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Abstract 

The nature of the quantities involved in arithmetic problems 

promotes semantic encodings that affect the strategy chosen 

to solve them (Gamo, Sander, & Richard, 2010). Such 

encoding effects might prevent positive transfer to problems 

sharing the same formal mathematical structure (Bassok, Wu, 

& Olseth, 1995). In this study with 5th and 6th graders, we 

investigated the conditions promoting positive and negative 

transfer in arithmetic problems that could be solved with two 

distinct strategies. We showed that basic training do not 

overcome the initial impact of semantic encodings, and we 

provided evidence that a poor semantic encoding of the 

training problems leads to transfer errors. This suggests the 

existence of ontological restrictions on the representation 

mechanisms involved in word arithmetic problem solving.  

Keywords: arithmetic problem solving; analogical transfer; 

semantic structures; semantic alignment; semantic encoding; 

strategy choice 

Introduction 

Semantic content in arithmetic problem solving 

It is well established that the semantic content of arithmetic 

word problems can influence their difficulty. For example, 

in one-step subtraction problems, when the question bears 

on the final result, change problems (e.g., “John had 8 

marbles, he loses 5 marbles during recess. How many 

marbles does John have now?”) are easier to solve than 

combine problems (e.g., “John and Tom have 8 marbles 

altogether, Tom has 5 marbles. How many marbles does 

John have?”) (Riley et al., 1983). In the case of conceptual 

rewording, providing semantic cues relevant to the solution 

facilitates the construction of an appropriate mental 

representation and makes the problem easier to solve 

(Vicente, Orrantia, & Verschaffel, 2007). Success depends 

on how the semantic relations evoked by the entities of the 

problem situation are aligned with the mathematical 

relations of the problem (Bassok, Chase, & Martin, 1998). 

Change in encoding and choice of strategy 

Any problem can be described in terms of its semantic 

dimensions (for example, a problem can describe static 

versus dynamic situations; it can involve entities changing 

in a discrete versus a continuous way); those, in turn, 

influence the representation of the problem as well as the 

solution strategies (De Corte et al., 1985; Bassok & Olseth, 

1995). Indeed, encoding can influence not only the 

difficulty of a problem but also the strategy employed to 

solve it (Brissiaud & Sander, 2010; Sander& Richard, 

2005). Interestingly, some particular encodings of a problem 

might be more efficient than others, in terms of number of 

steps necessary to reach the solution. This is the case for 

distributive word problems (Coquin-Viennot & Moreau, 

2003) or multiple-step arithmetic word problems (Thevenot 

& Oakhill, 2005). For example, Coquin-Viennot and 

Moreau (2003), gave elementary school children (grades 3 

and 5) problems that could be solved either by a distributed 

strategy (e.g., k × a + k × b), or by a factorized strategy 

(e.g., k × (a + b)); the presence of a word cueing for element 

grouping increased the frequency of the factorized strategy. 

Gamo, Sander & Richard (2010) showed that the type of 

quantities used in arithmetic problems can determine which 

of the following two relationships will be emphasized: (1) 

the complementation relation, priming the computation of 

the difference between a whole and one of its component 

parts, or (2) a matching relation, leading to the computation 

of the difference between homologous quantities. Consider, 

in this respect, the following two problems: (a) “In the 

Richard family, there are 5 persons. When the Richards go 

on vacation with the Roberts, they are 9 at the hotel. In the 

Dumas family, there are 3 fewer persons than in the Richard 

family. The Roberts go on vacation with the Dumas. How 

many will they be at the hotel?” and (b) “Antoine took 

painting courses at the art school for 8 years and stopped 

when he was 17 years old. Jean began at the same age as 

Antoine and took the course for two years less. At what age 

did Jean stop?” Both can be solved by the same two 

strategies. However, most participants would solve (a) with 

a complementation strategy (9 - 5 = 4; 5 - 3 = 2; 4 + 2 = 6) 
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and almost never use the matching strategy (9 - 3 = 6) 

whereas for (b) the majority of participant tend to use the 

matching strategy (17-2=15) rather than the 

complementation strategy (17-8= 9; 8-2= 6; 9+6=15) (Gamo 

et al., 2010).  

An important difference in the semantic content of the 

problems that could potentially account for this influence in 

strategy, is that (a) promotes cardinal encoding (number of 

elements of sets), which would imply that to reach the total 

number of persons, the number of people in each of the 

component families should be known, and so these 

quantities are calculated first. By contrast, (b) promotes 

ordinal encoding (ordered units on a one-dimensional line), 

which implies equivalence of course duration difference and 

age difference. Therefore the matching strategy is already 

implied in the encoding step in (b); this is not the case in (a), 

where using the matching strategy would require an extra 

recoding step (Gamo et al., 2010).  

