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Neuronal cell types are classically defined by their molecular properties, anatomy and
functions. Although recent advancesin single-cell genomics have led to
high-resolution molecular characterization of cell type diversity in the brain’,
neuronal cell types are often studied out of the context of their anatomical properties.
Toimprove our understanding of the relationship between molecular and anatomical
features that define cortical neurons, here we combined retrograde labelling with
single-nucleus DNA methylation sequencing to link neural epigenomic properties to
projections. We examined 11,827 single neocortical neurons from 63 cortico-cortical

and cortico-subcortical long-distance projections. Our results showed unique
epigenetic signatures of projection neurons that correspond to their laminar and
regional location and projection patterns. On the basis of their epigenomes,
intra-telencephalic cells that project to different cortical targets could be further
distinguished, and some layer 5 neurons that project to extra-telencephalic targets
(L5ET) formed separate clusters that aligned with their axonal projections. Such
separation varied between cortical areas, which suggests that there are area-specific
differencesin L5 ET subtypes, which were further validated by anatomical studies.
Notably, a population of cortico-cortical projection neurons clustered with LSET
rather thanintra-telencephalic neurons, which suggests that a population of LSET
cortical neurons projects to both targets. We verified the existence of these neurons
by dual retrograde labelling and anterograde tracing of cortico-cortical projection
neurons, which revealed axon terminals in extra-telencephalic targets including the
thalamus, superior colliculus and pons. These findings highlight the power of
single-cell epigenomic approaches to connect the molecular properties of neurons
with their anatomical and projection properties.

The mammalian brain is a complex system that consists of several
types of neuron with diverse morphology, physiology, connections,
gene expression and epigenetic modifications. Identifying brain cell
types and how they interact is crucial to understanding the neural
mechanisms that underlie brain function. Single-cell technologies
deconvolve mammalian brains into molecularly defined cell clusters
that correspond to putative neuron types'. However, the correspond-
ence between molecular cell types and neuronal populations defined
by connectivity are largely unknown.

Previous single-cell analyses have revealed transcriptomic clusters
and linked themto neurontypes with different projection patternsina
few particular brainregions?>. For the cerebral cortex, the most promi-
nent molecular distinction related to projection targets is the separa-
tion of cortical neuronsinto distinct and apparently non-overlapping
intra-telencephalic (IT) and LS ET (also known as pyramidal tract)
groups. In some cases, L5 ET cells have been further divided on the
basis of both gene expression and corresponding axon projections?.
Although the separation of L5IT and ET neurons seems to be conserved
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Fig.1| The epigenomiclandscape of cortical projection neurons.

a, Schematics of the epi-retro-seq workflow. SC, superior colliculus; MY,
medulla; STR, striatum; TH, thalamus. All brain atlasimages were created
based on Wang etal.”* and ©2017 Allen Institute for Brain Science. Allen

Brain Reference Atlas. Available from: http://atlas.brain-map.org.

b-d, Two-dimensional -SNE 0f 11,827 cortical neuron nuclei on the basis of
mCH levelsin100-kb genomicbins, coloured by subclass (b), the source of
neurons (c), or their projection target (d). Inh, inhibitory; NP, near-projecting;

across cortical areas® and species’, a systematic analysis of the relation-
ships betweenalarger set of projection targets and molecularidentities
across several cortical areas has not been conducted. To what extent
cortical projection neuron types canbe further distinguished or divided
byincorporating anatomical information with molecular analyses, and
whether these cell types and correspondences are conserved across
cortical areas, is unclear.

Epi-retro-seq of 63 cortical projections

To address these questions, we developed epi-retro-seq, which
applies single-nucleus methylome sequencing (snmC-seq)® to neu-
rons dissected from cortical source regions that were labelled on the
basis of their long-distance projections to specific cortical and sub-
cortical targets (Fig. 1a). In epi-retro-seq, the retrograde viral tracer
rAAV2-retro-Cre’isinjected in the target regioninan INTACT mouse',
turning on Cre-dependent nuclear expression of green fluorescent
protein (GFP) in neurons that project to the injected target, throughout
the mouse brain. Source regions of interest were manually dissected
(Methods), and GFP*NeuN* nuclei (the GFP-labelled projection neu-
rons) were isolated as single nuclei using fluorescence-activated nuclei
sorting (FANS) and assayed using snmC-seq28. snmC-seq enables the
identification of potential regulatory elements and a prediction of
gene expression in the same neurons'® 2, In addition, methylation
at non-CG (CH; in which ‘H’ denotes A, T or C) dinucleotides (mCH)
accumulates, and methylationat CG dinucleotides (mCG) reconfigures
during the development of cortical synapses, which suggests possible
links between epigenetics and connectivity™.

We performed epi-retro-seq to characterize projection neurons
from 8 mouse cortical areas (‘source’) that project to 10 cortical or

168 | Nature | Vol 598 | 7 October 2021

CLA, claustrum. e, Neighbour enrichment scores of cells categorized by
subclass (n=11,827), source (n=11,827), target (n=10,396) and replicate
(n=11,638).f, The distribution across cell subclasses of neurons that projected
toeachIT (left) or ET (right) target. g, AUROC of distinguishing between source
pairsortarget pairs computed for ITand ET neurons on the basis of gene body
mCH (n=73, 88,32 and 41; from left to right). For all box plots, centre line
denotes the median; box limits denote first and third quartiles; and whiskers
denotel.5xtheinterquartilerange.

subcortical regions (‘target’), covering 26 cortico-cortical (CC) projec-
tionsand 37 cortico-subcortical projections (Supplementary Table1).
Theteninjected target regionsinclude four cortical areas (the primary
motor cortex (MOp), primary somatosensory cortex (SSp), anterior
cingulate area (ACA), and primary visual cortex (VISp)), and six major
subcortical structures (the striatum, thalamus, superior colliculus,
ventraltegmental area (VTA) and substantianigra, pons and medulla).
Theeight dissected source cortical regions are MOp, SSp, ACA, agranu-
larinsular cortex (Al), retrosplenial area (RSP), auditory cortex (AUD),
posterior parietal cortex (PTLp) and visual cortex (VIS) (Extended
DataFig.1).

Methylome of cortical projection neurons

After quality control procedures (Methods), we obtained high-quality
methylomes for 11,827 single cortical projection neurons (Extended
DataFig.2). The mCH levelin each single nucleus was computed across
the genome using 100-kb genomic bins and used to perform unsu-
pervised clustering of the projection neurons. Overall, the cortical
projection neuron clusters were annotated into ten subclasses (Fig. 1b)
on the basis of reduced levels of gene body mCH—a proxy for gene
expression—of known marker genes (Methods). Results from cluster
analyses and annotation were used to conduct a further quality check to
identify neurons with projection targets that could not be confidently
assigned owing to potential artefacts (Methods). We identified 1,431
neurons from experiments inwhich the projection target could notbe
confidently assigned (Extended Data Fig. 2i), leaving 10,396 neurons
with confident projection target assignments. All subsequent analyses
thatincorporate projection target information arerestricted to these
neurons.
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Fig.2|Epigenetic differencesbetween IT neurons projecting to different
targets. a, AUROC to distinguish cortical neurons projecting to one cortical
target versus another.Dataaremeants.e.m.(n=6,5,4, 6,6 and 5sources; left
toright).b-d, --SNE of AUD neuronsin thelT subclasses (n=737) coloured by
projections (b, ¢) and subclasses (d). e, AUROC to distinguish AUD neurons
projectingto eachtarget pair.f,g, The AUROC for comparisons between MOp
and ACA-projecting neurons (f), and between SSp and ACA-projecting

Within each cell subclass, excitatory but not inhibitory neurons
from different cortical regions were further separated from each
other (Fig. 1c), which demonstrates the distinct spatial DNA meth-
ylation patterns in cortical projection neurons. The cell subclasses
and spatial patternsin epi-retro-seq were in agreement with those in
snmC-seq data fromthe same cortical regions without enrichment of
specific projections (Extended Data Fig. 3a). Neurons projecting to
different target regions were more similar within each subclass than
neurons from different source regions (Fig. 1d), indicating that they
shared amore similar DNA methylation landscape. Neighbour enrich-
ment scores were used to quantify the variations of DNA methylation
that originated from different cell types, cortical spatial regions
and projection targets (Methods). Neurons from the same subclass
occupied highly similar regions in the dimension reduction space
(neighbour enrichment score was close to 1) (Fig. 1e). Scores were
also high for comparisons across neurons from the same source,
followed by projections to the same target. Scores were near chance
for biological replicates (neighbour enrichment score of 0.5), which
indicates that the mCH profiles of different replicates are highly
consistent (Fig. 1e).

