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Meaning maps detect the removal of local semantic scene 
content but deep saliency models do not
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Abstract

Meaning mapping uses human raters to estimate different semantic features in scenes, and has 

been a useful tool in demonstrating the important role semantics play in guiding attention. 

However, recent work has argued that meaning maps do not capture semantic content, but like 

deep learning models of scene attention, represent only semantically-neutral image features. In 

the present study, we directly tested this hypothesis using a diffeomorphic image transformation 

that is designed to remove the meaning of an image region while preserving its image features. 

Specifically, we tested whether meaning maps and three state-of-the-art deep learning models 

were sensitive to the loss of semantic content in this critical diffeomorphed scene region. The 

results were clear: meaning maps generated by human raters showed a large decrease in the 

diffeomorphed scene regions, while all three deep saliency models showed a moderate increase 

in the diffeomorphed scene regions. These results demonstrate that meaning maps reflect local 

semantic content in scenes while deep saliency models do something else. We conclude the 

meaning mapping approach is an effective tool for estimating semantic content in scenes.
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Stored semantic knowledge gained from experience is thought to play an important role 

in how we guide our attention in real-world scenes (Henderson, 2007; Henderson et al., 

2009). Unfortunately, estimating the role of semantic content in scenes is difficult, which 

has limited the study of scene semantics. To address this limitation, we recently proposed 

a meaning mapping approach that harnesses human raters’ semantic knowledge to estimate 

the distribution of local semantic content across an entire scene (Henderson & Hayes, 2017; 

2018). However, recent work has argued that meaning maps do not estimate local semantic 

content, but instead like computational deep saliency models, reflect semantically-neutral 

high-level image features (Pedziwiatr et al., 2021). While we believe the test used by 

Pedziwiatr et al. (2021) was fundamentally flawed (see Henderson et al. 2021), it is worth 

directly validating the assumption that meaning maps are sensitive to changes in local 
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semantic content and are not reducible to non-semantic image features. In the present paper, 

we directly tested whether meaning maps and deep saliency models are sensitive to changes 

in local semantic content.

Cognitive guidance theory anchors our work, proposing that when visually perceiving 

the real world, visual-spatial attention is driven in large part by our understanding and 

interpretation of what we are seeing, along with what we are trying to accomplish 

(Henderson, 2003; 2007; 2011). That is, attention is driven by semantic representations. 

The evidence supporting this general idea has a long history in visual cognition (Buswell, 

1935; Yarbus, 1967) and is supported by a growing body of behavioral and neural evidence 

that attention in scenes is strongly influenced by semantic content, which often overrides 

physical properties in the control of attention (Einhäuser et al., 2008; Tatler et al., 2011; 

Torralba et al., 2006; Henderson et al., 2020; Kiat et al., 2022; Hayes & Henderson, 2021b). 

This evidence has been observed in traditional attention paradigms (Malcolm et al., 2016; 

Shomstein et al., 2019), in simplified object displays (Nuthmann et al., 2019), and in scene 

perception (Võ et al., 2019; Williams & Castelhano, 2019; Wu et al., 2014; Hwang et al., 

2011; Malcolm et al., 2016; Haas et al., 2019; Hayes & Henderson, 2021b).

Meaning maps have served as an important tool to investigate cognitive guidance theory 

by examining how the spatial distribution of different types of semantic features in a scene 

are associated with visual attention (Henderson & Hayes, 2017; 2018; Henderson et al., 

2019; Rehrig et al., 2020; Henderson et al., 2021). It is worth emphasizing that the meaning 

mapping approach is just a methodological tool for generating the scene distribution of 

different semantic features. Meaning maps are not a global model of scene attention and 

no meaning map is meant to simultaneously capture all aspects of scene semantics. In fact, 

quite the opposite. We have generally used the meaning mapping approach to target specific 

theoretical questions and/or to isolate specific types of semantic features. For example, 

the meaning map approach was initially introduced to estimate local semantic density in 

scenes based on how recognizable and informative scene regions are to directly compare the 

predictions of image guidance and cognitive guidance theories of scene attention (Henderson 

& Hayes, 2017; 2018). And in subsequent work, we have used the meaning mapping 

approach to evaluate other types of semantic features in scenes that are thought to guide 

attention such as graspability and reachability (Rehrig et al., 2020; Henderson et al., 2019). 

