UCLA

UCLA Electronic Theses and Dissertations

Title
Next-generation AI: From Algorithm to Device Perspectives

Permalink
https://escholarship.org/uc/item/2nv5c93,
Author
Lee, Albert

Publication Date
2021

Peer reviewed/Thesis/dissertation

UNIVERSITY OF CALIFORNIA

Los Angeles

Next-generation AI: From Algorithm to Device Perspectives

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical and Computer Engineering
by

Albert Lee

© Copyright by
Albert Lee
2021

ABSTRACT OF THE DISSERTATION

Next-generation AI: From Algorithm to Device Perspectives

by

Albert Lee
Doctor of Philosophy in Electrical and Computer Engineering
University of California, Los Angeles, 2021
Professor Kang L. Wang, Chair

In recent years, neural networks have contributed significantly to the advancement of machine learning, achieving state-of-the-art over a broad range of challenging tasks. The world right now is seeing a global artificial intelligence (AI) revolution involving academic and industry alike: tech giants like Google and Microsoft are applying machine learning in their commercial products, while professors from every discipline- computer science, engineering, mathematics, biology, transportation - scramble to apply these methods to advance their research. Stock analysts are using AI to analyze and predict stock prices, medical experts to diagnose and develop new drugs, while game developers create sophisticated, human-like behavior in characters. At the national level, all sponsored research agencies, both NSF and DARPA have identified AI as one of the major national research directions.

Our research targets the advancement of next-generation AI from three vertical aspects along the computing hierarchy: At the algorithm level, we propose the use of application-
specific, bio-inspired neural networks for information processing. We develop models of special signal-processing neurons that are compatible with today's machine learning algorithms; and optimize neural architectures containing these neurons to understand their role in creating an efficient network. At the hardware level, we address the memory bottleneck in AI accelerators. We propose two schemes to overcome limitations caused by variations in critical paths and fabrication processes. At the single device level, we recognize the significant performance gain from devices that compose AI computation via physical mechanisms. We propose two spintronic structures capable of computing convolutions that achieve orders of magnitude higher efficiency than state-of-the-art technology. These innovations provide the foundation for higher performance and more efficient AI at different time scales throughout the coming decades: in the short term, algorithms that can be implemented immediately; in the mid-term, hardware designs that can be realized in a few years; and in the long term, new device technologies to be adopted as the fabrics of AI computation.

The dissertation of Albert Lee is approved.
Yingnian Wu
Ken Yang
Puneet Gupta
Kang Lung Wang, Committee Chair

University of California, Los Angeles

2021

To my family

TABLE OF CONTENTS

CHAPTER 1 1
1.1 History of Neural Networks 2
1.2 Neural Network Hardware Accelerators 7
1.3 Spintronic Technology 9
CHAPTER 2 13
2.1 Motivation 14
2.2 Neuron Models 15
2.2a Max Neurons 16
2.2b Coincidence Neurons 17
2.2c Model Algorithm 17
2.3 Neural Architecture Search Algorithm 20
2.3a Mutation NAS Algorithm 23
2.3b Growth-based NAS Algorithm 28
2.3c Pruning NAS Algorithm 31
2.4 Experiment Setup 33
2.4a Data Preparation 34
2.4a. 1 Visual Recognition Datasets 35
2.4a. 2 Speech Recognition Datasets 37
2.4b NAS and Training Setup 39
2.5 Experimental Results 43
2.5b Growth-based NAS 46
2.5c Pruning-based NAS 47
2.5d Specialized Network Design 49
CHAPTER 3 53
3.1 Motivation 53
3.2 Background 55
3.2a Memory Array Architecture 56
3.2b Variation Sources 58
3.3 The 2D Calibration Scheme 61
3.3a 2D Calibration Scheme 62
3.3b Circuit Implementation 64
3.3c Simulation Results 66
3.4 The Dual-Dataline Sensing Scheme 72
3.4a Dual-Dataline Sensing Scheme 72
3.4b Circuit Implementation 76
3.4c Simulation Results 78
CHAPTER 4 84
4.1 Motivation 84
4.2 Background 85
4.2a Convolution Operation 85
4.2b Charge-based Convolution Devices 86
4.2c Spintronic Mechanisms for Computing 89
4.3 Anomalous Hall -Domain Wall Motion(AHE-DWM) Convolution Engine 92
4.3a Device Structure 92
4.3b Performance Analysis 95
4.3c Experiments 101
4.4 Magnetic Tunneling Junction-Domain Wall Motion (MTJ-DWM) Convolution Engine 107
4.4a Device Structure 107
4.4b Performance Analysis 110
4.4c Simulation 112
CHAPTER 5 115

LIST OF FIGURES

Fig.1.1.1 Biological neuron and the McCulloch-Pitts model. 3
Fig.1.2.1 Speedup of various AI platforms on a GPU 7
Fig.1.2.2 Physical implementation of matrix multiplication 8
Fig.1.3.1 MRAM operation mechanisms 11
Fig.1.3.2 Illustration of spin-based nonvonventional computing methods 12
Fig.2.1.1 Firing activity of grid cells 14
Fig.2.1.2 Common activation functions used in today's neural networks. 15
Fig.2.2.1 The distinct features and behavior of max and coincidence neurons 16
Fig.2.2.2 Modelling algorithm of the specialized neurons 18
Fig.2.2.3 Obtaining a second feature map from the first 19
Fig.2.3.3 Illustration of the evolutionary process and the mutation NAS search method. 26
Fig.2.3.4 Pseudo code of the mutation NAS algorithm 27
Fig.2.3.5 The mutation of an architecture 28
Fig.2.3.6 The network architecture of our growth-based NAS 29
Fig.2.3.7 Pseudocode of the growth NAS algorithm 30
Fig.2.3.8 The network architecture of our pruning NAS 32
Fig.2.3.9 Pseudocode of the pruning NAS 33
Fig.2.4.1 List of datasets used in this research. I 34
Fig.2.5.1 Scatter plot of network performance of the initial and final population 43
Fig.2.5.2 Structural organization of the top performing networks discovered by mutation. 44
Fig.2.5.3 Structural composition of top performing networks found by mutation 45
Fig.2.5.4 Structural organization of the top performing networks discovered by growth 46
Fig.2.5.7 Structural composition of top performing networks found by the growth 47
Fig.2.5.8 Importance of neurons in the network during pruning on the CiFAR-10 dataset. 48
Fig.2.5.9 Pruning NAS results on the audio datasets 49
Fig.2.5.10 Scatter plot of the normalized performance of various network architectures 51
Fig.3.2.1 Structure of a 1T-1R memory cell 54
Fig.3.2.2 Structure of a memory macro. 56
Fig.3.2.3 Read and write waveforms of a memory array 57
Fig.3.2.4 Common wafer variation patterns, 59
Fig.3.2.5 Delay variations caused by critical path 60
Fig.3.3.1 Illustration of the 2D calibration scheme 62
Fig.3.3.2 Algorithm to find calibration values. 63
Fig.3.3.3 Read and write design modifications for the 2D calibration 65
Fig.3.3.4 Performance of global, 1D, and 2D calibrations on various wafer patterns 67
Fig.3.3.5 Performance of different calibration methods to the number of calibration bits 69
Fig.3.3.6 A post-calibration heatmap of 2D calibration with ncal $=4$ 70
Fig.3.3.7 BL waveforms of the worst-case cells during read with 2D calibration 71
Fig.3.4.1. Illustration of the DDL scheme. 73
Fig.3.4.2. Sense amplifier designs to utilize the DDL scheme. 75
Fig.3.4.3. The RS-SA featuring offset cancellation and on-off boundary operation 77
Fig.3.4.4. Read margin as a function of BL development time 79
Fig.3.4.5. Read margin and sensing time as a function of resistance and R-Ratio 80
Fig.3.4.6. Energy required for successful sensing of the DDL and conventional scheme 81
Fig.3.4.8. Read error rate as a function of sensing time for various designs 82
Fig.3.4.7. Sensing yield as a function of read time for the conventional and DDL schemes. 82
Fig.4.2.1 CCD-based convolution hardware. 87
Fig.4.2.2 Spin-based mechanisms used to build the spintronics convolution engine 89
Fig.4.3.1 AHE-DWM based convolution engine 93
Fig.4.3.2 Example of a switch-capacitor circuit used to sum voltages 94
Fig.4.3.3 Experiment setup for extracting the relationship between $V A H E$ and $I x, D E$. 101
Fig.4.3.4 The VAHE - Ix relationship. 103
Fig.4.3.5 The RAHE - DE relationship. 103
Fig.4.3.6 Experiment setup for the $V A H E-M$ relationship. 104
Fig.4.3.7 Measured RAHE as a function of the number of domain-shifting pulses 104
Fig.4.3.8 Measured domain wall motion in the experiment design of Fig.4.3.6. 105
Fig.4.3.9 Fabrication steps of the spintronic convolution engine prototype. 106
Fig.4.3.10 Completed convolution engine prototype 107
Fig.4.4.1 MTJ-domain based convolution engine 108
Fig.4.4.2 Simulation of the MTJ-domain convolution engine 113
Fig.5.1.1 The path towards next generation AI 117

LIST OF TABLES

Table 2.4.1 NAS settings for each dataset. 41
Table 3.3.1 Performance and overhead of different calibration schemes 71
Table 4.3.1 Device and material parameters of a $\mathrm{Ta} / \mathrm{CoFeB} / \mathrm{MgO}$ system 97
Table 4.3.2 Per-unit device performance metrics of the spintronic convolution engine. 99
Table 4.3.3 Performance of an 1024-point convolution of the proposed approach. 100
Table 4.4.1 Performance of the 1024-point MTJ-domain convolution engine 111

ACKNOWLEDGEMENT

First of all, I would like to thank my advisor Dr. Kang Wang, an inspiring lecturer and scientist. He is my example of life-long learning, and I sincerely look up to how he continues to be extremely devoted to science despite his busy schedule. Academically, Prof. Wang allows his students to freely explore while putting us in touch with a large variety of ideas. I learned a lot from ideas that worked out, and perhaps even more from those that didn't. In addition, Prof. Wang's grand visions taught us how to view things from a greater perspective and consider about how technology interacts with the world. Throughout my Ph.D. degree, I have learned skills towards every aspect of my career path- critical thinking towards research, managing relationships with collaborators, interacting with the industry, funding for projects, intellectual properties for startups, and many more. Prof. Wang is truly the one who shaped me into the researcher I am today. On the same note, I'd like to thank Mrs. Wang, who I had the privilege to work with and learn from on various occasions. I'm a big fan of her turkey recipe as well.

I would also like to thank my committee members, Prof. Yang, Prof. Gupta, and Prof. Wu, for taking the time to discuss and go through my research and provide me with valuable advice. I would further like to thank Prof. Gupta and Prof. Pamarti, with whom I had the chance to work with very closely; and Mrs. Katie Christensen, who has been fully supportive of the group, working tirelessly with us on tight deadlines. Finally, I wish to thank Prof. Schwartz, a friendly and knowledgeable professor who serves as a secondary mentor to our subgroup, and Prof. Khalili, who introduced me to the group's magnetic technologies.

It has been an incredible experience working with the top minds at DRL. I would like to thank, in chronological order: Dr. Hochul Lee, a talented and devoted researcher. We've had countless inspiring discussions that lead to a major part of my publications, patents, and proposals. I also had the chance to participate in many of his life events (including his wedding),
and I consider him to be not only a role model but also a true friend. Likewise, I thoroughly enjoyed working with Mr. Farbod Ebrahimi, a brilliant engineer and a serial brainstormer who actively pursues higher expectations for himself. He is one of my best friends in LA and an amazing person to have deep conversations with regardless of your perspective. I have worked on countless occasions with Dr . Di Wu, who is a devoted scientist and an exceptional negotiator. He is continuously enthusiastic about bringing technologies to real-life applications, working around the clock available nearly $24-7$. Mr. Bingqian Dai, the group mascot with great theoretical knowledge and is very supportive of new ideas. Di and Bingqian are my major collaborators towards the end of my Ph.D. degree. While it is impossible to list everyone that has inspired me during my degree, some of the others whom I had the chance to interact with include: Dr. Wenyuan Li, Dr. Xiang Li, Dr. Rick Tsai, Dr. Bald Tsai, just recently a doctor Yuching Hsiao, not-a-doctor-yet Ping-Keng Lu, Jiyue Yang, Dr. Chin-Chung Chen, etc.... I wish all a successful carrier.

Finally, I would like to thank my family and those who I consider to be. You have been by my side through tough times and hardship; when I have been stubborn, immature, selfish, and bad-tempered. Thank you for being by my side through the years, and for being generous when I refused to admit wrong. I am not perfect, but I truly care for you and wish could do/have done more. I would specifically like to thank Ximeng Fan, who has taught me to be optimistic and to bring joy to those around me. We share many interests and viewpoints, and we can be civil on the ones we disagree with. Thank you for dealing with some of my stupid life decisions, both prior and moving forward; and for supporting me throughout.

Education

2013-2015	M.S. in Electrical Engineering National Tsing-Hua University Hsinchu, Taiwan
2009-2013	B.S. in Electrical Engineering and Computer Science National Tsing-Hua University Hsinchu, Taiwan
Employment history	
2016-2021	Circuit Design Engineer Inston Inc. Los Angeles, California
2015-2021	Graduate Student Researcher Department of Electrical and Computer Engineering University of California, Los Angeles Los Angeles, California
2017-2017	Teaching Assistant: Logical Design of Digital Systems Department of Electrical and Computer Engineering University of California, Los Angeles Los Angeles, California
2014-2015	Internship: Circuit Designer United Semiconductor Corporation Flash Memory Circuit Design Team Hsinchu, Taiwan
2014-2015	Teaching Assistant: An Introduction to VLSI; Embedded Memory Design Department of Electrical Engineering National Tsing-Hua University Hsinchu, Taiwan
2013-2015	Graduate Student Researcher Department of Electrical Engineering National Tsing-Hua University Hsinchu, Taiwan
2010-2010	Internship: Circuit Designer Novatech Mobile Design Team Hsinchu, Taiwan

Selected Publications

A. Lee, B. Dai, D. Wu, H. Wu, R. N. Schwartz, and K. L. Wang, "A thermodynamic core using voltage-controlled spin-orbit-torque magnetic tunnel junctions", Nanotechnology, 2021.
A. Lee, R. Jagannathan, D. Wu, and K. L. Wang, "A 2-D Calibration Scheme for Resistive Nonvolatile Memories", IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(6), pp.1371-1377, 2020.
A. Lee, D. Wu, and K. L. Wang, "Torque Optimization for Voltage-Controlled Magnetic Tunnel Junctions as Memory and Stochastic Signal Generators", IEEE Magnetics Letters, 10, pp.1-4, 2019.
A. Lee, H. Lee, F. Ebrahimi, B. Lam, W.H. Chen, M.F. Chang, P. Khalili, and K. L. Wang, "A dual-data line read scheme for high-speed low-energy resistive nonvolatile memories", IEEE Transactions on Very Large Scale Integration Systems, 26(2), pp.272-279, 2017.
A. Lee, C. P. Lo, C. C. Lin, W. H. Chen, K. H. Hsu, Z. Wang, F. Su, Z. Yuan, Q. Wei, Y. C. King, C. J. Lin, H. Lee, P. Khalili, K. L. Wang, Y. Wang, H. Yang, Y. Liu, and M. F. Chang, "A ReRAM-Based Nonvolatile Flip-Flop With Self-Write-Termination Scheme for FrequentOFF Fast-Wake-Up Nonvolatile Processors", IEEE Journal of Solid-State Circuits, 52(8), pp.2194-2207, 2017.
A. Lee and K. L. Wang, "Full Memory Encryption with Magnetoelectric In-Memory Computing", In 2019 International Symposium on VLSI Technology, Systems and Applications, pp.1-2, 2019.
A. Lee, C. C. Lin, T. C. Yang, and M. F. Chang, "An embedded ReRAM using a small-offset sense amplifier for low-voltage operations", In 2015 VLSI Design, Automation and Test, pp. 1-4. 2015.
A. Lee, M. F. Chang, C. C. Lin, C. F. Chen, M. S. Ho, C. C. Kuo, P. L. Tseng, S. S. Sheu, and T. K. Ku, "RRAM-based 7T1R nonvolatile SRAM with 2x reduction in store energy and 94x reduction in restore energy for frequent-off instant-on applications", In Symposium on VLSI Circuits, pp. C76-C77, 2015.

Accepted Patents

[US10861527B2], [US10255976B1], [US9972400B1], [US9722584B1], [US9502114B1], [US9564209B1]

CHAPTER 1

INTRODUCTION

In this research, we address the advancement of next-generation AI from three vertical perspectives: At the algorithm level, the development of bio-inspired neural networks with neurons specialized for information processing; at the hardware level, improved memory design for AI accelerators; and at the single device level, spintronic devices that compose AI computation via physical mechanisms. This dissertation is organized as follows:

Chapter 1 gives an overview of the three perspectives. In Sec.1.1, We go over the historical development of AI where there were periods of booming interest and as well as times when there was lack of resources in the academia, industry, as well as the government. We review the historical reasons and events that lead to widespread AI enthusiasm, the challenges that lead to its temporary downfalls, and how prior developments affected AI as it is today. In Sec.1.2, We discuss the hardware accelerators for efficient, high-performance AI computation, from CPUs and GPUs to ASICs and memristive crossbars. In Sec.1.3, we review the history of spin-based mechanisms, recent discoveries, and their applications.

Chapter 2 presents our algorithmic approach of adopting bio-inspired signal-processing neurons in machine learning. In Section 2.1, we discuss our motivation and show examples of neuronal behavior that are critical to information processing in the human brain. In Sec.2.2, we present a modelling algorithm that is used to create models of the the signal-processing neurons. To understand the role of these neurons, we propose three bio-inspired neural architecture search (NAS) algorithms in Sec.2.3, e.g. genetic mutation, neural growth, and neural pruning. These NAS algorithms allow us to study optimized network architectures containing the signalprocessing neurons as the amount of neurons in the network stays constant, increases, and decreases. Sec.2.4 describes the setup for our experiments, which include data perparation, the parameters for the NAS, and the parameters for training. Sec.2.5 presents analysis results on
the optimized network architectures, revealing general structures and the organization of the neurons. These results are used to create a new efficient and high-performance network.

Chapter 3 presents our approach for improving memory performance in AI accelerators. Section 3.1 discusses the importance of memory in AI accelerators and why they are the bottleneck in computation performance. In Section 3.2, we give an introduction on memory architecture, design, and challenges, with focus on sources of variability that limit memory performance. We then propose two approaches to overcome variation. Section 3.3 describes the 2D calibration scheme, in which an improved calibration grid compensate for variations across an array. Section 3.4 describes the dual dataline sensing scheme, in which the circuit's tolerance of variability is enhanced though a higher sensing margin. In both schemes, we show the high-level desrciption, circuit implementation, and the simulated performance.

In chapter 4, we present our spintronic device capable of high-efficiency signal processing. Sec.4.1 outlines our motivation, which discusses the advantages of spintronics over electronics such as the flexibility in computing mechanism and nonvolatility. Sec.4.2 give a background on the problem that our device aims to solve (e.g. convolution) and the spin mechanisms that are used. In Section 4.3 and 4.4 , we present two implementations of the spintronic signal processor, each based on a combination of various spin mechanisms. In both designs, we show the device structure, the theoretical performance, and the experiment or simulation results.

Finally, we wrap up this dissertation with a conclusion and a discussion of future works in the direction of the presented research in Chapter 5. We also present our perspectives towards the future of AI.

1.1 History of Neural Networks

The large number of recent breakthroughs make artificial neural networks seem like a recent discovery, yet its development actually dates far back with its fair share of ups and downs. The earliest artificial neurons can be traced back to 1943 when Walter Pitts and Warren McCulloch, a neuroscientist and a logician, teamed up to create a mathematical model of a neuron in the human nervous system [1]. This model, shown in Fig.1.1.1a, captured the operation of the neuron in two parts: (1) The integration of input signals coming from axons, weighted by the strength of synapses as the potential of the neuron body (Soma); (2) The response of the neuron

(b)

	AND	OR	NOT
w_{1}	+1	+1	-1
w_{2}	+1	+1	-
w_{3}	+1	+1	-
$v_{t h}$	+2	-3	0

$x, y \in\{-1 .+1\}$

Fig.1.1.1 Biological neuron and the McCulloch-Pitts model. (a) In a neuron, the potential of the soma is the sum of the signals from its input axons weighted by synapses. When this potential exceeds a threshold, a pulse is sent to the output axon. This procedure is modelled in the McCulloch-Pitts neuron via integration of weighted inputs and a binary threshold function. (b) Weight and threshold design to implement the AND, OR, and NOT logical functions with a McCulloch-Pitts neuron.
potential, goingwhich goes through a rapid depolarization when it reaches a threshold. The McCulloch-Pitts neuron model can thus be described as a process with inputs x_{i}, each weighted by their respective weights w_{i}, integrated as the neuron potential $m=\sum x_{i} w_{i}$; then passing the potential through a binary threshold function as the neuron's output (e.g. $y=1$ if $m>$ $v_{t h}$ else -1). The authors further showed that the model is capable of modelling universal
logic functions AND, OR, and NOT by designing the neurons weights and threshold, as shown in Fig.1.1.1b. For example, consider binary imputs and outpus of ± 1. A 3-input neuron with weights of all +1 and a firing threshold of -3 would output +1 if any input is +1 , and only -1 if all its inputs are -1 . This neuron thus implements a 3 -input OR function.

Later, Frank Rosenblatt combined the McCulloch-Pitts neuron with biological learning rules discovered to develop the perceptron [2]. By applying the learning rule discovered by neuroscientist Donald Hebb: "Neurons that fire together, wire together" [3], the perceptron promised learning capabilities of achieving binary classification on its own. Rosenblatt optimistically predicted that the perceptron "may eventually be able to learn, make decisions, and translate languages". Soon afterward, Alexey Grigoryevich Ivakhnenko and Valentin Grigor'evich Lapa proposed a hierarchical representation now considered the first multi-layer network [4].

Optimism in the bright future of AI led to a surge in funding, research interest, and, unfortunately, inflated promises on its abilities. When many of these claims failed to materialize, concerns soon arose across both funding agencies and the academia. The US government, initially interested in its ability to automatically translate Russian documents, became concerned about the lack of progress in automatic machine translation despite millions of investments. In 1964, the national research council (NRC) formed the automatic language processing advisory committee (ALPAC) to look into this issue; and concluded that machine translation was more expensive, less accurate, and slower than human translation [5]. Similarly, in the UK, Professor James Lighthill, tasked by the British Science Research Council to evaluate the state of AI research, concluded that "In no part of the field have the discoveries made so far produced the major impact that was then promised" [6]. These events led to a wide termination of funding support for AI. Academically, Marvin Minsky and Seymour Papert outlined the theoretical limitations of perceptrons in their book "Perceptrons", resulting in a
sharp drop in AI interest [7]. The lack of funding and academic interest led to a period now known as the first AI winter [8].

Research in AI revived in the mid-80s with Paul Werbos's backpropagation algorithm [9], which enabled practical, efficient training of multi-layered networks by computing error gradients through the chain rule and modifying the weights at each node accordingly. This renewed interest led to new discoveries that compose the core of many of today's AI algorithms In 1979, Kunihiko Fukushima developed the Neocognitron based on the structure of the human primary visual cortex [10]. It demonstrated the ability to recognize visual patterns as the first convolutional neural network architecture. The Hopfield Network [11] developed by John Hopfield in 1982, made recurrent structures popular and showed promise as dynamic contentaddressable memory. Q-learning presented by Christopher Watkins [12] laid the groundwork for reinforcement learning via the introduction of states, actions, and delayed rewards.

These new developments brought about the commercialization of a form of AI called the Expert system. The Expert system aims to emulate the decision-making process of a human expert to solve complex problems and make sequential decisions by reasoning through a knowledge database. In the early-mid 1980s, Expert systems such as XCON showed enormous commercial success and were adopted by companies around the world. Billions of dollars poured into the industry, supporting software companies like Techknoeldge, Intellicorp, and hardware companies such as Symbolics and LISP (List-Processing) machines.

However, Expert systems proved to be too expensive to maintain and update. They were rigid and fragile, and competition from general purpose systems soon brought down their market. Workstations from Sun Microsystems provided alternatives just as powerful but much more flexible, while personal computers from Apple and IBM provided a simpler and (through development) architecture that achieved similar results. With the market share of Expert
systems taken away, their demand collapsed as quickly as it rose. By the early 1990s, nearly all commercial Expert system companies had failed.

This commercial failure resulted in a second blow to the development of AI. In this second AI winter, many researchers deliberately avoided the term AI, using alternate terms like informatics, intelligent systems, and knowledge-based systems. Some believed that their works were fundamentally different from what was previously called AI, while some simply didn't want the reputation that came with the name. Nevertheless, the data-driven approach of Expert systems significantly influenced AI algorithms built today.

The recent revival of AI in the 2000s has much to do with the exponential increase in computing power from the scaling of silicon chips. Initially, brute-force approaches demonstrated superhuman performance across various tasks. Deep Blue, with the ability to compute 200 Million moves per second, became the first computer system to beat the world chess champion in 1997 [13]. Data became a driving force of AI with Yann LeCunn's release of the MNIST handwritten digits database in 1998 [14]. MNIST provided a benchmark for evaluating the performance of AI algorithms and remains widely used even today. The Imagenet database developed by Fei Fei Li [15] and its associated ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is considered by many the catalyst for the AI boom. Since 2012, neural networks dominated the challenge with the Alexnet victory, significantly outperforming other competitors by over 10 percentage points [16]. Through data, AI systems began solving challenges that brute force could not: in 2016, Google's AlphaGo, a neural network trained using reinforcement learning, becomes the first program to beat an unhandicapped professional human player in Go [17]. This feat was previously thought impossible for another 30 years as a brute force approach would have to evaluate more possibilities than the number of atoms in the universe $\left(10^{82}\right)$.

Fig.1.2.1 Speedup of various AI platforms on a GPU. Figure adapted from Nvidia's Tesla P100 White Paper [17].

Today, our progress has far exceeded the wildest claims that brought about the $1^{\text {st }} \mathrm{AI}$ winter. Discussions surrounding the abilities of AI have shifted from questioning whether it will be useful to whether we restrict its abilities. Nevertheless, as we look towards the future, AI aims to be involved in everyday life; from tasks as small as recommending new songs to complex medical problems that trouble even top experts with decades of experience.

1.2 Neural Network Hardware Accelerators

The increasing demand for AI has led to the development of specialized accelerator hardware. Traditional central processing units (CPU) that were optimized for flexibility rather than parallelization did not perform well on AI tasks. On the other hand, graphic processing units (GPUs) have been able to massively parallelize AI tasks as they were built to process similar tensor (multi-dimensional vector) operations. Empirical studies show that GPUs provide over 30x speedup over state-of-the-art CPUs (Fig.1.2.1), making them the top choice for AI tasks [18]. In addition, GPU producers have also committed to developing specialized toolkits and modifying tensor cores to further accelerate AI computation [19]. These packages have been adopted by the majority of mainstream AI design platforms [20] [21].

Fig.1.2.2 Physical implementation of matrix multiplication via a crossbar of memory devices. Voltages $V_{1} . . V_{i}$ are placed on vertical wires connected to the top electrode of memristors with resistances $R_{11} \ldots R_{1 i}$. From the Ohm's law, each device has a current of $V_{k} / R_{1 k}$. The bottom horizontal wire sums the current flowing through the memristors upon it, e.g., $I_{1}=\sum_{i} V_{k} / R_{1 k}$. The full array entire array can be represented in matrix form as $I=R^{-1} V=G V$.

Compared to GPUs, application-specific integrated circuits (ASICs) can further boost the efficiency of AI computation. These accelerators discard generalized capabilities of GPUs and optimize their data flow, data format, and memory bandwidth purely for AI-related tensor processing. Many data centers today have adopted this approach with chips such as the Google TPU [22] and Baidu Kunlun processor [23] being developed; while Amazon and Facebook reportedly in the process of designing their own ASICs. Taking this approach further, designs for reduced bit counts [24]-[27], convolutional networks [28], [29], stochastic networks [30], generative adversarial networks [31], and recurrent networks [32] have also been developed.

With the recent progress in new memory technologies, researchers have also targeted the physical implementation of matrix multiplication using memory devices [33]-[37]. This approach, shown in Fig.1.2.2, composes a crossbar array of memory units with wires running vertically on top of the array and horizontally beneath. When voltages $V_{1} \ldots V_{i}$ are placed on the top wires, the currents $I_{1} \ldots I_{j}$ flowing through the bottom wires can be computed via Ohm's law and Kirchhoff's current law, as the sum of V_{k} times the conductance $G_{j k}=1 / R_{j k}$ of each
memory unit, e.g. $I_{j}=\sum_{i} V_{k} G_{j k}$. Considering the entire array, the bottom wire currents can be expressed as in matrix form as $I=G V$. This architecture allows efficient matrix multiplication in a single cycle and significantly reduces data access across memory hierarchies.

In the advancement of AI hardware, the effect of the memory bottleneck on computing performance has become increasingly evident. As much as designs attempt to avoid the memory bottleneck (also known as the Von-Neumann Bottleneck), powerful algorithms and networks continue to demand more memory. Today's networks are often orders of magnitude larger than those used a decade ago [38]. Hundreds of megabytes are needed for weight storage alone, and an order more for computing gradients and intermediate values during training. As a result, addressing memory limitations is a critical issue in further advancing AI.

1.3 Spintronic Technology

Spintronics is an emerging research field that relates to the study of the electron spin and its associated magnetic moment. The theoretical foundation of spintronics was developed by Wolfgang Pauli via Pauli matrices and quantum mechanics in the 1920s [39], which also described its relation to the quantized electron spin. Subsequently, a variety of spin-related theories have been proposed, including that of the Landau-Lifshitz-Gilbert dynamics [40] in 1935 and the prediction of the spin Hall effect in 1971 [41].