Although neurons projecting to different target regions were not
completely separated on the ¢-distributed stochastic neighbour
embedding (¢-SNE), we observed an explicit enrichment of CC and
cortico-striatal projection neuronsinIT subclasses (L2/3,L4,L5IT,L6
IT and claustrum), separated from neurons that project to the remain-
ing structures outside the telencephalon, which were categorized as
L5 ET neurons (Fig. 1f, Extended Data Fig. 3). The enrichment is highly
consistentacross source regions (Extended DataFig. 3b). As expected,
many corticothalamic projection neurons were also foundinthe L6 cor-
ticothalamic subclass (Fig. 1f, Extended Data Fig. 3). These enrichment

neurons (g) fromdifferent sources. h, i, Heat maps of AUROC from prediction
models that were trained on one source (row) and tested on another source
(column) to distinguish between neurons projecting to MOp and ACA (h), or
between neurons projectingto SSp and ACA (i).j, k, Heat maps of AUROC from
prediction models that were trained and tested on neurons from each cortical
layer (column) ineach source (row), to distinguishbetween ACA and
VISp-projecting neurons (j), or between SSp and ACA-projecting neurons (k).

patterns are consistent with our knowledge about laminar enrichment
of the projection neurons, which reflects the high quality of our retro-
gradely labelled single-nuclei methylation dataset.

To quantify methylation differences between neurons from different
source regions or projecting to different target regions further, we used
theareaunder the receiver operating characteristic curve (AUROC) of
linear models trained to distinguish source pairs or target pairs on the
basis of mCH (Methods). We found that most neurons dissected from
different source regions could be well separated (Fig. 1g). Most of the
neurons projecting to different target regions were also separable by
mCH in this supervised setting (Fig. 1g), although they were closely
mixed inthe unsupervised embeddings (Fig. 1d). These findings indi-
cate that nearly all of the different types of projection neuron that were
profiled have differences in their epigenomes. Further analyses of these
quantitative differences, described below, allowed the assessment of
possible organizational principles that might existin the relationships
between DNA methylation, projections targets and sources, including
both areal and laminar sources.

Predicting IT neuron targets withmCH

In total, 42.6% of the cortical projection neurons profiled in our
epi-retro-seq datawereidentified asIT neurons, and annotated accord-
ing to their presumptive cortical layers (Fig. 1b). We investigated the
contribution of the cortical area in which cell bodies were located
versus their cortical projection targets, to the variation of their DNA
methylation profiles. We focused on 26 CC projections from 8 corti-
cal areas to 4 different cortical targets. All possible pairs of 4 cortical
targets were assessed for each of the 8 sources to generate 32 AUROC
scores, organized according to projectiontarget pairs (Fig. 2a, Extended
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Fig.3|Epigeneticdiversity of LS ET neurons. a, b, Fifteen clustersof LSET
neurons (n=4,176) shown on the UMAP plot, coloured by cluster (a), or the
source of neurons (b). ¢, Dendrogram shows the correlations between mCH
profiles of LSET neurons fromdifferentsources.d, Genebody mCH levelsin
each clusterof 2,675 CH-DMGs that were identified in pairwise comparisons
betweenL5ET clusters. e, Atotal of 341,748 CG-DMRs were identified across
thel5LSET clusters. Left, the mCG levels at CG-DMRs and their 2.5-kb flanking

DataFig.4a-d). Among the six projection target pairs examined, neu-
rons projecting to the MOp versus ACA were the most distinguish-
able (average AUROC value of 0.922), similar to neurons projecting to
the SSp versus VISp and the ACA versus VISp (average AUROC values
of 0.915 and 0.914, respectively), whereas neurons that project to the
SSp versus ACA and to the MOp versus VISp were the least separable
(average AUROC values of 0.837 and 0.831, respectively) (Fig. 2a). In
addition, for each target pair, the performance of the predictive model
varied among neurons from different source cortical regions (Fig. 2a,
Extended Data Fig. 4a-d).

These analyses suggest that epigenetic differences between CC
projection neurons depend on a combination of both the specific
targets to which neurons project and the sources where the neurons
reside. For example, among AUD IT neurons, AUD-SSp (projecting
from AUD to SSp) neurons were better separated from AUD-VISp neu-
rons (AUROC value of 0.974) (Fig. 2b, e) than from AUD-ACA neurons
(AUROC value of 0.766) (Fig. 2c, e). The distinctions between these
projections did not arise from different distributions across layers
(Fig. 2d). This demonstrates that the level of epigenetic differences
between AUDIT neurons varies depending on their projection targets.
Similarly, when comparing neurons from different sources projecting
tothe sametarget pair, we observed different levels of distinguishability
in our models. For example, although neurons projecting to the MOp
versus neurons projecting to the ACA were more distinguishable (that
is, had higher AUROC scores) than neurons projecting to the SSp ver-
sus those projecting to the ACA, we observed variation of the AUROC
scores across different source regions for both target pairs (Fig. 2f, g).
To further examine whether the same epigenetic differences that
distinguished target pairs for one source might be conserved across
sources, we trained models to predict targets using neurons fromone
source and then tested it on another source (Methods). Notably, these
cross-source models can distinguish target pairs inmany cases, whereas
the performance of models trained on any particular region varied
in their ability to predict projections from other regions (Fig. 2h, i,
Extended DataFig.4e-h). For example, the model trained on AUD per-
formed better in distinguishing VIS-MOp versus VIS-ACA neurons
than the models trained on RSP or PTLp (Fig. 2h). This suggests that
AUD and VIS neurons are more similar to each other in the molecular
markers that distinguish neurons projecting to MOp versus ACA than
other cortical areas. These results indicate that cortical regions might

170 | Nature | Vol 598 | 7 October 2021

012345678 91011121314 10k 100k

Transcription factors

_
-3 3 0515 25 35
Norm. mCH Norm. PR score

genomicregionsineach cluster were visualized in the heat map. Right, the
numbers of CG-DMRs hypomethylatedin each cluster were plottedin the bar
chart. f, Examples of some predicted key regulator transcription factors. The
size of each dot represents the normalized PageRank (PR) score of the
transcription factor. The colour of the dot represents the gene body mCH of
thetranscription factorinthecorresponding L5ET cluster.

form different groups with shared correlations between molecular
markers and projection targets.

In addition, we assessed the level of distinguishability between
two cortical targets, both for neurons within the same layer and for
neurons in different layers (Fig. 2j, k, Extended Data Fig. 5a-c). By
training and testing the predictive models in each layer separately, we
typically observed higher distinguishability between ACA-projecting
and VISp-projecting neurons than between SSp-projecting
and ACA-projecting neurons (Fig. 2j, k). However, predictions for
SSp-projecting and ACA-projecting neurons were more variable, with
some sources being better than others for all layers (for example,
MOp versus PTLp) (Fig. 2k) and some layers being better than others,
even for the same source (for example, AUD and VIS) (Fig. 2k). We
further tested whether cross-layer-trained models could distinguish
the projection targets (Methods), and observed that the performance
was generally comparable to within-layer models (Extended Data
Fig.5d-f). Theseresults suggest that there may be shared epigenetic
signatures across layers that contribute to correlations with the pro-
jection targets.

Furthermore, weidentified differentially methylated genes (DMGs)
at CH sites (CH-DMGs) between different pairs of CC projection neu-
rons in each source region using hierarchical linear models. In total,
1,644 CH-DMGs were identified (Extended Data Fig. 5g, Supplemen-
tary Table 3),among which 1,497 (91.1% of CH-DMGs) were statistically
significantin only one source region. The fact that most CH-DMGs were
uniqueto onesource region suggests that different genes may partici-
pateindefining projections from different source regions. Gene ontol-
ogy (GO) enrichment analysis revealed that CH-DMGs were enriched for
genes that participate inintracellular transport and the regulation of
synapse structure (Supplementary Table 3), and might differ between
neurons with different projections. For example, Bsn is differentially
methylated between MOp-projecting and SSp-projecting neurons
in the AUD and VIS (Extended Data Fig. 5g). It encodes a presynaptic
cytomatrix scaffolding protein (bassoon) that is primarily expressed
in neurons, and is essential for the regulation of neurotransmitter
release. Scn2alencodes a voltage-dependent sodium channel protein
(SCN2A1) andis differentially methylated between ACA-projecting and
VISp-projecting neurons in the Aland PTLp (Extended Data Fig. 5g).
This channel regulates neuronal excitability, and variants are associ-
ated with autism and seizure disorders'.
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Epigenetically distinct L5 ET subtypes

L5 ET neurons are the most abundant cell population in our datasets
(4,176 (35.3%) single neurons), and are 6.3-fold enriched in epi-retro-seq
compared to the total number of neurons observed in unbiased
snmC-seq2 profiling. This provides us with a unique opportunity to
investigate subpopulations of L5 ET neurons more closely. L5 ET neu-
rons further segregatedinto15 clusters (Fig.3a). Much of the separation
between clusters was driven by the source location of the neurons, as
neurons from different sources were clearly separated on the UMAP
(Fig.3b), and each of the clusters consists of neurons mostly fromone
ortwo sources (Extended DataFig. 6a). The similarities between LSET
neurons from different sources (Fig. 3c) were not well explained by their
spatial proximity anterior-posteriorly or medial-laterally, but better
correlated with the anatomical and functional connectivity between
these regions. For example, MOp and SSp are components of the
somatic sensorimotor subnetwork, whereas AUD, VIS, ACA and PTLp
are components of the medial subnetwork that channels information
between sensory areas (that include VISp and AUD) and higher-order
association areas (thatinclude PTLp and ACA)".

