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Abstract
In this paper we examine the dynamics of unstable critical layers in stratified shear flows.
This is done from the framework of the wave interaction theory of shear instabilities,
which views instability as arising from the mutual interaction between wave motions that
are present in the background shear and density fields. By formulating a simple analytical
model of the structure of vorticity within the (continuous) critical layer, we are able to
reduce this to an interfacial vortex sheet representation in the far-field that fits naturally
into the wave interaction theory. This is applied to describe the physical mechanism of
ocean wave generation by wind in an idealised way, though the formulation is applicable
to other shear flows in general.

1 Introduction

Instabilities in stratified shear flows are often understood by using “wave interaction
theory” (see, for example Holmboe, 1962; Baines and Mitsudera, 1994; Caulfield, 1994;
Carpenter et al., 2013). In this theory, shear instabilities result from the interaction of
two, otherwise freely propagating waves in the profiles of background velocity and density.
In the case of stratified shear flows these waves correspond to internal gravity waves, which
propagate on density interfaces where the background density changes abruptly, as well
as vorticity waves that propagate on vorticity interfaces where the background vorticity
changes abruptly. The formulation is more general, however, and may be extended to
include other types of wave motion such as capillary waves (Biancofiore et al., 2015)
and magnetohydrodynamical Alfven waves (Heifetz et al., 2015), for example. In wave
interaction theory, instability occurs when the waves are able to satisfy two essential
conditions: (i) they must have the correct geometry to allow for mutual growth in one
another (which is satisfied when their intrinsic propagation is of opposite sign), and (ii)
a “phase-locking” must occur such that the waves propagate at the same speed relative
to one another. The theory is most successfully applied to piecewise velocity, and step-
wise density profiles, so that only a finite number of discrete interacting interfaces must
be considered. This has led to physical interpretations of the well known Rayleigh and
Fjørtoft Theorems, as well as an explanation of the sometimes destabilising effect of stable
stratification. Despite this success, the wave interaction theory cannot be applied in a
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straight forward way to unstable critical layers that are inherently continuous in nature,
since it is formulated in terms of discrete interfaces. In this paper we outline a method
of including the critical layer in the framework of the wave interaction theory of shear
instability.

The critical layer is a “near-singlularity” that can develop at the location where the
background flow speed is equal to the instability phase speed. We use an approximation at
the critical layer based on a slowly varying vertical velocity, and a rapidly varying vorticity
to formulate a new vortex sheet representation of the critical layer. This analysis of the
critical layer provides both a physical understanding of the critical layer structure, as well
as an interfacial description. This can then be used within wave interaction theory to
understand the role of the critical layer in stratified shear flow instabilities. Specific cases
that we examine include the instability responsible for the generation of ocean surface
gravity waves when wind blows over water.

The linear stability of stratified shear flows is governed by the Taylor-Goldstein equation

w′′ −
[ U ′′

U − c −
N2

(U − c)2 + k2
]
w = 0, (1)

where the background horizontal velocity is denoted by U(z), N2(z) is the squared
buoyancy frequency, and the vertical velocity is taken to have the normal mode form
w(z)eik(x−ct), with k the horizontal wavenumber and c = cr + ici the complex wave speed.
Unstable solutions have the exponential growth rate of σ ≡ kci.

We can see immediately from the Taylor-Goldstein equation that there is a singularity
when U = c. However, when we confine our attention to instances where the solutions
are unstable, then the singularity is eliminated since U is always real. Nonetheless, the
critical layer height, zc, where U(zc) = cr, is an important location for the dynamics of
unstable flows for small values of ci. In these cases, a large response is seen in the region
surrounding zc, which is referred to as the critical layer.