Spintronic applications took a huge step forward with the discovery of magnetoresistance effects in the 80s from tunneling experiments. Meservey and Tedrow's experiments on a ferromagnet/superconductor stack [42] and Jullière's experiments on $\mathrm{Fe} / \mathrm{Ge} / \mathrm{Co}$ stack [43] discovered the conservation of spin and the tunneling magnetoresistance effect (TMR). With the development of thin-film fabrication tools, Peter Grünberg and Albert Fert showed the giant magnetoresistance (GMR) in 1988 [44]. Since then, there has been an explosion in the discovery of spintronic mechanisms, including the spin-transfer torque effect (STT) [45], [46],

Spin-Orbit Coupling (SOC) effects (voltage-controlled magnetic anisotropy effect (VCMA) [47]-[49] and spin-orbit torque (SOT) [50]-[52]); spin textures (skyrmions [53]-[55], spin fluid [56]-[58], spin glass [59]-[61], and magnetic domains[62]-[64]); spin dynamics (Dzyaloshinskii-Moriya interaction [65]-[67], spin waves [68]-[70]); spin-thermal effects (Spin Seebeck [71]-[73]); and spin-optical effects (Magneto-optical Kerr [74]-[76]).

Today, spintronics is widely used in data storage and manipulation: spins provide an efficient, compact way of storing nonvolatile data in its orientation; and GMR/TMR-based sensors read out the magnetization as electrical signals. This technology brought about the development of hard drives and a drastic increase in the data storage density. In the 2000s, high tunneling magnetoresistance (TMR) magnetic tunneling junctions (MTJs) [77]-[79] have also received great interest as an integrable, nonvolatile random access memory element with high speed and endurance. Switching mechanisms have evolved from using magnetic fields to spinbased mechanisms (Fig.1.3.1), with STT-MRAM currently being developed by major foundries worldwide [80]-[82], and VCMA [83]-[85], SOT [86], [87] as the next-generation memory. Current research on MTJs focuses on two aspects: (1) high TMR structures with improved readability through enhanced interface characteristics and stronger polarization; and (2) energy efficient switching through enhancement of spin mechanisms.

The abundance of spin mechanisms has also led to proposals for unconventional, nonbinary computing schemes (Fig.1.3.2). For example, coupling between magnetic elements through dipolar interaction, the Dzyaloshinskii-Moriya interaction, as well as spin waves has been proposed for optimization by utilizing the energy minimization process of the interacting bits [88]-[93]. Nonlinear interactions between spintronic elements have been used for complex mapping reservoirs built upon skyrmions, MTJs, and oscillators [94]-[98]; for composing
filter-like functions using spin-wave sources, lenses, and mirrors [99], [100]. Neuromorphic computing such as physical crossbars and nonlinear activations have been composed using

Fig.1.3.1 MRAM operation mechanisms: (a) STT Switching. Electrons passing through the free layer transfer their spin angular momentum to the moments of the magnetic free layer, thereby switching its state. (b) VCMA switching. A voltage placed across the MTJ modifies the anisotropy of the magnetic free layer, leading to a precessional (damped oscillation) motion of the free layer magnetization. (c) SOT switching. The MTJ is placed upon a bus with high spin-orbit coupling. As current passes through the bus, electrons with different spin orientations accumulate on the sides of the material, which then transfer their spin moment to the free layer to change its state. (d) Advantages of magnetic memory: scalable, low energy, sub-ns switching, and high endurance with no degradation over 10^{11} cycles. Subfigures adapted from [83].

Fig.1.3.2 Illustration of spin-based nonvonventional computing methods. Energy minimization schemes compose a system of coupled spin elements so that the lowest energy state represents the solution. Complex mapping uses spin elements to map inputs to different signals, such as reserviors or high-dimensional computing. Neuromorphic devices such as synapses have been built upon spin elements, and likewise, Spin-based stochastics have utilized fluctuations in device states for computing.
domains and MTJs [101]-[105]; skyrmions have been proposed to model neurotransmitters [106]; finally, spin-stochastics have been used in probabilistic computing [107], [108], thermodynamic computing [109], and many more. However, the majority of these methods were unable to provide a definite advantage over existing CMOS implementations, and many were difficult to realize at a scaled industrial level. Our research aims to address this gap.

CHAPTER 2

SIGNAL-PROCESSING NEURAL NETWORKS

In this chapter, we present our work on utilizing special signal processing neurons to improve neural network performance. The chapter is outlined as follows: we first review different neuronal behavior and selected signal processing neurons to model. We then use neural architecture search (NAS) to optimize network architectures containing the neurons, and analyze the optimized architectures to extract characteristics of the networks. These results are then used to develop the signal-processing neural network.

Section 2.1 describes our motivation and outlines how neurons with specialized functions play a crucial role in information processing within the human brain. Chapter 2.2 reviews the functions two neurons: that of the max neuron in the visual cortex (Sec.2.2a) and the coincidence neuron in the audio cortex (Sec.2.2b), along with how they associate with neural network design today. Then, in Sec.2.2c, we detail the step-by-step process to create the approximate piecewise-linear model of these two neurons.

With the models, we then use neural architecture search (NAS) to find high-performing architectures. In Sec. 2.3, We describe the three NAS algorithms used in this study, based upon three biological pheonmena: neural growth, neural pruining, and genetic mutation. These three NAS schemes also correspond to how the network architure changes as the amount of neurons in the network stays constant, increases, or decreases. Sec.2.4 then details the setup of the experiments, e.g., the datasets we use, how they are preprocessed, and parameters of the search and training process. Analysis results of the optimized architectures is presneted in Sec.2.5, in which we illustrate how the network structure, amount of connections, and types of neurons change throughout the network. The analysis results are then used to design a compact, highperformance signal processing neural network.

2.1 Motivation

As described in Chapter 1, advancements in artificial neural networks have often taken inspiration from biology. For example, the McCulloch-Pitts neuron arose from modeling of the neuron's integrate and fire behavior; convolutional network structures from the visual cortex; and network compression methods from neural pruning.

In the past decade, a large variety of neuronal behavior has been discovered. Neurons have been shown to differ in signal transmission (bipolar, unipolar, and multi-polar), functionality (sensory, motor, and interneuron), structures (connection shapes and density), as well as the type of neurotransmitter and neuromodulators involved [110]. Specialized neurons form crucial functions in information processing systems that are shared throughout organisms rather than generated through learning. For example, grid cells in the entorhinal cortex play a major role in composing the brain's cognitive spatial map [111]-[114]. They operate through the phase precession mechanism, in which the firing of a neuron is timed in relation to the phase of the neural oscillation in the surrounding cells [115]. At the behavioral level, these neurons fire when their host occupies a spatial grid in the environment (Fig.2.2.1). Grid cells have been

Grid Cell Activity vs. Organism Location

Fig.2.1.1 Firing activity of grid cells. Grid cells fire regularly when its host organism occupies points on a spatial grid. Their firing activity contribute towards the spatial cognitive map in the brain by providing information about location and distance.

Piecewise Linear

Step-Like

Fig.2.1.2 Common activation functions used in today's neural networks. (Left) the family of piecewise linear units: Rectified Linear Units (ReLU) rectifying negative signals to zero, leaky ReLU has a nonzero slope in the negative region, and Exponential Linear Units (ELU) has an exponential slope in the negative region. (Right) the family of step-like activation functions take forms of the binary step, sigmoid, and tanh.
discovered across a variety of higher cognitive mammals including mice, monkeys, and humans.

Exploring and utilizing neuronal functions provide a promising path to boost machine learning performance, and could eventually lead to an improved understanding of the biological information processing flow. However, today's artificial neural networks (ANNs) have yet to take inspiration from these discoveries. Neuronal responses, often characterized by a neuron model's activation function, have settled to a few nonlinear functions after a long process of numerical and empirical exploration (Fig.2.2.2). From the binary-thresholding function used in the McCulloch-Pitts neuron, activation functions first shifted to continuous functions like sigmoid and tanh that enable backpropagation. Piecewise linear units later took the center stage due to their non-saturating gradient and low computation complexity. Rectified Linear Units (ReLU) celebrated success in image recognition [116]-[118], while those with a nonzero negative slope (Parameterized ReLU (PReLU), Exponential ReLU (ELU), LeakyReLU [119], [120]) have been used in image generation. c

2.2 Neuron Models

2.2a Max Neurons

Fig.2.2.1 The distinct features and behavior of max and coincidence neurons. A max neuron outputs the maximum value among its inputs, and fires whenever any of its inputs fire (green box). A coincidence neuron detects coincidence in its inputs, and fires only when both inputs are simultaneously active (blue box)

Signal processing in the visual cortex is mainly composed of a hierarchical buildup of receptive fields, in which larger receptive fields of latter layers can be modeled by a linear combination of the smaller receptive fields in earlier layers. However, in some of the higher regions of the visual cortex, neuronal functions that cannot be modeled by linear combinations have also been discovered. One such function is the max function (Fig.2.2.1), in which a neuron's output is determined by the input with the highest level of activity [122], [123]. The max function is able to identify the dominant signal in a large number of inputs, and its commutative property results in a response that is invariant to spatial shifts within its receptive field, and reduce the impact of noise in non-dominant signals [124], [125].

Since their discovery, the adaptation of the max function has been abundant in image processing. Its most successful adaptation is perhaps feature pooling, in which a filter scans localized patches and outputs the maximum or average value within the region. Feature pooling is often inserted after convolutions to down-sample features and extract abstract, higher-level concepts from the applied region. They have demonstrated the same benefits as the max
neurons, e.g., dominant signal identification, invariance to image transformations, and robustness to noise. A detailed theoretical discussion on pooling can be found in [126].

2.2b Coincidence Neurons

Studies of human auditory processing have shown that temporal and frequency structures are crucial to the representation of audio events [127], [128]. In the human auditory system, signals picked up by auditory nerve fibers excite cells that detect the coincidence, or simultaneous activity, in a group of fibers. Coincidence neurons have extremely low time constants and input resistance, giving them the ability to compare timing cues with accuracy over 100x of neural firing [129], [130]. They respond maximally when multiple input synapses are simultaneously active, and significantly less otherwise (Fig.2.2.1).

The success of gated networks and attention networks in audio processing is likely associated with the coincidence function. In a gated network, a neuron's output is blocked unless its gating signal is high. In other words, its output is high only when both the gating signal and its input are high at the same time. This behavior is characteristic of the coincidence function. Examples of these networks include Long Short-Term Memories (LSTMs) and gated Recurrent Neural Networks (RNNs) [131]-[133].

2.2c Model Algorithm

Our first step towards modeling the signal processing neurons is to represent the response of the neurons in the form of a truth table. The truth table defines the regions of linearity and boundaries where nonlinearity occurs. Here, we consider a neuron with two inputs whose activies are either firing or silent. The max neuron's response is the maximum value among its input synapses. In other words, its output fires whenever any of its inputs fire. On the other hand, the coincidence neurons only fires when all their inputs fire at the same time. The table
(a) Truth Table

Max	x_{2} silent	x_{2} fires
x_{1} silent	Silent	fires
x_{1} fires	fires	fires

Coincidence	x_{2} silent	\boldsymbol{x}_{2} fires
x_{1} silent	Silent	Silent
\boldsymbol{x}_{1} fires	Silent	fires

(b) Numerical Values

Max	$x_{2} \leq 0$	$\boldsymbol{x}_{\mathbf{2}}>\mathbf{0}$
$x_{1} \leq 0$	≤ 0	$>\mathbf{0}$
$\boldsymbol{x}_{\mathbf{1}}>\mathbf{0}$	$>\mathbf{0}$	$>\mathbf{0}$

Coincidence	$x_{2} \leq 0$	$\boldsymbol{x}_{\mathbf{2}}>\mathbf{0}$
$x_{1} \leq 0$	≤ 0	≤ 0
$\boldsymbol{x}_{\mathbf{1}}>\mathbf{0}$	≤ 0	$>\mathbf{0}$

(c) Input-Output Relationship

Max	$x_{2} \leq 0$	$\boldsymbol{x}_{2}>\mathbf{0}$
$x_{1} \leq 0$	0	$\boldsymbol{- x}_{\boldsymbol{i}}{ }^{*}$
$\boldsymbol{x}_{\mathbf{1}}>\mathbf{0}$	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{x}_{\boldsymbol{i}}$

(d) Continuous and differentiable

$$
y_{\max }=\operatorname{ReLU}\left(x_{1}\right)+\operatorname{ReLU}\left(-x_{1}\right) * \operatorname{ReLU}\left(\tanh \left(x_{2}\right)\right) \quad y_{c o}=\operatorname{relu}\left(x_{1}\right) * \operatorname{ReLU}\left(\tanh \left(x_{2}\right)\right)
$$

Fig.2.2.2 Modelling algorithm of the specialized neurons. The models process cosists of 4 steps: (a) creating the truth table of the neuron's response behavior, (b) assigning the numerical boundaries to regions based on the the truth table, (c) assigning numerical values to each region, and (d) smoothing boundaries with the tanh function.
is shown in Fig.2.2.2a. Interestingly, the truth tables of the two neurons match that of logical functions "AND" and "OR".

After composing the truth tables, numerical ranges are assigned to define the signals that are considered as firing and silent (Fig.2.2.2b). Here, we follow the conventional definition of firing as a signal exceeding a threshold of 0 and silent otherwise.

$$
\begin{aligned}
& x \text { fires } \leftrightarrow x>0 ; x \text { silent } \leftrightarrow x \leq 0 \\
& y \text { fires } \leftrightarrow y>0 ; y \text { silent } \leftrightarrow y=0
\end{aligned}
$$

We then define the input-output relationship within each entry of the truth table. Taking inspiration from piecewise linear functions, we set the y to be linear to x_{1} with a unit slope when the output is firing and 0 otherwise:

$$
\begin{gathered}
y=\left|x_{1}\right| \text { if } y \text { is firing } \\
y=0 \text { if } y \text { is silent } .
\end{gathered}
$$

Fig.2.2.3 Obtaining a second input x_{2} from a single feature map x_{1}. Here, we create x_{2} by shifting x_{1} by one element in each dimension of the feature map.

The corresponding gradients are:

$$
\begin{aligned}
& \left|\partial y / \partial x_{1}\right|=1 \text { if } y \text { is firing } \\
& \left|\partial y / \partial x_{1}\right|=0 \text { if } y \text { is silent }
\end{aligned}
$$

Finally, as the table contains discontinuous, non-differentiable transitions, we smooth the transition between entries with \tanh function on x_{2}. With this, we arrive at the two models of the two neurons:

$$
\begin{gathered}
y_{c o}=R\left(x_{1}\right) * R\left(T\left(x_{2}\right)\right) \quad \ldots \text { Eq.2.2.1 } \\
y_{\max }=R\left(x_{1}\right)+R\left(-x_{1}\right) * R\left(T\left(x_{2}\right)\right) \quad \ldots \text { Eq.2.2.2 }
\end{gathered}
$$

Where $y_{c o}$ is the coincidence neuron model, $y_{\max }$ is the max neuron model, R is the ReLU function, and T is the tanh function.

The max and the coincidence neuron models have two inputs that can come from different parts of a network architecture. Where only one input is available, we can let x_{2} be a manipulated or shifted version of x_{1}. For example, we can create x_{2} by shifting x_{1} by 1 element in each feature map dimension, as shown in Fig.2.2.3. In this case, we can reduce the functions to

$$
\begin{aligned}
& y_{\text {co_s }}=R\left(x_{1}\right) * R\left(T\left(x_{1} \ll 1\right)\right) \quad . . E q \cdot 2 \cdot 2 \cdot 1 a \\
& y_{\text {max_s }}=R\left(x_{1}\right)+R\left(-x_{1}\right) * R\left(T\left(x_{1} \ll 1\right)\right) \quad . . . E q \cdot 2.2 .2 a
\end{aligned}
$$

We use this reduction in our experiments in Sec.2.5.

2.3 Neural Architecture Search Algorithm

Specialized neurons are not located uniformly in neural networks. For example, max neurons are located in the higher regions of the visual cortex, operating upon the outputs of linear neurons in earlier visual regions. A network composed entirely of max neurons, whether biological or artificial, provides poor functionality as the entire network essentially reduces to a single wide max. Therefore, we must base our analysis on suitable network architectures. Toward this goal, we use network architecture search (NAS) to obtain high-performing architectures.

A NAS algorithm (Fig.2.3.1) optimizes a network by iteratively searching through an architecture space to find the best-performing architecture. It begins from a set of initial architectures; then, in each search iteration, new architectures are created and evaluated. If the new architectures perform well, they are used to update the current architectures. As a result, a high performing architecture can be obtained after multiple iterations.

A NAS algorithm can be described in three components [134]: the search space, the search method, and the evaluation strategy. The search space defines the architecture space that the algorithm searches through, and is composed of an operation space and a structure space. The operation space defines the set of operations available to the architecture, and the structure space defines how the connections between operations are formed. The operation space can include different types of operations such as convolutions (2D, separable, depth-wise) and pooling (max, average); with various kernel dimensions ($3 \times 3,5 \times 5,7 \times 7$), strides ($1,2,4$), and dilation rates $(1,2,3,4)$ [135]. The structure space could be sequential [136], [137], hierarchical [138], cell-based [135], [139], or memory-access-like topologies [140]. An example is shown in Fig.2.3.1b Search Space. In the example, the operation space includes " 1 x 1 convolution (conv)", " 3×3 conv", " 5×5 conv", and "pool"; and the structure space is "serial" and "parallel". The search space design often involves certain amounts of human expertise and experience.

Fig.2.3.1 Illustration of a Neural Architecture Search (NAS) algorithm. (a) Flow of a NAS algorithm. The algorithm iteratively creates and evaluates new architectures to find an optimized architecture. (b) components of a NAS algorithm. The search space defines the space of all architectures. For example, the architecture could be a serial connection of a 3×3 convolution (conv), a 5×5 convolution, and another 3×3 convolution (top right in Search Space). It could branch from a 3×3 conv into a 1×1 conv and a pooling in parallel, then merge back before the final 3×3 conv (top left in search space); or it could start from a parallel architecture before merging into a serial one (bottom in search space). The search method defines how the network architecture changes between each search iteration. For example, starting from the $3 x 3 \operatorname{conv}-5 x 5$ conv- $3 x 3$ conv in the first iteration, the second layer is changed to a $1 x 1$ conv in the second iteration, and the last layer branches out another 1 x 1 conv in the third iteration. The evaluation strategy provides a measure of the performance of each architecture. This includes metrics such as the accuracy of the network, the memory it consumes, as well as the time and energy it takes to run.

The search algorithm defines how the network architecture changes between each search iteration. This could be re-selecting a network architecture from the search space at random or a grid-search through its parameters [141]. It could involve modification upon a previous topperforming network [138], [139]; or be determined by another neural network through a reinforcement-learning setting [136], [137]. If the architecture is differentiable, the architecture could also be trained [142]. An example of a search method is shown in Fig.2.3.1 Search Method. In the example, the search method replaces the second layer in the first iteration, and branches the third layer in the second iteration.

The evaluation strategy provides a measure of the model's performance. This determines the NAS optimization target and is usually a combination of various performance metrics, such as accuracy, the number of flops, required memory, operation energy, latency, etc. Different designs of the evaluation strategy allow the NAS algorithm to optimize the architecture for a
single metric or a trade-off between metrics under a given set of constraints. An example of an evaluation strategy is shown in Fig.2.3.1 Evaluation Strategy. In the example, we see that the accuracy, the network size (number of parameters), the delay on an iphone, and the energy are all components of the evaluation strategy. In most cases, the most important metric is an accuracy α. The traditional way to obtain α is to train and evaluate a network [143]. However, a complete train-and-evaluation procedure is costly. As a result, accuracy extraction has been accelerated through shortened training schedules on reduced-size networks [136], [139], adopting pre-trained or shared weights [144], [145], or using proxy tasks with lower complexity [135]. Accuracy could also be estimated via another neural network [140], [146].

In the remainder of this section, we present the three bio-inspired NAS algorithms used in this work. We describe the details of the search space, search algorithm, and the evaluation strategy of each algorithm. The mutation NAS algorithm is inspired by genetic mutation. During genetic mutation, the number of genes stays the same, but the genetic expressions change. Based on this observation, our mutation NAS maintains the same number of neurons, connections, and operations throughout the search process; while the architecture and the operations change. Our growth NAS is inspired by the growth of neural pathways during an organism's learning process in which new neurons and connections are formed. Taking inspiration from this, the growth NAS continuously adds neurons to the network by splitting and branching existing connections. The pruning NAS is inspired by neural pruning. During neural pruning, less important neurons are gradually removed from the network, making it more compact, efficient, and representative. Our pruning NAS follows this principle: neurons deemed less important to the task (as evaluated by an importance measure φ) are progressively removed during the search process. These three algorithms allow us study how the network architecture as its size (e.g. amount of neurons) is kept constant, increases, or reduces.

2.3a Mutation NAS Algorithm

Our mutation NAS is based on the search space and search method of the evolutionary algorithm described in [139] combined with the differentiable search described in [142]. The evolutionary component primarily optimizes the network structure, while the differentiable conmponent finds the optimal neurons of the network. We detail this below.

Mutation NAS Search Space

At the top level, the network of our mutation NAS has a block-based architecture (Fig.2.3.2a) composing an initial 3×3 convolution followed by three repetitions of (search block $\times N_{B}-$ reduction layer) stacks and a classification layer, where N_{B} is the number of search blocks in each stack. The NAS optimizes the network through manipulating the architecture of each search block. Connections and operations in the search block are modified during the NAS search process, but the number of nodes stay identical.

Each search block (Fig.2.3.2b) has an independent architecture composed of 8 nodes: node0 and nodel are replicas of the previous block outputs, node 2 to node 6 are pairwise combinations, and node 7 concatenates unused node outputs to create the search block output. A pairwise combination takes the output of two previous nodes, applies an operation to each, and sums the result. For example, in Fig.2.3.2b, node4 takes the output of node1 and node2 as its inputs, applies a 3×3 operation on node 1 and a 5×5 operation on node 2 , and sums them. The available operations for a search block (e.g., operation space) include $1 \times 1,3 \times 3$, $5 \times 5,7 \times 7$ operations and a None operation.

The architecture of a $K \times K$ operation is shown in Fig.2.3.2c, composing a convolution with kernel size K followed by batch normalization and a trainable neuron layer. On the other hand, the None operation passes the operation input to the operation output without applying any computation.

Fig.2.3.2 The network architecture of our mutation NAS. (a) The top-level schematic: a block-based architecture composing a 3×3 convolution, three (search block $\times N_{B}$ - reduction layer) stacks, and a classification layer. (b) The schematic of a search block: composing 8 nodes with node 0 and nodel as prior block inputs, node 2 to node 6 being pairwise combinations, and node 7 concatenating all unused node outputs as the block output. Connections and operations in the search block are modified during the NAS search process, but the number of nodes stay identical. (c) The schematic of an Operation: a batch normalization, a trainable neuron layer, and a convolution with the corresponding kernel size. Note that a $1 x 1$ Convolution is labelled as 1x1Conv while a $1 x 1$ Operation is labelled as 1 x 1 . The former refers to a single convolution with kernel size 1 x 1 , while the latter also includes a batch normalization and a trainable neuron layer. (d) The trainable neuron layer contains three weighted paths, each corresponding to a neuron type: the conventional ReLU, the max, and the coincidence neurons. During training, the weights of the three paths are updated, and the path with the highest weight determines the neuron selected.

The trainable neuron layer (TL, Fig.2.3.2d) is a trainable layer that finds the optimal neuron type during training. It composes three weighted branches corresponding to the conventional ReLU neuron, the max neuron, and the coincidence neuron, respectively (e.g., the branch weights $w_{T L}=\left[w_{R e L U}, w_{\max }, w_{c o}\right]$ and the branch outputs $b_{T L}(x)=$
 neuron type has a higher probability of being the optimal neuron type. The output of the trainable neuron layer $y_{T L}$ is the sum of each branch output scaled by the softmax of the branch weights, e.g.,

$$
y_{T L}(x)=\operatorname{softmax}\left(w_{T L}\right) \cdot b_{T L}(x) \ldots \text { Eq. 2.3.2 }
$$

Where $y_{T L}(x)$ is the output of the trainable neuron layer. The softmax of a vector is the exponential of each element in the vector divided by the sum of the exponential of all elements in the vector, e.g.,

$$
\operatorname{softmax}(z)_{i}=\frac{e^{z_{i}}}{\sum e^{z_{j}}}
$$

Every neuron in the trainable neuron layer is individually optimized. For a fully connected layer with N_{F} neurons, there are a total of $3 N_{F}$ weights (e.g. 3 weights corresponding to the three neuron types for every neuron). Likewise, for a convolution layer with N_{F} neurons (e.g., number of output channels or feature maps), there are $3 N_{F}$ weights.

The reduction layer reduces feature dimensions to create a more compact representation. Following the common practice [139], the reduction layer composes three components in series: (1) a 3×3 convolution with a stride (amount of shift during convolution) of 2 and a number of output channels equal to twice the amount of input channels, followed by (2) batch normalization and (3) a trainable neuron layer.

Mutation NAS Search Method

The search method of the mutation NAS is inspired by the genetic mutation process in an evolutionary environment. Evolution can be roughly described as follows: there exists an initial population of organisms in an environment. When some organisms (e.g., a subset of the population) meet, they compete, and the best performing organisms generate offsprings that share features of their parenst. As time passes, old and poorly performing members of the population die off. As a result, many generations later, the population will be composed of members with the best suited features for the environment. An illustration of the evolution process is shown in Fig.2.3.3.

Our search algorithm mimics this process. We keep an active population P composed of $n(P)$ architectures and their evaluation metrics $\epsilon_{i}=f\left(\alpha_{i}, \eta_{i}\right) ; i \in[0, n(P)]$, where α_{i} is the
Initial set of
networks Sample from

Fig.2.3.3 Illustration of the evolutionary process and the mutation NAS search method. During the search process, a population of architectures are kept. In each search iteration, architectures are sampled from the population, and the top performing architecture is selected as the parent. The parent is used to generate a child architecture by mutating its architecture. Afterwards, the child architecture is evaluated and added to the population.
accuracy of architecture i, η_{i} is it's number of parameters, and ϵ_{i} is its evaluation metric.
During each search iteration, a sample S is first sampled from P. Within S, the architecture A^{*} with the highest evaluation metric is selected as the parent. A child A^{\prime} is then generated by mutating A^{*}. The child is then evaluated and added to P. Finally, the oldest member (agingevolution) or worst performing member (competition-evolution) of P is removed. The pseudocode for the search algorithm is shown in Fig.2.3.4.

The mutation of an architecture is as follows: during each iteration, $N_{B_{-} S}$ search blocks are selected to mutate. For each search block, an operation mutation is applied to $N_{O_{-} S}$ nodes, and a connection mutation is applied to $N_{C_{-} S}$ nodes. In an operation mutation, one of the node's operations is randomly reselected from the operation space, as illustrated in Fig.2.3.5a. In this example, we see that the None operation in node 2 is mutated to a 7×7 operation. In a

```
Algorithm1. Aging Mutation NAS
    \(n_{\text {iter }}\) : Number of search iterations
    \(n(P)\) :Population Size
    \(n(S)\) :Sample Size
    history.arch \(\leftarrow[]\)
    history.perf \(\leftarrow[]\)
while \(\mid\) history \(\mid<n(P)\) do
    model.arch \(\leftarrow\) RandomModel
    model.perf \(\leftarrow\) TrainAndEval(model.arch)
    append model.arch to history.arch
    append model.perf to history.perf
end while
Fit tradeoff hyperparameter \(k\) on history.perf
while \(\mid\) history \(\mid<n_{\text {iter }}\) do
    population \(\leftarrow\) history \([-n(P):]\)
    sample \(\leftarrow\) []
    while \(\mid\) sample \(\mid<n(S)\) do
        add RandomSample(population) to sample
    end while
    parent \(\leftarrow\) model with highest perf in sample
    child.arch \(\leftarrow\) Mutate(parents. arch)
    child.perf \(\leftarrow\) TrainAndEval(child.arch)
    append child. arch to history.arch
    append child.perf to history.perf
end while
Return highest metric model in history
```

Fig.2.3.4 Pseudo code of the mutation NAS algorithm. First, an initial population of architectures is generated via randomly sampling from the search space. Each architecture is evaluated, and a tradeoff parameter k is fitted on the accuracy α and parameter count η of the initial population. Afterwards, in each search iteration, we randomly sample from the population and pick the top performing architecture as the parent. The parent architecture generates a child architecture via mutation, and the child is evaluated and added to the population. The oldest member of the population is then removed. When the maximum amount of search iterations $n_{i t e r}$ is reached, the algorithm returns the architecture with the highest performance metric ϵ.
connection mutation, one of the node's input connections is randomly reconnected to another node, as illustrated in Fig.2.3.5b. Here, we see that the left connection of node3 is changed from node0 to node 1 .

The parameters $N_{B_{-} S}, N_{C_{-} S}$, and $N_{O_{-} S}$ provide a tradeoff in exploration (e.g. trying out more diverse architectures in the search space with high $N_{B_{-} S}, N_{C_{-} S}$, and $N_{O_{-} S}$) vs. exploitation

Fig.2.3.5 The mutation of an architecture. (a) The operation mutation that randomly changes one operation to another. For example, the None operation in node 2 is changed to a $7 x 7$ operation. (b) The connection mutation that randomly reconnects one input of the pairwise operation. For example, the left connection of node3 is changed from node0 to nodel.
(conducting a more thorough evaluation of similar architectures in the adjacent search space with small $N_{B_{-} S}, N_{C_{-} S}$, and $\left.N_{O_{-} S}\right)$.

Mutation NAS Evaluation Procedure

In general, the accuracy α of a neural network grows with the number of parameters η in the network. If the evaluation metric ϵ is based purely upon α, a less efficient network with higher η may outperform a more efficient network with lower η. However, under the same resource constraints, an efficient structure will have a higher α. Therefore, the network performance should be evaluated in terms of both accuracy and cost (e.g. η, flops, latency, energy, etc.). We adopt the evaluation metric $\epsilon=\bar{\alpha} / \bar{\eta}^{k}$, where $\bar{\alpha}=\alpha_{\text {model }} / \alpha_{\text {init }}$ is the normalized accuracy of the model, computed as the model accuracy $\alpha_{\text {model }}$ divided by the average accuracy of the initial population $\alpha_{\text {init }} ; \bar{\eta}=\eta_{\text {model }} / \eta_{\text {init }}$ is the normalized number of parameters in the model, and k is a hyperparameter for controlling the tradeoff between α and η obtained by fitting the relation $k=-\log \bar{\alpha} / \log \bar{\eta}$ on the initial population.