To further explore the molecularidentity of these LS ET clusters, we
identified 2,675 CH-DMGs (Fig. 3d, Extended Data Fig. 6¢, Supplemen-
tary Table 4) and 341,748 CG-DMRs (Fig. 3e, Supplementary Table 5)
that were hypomethylated in the corresponding L5 ET clusters. GO
enrichment analysis revealed that these CH-DMGs were enriched in
genesinvolved in cell communication, neurogenesis, cellmorphogen-
esisand axonguidance (Supplementary Table 4). The average length of
CG-DMRs was 227 base pairs (bp), and 84.9% of the CG-DMRs were distal
elements that located more than 5 kb from the annotated transcrip-
tionstartsites. The level of mCH at gene bodiesis inversely correlated
with gene expression, whereas the level of mCG at gene regulatory
elements, such as promoters and enhancers, is inversely correlated
with their regulatory activities. These relationships allowed us to use
agene regulatory network-based method to integrate this informa-
tion and identify transcription factors that might function as key
regulatorsin each cluster (Methods, Fig. 3f, Extended Data Fig. 6d, e).
For example, the transcriptional activator Rora was scored as one of
thetop transcription factors and is hypo-CH-methylatedin clusters1,
8and 13, and especiallyin cluster 8, indicating its potential expression.
Thebinding motif of RORA was also enriched in the CG-DMRs of these
same clusters, which suggests that RORA may bind to cis-regulatory

elements that in turn regulate a set of predicted downstream target
genes. Many of these target genes are related to brain functions and
are also hypomethylated in cluster 8 (Extended Data Fig. 6f).

L5 ET subtypes project differently

Neurons from the same sources (except Al and RSP) distributed
into more than one cluster (Fig. 3a, b, Extended Data Fig. 6b), which
prompted us to ask whether some of the differences between LSET
clusters also correspond to the different projection targets. To inves-
tigate this, we performed another iteration of cluster analysis using L5
ET celldatafromeach of the source regions separately, and identified
finer LS ET clusters within each source region (Extended Data Fig. 7a).

Among all comparisons between projection targets and clusters,
neurons projecting to the medulla were most distinct. SSp LS ET neu-
rons further segregated into seven clusters (Fig. 4a), among which
SSp-medullaneurons showed a clear enrichment in cluster O (false dis-
coveryrate (FDR) =3.69 x1072, Wald test) (Fig. 4b, ¢). Similarly, we identi-
fied seven clusters of MOp L5 ET neurons, and MOp-medullaneurons
were alsosignificantly enriched in one of the clusters (FDR=1.44 x1072,
Wald test) (Extended DataFig. 7c, d). Moreover, neurons projecting to
the medulla were robustly distinguished from other L5 ET neurons in
our prediction models for both MOp and SSp (average AUROC scores
0f 0.929 and 0.864, respectively) (Extended Data Fig. 8a). To investi-
gatewhich genes drive the observed epigenomic differences between
medulla-projecting L5 ET neurons and other LS ET neurons, we identi-
fied1,380 (293) CH-DMGs between MOp (SSp)-medullaL5ET neurons
and atleast one of the other ET projections (Fig.4d, e, Supplementary
Table 6). Among these, 180 CH-DMGs were identified in both MOp-
medullaand SSp-medullaneurons (examples highlighted inFig. 4d, e),
which suggests ageneral regulatory mechanismthat may be shared by
different cortical regions. Accordingly, models trained ineither MOp or
SSp to distinguish neurons projecting to the medulla usually performed
well when tested in the other region (Extended Data Fig. 8b). Similar
enrichment of medulla-projecting neuronsinsubpopulations of LSET
neurons has been reported in ALM using single-cell RNA sequencing
(scRNA-seq) oncells labelled by retrograde injections (retro-seq)®. To
compare these observations, we used gene body mCH as a proxy for
geneexpressiontointegrate our LSET epi-retro-seq datawiththe ALM
retro-seq data.Joint -SNE analysis showed that the medulla-projecting
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Fig.5|ALSET neurontype that projectstoboth ET and cortical targets.

a, b, UMAP embedding of ACA (a) or RSP (b) LSET neurons (n=1,1310r 516)
using mCH in100-kb bins, coloured by projection targets (ACA-VISp or RSP-
VISpinred,n=36or51) or clusters (inset). c, ACA-VISp neurons were enriched
in ACALSET cluster3and depleted from cluster 4. d, RSP-VISp neurons were
enrichedin RSP LSET cluster 0. Asterisksincanddindicate FDR<0.05.

e, lllustration of the anatomical experiment to validate the existence of the L5
ET+CCcelltype.f, VISp neurons at the AAV-retro-Cre injection site were

LSET neurons were enriched in the same cluster (Extended DataFig. 9).
The Slco2al marker gene of the ALM medulla-projecting cluster is
hypomethylated in MOp-medulla but not in SSp-medulla neurons
(Extended Data Fig. 9h). We identified Astn2 as a marker gene for the
medulla-projecting LS ET cluster in both the MOp and SSp (Extended
DataFig. 9i). ASTN2 mediates the recycling of neuronal cell adhesion
molecule ASTN1 in migrating neurons'®, and its deletion has been
associated with neurodevelopmental disorders?. This suggests that,
compared with other L5 ET neurons, neurons projecting to the medulla
have distinct molecular properties, and these distinctions are probably
shared across several cortical regions.

Inadditionto the medulla-projecting LSET neurons, we also observed
differences in genome-wide mCH profiles between other ET projec-
tions. Forexample, LSET neuronsin Al were segregated into five clus-
ters (Fig. 4f), and Al-pons and Al-superior colliculus neurons were
enriched in different clusters (Fig. 4g, h, Extended Data Figs. 7c, 8c).
By contrast, Al-pons and Al-thalamus neurons were enriched in simi-
lar clusters (Extended Data Figs. 7c, 8c). Analysis of gene body mCH
identified 145 CH-DMGs that were differentially methylated between
Al-superior colliculus neurons versus Al-pons, whereas most of them
had similar methylation patterns between Al-pons and Al-thalamus
neurons (Fig. 4i, Supplementary Table 6). Together, the results suggest
that Al-pons neurons are more distinct from Al-superior colliculus
neurons and are similar to Al-thalamus neurons.

In contrast to the conservation across cortical areas ALM, MOp
and SSp for differences related to projections to medulla, differ-
ences between pons-projecting and superior colliculus-projecting
neurons were not conserved across all cortical areas. The prediction
modeltrained to distinguish between pons-projecting versus superior
colliculus-projecting neurons performed well in distinguishing them
from cortical regions Al (AUROC = 0.939) and VIS (AUROC = 0.868),
but performed poorly in PTLp neurons (AUROC = 0.726) (Extended
Data Fig. 8a). The AUROC scores were correlated with the counts of
CH-DMGs identified between superior colliculus-projecting versus
pons-projecting neuronsin the corresponding source regions (Spear-
man r=0.683). We further hypothesized thatin a cortical area where
more neurons project to both the pons and superior colliculus, the
epigeneticprofilesof pons-projectingandsuperior colliculus-projecting
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labelled by tdTomato (red). RSP-VISp neurons were labelled with GFP (green),
and RSP-VISp neurons at the AAV5-FLEX-GFP injection site were labelled
withboth tdTomato and GFP (yellow; inset ‘ii’). Scale bars, 500 pum (low
magnification). LD, laterodorsal thalamic nucleus. g, Illustration of injections
ofdualretrograde tracers (CTB-488 and CTB-647) into the pons and VISp.

h, Proportion of double-labelled neurons (projecting to both pons and VISp)
amongall neurons projecting to the ponsindifferent sources.n=2biological
replicates are shownasindividual points.

neuronsare less distinguishable, and vice versa. To test this hypothesis,
we performed double retrograde labelling of the pons and superior
colliculus, and in each cortical source region we counted the number
of neurons labelled by only the tracer injected into the pons, only the
superior colliculus, or both (Supplementary Table 7). The highest per-
centage of double-labelled neuronswasinthe PTLp, and ingeneral the
AUROC score from our model was negatively correlated with the pro-
portion of double-labelled cells across the cortical regions (Spearman
r=-0.829, P=0.04) (Extended Data Fig. 8d). These correspondences
are weak, however, for most source regions, sothe correlationis driven
primarily by the data from the PTLp.

