elasticities for households with and without rail 

season tickets. Season ticket holding indicates regular train usage, and in the previous 

section it was found that this has a profound effect on fuel type choice. Households with 

a rail season ticket react more strongly to changes in car usage levels with respect to 

diesel and L.P.G., but less strongly with respect to benzine. Thus, they are more likely 

to buy diesel or L.P.G. with more kilometers driven, but less likely to change from benzine 
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Sub- From: To: Direct Total 
matrix: Elasticity Elasticity 

Value Standard Value Standard 
Deviation Deviation 

B1,1 Year KM Fuel Type: benzine -.21 .40 -.21 .40 
II Fuel Type: diesel .16 .46 .16 .46 
II Fuel Type: L.P.G. .45 .18 .45 .18 

Comm. Dis. Fuel Type: benzine -.12 .16 
Fuel Type: diesel .11 .23 
Fuel Type: L.P.G. .28 .14 

Comm. Dis. Year KM .61 .18 .61 .18 

B2,2 Year KM Fuel Type: benzine -.18 .34 -.18 .34 
II Fuel Type: diesel .12 .35 .12 .35 

Fuel Type: L.P.G. .34 .14 .34 .14 
Comm. Dis. Fuel Type: benzine -.05 .06 

Fuel Type: diesel .02 .08 
Fuel Type: L.P.G. .09 .05 

Comm. Dis. Year KM .24 .07 .24 .07 

B2,1 Fuel Type: benzine Year KM -.08 .08 -.11 .12 
Fuel Type: diesel .01 .02 .01 .03 
Fuel Type: L.P.G. .12 1.91 .17 2.71 
Fuel Type: benzine Comm.Dis. -.05 .05 -.05 .05 
Fuel Type: diesel .01 .04 .01 .04 
Fuel Type: L.P.G. .32 2.63 .32 2.63 
Year KM Fuel Type: benzine -.30 .55 

Fuel Type: diesel .23 .60 
Fuel Type: L.P.G. .63 .25 

Year KM Comm. Dis. .01 .00 
Comm. Dis. Fuel Type: benzine -.21 .23 

Fuel Type: diesel .18 .34 
Fuel Type: L.P.G. .46 .21 

Comm. Dis. Year KM .78 .26 

Table 7 Direct and Total Elasticities of Fuel Type Model 
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Figure 5 
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Figure 7 
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to another fuel type. 

Commuting Distance to Fuel Type Periods t1 and t2• There are no direct elasticities 

involved in this link, but there is an indirect linkage through yearly car usage. These 

elasticities are therefore roughly equal to the product of the direct elasticity of Commuting 

Distance to Yearly Kilometrage (0.61) and the direct elasticity of Yearly Kilometrage to 

Fuel Type in time t1. In time t2 the direct elasticity of Commuting Distance to Yearly 

Kilometrage is only 0.24 and therefore the elasticities of Commuting Distance to the three 

fuel types is much lower than at time t1. Thus, the model indicates an elasticity of 

commuting distance to benzine in the range of -0.05 to -0.12; to diesel in the range 0.02 

to 0.11; and to L.P.G. in the range 0.09 to 0.28. The calculated ranges with respect to 

the elasticities of Yearly Kilometrage are much smaller. 
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Commuting Distance to Car Usage Periods t1 and ~- At time t1 this elasticity is 0.61 

but at time t2 the value is only 0.24, due to the non-stationarity of the /3 coefficient. This 

result is somewhat unsatisfactory and an elasticity of 0.24 appears to be too low. 

Fuel Type at t1 to Car Usage at t2 • This dynamic effect represents the travel generating 

effect of cheaper fuels. The coefficient of fuel type to annual car usage is not as strong 

as that to Commuting Distance. There is a slight negative elasticity from benzine (-0.08) 

which means that a one percent increase in the probability of using benzine at time t1 has 

a negative direct effect of 0.08 percent on yearly kilometrage at t2. The total elasticity is 

larger in magnitude (-0.11), because there is an indirect linkage through commuting 

distance. The direct elasticity reflects the effect on non-work related travel, which is 

higher than on commuting distance. The effects of diesel fuel type on mobility is almost 

zero but there is a positive elasticity of L.P.G. on car usage of 0.12 (direct) and 0.17 

(total). Some caution is necessary in interpreting this elasticity. The standard deviation 

is very high, indicating that this value may be the result of some large outlyers. This high 

variance may be the result of the relatively low number of L.P.G. users in the sample. 

