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ABSTRACT
Multi-access edge computing enables resource-constrained handsets

to offload their tasks to edge servers through multiple radio access

technologies (RATs). However, RATs such as cellular and wireless

local area network (WLAN) have different access protocols, through-

puts, and latencies. We present novel models for accurate analysis of

the average task computation delay, accounting for the physical and

media access control layer throughputs and latencies. Our analysis

considers the uplink latency encountered in offloading tasks to edge

servers and the downlink latency in downloading completed tasks

from the server to the users. It accounts for the contention-based

channel access in a WLAN, in which the number of users that con-

tend is a random process, and the orthogonal channelization based

access of a cellular network. We show that WLAN contention delays

and their variability have a significant impact on the overall delay.

Through a tractable probabilistic offloading policy, we bring out

the trade-offs between choosing the different RATs. We also bench-

mark the performance of this policy against an upper confidence

bound (UCB)-based dynamic offloading policy.
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• Networks→ Network performance modeling; Network perfor-
mance analysis; Wireless local area networks; • Mathematics
of computing → Renewal theory; Markov processes.
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1 INTRODUCTION
Multi-access edge computing (MEC) is an emerging paradigm for

next generation communication systems. MEC provides a solution
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to meet the ever increasing demands of low latency and increased

computation power by advanced applications such as augmented

reality (AR) [1] and virtual reality (VR) [6]. MEC brings servers to

the edge of the Internet, thereby saving on Internet’s data transporta-

tion resources and decreasing network latency. Energy-constrained

mobile devices can now offload their tasks to MEC servers, which

have better storage and computation capabilities.

Today’s mobile devices can access more than one MEC server

through different radio access technologies (RATs), such as wireless

local area network (WLAN), 4th generation long-term evolution

(LTE), and 5th generation new-radio (5G-NR) [7]. MEC performance

over these RATs depends on their physical (PHY) and multiple access

control (MAC) layer technologies. Different RATs employ different

PHY and MAC layer technologies. For example, LTE and 5G-NR

employ orthogonal frequency division multiplexing (OFDM) that

offers a dedicated subchannel to the base station (BS) to every user

admitted to the cellular network. On the other hand, legacy WLAN

uses an IEEE 802.11 based random-access method in which the users

and the access point (AP) contend to access the channel.

We analyze the performance and design a probabilistic MEC of-

floading algorithm in the presence of two MEC servers attached to a

WLAN AP and to a cellular network BS, respectively. This warrants

joint modeling of the MEC applications, the WLAN and the cellular

network.

1.1 Related Literature
The literature on data offloading and network selection can be

broadly classified into single-user and multiple-user models.

1.1.1 Single-User Models. In [8], a cellular network integrated with

a single MEC server is considered. The transmit power of the handset

and the computational resources at the MEC server are adapted to

the channel variations. However, no local computation is considered.

In [12], interface selection between a WLAN and a cellular network

is considered. CPU resource allocation under latency and queue

stability constraints is considered for a heterogeneous task model

in which separate queues are used for each type of task. In [17], the

WLAN is assumed to be the preferred RAT but its availability is inter-

mittent. The packet computation delays and energy are optimized,

but MEC is not considered. In the above works, MAC contention

and delays do not arise since there is only one user in the system.

1.1.2 Multiple-User Models. For a WLAN equipped with multiple

MEC servers, the energy incurred in allocating central processing

unit (CPU) resources with task inter-dependencies is minimized

in [4]. In [15], energy minimization under delay constraints for par-

tial task offloading to a WLAN or a cellular network is considered.
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Here the MAC contention and associated delays are not modeled. In

[18], allocation of computing resources among multiple MEC servers

in a cellular network with a fixed number of orthogonal channels

is considered. Energy harvesting along with data offloading to the

WLAN is considered in [14]. However, the MAC-level contention is

ignored here also. In [13], data offloading to a WLAN and a cellular

network for voice and video users is considered. While the MAC con-

tention process is modeled, the average delay is not analyzed. More

recently, deep learning and reinforcement learning (RL) techniques

for RAT selection have been studied in [9].