L5SET + CCneurons

We noticed more than 30 neurons projecting to the VISpin LS ET clus-
ters from the ACA and RSP datasets (Fig. 5a, b). Because neurons in
the LSET cluster are expected to project to ET targets, this finding
suggested that some L5 neurons might project to both cortical and
ET targets. These neurons were enriched specifically in one cluster in
ACA and RSP, respectively (FDR=4.88 10 and 3.34 x 1073, Wald test)
(Fig.5a-d). Thistype of clusterinboth the RSP and ACA was marked by
the hypo-methylation of Ubn2 (Extended Data Fig. 10a, top), a highly
expressed gene in visual systems, and many other genes also distin-
guished this clusterineither source (Extended Data Fig.10a, bottom).

Although ET cells are generally thought to lack projections to other
cortical areas, there is some evidence for such cells from previous
studies®®?*. Tovalidate our findings anatomically for RSP-VISp ET neu-
ronsinmice, weinjected AAV-retro-Cre in the VISp and AAV-FLEX-GFP
(Cre-dependent GFP) in the RSP (Fig. 5e) or ACA (Extended Data
Fig. 10b) of three mice. This resulted in labelling of the complete
axonal and dendritic arbors of RSP-VISp or ACA-VISp neurons such
that their long-distance projections tolocations other than VISp could
be assessed. For the RSP cases, we observed strong GFP labelling of axon
terminals in subcortical ET regions, including the thalamus, superior
colliculus and pons, in all three mice (Fig. 5f). For the ACA cases, axon
labellinginsubcortical ET regions was weaker but still readily apparent
in the thalamus (Extended Data Fig. 10b). These results indicate that
single neurons in L5 of RSP and ACA can project simultaneously to



both cortical and subcortical ET targets in mice. Because these cells
genetically cluster with LS ET cells, we consider them asubtype of LSET
cellsthat werefertoas ‘LSET + CC. We do not use the term ‘LSET +IT’
because many L5 ET neurons are known to project to another part of
the telencephalon, the striatum.

To further assess and quantify the prevalence of LSET + CC cells in
the ACA, RSP and other cortical areas, we performed dual injections of
retrograde tracers into the pons (cholera toxin subunit B (CTB) Alexa
Fluor 647) and the VISp (CTB Alexa Fluor 488) of two mice (Fig. 5g).
Injections were made into topographic locations in pons known to
receive input from ACA and RSP. Accordingly, overlapping retrogradely
labelled neurons were observed inboth ACA and RSP, allowing assess-
ment of the proportion of double-labelled neurons within the overlap
regions. Overlappinglabels were also observed and quantified in higher
visual cortical areaslateral and medial to VISp. Amarkedly high propor-
tion (26.6%) of RSP neurons projecting to pons were double labelled
(Fig.5h, Supplementary Table 8). Substantial but smaller proportions
were observed inthe ACA (7.0%) (Fig. 5h, Supplementary Table 8) and
lateral and medial higher visual areas (13.1% and 14.6%, respectively)
(Extended Data Fig.10c, Supplementary Table 8).

Discussion

In this Article, we have quantitatively analysed and compared the
methylation of mouse cortical neurons projecting to different corti-
cal and subcortical targets. We identified differences between both
IT neurons projecting to different cortical areas and between LSET
neurons projecting to different ET targets. Cortical IT neurons that
projected to different cortical targets varied in the extent of their epi-
genetic differences. Differences between projection target pairs were
typically larger than differences between cortical source areas for any
given pair of projection targets. Most distinct among the LSET neurons
were those projecting to the medulla. This difference has been previ-
ously described for neuronsin cortical area ALM? and we find that this
difference is conserved across the additional cortical areas that we
analysed, including the MOp and SSp. By contrast, differences between
L5SET neurons projecting to superior colliculus versus pons were more
distinctinsome cortical areas (such as Al) thanin others (suchas PTLp).

We found that a subpopulation of cortico-cortical RSP-VISp and
ACA-VISp neurons clustered with LSET cells, in contrast to the expecta-
tionthat LSET and IT cortico-cortical cells are distinct populations. This
suggestedthatsome L5SET cells might project to cortical targets and this
hypothesis was validated anatomically. Our anatomical experiments
showed that RSP-VISp cells do project to many ET targets, including
the thalamus, superior colliculus and pons, and we refer to this cell type
asL5SET +CC. Although we found CC projection neurons that clustered
with LS ET cells for only two of the twenty-six CC projections that we
sampled, there remain many other combinations that we did not test.
For example, our double retrograde labelling studies identified L5
ET + CC neurons in visual cortical areas that are lateral and medial to
VISp. Furthermore, previous studies have described LSET + CC cells
in primary and secondary motor cortex*?. It is therefore likely that
future studies will reveal LSET + CC neuronsin additional cortical areas
projecting to various combinations of ET and cortical targets.

Finally, this large-scale effort linking methylation status directly to
the projection targets of mouse cortical neurons allowed us to iden-
tify differences between projection cell types in transcription factors
linked to differentially methylated regions. These observations provide
insight into genetic mechanisms that might contribute to the differ-
encesinmorphology and function of these cell types. As we have shown,
this large dataset also provides the opportunity to predict regulatory
elements that might be harnessed in future studies to target transgene
expression to these cell types.
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Methods

No statistical methods were used to predetermine sample size. The
experiments were not randomized. The investigators were not blinded
to allocation during experiments and outcome assessment.

Experimental animals

All experimental procedures using live animals were approved by the
SalkInstitute Animal Care and Use Committee. The knock-inmouse line,
R26R-CAG-loxp-stop-loxp-Sunl-sfGFP-Myc (INTACT) was used for most
experiments'® and they were maintained on a C57BL/6) background.
Adult (42-49 day old) male and female INTACT mice were used for the
retrograde labelling experiment. Adult C57BL/6) ‘wild-type’ mice were
used for double-retrograde labelling experiments.

Surgical procedures for viral vector and tracer injections

To label neurons projecting to regions of interest, injections of
rAAV2-retro-Cre (produced by Salk Vector Core or Vigene, 2 x 102 to
1x 10" viral genomes per ml, produced with capsid from Addgene
plasmid 81070 packaging pAAV-EFla-Cre from Addgene plasmid
55636) were made into both hemispheres of the INTACT mice. Mice
were anaesthetized with either ketamine-xylazine orisoflurane, placed
in astereotaxic frame, and 0.1-0.5 pl of AAV was injected by pressure
into stereotaxic coordinates corresponding to the desired projection
target. A list of injection coordinates and volumes is provided in Sup-
plementary Table 1. At least two male and two female mice were injected
for each projectiontarget. Tolabel RSP or ACA neurons that project to
VISp, VISp was injected with rAAV2-retro-Cre, and either RSP or ACA was
injected with AAV-FLEX-GFP (Salk Vector Core) into 6 adult (3 RSP and
3 ACA) Ail4 mice. Therefore, RSP-VISp or ACA-VISp neurons, including
their axonal projections, were selectively labelled with GFP. If RSP-VISp
or ACA-VISp neurons also project to ET targets (L5 ET + CC neurons
exist), GFP-labelled axons would be expected insubcortical ET targets
such as the superior colliculus, pons and the thalamus.

Assessment of double-retrograde labelling

To assess the double labelling of cortical cells projecting to the pons
and/or superior colliculus, or projecting to pons and/or VISp, stere-
otaxic pressureinjections of 0.1-0.2 pl of 0.25-0.5% of CTB Alexa Fluor
488 or 647 conjugated (Molecular Probes) were successfully madeinto
the pons andthe superior colliculus of 4 mice, orinto the pons and VISp
of 2mice. Then, 6-7 days later, mice were perfused with PBS followed
by 4% paraformaldehyde in PBS. Brains were removed and sectioned
coronally at 40-pm thickness with a freezing microtome. Sections
were mounted and imaged with a 20x epifluorescence objective and
images assessed to identify single- and double-labelled neurons that
were assigned to cortical areas. Sections with less than five labelled
cellsfrom either one of the injections were excluded, as were sections
inwhich there were notat least ten labelled cells from one of the injec-
tions. Therefore, some cortical areas in which there was minimal or
no overlap were not included. For each mouse, double-labelled cells
were quantified for eachregionand expressed either as the proportion
of double-labelled cell divided by the sum of all labelled cells (pons
and superior colliculus), or as the proportion of double-labelled cells
divided by the number of cells labelled from the pons (pons and VISp).
Mean values from the four mice with CTB injections into the superior
colliculus and pons are plotted in Extended Data Fig. 8d. Values from
the two mice with CTB injections into the pons and VISp are shown in
Fig.5hand Extended Data Fig. 10c.