2.3b Growth-based NAS Algorithm

Fig.2.3.6 The network architecture of our growth-based NAS. (a) The top-level schematic: a blockbased architecture composing a 3×3 convolution, three (search block $\times N_{B}$ - reduction layer) stacks, and a classification layer. (b) Schematic of a search block: paths are grown via branching and splitting procedures. For example, the original center path consists of only a 3×3 operation. The right path is created by splitting the center path with a 5×5 operation, then branching it with a 3×3 and a a 1×1 operation. (c) The growth procedure can be either a branch procedure or a split procedure. The branch procedure divides a path into two, applies an operation to each, and merges them back. The split procedure creates a second path with a different operation.

The growth NAS has a multi-branch search space [147], which is a generalized representation of modern feedforward CNN architectures [148] [149] [150]. The search method is similar to our NAS algorithm in Sec.2.3a. However, the procedure to generate a child architecture from a parent architecture from mutation process to a growth process.

Growth NAS Search Space

Similar to the mutation NAS, the growth NAS also has a block-based structure (Fig.2.3.6a) composing an initial 3×3 convolution, followed by three repetitions of (search block $\times N_{B}-$ reduction layer) stacks and a classification layer. Here, each search block (Fig.2.3.6b) is a multi-branch tree structure: neurons and paths in the block are formed via branching and splitting procedures. The branch procedure divides a path into two, applies an operation to each, and merges them back. The split procedure creates a duplicate path with a different operation.

An example of a search block and an illustration of a branch and split procedures is shown in
Fig.2.3.6b. In the example, the block begins from an initial 3×3 operation between the input

```
Algorithm2. Aging Growth NAS
\(n_{\text {iter }}\) : Number of search iterations
\(n(P)\) :Population Size
\(n(S)\) :Sample Size
history.arch \(\leftarrow[]\)
history.perf \(\leftarrow[]\)
while \(\mid\) history \(\mid<n(P)\) do
    model.arch \(\leftarrow\) InitialGrow(InitialModel)
    model.perf \(\leftarrow\) TrainAndEval(model.arch)
    append model.arch to history.arch
    append model.perf to history.perf
end while
Fit tradeoff hyperparameter \(k\) on history.perf
while \(\mid\) history \(\mid<n_{\text {iter }}\) do
    population \(\leftarrow\) history \([-n(P):]\)
    sample \(\leftarrow\) []
    while \(\mid\) sample \(\mid<n(S)\) do
        add RandomSample(population) to sample
    end while
    parent \(\leftarrow\) model with highest perf in sample
    child.arch \(\leftarrow\) Grow(parents.arch)
    child.perf \(\leftarrow\) TrainAndEval(child.arch)
    append child. arch to history. arch
    append child.perf to history.perf
end while
Return highest metric model in history
```

Fig.2.3.7 Pseudocode of the growth NAS algorithm. We adopt the same evolutionary backbone as the mutation NAS, e.g., keeping a population of architectures, sampling from the population, finding the top performing parent architecture, modifying the parent architecture to create a child architecture, and updating population. The main difference of the two algorithms lies in the method to generate the child architecture. Here, the child architecture is obtained by growing the parent architecture rather than mutating it. The initial population is also generated accordingly, e.g., by randomly growing an initial network.
and output (center path). The right path is then created by (1) spliting the center path to create the right path with a 5×5 operation, then (2) branching the right path into a 3×3 operation and a 1×1 operation.

Each operation has the same architecture as the mutation NAS in Fig.2.3.2c and Fig.2.3.2d, e.g., a convolution followed by batch normalization and a trainable neuron layer.

Growth NAS Search Method

The growth NAS is inspired by the growth of neural pathways: in the human brain, learning results in the creation and rearrangement of new neurons and neural connections. Upon the evolutionary backbone, we change the process to generate a child architecture from mutation to growth. From the parent architecture, $N_{B_{-} S}$ search blocks are randomly selected, and $N_{G_{-} S}$ random growth procedures, (e.g., random branch or split procedures) are applied to each block.

For the initial population, we begin with a single 3×3 operation between the input and output of each search block. Each block then randomly grows (branches or splits) up to $N_{G_{\text {_I }}}$ int times. The pseudocode of the growth NAS search algorithm is shown in Fig.2.3.7.

Growth NAS Evaluation Procedure

The growth NAS optimizes for the same target as the mutation NAS, e.g., a tradeoff between the accuracy and the cost via the evaluation metric $\epsilon=\bar{\alpha} / \bar{\eta}^{k}$,

2.3c Pruning NAS Algorithm

The pruning NAS begins with arguably the most widely benchmarked hand-crafted architecture: the ResNet [149]. ResNet introduced skip connections, enabling significantly deeper networks and marking a drastic improvement in deep learning performance across a large variety of tasks. We start with a ResNet that contains an equal amount of each neuron type, then consecutively remove low-importance neurons until we arrive at a high-accuracy, efficient network.

Pruning NAS Search Space

The top level architecture of a ResNet is shown in Fig.2.3.8a, composing a 3x3 convolution, three (residual block $\times N_{B}$ - reduction layer) stacks, a global average pooling layer, and a classification layer. The architecture of a residual block is illustrated in Fig.2.3.8b, composing two consecutive 3×3 operations and a skip connection from the block input to the block output. The skip connection provides a shortcut for signals and gradients between the block input and output.

(b)

(c)

Fig.2.3.8 The network architecture of our pruning NAS. (a) The top-level schematic of a ResNet, composing an initial 3×3 layer, three (residual block $\times N_{B}$ - reduction layer) stacks, a global pooling layer, and a classification layer. (b) The schematic of a residual block: two consecutive 3×3 operations and a skip connection (shortcut) from the block's input to its output. The 3×3 operation follow a similar implementation as the mutation and growth NAS, but with a prunable neuron layer instead of a trainable neuron layer. e.g., batch normalization \rightarrow prunable neuron layer $\rightarrow 3 \times 3$ convolution. (c) A prunable neuron layer composes an identical amount of each neuron type (e.g., $1 / 3$ being the ReLU, max, and coincidence neurons, respectively).

Instead of a trainable neuron layer, each operation is built upon a prunable neuron layer.

A prunable neuron layer allocates $1 / 3$ of it's neurons to each neuron type. During pruning, the neurons in the prunable neuron layer will be gradually removed based on their importance.

Pruning NAS Search Method

The pruning NAS is clearly inspired by neural pruning: as the human brain is becoming more skilled at a task, neurons and connections are gradually removed to create a more mature and efficient network. Our pruning NAS (Fig.2.3.9) follows this procedure: we begin with a fully trained network composing an equal amount of each neuron type; then, in each iteration, we remove $N_{R_{-} S}$ neurons with the lowest importance metric φ. The importance metric provides an estimation of how much the neuron contributes to the network's operation. When neurons with low importance metric are removed, we expect that it does not significantly affect the network's operation. A neuron is removed by setting its weights and outputs to 0 . Afterwards,

```
Algorithm 3. Pruning NAS
    \(n_{i t e r}\) : Number of search iterations
    history.pruned \(\leftarrow[]\)
    history.perf \(\leftarrow[]\)
    model.perf \(\leftarrow\) TrainAndEval(model.arch)
    append model.perf to history.perf
    while \(\mid\) history| \(<n_{\text {iter }}\) do
        find neuron \(N\) with lowest importance metric \(\varphi\)
        set weights and output of \(N\) to 0
        model.perf \(\leftarrow\) FineTuneAndEval(model)
        append \(N\) to history. pruned
        append model.perf to history.perf
    end while
    Return model
```

Fig.2.3.9 Pseudocode of the pruning NAS. We first train a network that has an identical amount of each type of neuron. In each search iteration, the neuron with the lowest importance metric φ is removed. After a neuron is removed, the network is fine-tuned via a shortened training process. The search process ends when the maximum amount of iterations is reached.
the network is fine-tuned via a shortened training procedure with a reduced learning rate. This process continues until the maximum number of iterations $n_{i t e r}$ is reached or when the accuracy of the network drops by a predetermined amount.

Several importance metrics have been previously proposed, such as considering neurons with low weights as less important [151]; measuring how much the neuron contributes to the loss function [152]; or how much it contributes to the creation of features in subsequent layers [153]. Here, we adopt the squared weight importance metric, e.g., the importance metric of a neuron is the average of the neuron's squared weights ($\varphi=\overline{w^{2}}$).

2.4 Experiment Setup

In this section, we describe the setup for the NAS experiments. We will first describe the datasets used along their data characteristics (i.e., dimensions, number of samples, classes, etc.) and how the data is prepared for training (i.e., normalizing, cropping, etc.). We will then describe the settings/parameters of the NAS algorithm (i.e., $N_{B_{-} S}, N_{O_{-} S}, N_{G_{-} S}, n(P), n(S)$, etc.)

Fig.2.4.1 List of datasets used in this research. In the visual recognition category, the subcategories include pictures, handwritten characters, and artwork. In the audio recognition category, the subcategories include speech, environmental sounds, and music. For every subcategory, we select two datasets to experiment on.
as well as the training and evaluation of the networks (i.e. learning rate schedule, number of epochs, etc.).

2.4a Data Preparation

The hierarchy of datasets used in this work is shown in Fig.2.4.1. There are two categories of tasks, each with three subcategories, and each with two datasets. For visual recognition, the subcategories are pictures (CiFAR-10, CiFAR-100 [154]), handwritten characters (EMNIST [155], CROHME [156]), and artwork (Best Artworks [157], Wikiart [158]). For audio
recognition, the subcategories are speech (Speech Commands [159], Vocalset [160]), environmental sounds (ESC [161], Urbansounds8k [162]), and music (GTZAN [163], FMA [164]). In the remainder of this section, we describe in detail each dataset in terms of their content, data characteristics, and preprocessing steps for training.

2.4a. 1 Visual Recognition Datasets

Pictures: CiFAR-10 and CiFAR-100

The CiFAR datasets [154] named after the Canadian Institute For Advanced Research contain 60,000 colored, 32×32 images split into a training subset of 50,000 and an evaluation subset of 10,000 . The CiFAR-10 dataset has 10 classes containing objects and animals like airplanes, trucks, cars, and dogs. On the other hand, CiFAR-100 has 100 classes that contain a larger variety of classes such as humans, plants, and natural/man-made objects. Some examples include cloud, boy, woman, roses, sunflowers, bottles, etc.

For the CiFAR datasets, we follow the common practice of normalizing the image by the mean and average of each channel (e.g., red, green, and blue). We do not apply any other form of data augmentation (manipulating the images to improve generalization by flipping, cropping, rotation, brightness, and other means).

Handwritten Characters: EMNIST

The Extended MNIST (EMNIST) dataset [155] is an extension of the MNIST dataset derived from the NIST Handprinted Forms and Characters Database. There are ~700k training and $\sim 100 \mathrm{k}$ testing images in the greyscale, 28×28 pixel format. The dataset contains a total of 47 classes, including digits ($0 \sim 9$) and letters ($\mathrm{A} \sim \mathrm{Z}$).

For the EMNIST dataset, we follow the standard greyscale-image preprocessing practice of standardizing the image to the [0,1] range. Again, we do not use any additional form of data augmentation.

Handwritten Characters: CROHME

The Competition on Recognition of Online Handwritten Mathematical Expressions (CRHOME) dataset [156] contains $\sim 300 \mathrm{k}$ training and 75 k test images of hand-written mathematic symbols. The images are presented in a 45×45 pixel greyscale format. There are 81 classes, which include numbers, Greek letters (ex. α, β, γ), variables (ex. x, y, w, z), parenthesis (ex. (),[],\{\}), mathematical operators (ex.,,$+- \times, \div$), and other expressions.

Similar to the EMNIST dataset, we standardize the greyscale images to the $[0,1]$ range. We do not use any additional form of data augmentation.

Artwork: Best Artworks

The Best Artworks of All Time dataset [157] is a challenge organized on Kaggle (an online machine learning competition platform) whose goal is to recognize paintings from influential artists. There is a total of $\sim 9,000$ color images with dimensions ranging from a few hundred to two thousand pixels. The 50 classes correspond to artists, including Vincent Van Goh, Pablo Picasso, Leonardo Da Vinci, etc.

As there is no predefined training and evaluation subset, we divide the 9,000 images into training and evaluation subsets via an 80-20 split. In other words, 80% of the images are taken at random to be the training set and the remaining 20% of the images as the evaluation set. Also, since the images vary in resolution, we take 5 random 64×64 crops for every image and treat each as an individual example, resulting in a training set of 35,000 examples and 8,500 evaluation examples. Otherwise, no additional form of augmentation is applied.

Artwork: Wikiart

The Wikiart dataset [158] contains artwork from a variety of genres, artists, and styles. There is a total of $\sim 80,000$ color images, each of which has dimensions between a few hundred to four thousand pixels. There are 27 classes that correspond to specific art styles such as Impressionism, Realism, Symbolism, Early Renaissance, etc.

Similar to the Best Artworks dataset, we split the images into training and evaluation subsets via an 80-20 split. 5 random 64×64 crops are taken from each image and treated as individual examples, resulting in a training set of 325 k examples and 80 k evaluation examples.

2.4a. 2 Speech Recognition Datasets

Speech: Speech Commands

The speech commands dataset [159] contains spoken keywords of robotic commands. There is a total of $\sim 60 \mathrm{k}$ recordings split into a training set of $\sim 50 \mathrm{k}$ and an evaluation set of $\sim 10 \mathrm{k}$. Each recording has a duration of ~ 1 second. There are 30 classes that include the commands Yes/No, up/down/left/right, on/off, numbers, and other phoneme-rich words.

To process each recording, we first clip or zero-pad each recording to a 1 -second duration. We then compute its Mel-frequency spectrogram, which is a short-term power spectrum computed on a nonlinear frequency scale that approximates the human auditory system's response. The spectrogram is computed with 32 channels using a frame size of 512 points and a hop length (number of points between successive frames) of 256 points. A small value of 0.00001 is then added to the spectrogram before taking the \log of the spectrogram to avoid $\log (0)$ conditions. Finally, the log-spectrogram is linearly interpolated to a dimension of 32×32 and normalized.

All other audio datasets follow this log-Mel-spectrogram approach, with the number of channels and the final spectrogram dimensions scaled proportionally to the length of the recording.

Speech: Vocalset

The Vocalset [160] is a dataset composed of singing techniques performed by professional singers. There is a total of 3,500 recordings in the dataset, each up to 10 seconds long. The 17 classes correspond to singing techniques like belting, vibrato, vocal fry, inhaled, etc.

We preprocess the Vocalset similar to that of Speech Commands: cropping or zero-padding each recording to 5 seconds length, computing a 128-channel log-Mel-spectrogram, then interpolating the spectrogram to 128×128 and normalizing it.

Environmental Sounds: ESC

The Environmental Sound Classification (ESC) dataset [161] is a collection of environmental sounds extracted from the Freesounds project. There are 2000 recordings, each 5 seconds long. The dataset is prearranged into 5 folds. This means that every 20% of the data is organized into a group called a "fold". This arrangement allows different users to crossvalidate their results using the same examples while allowing flexibility in the amount of examples in the test and evaluate split. Each recording is classified into one of 50 classes belonging to 5 major categories: Animals (dogs, cats, cows, etc.), Natural soundscapes (rain, sea waves, etc.), Human sounds (crying, coughing, etc.), Interior/domestic sounds (door creak, can opening, etc.), and Exterior/Urban sounds (helicopter, train, etc.).

We use the first to fourth folds are for training and the fifth for evaluation. As previously mentioned, the recordings are processed by padding/clipping to 5 s, computing the 128 -channel log-Mel-spectrogram, interpolating to 128×128, and normalizing it.

Environmental Sounds: UrbanSounds8k

The Urbandsounds-8k dataset [162] contains 8732 excerpts of urban-environment sounds extracted from the Freesounds project. Each clip is up to 4 seconds long and labeled as one of 10 classes that include car horns, dog barking, sirens, street music, etc. The dataset is prearranged into 10 folds.

We use the first to eighth folds for training and the ninth to tenth folds for evaluation. The recordings are processed by padding/clipping to 3 seconds length, computing the 64 -channel log-Mel-spectrogram, interpolating to 64×64, and normalizing it.

Music: GTZAN

The GTZAN dataset [163] named after its organizer George Tzanetakis is a music genre dataset with a total of 1,000 recordings. Each recording is 30 seconds long, and there are 10 classes corresponding to music genres including blues, classical, country, disco, rock, etc.

We again divide the dataset into training and evaluation subsets via an 80-20 split. Afterward, each 30 -second recording is divided into six 5 -second clips, and each clip is processed by computing the 128 -channel log-Mel-spectrogram, interpolating to 128×128, and normalizing it. This results in a training set of 4,800 and an evaluation set of 1,200 .

Music: FMA Medium

The Free Music Archive (FMA) dataset [164] is a large-scale music dataset that contains tracks from creative-commons-licensed audio. Data is available as pre-computed features, 30second recordings, as well as full-length audio. For each recording, the title, artist, album, and genre are provided. The FMA medium subset has 25,00030 -second recordings; and is labeled as one of 16 music genres that include blues, jazz, pop, etc.

Similar to the GTZAN dataset, we use an 80-20 train-eval split and divide each 30-second recording into six 5 -second clips. Each clip is processed by computing the 128 -channel log-Mel-spectrogram, interpolating to 128×128, and normalizing it. This results in a training set of 120,000 and an evaluation set of 30,000 .

2.4b NAS and Training Setup

During NAS, it is important to adopt a suitable model size (i.e., layers, number of neurons per layer, etc.) and training setting to avoid overfitting and underfitting. When networks are overfitted, their performance becomes capped independent of the network architecture with random fluctuation between different iterations. When networks are underfitted significantly, the non-converged, large variation in accuracy also it difficult to compare architectures. Both overfitting and underfitting would misguide the search process.

In this section, we describe in detail the NAS search algorithm settings (i.e., search iterations, $N_{G_{-} S}, N_{B_{-} S}, N_{O_{-} S}, n(P)$, etc.), network settings (number of filters n_{F} and blocks N_{B}), and the training/ evaluation settings (learning rate schedule, loss functions, number of epochs, etc.) during the search process.

Mutation-based NAS

Finding optimal NAS settings for every dataset would be extremely time-consuming. Thankfully, we can modify and build upon the setting of similar prior works as NAS on the CiFAR-10 dataset is well benchmarked. For this, we utilize theoretical and experimental studies on the scaling of network size and training settings with respect to the dataset size[165].

The mutation-based NAS search algorithm requires determining the population size $n(P)$, sample size $n(S)$, number of neurons/filters n_{f} and blocks N_{B} in the network, the search iterations $n_{\text {iter }}$, and the number of mutation blocks $N_{B_{-} S}$, connections $N_{C_{-} S}$, and operations $N_{O_{-} S}$ in each search iteration. In a prior mutation-based NAS [139], the authors experimented with a variety of population $n(P)$ and sample sizes $n(S)$ and achieved best results via a population size $n(P)=100$ and sample size $n(S)=25$; using a network size of $n_{f}=24$. The NAS improvement was observed to plateau at $20 k$ iterations, e.g., $n_{i t e r}=2 \times 10^{4}$. We keep the same $n(P)$ and $n(S)$; however, since our operation space is limited to convolutions of different sizes (while the reference includes 3 different types of convolutions), $n_{\text {iter }}$ is reduced to 10^{3} and n_{f} is reduced to 16 to further avoid overfitting. Finally, as our goal is to study characteristics of high-performing networks containing specialized neurons rather than obtain a global optimized network, we focus on exploitation over exploration: $N_{B_{-} S}, N_{C_{-} S}$, and $N_{O_{-} S}$ are all set to 1. The NAS search algorithm settings are summarized in Table2.4.1.

The training settings for each search iteration include: the number of training epochs n_{e} (or training steps n_{s}), the gradient descent method, the learning rate schedule, the batch size $n_{\text {batch }}$,

Table 2.4.1 Training settings for each dataset.

Dataset	CiFAR-10	CiFAR-100	EMNIST	Crohme	Paintings	Wikiart
Input Dims.	$32 \times 32 \times 3$	$32 \times 32 \times 3$	$28 \times 28 \times 1$	$40 \times 40 \times 1$	$64 \times 64 \times 3$	$64 \times 64 \times 3$
Classes	10	100	10	81	50	27
Examples	50,000	50,000	700,000	300,000	7,000	64,000
Depth	9	9	9	9	9	9
Width	16	16	20	14	6	18
Epochs	10	10	3	4	26	8
Dataset	Speech	Vocalset	ESC	Urban	GTZAN	FMA
Input Dims.	$32 \times 32 \times 1$	$128 \times 128 \times 1$	$128 \times 128 \times 1$	$64 \times 64 \times 1$	$128 \times 128 \times 1$	$128 \times 128 \times 1$
Classes	30	17	50	10	10	16
Examples	85,000	4,000	2,000	8,000	1,000	25,000
Depth	9	9	9	9	9	9
Width	20	4	4	6	4	12
Epochs	8	38	50	25	70	14

and the weight decay. Following the previous work [139], we use stochastic gradient descent with a momentum of 0.9 as the gradient descent method. The initial learning rate is set to 0.01 and decreased by 80% for every 30% of the total number of training steps (e.g., reduced to 2×10^{-3} at the $30^{\text {th }}$ percentile step, 4×10^{-4} at the $60^{\text {th }}$ percentile step, and 8×10^{-5} at the $90^{\text {th }}$ percentile step). The batch size is 128 and weight decay is 5×10^{-4}. However, we reduce the number of training epochs from 25 to 10 as our network is smaller. To accelerate the neuron-type search, we also increase the trainable neuron layer weights $w_{T L}$ by $10 \times$.

Using CiFAR-10 as a baseline, we scale the training settings for each dataset based on the results reported in [165]. Empirically and theoretically, the authors suggested that network size and training steps should be proportional to the square root of the number of training samples in the dataset. In addition, we also consider the increase in input complexity that comes from the number of input channels:

$$
n_{f, D S}=n_{f, C i f a r} \sqrt{\left(N_{D S} / N_{C i f a r}\right)} \frac{C_{D S}}{C_{C i f a r}} \quad \ldots \text { Eq.2.4.1 }
$$

Where for a given dataset $(D S), N_{D S}$ is the number of training samples in the dataset, $C_{D S}$ is the number of channels of each sample, and $n_{f, D S}$ is the number of neurons/filters of the network used in NAS. The reference dataset, CiFAR-10, is denoted with subscript Cifar, e.g., $N_{\text {Cifar }}$, $C_{C i f a r}$, and $n_{f, C i f a r}$. Likewise,

$$
n_{s, D S}=n_{s, C i f a r} \sqrt{\left(N_{D S} / N_{C i f a r}\right)} \quad \ldots \text { Eq.2.4.2 }
$$

Where $n_{s, D S}$ denotes the number of training steps for a dataset and $n_{s, C i f a r}$ is the number of training steps for the reference CiFAR-10 dataset. Note that n_{s} is related to n_{e} via the relation $n_{s}=n_{e} \times N_{D S} / n_{\text {batch }}$. The training settings for each dataset are summarized in Table2.4.1.

Growth-based NAS Algorithm

Due to sharing the same evolutionary backbone, the growth-based NAS shares many of the search algorithm parameters as the mutation-based NAS. Specifically, $n(P)=100, n(S)=$ $25, n_{\text {iter }}=1000$ and $n_{f}=16$. The initial population is generated by randomly applying up to $N_{G_{-} \text {Init }}=10$ growth operations to each block. In each search iteration, the number of blocks that grow N_{B} and the number of growth operations per block $N_{G_{-} S}$ are both set to 1 . In addition, to prevent networks from overgrowing, we also terminate the search algorithm when the total number of operations in the network exceeds 100.

Pruning-based NAS Algorithm

The search algorithm setting is as follows: the number of neurons pruned $N_{R_{-} S}=1, n_{\text {iter }}=$ 1000 , and $n_{f}=16 \times 3$ (e.g., $n_{f}=16$ for each neuron type: conventional, max, and coincidence). In addition, as the network begins to fail when too many neurons are removed, we terminate the search algorithm when the network recognition rate drops by 2%

The initial network is trained using the same settings as the mutation and growth NAS, but with $50 \times$ the number of steps n_{s}. This corresponds to $n_{e}=500$ epochs with stochastic gradient descent with a momentum of 0.9 , an initial learning rate of 0.01 decreased by 80% for

Fig.2.5.1 Scatter plot of network performance ($\bar{\eta}, \bar{\alpha}$) of the initial (red) and final (green) population of the mutation NAS on the CiFAR-10 dataset. The line of tradeoff $\bar{\alpha}=\bar{\eta}^{k}$ is displayed in yellow. The NAS successfully searched and obtained high performance networks to the right-bottom of the tradeoff line; with the final population having 1% higher $\bar{\alpha}$ and 18% lower $\bar{\eta}$.
every 30% of the total number of training steps, $n_{\text {batch }}=128$ and weight decay is 5×10^{-4}. The fine-tuning process composes two epochs, each with the decayed learning rate $\left(2 \times 10^{-3}\right)$ and the double-decayed learning rate $\left(4 \times 10^{-4}\right)$, respectively.

2.5 Experimental Results

In this section, we analyze three characteristics of top-performing networks: (1) the structural organization of the network, e.g., the height (or depth) and width of the search blocks as the network progresses; (2) the structural composition of the network, e.g., the type and number of operations in the search blocks as the network progresses; and (3) the neural composition of networks, e.g., the amount of each type of neurons in the search blocks as the network progresses.

We study the structural organization and structural composition on networks optimized via the mutation and growth NAS, as they have diverse operations and connections during the

Fig.2.5.2 Structural organization of the top performing networks discovered by the mutation NAS. (a) stack height, and (b) stack width. Towards the end of the network (latter stacks), the height continues to increase while the width decreases. This is due to the cost tradeoff: by decreasing width, the network cost reduces. Under the constraint of fixed number of neurons, this squeezes the architecture to a greater height
search process. On the other hand, we study the neural composition on the pruning NAS; which removes the impact from different types of operations and connections.

Fig.2.5.1 shows a scatter plot of the networks optimized by the mutation NAS on the CiFAR-10 dataset. The x and y axes represent the normalized accuracy $\bar{\alpha}$ and the normalized number of parameters $\bar{\eta}$, respectively. The initial population is displayed in red and the final population in green. The $\bar{\alpha}-t o-\bar{\eta}$ tradeoff curve ($\bar{\alpha}=\bar{\eta}^{k}$) is displayed in yellow. As the architecture search progresses, the NAS obtains networks at the bottom right corner below the tradeoff line, e.g., networks with higher performance but a lower number of parameters. Our NAS successfully achieves this goal with the final population (green star) displaying a 1% higher $\bar{\alpha}(72 \% \rightarrow 73 \%)$ and 18% lower $\bar{\eta}(4.8 \mathrm{M} \rightarrow 4 \mathrm{M})$ compared to the initial population.

Fig.2.5.2 shows the structural organization of top-performing networks found by the mutation NAS. Here, we report statistics for each stack in Fig.2.3.2a (e.g., every N_{B} search blocks). The height H of an architecture is defined as the longest path from its input to output. For example, the search block in Fig.2.3.2b has a maximum height of 4, via the path through node $0 \rightarrow$ node $3 \rightarrow$ node $5 \rightarrow$ node $6 \rightarrow$ node 7 . The width W of an architecture is defined as the maximum number of operations of the same height (or equivalently, the maximum number of

Fig.2.5.3 Structural composition of top performing networks found by the mutation-based NAS. The percentage of $1 \times 1,3 \times 3,5 \times 5$, and 7×7 operations in each stack are shown. In the first stack, the percentage of each operation is similar. Towards the end of the network, a significant decrease in the higher kernel size (K) operations is observed, as expected from the cost tradeoff.
neurons or filters). For example, the structure in Fig.2.3.2b has a width of 2, as node4 and node 5 both share a height of 2 .

We observe the networks display increasing height and decreasing width as the network progresses towards the latter stacks in Fig.2.3.2a. This is due to the cost tradeoff: the cost (e.g., η) of an operation is proportional $n_{\text {in }} \times n_{\text {out }} \times K^{2}$, where $n_{\text {in }}$ is the number of input filters, $n_{\text {out }}$ is the number of output filters, and K is the kernel size. As a result, the cost of a network can be reduced by either (design.1) adopting a structure with a lower width, which reduces the overall $n_{i n}$; (design.2) avoiding operations in the latter stacks which have both larger $n_{i n}$ and $n_{\text {out }}$; and (design.3) adopting operations with smaller kernel size K. It is obvious that (design.1) is observed in 2.5.2(b). As the mutation NAS keeps a constant number of operations and connections, this results in a greater height as observed in 2.5.2(a).

Fig.2.5.3 shows the structural composition of the top-performing networks. We observe that, in the first stack, the $1 \mathrm{x} 1,3 \times 3,5 \times 5$, and 7×7 operations occupy a similar percentage. Towards the end of the network, the number of operations with a small kernel size (K) increases while

Fig.2.5.4 Structural organization of the top performing networks discovered by the growth NAS. (a) stack height, and (b) stack width. Both the height and width drop significantly at the $3^{\text {rd }}$ stack, as a result of the cost tradeoff: a small $3^{\text {rd }}$ block reduces the network cost. From the $1^{\text {st }}$ to $2^{\text {nd }}$ stack, on the other hand, while the average height and width both increase, we observe cases both in the increase of height/width and the decrease of height/width. This could be a compensation for the extreme reduction in $3^{\text {rd }}$ block size.
the percentage of operations with large K reduces. This is a characteristic of (design.2). In earlier blocks, having a more diverse K provides an image-pyramid-like representation that can view the input image at different scales. However, operations with large K become too expensive at the latter blocks, and thus their presence reduces.