This subsequent work highlights both the flexibility of the meaning mapping method to 

study different isolated semantic features, and the principle that the original local semantic 

density meaning maps are only one semantic lens among many others. Therefore, the 

semantic ‘meaning’ represented by a particular type of meaning map is always explicitly 

defined by the rating instructions in each study (i.e., informative, recognizable, graspable, 

reachable, etc.). What these high-level semantic features have in common is that they 

primarily rely on stored semantic representations of objects and scene categories.

Given this theoretical and empirical context, it was recently proposed that the meaning maps 

from Henderson and Hayes (2017) based on informative and recognizable rating instructions 

do not estimate local semantic content, but rather ‘semantically neutral high-level features’ 

(Pedziwiatr et al., 2021). The basic argument offered by Pedziwiatr et al. (2021) is that 

since a deep learning model without semantics produces similar or better eye movement 

Hayes and Henderson Page 2

Atten Percept Psychophys. Author manuscript; available in PMC 2024 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prediction than the original meaning maps both generally, and specifically for object-scene 

semantic inconsistency, meaning maps must not represent semantic content. There are a 

number of logical problems with this argument (see Henderson et al. 2021) and it is not 

entirely clear what is meant by ‘semantically neutral high-level features’1. What is clear 

from Pedziwiatr et al. (2021), is that in their view ‘semantically neutral high-level features’ 

are distinct from semantic content and that neither meaning maps nor deep learning models 

directly reflect semantic content.

Therefore, the current experiment focused on this clear distinction centered around semantic 

content by experimentally testing whether meaning maps and/or deep saliency models 

reflect local semantic content. To test this idea, we created scene images in which local 

semantic content was eliminated in a circumscribed, local scene region (Fig. 1). Semantic 

information was locally eliminated using a diffeomorphic transformation. The diffeomorphic 

transformation was designed to preserve “the basic perceptual properties of the image while 

removing meaning” providing an ideal test for our question of interest by serving as an 

adversarial image (Stojanoski & Cusack, 2014). If humans rate the patches that are used 

to create meaning maps on the basis of visual rather than semantic features, as has been 

proposed (Pedziwiatr et al., 2021), then the regions without semantic content should not 

be rated lower than those with semantic content. That is, if meaning maps represent only 

semantically neutral image features, then loss of local meaning but preservation of local 

image features should have little effect on them. Furthermore, if meaning maps and deep 

saliency models both reflect the same type of non-semantic scene content, then elimination 

of semantics should affect them both in the same way. On the other hand, if meaning 

maps represent the semantic content that crowd-sourced workers were asked to rate, then 

eliminating that content should lead to a large decrease in rated meaning and a resulting 

drop in represented meaning at that location in the generated meaning maps, whereas deep 

saliency models based on high-level visual features should not show a reduction in salience 

value at those same map locations.

Method

Participants

University of California, Davis undergraduate students (N=164) with normal or corrected-to-

normal vision participated in the meaning rating study in exchange for course credit. All 

participants were naive concerning the purposes of the experiment and provided verbal or 

written informed consent as approved by the University of California, Davis Institutional 

Review Board.

Stimuli

The stimuli were 40 real-world scene images from Henderson and Hayes (2017). These 

40 scene stimuli (1024 × 768 pixels) were altered by transforming one circular region 

(205 pixel diameter) to remove its meaning while preserving its image features (see 

1Our best guess is they are referring to the features captured in the late layers of the object recognition models like VGG-16 and 
VGG-19 that feed into deep learning models.
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Diffeomorphic Transformation section below for details). Therefore, the full scene set 

contained 80 scene images total: the 40 original scenes from Henderson and Hayes (2017) 

and the same 40 scenes with a single diffeomorphed region.

Diffeomorphic transformation procedure

To remove the semantic content of a scene region while preserving its image properties, 

we applied a diffeomorphic transformation. The diffeomorphic transformation has been 

shown to remove image meaning while preserving the image properties better than phase 

scrambling, box scrambling, or texture scrambling (Stojanoski & Cusack, 2014). We applied 

the diffeomorphic transformation from Stojanoski and Cusack (2014) using the default 

parameters (i.e., max distortion=15, step number=10) to one circular region (205 pixel 

diameter, 4.2% of scene) in each of the 40 scenes. We then blended the diffeomorphed patch 

into the scene using a radially symmetric linear alpha ramp (15 pixel diameter) centered on 

the eroded edge of the patch. This allowed us to seamlessly blend each diffeomorphed patch 

into its broader scene (See Fig. 1).