1.2 Contributions
We consider an MEC system with multiple users who can compute

their tasks locally or can offload these to the edge servers through

either a WLAN or a cellular network. Each offloaded task is sent to

the AP or to the BS as a packet and the processed data is also returned

to the user as a packet. Task offloading results in a randomly varying

number of users in the WLAN and the cellular network. Further, the

uplink and downlink transmissions are coupled. We make several

novel, well justified assumptions and employMarkov renewal theory

to develop simplified yet accurate models.

We model the transmission times, processing times, queuing de-

lays, and contention (if present) at the physical and MAC layers

of the RATs. Our WLAN model with a varying number of users

accurately captures the contention delays faced by the users and

the AP. It is more comprehensive than those in [4, 14, 15], which

either ignore the AP contention and queuing delays or simplistically

model the WLAN as a network with a fixed number of channels.

We characterize the average latency of the probabilistic offloading

policy. This tractable policy offers valuable insights into the trade-

offs between different RATs. Our results show that ignoring MAC

contention delays, as often done in the MEC literature, can markedly

underestimate the average delay. This can result in suboptimal RAT

selection for task offloading.

To benchmark the probabilistic offloading policy, we also consider

a distributed, dynamic RAT selection policy based on the upper
confidence bound (UCB) [2]. We show that the two policies have

a similar performance. This leads us to believe that the dynamic

offloading policy learns the optimal offloading probabilities.

1.2.1 Outline. We present the system model and the probabilistic

task offloading policy in Section 2. We analyze the average latency

seen by a user in Section 3. We introduce the UCB-based offloading

policy in Section 4. Numerical results are presented in Section 5, and

our conclusions follow in Section 6.

2 SYSTEM MODEL
We consider a system consisting of 𝑁 users, a WLAN and a cellular

network. LetN ≜ {1, 2, . . . , 𝑁 } denote the set of users. All the users
run applications that generate identical tasks. Each task requires

𝐿UL bits to be processed, and has processing density 𝑑 cycles/bit, i.e.,

it takes 𝑑 CPU cycles to process each bit [12]. The system evolves

in discrete time steps of duration 𝛿 sec, called slots, i.e., all packet
transmissions, task executions, and other MAC activities commence

at the slot boundaries.

The users can either locally compute their tasks or can offload

those to the AP of the WLAN or to the BS of the cellular network,
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Figure 1: Illustration of the WLAN, cellular, and local networks with 𝑁 = 7

users. In the cellular network, traffic is routed from BS to its MEC server. In
the WLAN, traffic is routed through the AP to its MEC server. A user in the
WLAN is either contending to transmit its packet to the AP or is dormant and
is waiting for the AP to transmit its processed payload back.

both of which are connected to MEC servers as shown in Fig. 1. If

a user chooses to offload a task, it packages the task into a packet

of size 𝐿UL bits. It sends the packet either to the AP or to the BS

who then forwards it to the respective MEC server. After executing

the task, the MEC server packages the result into a packet of size

𝐿DL bits and sends the packet to the AP or to the BS, as applicable,

which then sends it to the concerned user.

We assume that each user’s application generates a new task on

receiving the result of the previous task. This corresponds to the

users operating in the saturated regime but not having task queues.

Below, we discuss local task computation and task offloading to the

WLAN and the cellular network. In particular, we emphasize on the

interplay of task offloading and the IEEE 802.11 MAC protocol.

2.1 Local Computation
We assume that the users’ local compute devices have a CPU fre-

quency 𝑓u cycles/sec. Therefore, local computation of any task incurs

a computation time 𝑇
loc

=
𝐿UL𝑑
𝑓u

sec. We use the term local network
to refer to the set of users engaged in local computation.

2.2 Offloading to WLAN
The users who choose to offload their tasks to the WLAN and the

AP use the IEEE 802.11 distributed coordination function (DCF)

MAC protocol for channel access. A user transmits the packetized

task to the AP, which forwards the packet to its MEC server. The

server returns the processed packet to the AP, which queues it and

transmits it back to the same user.

IEEE 802.11 MAC Protocol. All the WLAN users and the AP contend

for channel access to transmit their packets. When a user or the

AP has a packet to transmit, it sets its backoff timer by uniformly

sampling a value from an initial contention window of size CWmin.