Overall, (a) and (b) can be said to parallel two kinds of 

semantic alignment as the semantic relations evoked by the 

entities of the problem situation are aligned with two 

different kinds of mathematical relations (complementation 

or matching relations). Cardinal encoding emphasizes the 

complementation relations while ordinal encoding 

emphasizes the matching relations, and these are associated 

with different solving strategies: complementation strategy 

or matching strategy.  

The semantic determinants of transfer 

Transfer from source problems to target problems has been 

shown to be more effective when surface features – those 

that can be manipulated without modifying the solution or 

the solving procedures –, remain unchanged (e.g. Novick & 

Holyoak, 1991). Bassok and Olseth (1995) showed that 

surface features not only interfere with structural ones in 

transfer processes, but may also induce a semantic structure 

that could be congruent or incongruent with the 

mathematical one. Surface features appear to be 

instantiations of abstract semantic dimensions such as 

symmetry-asymmetry. Analogical transfer was shown to be 

influenced by these dimensions. For instance, permutation 

problems with symmetric sets of elements (e.g., doctors 

from Chicago and doctors from Minnesota are symmetric 

because they have equivalent semantic roles in the world) 

were not considered to be of the same type as permutation 

problems with asymmetric sets (e.g., prizes and students are 

asymmetric, because prizes may be given to students but not 

vice versa). As a consequence, performance on the test 

problems is influenced by the specific surface features 

encountered in the training set (Bassok, Wu, & Olseth, 

1995). 

Goal of the present study 

Most of the studies on transfer use problems in which only 

one strategy is successful. Unfortunately, failure to transfer 

is expressed only as failure to solve the problem, and there 

is no way to dissociate between the two, which may have 

different causes. Failure to solve the problem might result 

from a poor representation of the problem whereas failure to 

transfer might result from failure to match the source and 

the target appropriately despite the existence of an adequate 

representation of the problem. In order to allow us to 

distinguish between representational aspects and strategic 

ones, in the current study, we used arithmetic problems that 

could be correctly solved with the two distinct strategies 

presented above: the complementation strategy (3 steps) or 

the matching strategy (1 step). This allows us to dissociate 

positive transfer of the taught strategy from a successful 

resolution based on the other available strategy which also 

leads to a correct solution. The latter relies on another 

representation of the problem than the one that would lead 

to transfer of the strategy. 

In the present study, participants knew the elementary 

arithmetic operations and their mathematical meaning (i.e., 

they knew how to add or to subtract, and what it meant to 

look for the value of a part or a whole, or to compare 

quantities). The main goal was to study their ability to 

transfer a new solving strategy in various contexts. 

In contrast, most studies in the literature use quite 

complex problems (for example, permutation problems 

(Ross, 1989; Bassok & Olseth, 1995)). This renders the 

origin of transfer failures unclear. Did participants 

understand the meaning of the algorithms they were 

provided with? Is it possible that they “blindly” applied the 

algorithms from the source problem with very poor 

understanding of the underlying mathematical features? If 

they failed to understand the meaning of the algorithms, 

could they have mapped the training problem on the transfer 

items on the basis of perceived equivalence of roles (the 

reasoning 'This entity in the training problem has the same 

role as that entity in a transfer problem, so I should give 

them the same role in the algorithm')? Would they have 

behaved the same if their understanding of mathematic 

conceptual structure (Richland, Stigler & Holyoak, 2012) of 

the source was more elaborated? Such questions should be 

answered to exclude inappropriate encoding of the training 

situation as the main source of failure (Hofstader & Sander, 

2013, chapter 6 for an extensive discussion of this issue). 

We hypothesized that the transfer of the matching strategy 

to novel problems sharing the same formal mathematical 

structure should be influenced by the type of representation 

induced by the problems. We trained pupils on examples of 

the matching (1 step) strategy, and then asked them to use it 

in several types of problems, which varied with respect to 

their similarity to the example problems.  

We designed our experiment to study the transfer of the 

matching strategy to ordinal problems, where it is 

spontaneously used, and to cardinal problems, where the 

complementation strategy is spontaneously used. We chose 

to teach the matching strategy rather than the 

complementation strategy, because it is more efficient as it 

involves a single step. 

 

819



Table 1: Presentation of the versions of the problems.  

 

 Cardinal quantities Ordinal quantities 
Common to all 

problems 

A bag of potatoes weighs 5 kilograms. It is weighed 

with a pumpkin. The weighing scale indicates a total 

of 11 kilograms. The same pumpkin is weighed with 

a bag of carrots. 