The effects of travel subsidy and rail season tickets on the travel generating effects 

of cheaper fuels are graphed in Figures 8 and 9. First, in Figure 8 it can be noted that 

the effect of an increase in the propensity to use benzine is less negative for subsidized 

households (-0.05) than for non-subsidized households. The effects of diesel are almost 

zero, irrespective of subsidization or not, but there is a clear difference in the logged 

effects of L.P.G. on car usage. For subsidized households the positive effect on Yearly 

Kilometrage is much stronger (0.33) than for the non-subsidized households (0.05). Thus, 

travel cost reimbursements mitigate the travel reducing effects of more expensive fuel and 

reinforce the positive effects of cheaper fuel. For rail season tickets, it is reversed (Figure 

9). Rail tickets reinforce the negative effects on travel mobility of more expensive fuels 

(an elasticity of -0.24 for train users versus -0.10 for the rest of the sample), mitigating 

the positive effects of cheaper fuel. 
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Fuel Type at t1 to Commuting Distance at ~- Here we find a similar pattern as with car 

usage but there are some differences in the level. The elasticity of benzine usage on 

Yearly Kilometrage (-0.08) is higher than that on Commuting Distance (-0.05). This is 

evidence of the sensitivity of non-work related travel to fuel costs. Commuting distance 

is relatively more insensitive to the probability of using benzine than non-work related 

travel. However, L.P.G. has a much higher elasticity on commuting distance than on 

annual car usage. Again, some caution must be taken in interpreting this result since the 

standard deviation of this elasticity is very high. 

Car Usage at t1 to Fuel Type at t2 . These "dynamic" or lagged elasticities are much 

higher than their contemporaneous equivalents. For instance, the dynamic total elasticity 

of yearly kilometrage on the probability of using benzine in the next period is -0.30, 

whereas it is only in the range from -0.18 to -0.21 for contemporaneous linkages. Since 

a change of fuel type generally implies a change of car (as opposed to retrofit), it is likely 

that lagged effects of mobility play an important role. These elasticities are generated 
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solely by direct effects: from car usage at t1 through Fuel Type at t1 through car usage 

at t2 and Commuting Distance at t2 to fuel type t2• According to the model, a high usage 

at t1 has a negative impact on owning a benzine car at t1, which in turn has a diminishing 

effect on travel at time t2, which in turn negatively affects the probability of having benzine 

at time t2. The total result is a relatively large negative elasticity at time t2. For diesel and 

L.P.G. a similar structure leads to a high probability of having these fuel types as a result 

of high lagged yearly kilometrage. For L.P.G. this lagged elasticity is particularly high 

(0.63). 

Commuting Distance at t1 to Fuel Type t=2. This is again an indirect effect and the 

story is similar to the previous lagged elasticity. However, the elasticities of Commuting 

Distance are somewhat lower than the effects of car usage. L.P.G. is again the most 

sensitive to changes in mobility: a total elasticity of 0.46. 
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6. CONCLUSIONS 

The model successfully captures the dynamic relationships among car fuel type 

choice and car mobility, subject to the conditioning effects of commuting subsidies, fixed 

and variable work locations, rail season tickets, and certain household sociodemographic 

and income variables. Car mobility is defined in terms of overall usage and commuting 

distance. The model is a joint continuous/discrete multivariate demand model with 

lagged effects, individual-specific terms, period effects, and compensation for panel 

attrition bias. The non-normal endogenous variables are treated as ordered probit and 

tobit variables. The elasticity estimates calculated for the observed non-normal variables 

could be useful in policy evaluation and forecasting. 
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