Patch selection

The original scene meaning maps (Henderson & Hayes, 2017) and GBVS image saliency 

maps (Harel et al., 2006) were used to identify the circular region (205 pixel diameter) 

in each scene that was both high in meaning and low in image salience, since our focus 

was manipulating meaning while minimizing the changes to the underlying image features. 

We identified patches that were high in meaning and low in image salience using a simple 

weighted sorting algorithm. The sorting algorithm computed the average meaning value and 

GBVS image salience value for each of the 108 candidate coarse patches in each scene. 

The 108 patches for given scene were then sorted with a weight of 0.8 for their meaning 

value and a weight of 0.2 for their image salience value to ensure a high-meaning region 

was selected. The sixth item in the sorted list was selected as it had the best tradeoff of high 

meaning values and lower image salience values across the 40 scenes. This procedure was 

repeated for each scene to select the diffeomorphed region in each scene.

Meaning maps

Meaning maps were then generated for each diffeomorphed scene using the same meaning 

mapping procedure and same instructions as Henderson and Hayes (2017) and Henderson 

and Hayes (2018) (see https://osf.io/654uh/ for the code and rating instructions and https://

osf.io/ptsvm/ for the 40 scene meaning maps). Specifically, a meaning map was created 

for each diffeomorphed scene by cutting the entire scene into a dense array of overlapping 

circular patches at a fine spatial scale (300 patches, diameter=87 pixels) and coarse spatial 

scale (108 patches, diameter=205 pixels). This procedure resulted in 12000 fine patches 

and 4320 coarse patches. Raters (N=164) then provided ratings of 300 random coarse or 

fine scene patches based on how informative or recognizable they thought they were on a 

6-point Likert scale (Henderson & Hayes, 2017; Mackworth & Morandi, 1967). Patches 

were presented in random order and without scene context, so ratings were based on 

context-independent judgments. Each unique patch was rated by three unique raters, but 

due to the patch overlap and multiple scales, each patch contained between 6 and 30 unique 

ratings (mean=18.9, median=18).
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A meaning map (Fig. 2) was generated for each diffeomorphed scene by averaging the patch 

rating data at each spatial scale separately, then averaging the spatial scale maps together, 

and then smoothing the grand average rating map with a Gaussian filter (i.e., Matlab 

‘imgaussfilt’ with σ = 10, FWHM=23 pixels). These new diffeomorphed meaning maps 

were then compared to the original meaning maps that did not contain a diffeomorphed 

region (Henderson & Hayes 2017, https://osf.io/ptsvm/).

Deep saliency models

We compared three state-of-the-art deep saliency models (Bylinskii et al., 2012): DeepGaze 

II (Kümmerer et al., 2016), the multi-scale information network (MSI-Net, Kroner et al. 

2020), and the saliency attentive model (SAM-ResNet, Cornia et al. 2018) on the scenes 

with and without the diffeomorphed patches. Each deep saliency model takes a scene image 

as input and produces a predicted saliency map as output that reflects where the model 

predicts human observers will look in that scene. All of the deep saliency models contain 

pre-trained object recognition weights that are fixed and then subsequent network layers that 

are trained on human data in the form of fixation and/or mouse-contingent density maps 

that reflect where humans focus their attention in scenes (Deng et al., 2009; Simonyan & 

Zisserman, 2015; Kroner et al., 2020; Kümmerer et al., 2016; Cornia et al., 2018). The deep 

saliency model weights are fixed following training, and then the models are evaluated on 

new scenes and fixation data. DeepGaze II, MSI-Net, and SAM-ResNet each have distinct 

network architectures, training regimens, center bias priors, and loss functions and represent 

a good cross section of deep convolutional neural network models of scene attention.

Map standardization

In order to allow for comparisons across the different map types (i.e., Meaning, DeepGaze 

II, SAM-ResNet and MSI-Net) and conditions (original and diffeomorphed) every map was 

standardized to a common unit of standard deviations (i.e., mean=0 and std=1) prior to the 

statistical analyses.