Sophie’s travel lasts for 5 hours. 

Her trip happens during the day. 

When she arrives, the clock indicates it’s 11a.m. 

Fred leaves at the same time as Sophie did. 

V0: identical to the 

source 

The weighing scale indicates 2 kilograms less than 

before. How much does the bag of carrots weigh? 

He arrives 2 hours earlier than she does. How 

long does Fred’s travel last? 

V1: inverted operands 

(question bearing on a 

whole instead of a part) 

The bag of carrots weighs 2 kilograms less than the 

bag of potatoes. What is the weight indicated by the 

weighing scale? 

His is 2 hours shorter than Sophie’s. At what 

time does Fred arrive? 

V2: inverted operator 

(addition instead of 

subtraction) 

The weighing scale previously indicated 2 kilograms 

less than it does now. How much does the bag of 

carrots weigh? 

Sophie arrives 2 hours earlier than Fred does. 

How long does Fred’s travel last? 

V3: inverted operator 

and inverted operands 

The bag of potatoes weighs 2 kilograms less than the 

bag of carrots. What is the weight indicated by the 

weighing scale? 

Sophie’s travel is 2 hours shorter than Fred’s. 

At what time does Fred arrive? 

Presentation of the problems 

All of the problems had the same formal mathematical 

structure as the ones used in Gamo et al. (2010), presented 

in Figure 1.  

 
 

Figure 1: Formal mathematical structure of the problems. 

 

In the previously mentioned examples (a) and (b), Part 1 

corresponded to the Richards (a) and the duration of 

Antoine's course (b), Part 2 corresponded to the Roberts (a) 

and the age of the two children starting the course (b), Part 3 

corresponded to the Dumas (a) and the duration of Jean's 

course (b), Whole 1 corresponded to the Richards and the 

Roberts (a) and the age of Antoine after the course (b), and  

Whole 2 corresponded to the Roberts and the Dumas (a) and 

the age of Jean after the course (b), . 

We introduced variations between problems to slightly 

modify the solving algorithm (through changing the 

operator, the operands, or both) without changing the 

mathematical structure of the problems (see Table 1).  

Hypotheses  

Firstly, we hypothesized robustness of encoding effects:  it 

should be more difficult to transfer the matching strategy to 

cardinal problems than to ordinal problems. With respect to 

the variations of the required algorithm (Table 1), our 

hypotheses were:  

- (H1): Even if a literal application of the example 

algorithm leads to success, robust encoding effects should 

be observed and thus the matching strategy should be 

transferred less often when the quantities promote cardinal 

encoding than when they promote ordinal encoding. 

- (H2): When the problem test varies with respect to the 

target of the question (H2a), or the sign of the difference 

(H2b) or both (H2c), participants should show more 

aptitude to use the matching strategy in the case of 

congruent (ordinal) encoding than incongruent one 

(cardinal encoding). 

Secondly, we investigated the possible causes of negative 

transfer. We hypothesized that failure to solve the modified 

problems could mainly be explained by poor semantic 

encoding of the examples, manifested in a non-semantic use 

of the taught algorithm; namely, a literal transposition of 

this algorithm, such as the smaller value being subtracted 

from the lower one. We thus expected that when the test 

problems differed from the training problems regarding the 

target of the question (H3a), the sign of the difference (H3b) 

or both (H3c), we would observe some errors of participants 

failing to adjust the algorithm accordingly, indicating that 

these participants did not properly encode the situation, and 

were not able to extract the conceptual structures from the 

training problems.  

Methods 

Participants 

Participants were 110 children (M=11.1 years, SD=7.8 

months, from 9.5 to 13.3 years, 5th and 6th grades) attending 

school in the Paris area. They were recruited from 7 

different classes in 6 different schools, and came from 

various socioeconomic backgrounds. They participated 

voluntarily and were not aware of the hypotheses being 

tested. 

Design 

Each child was presented with a set of problems consisting 

of 2 training problems and 8 test problems. All of the 

training problems involved an ordinal quantity; they were 

duration problems emphasizing the ordinal coding as 

described by Gamo et al. (2010). Three bimodal factors 

varied across problems: First, the nature of the quantity 
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(cardinal versus ordinal). There were 4 types of quantity: 

two cardinal (price and weight); and two ordinal (distance 

and temperature) quantities. Second, the target of the 

question (part versus whole): there were four problems in 

which the difference between the two wholes was provided 

and participants had to find the unknown part; in the other 

four problems the difference between the two parts was 

given, and subjects had to find the unknown whole. Third, 

the sign of the difference (+/-): the second of the two 

elements could either be larger or smaller than the first one, 

this requiring subjects to perform a subtraction or an 

addition when using a matching strategy. 