Brain dissection

Approximately two weeks after the AAV-retro injection, brains were
extracted from the 56-63-day-old INTACT mice, immediately sub-
merged in ice-cold slicing buffer (2.5 mM KCl, 0.5 mM CaCl,, 7 mM
MgCl,, 1.25 mM NaH,PO,, 110 mM sucrose, 10 mM glucose and 25 mM

NaHCO,) that was bubbled with carbogen, and sliced into 0.6-mm coro-
nal sections starting from the frontal pole. From each mouse brain
injected with AAV-retro, the slices were keptin theice-cold dissection
buffer,and selected brainregions (Supplementary Table 1) were manu-
ally dissected under a fluorescent dissecting microscope (Olympus
S7X16), following the Allen Mouse Common Coordinate Framework
(CCF), Reference Atlas, Version 3 (2015) (Extended Data Fig.1). Olympus
cellSens dimension 1.8 was used for image acquisition. The dissected
brain tissues were transferred to pre-labelled microcentrifuge tubes,
immediately frozen indry ice, and subsequently stored at -80 °C.

Nuclei preparation and single-nucleusisolation

For each dissected brain region, samples from two males and two
females (except Al-pons, which were two male mice only) were pooled
separately asbiological replicates for nuclei preparation. The 2-ml glass
tissue dounce homogenizer and pestles (Sigma-Aldrich D8938-1SET)
were pre-chilled onice. Nuclei were prepared using amodified protocol
as previously reported®. In summary, the frozen brain tissues were
transferred to the dounce homogenizer with 1 mlice-cold NIM buffer
(0.25Msucrose, 25 mM KCl, 5mMMgCl,, 10 mM Tris-HCI (pH 7.4), 1mM
DTT (Sigma 646563), 10 pl of protease inhibitor (Sigma P8340)), with
0.1% Triton X-100 and 5 uM Hoechst 33342 (Invitrogen H3570), and gen-
tly homogenized onice with the pestle 10-15 times. The homogenate
was transferred to pre-chilled microcentrifuge tubes and centrifuged at
1,000gfor 8 minat4 °Cto pellet the nuclei. The pellet was resuspended
in1mlice-cold NIMbuffer,and again centrifuged at1,000gfor 8 minat
4°C.Thepellet was then resuspended in 450 pl of ice-cold NSB buffer
(0.25Mssucrose, 5mM MgCl,, 10 mM Tris-HCI (pH 7.4),1mM DTT, 9 pl
of protease inhibitor), and filtered through 40-pum cell strainer. The
filtered nuclei suspension wasincubated onice for atleast 30 min with
50 pl of nuclease-free bovine serum albumin (BSA) for at least 10 min,
thenincubated with GFP antibody, Alexa Fluor 488 (Invitrogen, A-21311,
1:500 dilution) and an anti-NeuN antibody (EMD Millipore MAB377,
1:300 dilution) conjugated with Alexa Fluor 647 (Invitrogen A20173).
GFP*NeuN'single nuclei wereisolated using FANS onaBD Influx sorter
with a100-pm nozzle, and sorted into 384-well plates preloaded with
2 ul of digestion buffer for snmC-seq2® (20 ml digestion buffer con-
sists of 10 mI M-digestion buffer (2x, Zymo D5021-9),1 ml proteinase K
(20 mg, Zymo D3001-2-20), 9 mlwater, and 10 plunmethylated lambda
DNA (100 pg pl™, Promega, D1521)). The collected plates were incubated
at50 °Cfor20 minthenstoredat—20 °C.BD Influx Software v.1.2.0.142
was used to select cell populations.

snmC-seq?2 library preparation

Nucleifrom the same projection were combined in one 384-well plate
forthelibrary preparation. We assayed approximately 384 nucleifrom
each projection (except the MOp-SSp projection from which 768
nuclei were assayed). The bisulfite conversion and library prepara-
tion were performed following the detailed snmC-seq2 protocol as
previously described®. The snmC-seq2 libraries were sequenced on
Illumina Novaseq 6000 using the S4 flow cell 2 x150 bp mode. Freedom
EVOware v2.7 was used for library preparation, and lllumina MiSeq
control softwarev.3.1.0.13 and NovaSeq 6000 control software v.1.6.0/
Real-Time Analysis (RTA) v.3.4.4 were used for sequencing.

Reads processing and quality controls

We used the cemba-data pipeline to generate allc files from fastq
files (cemba-data.rtfd.io), as previously described™. Specifically, the
fastq files were first demultiplexed into single cells and trimmed of
Illumina adaptors and 10 bp on both sides with Cutadapt?. The reads
were mapped to mm10 INTACT mouse genome using Bismark? with
Bowtie2 aligner for each single end separately. The reads with MAPQ
smaller thanten were excluded. Potential PCR duplicates were removed
with Picard MarkDuplicates. The reads from two ends were then merged
togenerateallcfiles using call_methylated_sites function in methylpy?.



The globalmCCClevel was used to estimate the non-conversion rate of
bisulfite treatment. The cells with less than 500,000 non-clonal reads
or non-conversion rate greater than 1% were removed from further
analysis.

Methylation data processing

For eachsingle cell, we computed the methylated CH (mc) and total CH
(tc) base calls of all100-kb bins across the genome and all gene bodies
annotated in GENCODE v.M10*°. The autosomal bins that were covered
by more than 100 base calls in greater than 95% of cells were used for
further analysis. The autosomal genes that were covered by more than
100 base callsingreater than 80% of cells were used for further analysis.

Computing posterior methylation levels

For each cell, we calculated the mean (m) and variance (v) of the mCH
level across the 100-kb bins or genes. Then a beta distribution was fit
for each cell i, in which the parameters were then estimated by:
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We then calculated the posterior mCH of each bin by:

We normalized this rate by the global mean methylation of the cell by:
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The values greater than 10 in M were set to 10. After normalization,
M;is close to 1when tc;is close to O.

Identification of highly variable bins

Highly variable methylation features were selected on the basis of
amodified version of the highly_variable_genes function from the
SCANPY package®. In brief, because both the mean methylation level
and the mean coverage of a feature (100-kb bin or gene) can affect
dispersion of the methylation level?, we grouped features that fall
into a combined bin of mean and coverage, and then normalized the
dispersion within each group. After dispersion normalization, we
selected the top 2,000 features based on normalized dispersion for
dimension reduction.

Removing potential doublets

By plotting all cells on ¢-SNE, we noticed a cell population that was
located inthe centre of the plot and has agreater number of non-clonal
reads thanthe others. Toremove these potential doublets, we modified
scrublet® to adopt it to methylation data. Specifically, we first simu-
lated the doublet cells by randomly selecting two cells in our dataset
and summed the methylation and total base calls of the two cells. Then
the methylation levels of the simulated cells were computed using
the posterior computing method. We simulated twice the number of
doublets as the number of real cells. The top 2,000 highly variable fea-
tures were selected for dimension reduction with principal component
analysis (PCA) and the top 50 principal components were used to traina
k-nearest neighbour (KNN) classifier (k=50) to predictadoubletscore

for each cell. On the basis of the histogram of doublet scores of real
and simulated doublet cells, the cells with doublet score higher than
0.1were removed from further analysis. After removing the potential
doublets, 13,414 cells were kept for further analysis.

Cell clustering and annotation

After removing potential doublets, the top 2,000 highly variable fea-
tures were selected for dimension reduction with PCA. The top 50 prin-
cipal componentswere used for ¢-SNE visualization and construction
of KNN graph (G) with Euclidean distance (k=25). We use A to represent
the connectivity of G, in which A;is 1if nodejis among the 25 nearest
neighbours of node i, otherwise 0. The edge weights of Gwere assigned
as the jaccard distance of the connectivity matrix A. We ran Louvain
clustering (https://github.com/taynaud/python-louvain) with resolu-
tion1.2 to partition the cellsinto 31 clusters and merged these clusters
into major cell subclasses based on known marker genes. Specifically,
Cux2' Rorb™ (hypomethylationin Cux2gene body and hypermethyla-
tioninRorb gene body) was annotated as L2/3; Cux2' Rorb* was anno-
tated as L4; Cux2” Rorb* and Deptor* were annotated as L5 IT; Sulfl*
and Sulf2" Deptor  were annotated as L6 IT; Vat1l* was annotated as
L5 ET; Foxp2* was annotated as L6 corticothalamic; Tle4" Foxp2™ was
annotated as L6b; Tshz2" was annotated as near-projecting; B3gat2*
was annotated as claustrum; Slc6al* was annotated asinhibitory. The
clusterswith low global mCH level were annotated as non-neural cells,
which were further confirmed by hypermethylation of Mef2c. The
11,827 cells within neuronal cell clusters were selected for further
analysis.