It decrements the timer successively in all the slots in which it

senses the channel idle. If it senses the channel busy, it freezes its

backoff timer. If it again senses the channel idle for a DCF inter-

frame space (DIFS) duration 𝑇DIFS sec, it resumes decrementing the

timer. Once the timer becomes zero, the user transmits to the AP a

 

80



Modeling and Analysis of Latencies in Multi-User, Multi-RAT Edge Computing Q2SWinet ’23, October 30-November 3, 2023, Montreal, QC, Canada

packet of duration 𝑇UL

w,p
=
𝐿UL
𝑅w

sec, where 𝑅w is the data rate of the

WLAN in bits/sec.

If two or more nodes (users or the AP) start transmission in

the same slot, a collision occurs. The channel remains busy for

𝑇
coll

= 𝑇DIFS+𝑇UL

w,p
sec. All the colliding nodes double their contention

windows, subject to a maximum size of CWmax. These nodes then

sample new backoff timers from their expanded contention windows

and retransmit their packets when the respective timers expire.

After a user successfully sends its packet to the AP, it becomes

dormant. The AP forwards the packet to the WLAN MEC server

for processing. The server takes 𝑇w,MEC =
𝐿UL𝑑
𝑓w,MEC

sec to process the

task, where 𝑓w,MEC is its CPU frequency. The server sends packaged

computation results to the AP where they are queued. Each time the

AP wins channel access contention, it transmits a queued packet to

the concerned user. The downlink packet transmission time equals

𝑇DL

w,p
=
𝐿DL
𝑅w

sec. Once a user receives the computation result for a

task, it comes out of the dormant state and takes up a new task.

2.3 Offloading to Cellular Network
The cellular network employs 𝑀 orthogonal channels to serve its

users, the number depending on the cellular bandwidth. When a

user chooses to offload a task to the cellular network, it requests an

orthogonal channel. The user is admitted to the network unless all

the𝑀 channels are occupied. The user incurs an initial access delay

of 𝑇access. The delay models the time required by the user to request

resources and for the BS to grant or refuse them. Once the channel

has been allotted, the user takes a time𝑇UL

c
=
𝐿UL
𝑅c

sec to transmit its

packet to the BS, where 𝑅c is the data rate of the cellular network.

The BS forwards the packet to its MEC server for processing.

The server incurs a computation time 𝑇c,MEC =
𝐿UL𝑑
𝑓c,MEC

sec, where

𝑓c,MEC is its CPU frequency. Then it packetizes the result and sends it

to the BS. We assume a frequency division duplex system where the

uplink and the downlink channels are allotted in pairs to an admitted

user. The BS sends the packet to the user on the corresponding

downlink channel. This downlink transmission takes𝑇DL

c
=
𝐿DL
𝑅c

sec.

The user computes the task locally in case the BS rejects it.

The delay incurred in transporting packets from the AP or the

BS to their MEC servers and back is negligible compared to the

contention delays and the transmission times [1].

2.4 Probabilistic Offloading Policy
Let a user offload each task to the WLAN with a probability 𝑝w, to

the cellular network with a probability 𝑝c, or locally compute it with

probability 1− 𝑝c − 𝑝w. This probabilistic offloading policy tractably

captures the trade-offs between choosing the RATs because values of

𝑝𝑐 and 𝑝𝑤 affect the dynamics of the number of users that contend

in the WLAN or access the cellular network and, hence, the average

task computation delay (latency).

We analyze the conditional average task computation delay of

a user given that it chooses a specific RAT as a function of 𝑝w and

𝑝c. Let 𝑇 c and 𝑇w denote the average delays in the cellular network

and the WLAN, respectively.

3 MEC LATENCY ANALYSIS
An exact analysis of the MEC system is intractable even for small

values of 𝑁 and𝑀 . We use decoupling approximations and Markov

renewal process theory to develop a novel, simplified and accurate

analysis [10]. We briefly outline our approach before elaborating it in

the following subsections. Let 𝑞c, 𝑞w, and 𝑞loc be the fraction of time

a user spends in the cellular network, WLAN, and local network,

respectively, having chosen to process tasks in different networks

with probabilities 𝑝w, 𝑝c, and 1 − 𝑝c − 𝑝w. Furthermore, let 𝑞
rej

loc
be

the fraction of time a user spends in the local network after being

rejected by the cellular network. This includes the initial access

delay 𝑇access. We derive expressions for the conditional average task

computation delays 𝑇w and 𝑇 c in terms of 𝑞c, 𝑞w, 𝑞loc, and 𝑞
rej

loc
. We

also develop four fixed-point equations in 𝑞c, 𝑞w, 𝑞loc and 𝑞
rej

loc
to

obtain these. Then, the average latency of a user is

𝑝c𝑇 c + 𝑝w𝑇w + (1 − 𝑝c − 𝑝w)𝑇loc . (1)

3.1 WLAN Latency Analysis
We analyze the average latency of task execution in the steady-state

regime in a WLAN consisting of 𝑛 users. Due to the probabilistic

offloading policy, the number of WLAN users is a random process.