In the wave interaction theory it is more useful to express the governing (TG) equation in
terms of three fundamental fields: the perturbation vorticity, q, the vertical displacement
of material lines (horizontal in an undisturbed background state), η, and w. This can be
done through the linearised kinematic condition,

Dη̃

Dt
= w̃ ⇒ cη = Uη +

i

k
w, (2)

the vorticity equation,

Dq̃

Dt
= −U ′′w̃ +N2 ∂η̃

∂x
⇒ cq = Uq +N2η +

i

k
U ′′w, (3)

where the tilde quantities refer to the variables before normal modes are assumed (i.e.,
w̃(x, z, t) = Re{w(z)eik(x−ct)}), and the primes indicate differentiation with respect to the
vertical coordinate z. Finally, the vertical velocity and the vorticity are related by the
definition q ≡ (i/k)(w′′ − k2w), which allows us to invert q to find w using the following
inversion formula,

w(z) =

∫
D

G(z, s)q(s)ds. (4)
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Here D is the domain, which we will take to be unbounded, and G(z, s) = (i/2)e−k|z−s|

is the Green’s function for D. It is important to note that equations (2 – 4) describe
all the physics of the Taylor-Goldstein equation, and can be combined mathematically
to produce it. We will therefore, frame our investigation of the unstable critical layer in
terms of these three fields, w, q, and η.

2 A view inside the critical layer

In order to arrive at an interfacial description of the critical layer, we must first derive the
structure of its η, q, and w fields. This can be done with a simple analytical argument,
and approximation. What is essential is to realise that η and q are both rapidly varying
across the critical layer, while w is slowly varying. This can be seen directly from solutions
to the Taylor-Goldstein equation, or from the following argument. Suppose that we have
an infinitely rapid variation of vorticity located at the origin, i.e., q = δ(z). From (4),
we can easily calculate the response of the vertical velocity field to this q distribution as
w(z) ∝ e−k|z|. This shows that w varies over a length scale of order k−1, while q and η
have no such restriction. It should be noted however, that in reality there will be either
molecular or turbulent diffusion acting to smooth any sufficiently rapid variation of q.

Given this knowledge we can now look in detail at the structure of the critical layer. This
is done by expanding about zc in a Taylor series to get U − c ≈ −ici + U ′c(z − zc), and
w ≈ wc, where the subscript denotes quantities evaluated at zc, and substituting in to the
kinematic condition (2), giving

η(z) ≈ −iwc

kU ′c(z − zc)− iσ
. (5)

This displacement structure within the critical layer is plotted in figure 1. In the figure,
we have non-dimensionalised by the thickness length scale of the critical layer δc (to be
defined shortly), and the maximum value of η of wc/σ. It can be seen that the maximum
amplitude of η is at zc, with a decay away from this level that occurs over the length scale
δc. In addition, there is a phase change of π that occurs across the critical layer. The
physical reason for this phase change is due to the relative importance of two different
terms in setting the value of η. Far outside the critical layer we have advection by the
mean flow dominating the denominator of (5), whereas close to zc it is dominated by
unsteady growth. The ratio of these two terms (advection and growth) defines the critical
layer width, δc ≡ σ/k|U ′c|, over which the phase change occurs. The reason for the phase
change is that the advection changes sign across zc, with the vertical velocity and the
displacement in phase directly at zc (since there is no advection there).

Once the displacement field is obtained, it is a simple matter to find the vorticity. For the
sake of simplicity, here we will assume that there is no density stratification within the
critical layer, so that we can use the simple relation of q = −U ′′η. This shows that the
vorticity field is simply a scaled displacement field as shown in figure 1, where we assume
that U ′′ is slowly varying within the critical layer.

3 The critical layer as interface

The wave interaction theory of shear instability models the interaction of discrete interfa-
cial waves to explain and understand the mathematical results of linear stability analysis.
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Figure 1: Displacement structure of the unstable critical layer. The vertical axis has been non-
dimensionalised by the thickness of the critical layer, δc. The vorticity perturbation is also represented
by the same structure in the case of a homogeneous fluid.