2.5b Growth-based NAS

While the mutation NAS has a fixed number of operations in each block, the growth NAS can grow indefinitely until the tradeoff between α and η is unfavorable. Fig.2.5.5 shows the structural organization of the top-performing networks found by the growth NAS. We observe that the stack height and width both drop drastically in the third block, characteristic of (design.1). The average width and height increase slightly from the $1^{\text {st }}$ to $2^{\text {nd }}$ block; however, cases of width/height decrease are also observed. This increase could be to compensate for the significantly smaller $3^{\text {rd }}$ block, e.g., operations originally in the $3^{\text {rd }}$ block can be appended to the $2^{\text {nd }}$ instead, which, for the same operation, reduces $n_{\text {in }}$ and $n_{\text {out }}$.

Fig.2.5.6 shows the structural composition of the top-performing networks found by the growth-based NAS. We observe that the 3×3 operation stands out with the highest

Fig.2.5.7 Structural composition of top performing networks found by the growth-based NAS. The percentage of $1 \times 1,3 \times 3,5 \times 5$, and 7×7 operations in each stack are shown. We observe that the percentage of 3×3 stands out with having a good cost-to-performance tradeoff. Otherwise, a similar trend to the mutation NAS is observed, e.g., a a significant decrease in the percentage of higher kernel size (K) operations towards the end of the network.
percentage. This indicates that the 3×3 operation provides a very good cost-to-performance tradeoff, which agrees with prior hand-designed networks [38]. We also observe the same trend as the mutation NAS, where an image-pyramid representation was observed in the $1^{\text {st }}$ stack and the percentage of high- K operations decreasing towards the end of the network.

2.5c Pruning-based NAS

The pruning-based NAS does not change the operations and the connections throughout its search process. While this impedes its ability to study network structure and network composition, it provides an advantage in studying the neural composition in terms of the importance, location dependency, and quantity as it takes out structural contributions.

Fig.2.5.8 shows the importance of neurons in the network as pruning progresses. Network layers are represented in strips, from the earlier layers on the top to the latter layers on the bottom. In each strip, the conventional (ReLU), max, and coincidence neurons are represented by red, green, and blue, respectively, while neurons pruned are displayed in black. Neurons are ranked by their importance metric φ from the left $(\operatorname{high} \varphi)$ of each strip to the right (low φ).

Fig.2.5.8 Importance of neurons in the network during pruning on the CiFAR-10 dataset. The network layers correspond to strips in the figure. In each strip, the conventional (ReLU), max, and coincidence neurons are by red, green, and blue, respectively, while neurons pruned are displayed in black. Neurons are ranked by their importance metric φ from the left (high φ) of each strip to the right (low φ). The initial network had an α of 88.5% and had $\eta=2.1 \mathrm{M}$ parameters. As pruning progresses, α and η both decrease. We observe that neurons in the latter layers of the last stack were pruned first, after which neurons in the latter layers of every stack were pruned. Post pruning, we observe that conventional neurons are dominant in the early layers, max neurons in the middle layers, and coincidence neurons mainly show up in the latter layers.

Based on the importance metric φ, neurons in the $3^{\text {rd }}$ stacks were pruned first, after which
neurons in the $1^{\text {st }}$, then the $2^{\text {nd }}$ stacks were pruned. Neurons towards the latter layers of each
block had a higher probability of being pruned, indicating a bottleneck structure helps summarize the features of each stack.

In terms of neural composition, Fig.2.5.8 suggests that (1) conventional neurons are important in the earlier layers (2) visual neurons are important in the middle layers, and (3)

Fig.2.5.9 Pruning NAS results on the audio datasets. Most follow the same results as the CiFAR-10 dataset: (1) conventional neurons favoring early layers, visual favoring middle layers, and audio favoring latter layers; and (2) pruning increases towards the end of each block as well as towards the end of the network.
audio neurons importance rise in the latter layers. We further quantify this in Fig.2.5.9, which shows the sum of the φ of each neuron type divided by the sum of the φ of all neurons.

2.5d Specialized Network Design

Summarizing the results in Sec.2.5a $\sim \operatorname{Sec} .2 .5 \mathrm{c}$, we propose design modifications to the ResNet for a more compact, high-performance architecture. Here, we take a ResNet (Fig.2.3.8) with $N_{B}=3$ and $n_{f}=48$ as an example and modify the design using the following methods:
(1) Based on the structural organization in Fig.2.5.5, the network should have an increased second block height and a decreased last-block height. As a result, we change the number of layers in each stack from $[6,6,6]$ to $[6,8,4]$.
(2) Based on the structural organization in Fig.2.5.5, the network should have a decreased width in the third stack. As a result, we change the number of filters in the original Resnet from [48,96,192] to [48,96,144].

Dataset		\# Params	CiFAR-10	CiFAR-100	EMNIST	CROHME	Paintings	Wikiart
Res	22-2	943K	85.07	55.21	88.89	98.58	32.77	34.51
	22-3	2.12M	86.28	57.34	89.44	98.86	34.77	34.65
	22-4	3.77 M	86.51	58.97	89.59	99.04	34.97	33.79
	16-3	1.25M	85.69	55.78	88.87	98.27	37.19	35.47
	28-3	2.99M	86.27	59.35	89.65	99.16	35.39	34.68
(a) W, H		1.24 M	84.36	55.09	89.04	98.79	35.15	35.02
(b) OP		2.11M	85.54	56.83	89.08	98.79	36.47	34.58
(c) Specialized		1.64M	86.41	59.02	89.06	98.68	35.05	34.58

Dataset		\# Params	Speech	Urban	ESC	Vocalset	Gtzan	FMA
Res	22-2	943K	91.22	74.54	62.23	69.43	64.32	60.73
	22-3	2.12M	91.26	74.41	62.76	69.18	67.40	61.35
	22-4	3.77M	91.69	75.52	64.32	70.47	67.52	61.59
	16-3	1.25M	90.99	74.41	63.80	68.60	65.62	60.81
	28-3	2.99M	91.05	75.91	62.50	71.11	63.01	61.43
(a) W, H		1.24 M	91.26	74.93	65.10	69.24	65.64	60.30
(b) OP		2.11M	91.79	73.18	63.28	71.65	66.66	61.54
(c) Specialized		1.64M	90.92	75.85	64.14	72.95	70.30	62.50

Table. 2.5.2 Performance of various network architectures. For the reference ReNnet, we report α and η for networks of different sizes from $N_{B}=2 \sim 4$ and $n_{f}=32 \sim 64$. To confirm the importance of specialized neurons, we also report : (a) only the network structural organization changes (1) and (2), labelled as (W,H) ; (b) only the network compositional changes (3) and (4), lablled as OP. The specialized network incorporating all changes (1)~(5) (bolded, labelled as specialized), achieves improved α by an average of 2.7% over the baseline while reducing η by $\sim 25 \%$..
(3) Based on the structural composition in Fig.2.5.6, we change the operations from entirely
" 3×3 " operations to an equal amount of " 1 x 1 ", " 5×5 ", and " 7 x 7 " in the first stack and a slightly higher " 3×3 ", e.g., [20\%, 40\%, 20\%, 20\%].
(4) Based on the structural composition in Fig.2.5.6, the portion of high-K operations continuously decreases towards the end of the network. This results in a composition of in the second and third stack, the operations are changed to [$20 \%, 50 \%, 20 \%, 10 \%$] and [30\%, $70 \%, 0 \%, 0 \%]$, respectively.
(5) Based on the neural composition in Fig.2.5.7, we use a composition of [45\%, 40\%, 15\%], [$35 \%, 40 \%, 20 \%$], and $[30 \%, 45 \%, 25 \%$] of conventional, max, and coincidence neurons for $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ stacks respectively.

Fig.2.5.10 Scatter plot of the normalized performance of various network architectures. The reference ResNet ($N_{B}=3$ and $n_{f}=48$) has $\bar{\alpha}=\bar{\eta}=1$. Larger ResNets, ($N_{B}=3$ and $n_{f}=64$, labelled $\mathrm{W} \uparrow$, and $N_{B}=4$ and $n_{f}=48$, labelled $\mathrm{H} \uparrow$) are also displayed. Network incorporating only the network structural organization changes (1) and (2) is labelled as (W,H) ; network incorporating only the network compositional changes (3) and (4) is labelled as OP. The specialized network incorporating all changes (1) ~ (5) is labelled as specialized. Overall, the specialized network achieves improved α over the baseline (also bolded) on an average of 2.7% while reducing η by $\sim 25 \%$ and even has higher average $\bar{\alpha}$ than $\mathrm{W} \uparrow$ and $\mathrm{H} \uparrow$.

The performance of different designs are reported in Table 2.5.2 and Fig.2.5.11. We show the original ResNet architecture with $N_{B}=3$ and $n_{f}=48$ as the baseline, as well smaller Resnets with reduced blocks per stack $N_{B}=2$ and $n_{f}=48$ and reduced neurons $N_{B}=3$ and $n_{f}=32$; larger Resnets with increased blocks per stack $N_{B}=4$ and $n_{f}=48$ and increased neurons $N_{B}=3$ and $n_{f}=64$. To verify the importance of the specialized neurons, we also show the structural organization modifications ((1) and (2) applied only, denoted as (W,H)), the structural composition modifications only ((3) and (4), denoted as OP), and finally the full specialized network ((1)-(5) all applied). Without the specialized neurons, neither the change in the structural organization nor composition can outperform the baseline. On the other hand,
once the specialized neurons are employed, we observe an improved average $\bar{\alpha}$ by 2.7% as well as a reduction in $\bar{\eta}$ by 25%. In many cases, the specialized network even outperforms networks with larger depth and width with $\sim 2 \mathrm{x}$ the number of parameters. These results show the importance of specialized neurons in highly efficient signal processing.

CHAPTER 3

Variation-Tolerant Memory Design

3.1 Motivation

The ever-increasing demand for memory performance has given rise to a variety of new memristive technologies with orders of magnitude improvement in programming time and energy compared to the commercially available Flash. These devices behave as electrically programmable resistors, in which the device resistance changes based on the voltage or current bias. Different resistance states correspond to different memory values; for example, a high resistance state corresponds to a digital 1 , and low resistance to a digital 0 . Some memristor devices also support multiple resistance states, allowing storage of multi-bit per cell. Memristive devices are also a key enabler of physical matrix-multiplication architectures.

Currently, the most popular memristor technologies include the magneto-resistive random access memory (MRAM) [80], [81], [166], the Resistive RAM (ReRAM)[167]-[169], and the Phase Change RAM (PCRAM) [37], [170], [171]. The MRAM device has a typical magnetic tunneling junction (MTJ) structure, which composes two magnetic layers separated by a tunneling barrier as shown in Fig.3.2.1. One magnetic layer (free layer) serves as storage, and the other (fixed layer) as a reference. Data is stored as the relative magnetic orientation of the free layer to the fixed layer: if the two layers have the same magnetic orientation, the MTJ is in its parallel (P), low resistive state (LRS); and if they have opposite orientation, the device is in its anti-parallel (AP), high resistive state (HRS). MRAMs can be programmed through a variety of spin-based phenomena, such as Spin-Transfer Torque (STT), Spin-Orbit Torque (SOT), and Voltage-Controlled Magnetic Anisotropy (VCMA) effects. They have high endurance, speed, and energy efficiency; but suffer from low distinguishability (e.g. resistance

Fig.3.2.1 Structure of a 1T-1R memory cell, composing an access transistor and a memristive nonvolatile memory (NVM) device. There are various memristor technologies, such as MRAM, PCRAM, and ReRAM. A typical MRAM composes a magnetic layer-tunneling barrier-magnetic layer stack; a typical PCRAM composes a phase change material; and a typical ReRAM composes an insulating metal-oxide with a conducting metal path. The memristor is accessed by enabling the WL signal, which connects the memristor to the BL and SL.
ratio) between the two resistance states compared with other resistive memories. Thus, main application of MRAM is as a high-density, high-performance, nonvolatile embedded memory.

The Resistive RAM (ReRAM) device in general has a metal-metal oxide structure, and stores data by forming a conductive filament between the device's two electrodes, as shown in Fig.3.2.1. The resistance of the device is low if a conductive path is formed, and high otherwise. ReRAMs have the advantage of high distinguishability, multi-resistance states, and easiness to fabricate given their simple structure. However, they suffer from limited endurance and large variability due to the damaging, stochastic nature of ionic filament formation. Currently, ReRAMs find their main application in storage and neuromorphic/computing-in-memory designs where write is not frequent.

The Phase-Change RAM (PCRAM) device composes of a phase-changing material and a heating element, as shown in Fig.3.2.1. It stores data as the crystalline structure of the phasechanging material, which displays a low resistance when it is crystalline (as it allows electrons
to easily pass through); and a high resistance when it is amorphous. This phase change is achieved through different heating-cooling processes: rapid heating and cooling lead to an amorphous phase, while gradual heating/cooling results in a crystalline phase. PCRAM often has a high resistance ratio as ReRAM and the technology is production ready. It is believed to be the technology behind Intel and Micron's 3D XPoint [172], currently available as an intermediate high-speed buffer between SSDs and the main memory. However, the heat-based write process means disturbance and gradual shifts in the device state due to thermal induced diffusion and migration.

All memristive devices suffer from variation issues. In addition to that in device dimensions (width, length, height, shape, etc) and process nonidealities (re-deposition, smoothness, sidewall impact, etc), each technology has critical factors that impact its characteristics. MRAM resistance is exponential to small changes in its barrier thickness [173]; phase change to the dimensions in the heater [174], and ReRAM from traps in the device [175]. Variation issues worsen as device dimensions scale down since the same offset contributes to a higher percentage difference. At the same time, increasing the capacity of a memory array also causes the number of tail bits (the number of memory cells at the edge of distribution) to increase. Due to variation, a given read setting will experience reduced margins and read failure while fixed write conditions could lead to wasted energy, accumulative over-programming, and write failures from resistance shifts, endurance, and stuck-at faults [176]. It is thus evident that memory variations result in a critical challenge in AI accelerators.

Here, we propose two methods to overcome the impact of variations: (1) the 2D calibration scheme, where a calibration grid is created to cancel fabrication and critical-path induced variations; and (2) the dual data line scheme, which mitigates the read challenges caused by the variations through enhancing the read signal.

3.2 Background

3.2a Memory Array Architecture

Fig.3.2.2 Structure of a memory macro, composing the main controller, X-decoder, Y-multiplexer (YMUX), an array of memory cells, read and write (R/W) circuitry, and the input/output (I/O) drivers. The main controller generates control signals for each block. The X-decoder controls the row-wise WLs, and the YMUX connects the column-wise BL and SLs to the R/W circuitry. The R / W circuitry drives the write conditions on the BL/SLs during the write operation and detects device states during the read operation. The IO /Drivers interface with the external circuitry.

The structure of a memristor memory cell is shown in Fig.3.2.1, comprising an access transistor and a memristive device (1T-1R cell). One electrode of the memristive device is connected to the drain of the access transistor, and the other electrode to the bit line (BL). The gate and source of the transistor are connected to the word line (WL) and the source line (SL), respectively. The cell is selected by applying a voltage to WL, which turns on the access transistor, connecting the two terminals of the device to the BL and SL.

The general structure of a memory macro is shown in Fig.3.2.2, which includes the main controller, an x-decoder (XDEC), a y-multiplexer (YMUX), Read/Write circuitry (RWD), and

Fig.3.2.3 Read and write waveforms of a memory array. (a) During read, the BL is pre-charged high and SL grounded. When the WL is turned on, the selected cell discharges the BL rapidly if the memristor has low resistance state (red) and slowly if the cell has high resistance (blue). The reference is set mid-point between the two voltage levels. (b) During write, the BL and SL signals are driven to provide write conditions on the selected memory cell based on the input data. For example, the device could be written to a low resistance state (W0) by setting BL=VDD and SL=0 (blue); and to a high resistance state (W1) by setting BL=0 and SL=VDD (red).
an input/output interface (IO). The main controller decodes input commands such as "Read",
"Write", and "Sleep", to generate the individual control signals of each of the other blocks such as "Sense Amplifier Enable", "Write Driver Enable". The x-direction decoder selects the accessed row based on the address and generates the WL signals applied to the array. Likewise, the y-direction multiplexer selects accessed column based on the address and connects the selected BLs and SLs to the R/W circuitry. The R/W circuitry composes the circuitry to read and write the memory cells. This includes sense amplifiers that are used to detect BL and SL signals, thereby generating the output data during read; as well as write drivers that drives BL and SL to the suitable biases to overwrite the memory cells during write.

The waveforms of a voltage-mode read operation are shown in Fig.3.2.3a. During the precharge phase, the BL voltage $V_{B L}$ is initially pre-charged to the read voltage ($V_{R E A D}$) and the

SL/ WL are grounded. Afterward, the selected WL is asserted, turning on a discharge path from the floating BL through the memory cell to the grounded SL. If the selected cell is in LRS, a large discharge current results in a rapid dropping of the BL voltage ($V_{B L L}$). In contrast, an HRS has a relatively small current and thus a slow decrease in the BL voltage $\left(V_{B L H}\right)$.

As $V_{B L}$ develops, the difference between $V_{B L L}$ and $V_{B L H}$ increases. When this difference is sufficient, a sense amplifier compares $V_{B L}$ to a reference voltage $\left(V_{R E F}\right)$ to determine the output data. If $V_{B L}$ is larger than $V_{R E F}$, the output data is determined as 1 , and 0 otherwise. The reference is often chosen to be $\left(V_{B L L}+V_{B L H}\right) / 2$ so that the maximum sensing margin $\left(V_{M}=\right.$ $V_{B L}-V_{R E F}$) can be achieved for both states. The $V_{B L}$ development time needs to ensure that V_{M} can cover the offset of the sense amplifiers for a successful read operation. Normally, V_{M} is chosen to be at least 50 mV or 100 mV .

Fig.3.2.3b shows the waveforms during a write operation. During a write operation, the WL of the selected row is first asserted by the x-decoder circuit. Subsequently, the BLs and SLs are driven by the write drivers to deliver the write conditions (e.g. write voltage, time, and current) to the selected cell based on the input data.

3.2b Variation Sources

Variation caused by Fabrication

Nonidealities during fabrication often lead to a spatial distribution of device characteristics along the wafer. These spatial distributions form patterns related to specific processing steps, which include [177]-[179]:
(1) Ring patterns (Fig.3.2.4a), where fabrication characteristics are proportional to its radial distance from the center of the wafer. These patterns are often caused by deposition, chemical-mechanical polishing (CMP), and their associated corrections.

Fig.3.2.4 Common wafer variation patterns, (a) ring patterns caused by deposition and chemicalmechanical polishing, (b) Edge patterns associated with annealing, and (c) checkerboard patterns caused by misalignment. Blue colors indicate a characteristic (such as thickness of a material) shift towards lower values, while red colors indicate a shift towards higher values [177-179].
(2) Edge patterns (Fig.3.2.4b), where characteristics shift towards the edge of the wafer. These patterns are often associated with batch cleaning or abnormal temperatures during annealing.
(3) Checkerboard patterns (Fig.3.2.4c), where characteristics alternate between peaks. This is often caused by mask misalignment during lithography or pinned defects.
(4) Random variations, caused by stochastic processes, fluctuations, defects, and particles during fabrication (not shown).

Variation caused by Critical Path

In the conventional layout of a memory macro (Fig.3.2.5a), word line (WL) drivers are located adjacent to the array, with the main control sitting below it. The read and write (R/W) circuitry is situated on the adjacent side of the array, perpendicular to the WL drivers. The delay of the critical path when accessing a memory cell consists of (a) the path from the main control to the selected WL driver, (b) the path from the selected WL driver to the addressed cell, and (c) the path from the addressed cell to the R/W circuitry.

The delay from the main controller to the selected WL driver is proportional to the access row address. WL drivers closer to the main control will receive a faster, sharper pulse while
(a)

Fig.3.2.5 Delay variations caused by critical path. (a) the memory access path during read and write operations. The WL pulse (blue) goes through the decoder and the driver before arriving at the cell. Cells closer to bottom left has lower delay. The BL access is dependent of the distance to the drivers, where cells closer to the bottom of the array has faster delay. (b) heatmap of the WL access path, and (c) heatmap of the BL access path
drivers further from the controls will receive pulses that experience RC low-pass filtering. The delay from the WL driver to the addressed cell is proportional to the accessed column, as the WL pulse arriving at the cell is affected by its distance to the WL drivers. Due to the contributions from these two delays, the memory cell furthest from the main control (top right), experiences the longest delay for the WL signal. A heat map of the WL Elmore delay (a RC delay model) is shown in Fig.3.2.5b.

The delay from the addressed cell to the R/W circuitry is proportional to the accessed row: once the WL of the selected cell is enabled, the BLs are driven depending on the operation received. For a read operation, the BL discharge speed through the memory cell is proportional to the total resistance-capacitance path from the read circuitry to the ground. As a result, the read signal experiences additional delay when accessing cells on the top row. A heat map of the BL Elmore delay is shown in Fig.3.2.5c [180]. During a write operation, the write conditions received at the target cell are also proportional to the distance from the write circuitry to the cell. Write conditions received at cells furthest from the drivers experiences the most amount of degradation.

Of course, the specific design and layout of the memory macro will also contribute to other critical-path delay components.

3.3 The 2D Calibration Scheme

Calibration is often used to compensate for different variations. In practice, slower chips can be compensated by allowing longer write times or higher write voltages. The calibration of individual sense amplifiers (ex. offsets, references) and write drivers (ex. driving current) provides a finer granularity and reduces local CMOS variation to a certain extent [181], [182]. Configurable replicas can be used to track the global variation, column capacitances, and control signal timing [183]-[185]. In a tangential approach, parallel drivers and shortcut routing reduce the parasitic effects along long buses [186]. Nevertheless, none of these methods fully address variations on the critical path and none address chip-level gradients. On the other hand, the proposed 2-dimensional (2D) calibration scheme can successfully address both variation sources by interjoining row and column level calibrations to form a correction grid at each cross-point in the memory array (as detailed in Sec.3.3a). Compared to previous

(b)	+2	+3	+4
$\Delta_{Y 1}=+0$	+4	+4	+4
	+0	+0	+0
$\Delta_{Y 2}=+1$	+1	+2	+3
	+4	+4	+4
+0	+0	+0	+0
	+0	+1	+2
$\begin{aligned} \Delta_{Y 3}= & +2 \\ & +1\end{aligned}$	+4	+4	+4
	+0	+0	+0
$\Delta_{X 1}=+2 \Delta_{X 2}=+1 \Delta_{X 2}=+0$			

- Pre-Calibration - 2D-Calibration - 2D-Calibration+Shift

Fig.3.3.1 Illustration of the 2D calibration scheme. (a) the 2D calibration scheme is based on a design in which a crosspoint signal is the sum of the row and column signals. (b) Calibration of the WL delay map where the pre-calibration delays, displayed in red, range between 0 to 4 time units (such as nanoseconds). The 2D calibration values are displayed adjacent to the array, and postcalibration delays are displayed in each cell in blue. It can be observed that after calibration, the entire array is accessed with the same delay. If design allows, the calibration values can be shifted for a reduced delay in addition to uniformity, as displayed in green. (c) 2D calibration of an edge or ring pattern, with increasing values in the column and row directions. (d) 2D calibration of a checkerboard pattern, with alternating values between rows and columns.
calibration schemes, the post-calibration variability can be reduced by up to 99% in common variation patterns.

3.3a 2D Calibration Scheme

Our 2D calibration scheme takes advantage of a design in which the signal at a crosspoint
$\left(S_{X, Y}\right)$ is the sum or difference of the corresponding row signal $\left(S_{Y}\right)$ and column signal $\left(S_{X}\right)$, i.e.
$S_{X, Y}=S_{X} \pm S_{Y}$. In this design, the calibration of the rows ($S_{Y}^{\prime}=S_{Y}+\Delta_{Y}$) and columns ($S_{X}^{\prime}=$

Fig.3.3.2 Algorithm to find calibration values. 1D calibration extracts read and write characteristics of each row and computes the calibration value from its distribution, usually by finding the max range or average of the values. 2D calibration repeats this process one additional time at each row after 1D calibration.
$S_{X}+\Delta_{X}$) composes a 2-dimensional grid in which the signal at each crosspoint is corrected by the joint contribution of the row and column calibration signals, i.e. $S_{X, Y}^{\prime}=S_{X}+S_{Y}+\Delta_{X}+\Delta_{Y}$. This is illustrated in Fig.3.3.1a.

Such a calibration grid can cancel a large diversity of spatial patterns effectively. In Fig.3.3.1b, we show an example of canceling a WL Elmore delay pattern with variation between 0 time units (which could be nanoseconds) for the fastest cell on the bottom left to 4 units for the slowest cell on the top right. WLs closer to the main control are calibrated with increasing delay (displayed in blue), from a +0 time unit delay at the furthest WL to an additional +2 time unit delay on the closest WL. Similarly, BLs closest to the main control are delayed by +2 time units and the furthest by +0 time units. The post-calibration results show a uniform delay of +4 time units across the entire array, demonstrating the effectiveness of the 2D calibration scheme. If the design allows calibrating using negative values (such as designs in which WL pulses can arrive early), the calibration values can be linearly shifted to improve
the performance of the array, as displayed in green in Fig.3.3.1b. Rows are calibrated with values from -1 to +1 time units and columns from -1 to -3 time units, allowing all cells in the array to be accessed with 0 delay.

Other common fabrication patterns of delay variation can be calibrated as follows: Edge and ring-like patterns can be calibrated with increasing/decreasing values in the direction of the gradient (Fig.3.3.1c). Checkerboard patterns can be calibrated via interleaving high and low values in both the column and row directions (Fig.3.3.1d). A combination of patterns can be achieved via a superposition of the calibration values corresponding to each pattern.

The algorithm to find calibration values for the 2D calibration scheme is shown in Fig.3.3.2. It follows the same steps as conventional calibration algorithms: (1) detecting characteristics of cells, then (2) calibrating via the average or max amount of variability. The global calibration applies this at the macro level while the 1 D calibration does this at the column level. The 2D calibration adds an additional row-level calibration step after the column-wise calibration, e.g., after the column-level calibration, the post-calibration characteristics of each row are obtained to compute the row-level calibration values. This overhead is necessary only once during each calibration, usually during chip testing.

3.3b Circuit Implementation

Traditional non-overlapping control signals do not necessarily allow a crosspoint signal to be the sum or difference of the row and column signals. In this section, we address the circuit implementation of the 2D calibration scheme. Specifically, we demonstrate the modifications to traditional designs necessary to enable 2D calibration of delay.

The modification for write operation with 2D calibration is shown in Fig.3.3.3a. In the conventional write operation, the row WL and column BL signals are nonoverlapping. The write time of the device $\left(t_{w}\right)$ is determined purely by the BL pulse timing, e.g. the difference between the BL pulse start time $\left(t_{B L S}\right)$ and the BL pulse end time $\left(t_{B L E}\right)$. Adjusting the WL

Fig.3.3.3 Read and write design modifications for the 2D calibration. (a) The conventional write waveforms (top) and the 2D calibration write waveforms (bottom). The write pulse for traditional write is enabled entirely by the BL. As a result, the voltage pulse received at the cell, $\mathrm{V}_{\text {cell }}$, is solely determined by the BL pulse. On the other hand, the write pulse of the 2D calibration scheme is enabled (started) by the WL and disabled (ended) by the BL. This allows the write pulse received at the cell to have the joint contribution of the BL and the WL calibrations. (b) The conventional read waveforms (top) and the 2D calibration read waveforms (bottom). The read time for the traditional read is enabled entirely by the WL. On the other hand, the read time of the 2D calibration scheme is enabled by the WL and disabled by the Sense Enable (SE) signal. This allows the read time of a cell to have the joint contribution of the WL and SE calibrations.
timing does not affect the write time of the device. Therefore, the calibration of the write pulse can only be done by a change in the BL pulse by $\Delta t_{B L}$. For 2D calibration, we intersect the BL and WL signals such that the write time is enabled by WL and ends through BL, e.g., the write time is the difference between the WL start time $t_{W L S}$ and the BL end time $t_{B L E}$. In this design, a change in the WL timing $t_{W L S}$ by $\Delta t_{W L}$ and a change in the BL timing $t_{B L E}$ by $\Delta t_{B L}$ will result in the write pulse being changed by $\left(\Delta t_{W L}+\Delta t_{B L}\right)$. The values for each $\Delta t_{W L}$ and $\Delta t_{B L}$ can be obtained using the algorithm in Fig.3.3.2.

The modification of a read operation with 2D calibration is shown in Fig.3.3.3b. In the conventional read operation, the row WL signal and the column sense amplifier enable (SE) signals are nonoverlapping. Therefore, the read development time is determined solely by the WL timing. To enable 2D calibration read, the read operation is enabled by the WL start time $t_{W L S}$, and sampled at the SE start time $t_{S E S}$. In this setting, a change in $t_{W L S}$ by $\Delta t_{W L}$ and a change in $t_{S E S}$ by $\Delta t_{S E}$ will result in the read time being changed by $\Delta t_{W L}+\Delta t_{S E}$.

These circuit modifications can be easily extended for voltage and current calibrations in a similar sense. The drawback is that the overhead for generating granulated voltage and current steps is usually much higher than generating temporal steps. Another challenge is that the voltage on each memory device is directly affected by the BL and SL voltage, but indirectly affected by the WL voltage. A nonlinear mapping or a horizontal-SL-vertical-BL array structure may be necessary for 2D calibration of voltage or current.

3.3c Simulation Results

We demonstrate the performance of the 2D calibration scheme on a 256×256 1T1R array in 28 nm technology. Parasitic capacitances and resistances are extracted via parasitic extraction (PEX) from the center cell of a 3×3 layout with WLs running on horizontal Metal3 and BLs/SLs running on the vertical Metal 2. For fabrication variations, we take the highest-varying regions in the ring, edge, and checkerboard patterns, and allow device resistance variation up to 10% across the array [187]. The gradient direction is selected such that the fabrication and access path contributions sum to create the worst-case variation condition, as shown in Fig.3.3.4a. For the global, 1D, and 2D calibration schemes, we plot the post-calibration Elmore delay in Fig.3.3.4b-d and report the post-calibration statistics (mean value of the variation $\operatorname{var}_{\text {mean }}$, maximum value of the variation $\operatorname{var}_{\max }$, and standard deviation of the variation $\operatorname{var}_{s t d}$) of each calibration method in the corresponding figures.