We subsequently compute the average latency with respect to the

steady state distribution of this process.

For a given task offloaded to the WLAN, let𝑈 (𝑛),𝑊 (𝑛) and 𝑆 (𝑛)
be the times taken by the user to transmit the packet to the AP, for

the downlink packet to reach the head-of-line position of the AP

queue since arriving from the MEC server, and by the AP to transmit

it to the user, respectively. Then, the total WLAN delay 𝑇w (𝑛) is
𝑇w (𝑛) = 𝑈 (𝑛) +𝑊 (𝑛) + 𝑆 (𝑛) . (2)

We consider the following two extreme regimes and use the in-

sights from these to address the general case in Section 3.1.3.

3.1.1 Low WLAN Loading Regime Where𝑊 (𝑛) ≈ 𝑇w,MEC. In this

regime, the AP and the users face little contention for channel access.

Moreover, once a packetized result arrives at the AP, it sees with

high probability an empty AP queue. Consequently, the contention

delays in the uplink and the downlink are negligible, and the MEC

processing time dominates the overall delay. Hence,𝑇w (𝑛) ≈ 𝑈 (𝑛) +
𝑇w,MEC + 𝑆 (𝑛).

Since the contention delays are negligible, the contention win-

dows of the AP and the users remain CWmin. Therefore, the average

uplink delay is E [𝑈 (𝑛)] = (CWmin/2) +𝑇UL

w,p
, and the average down-

link delay is E [𝑆 (𝑛)] = (CWmin/2) +𝑇DL

w,p
. Hence,

E [𝑇w (𝑛)] = 𝑇UL

w,p
+𝑇w,MEC +𝑇DL

w,p
+ CWmin . (3)

3.1.2 High WLAN Loading Regime Where𝑊 (𝑛) ≫ 𝑇w,MEC. In this

regime, the waiting time in the AP queue dominates the overall delay

and the MEC processing time is relatively small. Hence, 𝑇w (𝑛) ≈
𝑈 (𝑛) +𝑊 (𝑛) +𝑆 (𝑛). Let ΘAP (𝑛) be the AP’s throughput in a WLAN

with 𝑛 users. All the users are statistically identical. For each packet

offloaded by a user to the AP, the AP transmits a downlink packet to

the user. Hence, the throughput of a user in the WLAN is ΘAP (𝑛)/𝑛
packets/slot. Therefore, the average latency of a user is

E [𝑇w (𝑛)] =
𝑛

ΘAP (𝑛)
. (4)
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Expression for ΘAP (𝑛). At any instant, the 𝑛 WLAN users fall into

two categories:

(1) Contending Users: These users are contending for channel

access to send their packets to the AP for processing.

(2) Dormant Users: These users are waiting to receive their pro-

cessed task results back from the AP. Therefore, they are not

contending for the channel.

The dynamics of the contending and dormant users can be mod-

eled as a Markov renewal process [5, Chap. 5.4]. Let 𝑇0 = 0, and 𝑇𝑖 ,

for 𝑖 ≥ 1, be the instant when the 𝑖th transmission, be it uplink or

downlink, ends. Let 𝐺𝑖 be the number of users contending at time

𝑇𝑖 . Then, (𝑇1,𝐺1), (𝑇2,𝐺2), . . . form a Markov renewal process.