Results

The main result comparing the diffeomorphed scene patches to the original scene patches 

within each model are clear (Fig. 3). The meaning maps showed a significant decrease 

in meaning ratings for the diffeomorphed patch relative to the original scene patch (t(39) 

= −22.81, padj < .001, 95% CI [−1.60, −1.34]). This finding is consistent with the idea 

that meaning maps represent local semantic content, not simply semantically neutral image 

features. In contrast, all the deep saliency models showed a significant increase in values for 

the diffeomorphed patch relative to the original scene patch (DeepGaze II, t(39) = 5.39, padj 

< .001, 95% CI [0.14, 0.30]; SAM-ResNet, t(39) = 4.75, padj < .001, 95% CI [0.18, 0.45]; 

MSI-Net, t(39) = 5.08, padj < .001, 95% CI [0.20, 0.48]; padj=Bonferroni correction). That 

is, the deep saliency models did not just fail to detect that the semantic content had been 

removed, they actually showed increased activity in the diffeomorphed patch relative to the 

original patch. Together these findings starkly demonstrate that meaning maps generated by 

human raters directly reflect local semantic content whereas deep saliency models do not.
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In addition, we compared the diffeomorph effect between models using a one-way Analysis 

of Variance (ANOVA) on the map type difference values (Fig. 3c). The results indicated 

a significant difference between the map types (F(3, 156)=211.79, p < .001). A post-hoc 

comparison using Tukey’s HSD test for multiple comparisons (FWER=0.05) indicated that 

meaning maps were significantly different from each deep saliency model (DeepGaze II: 

padj < 0.001, 95% CI [1.47, 1.91]; SAM-ResNet: padj < 0.001, 95% CI [1.56, 2.01]; MSI-

Net: padj < 0.001, 95% CI [1.59, 2.03]). The deep saliency models were not significantly 

different from one another (DeepGaze II and MSI-Net: padj = 0.48, 95% CI [−0.10, 

0.35]; DeepGaze II and SAM-ResNet: padj = 0.64, 95% CI [−0.12, 0.32]; MSI-Net and 

SAM-ResNet: padj = 0.90, CI [−0.25, 0.20]). These results indicate that the meaning map 

diffeomorph effect was significantly different from all the deep saliency models, while the 

deep saliency models exhibited comparable diffeomorph effects among themselves.

Finally, we estimated the mean difference between the original scenes and the 

diffeomorphed scenes for all the non-diffeomorphed scene regions for each map type. 

The results indicated the non-diffeomorphed regions were highly consistent for each map 

type (Meaning: mean=−0.0025, std=0.0178; DeepGaze II: mean=−0.0006, std=0.0056; 

SAM-ResNet: mean=0.0005, std=0.006; MSI-Net: mean=0.0001 std=0.004) and were not 

significantly different from zero (Meaning: t (39) = −0.89, p = 0.38, 95% CI [−0.008, 

0.003]; DeepGaze II: t (39) = −0.71, p = 0.48, 95% CI [−0.002, 0.001]; SAM-ResNet: t 
(39) = 0.49, p = 0.63, 95% CI [−0.002, 0.002]; MSI-Net: t (39) = 0.22, p = 0.83, 95% CI 

[−0.001, 0.001]). These findings strongly suggest our main results are not due to variability 

in the different rater groups used in the two meaning map studies or any kind of anomalous 

behavior in the deep saliency models we tested.

Discussion

In our work, we argue that attention in real-world scenes is primarily driven by semantic 

representations of what we are seeing and our current goals. Under this theoretical view, 

image features play a role in defining potential targets for attention, but it is semantic 

content that determines attentional priority. Here we provided a simple demonstration that 

one of the tools we have been using to test this theory (i.e., meaning maps) do reflect local 

semantic content, while deep saliency models do not. That is, we found that meaning maps 

showed a large localized decrease when semantic content was removed from a scene region 

using a diffeomorphic transformation. In comparison, all of the deep saliency models we 

tested showed increased localized activity when the semantic content was removed. These 

findings demonstrate both that human generated meaning maps estimate local semantic 

content in scenes, and that meaning maps are not reducible to the features captured by deep 

saliency models as suggested by Pedziwiatr et al. (2021).

The present work supplements our previous work in a couple of important ways. First, 

while our previous work provides indirect evidence that meaning maps capture semantic 

content (e.g., when the rating instructions to the participants change, the meaning maps 

change), the current study provides direct evidence by actively manipulating local meaning 

while keeping the rating instructions constant. Second, the current study through its direct 

comparison of meaning maps and deep saliency models on the same active local meaning 
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manipulation, is the only study that demonstrates that meaning maps are not reducible to 

deep saliency models. The indirect evidence we previously provided (Henderson et al., 

2021) in conjunction with the direct evidence provided in current study, strongly suggests 

that meaning maps generated from human raters reflect semantic content.