Materials 

The problems were printed in booklets. The front page 

displayed the two training problems and provided the 

matching strategy solution for each of them. The following 

instructions were given on the upper-side of the page: “You 

will find an arithmetic problem on every page of this 

booklet. We ask you to take the time to thoroughly read the 

problems: there is no time constraint. Please write down 

every operation you do in order to reach a solution. Just 

below, you will find two training problems, followed by 

their respective solutions. Every other problem in this 

booklet can be solved using the same principle, with only 

one operation.” 

Each test problem page was divided in three parts: the 

problem itself was presented on the upper-left side of the 

page, the response area was on the upper-right side of the 

page, and an area that could be used as a draft was on the 

bottom of every test page. These test pages were always 

presented on the right side of the booklets, while the two 

training problems with their solution with the matching 

strategy were displayed on each left page, in sight during 

the test phase as a reminder. 

Procedure 

The children were given the booklets and asked to read 

carefully the front page before starting to solve the 

problems. After they had answered each of the 8 problems1, 

their booklets were collected. They were told to take all the 

time they needed; no participant exceeded 1 hour. 

Coding and scoring 

A problem was considered as correctly solved when the 

exact result was found and accompanied by the appropriate 

calculations. The successful strategies were categorized 

(correct matching, correct complementation) and so were 

the incorrect ones (matching with inverted operator, 

matching with inverted operands, matching with inverted 

operator and inverted operands, complementation with 

error, irrelevant, skipped).  

                                                           
1 Due to a reprography issue, some booklets contained only 7 

problems instead of 8, and thus some data were missing for the t-

test. This is the reason why the number of degrees of freedom isn’t 

always the same between our different analyses. 

For the successes, we used a success score designed to 

measure the distribution of matching strategies among the 

correct strategies: each problem successfully solved was 

given a score of 1 if solved using the matching strategy and 

0 otherwise.  

For the errors, we designed 3 error scores: a 'matching 

with inverted operator' score, a 'matching with inverted 

operands' score, and a 'matching with inverted operator and 

inverted operands' score. For each of these scores, we 

attributed 1 for every congruent error and 0 otherwise. 

 

 
 

Figure 2: Proportions of correct solutions by matching 

strategy and complementation strategy, as a function of the 

similarity between the training problems and the test- 

problems; p-values refer to comparisons between cardinal 

and ordinal problems in terms of the proportion of correct 

matching strategies. 

 

Results 

Conditions of positive transfer 

We first analyzed, for each problem, the proportion of 

matching strategies among all the correct trials (see fig. 2). 

In order to test our first hypothesis (H1), we examined the 

frequency of use of the matching strategy on test problems 

identical to the training problems with respect to their 

mathematical form (same operator, same operands). 

Consistent with H1, participants successfully applied the 

matching strategy in problems eliciting an ordinal 

representation (success score M=0.893, SD=0.793) more 
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often than in problems eliciting a cardinal representation 

(success score M=0.500, SD=0.805); this difference was 

significant (t(88)=3.667, p<0.001, paired t-test). 

Similarly, we studied the results obtained for problems 

using the same operands as the training problems, but 

requiring a different operator (the sign of the difference 

having been changed). Consistent with H2b, success scores 

for cardinal trials (M=0.389, SD=0.905) were significantly 

lower (t(88)=2.673, p<0.01, paired t-test) than those for 

ordinal trials (M=0.852, SD=1.451).  

Finally, we studied the use of the matching strategy when 

both the operands and the operator of the problems differed 

from those of the training problems. Again we found a 

significant difference (t(66)=2.453, p<0.05, paired t-test) 

between the success scores of ordinal problems (M=0.625, 

SD=1.503) and those of cardinal problems (M=0.118, 

SD=0.676). Problems inducing an ordinal representation 

therefore seemed to facilitate the use of the strategy learnt, 

even when it required adapting two different factors in order 

to be used, in conformity with H2c.  

Overall, semantic encoding of the problems had a strong 

impact on transfer. Indeed, it is so robust that even with the 

example problem repeatedly shown to the participants with 

a solving strategy in one operation that leads to the solution, 

and even when the instructions explicitly state that the same 

solution in one operation applied to all the problems, 

participants tended to use the longer three-step strategy 

when the quantities involved promoted a cardinal encoding. 

In contrast, more of them used the one-step strategy when 

the quantities involved promoted an ordinal encoding. This 

holds true both when a literal application of the taught 

algorithm is sufficient (H1) and when this taught algorithm 

has to be adapted (H2). 