Inclusion criteria for confident target assignment

We implemented criteria to identify experiments in which artefacts
could lead to inclusion of neurons that did not actually project to the
intended AAV-retro injection site. Neurons failing these criteria were
excluded from analyses requiring identification of projection targets
butwereincluded foranalyses related to neuron sources. Close inspec-
tion of the distribution of cells sampled from each projection across
subclasses revealed two types of artefact: (1) for some weak projections
very few neurons were retrogradely labelled, resulting in small propor-
tions passing FANS gating criteria and subsequent inclusion of high
proportions of cells accepted from the edges of FANS gates (‘gating
artefact’); (2) AAV-retro injection pipettes targeting deep structures
(for example, thalamus) passed through overlying cortical areas and
directly labelled neurons rather than being taken up retrogradely from
the intended target. This second artefact is apparent in previously
published retro-seq data in which VISp IT neurons are prominentin
putative cortico-tectal and cortico-pontine projection neuron popula-
tions (figure 3and extended data figure 10 in Tasic et al.®). This suggests
thatinjections passed through VISp, which directly overlies pons and
tectum. In our experiments, injections to the superior colliculus and
pons took oblique trajectories to minimize involvement of overlying
cortical areas, but this was not possible for injections to the ventral
tegmental area or thalamus.

Because FANS errors would be manifested in separate sorting runs,
we assessed each FANS sorting case separately. To identify cases with
high proportions of contaminating neurons (probably projecting to
adifferent target than intended), for each FANS run, we counted the
numbers of neurons that were observed in known on-target subclasses
(0,,) and off-target subclasses (O,). Assuming that the proportions
of contaminated cells in each subclass would be similar to a sample
without projection-type enrichment, we compared the observed counts
to the counts from unbiased cortical samples® (E,, and E.;) collected
fromtheslicesin Extended Data Fig. 1. The fold-enrichment was com-
puted as %ot A one-sided exact binomial test of goodness-of-fit was
used to determine whether the enrichment of on-target cells was sig-
nificant. Specifically, the P value was computed as:Pr(X= O,,; n, p),
inwhich
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X ~ Binomial(n, p)

n=0Ogn+ O
p - Eon
Eon + Eoff

Neurons from casesin which the fold-enrichments were smaller than
athreshold (see below) or the tests were not significant were catego-
rized as having unknown projection targets. The expected values are
different for ET targets than for IT (including striatum) targets, so the
thresholds depend on the targets.

Foreach ET target, we considered LS ET ason-target subclass and IT
andinhibitory neurons as off-target. The thresholds for fold enrichment
and FDR (Benjamini-Hochberg procedure) were 5 and 0.01, respec-
tively. This eliminated 7 out of 101 ET target sorts (285 out of 5,364
cells). For IT targets, we considered IT as on-target subclasses and L6
corticothalamic plus inhibitory neurons as off-target. The thresholds
for fold-enrichment and FDR (Benjamini-Hochberg procedure) were
3 and 0.05, respectively. This eliminated 30 out of 115 sorting cases
(1,146 out of 6,463 neurons).

Note that these exclusion criterions are based on a simplified
expectation of on target cell types, and the accuracy might be vari-
able depending on the targets. For instance, when considering the
neurons projecting to the striatum, considering L6 corticothalamic as
off-target might overestimate the off-target cells and make the exclu-
sion more stringent. Inaddition, because the filter was applied at FANS
run-level, there could also be asmall percentage of off-target cells from
the included runs. This should be noticed when using these datasets.
We included the cell type proportion of all projections in Extended
DataFig. 3c to help evaluate this potential noise.

Neighbour enrichment score

The score was used to quantify the enrichment of cells that belong to
the same category among the neighbours of each cell. A higher score
means that the cells are more likely to form clusters with the cells
belonging to the same category rather than in the other categories.
The advantage of this score is that it only considers the local effect so
that would remain highifthe cellsin a category form several different
clusters that dissimilar with each other. The score was computed as
follows. Euclidean distances between each pair of cells were computed
using the first 50 principal components. For each cell, we found its
25nearest neighboursin the same category, and 25rnearest neighbours
from other categories, in which ris the ratio between total number
of cells in other categories and total number of cells in the same cat-
egory. The AUROC scores using distances between the cell and these
neighbour cells for distinguishing the categories were defined as the
neighbour enrichment score of this cell. The methylation pattern of
male and female mice are highly similar on autosomes; therefore, the
twogendersweretreated as replicates in the analyses. When computing
the score for targets, neurons with targets that were not confidently
assigned were excluded. When computing the score for replicates, the
Al-pons projection that only has one replicate was excluded.

Pairwise prediction of the source and target regions

Onthebasis of the sources and targets, the neurons could be separated
into groups. Each group contains the neurons projecting froma specific
source to a specific target. To test the similarity of two groups of cells
based on DNA methylation, we trained logistic regression models to
predictthegroup label of each cell. The posterior of 100-kb bin or gene
body mCH were used as features. We used two methods to split the
cellsinto training and testing sets, one uses random selection of half
of the cells for training and the other half for testing (computational
replicates), the otheris based on the gender of the mice the cells were

collected from (biological replicates). All results in the main figures
were computed using the computational replicates, whereas the results
using biological replicates are also provided in Extended Data Figs. 4
and 5. The results of corresponding comparisons were very similar
between these two replicate-splitting methods. The AUROC score from
cross-validation was used to measure the performance of the model.
The higher AUROC value represents better ability of the model to pre-
dict the group label, which indicated the two groups had larger mCH
differences and were more distinguishable. Sci-kit learn was used for
modelimplementation.

When the groups being studied contained cells from different sub-
classes (for example, cortical-projecting neurons in one source), we
upsampled the training set to ensure that it captures the group differ-
ences rather than the differences of cell distributions across subclasses.
For example, when comparing neurons projecting to two different
cortical targets, the subclass composition differences could make the
model over-weight the features marking different subclasses. To get rid
of this bias, we randomly repeated the neurons from the underrepre-
senting group and ensured the two groups had the sample number of
training samples in each subclass. The models were then trained and
tested in the same setting as mentioned above.

Several reasons could contribute to a low prediction performance.
Biological reasons are as follows. (1) Some neurons make projections
to several targets simultaneously. These could result in the neurons
being captured by several retrograde labelling experiments of dif-
ferent targets. It would be impossible to predict a single label with
our pairwise models for this type of neuron. (2) Some neurons could
projectto different target regions but have tiny epigenetic differences.
To systematically distinguish between (1) and (2), other anatomic and
genetic validation are still needed.

Technical reasons are as follows. (3) The epigenetic differences
between neurons projecting to different targets varies across repli-
cates. (4) The contamination levels of some projections are relatively
high, which makes larger noise and hinders the ability of the models to
capture real signals. (5) The sample sizes of some projections are small,
whichmake the learning more challenging. (6) The models are not pow-
erfulenoughto capture the complex differences between projections.

Inthis study, male and female mice were treated as biological replicates
after removing sex chromosomes. Although methylation patterns of
autosomes are similar, differences between genders or individuals might
still exist. The small differences of performances between data-splitting
methods (based on computation or biological replicates) might sug-
gest a less notable effect contributed by (3) in those samples. If the
cross-source or layer predictions (described below) performed better
than the within source or layer models, we would suspect that shared
differences between neurons projecting to different targets exist across
sources or layers, and the major reason for lower accuracies of within
source or layer models mightbe (4) or (5). Elimination of contaminated
FANS runs decreases the potential influence by (4), although there are
still contaminated cellsincluded in the dataset. To evaluate the potential
limitation of (6), more carefully curated models, and accordingly more
samples, would berequired. Thus, given all these factors, we are gener-
ally more confident in the distinguishable target pairs when training
and testing sets were split based on both computational and biological
replicates. The interpretation of comparisons without biological repli-
catesand theindistinguishable pairs would need to be more careful and
arenotinvolved inthe major conclusionsin thismanuscript. Our Article
aimsto provide ageneral view across several sources and targets. More
detailed understanding of specific projections would require larger
scale profiles on those specific projection types.

Cross source prediction

The logistic regression models were trained to predict the projec-
tion targets in one source and tested in the other source. The training
and testing sets came from either the biological or computational



replicates. When using biological replicates, the final AUROC scores
were the average of AUROCs by training in male mice in one source
and testing infemale mice in another source, and by training in female
micein the first source and testing in male mice in the second source.
For cortical targets, we upsampled the training set as stated above.