The waves (usually of the vorticity/counter-propagating Rossby or internal gravity type)
are represented by different types of vortex sheets, with the strength of the sheet usually
related to the displacement in some way. They interact through the influence of their
vertical velocity on the displacement of the interface which can produce growth or decay
of the perturbations, or changes in the phase speed (see Carpenter et al., 2013, for a
review). We now seek to develop the same interfacial representation of the critical layer.
Given the distribution of q found in the last section, we can use the inversion formula
in (4) to find the w field that is induced by the critical layer. However, since we are
interested in a local description of the critical layer, we do not integrate over the entire
domain, but only over a region around the critical layer that is small compared to k−1,
but still large compared to δc. This reduces the integral to an equivalent vortex sheet
representation with a vortex sheet strength of

Qc =

∫
CL

q(z)dz = −2πβcwc and w(z) = Qce
−k|z−zc|, (6)

where we have used βc ≡ U ′′c /2kU
′
c. This allows us to model the critical layer as another

type of (vortex sheet) interface, and incorporate it in the wave interaction theory. An
important difference is that the sheet strength is proportional to the vertical velocity
incident on it, rather than on the displacement of the interface.

4 A simple wave interaction model for the critical layer

The results of the last section allow us to construct a simple model of the critical layer
dynamics that leads to an understanding of the growth of instabilities in which the critical
layer plays a role. As a particular example, we look at the instability of wind blowing
over water, which is thought to be responsible for the generation of oceanic wind-waves.
This wind-wave instability is the simplest geometry that we are aware of to apply the
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critical layer model. The reason for this is because of the very non-Boussinesq nature of
the system, with the density ratio between air and water of r ≡ ρa/ρw = O(10−3). This
has the effect of producing an instability with small growth rate (σ = O(r)) and a critical
layer height that can be well approximated by U(zc) ≈ c0, where c0 = (g/k)1/2 is the deep
water gravity wave speed.

z

z
c

and sheet strength

CL displacement CL induced

vertical velocity

x

displacement
Surface Surface wave induced

vertical velocity

Figure 2: Displacement structure of the unstable critical layer. The vertical axis has been non-
dimensionalised by the thickness of the critical layer, δc. The vorticity perturbation is also represented
by the same structure in the case of a homogeneous fluid.

Choosing the simplest configuration possible, we neglect all vorticity contributions other
than the density interface (located at the water surface, z = 0) and at the critical layer.
The interaction of the two interfaces can then be quantified. We write the vertical velocity
as the sum of the two interfacial components

w(z) = i/2(Qse
−k|z| +Qce

−k|z−zc|), (7)

where Qs is the vortex sheet strength of the surface wave. Once we substitute for Qc

from above, and solve for wc in terms of the arbitrary Qs, we can see that the structure
of the wave fields is as shown in the typical case of figure 2. This figure demonstrates
the essential instability mechanism of the wind-wave instability; the critical layer takes
the incoming vertical velocity of the surface wave and produces a concentrated (in a
layer of order δc in thickness) vorticity response that gives a vertical velocity component
downwards in the troughs of the surface wave and upwards at the crests. This is the
essence of the wave interaction interpretation of shear instability. It is also interesting to
note that the critical layer is responsible for slowing down the surface wave propagation
speed since the critical layer vertical velocity has a component that is downwards in the
downwards sloping nodes of the surface displacement. This effect is however, of order r
just as with the growth rate.

5 Summary

We have demonstrated a method of incorporating critical layers into the framework of the
wave interaction theory of stratified shear instabilities. This has allowed us to develop
a wave interaction view of the wind-wave instability that has been lacking up to this
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point. This interpretation of wind-wave growth follows the classic lines of Lighthill (1962),
but in a rather different fashion; we frame our physical interpretation solely in terms
of the three fundamental fields of vertical velocity, displacement, and vorticity, rather
than appealing to energy, momentum and vortex force. In addition, we view the critical
layer as a continuous entity with an internal structure that is well approximated by
a simple advection and growth balance of displacement. This physical explanation of
the wind-wave instability also brings together the physical description of the instability
mechanisms from stratified shear flows and wind-generated gravity waves into a single
wave interaction framework. Future work is currently focussed on extending these results
to density stratified critical layers.
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