Figure 2 shows the transition diagram of the Markov chain 𝐺𝑖
for 𝑖 ≥ 0. Its state space is {0, 1, . . . , 𝑛}. For 𝑛cont ∈ {0, 1, . . . , 𝑛 − 1},
a transition from state 𝑛cont to state 𝑛cont + 1 occurs when the AP

wins contention, transmits a packet, and the corresponding dor-

mant user stars contending again. This event occurs with probability

1/(𝑛cont+1). Similarly, a transition from state 𝑛cont to state 𝑛cont−1

occurs when any one of the contending users wins contention, which

happens with probability 𝑛cont/(𝑛cont+1). Note that when 𝑛cont = 𝑛,

the AP does not participate in contention since all the users are yet

to transmit their packets to the AP. Hence, from state 0 a transition

happens to state 1 with probability 1. The stationary distribution of

the Markov chain, 𝜋w (.), can be shown to be

𝜋w (𝑛cont) =


(∑𝑛−1

𝑛cont=0
𝑛cont+1
𝑛cont!

+ 1

(𝑛−1)!

)−1
, if 𝑛cont = 0,

(𝑛cont+1)
𝑛cont!

𝜋w (0), if 1 ≤ 𝑛cont ≤ 𝑛 − 1,

1

(𝑛cont−1)!𝜋w (0), if 𝑛cont = 𝑛.

(5)

We employ the following decoupling approximation originally

proposed in [10]. Consider a WLAN with a saturated AP and 𝑛cont
saturated users, which always have packets to transmit and, thus,

always contend. In the steady state, each user and the AP start the

transmission of a packet in each backoff slot at a rate 𝛽𝑛cont+1 at-

tempts/slot, which is referred to as the attempt rate. We assume that
the backoff process of a given node is independent of the aggregate at-
tempt process of the other𝑛cont nodes. Hence, from the point of view of

the given node, the number of attempts by the other nodes in succes-

sive slots are independent and identically distributed (i.i.d.) Binomial

random variables with parameters 𝑛cont and 𝛽𝑛cont+1. The attempt

rate 𝛽𝑛cont+1 is obtained via a saturated network analysis [10].

Note that 𝛽𝑛cont+1 is the steady state attempt rate in a WLAN

with 𝑛cont contending users (and the AP), whereas the number of

contending users in our WLAN model constitutes a Markov chain.

As in [11], we also assume that whenever there are 𝑛cont contending
users, each of these users and the AP attempt in a backoff slot with
probability 𝛽𝑛cont+1.

Using the above approximations we derive the following expres-

sion for ΘAP (𝑛).

Lemma 1. For the WLAN with 𝑛 users, the AP throughput is given
by

ΘAP (𝑛) =
∑𝑛−1
𝑛cont=0

𝜋w (𝑛cont) 1

𝑛cont+1∑𝑛
𝑛cont=0

𝜋w (𝑛cont)E [𝑋 (𝑛cont)]
, (6)

where E [𝑋 (𝑛cont)] is the average duration of the renewal cycle given
that𝑛cont users are contending for channel access. For 0 ≤ 𝑛cont ≤ 𝑛−1,

0 1 2 · · · 𝑛

1 1/2 1/3 1/𝑛

1/2 2/3 3/4 1

Figure 2: Markov chain for the number of contending users 𝑛cont in the WLAN
with 𝑛 users.

E [𝑋 (𝑛cont)] =
(1 − 𝛽𝑛cont+1)𝑛cont+1 + 𝛽𝑛cont+1 (1 − 𝛽𝑛cont+1)𝑛cont𝑇DL

w,p

+ 𝑃
(𝑛cont+1)
coll 𝑇coll + 𝑛cont𝛽𝑛cont+1 (1 − 𝛽𝑛cont+1)𝑛cont𝑇UL

w,p


(𝑛cont + 1)𝛽𝑛cont+1 (1 − 𝛽𝑛cont+1)𝑛cont

, (7)

where

𝑃
(𝑛cont+1)
coll = 1 − (1 − 𝛽𝑛cont+1)𝑛cont+1

− (𝑛cont + 1)𝛽𝑛cont+1 (1 − 𝛽𝑛cont+1)𝑛cont . (8)

For 𝑛cont = 𝑛,

E [𝑋 (𝑛)] =


(1 − 𝛽𝑛)𝑛 + 𝑃

(𝑛)
coll𝑇coll

+ (𝑛 − 1)𝛽𝑛 (1 − 𝛽𝑛)𝑛−1𝑇UL
w,p


𝑛𝛽𝑛 (1 − 𝛽𝑛)𝑛−1

. (9)

Proof. See Appendix A. □

3.1.3 General Case. The transmission of packets in the AP queue

to the users and the processing of other tasks at the MEC server

happen in parallel. The overall delay for these parallel processes is

predominantly determined by the process with the greater delay.