Note that when the models were training only in one source, they
would not necessarily capture the shared features across sources to
distinguish neurons projecting differently evenif some shared differen-
tial features exist. However, when more differential features are shared
across sources, the models are more likely to select the shared ones.
Thus, the low performance in the analysis mightindicate that there are
less differential features shared across sources and the models majorly
selected the differential features specific to one source but not another
source, rather than representing none of the differential features are
the samebetween the two sources. By contrast, the high performances
usually indicate that more differential features are shared between
sources. Similar interpretation applies to the cross layer prediction
inthe next section.

Crosslayer prediction

This analysis was specifically for CC projection neurons to study
whether the mCH differences between projection neurons were shared
ordistinctacrosslayers. Thelogistic regression models were trained to
predictthe projectiontargetsinall but onelayer and tested inthe one
layer left out during training. The training and testing sets were split
based on either computational or biological replicates as stated above.

Identification of CH-DMGs

Wilcoxon rank-sum tests and ¢-tests were widely used to identify dif-
ferential genes in single-cell studies®, which consider each cell as an
independent sample. However, the cells from the samereplicate, indi-
vidual or batch would be more similar than the cells from different
ones. Therefore, considering all cells as independent samples would
overestimate the statistical power in single-cell data. To address this
problem and take the replicate-level variation into consideration, we
used alinear mixed model for the differential analysis and performed
paired-wise comparisons between groups. The posterior mCH levels
of 12,261 autosomal genes after coverage filters were used for these
analyses. The posterior gene body mCH was used as dependent vari-
ables. Each individual mouse was considered as a random effect. The
global mCH levels and the gender of the mice were considered as fixed
effects. Other fixed effects were determined on the basis of the com-
parison. Specifically, for DMGs between LS ET clusters:

Gene_mCH ~ cluster + gender + global_mCH + (1| mouse)

For DMGs between cortical targets in each source:

Gene_mCH ~ target + cluster + gender + global_mCH + (1| mouse)
For DMGs between ET targets in each source:

Gene_mCH ~ target + gender + global_mCH + (1| mouse)

Each gene was tested separately, and a two-sided Wald test was per-
formed to estimate the P value for the effect being tested. FDR was
computed for each pair of groups with the Benjamini-Hochberg pro-
cess. Thefold change of each gene was computed by the average mCH
acrosscellsinone group divided by the average mCH across cellsin the
other group, with pseudo-counts of 0.1. The criterions for significance
whentesting different variables were distinct and shown as follows. For
DMGs between L5 ET clusters: absolute log-transformed fold change
greater than logl.5 and FDR smaller than 0.01. For DMGs between IT
targetsorbetween ET targetsin each source: absolute log-transformed
fold change greater than logl.25 and FDR smaller than 0.01.

GO enrichment analysis

GO enrichment analysis was performed using the web server at http://
geneontology.org/. The12,261 genes that passed the coverage thresh-
old mentioned above were used as background, and binomial tests
were used to select the significant biological processesrelated to each

DMGlist. Note that GO names are nomenclature that summarize many
complexrelationships between genes and their function, so we do not
expect that these analyses canbe used to directly infer howa particular
gene contributes to neuronal function in a specific context.

Identification of CG-DMRs

Toidentify DMRs, we merged the allc files of individual cells assigned
to the same cluster to create a pseudo-bulk allc table for each cluster.
Thenweselected all the CGsitesand combined the methylation ontwo
DNA strands for each CpG site. We run methylpy* DMRfind to identify
the DMRs and require the DMRs to contain at least two differentially
methylated CpG sites (DMS).

Inference of crucial transcription factors with PageRank
The method was modified from Taiji** to integrate the information
of both gene body and regulatory regions. The 537 motifs in JASPAR
2018 non-redundant core vertebrate database® were used for these
analyses. We scanned each of the motifs against the mm10 INTACT
mouse genome with fimo* and P-value cutoffas1x107°. The DMRs
between clusters were expanded 100 bp on both sides, and the ones
overlapping with motifs were assigned to the corresponding tran-
scription factor. The DMRs were also assigned to the potential genes
they regulated using GREAT®. The transcription factors were then
linked with the target genes based on these DMRs that links to both
theupstreamtranscription factors and the downstream genes. Agene
regulation network was constructed where the nodes represented the
genes and edges represented the links between transcription factor
genes and target genes.

To assign weights to the edges and initiate the node importance,
the normalized ngyger X Ngene Methylation matrix (M) were min-max
normalized across genes within each cluster to 0-1by

M;—ming_ j’sngene/‘/’rj'
N;= .
MaXojr<pyen My~ MiNogjrcn . My

and1-N;wasused as the predicted expression of each gene in cluster
i. The predicted expressions of all genes were used as starting impor-
tance/,. Then we used a nge,. X g, Matrix A torepresent the adjacency
matrix of transcription factor-gene regulation network, in which A;
was assigned as the predicted expression level of geneiif geneiis a
transcription factor. To ensure an undirected propagation, we used
B=A+A"as the final adjacency matrix. B was normalized by row into
the transition matrix P by

B,“

G g Mgene
zj’:l By’

Next we performed a diffusion step of the PageRank scores through
the network. For iteration ¢, the PageRank scores were computed by

I,=QA~-rp)Pl,_y+1ply

inwhich rp represents a restart probability to balance the global and
local effect of the propagation on the network. The diffusion step was
stopped when|/, - | <107,

Clustering of LSET cellsin each source region

L5 ET neurons from epi-retro-seq and unbiased snmC-seq were com-
bined in this analysis. After the same process as clustering all cells to
derive posterior mCH level and select highly variable features, the
first 30 principal components were used for computing KNN (k=15)
and Louvain clustering. The resolutions used for source regions were
1.6 for MOp, Al, AUD and RSP; 2.0 for SSp and PTLp; 1.0 for VISp; and
2.5 for ACA. The resolutions were determined on the basis of visually
examining the cluster numbers and projection enrichment.
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To confirm that there were epigenetic features distinguishing the
clusters, we computed the differentially methylated 100-kb bins (DMBs)
across all pairs of clusters using two-sided Wilcoxon rank-sum tests.
The bins were defined as differential if the absolute log-transformed
fold change between clusters was greater thanlog1.5and the FDR of the
testsmaller than 0.01. We also used AUROC > 0.85 and area under preci-
sion/recall curve (AUPR) > 0.6 to define DMBs, which provided similar
results. Two clusters in RSP that had less than 5 DMBs were merged.

Tests of projection enrichmentin clusters

As described above, the cells from the same replicate would be more
similar, and considering all cells as independent samples will over-
estimate the statistical power in single-cell data. Therefore, we used
linear mixed models to test for significant enrichment of particular
projectionsin each cluster, considering the mouse where the cells came
from. The cluster was used as dependent variables. Each individual
mouse was considered as arandom effect. The projection target was
considered as fixed effects.

[Cluster ~ target + (1| mouse)]

Each projection target and each cluster were tested separately,
and two-sided Wald tests were performed to estimate the P value for
the effect being tested. FDR was computed for each source with the
Benjamini-Hochberg process. ‘(Observed — expected)/expected’ in
the enrichment matrices were computed using the same method as
in Pearson’s chi-square test.

Integration of epi-retro-seq and retro-seq

Single-cell transcriptomic data from Tasic et al.* was downloaded from
NCBI Gene Expression Omnibus (GEO) accession GSE115746. Then,
365 cells within clusters of ‘L5 PT ALM NpsrZ’, ‘L5 PT ALM Slco2al’ and
‘L5 PT ALM Hpgd' were selected for integration analysis. The raw data
was preprocessed using SCANPY!, Specifically, the read counts were
normalized by the total read counts per cell and log transformed. The
top 10,000 highly variable genes were identified and z-score scaled
across all the cells. For methylation data, the posterior methylation
levels of 12,261 genesinthe 4,176 LSET cells were z-score scaled across
allthe cellsand used for integration. We used Scanorama®* to integrate
the z-scored expression matrix and minus z-scored methylation matrix
with sigma equal to 100.

Overlap score

Overlap score quantifies the similarity of the distributions of two
groups of cells across clusters, in which higher scores represent the
two groups are more likely to be co-clustered. The scores were com-
puted using the same method previously described’. Specifically, a
Ngroup X Neyster Matrix Cwas first computed, in which Cy represents the
number of group i cellsin cluster k. Cwas normalized by row to D, and
the overlap score between group i and group j was defined as
Y min(Dy, Dy)-

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Single-cell raw and processed dataincluded in this study were depos-
ited to the NCBI Gene Expression (GEO) SRA with accession number
GSE150170 and the NeMO ftp archive: http://data.nemoarchive.org/
biccn/lab/callaway/projection/sncell/. Another dataset used in this
study includes the JASPAR motif database (http://meme-suite.org/db/
motifs) and retro-seq data from GSE115746.