Fig.3.3.4 Performance of global, 1D, and 2D calibrations on various wafer patterns. (a) The three common wafer patterns: ring, edge, and checkerboard patterns. A resistance variation up to 10% is allowed across the array. (b) Post-calibration delay distribution of global calibration. Legend numbers show the max, mean, and standard deviation of the delay. Contributions of the WL access path and the wafer pattern remain visible. (c) Post-calibration delay of the 1D calibration. Most inter-column variations are cancelled, while row-wise variations remain. (d) Post-calibration delay of the 2D calibration, with $>90 \%$ improvement over 1D calibration (a) and global calibration (b) across all patterns.

While global calibration can overcome wafer-level variations, it fails to address variations across the array. An obvious contribution of the WL and BL access path with additional shifts from fabrication gradients can be observed in all three patterns. The 1D calibration achieves a
$\sim 20 \%$ reduction in $v a r_{\text {max }}$ compared to global calibration across different wafer patterns, but only a small improvement in $v a r i m e a n ~^{\text {. The 1D calibration can greatly reduce column-wise }}$ variation, but row-wise variations remain. The 2D calibration successfully cancels the majority of variation patterns and significantly reduces the variation across the array. Compared to the global calibration, the 2D calibration reduces $v a r_{\max }$ by $98 \%, 99 \%$, and 94% for the ring, edge, and checkerboard patterns, respectively, and $v^{2} r_{\text {mean }}$ by $99 \%, 99 \%$, and 98%. Compared to the 1D calibration, the 2D calibration reduces the $\mathrm{var}_{\text {max }}$ by $97 \%, 98 \%$, and 93%; and $v a r_{\text {mean }}$ by $99 \%, 99 \%$, and 98%.

A drawback of the 2D calibration is that it requires twice the number of calibration bits as the 1D calibration. Therefore, a comparison of the calibration efficiency, e.g., calibration performance with respect to the number of calibration bits $\left(n_{\text {cal }}\right)$ is necessary. Fig.3.3.5 shows the performance of each calibration scheme as a function of $n_{\text {cal }}$. We assume that the available calibration values are evenly distributed between the maximum and minimum delays $\left(d_{\max }, d_{\min }\right)$, with a step size of $\left(d_{\max }-d_{\min }\right) / 2^{n_{c a l}}$. We observe that $v a r_{\text {mean }}$ of the global calibration shows a small improvement with $n_{c a l}$ as it only uses a single calibration value. We also observe that the calibration settings for the lowest var $_{\text {mean }}$ does not necessarily correspond to that for lowest $\operatorname{var}_{\text {max }}$, as var $_{\text {mean }}$ depends on the entire distribution whilevar max depends on the worst-case value. For 1D calibration, var $_{\text {mean }}$ improves with $n_{c a l}$, but saturates above $n_{c a l}=4$ with a post-calibration variation of 19 ps . A similar effect is observed in $v a r_{\text {max }}$, where a small improvement is observed above $n_{\text {cal }}=6$.

On the other hand, the 2D calibration steadily improves var $_{\text {mean }}$ and var $_{\text {max }}$ with increasing $n_{\text {cal }}$. Across different values of $n_{\text {cal }}$, var $r_{\text {mean }}$ is reduced from 12.15 ps at $n_{\text {cal }}=1$ down to 0.25 ps at $n_{\text {cal }}=10$. Comparing 1D and 2D calibration at the same $n_{c a l}=1$, the 2 D calibration reduces $\operatorname{var}_{\text {max }}$ by 35% and the $\operatorname{var}_{\text {mean }}$ by 41%. Comparing the 1D and 2D

Fig.3.3.5 Performance of different calibration methods with respect to the number of calibration bits $n_{\text {cal }}$. (top) the maximum variation $v a r_{\text {max }}$, and (bottom) the mean variation $v a r_{\text {mean }}$. The performance of Global and 1D calibration both improve with $n_{\text {cal }}$, but plateaus above a certain number of bits. 2D calibration outperforms both methods and continues to decrease variation across the array with higher $n_{\text {cal }}$.
calibration schemes under the same overhead (i.e. 1D calibration with $n_{\text {cal }}=2$ and 2D calibration with $n_{\text {cal }}=1$), 2D calibration reduces the maximum variation by 27% and the average variation by 39%.

As mentioned earlier, the 2D calibration forms a calibration "grid", as compared to the 1D calibration which form column-wise "lines". This grid is more observable when there is a limited number of quantized calibration values. For example, Fig.3.3.6 shows the distribution of post-calibration delay in the array with $n_{\text {cal }}=4$, where the 2 D calibration grid is clearly visible.

Fig.3.3.6 A post-calibration heatmap of 2D calibration with $n_{c a l}=4$. Under a limited amount of calibration values, the 2 D calibration grid acting upon the original variation pattern is observable. This grid is in contrast with the 1D calibration, where column-wise calibration forms "lines" instead. The 2D calibration results are often best in the center of each grid location.

The simulated BL voltage waveforms with and without 2 D calibration are shown in Fig.3.3.7. We display the waveforms of memory cells with the largest variation in delay during access as waveforms of all other cells will reside between them, e.g. cells at the four corners of the 256×256 array: cell[0,0], cell[0,255], cell[255,0], and cell[255,255]. The memory cells have a low resistance of 2 k and high resistance of 10 k , and the access delay is calibrated at a target read time of 150 ps . The 2 D calibration significantly improves the read performance. For example, to reach a 50 mV margin, the read time can be reduced by 40% from 250 ps to 150 ps while for the same read time of 250 ps , the margin can be improved by over 50%.

A summary of different calibration schemes is shown in Table 3.3.I. With $n_{c a l}=4$, the 1 D calibration requires an overhead of 1.28% (e.g., 4 calibrations bits per column of 256 bits with an array efficiency of 80%) and provides a calibration improvement (characterized by the max, mean, and standard deviation in the delay variation) of $\sim 10 \%$ compared to global calibration. The 2D calibration uses twice the amount of calibration bits as 1D calibration, resulting in a 2.56% area overhead. However, it provides a significantly larger improvement in calibration performance by between $800 \% \sim 1000 \%$.

Fig.3.3.7 BL waveforms of the worst-case cells during read (a) without calibration, and (b) with 2D calibration. The 2D calibration targets the read condition of 50 mV read margin. For this amount of margin, the 2D calibration achieves a reduction in read time from 250 ps to 150 ps . Given the same read time, the 2D calibration improves the read margin by over 50%.

Table 3.3.1. Performance and overhead of different calibration schemes

4 calibration bits 256x256 array	Global Calibration	1D Calibration	2D Calibration
Calibration performance*	$(1,1,1)$	$(1.12,1.02,1.05)$	$(8.37,11.01,9.30)$
Area Overhead	$<1 \%$	1.28%	2.56%

* performance $=$ delay variation max $^{-1}$, mean $^{-1}$, std $^{-1}$

3.4 The Dual-Dataline Sensing Scheme

In contrast to compensating for variation, the dual-data line (DDL) sensing scheme alleviates variation-induced read challenges by improving the read signal (thereby improving the circuit tolerance to variation) instead. This is achieved by reusing read current from the bit line (BL) during read to create a differential voltage swing on the source line (SL) and combining the two to create a larger sensing signal. This increased signal provides several advantages: for the same amount of margin, the sensing time is reduced, allowing for lower energy and higher speed; while for the same sensing time, the margin is increased, improving the reliability of the read operation. We then show circuit modifications to the traditional and offset-canceling sense amplifiers to utilize the differential signals of DDL. Simulation results show that the sensing time and energy can be reduced by 47% and 48%, respectively, given the same sensing margin requirement; or under the same sensing time, the sensing margin can be increased by 86%.

3.4a Dual-Dataline Sensing Scheme

An illustration of the DDL sensing scheme is shown in Fig.3.4.1. Instead of grounding the SL during the read operation, the DDL scheme pre-discharges SL by connecting it to ground only during the pre-charge phase, then leaves it floating as the BL begins to develop. In this design, the current that is discharging the BL will charge the SL, resulting in a similar differential voltage swing on SL. The voltage difference between $V_{B L}$ and $V_{S L}$ (i.e. $V_{B L}-V_{S L}$) is applied to a sense amplifier, which sums the contribution of the two voltage swings and compares it with a reference to generate the output. The waveforms during the read operation are shown in Fig.3.4.1b. If the selected cell is in LRS, a large cell current causes a rapid discharge of the BL and a fast charge of the SL ($V_{B L_{-} L R S}$ and $\left.V_{S L_{-} L R S}\right)$. Conversely, a cell in an

HRS state results in a small cell current, and the BL/ SL voltages discharges/ charges slowly
($V_{B L_{-} H R S}$ and $\left.V_{S L_{-} H R S}\right)$.

Fig.3.4.1. Illustration of the DDL scheme. (left) Read current path and (right) read waveforms. In the conventional design, the BL is pre-charged and SL grounded. During read, the floating BL discharges through the memory cell. Reading a memory cell with high resistance (HRS, blue) discharges the BL slower, while a cell with low resistance (LRS, red) would discharge the BL faster. A reference cell (REF, black) would create a reference signal with a discharge speed between HRS and LRS. The read margin $\left(\mathrm{V}_{\mathrm{M}}\right)$ is equal to the difference between the HRS or LRS signals and the REF signal. In the DDL scheme, the BL is pre-charged and SL pre-discharged. During read, the BL discharges through the memory cell while the SL charges by the discharge current, resulting in a differential swing on the BL and SL.

The theoretical performance improvement of the DDL scheme can be obtained through passive circuit analysis. Without loss of generality, we make the following assumptions in the analysis: (1) the resistance of the memory cell selected is constant during the read operation, (2) the resistance of the access transistor is small ($<0.1 \mathrm{x}$) compared to that of the memristor, and (3) the BL/SL voltages do not saturate (i.e. approach a steady-state value) during the read process. These approximations are justified for a small voltage swing on the BL, which is usually desired during read.

In the conventional voltage-mode read operation, the BL voltage follows an RC discharge with the memory cell resistance and the BL capacitance:

$$
V_{B L_{-} C O N V}(t)=V_{R E A D} e^{\frac{-t}{R_{C E L L} C_{B L}}} \quad \ldots \text { Eq. 3.4.1 }
$$

Where $V_{B L \text { _Conv }}$ is the BL voltage during the conventional read operation, $V_{R E A D}$ iis the BL precharge voltage, $R_{C E L L}$ is the resistance of the accessed memory cell, and $C_{B L}$ is the BL capacitance. The optimal read margin ($V_{M_{-} \text {CoNV }}$) is half of the BL voltage difference between reading an HRS cell and an LRS cell, i.e

$$
V_{M_{-} \operatorname{coNV}}(t)=0.5 V_{R E A D}\left(e^{\frac{-t}{R_{H} C_{B L}}}-e^{\frac{-t}{R_{L} C_{B L}}}\right) \ldots \text {... Eq.3.4.2 }
$$

Where R_{L} is the resistance of a LRS cell, R_{H} is the resistance of a high resistance cell, and $V_{M_{-} \text {Conv }}$ is the read margin. In the DDL read operation, the BL and SL voltages can be described as an RC discharge and charge towards the equilibrium charge redistribution:

$$
\begin{gathered}
V_{B L_{-} D D L}(t)=V_{R E A D}\left(\frac{c_{X}}{c_{S L}}+\frac{c_{X}}{C_{B L}} e^{\frac{-t}{R_{C E L L} c_{X}}}\right) \\
\ldots . E q .3 .4 .3 \\
V_{S L_{-} D D L}(t)=V_{R E A D} \frac{c_{X}}{c_{S L}}\left(1-e^{\frac{-t}{R_{C E L L} C_{X}}}\right)
\end{gathered} \ldots . \text { Eq.3.4.4 }
$$

where $C_{X}=C_{B L} C_{S L} /\left(C_{B L}+C_{S L}\right)$ is the serial capacitance of $C_{B L}$ and $C_{S L}$. When $C_{B L} \approx C_{S L}$, the optimal DDL margin $V_{M_{-} D D L}$, defined as half the difference in $\left(V_{B L}-V_{S L}\right)$ between reading an HRS cell and an LRS cell, is given by

$$
V_{M_{-} D D L}(t)=0.5 V_{R E A D}\left(e^{\frac{-2 t}{R_{H} C_{B L}}}-e^{\frac{-2 t}{R_{L} C_{B L}}}\right) \quad \ldots \text {... } q \text {. 3.4.5 }
$$

Comparing Eq.3.4.2 and Eq.3.4.5, we find that the DDL scheme can achieve the same amount of margin as the conventional method with half the BL development time.

Eq.3.4.3 and Eq.3.4.4 show that the improvement from the DDL scheme will differ under different BL and SL loadings. If the SL has a relatively small loading compared to the BL, the voltage swing on SL will be larger than that of the BL. The improvement from the DDL scheme

(a)

(b)

(d)

Fig.3.4.2. Sense amplifier designs to utilize the DDL scheme. The original sense amplifier is displayed in black, and the modifications in red. (a) directly adding a pair of pull-down transistors as the second pair of inputs, (b) using initial values to nodes along the sensing path as the second pair of inputs, (c) adding a pull-up evaluation path in addition to the original pull-down path, and (d) storing the inputs in capacitors and using coupling to sum the signals.
improvement increases to above 2 x compared to conventional sensing. On the other hand, if SL has a relatively large loading, the swing on the SL will be smaller than that on the BL, and the improvement of the DDL will reduce to between $1 \mathrm{x} \sim 2 \mathrm{x}$. Nevertheless, the DDL scheme will always outperform the conventional scheme.

The energy consumed during a read operation is the energy necessary to pre-charge the BL voltage:

$$
E_{R E A D}=C_{B L} V_{R E A D}\left(V_{R E A D}-V_{B L}\right) \quad \text {...Eq.3.4.6 }
$$

Since the DDL only requires half the BL swing for the same amount of margin, a $\sim 50 \%$ energy reduction is achieved for the same margin. These first-order approximations agree with the simulation results in Section 3.4c.

3.4b Circuit Implementation

Traditional sense amplifiers (SA) can only compare a single signal (e.g., $V_{B L}$) to a single reference (e.g., $V_{R e f B L}$). To incorporate the DDL scheme, the sense amplifier (SA) needs to be able to take in the differential signals $V_{B L}$ and $V_{S L}$, and compare ($V_{B L}-V_{S L}$) with $\left(V_{R e f B L}-\right.$ $V_{\text {RefSL }}$). We show several approaches to achieve this via modification of conventional SAs in Fig.3.4.2. The modified SAs have inputs $\mathrm{N}+, \mathrm{N}-, \mathrm{P}+$, and $\mathrm{P}-$, connected to $V_{B L}, V_{S L}, V_{R e f B L}$ and $V_{\text {RefsL }}$, respectively. The output of the SA is differential signals O and OB .

Fig.3.4.2a shows an implementation of the sense amplifier by directly adding an additional input pair of NMOS inputs (displayed in red). The pull-down path for node OB is driven by $\mathrm{N}+$ and $\mathrm{P}-$, while that of node O is driven by N - and $\mathrm{P}+$. The advantage of this design is its simplicity and matching input pairs. However, as $V_{B L}$ and $V_{S L}$ have different DC voltage levels (the former pre-charged to $V_{D D}$ and the latter to $V_{S S}$), their effects on the pull-down path are asymmetric. In particular, $V_{S L}$ needs to exceed the threshold voltage of the NMOS input transistors to activate the input.

Fig.3.4.2b shows an implementation where the output nodes are used as the second pair of inputs. In this design, the outputs O and OB are initially connected to N - and P -. The pulldown path of O is driven by $\mathrm{P}+$, while that of OB is driven by $\mathrm{N}+$. When the sense amplifier is enabled, the output is the result of comparing " N - discharged by $\mathrm{P}+$ " and " P - discharged by $\mathrm{N}+$ ". Compared to the design of Fig.3.4.2a, this method does not add additional transistors on the sensing path and thus has a smaller impact on the original design. However, the addition of switches in the SA necessitates additional control signals and suffers from dynamic coupling

Fig.3.4.3. The RS-SA featuring offset cancellation and on-off boundary operation (Figure adopted from [190]). The read operation composes four phases: In phase 1, the BL develops and is sampled into capacitors via nodes DAG/DAGB. In phase 2, the offset of the amplifier is sampled into the capacitors. At the same time, the comparison transistors (M1, M2) are set to operate at the on-off boundary via nodes DC/DCB. In phase 3, DAG/DAGB are coupled to VSS, causing the input pair to operate in different regions: saturation and subthreshold for the higher and lower inputs, respectively. The difference is amplified to generate the sensing result. In phase 4 , the output is latched. The DDL scheme can be adopted by connecting the negative boosters to SL and RefSL instead of VSS in phase 3 and 4, as displayed in red in the schematic.
noise. In addition, each input node also has voltage-level limitations. This concept can also be extended to other nodes on the sensing path, such as nodes X and XB for inputs.

Fig.3.4.2c adds an additional pull-up path to evaluate P - and N -. The advantage of this configuration is that for the default DDL design in which $V_{S L}$ is pre-discharged and $V_{B L}$ precharged, all input transistors are fully turned on. The drawback is that the PMOS inputs may have considerably different characteristics (variation, mobility, threshold, etc.) than the NMOS input.

Fig.3.4.2d shows an adaptation of the DDL scheme by capacitively coupling the swings of $\mathrm{N}+$ and $\mathrm{P}+$ to that of N - and P - for summation. One pre-charge transistor, a capacitor, and two switches are added to each input of the original SA. One node of the capacitor (nodes $x+$ and x-) is connected to the input of the conventional sense amplifier, and the other node (node $y+/ y-$) is switched between $V_{B L}$ and $V_{S L}$. Initially, node x is precharged to $V_{D D}$, and node y is connected to BL. A voltage difference of $\left(V_{D D^{-}} V_{B L}\right)$ is stored across the capacitor. When SAEN is enabled, node x becomes floating while node y is switched to $V_{S L}$. Since the voltage across the capacitor stays constant, node x couples to $\left(V_{S L}+V_{D D}-V_{B L}\right)$. This design has advantages including (1) $V_{S L}$ and $V_{B L}$ have symmetric effects on the input, (2) the working input voltage range is significantly larger, and (3) The capacitors can further utilized to cancel offsets of the SA. The disadvantage of this approach is the large area and crosstalk issues during the coupling process.

The design and optimization of the SA structure depend on the resistance characteristics of the employed device and the read voltage level. The tradeoff between the different designs in Fig.3.4.2 can be used in the development of a new SA to fully utilize the benefits of DDL. For example, the DDL scheme can be combined with offset canceling or margin enhancing amplifiers [80], [188], [189] to achieve additional improvement in performance. One particular SA that can directly incorporate and benefit from the DDL scheme is the Region-Splitter Sense Amplifier (RS-SA) shown in Fig.3.4.3 [190]. The RS-SA uses the mechanism of Fig.3.4.2d, and additionally features (1) storing the offset of the amplifier in the capacitor, and (2) operates at the on-off boundary of the pulldown transistors. The DDL scheme is incorporated by connecting the negative boosters (M3 and M4) to SL and RefSL instead of VSS. With this simple modification, the DDL scheme halves the sensing time of the RS-SA.

3.4c Simulation Results

Fig.3.4.4. Read margin as a function of BL development time. For the same 100 mV margin target, the DDL scheme can reduce sensing time by 46% or increase margin by 75%.

To verify the performance of the DDL scheme, we again compose the critical path of a 1T1R memory array with layout-extracted parasitics in 28 nm . We adopt the sense amplifier of Fig.3.4.2d and set $V_{\text {READ }}$ to 1 V .

Fig.3.4.4 presents the sensing margin waveform of the DDL scheme and the conventional sensing scheme, using a device with $R_{L}=50 \mathrm{k} \Omega$ and a resistance ratio of 3 [85]. The sensing margin for successful sensing is set to $2 V_{M_{-} \operatorname{ConV}}=100 \mathrm{mV}$ for the conventional read operation. The time necessary for $V_{B L}$ to develop such a margin is $t_{\text {CONV_100mV }}$. With the DDL scheme, a 75% larger sensing margin $(175 \mathrm{mV})$ is achieved at $t_{C O N V}$. For the same target margin $\left(2 V_{M_{-} D D L}=100 \mathrm{mV}\right)$, the DDL scheme reduces the BL development time by 47%.

Fig.3.4.5(a) shows the margin improvement of the DDL scheme for various memory technologies, each with different low/high resistance values (R_{L}, R_{H}) and resistance ratios (Rratio $=R_{H} / R_{L}$). MTJs typically have an R-Ratio between 2-3 and R_{L} in the range of a few $\mathrm{k} \Omega$ for STT-MRAMs and 50~100 k Ω for MeRAMs. ReRAM and PCRAM usually have R_{L} resistance between $10 \mathrm{k} \Omega \sim 100 \mathrm{k} \Omega$ and R-Ratios between $10 \sim 100$. To compare sensing time and margins on the same scale, we rescale the BL loading of each R_{L} value so that the time constants are

Fig.3.4.5. (a) Read margin and (b) sensing time as a function of R_{L} and R-Ratio. BL capacitances $C_{B L}$ are scaled so that the time constant for each resistance is the same. The margin improvement increases and approaches 2 x for higher R-Ratios. On the other hand, the sensing time improvement is independent of resistance value or R-Ratio and shows a $\sim 50 \%$ improvement.
identical. The DDL scheme achieves an average margin improvement of $69 \%, 89 \%$, and 91% for R-ratios of 2,10 , and 100 , respectively. For different R_{L} of $2 \mathrm{k}, 10 \mathrm{k}$, and 100 k , an average margin improvement of $92 \%, 88 \%$, and 78% can be observed. The margin improvement of the

BL Sensing Energy

Fig.3.4.6. Energy required for successful sensing of the DDL and conventional scheme. The DDL scheme reduces read energy by $\sim 50 \%$ across all R_{L} and R-Ratios

DDL scheme approaches 2 x with a higher R-ratio, in which the exponential decay in Eq.3.4.2 and equation Eq.3.4.5 can be approximated by a linear function.

Fig.3.4.5(b) presents the sensing time (i.e., the time to reach $V_{M}=100 \mathrm{mV}$) under different memory technologies. The sensing time shows an improvement with a higher R-ratio but saturates above R-ratio $=10$ as the R_{L} and R_{H} current difference stays relatively constant. Compared to Fig.3.4.5(a), where the margin improvement depends on the resistance and Rratio, the DDL achieves a technology-agnostic 50% reduction in sensing time as predicted by our theoretical analysis in section 3.4a.

Fig.3.4.6 presents the sensing energy of the DDL scheme compared to the conventional scheme. The sensing energy is extracted as the total energy consumed from VDD which includes dissipation from the read discharge path, the pre-charge/pre-discharge circuitry, and the amplifiers. A slightly below 50% reduction in energy is observed across all cases, in line with the theoretical results predicted by Eq.3.4.6.

Fig.3.4.7. Sensing yield η as a function of read time for the conventional and DDL schemes. For the same 3 -sigma yield requirement ($\eta>99.9 \%$), the DDL scheme can reduce the sensing time by

Fig.3.4.8. Read error rate ε_{R} as a function of sensing time for (1) the conventional scheme, (2) the DDL scheme, (3) conventional sensing with RS-SA, and (4) DDL sensing with RS-SA. The RS-SA improves sensing time by 88%. With DDL, the sensing time is further reduced by an additional 42%.

To translate the DDL performance to reliability and yield η under variation, we conducted Monte-Carlo analysis with local mismatch models. Fig.3.4.7 presents the read bit error rate $\left(\varepsilon_{R}=1-\eta\right)$ as a function of BL developing time. We observe that as the sensing time
increases, the yield improves for both sensing methods. For a target ε_{R} of $<0.1 \%$ or $\eta>99.9 \%$, the conventional sensing method requires a sensing time of 0.9 time units, while DDL can achieve the same yield in 0.5 units; representing a 44% reduction.

Finally, as mentioned earlier, the DDL scheme benefits from new, advanced sense amplifier designs. Here, we show the performance of the application of DDL to the RS-SA described in Sec.3.4b. Fig.3.4.8 displays the ε_{R} of the following configurations: (1) conventional scheme with the conventional sense amplifier, (2) DDL scheme with the default DDL sense amplifier, (3) conventional scheme with the RS-SA, and (4) DDL scheme with the RS-SA. Comparing (1) and (3), the RS-SA shows a great reduction in sensing time by 88%, which matches the results presented in [190]. Comparing (3) and (4), we observe that the DDL scheme can further reduce the RS-SA sensing time by an additional 42%.

CHAPTER 4

SPINTRONIC SIGNAL PROCESSOR

4.1 Motivation

Over the last 50 years, transistor technology has been the driving force behind an exponential increase in computation power. However, despite its success, transistors face several fundamental limits in computing efficiency:
(1) Standby Energy: Transistors exhibit leakage that consumes power even when it's not switching. This issue has become increasingly severe in advanced technology nodes as device dimensions scale [191].
(2) Structural Bottleneck: In transistor-based systems, computing and storage are physically separated, which leads to a data transmission bottleneck between the two. This bottleneck, known as the Von-Neumann bottleneck, limits the speed and throughput of the system even as devices scale. While emerging, integrated nonvolatile memories provide a platform to develop non-Von Neumann architectures [34], [105], [167], [192], computing and storage still do not occur in the same device.
(3) Single operation mechanism: Transistors operate on the single mechanism of electron gating. There is only a single function per transistor and there is no correlated functionality among devices. As a result, complex functions are often built upon hierarchies of non-optimized structures.

On the other hand, magnetic devices have no standby energy, and inherently couple storage within their operations. There exists an abundance of spin phenomena for manipulating magnetic states, and devices have been developed with high speed (GHz) and low energy (fJ) while preserving practically unlimited endurance ($>10^{15}$) [82], [193], [194]. Therefore, there is
strong motivation to explore spintronics mechanisms and structures that can fundamentally outperform transistor-based computing. However, today's research focuses primarily on spintronics' application for storage, and few are able to exploit its computing potential as they often fail to outperform the fast scaling CMOS technology.

In this thesis, a spintronic computing device is developed for signal processing that provides orders of magnitude improvement in area, energy, and throughput over state-of-the-art CMOS. Specifically, we realize a convolution engine, a core operation of all major forms of signal processing, including Fourier transforms, filtering, visual and audio processing, machine learning, and many more. However, this operation is extremely costly to compose in CMOS. Two approaches are proposed to realize the spintronic convolution engine, each by coupling a number of spin mechanisms in the device: (a) the Hall effect in combination with domain motion, which has an easy-to-fabricate structure; and (b) magnetic tunneling junctions (MTJs) with domain motion, which provides greater programming-time reconfigurability. All three mechanisms already have strong theoretical foundations and industrial-level fabrication techniques, allowing them to be easily adapted for large-scale production.

In addition to its superior performance, the memory-processing architecture also (1) achieves zero standby power, (2) removes the need to store signal streams, and (3) omits the signal transmission between computing and storage components. Therefore, these devices not only provide high-performance accelerators but also enable efficient signal processing to be adopted in edge and Internet-Of-Things (IOT) devices where large amounts of signal processing were previously too costly to use. In the next section, a review on the background of convolution and the spin mechanisms utilized is presented first.

4.2 Background

4.2a Convolution Operation

A convolution is a mathematical operation on two functions $f(t), g(t)$ to produce a third function $(f * g)(t)$ that resembles the cross-correlation of the two. It is computed by (1) reversing one function: $g(\tau) \rightarrow g(-\tau)$; (2) shifting it: $g(-\tau) \rightarrow g(t-\tau)$; then (3) integrating the product of the shifted, reversed function $g(t-\tau)$ with the other function $f(\tau)$, represented across all shift values, i.e.

$$
(f * g)(t)=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau
$$

Or in discrete terms,

$$
(f * g)[n]=\sum_{-\infty}^{\infty} f[m] g[n-m] \quad \ldots \text { Eq.4.2.2 }
$$

Convolutions are the core of many forms of signal processing. In signal filtering, the application of a filter involves the convolution of a kernel with the target signal (such as audio, images, radar, communication, etc). Convolutions are also the main computation for transforms between different domains, such as the Fourier transform and Z-transform, which convolves complex coefficients of phase multiples with a time-domain signal. In machine learning, convolutional layers apply convolution of weights with the layer's input

4.2b Charge-based Convolution Devices

The convolution operation involves three components: an element-wise multiplication, a summation, and a signal shift. Today, this is implemented digitally; but the prior state-of-theart hardware was built via charge-coupled devices (CCDs) [195], [196]. This convolution hardware, shown in Fig.4.2.1, composes a series of CCD devices with split electrodes. Signals are represented by the analog charge stored in capacitors. The signals are scaled by dividing the charge between the split electrodes; then summed via capacitive coupling to a shared bus. At the end of each cycle, the charge is shifted to the next stage.

Fig.4.2.1 CCD-based convolution hardware. (a) structure and operation of a CCD. A CCD is composed of depletion region capacitors with electrodes controlling the potential underneath. By consecutively pulsing the electrodes, charge can be moved between the capacitors. Electrically, this can be modelled as the oxide capacitor $C_{o x}$ in series with the depletion capacitor C_{d}, and a charge Q_{d} stored in C_{d}. (b) The CCD-based convolution engine composes a series of three-phase CCDs. Each stage has two isolation electrodes driven by \emptyset_{1} and \emptyset_{2}, and split electrodes driven by \emptyset_{+}and \emptyset_{-}. The difference in the size of the two electrodes determines the scaling factor h as described in Eq. 4.2.5. The stored charge Q_{d} of each stage is divided by the split electrodes and coupled to \emptyset_{+} and \emptyset_{-}for summation.