This motivates the following heuristic for the WLAN delay for arbi-

trary loading; it combines the results for the low and high loading

regimes:

E [𝑇w (𝑛)] ≈max

{
𝑛

ΘAP (𝑛)
,𝑇UL

w,p
+𝑇w,MEC +𝑇DL

w,p
+CWmin

}
. (10)

We assess the accuracy of the heuristic in Section 5.1.

We finally make another decoupling assumption that when a user

offloads a task to the WLAN, the probability that the WLAN has 0 ≤
𝑛 ≤ 𝑁 − 1 users is

(𝑁−1
𝑛

)
𝑞𝑛
w
(1 − 𝑞w)𝑁−1−𝑛

. Hence, averaging (10)

over 𝑛, the average task computation delay in the WLAN becomes

𝑇w=

𝑁−1∑︁
𝑛=0

(
𝑁 − 1

𝑛

)
𝑞𝑛
w
(1 − 𝑞w)𝑁−1−𝑛E [𝑇w (𝑛 + 1)] . (11)

3.2 Cellular Network Latency Analysis
Recall that a given user’s request to offload a task to the cellular

network is accepted if and only if one of the 𝑀 channels is free.

When it is accepted, the total time 𝑇
cell

spent by the user in the

cellular network is given by

𝑇
cell

= 𝑇access +𝑇UL

c
+𝑇c,MEC +𝑇DL

c
. (12)

Let 𝜂
full

be the probability that the user finds all the𝑀 channels

occupied. We now obtain the average latency seen by the user for

the tasks that it chooses to offload to the cellular network in terms of

𝜂
full

.We assume that having offloaded a task to the cellular network, if
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1 0

𝑝c (1 − 𝜂
full

)

1 − 𝑝c

Figure 3: Markov chain for a user’s task offloading indicator. The probabilities
of self-loops are not shown to avoid clutter.

the user chooses to offload its next task also to the cellular network, it is
admitted with probability 1. The rationale behind this assumption is

that there will be one or more free channels on completion of a task,

and the tagged user is unlikely to find as many contending users.

We define 𝑌𝑖 , for 𝑖 ≥ 1, to be the indicators of the tagged user’s

tasks being processed in the cellular network. More precisely, 𝑌𝑖 = 1

if the tagged user’s 𝑖th task is processed in the cellular network and

𝑌𝑖 = 0 otherwise. Then 𝑌𝑖 , for 𝑖 ≥ 1, is a Markov chain with a state

transition diagram as shown in Figure 3. A transition from state 0 to

1 happens if the user chooses to offload the next task to the cellular

network and is admitted. A transition from state 1 to 0 happens if

the user does not choose the cellular network for the next task.

Lemma 2. The average latency for the tasks that a user chooses to
offload to the cellular network is given by

𝑇 c =
𝑓cell
𝑝c

𝑇cell +
(
1 − 𝑓cell

𝑝c

)
(𝑇access +𝑇loc) . (13)

Here, 𝑓cell is the fraction of tasks a user offloads to the cellular network,
and is given by

𝑓cell =
𝑝c (1 − 𝜂full)
1 − 𝑝c𝜂full

. (14)

Proof. See Appendix B. □

Expression for 𝜂full. We assume that the probability of two or more
users completing their task computations in a slot is negligible because
the slot duration is much smaller than the latencies of the WLAN or
the cellular or local networks. Suppose there are 𝑘 users in the cellular

network. Let 𝜂exit
𝑘

be the probability that exactly one user out of

these 𝑘 users exits the cellular network in a given slot. Assuming

independence across the cellular users and across slots, we have

𝜂exit
𝑘

=
𝑘 (1−𝑝c )
𝑇cell

(
1 − 1−𝑝c

𝑇cell

)𝑘−1
. Independence across slots strictly

holds only if the sojourn times in the cellular network are geometric
but is a reasonable assumption if sojourn times are much larger than

the slot duration. Let 𝜂enter
𝑘

be the probability of one WLAN or local

network user choosing to offload a new task to the cellular network

in a given slot.