Moving forward, it is important to keep in mind that the meaning mapping approach is not 

a theory, it is a tool to test theory. For example, when we first introduced meaning maps, 

they were used as a targeted method to generate a semantic analogue to a low-level image 

saliency map. This allowed us to test cognitive guidance theory against image guidance 

theory. That is, we used meaning maps to determine whether contrasts in local pre-semantic 

image features, or local semantic density, were a stronger predictor of attention across entire 

scenes (Henderson & Hayes, 2017). Since our original paper the meaning mapping approach 

has been used to test cognitive theory in a wide range of areas including scene memory 

(Bainbridge et al., 2019; Ramey et al., 2020), language production (Ferreira & Rehrig, 2019; 

Henderson et al., 2018; Rehrig et al., 2020), mind wandering (Krasich et al., 2020; Zhang 

et al., 2021), active vision in VR environments (Haskins et al., 2020), infant development 

(Klotz et al., 2021), and in the brain (Henderson et al., 2020; Kiat et al., 2022). The approach 

has also been extended to investigate other types of semantic features in scenes, such as 

reachability and graspability (Rehrig et al., 2020). These examples highlight the productive 

role the meaning mapping approach can play as a tool for testing cognitive theories of 

attention in scenes.

It is also worth repeating that meaning maps are not meant to be a global model of scene 

attention. That is, meaning maps are not trying to predict the maximum amount of total 

variance possible in looking behavior. The purpose of meaning maps is actually the opposite 

of a global model; meaning maps target and isolate specific semantic components that are 

theorized to be relevant to attention in scenes. In contrast, deep saliency models are global 

models of scene attention because they are directly trained on human fixation data over 

scenes and are optimized to account for the maximum variance possible in those data. As 

a result, deep saliency models learn to leverage a very broad set of different image features 

and regularities in human fixation data to predict attention (Hayes & Henderson, 2021a; 

Kümmerer et al., 2019). For this reason, to directly compare the overall prediction of deep 

saliency models to the isolated features of the meaning mapping approach (Pedziwiatr et 

al., 2021) is to miss the purpose of the meaning mapping approach entirely (Henderson 

et al., 2021). Succinctly, meaning maps are a flexible tool useful for testing the role of 

isolated components of scene semantics, which can then be used to guide explanatory theory 

building. They are not a global predictive model of scene attention to be benchmarked.

In summary, we used a local diffeomorphic transform to test whether meaning maps and 

visually-based deep saliency models would reflect the loss of local meaning. The results 

were clear: meaning maps generated by human raters showed a large decrease in the 

diffeomorphed scene regions, while all three deep saliency models showed a moderate 

increase in the diffeomorphed scene regions. Therefore, we conclude that meaning maps 

(Henderson & Hayes, 2017) estimate local semantic content and can continue to serve as a 

flexible tool for studying semantics in real-world scenes.
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Fig. 1. Illustration of the patch diffeomorph procedure.
Each scene had the meaning of a single patch (a) removed using a diffeomorphic 

transformation (b). After the patch was diffeomorphed, the patch diffeomorph’s edge was 

eroded (c) and an alpha ramp (d) was used to smoothly blend the patch into the broader 

scene (e)
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Fig. 2. Example scene, scene diffeomorph, patch difference, and meaning and deep saliency 
model map critical patch comparisons.
Each scene had a region that had its meaning removed using a diffeomorphic transformation. 

The diffeomorphed scene region was then used to compare how meaning maps, DeepGaze 

II, SAM-ResNet, and MSI-Net responded to the original patch and its diffeomorph. The 

right column shows the mean difference in the diffeomorphed region activity for each map 

type
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Fig. 3. Critical patch meaning map and deep saliency model comparisons: original and 
diffeomorph spatial difference, distributions, and differences by map type.
Each sub-panel in panel (a) shows the mean difference spatially across the critical 

diffeomorphed scene region (indicated by neon green circle in each panel) averaged across 

all 40 scenes for each map type (Meaning, DeepGaze II, SAM-ResNet, and MSI-Net). 

Panel (b) shows the mean critical patch value for each scene (original vs. diffeomorph) for 

each map type. Panel (c) shows the difference in the diffeomorphed condition relative to 

the original scene value for each map type. Only meaning maps consistently detected the 

removal of semantic content from the diffeomorphed scene regions
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