The derivation of the device operation follows. Fig.4.2.1a shows the structure of a CCD, which contains an array of linked depletion-region capacitors with electrodes that control the potential of the region underneath. When no voltage is applied to the electrodes, the charge remains in place. On the other hand, by pulsing each electrode consecutively, the charge can be shifted between the capacitors according to the phase of the electrodes. The CCD is electrically modeled by an oxide capacitor $C_{o x}$ in series with the depletion capacitance C_{d}, and a charge Q_{d} stored in C_{d}. When a voltage step of V_{C} is placed upon the electrode (via a clock line \emptyset), the charge flowing to the electrode Q_{C} is the sum of that necessary to provide the voltage step and that to balance $Q_{d}[196]$:

$$
Q_{C}=V_{C} \frac{C_{o x} C_{d}}{C_{o x}+C_{d}}+Q_{d} \frac{C_{o x}}{C_{o x}+C_{d}}
$$

In high resistivity substrate materials, $C_{o x} \gg C_{d}$, and Eq.4.2.3 can be approximated as

$$
Q_{C}=V_{C} C_{d}+Q_{d} \quad \text {...Eq.4.2.4 }
$$

Equation 4.2.4 provides a mechanism for readout: at the rising edge of the clock line \emptyset, the charge flowing on the clock lines is proportional to that stored in the depletion capacitors.

The convolution device (Fig.4.2.1b) composes "stages" of three-phase CCDs, each with two electrodes for isolation and one split electrode for readout. The isolation electrodes are driven by clock lines \emptyset_{1} and \emptyset_{2}, and the split electrode by \emptyset_{+}and \emptyset_{-}. The split electrode divides the electrode into two sub-electrodes with an area of $\frac{1}{2}(1+h)$ and $\frac{1}{2}(1-h)$, respectively; where h is the scaling factor or multiplication coefficient. During readout, Q_{C} is divided between the sub-electrodes proportional to their area. The charge difference between \emptyset_{+}and \emptyset_{-}is, therefore[196]:

$$
Q_{C+}-Q_{C-}=\frac{1}{2} Q_{C}(1+h)-\frac{1}{2} Q_{C}(1-h)=\left(V_{C} C_{d}+Q_{d}\right) h \quad \ldots \text { Eq.4.2.5 }
$$

The first term $V_{C} C_{d} h$ is an input-independent signal that can be removed via circuit techniques. The second term $Q_{d} h$ computes a scaled multiplication of the and the CCD charge Q_{d}, and provides the multiplication component of the convolution.

The readout charge of all CCD devices connected to the same clock line will be summed via KCL, e.g. the total charge on the clock line is equal to the sum of the coupled charge of each connected CCD. The total differential charge in each cycle is thus:

$$
Q_{C+, \text { total }}-Q_{C, \text { total- }}=\sum_{n=1,,, k}\left(V_{C} C_{d}+Q_{d}[m]\right) h[m] \quad \ldots \text { Eq.4.2.6 }
$$

Where m represents the CCD stage number and k is the total number of CCD stages. At the end of each cycle, the charge in each stage is shifted to the next, resulting in the charge equation taking the form of a convolution:

$$
\left(Q_{C+, \text { total }}-Q_{C, \text { total- }}\right)[n]=\sum_{k}\left(V_{C} C_{d}+Q_{d}[m-n]\right) h[m]
$$

While charge-based convolution hardware outperformed other technologies in the 1980s, they eventually fell out of favor as they face the following limitations: (1) scalability limitations as the amount of stored charge Q_{d} decreases with device scaling; (2) maximum computing stage limitations due to incomplete charge transfer and leakage; and (3) speed limitations due to the capacitance-based computing mechanism.

4.2c Spintronic Mechanisms for Computing

(a) Domain walls and its motion

(b) Anomalous Hall Effect

(c) Tunneling Magnetoresistance

Fig.4.2.2 Spin-based mechanisms used to build the spintronics convolution engine. (a) Magnetic domains (DMs) are regions where magnetic moments are aligned. Domain walls (DWs) are formed between adjacent domains with different magnetization orientation. DW motion can be induced via a spin-transfer from a current through the DW. (b) The Hall effect, where a lateral electric field forms in a current-carry conductor placed in a magnetic field proportional to its strength. (c) The tunneling magnetoresistance effect: in a tunneling junction, carriers can tunnel through the barrier with a probability depending on the magnetic orientation of the two layers.

Our magnetic signal processing engine overcomes the limitations of charge-based convolutions by controlling spin mechanisms to implement multiplication and shifting. In this section, we briefly introduce the spin mechanisms that we utilize.

Magnetic Domains and their motion

In a magnetic material, a magnetic domain (DM) (Fig.4.2.2a) is a region where the magnetization of the atoms is stable and aligned towards the same direction. This phenomenon was first formulated by Pierre-Ernest Weiss in 1906, who theorized that adjacent atoms experience a strong effective field from their neighbors in a magnetic material, causing their alignment.

Adjacent domains have different, often opposite, magnetic orientations. In the transition region between the two domains, the magnetic moments rotate smoothly between the two orientations. This forms a spiral spin texture called a domain wall (DW). Consequently, DWs can be created by forming oppositely magnetized domains via switching mechanisms such as spin-orbit-torque (SOT) or magnetic field [197]-[200].

When sufficient current flows through a domain wall, spin transfer from electrons to the DW can displace it [201], [202]. The amount of displacement depends on the total amount of spins transferred, and therefore proportional to the current density and the duration of the pulse. In a magnetic strip where there is only a single current path, all DWs in the strip will be displaced by the same amount, leading to a shifting of the entire magnetic pattern on the strip.

DWs and DMs are the core characteristics to hard drives and racetrack memory [62], [203]. They are responsible for storing data in the orientation of domains and shifts domains to address individual bits. The former shifts domains mechanically via a rotating disk, while the latter shifts domains electrically via current-induced DW motion.

Anomalous Hall effect

The Hall effect (Fig.4.2.3b) refers to the phenomena in which a lateral electric field is created across a current-carrying conductor placed in a perpendicular applied magnetic field. First discovered by Edwin Hall in 1878 [204], this phenomenon comes from the balance of two forces acting on the moving charged particles: the Lorentz force and the Coulomb force. In a material with electrons as the dominant charge carrier; the Lorentz force is described by

$$
F_{\text {Lorentz }}=q v \times B \quad \ldots E q \cdot 4 \cdot 2.8
$$

where q is the unit electron charge, v is the speed of the electron, and B is the magnetic field. Under the influence of this force, charge carriers are pushed towards the edges of the material. Without a discharge path, these carriers accumulate and create an electric field that exerts a Coulomb force on subsequent charge:

$$
F_{\text {Coulomb }}=q E \quad \ldots \text {...Eq.4.2.9 }
$$

, where E is the generated electric field. The carriers will continue to accumulate until the two forces cancel out in the steady state:

$$
F_{\text {total }}=q(E+v \times B)=0 \quad \ldots \text { Eq.4.2.10 }
$$

In a device where charge flows in the x-direction with speed v_{x} and the magnetic field is perpendicular B_{z}, the lateral electric field E_{y} can be obtained as

$$
E_{\text {Hall }}=E_{y}=v_{x} B_{z} \quad \ldots \text { Eq.4.2.11 }
$$

The Hall effect plays an important role in material characterization and is frequently used to measure carrier concentration in conductors and solid-state electronics. In 1881 [205], Hall further reported that this effect is ten times greater in a magnetized ferromagnetic iron than in non-magnetic conductors. Known as the Anomalous Hall Effect (AHE), this phenomenon depends on the magnetization M of the material and is also used to study the magnetic properties of ferromagnetic materials.

Tunneling Magnetoresistance effect

A magnetic tunnel junction (MTJ) composes two ferromagnets separated by an insulating barrier. When the insulating layer is thin (in the single/sub-nanometer range), electrons can tunnel between the ferromagnet layers via the quantum tunneling effect (Fig.4.2.3c). First observed by Michel Jullière in 1975 [43], the tunneling probability is dependent of the relative orientation of the two ferromagnets. When the magnetic orientation of the two ferromagnetic layers are parallel to each other (P state), the tunneling probability is high, and when the
magnetic orientations are anti-parallel (AP state), the tunneling probability is low. The difference in tunneling probability gives rise to a change in the electrical resistance of the MTJ. One way to describe this effect is via the tunneling magnetoresistance ratio (TMR), defined as:

$$
T M R=\frac{R_{a p}-R_{p}}{R_{p}} \quad \ldots E q \cdot 4 \cdot 2 \cdot 12
$$

Where $R_{a p}$ is the MTJ resistance in the anti-parallel state and R_{p} is that of the parallel state. The ability to convert magnetic orientations to an electrically accessible resistance makes TMR a useful readout mechanism for magnetic sensors and magnetic random access memory (MRAM).

4.3 Anomalous Hall -Domain Wall Motion(AHE-DWM) Convolution Engine 4.3a Device Structure

In this section, we describe the device structure and operation of the proposed spintronic convolution engine. We first show how multiplication is achieved through the combination of DMs and the Hall effect and magnetic domains, followed by the summation circuitry and DW motion to complete the convolution.

Multiplication Unit

The multiplication unit of the processor (Fig.4.3.1a) has the structure of a modified Hall bar device. The body of the device is a domain-hosting magnetic strip of width W_{S} and length L_{S}. Two gold electrodes separated laterally by D_{E} are placed on top of the strip. Each electrode has a width of W_{E} and length of L_{E}.

During computation, a domain is shifted within the electrode region. The domain has a length of L_{D} pointing in the $+z$ direction. As a result, a portion of the region within the electrode $\left(L_{D}\right)$ has magnetization pointing in the $+z$ direction, and the remainder of the

Fig.4.3.1 AHE-DWM based convolution engine. (a) the computing unit, with the structure of a domain-hosting magnetic strip and electrodes placed on top. The computing unit outputs the Hall voltage as a product of the domain length L_{D} and the distance between the hall electrodes D_{E}. (b) the convolution engine composes a series of multiplication computing units that shift the domain signals between each computing unit. Multiplication results are summed using low power voltage summation circuitry such as switch capacitors. (c) material cross-section of the convolution engine.
electrode $\left(L_{E}-L_{D}\right)$ pointing in the $-Z$ direction. To the first order, the net perpendicular magnetization in the electrode region $M_{E, z}$ is the sum of the $+Z$ and $-Z$ pointing components:

$$
M_{E, z}=L_{D} M_{S}-\left(L_{E}-L_{D}\right) M_{S} \quad \ldots \text { Eq.4.3.1 }
$$

Where M_{S} is the magnetic strip's saturation magnetization. Combining Eq.4.3.1 and Eq.4.2.11, the AHE electric field of the electrode region can be represented as

$$
E_{E, y}=C I_{x} M_{E, z} \quad \ldots E q .4 .3 .2
$$

where the current through of the strip I_{x} is proportional to $q v_{H}$ and C is a constant related to the AHE coefficients as well as material and device constants. The Hall voltage is the Hall electric field multiplied by the distance between the Hall electrodes:

$$
V_{E, y}=D_{E} E_{E, y} \quad \ldots \text { Eq.4.3.3 }
$$

Fig.4.3.2 Example of a switch-capacitor circuit used to sum voltages. (a) schematic and operation waveform. The circuit operations in two phases. (b) In the sampling phase, the capacitors are connected to the Hall electrodes, and the Hall voltages $V_{\text {Hall }}$ of each multiplication unit is sampled on the capacitors. (c) In the summation phase, the capacitors are connected in series to sum $V_{\text {Hall }}$.

Combining equations 4.3 .1 to 4.3 .3 and separating the input-independent components, we arrive at the following representation for the Hall voltage:

$$
V_{E, y}=C_{1}+C_{2} J_{x} L_{D} D_{E} \ldots \text { Eq. 4.3.4 }
$$

Where C_{1}, C_{2} composes of design and material constants. Eq.4.3.4 provides the desired multiplication function: under a given read current, the AHE voltage is the linear product of the domain length l_{D} and the distance between the electrodes d_{E}.

Convolution Engine

The convolution engine (Fig.4.3.1b) composes a series of multiplication units, a summation circuit, and a domain write circuit. During each computing cycle, the AHE voltages of each multiplication unit are summed using a low-power analog summation circuitry. An example of the circuitry is the switch-capacitor circuit shown in Fig.4.3.2 It operates in two phases: In the
first phase, the two terminals of each sampling capacitor are connected to the Hall electrodes to sample the Hall voltages. In the second phase, the capacitors are switched to connect in series to sum the sampled voltages. The output of the summation circuitry in each cycle is:

$$
V_{E, \text { total }}=N C_{1}+C_{2} \sum_{n=0}^{N} L_{D}[n] D_{E}[n]
$$

where n is the stage of the multiplication unit and N is the total number of multiplication units. Inverting the input signal sequence $L_{D}[n]$ to $L_{D}[-n]$ and shifting domains to the adjacent multiplication unit at the end of each cycle, the output voltage as a function of the cycle number m takes the exact form of a convolution:

$$
V_{E, \text { total }}[m]=N C_{1}+C_{2} \sum_{n=0}^{N} L_{D}[m-n] D_{E}[n] \quad \ldots . E q \cdot 4.3 .6
$$

The write circuitry is used to program inputs to the strip. In our design, it composes a fieldgenerating wire, which switches the polarity of the domain beneath it. The field is controlled by a pulsed current that determines the length of the input domain.

4.3b Performance Analysis

In this section, we theoretically derive the performance of the proposed spintronic convolution engine. We show material limits and estimate the device area, throughput, and energy on a 28 nm process; then compare its performance with a CMOS implementation at the same technology node.

Device dimensions

The length of the multiplication unit's electrodes has to cover the domain signal L_{D}, which is bound by the minimum size of a magnetic domain. This size is limited by the free energy to nucleate a domain, which can be written as the domain wall energy under the influence of the demagnetization field and the external field:

$$
E=2 W_{D} \sigma t-u_{0} M_{s}^{2} W_{D} L_{D} t-2 u_{0} H_{C} M_{s} W_{D} L_{D} t \ldots \text {... Eq.4.3.6 }
$$

Where W_{D} and L_{D} are the domain width and length, t is the film thickness, σ is the domain wall energy $\left(\mathrm{J} / \mathrm{m}^{2}\right)$, and H_{C} is the coercivity (A / m) of the film. The condition for a domain to be stable is that a change in the domain state would result in higher energy. In other words, the partial derivative of the energy with respect to the domain width $\frac{\partial E}{\partial W_{D}}$ should be smaller than or equal to 0. Applying this to Eq.4.3.6, we arrive at the minimum size for a domain to exist:

$$
L_{D} \geq 2 \frac{\sigma}{u_{0} M_{s}^{2}+2 u_{0} H_{C} M_{s}} \quad \ldots \text { Eq.4.3.7 }
$$

In addition, for the domain to be stable under thermal fluctuations, its thermal stability should exceed a target thermal stability:

$$
\Delta=\frac{E}{K_{b} T}>\Delta_{\text {target }}
$$

Where K_{b} is the Boltzmann constant, T is the temperature, and Δ is the thermal stability. The requirement for Δ is 30 for computing and 40 for storage applications. With the material parameters of a $\mathrm{Ta} / \mathrm{CoFeB} / \mathrm{MgO}$ system shown in Table 4.3.1 [55], [206]-[209], the minimum domain length $L_{D, \min }$ is 8.2 nm .

The exact length of a multiplication unit also depends on the resolution of the input signal. When $L_{D}=L_{E}$, the magnetization of the region is fully in the $+z$ direction, representing the maximum input value. When $L_{D}=0$, the magnetization of the region is fully in the $-z$ direction, representing the minimum input value. To have n-bit input resolution within this range, each input step corresponds to an increase in domain length of $\Delta l=L_{E} / 2^{n}$. As a result, finding the physical limit to Δl would give the requirement for the device length.

In theory, Δl can be a few atoms in length, while in devices it will depend on (1) the granularity of domain creation, and (2) pinning centers in the magnetic strip. When domains

Table 4.3.1 Device and material parameters of a $\mathrm{Ta} / \mathrm{CoFeB} / \mathrm{MgO}$ system

Symbol	Definition	Value	
σ	Domain Wall Energy	5.3427	$\mathrm{~mJ} / \mathrm{m}^{2}$
M_{S}	Saturation Magnetization	10^{6}	$\mathrm{~A} / \mathrm{m}$
\boldsymbol{H}_{C}	Magnetic Coercivity	$2.4 \times \mathbf{1 0}^{4}$	$\mathrm{~A} / \mathrm{m}$
	DW Speed	5×10^{-4}	$\mathrm{~m} / \mathrm{s}$
	(Min, Max)	20	$\mathrm{~m} / \mathrm{s}$
	DW Current Density	$1.5 \times \mathbf{1 0}^{\mathbf{8}}$	$\mathrm{A} / \mathrm{m}^{2}$
$J_{\text {Shift }}$	(Min, Max)	$7.5 \times \mathbf{1 0}^{10}$	$\mathrm{~A} / \mathrm{m}^{2}$
$J_{\text {Hall }}$	Hall Current Density	$1.2 \times \mathbf{1 0}^{\mathbf{8}}$	$\mathrm{A} / \mathrm{m}^{2}$
$\boldsymbol{l}_{\text {min }}$	Minimum Domain Length	8.2	nm

are created by a current pulse (such as using a current induced field), Δl is the product of the domain speed δ and the minimum pulse width $p_{\text {min }}$:

$$
\Delta l=\delta p_{\min } \quad \ldots E q \cdot 4.3 .9
$$

In a 28 nm technology, the minimum stable pulse-width $p_{\text {min }}$ is $\sim 10 \mathrm{ps}$, which corresponds to Δl of 0.2 nm . Finally, the minimum length is limited by the fabrication feature size. Putting together the above limitations, the dimensions L_{E} can be obtained as for a binary multiplication unit is 28 nm , while that for an 8 -bit unit is 53 nm .

Similarly, the constraint to the minimum width of the multiplication unit W_{S} also follows the argument of domain stability and input granularity. The former requires $\frac{\partial E}{\partial L_{D}}$ to be smaller than or equal to 0 . On the other hand, the latter depends on the fabrication process of the distance between the electrodes. From the device structure in Fig.4.3.1, it is evident that

$$
W_{S}>D_{E}+2 W_{E}+2^{n} \Delta W \quad \ldots \text { Eq.4.3.10 }
$$

where W_{S} is the width of the strip, W_{E} is the width of the electrode, D_{E} is the distance between the electrodes, n is the input resolution, and Δw is the minimum step of the fabrication process. In a 28 nm technology, the minimum values for D_{E} and W_{E} are both the fabrication feature $F=$ 28 nm , and the minimum change in distance ΔW is 1 nm . This corresponds to $W_{S}=84 \mathrm{~nm}$ for binary and $W_{S}=340 \mathrm{~nm}$ for 8 -bit multiplication. It should also be noted that in the AHE-

DWM processor, the area of the magnetic strip is not the dominating factor. Rather, the sampling circuitry takes up the majority of area with switches and capacitors.

Operation Frequency

The bottleneck to the convolution engine's frequency is the larger delay of the two operations: (1) sampling and summing the AHE voltages of each multiplication unit, and (2) writing the next domain into the strip and shifting existing domains to the adjacent multiplication unit. Each operation corresponds to a different phase in the clock cycle.

The delay of sampling and summation operation composes (a) the delay of charging the sampling capacitors and (b) the delay of the switch capacitor circuit for summation. The former can be computed via the relationship $t_{c}=C V / I$, where t_{c} is the charge time, C is the capacitance, V is the voltage, and I is the charging current. The latter is limited by the intrinsic switching delay of CMOS transistors on the order of a few to tens of $p s$. With CMOS capacitors of $\sim 1 \mathrm{fF}$, Hall voltages on the order of tens of mV , and charging currents in the $\mathrm{uA} \sim \mathrm{mA}$ range, the delay of this phase is in between ten to a few hundred $p s$.

The delay of the write and shift operation is the time necessary to drive domains from one computing unit to the next. This can be calculated as the length of each unit plus the minimum separation, divided by the speed of the domain wall δ, e.g., $\left(L_{E}+F\right) / \delta$. For Ta/CoFeB/MgO materials, this phase is the main limiting factor. With in the dimensions earlier, we can obtain that a binary convolution engine in 28 nm has a delay of $2.7 \mathrm{~ns}(183 \mathrm{MHz})$ and that for an 8 -bit system is $3.9 n s(128 \mathrm{MHz})$.

Energy Consumption

During the sampling and summation phase, the energy includes: (1) the read current in the magnetic strip, (2) the charging of the sampling capacitor, and (3) the switching of four switches in the switch-capacitor circuitry. This can be expressed as

$$
E_{\text {Read }}=I_{\text {Hall }}^{2} R_{S} t_{1}+C_{\text {sample }} V_{E}^{2}+4 C_{s w} V_{s w}^{2}
$$

Where $C_{\text {sample }}$ and $C_{S w}$ are the capacitance of the sampling capacitors and switches, V_{E} is the output Hall voltage, $V_{s w}$ are the switches operating voltage, $I_{\text {Hall }}$ is the current in the magnetic strip, R_{S} is the resistance of the strip, and t_{1} is the period of the sampling and summation phase. Using the dimensions derived in the previous section and the parameters in Table 4.3.1, we can obtain $I_{\text {Hall }}=1 u A$ and $R_{s}=200 \Omega$. With $C_{\text {sample }}$ and $C_{s w}$ of 1 fF and $V_{s w}=0.6 \mathrm{~V}$, we can obtain an energy of $2.4 \times 10^{-17} \mathrm{~J}$ for binary multiplication and $7.9 \times 10^{-17} \mathrm{~J}$ for 8 -bit multiplication.

During the shift and input phase, the energy consumption includes: (1) the current to shift domains to the next computing unit, and (2) the current to write the next domain signal to the beginning of the strip. This can be expressed as:

$$
E_{\text {shift }}=I_{\text {shift }}^{2} R_{s} t_{2}+I_{\text {field }}^{2} R_{\text {field }} t_{2} / N
$$

where $I_{\text {shift }}$ and $I_{\text {field }}$ are the current necessary for shifting domains and generating the switching field; $R_{\text {field }}$ is the resistance of the field-generating wire, and t_{2} is the period of the shift and input phase. Note that the energy for generating the switching field is divided by N, the number of multiplication units, as only one input is being written per cycle for the entire engine. Using the parameters in Table 4.3.1, we can obtain $I_{\text {shift }}=40 \mathrm{uA}$. With a wire of $R_{\text {field }}=100 \Omega$ and $I_{\text {field }}=100 u \mathrm{~A}$, we can obtain the energy of the shift and input phase to

Table 4.3.2 Performance of the spintronic convolution engine (per multiplication unit).

Metric	Binary	8Bit
l_{E}	$28 \mathrm{~nm}$	$53 \mathrm{~nm}$
w_{s}	$84 \mathrm{~nm}$	$340 \text { nm }$
$r_{\text {strip }}$	200Ω	73Ω
$t_{\text {Sample }}$	$20 \mathrm{ps}$	$20 \mathrm{ps}$
$t_{\text {Shift }}$	2.7 ns	3.9 ns
$E_{\text {Sample }}$	$3.6 \times 10^{-16} \mathrm{~J}$	$3.6 \times 10^{-16} \mathrm{~J}$
$E_{\text {Shift }}$	$8.0 \times 10^{-16} \mathrm{~J}$	$6.7 \times 10^{-15} \mathrm{~J}$
$E_{\text {Write }}$	$2.7 \times 10^{-15} \mathrm{~J}$	$3.9 \times 10^{-15} \mathrm{~J}$

be $2.7 \times 10^{-15} \mathrm{~J}$ and $3.9 \times 10^{-15} \mathrm{~J}$ for binary and 8 -bit multiplication, respectively. A summary of the device dimensions, speed, and energy is shown in Table 4.3.2.

A comparison of the proposed spintronic convolution engine and the traditional CMOSbased implementation is shown in Table 4.3.3. We compare the performance of a 1024-point convolution hardware with binary and 8 -bit resolution. For the proposed design, the energy is $1.2 p J$ per 1024 -point binary convolution and $7.2 p J$ per 8 -bit convolution. A CMOS implementation in the same technology would require $6.8 p J$ and $132 p J$, respectively. The CMOS design would further necessitate storage and transmission of input data, leading to additional and area overheads not accounted for in this comparison. The throughput of the spintronic engine is lower than CMOS designs at binary resolution (183MOp/s vs $238 \mathrm{MOp} / \mathrm{s}$) but better at 8 -bit resolution ($128 \mathrm{MOp} / \mathrm{s}$ vs $29 \mathrm{MOp} / \mathrm{s}$). The spintronic engine area is significantly smaller than the CMOS design, with an improvement around 100x and 1000x for binary and 8 -bit convolutions. Note that the area for the spintronic convolution engine is dominated by the sampling circuitry ($5 \mathrm{~T} /$ cell or $200 \mathrm{~F}^{2} /$ cell), which accounts for over 90% of the area in a binary convolution engine and over 80% in the 8 -bit design. Overall, the spintronic convolution engine presents 3 orders of magnitude improvement in the throughput/area-energy metric on binary convolution and 6 orders for 8 -bit convolution.

Table 4.3.3 Performance of an 1024-point convolution of the proposed and traditional approach.

Quantity	Proposed		CMOS	
	Binary	8Bit	Binary	8Bit
Area (A)	$167 \mu^{2}$	191 m ${ }^{2}$	$2.0 \times 10^{4} \mu \mathrm{~m}^{2}$	$4.5 \times 10^{5} \mu \mathrm{~m}^{2}$
Throughput (T)	$183 \mathrm{MOp} / \mathrm{s}$	128 MOp/s	$238 \mathrm{MOp} / \mathrm{s}$	$29 \mathrm{MOp} / \mathrm{s}$
Energy (E)	$1.2 \times 10^{-12} \mathrm{~J}$	$7.2 \times 10^{-12} \mathrm{~J}$	$6.8 \times 10^{-12} \mathrm{~J}$	$1.3 \times 10^{-10} \mathrm{~J}$
FOM $=$ T/EA	1.8×10^{30}	1.9×10^{29}	3.5×10^{27}	9.6×10^{23}

4.3c Experiments

Verification of the physical mechanism

Fig.4.3.3 Experiment setup for extracting the relationship between $V_{A H E}$ and I_{x} as well as D_{E}. We fabricate a convolution engine with 4 multiplication units using the $\mathrm{Ta} / \mathrm{CoFeB} / \mathrm{MgO}$ stack. The dashed-line box shows the magnetic strip and the solid-line box shows the convolution engine. (1) represents the current channel where I_{x} is applied, (2) represents the Hall electrodes/channels where $V_{A H E}$ is measured, and (3) represents the wire for switching magnetic domains. (Figure Credits: Bingqian Dai)

In this section, we describe the experiments to verify the functionality of our proposed convolution device. To verify the multiplication unit, we need to experimentally confirm Eq.3.4.4. This requires obtaining the relationship of the AHE voltage $V_{A H E}$ to the read current I_{x} (Experiment-1); to the distance between the electrodes D_{E} (Experiment-2); and to the domain length L_{d} (Experiment-3). Subsequently, we need to ensure that the output each multiplication unit is not disturbed by the patterns in adjacent units (Experiment-4). In addition, to verify the write and shift operation, we confirm domain creation and domain shifting (Experiment-5).

Experiment-1 and Experiment-2 are conducted via the setup in Fig.4.3.3. Using a $\mathrm{Ta} / \mathrm{CoFeB} / \mathrm{MgO}$ magnetic film, we fabricate a number of convolution engines with different D_{E}. The magnetic strip is labelled by the dashed-line box and the convolution engine by the solid-line box. Components of the convolution engine are numerically labelled: (1) the current channel for the strip where I_{x} is applied, (2) the Hall channel/electrodes where $V_{A H E}$ are measured, and (3) the wire for generating a local field to switching domains. By sweeping the injected current, we can obtain the relationship between the $V_{A H E}$ and I_{x}. By comparing measurements with different the distance between the AHE probes, we obtain the relationship between the $V_{A H E}$ and D_{E}.

The $V_{A H E}-I_{x}$ relationship is shown in Fig.4.3.4, where we observe that $V_{A H E}$ is almost perfectly linear to I_{x} and the curve crosses the origin. We can thus characterize the $V_{A H E}-$ I_{x} relationship via $R_{A H E}$, defined as

$$
R_{A H E}=V_{A H E} / I_{x} \ldots \text {... Eq.4.3.13 }
$$

We then characterize the $V_{A H E}-D_{E}$ relationship by plotting $R_{A H E}$ against D_{E} in Fig.4.3.5. Similarly, the expected linear relationship is observed.

For Experiment-3, Experiment-4, and Experiment 5, we fabricate the magnetic film into a two-channel Hallbar structure as shown in Fig.4.3.6. The measured $R_{A H E}$ as a function of the number of shifting pulses is shown in Fig.4.3.7, and the domain location as a function of the number of pulses is shown in Fig.4.3.8. Before the domain is shifted into the Hall channel (pulse number between 0-5), $R_{A H E}$ is independent of the number of pulses, indicating that the Hall voltage is not affected by the region outside the channel. Afterward, around pulses 5-20, the portion of +z -direction domains within the Hall channel is near linear to the number of pulses. In this region, we al so observe a linear relationship between the $R_{A H E}$ and the number of pulses, confirming the linear $R_{A H E}-M$ relationship necessary for multi-bit multiplication. In pulses $20 \sim 30$ the domain shifts slower and slightly nonlinear due to pinning centers in the

Fig.4.3.4 The $V_{A H E}-I_{x}$ relationship. Currents between 0.1 mA to 1 mA are applied in 0.1 mA steps. We observe a linear relationship between $V_{A H E}$ and I_{x}, which can be characterized by $R_{A H E}$. (Figure Credits: Bingqian Dai)

Fig.4.3.5 The $R_{A H E}-D_{E}$ relationship. The linear relationship confirms the results of Eq.3.4.4 (Credits: Bingqian Dai)
device. Nevertheless, $R_{A H E}$ still shows the desired linear relationship to the total magnetization within the Hall region.