Code availability

The code for all of the analyses can be found at https://github.com/
zhoujt1994/EpiRetroSeq2020.git.
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Allbrainatlasimages were created based on Wang et al.* and © 2017 Allen
Institute for Brain Science. Allen Brain Reference Atlas. Available from:

Extended DataFig.1|Sourceregiondissection maps. The posterior views of
dissected slicesare shown. Theslices correspond to Allen Reference Atlas level
33-39 (slice 3),39-45 (slice 4), 45-51 (slice 5), 51-57 (slice 6), 57-63 (slice 7), http://www.atlas.brain-map.org.
69-75 (slice 9), 75-81 (slice 10), 81-87 (slice 11) and 87-93 (slice 12), respectively.
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Extended DataFig.2|Removing potential doublets and non-neuronal
cells. a, b, -SNE of cells after quality control (n=16,971) coloured by number of
non-clonalreads (a) and predicted doublet scores (b). ¢, Distribution of
doubletscores forreal cells (blue) and simulated doublets (orange). d-f, --SNE
of cells after removing doublets (n=13,414), coloured by global mCH (d),
subclass (e), or normalized gene-body mCH level of known cell type gene

markers (). Cells with low global mCH level are usually non-neuronal cells.

g, t-SNE of single neurons (n=11,827) coloured by subclass. h, Proportion of
single neuronsineach subclass for each projection. i, The scatter plots for
filtering FANS runs with high contamination. Each dotrepresentsasingle run
(n=101left, 115 right), and the size of the dot represents the number of
on-target cellsselected by the run.
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Extended DataFig. 3| Cell type composition of all projections. a, Joint --SNE
of neurons profiled by epi-retro-seq (n=6,362) and unbiased snmC-seq2
(n=15,782, without enrichment of projections) from MOp, SSp, ACA and Al,
coloured by subclass (top left), source region (top right), and projection targets
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was not confidently assigned were greyed. ¢, The proportion of cells projecting
fromeachsource (row) to each target (column) inall subclasses.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed
|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|Z| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name, describe more complex techniques in the Methods section.

X] A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X| A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|Z| For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection BD Influx Sortware v1.2.0.142 (flow cytometry), Freedom EVOware v2.7 (library preparation), lllumina MiSeq control software v3.1.0.13
and NovaSeq 6000 control software v1.6.0/RTA v3.4.4 (sequencing), Olympus cellSens Dimension 1.8 (image acquisition)

Data analysis FIJI distribution of ImageJ, Scikit-learn 0.20.3, Bedtools 2.27, Scanpy 1.6.0, fimo 5.0.2
cemba_data mapping pipeline is available at https://github.com/Ihging/cemba_data.git, including Cutadapt 1.18, Bismark 0.20.0,
Bowtie2 2.3.5, Fastqc=0.11, Picard=2.18, Samtools=1.9, Htslib=1.9
scanorama: https://github.com/brianhie/scanorama.git
Other code are available on https://github.com/zhoujt1994/EpiRetroSeq2020.git

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The data analyzed in this study were produced through the Brain Initiative Cell Census Network (BICCN: RRID:SCR_015820) and deposited to NCBI GEO/SRA with
accession number GSE150170 and the NEMO Archive (RRID:SCR_002001) under identifier nemo:dat-t2mznz0 accessible at https://assets.nemoarchive.org/dat-
t2mznz0. The code for all of the analyses and the link to data browser can be found at https://github.com/zhoujt1994/EpiRetroSeq2020.git
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size 384 nuclei from each projection (except the MOp—>SSp projection from which 768 nuclei were assayed). The sample size allowed us to obtain
high coverage methylomes for each projection, and confidently identify differentially methylated genes.

Data exclusions  Poor quality nuclei were excluded from clustering if they failed to meet the following pre-established quality control (QC) thresholds:
< 500,000 non-clonal reads
> 1% non-conversion rate

Replication At least 2 male and 2 female mice were injected with AAV-retro-Cre for each projection target. Male and female samples were pooled
separately for nuclei preparation. Nuclei collected from the male and female pool were used as biological replicates in the downstream
analyses. Methylomes of cells from different replicates are highly similar (Fig. 1e). Results in Fig. 5f and Extended Data Fig. 10b are
reproducible in three biological replicates. Results in Fig. 5h and Extended Data Fig. 10c are reproducible in two biological replicates, and each
data point represents one replicate.

Randomization  Randomization is not applicable, since the cells collected are random by nature.

Blinding Blinding is not applicable, since all data are collected from mice.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
g Antibodies g |:| ChiIP-seq
|:| Eukaryotic cell lines |:| |Z Flow cytometry
|:| Palaeontology |Z |:| MRI-based neuroimaging

|Z Animals and other organisms
|:| Human research participants

|:| Clinical data

MXOXXO s

Antibodies

Antibodies used anti-GFP antibody, dilution: 1:500, Alexa Fluor 488 (Invitrogen, A-21311)
anti-NeuN antibody, dilution: 1:300, EMD Millipore MAB377 conjugated with Alexa Fluor 647 (Invitrogen A20173)

Validation All antibodies have been previously published for use in immunohistochemistry and flow cytometry experiments. Anti-GFP
antibody has been validated in Kim et al. Neuron 2020 (PMID: 32396852).

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals 42-49 day old adult male and female INTACT mice (R26R-CAG-loxp-stop-loxp-Sun1-sfGFP-Myc maintained on C57BL/6J
background) were used for Epi-Retro-Seq experiments. Adult wildtype C57BL/6J mice were used for double-retrograde labeling
experiments. Housing condition: Temperature: 21-23 C, relative humidity: 61-63%.

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.
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Ethics oversight

All experimental procedures using live animals were approved by the Salk Institute Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:

|Z| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument
Software
Cell population abundance

Gating strategy

Manually dissected mouse brain samples were snap-frozen on dry ice and stored at -80 °C. Prior to nuclei preparation, for each
projection, samples from 2 males and 2 females were pooled separately as biological replicates. The frozen brain tissues were
transferred to a pre-chiled 2-mL dounce homogenizer with 1 mL ice-cold NIM buffer (0.25M sucrose, 25mM KCl, 5mM MgCl2,
10mM Tris-HCl (pH7.4), ImM DTT (Sigma 646563), 10l of protease inhibitor (Sigma P8340)), with 0.1% Triton X-100 and 5uM
Hoechst 33342 (Invitrogen H3570), and gently homogenized on ice with the pre-chilled pestle 10-15 times. The homogenate was
transferred to pre-chilled microcentrifuge tubes and centrifuged at 1000 rcf for 8 min at 4 °C to pellet the nuclei. The pellet was
resuspended in 1 mL ice-cold NIM buffer, and again centrifuged at 1000 rcf for 8 min at 4 °C. The pellet was then resuspended in
450 pL of ice-cold NSB buffer (0.25M sucrose, 5mM MgCl2, 10mM Tris-HCl (pH7.4), 1mM DTT, 9ul of Protease inhibitor), and
filtered through 40uM cell strainer. The filtered nuclei suspension was incubated on ice for at least 30 minutes with 50ul of
nuclease-free BSA for at least 10 minutes, then incubated with GFP antibody, Alexa Fluor 488 (Invitrogen, A-21311) and anti-
NeuN antibody (EMD Millipore MAB377) conjugated with Alexa Fluor 647 (Invitrogen A20173). GFP+/NeuN+ single nuclei were
isolated using fluorescence-activated nuclei sorting (FANS) on a BD Influx sorter with 100pum nozzle, and sorted into 384-well
plates preloaded with 2ul of digestion buffer for snmC-seq215 (20mL digestion buffer consists of 10mL M-digestion buffer (2x,
Zymo D5021-9), 1ml Proteinase K (20mg, Zymo D3001-2-20), SmL water, and 10uL unmethylated lambda DNA (100pg/uL,
Promega, D1521)). The collected plates were incubated at 50 °C for 20 minutes then stored at -20 °C.

BD Influx

BD Influx Sortware v1.2.0.142

We sorted NeuN-positive and GFP-positive nuclei.

Intact nuclei were first discriminated from debris by virtue of their bright DNA labeling (Hoechst Height signal) followed by light
scattering profiles (Forward Scatter (FSC) Height vs Side Scatter (SSC) Height). Events with high Pulse Width measurements for

FSC and SSC were then excluded as aggregates. Next, NeuN-AlexaFluor 647 labelled neuronal nuclei were selected ("*670/30
640" Height) from which GFP positive nuclei were sorted ("*530/40 488" Height).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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