Analysis of negative transfer 

The second part of our analysis involved the distribution of 

errors across the experimental conditions. We created the 

following typology for the strategies used by participants: 

- (i) correct operator with the wrong operands (calculating 

the whole when the question is about the part, or vice 

versa), classified as “inverted operands only”; 

- (ii) correct operands with the wrong operator (addition 

instead of subtraction or vice versa), classified as “inverted 

operator only”; 

- (iii) wrong operator and wrong operands, classified as 

“inverted operator and inverted operands”. 

- (iv) any other errors (use of multiplication or division, 

use of more than one operation leading to an incorrect 

result, absence of use of the difference value, use of a 

complementation strategy leading to a failure), classified as 

“other errors”. 

Our hypotheses did not predict a difference in the specific 

type of errors occurring in ordinal and cardinal problems. 

Indeed, there was no difference between these two groups. 

In the following analyses, problems were only divided 

according to problem type (V0, V1, V2 and V3) rather than 

cardinal and ordinal quantities. 

We first analyzed how “inverted operands only” errors 

were distributed across the different types of problems 

(Figure 3, left). We compared test problems which were 

identical to the training problems (same sign of the operator 

and same operands) with problems in which only the choice 

of the operands differed from the training problem; the error 

scores for problems with inverted operands (M=0.629, 

SD=0.959) was significantly higher (t(45)=2.669, p<0.05, 

paired t-test) than the error scores for problems identical to 

the training problems (M=0.229, SD=0.605), consistent with 

H3a.  

Regarding ‘inverted operator’ errors (Figure 3, middle), 

we compared the test trials which were identical to the 

training examples with the test problems which differed in 

terms of the operator (i.e., requiring addition rather than 

subtraction). Problems with an inverted operator (M=0.777, 

SD=1.174) had a significantly higher ‘inverted operator 

only’ error' rate (t(45)=3.439, p<0.01, paired t-test) than 

problems with no such change from the training ones 

(M=0.112, SD=0.540), consistent with H3b. 

 

 
 

Figure 3: Distribution of the different type of errors across 

the problems.  

 

Finally, we compared the proportion of ‘inverted 

operands and inverted operator’ errors (Figure 3, right) in 

problems homologous to the training problem and in 

problems with inverted operands and inverted operator. The 

no-change condition showed significantly less errors of this 

category (M=0.107, SD=0.724) than for problems with both 

an inverted operator and inverted operands (M=0.760, 

SD=1.274), (t(45)=2.911, p<0.001, paired t-test), supporting 

H3c. 

Overall, these results suggest that participants who failed 

to encode the problems in an appropriate manner (either 

through a cardinal or an ordinal encoding) and failed to 

solve the problem were influenced by the algorithm shown, 
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but applied it in a literal way. Indeed, these errors appear to 

have resulted from a literal transposition of the calculations 

provided in the example problem. 

Discussion 

In agreement with our hypotheses, when the quantities in 

the problems promoted cardinal encoding, a large 

proportion of participants failed to apply the algorithm they 

were taught to novel examples. This was true when they 

were sharing all the characteristics of the training problems 

and also when they differed in terms of the operands and/or 

the operator. This suggests that the representations induced 

by “what we know about the world” were not abolished by 

the explicit teaching of the matching strategy and the 

explicit instruction to use it. The fact that this effect 

persisted even when the use of the matching strategy was 

made less obvious by the modifications introduced between 

the training and the test highlights the importance of this 

effect. 

Recent work (e.g. DeWolf, Bassok, & Holyoak, 2015; 

Rapp, Bassok, DeWolf, & Holyoak, 2015) emphasizes the 

generality of the phenomenon of semantic alignment and the 

underlying educational perspectives. 

In this work we have expanded the findings of Gamo et 

al. (2010) that the initial spontaneous encoding constrains 

the spontaneous strategy. We have shown that encoding 

influences transfer even in situations in which the solution 

requires low technical knowledge (additions and 

subtractions) and relies conceptually on simple 

mathematical relations (comparison or looking for a part or 

a whole). 

This phenomenon highlights the importance of 

overcoming the initial encoding in some cases, even when 

this initial encoding is relevant from a mathematical point of 

view: cardinal encoding and the associated 

complementation strategy were relevant for solving the 

problems in this study as they allowed participants to reach 

for the right solution. However, these have to be overcome 

in order to successfully apply the matching strategy. A 

general encoding such as the one symbolized in Figure 1 is 

far from spontaneous. This is a promising and challenging 

route towards the development of more general methods for 

semantic recoding which would remain compatible with the 

initial encoding but embrace a larger number of situations 

and be more mathematically apt. 
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