Prototyping

Fig.4.3.9 shows the fabrication process of our magnetic convolution engine: (a-b) On a Silicon substrate, magnetic layers $\mathrm{Ta} / \mathrm{CoFeB} / \mathrm{MgO} / \mathrm{Ta}$ are first deposited. (c) Hall electrodes

Fig.4.3.6 Experiment setup for the $V_{A H E}-M$ relationship, verification that there is no interference between adjacent devices, and domain shifting. The design consists of a series of two Hallbars, with the AHE voltage measured at the second Hall channel.

Fig.4.3.7 Measured $R_{A H E}$ as a function of the number of domain-shifting pulses of amplitude 12 mA with a pulsewidth of 1 ms . Initially, before the domain is shifted into the Hall channel (before pulse 5), the $R_{A H E}$ is constant. Afterwards (pulses 5~20), we observe a linear relationship between $R_{\text {AHE }}$ and the number of pulses. At around pulse 20, pinning causes a slowdown in the domain portion, changing the slope between $R_{A H E}$ and pulse number. However, the $R_{A H E}-M$ relationship stays the same.
are then deposited via photolithography to create the photoresist pattern and evaporation to deposit 10 nm Au and 5 nm Cr. (d-e) The magnetic strip pattern is defined via photolithography

Fig.4.3.8 Measured domain wall motion in the experiment design of Fig.4.3.6. Pulses are of 12 mA amplitude and 1 ms duration and 1 s between subsequent pulses.
and dry etching, and insulation (SiO 2) is deposited. (f) T he stack is etched until the hall pads are exposed, and (g) photolithography is used to create vias to the hall electrodes and wiring to the external pads. The Completed devices are shown in Fig.4.3.10.

Fig.4.3.9 Fabrication steps of the spintronic convolution engine prototype. (a-b) on a substrate, (c) the magnetic films are deposited. Afterwards, (d) the Hall electrodes are placed on top of the stack, (e) the magnetic strip pattern is defined and SiO_{2} insulation is deposited. (f) The stack is etched until the electrodes are exposed, which are (g) connected to write line and pads.

Fig.4.3.10 Completed convolution engine prototype, which include the core composing series of multiplication units, the current path for shifting domains, and the write wire to write the domains at the start of the device.

4.4 Magnetic Tunneling Junction-Domain Wall Motion (MTJ-DWM) Convolution Engine

4.4a Device Structure

The Hall-domain convolution engine provides highly efficient, compact signal processing. However, it is limited to applications with predetermined coefficients such as filtering and transforms. This is because one input of the convolution engine maps to the physical distance between Hall electrodes, a parameter that is determined at fabrication time. After fabrication, the distance between the Hall electrodes cannot be modified. However, in generalized machine learning applications, it is desired that all signals in the convolution engine can be programmed.
(a) Computing Unit

Fig.4.4.1 MTJ-domain based convolution engine. (a) the multiplication unit with the structure of an MTJ formed at the intersection of two magnetic strips. The conductance of the MTJ is proportional to the product of the magnetization of the two strips at the junction. (b) the convolution engine composes an array of multiplication units. During each cycle, the conductance of MTJs on each strip are summed via KCL; after which domains are shifted to the adjacent multiplication unit.

Our MTJ-domain approach overcomes this limitation by utilizing a crossbar array of domain-hosting magnetic strips, all of which can be programmed at computation time. At each cross-point in the array, an MTJ is formed. The tunneling magnetoresistance effect is used for multiplication and readout, and summation is achieved using Kirchhoff's current law (KCL). In addition, signals moving in both the vertical and horizontal strips provides flexible dataflow which further enables novel architectures and multi-dimensional convolutions.

Multiplication Unit

The multiplication unit is shown in Fig.4.4.1a, built via a tunneling barrier or a full MTJ placed at the intersection of two domain-hosting magnetic strips. The square-shaped MTJ has dimensions $w_{T J}$. At the junction, the x-direction strip has w_{α} of its area pointing in the $+z$ direction and the remaining $w_{T J}-w_{\alpha}$ length pointing in the $-z$ direction. Likewise, the y-direction strip has w_{β} of its area pointing in the $+z$ magnetization and the remaining $w_{T J}-$ w_{β} pointing in the $-z$ direction. The MTJ conductance has 4 components: (1) the overlap
between w_{α} and w_{β} in the parallel $(+z,+z)$ state; (2) the overlap of w_{α} and $w_{T J}-w_{\beta}$ region in the anti-parallel $(+z,-z)$ state; (3) the overlap of $w_{T J}-w_{\alpha}$ and w_{β} in the anti-parallel $(-z,+z)$ state, and (4) the overlap of $w_{T J}-w_{\alpha}$ and $w_{T J}-w_{\beta}$ in the parallel state $(-z,-z)$. The total conductance is therefore:

$$
\begin{aligned}
G_{T J}= & G_{P}\left(w_{\alpha} w_{\beta}+\left(w_{T J}-w_{\alpha}\right)\left(w_{T J}-w_{\beta}\right)\right) \\
& +G_{A P}\left(w_{\alpha}\left(w_{T J}-w_{\beta}\right)+\left(w_{T J}-w_{\alpha}\right) w_{\beta}\right) \quad \ldots \text { Eq.4.4.1 }
\end{aligned}
$$

Where $G_{A P}=R_{A P}^{-1}=T G_{P}$ is the AP state unit conductance, G_{P} is the P state unit conductance, and $T=(1+T M R)^{-1}$ is the conductance ratio between the two states. Eq.4.4.1 can be rewritten in terms of the net magnetization of the strips at the intersection, e.g. the sum of the contribution from the up and down regions:

$$
\begin{aligned}
& M_{x}=C_{1}\left(w_{\alpha}-\left(w_{T J}-w_{\alpha}\right)\right) \quad \ldots \text { Eq.4.4.2 } \\
& M_{y}=C_{1}\left(w_{\beta}-\left(w_{T J}-w_{\beta}\right)\right) \quad \ldots \text { Eq.4.4.3 }
\end{aligned}
$$

Where C_{1} compose of material and device constants. Plugging Eq.4.4.2 and Eq.4.4.3 into
Eq.4.4.1, we can rewrite the junction conductance as

$$
G_{T J}=C_{2}(T-1) G_{A P} M_{x} M_{y}+C_{2}(T+1) G_{A P} w_{T J}^{2} \quad \ldots \text {..Eq.4.4.4 }
$$

As $T, G_{A P}, w_{T J}^{2}$, and C_{2} are all material and design-time constants, Eq.4.4.4 provides the desired multiplication result: the MTJ conductance is the linear product of the net magnetization of the x-direction strip at the junction M_{x} and that of the y-direction strip M_{y}.

Convolution Engine

The convolution engine (Fig.4.4.1b) composes N vertical strips running in the y-direction and M horizontal strips running in the x-direction, forming an array of $N \times M$ multiplication units. During the summation process, KCL is used to sum the results of each multiplication unit. This is achieved by clamping the top vertical strips to $V_{\text {Read }}$ and the bottom to ground.

The current flowing through the $j^{\text {th }}$ bottom strip $I_{x}[j]$ is the sum of the current flowing through each MTJ on the strip, i.e.

$$
I_{x}[j]=\sum_{k=1}^{N} C_{3}+C_{4} M_{x}[j, k] M_{y}[j, k] \quad \ldots \text { Eq.4.4.5 }
$$

Where C_{3} and C_{4} are composed of design and material constants and $V_{\text {Read }}$. For each strip (e.g. fixed j), shifting signals in the x-direction results in a convolution:

$$
I_{x}[n]=\sum_{k=1}^{N} C_{3}+C_{4} M_{x}[k-n] M_{y}[k] \quad \ldots \text { Eq.4.4.6 }
$$

4.4b Performance Analysis
 Device dimensions

The minimum dimensions of each computing unit follow the restrictions as Section 4.3b, i.e. (1) The domain should be stable and reach target thermal stability (Eq.4.3.7-4.3.8), and (2) it covers the input resolution (Eq.4.3.9). This results in the dimensions $w_{T J}=28 \mathrm{~nm}$ for a binary multiplication unit and $w_{T J}=53 \mathrm{~nm}$ for an 8 -bit multiplication unit. Note that, the dimensions for the MTJ-DWM design are smaller than the AHE-DWM design, as there is no need for electrodes to be placed upon each multiplication unit.

Operation Frequency

Compared to the Hall-domain convolution engine, the MTJ approach requires no sampling during the summation process. Instead, the speed is limited by the total RC delay along the strip. This can be modeled as an N-stage RC ladder, with the speed capped approximately by the delay of the worst-case cell. This cell has an RC constant of

$$
\left(R_{T J}+2 R_{\text {strip }}\right) C_{\text {unit }} \quad \ldots \text { Eq.4.4.7 }
$$

Where $R_{T J}$ is the MTJ resistance, $R_{\text {strip }}$ is the resistance of the strip at the worst-case unit, and $C_{\text {unit }}$ is the capacitance of each computing unit. This results in a delay of 630 ps for a binary 1024-point convolution engine and 1.7 ns for an 8 -bit 1024-point convolution.

Table 4.4.1 Performance of the 1024-point MTJ-domain convolution engine.

Quantity	MTJ-domain	
	Binary	8Bit
Area (A)	$3.2 \mu \mathrm{~m}^{2}$	$6.6 \mu \mathrm{~m}^{2}$
Throughput (T)	$183 \mathrm{MOp} / \mathrm{s}$	$128 \mathrm{MOp} / \mathrm{s}$
Energy (E)	$8.4 \times 10^{-13} \mathrm{~J}$	$6.3 \times 10^{-12} \mathrm{~J}$
FOM = T/EA	1.4×10^{32}	6.1×10^{30}

During the write and shift phase, the speed is limited by the time necessary to drive domains from one computing unit to the next $\left(w_{T J}+F\right) / \delta$. With the dimensions computed above, we can obtain the delay of a binary convolution engine to be $2.7 \mathrm{~ns}(183 \mathrm{MHz})$, and that of an 8 -bit engine is 3.9 ns (128 MHz).

Energy Consumption

Similar to the AHE-DWM processor, the MTJ-DWM processor has a shift and input phase and a summation phase. During the summation phase, the energy consumption includes: (1) the read current through the magnetic strip, (2) the read current through each MTJ device, and (3) the charging of the magnetic strip and MTJ capacitance. Due to the presence of an insulating barrier, the resistance and capacitance of the MTJ is significantly larger than that of the strip (about 10~100x). Thus, the energy consumption can be approximated as:

$$
E_{\text {Read }}=C_{M T J} V_{\text {Read }}^{2}+V_{\text {Read }}^{2} / R_{M T J} t_{1}+I_{\text {Read }}^{2} R_{\text {Strip }} t_{1} \quad \ldots \text {... } q .4 .4 .8
$$

Where $C_{M T J}$ and $R_{M T J}$ are the capacitance and resistance of the MTJ, $V_{\text {Read }}$ is the read voltage, $I_{\text {Read }}$ is the read current (which is the sum of all MTJ currents on the strip), and t_{1} is the period of the summation phase. Using experimental values of 1 fF and $200 \mathrm{k} \Omega$ for a 50 nm MTJ and a
read voltage of 0.2 V , this energy is $5.5 \times 10^{-16} \mathrm{~J}$ for binary convolution and $5.1 \times 10^{-15} \mathrm{~J}$ for an 8 -bit convolution.

During the shift and input phase, the energy consumption follows that Eq.4.3.12; e.g. the domain shift energy and the domain generation energy. This results in an energy of $2.7 \times 10^{-16} \mathrm{~J}$ for binary convolution and $3.9 \times 10^{-15} \mathrm{~J}$ for an 8 -bit convolution.

From the above analysis, we obtain an energy, area, and operation frequency of $3.2 \mu \mathrm{~m}^{2}, 841 \mathrm{fJ}$, and 183 MHz for the binary 1024 -point convolution engine, and $6.6 \mu \mathrm{~m}^{2}$, 6.3 pJ , and 128 MHz for the 8 -bit convolution engine. A summary of the two spintronic approaches is shown in Table 4.4.1. Compared to the Hall-based approach, the MTJ-based convolution engine provides improved performance, area, and scalability. The is due to (1) a simpler multiplication unit structure (without electrodes), and (2) removal of sampling process and circuitry.

4.4c Simulation

While the MTJ-domain approach outperforms the Hall-domain approach, the fabrication of multiple layers of magnetic patterns (e.g. strip-barrier-strip or strip-MTJ-strip) is more challenging than placing electrodes on a magnetic strip. There is yet to be mature technology for such a process. Hence, we verify the functionality of the MTJ-domain approach via simulation.

We compose an array that has 20 vertical strips, 20 horizontal strips, and a total of 400 MTJs. We set the dimension of each MTJ and their separation to be 10 units. An additional 40 units of magnetic strip is added outside of the array for signal input.

Fig.4.4.2 Simulation of the MTJ-domain convolution engine. In each image, we show the vertical/horizonal strips in red/green and their domains in bright red/green. Overlaps are shown in yellow. The patterns from top to bottom: positive step, negative step, constant max, constant min, interleaved max/min, and interleaved $\mathrm{min} / \mathrm{max}$. These patterns are convolved with a square wave. The convolution output is shown at the end of each horizontal strip. To the right of each image, the corresponding signals for each strip is displayed.

The spin orientation in each unit is represented as +1 or -1 . The maximum signal, $w_{\alpha}=10$,
corresponds to a numerical value of +10 , and the minimum signal $w_{\alpha}=0$ to a numerical value of -10 . Each step in w_{α} corresponds to a change of 2 in the numerical value

Fig.4.4.2 shows the simulation of the engine in computing the convolution of a square wave with the following patterns: (1)a positive step, (2)a negative step, (3)constant max-values, (4) constant min-values, (5)interleaved max-min patterns, and (5)interleaved min-max patterns. Vertical (horizontal) strips are displayed in green (red) and its +z magnetization domains in bright green (red). Overlaps of the strips and domains are displayed in yellow/bright yellow. The computation result is displayed at the end of each strip.

On the top strip, the convolution of the square pulse with a positive step is initially at -800 when there is no overlap between the pulse and the step. As the amount of overlap increases, the output signal gradually increases and caps at 800 . The inverse case is observed for the negative step on the second strip, where the signal is initially at 800 and gradually decreases to -800 as the overlap amount reduces. For constant max and min values, the output is always 1200 and 1200; and for interleaved max/mins the output is always 0 . These results confirm the operation of the MTJ-based convolution engine.

CHAPTER 5

Conclusion and Perspectives

Neural networks and AI are becoming increasingly involved in everyday life. Advancing the technology involves innovation across the entire computing hierarchy, from the algorithm, hardware, down to the individual physical devices. New network structures, optimization methods, specialized hardware accelerators, and emerging devices all contribute to the everexpanding frontier of AI. In this dissertation, we present our perspectives towards each computing hierarchy.

At the algorithm level, we take inspiration from special neurons in biological information processing systems to develop application-specific neural networks. In chapter 2, we first describe the behavior and response of audio and visual neurons and propose a method to compose their neuron models. Through neural architecture search (NAS), we optimize networks containing these neurons through three complementary NAS methods, each of which uses a different bio-inspired search mechanism: mutation, growth, and pruning. NAS is conducted on a hierarchy of datasets that include visual recognition on pictures, handwritten characters, and artwork; as well as audio recognition on speech, environmental sounds, and music. We then analyze the characteristics of high-performing networks to develop specialized networks and demonstrate their application on state-of-the-art networks.

At the hardware level, we recognize the importance of memory in AI hardware and the challenges brought forth by memory scaling. We propose two schemes to overcome limitations caused by variation, based on compensation of variation and variation-tolerant designs. In chapter 3, after an introduction on the memory circuit architecture and variation sources, we describe our 2D calibration scheme, which composes a calibration grid to cancel out variations in fabrication and the access path efficiently. Next, we propose the dual-dataline read scheme,
which recycles sensing current to improve read margin, speed, and energy to offset the heavy read performance degradation caused by variation.

Last but not least, utilizing physical mechanisms to create AI-computing devices provides the greatest boost in computing efficiency. In chapter 4, we propose two approaches to compose a spintronic processing engine, one through coupling the Hall effect with domain motion, and the other through coupling the tunneling magnetoresistance effect with domain motion. The former provides a simple, easy-to-fabricate process; while the latter provides higher flexibility and performance. We theoretically analyze the metrics of these devices and show their superior performance over state-of-the-art CMOS technology. Finally, we experimentally verify the mechanisms necessary for the Hall-domain spintronic processor and simulate the operation of the MTJ-domain processor.

The approaches proposed in this dissertation present our perspective towards nextgeneration AI. We stress that the advancement in AI involves innovation on the entire computing stack; the cooperation, inspiration, and integration of novel neuroscience, physics, designs, and algorithms are equally crucial to overcome the bottlenecks in computation today (Fig.5.1.1). This dissertation displays our efforts towards tackling the challenges in three computing hierarchies. Here, we further identify several future paths based on the proposed works. Towards our algorithmic perspective, the involvement of additional neuron types, neural behavior, and network structures beyond what was discussed in this dissertation could improve AI performance and provide insight into how human-like information processing could be achieved. Additionally, new sensing circuits that take advantage of the dual-data line read scheme, and robust systems that expand 2D calibration to N-Dimensional or machine-learning-based calibrations on memory cubes may be enhanced and continue to expand the memory efficiency. Materials like antiferromagnets and magnetic insulators may provide

Fig.5.1.1 The path towards next generation AI: inspiration from neuroscience could lead to innovation across different layers of the computing hierarchy. Advancing AI involves parallel development of ideas in physics, devices, circuits, system architectures, and algorithms; as well as vertical integration involving multiple layers of the hierarchy.
improved scalability, faster speeds (domain speeds can reach up to thousands of meters per second), and potentially remove the summation circuitry in the convolution engine (with insulating materials, AHE voltages can be directly connected in series rather than require sampling); while improving the summation circuitry and analog-digital converters can interface with digital components. The author holds an optimistic prospect about the future of

AI.

References

[1] W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in nervous activity," Bull. Math. Biophys., vol. 5, no. 4, pp. 115-133, 1943.
[2] F. Rosenblatt, "The perceptron: a probabilistic model for information storage and organization in the brain.," Psychol. Rev., vol. 65, no. 6, p. 386, 1958.
[3] D. O. Hebb, The Organization of Behavior. New York: Wiley \& Sons, 1949.
[4] A. G. Ivakhnenko, "The group method of data of handling; a rival of the method of stochastic approximation," Sov. Autom. Control, vol. 13, pp. 43-55, 1968.
[5] N. R. C. (US). A. L. P. A. Committee and A. (Organization), Language and Machines: Computers in Translation and Linguistics; a Report, vol. 1416. National Academies, 1966.
[6] J. Lighthill, "Artificial intelligence: A general survey," in Artificial Intelligence: a paper symposium, 1973, pp. 1-21.
[7] M. Minsky and S. A. Papert, Perceptrons: An introduction to computational geometry. MIT press, 2017.
[8] "AI winter - Wikipedia." https://en.wikipedia.org/wiki/AI_winter (accessed Mar. 08, 2021).
[9] P. J. Werbos, The roots of backpropagation: from ordered derivatives to neural networks and political forecasting, vol. 1. John Wiley \& Sons, 1994.
[10] K. Fukushima, "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position," Biol. Cybern., vol. 36, no. 4, pp. 193-202, 1980.
[11] J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities," Proc. Natl. Acad. Sci., vol. 79, no. 8, pp. 2554-2558, 1982.
[12] C. J. C. H. Watkins and P. Dayan, "Q-learning," Mach. Learn., vol. 8, no. 3-4, pp. 279-292, 1992.
[13] M. Campbell, A. J. Hoane Jr, and F. Hsu, "Deep blue," Artif. Intell., vol. 134, no. 1-2, pp. 57-83, 2002.
[14] Y. LeCun, "The MNIST database of handwritten digits," http://yann. lecun. com/exdb/mnist/.
[15] Jia Deng, Wei Dong, R. Socher, Li-Jia Li, Kai Li, and Li Fei-Fei, "ImageNet: A largescale hierarchical image database," in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 248-255, doi: 10.1109/CVPRW.2009.5206848.
[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," Adv. Neural Inf. Process. Syst., pp. 1-9, 2012, doi: http://dx.doi.org/10.1016/j.protcy.2014.09.007.
[17] D. Silver et al., "Mastering the game of go without human knowledge," Nature, vol. 550, no. 7676, pp. 354-359, 2017.
[18] N. NVIDIA, "GP100 Pascal Whitepaper," 2016.
[19] I. Buck, "Gpu computing with nvidia cuda," in ACM SIGGRAPH 2007 courses, 2007, pp. 6-es.
[20] M. Abadi et al., "Tensorflow: A system for large-scale machine learning," in 12th \{USENIX\} symposium on operating systems design and implementation (\{OSDI\} 16), 2016, pp. 265-283.
[21] R. Al-Rfou et al., "Theano: A Python framework for fast computation of mathematical expressions," arXiv e-prints, p. arXiv-1605, 2016.
[22] N. P. Jouppi et al., "In-datacenter performance analysis of a tensor processing unit," in 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), 2017, pp. 1-12.
[23] J. Ouyang, X. Du, Y. Ma, and J. Liu, "Kunlun: A 14nm High-Performance AI Processor for Diversified Workloads," in 2021 IEEE International Solid-State Circuits Conference (ISSCC), 2021, vol. 64, pp. 50-51.
[24] K. Ueyoshi et al., "QUEST: A 7.49 TOPS multi-purpose log-quantized DNN inference engine stacked on 96MB 3D SRAM using inductive-coupling technology in 40nm CMOS," in 2018 IEEE International Solid-State Circuits Conference-(ISSCC), 2018, pp. 216-218.
[25] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, "UNPU: A 50.6 TOPS/W unified deep neural network accelerator with 1b-to-16b fully-variable weight bitprecision," in 2018 IEEE International Solid-State Circuits Conference-(ISSCC), 2018, pp. 218-220.
[26] P. C. Knag et al., "A 617-TOPS/W All-Digital Binary Neural Network Accelerator in 10-nm FinFET CMOS," IEEE J. Solid-State Circuits, 2020.
[27] K. Ando et al., "BRein memory: A single-chip binary/ternary reconfigurable inmemory deep neural network accelerator achieving 1.4 TOPS at 0.6 W ," IEEE J. Solid-State Circuits, vol. 53, no. 4, pp. 983-994, 2017.
[28] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, "Eyeriss v2: A flexible accelerator for emerging deep neural networks on mobile devices," IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 9, no. 2, pp. 292-308, 2019.
[29] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, "YodaNN: An ultra-low power convolutional neural network accelerator based on binary weights," in 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2016, pp. 236-241.
[30] A. Amravati, S. Bin Nasir, S. Thangadurai, I. Yoon, and A. Raychowdhury, "A 55nm time-domain mixed-signal neuromorphic accelerator with stochastic synapses and embedded reinforcement learning for autonomous micro-robots," in 2018 IEEE International Solid-State Circuits Conference-(ISSCC), 2018, pp. 124-126.
[31] Z. Chen, S. Fu, Q. Cao, and J. Gu, "A Mixed-Signal Time-Domain Generative Adversarial Network Accelerator with Efficient Subthreshold Time Multiplier and Mixed-Signal On-Chip Training for Low Power Edge Devices," in 2020 IEEE Symposium on VLSI Circuits, 2020, pp. 1-2.
[32] C. Gao, D. Neil, E. Ceolini, S.-C. Liu, and T. Delbruck, "DeltaRNN: A power-efficient recurrent neural network accelerator," in Proceedings of the 2018 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, 2018, pp. 21-30.
[33] P. Chi et al., "Prime: A novel processing-in-memory architecture for neural network computation in reram-based main memory," in ACM SIGARCH Computer Architecture News, 2016, vol. 44, no. 3, pp. 27-39.
[34] W.-H. Chen et al., "A 65 nm 1 Mb nonvolatile computing-in-memory ReRAM macro with sub-16ns multiply-and-accumulate for binary DNN AI edge processors," in 2018 IEEE International Solid-State Circuits Conference-(ISSCC), 2018, pp. 494-496.
[35] C.-X. Xue et al., "24.1 A 1 Mb multibit ReRAM computing-in-memory macro with 14.6 ns parallel MAC computing time for CNN based AI edge processors," in 2019 IEEE International Solid-State Circuits Conference-(ISSCC), 2019, pp. 388-390.
[36] W.-H. Chen et al., "CMOS-integrated memristive non-volatile computing-in-memory for AI edge processors," Nat. Electron., vol. 2, no. 9, pp. 420-428, 2019.
[37] G. W. Burr et al., "Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element," IEEE Trans. Electron Devices, vol. 62, no. 11, pp. 3498-3507, 2015.
[38] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, "A survey of the recent architectures of deep convolutional neural networks," Artif. Intell. Rev., vol. 53, no. 8, pp. 5455-5516, 2020.
[39] W. Pauli, "The connection between spin and statistics," Phys. Rev., vol. 58, no. 8, p. 716, 1940.
[40] L. Landau and E. Lifshitz, "On the theory of the dispersion of magnetic permeability in ferromagnetic bodies," in Perspectives in Theoretical Physics, Elsevier, 1992, pp. 51-65.
[41] M. I. D'Yakonov and V. I. Perel, "Possibility of orienting electron spins with current," Sov. J. Exp. Theor. Phys. Lett., vol. 13, p. 467, 1971.
[42] R. Meservey, D. Paraskevopoulos, and P. M. Tedrow, "Correlation between Spin Polarization of Tunnel Currents from 3 d Ferromagnets and Their Magnetic Moments," Phys. Rev. Lett., vol. 37, no. 13, p. 858, 1976.
[43] M. Julliere, "Tunneling between ferromagnetic films," Phys. Lett. A, vol. 54, no. 3, pp. 225-226, 1975.
[44] M. N. Baibich et al., "Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices," Phys. Rev. Lett., vol. 61, no. 21, p. 2472, 1988.
$[45] ~ E . ~ B . ~ M y e r s, ~ D . ~ C . ~ R a l p h, ~ J . ~ A . ~ K a t i n e, ~ R . ~ N . ~ L o u i e, ~ a n d ~ R . ~ A . ~ B u h r m a n, ~ " C u r r e n t-~$ induced switching of domains in magnetic multilayer devices," Science (80-.)., vol. 285, no. 5429, pp. 867-870, 1999.
[46] S. Zhang and Z. Li, "Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets," Phys. Rev. Lett., vol. 93, no. 12, p. 127204, 2004.
[47] T. Maruyama et al., "Large voltage-induced magnetic anisotropy change in a few atomic layers of iron," Nat. Nanotechnol., vol. 4, no. 3, pp. 158-161, 2009.
[48] P. K. Amiri and K. L. Wang, "Voltage-controlled magnetic anisotropy in spintronic devices," in Spin, 2012, vol. 2, no. 03, p. 1240002.
[49] X. Li et al., "Enhancement of voltage-controlled magnetic anisotropy through precise control of Mg insertion thickness at $\mathrm{CoFeB} \mid \mathrm{MgO}$ interface," Appl. Phys. Lett., vol. 110, no. 5, p. 52401, 2017.
[50] L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, "Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum," Science (80-.)., vol. 336, no. 6081, pp. 555-558, 2012, doi: 10.1126/science. 1218197.
[51] G. Yu et al., "Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields," Nat. Nanotechnol., vol. 9, no. 7, pp. 548-554, 2014, doi: 10.1038/nnano.2014.94.
[52] I. M. Miron et al., "Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection," Nature, vol. 476, no. 7359, pp. 189-193, 2011, doi: 10.1038/nature 10309.
[53] N. Nagaosa and Y. Tokura, "Topological properties and dynamics of magnetic skyrmions," Nat. Nanotechnol., vol. 8, no. 12, pp. 899-911, 2013.
[54] A. Fert, N. Reyren, and V. Cros, "Magnetic skyrmions: advances in physics and potential applications," Nat. Rev. Mater., vol. 2, no. 7, pp. 1-15, 2017.
[55] W. Jiang et al., "Blowing magnetic skyrmion bubbles," Science (80-.)., vol. 349, no. 6245, pp. 283-286, 2015.
[56] S. Sachdev and J. Ye, "Gapless spin-fluid ground state in a random quantum Heisenberg magnet," Phys. Rev. Lett., vol. 70, no. 21, p. 3339, 1993.
[57] G. Shirane et al., "Two-dimensional antiferromagnetic quantum spin-fluid state in La 2 CuO 4," Phys. Rev. Lett., vol. 59, no. 14, p. 1613, 1987.
[58] F. Lado and E. Lomba, "Heisenberg spin fluid in an external magnetic field," Phys. Rev. Lett., vol. 80, no. 16, p. 3535, 1998.
[59] D. Sherrington and S. Kirkpatrick, "Solvable model of a spin-glass," Phys. Rev. Lett., vol. 35, no. 26, p. 1792, 1975.
[60] M. Ali, P. Adie, C. H. Marrows, D. Greig, B. J. Hickey, and R. L. Stamps, "Exchange bias using a spin glass," Nat. Mater., vol. 6, no. 1, pp. 70-75, 2007.
[61] G. E. Santoro, R. Martoňák, E. Tosatti, and R. Car, "Theory of quantum annealing of an Ising spin glass," Science (80-.)., vol. 295, no. 5564, pp. 2427-2430, 2002.
[62] S. S. P. Parkin, M. Hayashi, and L. Thomas, "Magnetic domain-wall racetrack memory," Science (80-.)., vol. 320, no. 5873, pp. 190-194, 2008.
$[63]$ D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, "Magnetic domain-wall logic," Science (80-.)., vol. 309, no. 5741, pp. 1688-1692, 2005.
[64] G. Bochi et al., "Magnetic domain structure in ultrathin films," Phys. Rev. Lett., vol. 75, no. 9, p. 1839, 1995.
[65] I. Dzyaloshinsky, "A thermodynamic theory of 'weak' ferromagnetism of
antiferromagnetics," J. Phys. Chem. Solids, vol. 4, no. 4, pp. 241-255, 1958.
[66] T. Moriya, "Anisotropic superexchange interaction and weak ferromagnetism," Phys. Rev., vol. 120, no. 1, p. 91, 1960.
[67] A. Fert and P. M. Levy, "Role of anisotropic exchange interactions in determining the properties of spin-glasses," Phys. Rev. Lett., vol. 44, no. 23, p. 1538, 1980.
[68] D. D. Stancil and A. Prabhakar, "' Spin Waves: Theory and Applications', Springer," New York, 2009.
[69] A. Spinelli, B. Bryant, F. Delgado, J. Fernández-Rossier, and A. F. Otte, "Imaging of spin waves in atomically designed nanomagnets," Nat. Mater., vol. 13, no. 8, pp. 782785, 2014.
[70] T. Kampfrath et al., "Coherent terahertz control of antiferromagnetic spin waves," Nat. Photonics, vol. 5, no. 1, pp. 31-34, 2011.
[71] K. Uchida et al., "Observation of the spin Seebeck effect," Nature, vol. 455, no. 7214, pp. 778-781, 2008.
[72] K. Uchida et al., "Spin seebeck insulator," Nat. Mater., vol. 9, no. 11, pp. 894-897, 2010.
[73] H. Adachi, K. Uchida, E. Saitoh, and S. Maekawa, "Theory of the spin Seebeck effect," Reports Prog. Phys., vol. 76, no. 3, p. 36501, 2013.
[74] Z. Q. Qiu and S. D. Bader, "Surface magneto-optic Kerr effect," Rev. Sci. Instrum., vol. 71, no. 3, pp. 1243-1255, 2000.
[75] Z. Q. Qiu and S. D. Bader, "Surface magneto-optic Kerr effect (SMOKE)," J. Magn. Magn. Mater., vol. 200, no. 1-3, pp. 664-678, 1999.
[76] G. P. Zhang, W. Hübner, G. Lefkidis, Y. Bai, and T. F. George, "Paradigm of the timeresolved magneto-optical Kerr effect for femtosecond magnetism," Nat. Phys., vol. 5, no. 7, pp. 499-502, 2009.
[77] S. Yuasa, A. Fukushima, H. Kubota, Y. Suzuki, and K. Ando, "Giant tunneling magnetoresistance up to 410% at room temperature in fully epitaxial $\mathrm{Co} / \mathrm{Mg} \mathrm{O} / \mathrm{Co}$ magnetic tunnel junctions with bcc Co (001) electrodes," Appl. Phys. Lett., vol. 89, no. 4, p. 42505, 2006.
[78] S. Yuasa and D. D. Djayaprawira, "Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO (001) barrier," J. Phys. D. Appl. Phys., vol. 40, no. 21, p. R337, 2007.
[79] S. Ikeda et al., "Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in $\mathrm{Co} \mathrm{Fe} \mathrm{B/} \mathrm{Mg} \mathrm{O} / \mathrm{Co} \mathrm{Fe} \mathrm{B} \mathrm{pseudo-spin-valves} \mathrm{annealed} \mathrm{at} \mathrm{high}$ temperature," Appl. Phys. Lett., vol. 93, no. 8, p. 82508, 2008.
[80] Q. Dong et al., "A 1 Mb 28 nm STT-MRAM with 2.8 ns read access time at 1.2 V VDD using single-cap offset-cancelled sense amplifier and in-situ self-write-termination," in Solid-State Circuits Conference-(ISSCC), 2018 IEEE International, 2018, pp. 480482.
[81] T.-H. Yang, K.-X. Li, Y.-N. Chiang, W.-Y. Lin, H.-T. Lin, and M.-F. Chang, "A 28nm

32 Kb embedded 2T2MTJ STT-MRAM macro with 1.3 ns read-access time for fast and reliable read applications," in Solid-State Circuits Conference-(ISSCC), 2018 IEEE International, 2018, pp. 482-484.
[82] K. Rho et al., "23.5 A 4Gb LPDDR2 STT-MRAM with compact 9F2 1T1MTJ cell and hierarchical bitline architecture," in Solid-State Circuits Conference (ISSCC), 2017 IEEE International, 2017, pp. 396-397.
[83] Y. C. Wu et al., "Deterministic and field-free voltage-controlled MRAM for high performance and low power applications," in 2020 IEEE Symposium on VLSI Technology, 2020, pp. 1-2.
[84] C. Grezes et al., "Write error rate and read disturbance in electric-field-controlled magnetic random-access memory," IEEE Magn. Lett., vol. 8, pp. 1-5, 2016.
[85] P. K. Amiri et al., "Electric-field-controlled magnetoelectric RAM: progress, challenges, and scaling," IEEE Trans. Magn., vol. 51, no. 11, pp. 1-7, 2015.
[86] K. Garello et al., "Manufacturable 300 mm platform solution for field-free switching SOT-MRAM," in 2019 Symposium on VLSI Circuits, 2019, pp. T194-T195.
[87] K. Garello et al., "SOT-MRAM 300mm integration for low power and ultrafast embedded memories," in 2018 IEEE Symposium on VLSI Circuits, 2018, pp. 81-82.
[88] S. Bhanja, D. K. Karunaratne, R. Panchumarthy, S. Rajaram, and S. Sarkar, "NonBoolean computing with nanomagnets for computer vision applications," Nat. Nanotechnol., vol. 11, no. 2, p. 177, 2016.
[89] B. Sutton, K. Y. Camsari, B. Behin-Aein, and S. Datta, "Intrinsic optimization using stochastic nanomagnets," Sci. Rep., vol. 7, p. 44370, 2017.
[90] P. Debashis, R. Faria, K. Y. Camsari, J. Appenzeller, S. Datta, and Z. Chen, "Experimental demonstration of nanomagnet networks as hardware for Ising computing," in 2016 IEEE International Electron Devices Meeting (IEDM), 2016, pp. 33-34.
[91] H. Goto, "Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network," Sci. Rep., vol. 6, no. 1, pp. 1-8, 2016.
[92] F. Macià, A. D. Kent, and F. C. Hoppensteadt, "Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation," Nanotechnology, vol. 22, no. 9, p. 95301, 2011.
[93] H. Arai and H. Imamura, "Neural-network computation using spin-wave-coupled spintorque oscillators," Phys. Rev. Appl., vol. 10, no. 2, p. 24040, 2018.
[94] J. Torrejon et al., "Neuromorphic computing with nanoscale spintronic oscillators," Nature, vol. 547, no. 7664, p. 428, 2017.
[95] M. Romera et al., "Vowel recognition with four coupled spin-torque nano-oscillators," Nature, vol. 563, no. 7730, pp. 230-234, 2018.
[96] S. P. Levitan, Y. Fang, D. H. Dash, T. Shibata, D. E. Nikonov, and G. I. Bourianoff, "Non-Boolean associative architectures based on nano-oscillators," in 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications, 2012, pp. 1-6.
[97] H. Nomura et al., "Reservoir computing with dipole-coupled nanomagnets," Jpn. J. Appl. Phys., vol. 58, no. 7, p. 70901, 2019.
[98] D. Pinna, G. Bourianoff, and K. Everschor-Sitte, "Reservoir computing with random skyrmion textures," Phys. Rev. Appl., vol. 14, no. 5, p. 54020, 2020.
[99] G. Csaba, A. Papp, W. Porod, and R. Yeniceri, "Non-boolean computing based on linear waves and oscillators," in 2015 45th European Solid State Device Research Conference (ESSDERC), 2015, pp. 101-104.
[100] G. Csaba, Á. Papp, and W. Porod, "Perspectives of using spin waves for computing and signal processing," Phys. Lett. A, vol. 381, no. 17, pp. 1471-1476, 2017.
[101] A. Mizrahi et al., "Neural-like computing with populations of superparamagnetic basis functions," Nat. Commun., vol. 9, no. 1, pp. 1-11, 2018.
[102] W. A. Borders et al., "Analogue spin-orbit torque device for artificial-neural-networkbased associative memory operation," Appl. Phys. express, vol. 10, no. 1, p. 13007, 2016.
[103] D. Prychynenko et al., "Magnetic skyrmion as a nonlinear resistive element: a potential building block for reservoir computing," Phys. Rev. Appl., vol. 9, no. 1, p. 14034, 2018.
[104] D. Fan, Y. Shim, A. Raghunathan, and K. Roy, "STT-SNN: A spin-transfer-torque based soft-limiting non-linear neuron for low-power artificial neural networks," IEEE Trans. Nanotechnol., vol. 14, no. 6, pp. 1013-1023, 2015.
[105] S. R. Kulkarni, D. V. Kadetotad, S. Yin, J.-S. Seo, and B. Rajendran, "Neuromorphic hardware accelerator for snn inference based on stt-ram crossbar arrays," in 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2019, pp. 438-441.
[106] Y. Huang, W. Kang, X. Zhang, Y. Zhou, and W. Zhao, "Magnetic skyrmion-based synaptic devices," Nanotechnology, vol. 28, no. 8, p. 08LT02, Jan. 2017, doi: 10.1088/1361-6528/aa5838.
[107] K. Y. Camsari, S. Salahuddin, and S. Datta, "Implementing p-bits with embedded MTJ," IEEE Electron Device Lett., vol. 38, no. 12, pp. 1767-1770, 2017.
[108] K. Y. Camsari, R. Faria, B. M. Sutton, and S. Datta, "Stochastic p-bits for invertible logic," Phys. Rev. X, vol. 7, no. 3, p. 31014, 2017.
[109] A. Lee, B. Dai, D. Wu, H. Wu, R. N. Schwartz, and K. L. Wang, "A thermodynamic core using voltage-controlled spin-orbit-torque magnetic tunnel junctions.," Nanotechnology, Mar. 2021, doi: 10.1088/1361-6528/abeb9b.
[110] H. Zeng and J. R. Sanes, "Neuronal cell-type classification: challenges, opportunities and the path forward," Nat. Rev. Neurosci., vol. 18, no. 9, pp. 530-546, 2017.
[111] J. O’Keefe, N. Burgess, J. G. Donnett, K. J. Jeffery, and E. A. Maguire, "Place cells, navigational accuracy, and the human hippocampus," Philos. Trans. R. Soc. London. Ser. B Biol. Sci., vol. 353, no. 1373, pp. 1333-1340, 1998.
[112] R. Muller, "A quarter of a century of place cells," Neuron, vol. 17, no. 5, pp. 813-822, 1996.
[113] E. I. Moser, E. Kropff, and M.-B. Moser, "Place Cells, Grid Cells, and the Brain's Spatial Representation System," Annu. Rev. Neurosci., vol. 31, no. 1, pp. 69-89, 2008, doi: 10.1146/annurev.neuro.31.061307.090723.
[114] T. Hafting, M. Fyhn, S. Molden, M.-B. Moser, and E. I. Moser, "Microstructure of a spatial map in the entorhinal cortex," Nature, vol. 436, no. 7052, pp. 801-806, 2005.
[115] J. O'Keefe and M. L. Recce, "Phase relationship between hippocampal place units and the EEG theta rhythm," Hippocampus, vol. 3, no. 3, pp. 317-330, 1993.
[116] V. Nair and G. E. Hinton, "Rectified linear units improve restricted boltzmann machines," 2010.
[117] X. Glorot, A. Bordes, and Y. Bengio, "Deep sparse rectifier neural networks," in Proceedings of the fourteenth international conference on artificial intelligence and statistics, 2011, pp. 315-323.
[118] Y. Sun, X. Wang, and X. Tang, "Deeply learned face representations are sparse, selective, and robust," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 2892-2900.
[119] K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing humanlevel performance on imagenet classification," in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026-1034.
[120] A. L. Maas, A. Y. Hannun, and A. Y. Ng, "Rectifier nonlinearities improve neural network acoustic models," in Proc. icml, 2013, vol. 30, no. 1, p. 3, [Online]. Available: https://pdfs.semanticscholar.org/367f/2c63a6f6a10b3b64b8729d601e69337ee3cc.pdf.
[121] A. Howard et al., "Searching for mobilenetv3," in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1314-1324.
[122] T. J. Gawne and J. M. Martin, "Responses of primate visual cortical V4 neurons to simultaneously presented stimuli," J. Neurophysiol., vol. 88, no. 3, pp. 1128-1135, 2002.
[123] I. Lampl, D. Ferster, T. Poggio, and M. Riesenhuber, "Intracellular measurements of spatial integration and the MAX operation in complex cells of the cat primary visual cortex.," J. Neurophysiol., vol. 92, no. 5, pp. 2704-2713, 2004, doi: 10.1152/jn.00060.2004.
[124] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, "Robust object recognition with cortex-like mechanisms," IEEE Trans. Pattern Anal. Mach. Intell., no. 3, pp. 411-426, 2007.
[125] K. Fukushima and S. Miyake, "Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position," Pattern Recognit., vol. 15, no. 6, pp. 455-469, 1982.
[126] Y.-L. Boureau, J. Ponce, and Y. LeCun, "A theoretical analysis of feature pooling in visual recognition," in Proceedings of the 27th international conference on machine learning (ICML-10), 2010, pp. 111-118.
[127] E. D. Young and M. B. Sachs, "Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers," J. Acoust.

Soc. Am., vol. 66, no. 5, pp. 1381-1403, 1979.
[128] R. V Shannon, F.-G. Zeng, V. Kamath, J. Wygonski, and M. Ekelid, "Speech recognition with primarily temporal cues," Science (80-.)., vol. 270, no. 5234, pp. 303-304, 1995.
[129] N. L. Golding, D. Robertson, and D. Oertel, "Recordings from slices indicate that octopus cells of the cochlear nucleus detect coincident firing of auditory nerve fibers with temporal precision," J. Neurosci., vol. 15, no. 4, pp. 3138-3153, 1995.
[130] D. Oertel, R. Bal, S. M. Gardner, P. H. Smith, and P. X. Joris, "Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus.," Proc. Natl. Acad. Sci. U. S. A., vol. 97, no. 22, pp. 11773-9, 2000, doi: 10.1073/pnas.97.22.11773.
[131] A. Graves, N. Jaitly, and A. Mohamed, "Hybrid speech recognition with deep bidirectional LSTM," in 2013 IEEE workshop on automatic speech recognition and understanding, 2013, pp. 273-278.
[132] A. Graves, A. Mohamed, and G. Hinton, "Speech recognition with deep recurrent neural networks," in 2013 IEEE international conference on acoustics, speech and signal processing, 2013, pp. 6645-6649.
[133] Y. Xu, Q. Kong, W. Wang, and M. D. Plumbley, "Large-scale weakly supervised audio classification using gated convolutional neural network," in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 121-125.
[134] T. Elsken, J. H. Metzen, and F. Hutter, "Neural architecture search: A survey.," J. Mach. Learn. Res., vol. 20, no. 55, pp. 1-21, 2019.
[135] B. Zoph, V. Vasudevan, J. Shlens, and Q. V Le, "Learning transferable architectures for scalable image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8697-8710.
[136] B. Zoph and Q. V Le, "Neural architecture search with reinforcement learning," arXiv Prepr. arXiv1611.01578, 2016.
[137] B. Baker, O. Gupta, N. Naik, and R. Raskar, "Designing neural network architectures using reinforcement learning," arXiv Prepr. arXiv1611.02167, 2016.
[138] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu, "Hierarchical representations for efficient architecture search," arXiv Prepr. arXiv1711.00436, 2017.
[139] E. Real, A. Aggarwal, Y. Huang, and Q. V Le, "Regularized evolution for image classifier architecture search," in Proceedings of the AAAI Conference on Artificial Intelligence, 2019, vol. 33, pp. 4780-4789.
[140] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, "Smash: one-shot model architecture search through hypernetworks," arXiv Prepr. arXiv1708.05344, 2017.
[141] J. Bergstra and Y. Bengio, "Random search for hyper-parameter optimization," J. Mach. Learn. Res., vol. 13, no. Feb, pp. 281-305, 2012.
[142] H. Liu, K. Simonyan, and Y. Yang, "Darts: Differentiable architecture search," arXiv Prepr. arXiv1806.09055, 2018.
[143] M. Tan and Q. Le, "Efficientnet: Rethinking model scaling for convolutional neural networks," in International Conference on Machine Learning, 2019, pp. 6105-6114.
[144] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, "Efficient neural architecture search via parameters sharing," in International Conference on Machine Learning, 2018, pp. 4095-4104.
[145] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, "Efficient architecture search by network transformation," in Proceedings of the AAAI Conference on Artificial Intelligence, 2018, vol. 32, no. 1.
[146] B. Baker, O. Gupta, R. Raskar, and N. Naik, "Accelerating neural architecture search using performance prediction," arXiv Prepr. arXiv1705.10823, 2017.
[147] H. Cai, J. Yang, W. Zhang, S. Han, and Y. Yu, "Path-level network transformation for efficient architecture search," in International Conference on Machine Learning, 2018, pp. 678-687.
[148] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, "Inception-v4, inception-resnet and the impact of residual connections on learning," in Proceedings of the AAAI Conference on Artificial Intelligence, 2017, vol. 31, no. 1.
[149] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778, [Online]. Available: http://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning _CVPR_2016_paper.pdf.
[150] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and K. Keutzer, "Densenet: Implementing efficient convnet descriptor pyramids," arXiv Prepr. arXiv1404.1869, 2014.
[151] S. Han, J. Pool, J. Tran, and W. Dally, "Learning both weights and connections for efficient neural network," in Advances in neural information processing systems, 2015, pp. 1135-1143.
[152] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, "Pruning convolutional neural networks for resource efficient inference," arXiv Prepr. arXiv1611.06440, 2016.
[153] Y. He, X. Zhang, and J. Sun, "Channel pruning for accelerating very deep neural networks," in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 1389-1397.
[154] A. Krizhevsky, "Learning multiple layers of features from tiny images," Citeseer, 2009.
[155] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, "EMNIST: an extension of MNIST to handwritten letters," arXiv, Feb. 2017, Accessed: Nov. 15, 2020. [Online]. Available: http://arxiv.org/abs/1702.05373.
[156] H. Mouchère, C. Viard-Gaudin, R. Zanibbi, and U. Garain, "ICFHR2016 CROHME: Competition on recognition of online handwritten mathematical expressions," in Proceedings of International Conference on Frontiers in Handwriting Recognition, ICFHR, Jul. 2016, vol. 0, pp. 607-612, doi: 10.1109/ICFHR.2016.0116.
[157] "Best Artworks of All Time | Kaggle." https://www.kaggle.com/ikarus777/best-artworks-of-all-time (accessed Nov. 15, 2020).
[158] B. Saleh and A. Elgammal, "Large-scale Classification of Fine-Art Paintings: Learning The Right Metric on The Right Feature," May 2015, Accessed: Nov. 15, 2020. [Online]. Available: http://arxiv.org/abs/1505.00855.
[159] P. Warden, "Speech commands: A dataset for limited-vocabulary speech recognition," arXiv Prepr. arXiv1804.03209, 2018.
[160] J. Wilkins, P. Seetharaman, A. Wahl, and B. Pardo, "VOCALSET: A SINGING VOICE DATASET," doi: 10.5281/zenodo. 1203819.
[161] K. J. Piczak, "ESC: Dataset for environmental sound classification," in MM 2015 Proceedings of the 2015 ACM Multimedia Conference, 2015, pp. 1015-1018, doi: 10.1145/2733373.2806390.
[162] J. Salamon, C. Jacoby, and J. P. Bello, "A dataset and taxonomy for urban sound research," in Proceedings of the 22nd ACM international conference on Multimedia, 2014, pp. 1041-1044.
[163] G. Tzanetakis and P. Cook, "Musical genre classification of audio signals," IEEE Trans. Speech Audio Process., vol. 10, no. 5, pp. 293-302, Jul. 2002, doi: 10.1109/TSA.2002.800560.
[164] M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson, "FMA: A Dataset For Music Analysis," Dec. 2016, Accessed: Nov. 16, 2020. [Online]. Available: http://arxiv.org/abs/1612.01840.
[165] J. Hestness et al., "Deep learning scaling is predictable, empirically," arXiv Prepr. arXiv1712.00409, 2017.
[166] D. Shum et al., "CMOS-embedded STT-MRAM Arrays in 2x nm Nodes for GP-MCU applications," in VLSI Technology, 2017 Symposium on, 2017, pp. T208-T209.
[167] C.-X. Xue et al., "A 22nm 4Mb 8b-Precision ReRAM Computing-in-Memory Macro with 11.91 to 195.7 TOPS/W for Tiny AI Edge Devices," in 2021 IEEE International Solid-State Circuits Conference (ISSCC), 2021, vol. 64, pp. 245-247.
[168] C.-P. Lo et al., "Embedded 2Mb ReRAM macro with 2.6 ns read access time using dynamic-trip-point-mismatch sampling current-mode sense amplifier for IoE applications," in 2017 Symposium on VLSI Circuits, 2017, pp. C164-C165.
[169] P. Jain et al., "13.2 A 3.6 Mb $10.1 \mathrm{Mb} / \mathrm{mm} 2$ Embedded Non-Volatile ReRAM Macro in 22 nm FinFET Technology with Adaptive Forming/Set/Reset Schemes Yielding Down to 0.5 V with Sensing Time of 5 ns at 0.7 V ," in 2019 IEEE International SolidState Circuits Conference-(ISSCC), 2019, pp. 212-214.
[170] H. Y. Cheng et al., "Si Incorporation Into AsSeGe Chalcogenides for High Thermal Stability, High Endurance and Extremely Low \$\mathrm \{V\}_ \{\mathrm \{th\}\} \$ Drift 3D Stackable Cross-point Memory: IBM/Macronix PCRAM Joint Project," in 2020 IEEE Symposium on VLSI Technology, 2020, pp. 1-2.
[171] H. Y. Cheng et al., "Novel fast-switching and high-data retention phase-change memory based on new Ga-Sb-Ge material," in International Electron Devices Meeting
(IEDM), 2016, pp. 3.5.1-3.5.4, doi: 10.1109/IEDM.2015.7409620.
[172] K. Bourzac, "Has intel created a universal memory technology?[news]," IEEE Spectr., vol. 54, no. 5, pp. 9-10, 2017.
[173] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, "Giant roomtemperature magnetoresistance in single-crystal $\mathrm{Fe} / \mathrm{MgO} / \mathrm{Fe}$ magnetic tunnel junctions," Nat. Mater., vol. 3, no. 12, p. 868, 2004.
[174] W. Zhang and T. Li, "Characterizing and mitigating the impact of process variations on phase change based memory systems," in 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2009, pp. 2-13.
[175] X. Guan, S. Yu, and H.-S. P. Wong, "On the switching parameter variation of metaloxide RRAM-Part I: Physical modeling and simulation methodology," IEEE Trans. Electron Devices, vol. 59, no. 4, pp. 1172-1182, 2012.
[176] A. Lee et al., "A ReRAM-based nonvolatile flip-flop with self-write-termination scheme for frequent-OFF fast-wake-up nonvolatile processors," IEEE J. Solid-State Circuits, vol. 52, no. 8, pp. 2194-2207, 2017.
[177] S.-C. Hsu and C.-F. Chien, "Hybrid data mining approach for pattern extraction from wafer bin map to improve yield in semiconductor manufacturing," Int. J. Prod. Econ., vol. 107, no. 1, pp. 88-103, 2007.
[178] C.-F. Chien, S.-C. Hsu, and Y.-J. Chen, "A system for online detection and classification of wafer bin map defect patterns for manufacturing intelligence," Int. J. Prod. Res., vol. 51, no. 8, pp. 2324-2338, 2013.
[179] Y.-S. Jeong, S.-J. Kim, and M. K. Jeong, "Automatic identification of defect patterns in semiconductor wafer maps using spatial correlogram and dynamic time warping," IEEE Trans. Semicond. Manuf., vol. 21, no. 4, pp. 625-637, 2008.
[180] A. Lee, R. Jagannathan, D. Wu, and K. L. Wang, "A 2-D Calibration Scheme for Resistive Nonvolatile Memories," IEEE Trans. Very Large Scale Integr. Syst., vol. 28, no. 6, pp. 1371-1377, 2020.
[181] Y.-C. Lai and S.-Y. Huang, "X-calibration: A technique for combating excessive bitline leakage current in nanometer SRAM designs," IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 1964-1971, 2008.
[182] F. Ren, H. Park, C.-K. K. Yang, and D. Marković, "Reference calibration of bodyvoltage sensing circuit for high-speed STT-RAMs," IEEE Trans. Circuits Syst. I Regul. Pap., vol. 60, no. 11, pp. 2932-2939, 2013.
[183] Y. Niki et al., "A digitized replica bitline delay technique for random-variationtolerant timing generation of SRAM sense amplifiers," IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2545-2551, 2011.
[184] Z. Lin et al., "A pipeline replica bitline technique for suppressing timing variation of SRAM sense amplifiers in a $28-\mathrm{nm}$ CMOS process," IEEE J. Solid-State Circuits, vol. 52, no. 3, pp. 669-677, 2016.
[185] J. Wu, J. Zhu, Y. Xia, and N. Bai, "A multiple-stage parallel replica-bitline delay addition technique for reducing timing variation of SRAM sense amplifiers," IEEE

Trans. Circuits Syst. II Express Briefs, vol. 61, no. 4, pp. 264-268, 2014.
[186] J. Chang et al., "12.1 a 7 nm 256 mb sram in high-k metal-gate finfet technology with write-assist circuitry for low-v min applications," in 2017 IEEE International SolidState Circuits Conference (ISSCC), 2017, pp. 206-207.
[187] D. Kjaer et al., "Fast static field CIPT mapping of unpatterned MRAM film stacks," Meas. Sci. Technol., vol. 26, no. 4, p. 45602, 2015.
[188] C.-X. Xue, W.-C. Zhao, T.-H. Yang, Y.-J. Chen, H. Yamauchi, and M.-F. Chang, "A 28-nm 320-kb TCAM macro using split-controlled single-load 14T cell and triplemargin voltage sense amplifier," IEEE J. Solid-State Circuits, vol. 54, no. 10, pp. 2743-2753, 2019.
[189] L. Wei et al., "13.3 A 7Mb STT-MRAM in 22FFL FinFET Technology with 4ns Read Sensing Time at 0.9 V Using Write-Verify-Write Scheme and Offset-Cancellation Sensing Technique," in 2019 IEEE International Solid-State Circuits Conference(ISSCC), 2019, pp. 214-216.
[190] C.-C. Lin et al., "A 256b-wordlength ReRAM-based TCAM with 1ns search-time and $14 \times$ improvement in wordlength-energyefficiency-density product using 2.5 T 1 R cell," in Internaltional Solid-State Circuits Conference (ISSCC), 2016, pp. 136-137.
[191] M. T. Bohr and I. A. Young, "CMOS scaling trends and beyond," IEEE Micro, vol. 37, no. 6, pp. 20-29, 2017.
[192] W.-S. Khwa et al., "A 65 nm 4 Kb algorithm-dependent computing-in-memory SRAM unit-macro with 2.3 ns and 55.8 TOPS/W fully parallel product-sum operation for binary DNN edge processors," in 2018 IEEE International Solid-State Circuits Conference-(ISSCC), 2018, pp. 496-498.
[193] J. J. Kan et al., "Systematic validation of 2x nm diameter perpendicular MTJ arrays and MgO barrier for sub- 10 nm embedded STT-MRAM with practically unlimited endurance," in International Electron Devices Meeting (IEDM), 2017, pp. 27.4.127.4.4, doi: 10.1109/IEDM.2016.7838493.
[194] K. L. Wang, J. G. Alzate, and P. Khalili Amiri, "Low-power non-volatile spintronic memory: STT-RAM and beyond," J. Phys. D. Appl. Phys., vol. 46, no. 7, p. 074003, 2013, doi: 10.1088/0022-3727/46/7/074003.
[195] D. D. Buss, R. W. Brodersen, and C. R. Hewes, "Charge-coupled devices for analog signal processing," Proc. IEEE, vol. 64, no. 5, pp. 801-804, 1976.
[196] R. Brodersen, H.-S. Fu, R. Frye, and D. Buss, "A 500-point Fourier transform using charge-coupled devices," in 1975 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, 1975, vol. 18, pp. 144-145.
[197] Q. Shao et al., "Role of dimensional crossover on spin-orbit torque efficiency in magnetic insulator thin films," Nat. Commun., vol. 9, no. 1, pp. 1-7, 2018.
[198] L. You et al., "Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy," Proc. Natl. Acad. Sci., vol. 112, no. 33, pp. 10310-10315, 2015.
[199] C. Burrowes et al., "Non-adiabatic spin-torques in narrow magnetic domain walls,"

Nat. Phys., vol. 6, no. 1, pp. 17-21, 2010.
[200] T. Koyama et al., "Observation of the intrinsic pinning of a magnetic domain wall in a ferromagnetic nanowire," Nat. Mater., vol. 10, no. 3, pp. 194-197, 2011.
[201] A. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki, "Micromagnetic understanding of current-driven domain wall motion in patterned nanowires," EPL (Europhysics Lett., vol. 69, no. 6, p. 990, 2005.
[202] S. Fukami et al., "Current-induced domain wall motion in perpendicularly magnetized CoFeB nanowire," Appl. Phys. Lett., vol. 98, no. 8, p. 82504, 2011.
[203] S. Parkin and S.-H. Yang, "Memory on the racetrack," Nat. Nanotechnol., vol. 10, no. 3, pp. 195-198, 2015.
[204] E. H. Hall, "On a new action of the magnet on electric currents," Am. J. Math., vol. 2, no. 3, pp. 287-292, 1879.
[205] E. H. Hall, "On the possibility of transvers currents in ferromagnets," Philos. Mag, vol. 12, pp. 157-172, 1881.
[206] J. E. Hirsch, "Spin hall effect," Phys. Rev. Lett., vol. 83, no. 9, p. 1834, 1999.
[207] W. Jiang et al., "Direct observation of the skyrmion Hall effect," Nat. Phys., vol. 13, no. 2, pp. 162-169, 2017.
[208] G. Yu et al., "Room-temperature skyrmion shift device for memory application," Nano Lett., vol. 17, no. 1, pp. 261-268, 2017.
[209] G. Yu et al., "Room-temperature creation and spin-orbit torque manipulation of skyrmions in thin films with engineered asymmetry," Nano Lett., vol. 16, no. 3, pp. 1981-1988, 2016.