Lemma 3. The probability 𝜂enter
𝑘

is given by

𝜂enter
𝑘

=

𝑁−𝑘∑︁
𝑛w=0

(
𝑁 − 𝑘

𝑛w

) 𝑞𝑛ww (
𝑞loc + 𝑞

rej
loc

)𝑛l
(1 − 𝑞c)𝑁−𝑘 𝜁 (𝑛w, 𝑛l), (15)

where 𝑛l = 𝑁 − 𝑘 − 𝑛w and 𝜁 (𝑛w, 𝑛l) is the probability that one user
from the other networks chooses to offload a task to the cellular network
in a slot given than the WLAN has 𝑛w users and the local network has
𝑛l users. Furthermore,

0 1 2 · · · 𝑀

𝜂enter
0

𝜂enter
1

(1 − 𝜂exit
1

) 𝜂enter
2

(1 − 𝜂exit
2

) 𝜂enter
𝑀−1 (1 − 𝜂exit

𝑀−1)

𝜂exit
1

(1 − 𝜂enter
1

) 𝜂exit
2

(1 − 𝜂enter
2

) 𝜂exit
3

(1 − 𝜂enter
3

) 𝜂exit
𝑀

(1 − 𝜂enter
𝑀

)

Figure 4: Markov chain for the number of users in the cellular network. The
probabilities of the self-loops are not shown to avoid clutter.

𝜁 (𝑛w, 𝑛l) =
(
1 − 𝑝c

E [𝑇w (𝑛w)]

)𝑛w−1 (
1 − 𝑝c

𝑇loc

)𝑛l−1
×
[

𝑛w𝑝c

E [𝑇w (𝑛w)]

(
1 − 𝑝c

𝑇loc

)
+ 𝑛l𝑝c

𝑇loc

(
1 − 𝑝c

E [𝑇w (𝑛w)]

)]
, (16)

where E [𝑇w (𝑛w)] is given by (10).

Proof. See Appendix C. □

The number of users in the cellular network in successive slots

is an irreducible Markov chain for 𝑝c < 1.
1
Let P𝑐 be its transition

probability matrix. A transition from state 𝑘 to 𝑘 + 1 occurs when

one user from the WLAN or the local network chooses to offload its

next task to the cellular network and no cellular user exits in the

same slot. A transition from state 𝑘 to 𝑘 − 1 occurs when one cellular

user exits and no user from the WLAN or the local network chooses

to offload a task to the cellular network in the same slot. Thus,

P𝑐 (𝑘, 𝑘 + 1) = 𝜂enter
𝑘

(
1 − 𝜂exit

𝑘

)
, for 0 ≤ 𝑘 ≤ 𝑀 − 1, (17)

P𝑐 (𝑘, 𝑘 − 1) = 𝜂exit
𝑘

(
1 − 𝜂enter

𝑘

)
, for 1 ≤ 𝑘 ≤ 𝑀. (18)

Figure 4 illustrates this Markov chain. Let 𝜋𝑐 be its stationary distri-

bution. We can show that

𝜋c (𝑀)

=

∏𝑀−1
ℎ=0

𝜂enter
ℎ

(
1 − 𝜂exit

ℎ

)
∏𝑀
ℎ=1

𝜂exit
ℎ

(
1 − 𝜂enter

ℎ

) ©­­«1 +
𝑀∑︁
𝑘=1

∏𝑘−1
ℎ=0

𝜂enter
ℎ

(
1 − 𝜂exit

ℎ

)
∏𝑘
ℎ=1

𝜂exit
ℎ

(
1 − 𝜂enter

ℎ

) ª®®¬
−1

.

Furthermore,

𝜂
full

=

𝜋c (𝑀)𝜂enter
𝑀

(
1 − 𝜂exit

𝑀

)
∑𝑀
𝑘=0

𝜋c (𝑘)𝜂enter𝑘

. (19)

3.3 Fixed-Point Equations
The probability of finding a user in a network in an arbitrary slot

is equal to the fraction of time spent by a user in that network. For

instance, the average time per task a user spends in the WLAN is

𝑝w𝑇w. Thus, the total time spent by a user per task is 𝑝w𝑇w +𝑝c𝑇 c +
(1 − 𝑝w − 𝑝w)𝑇loc. Hence,

𝑞w =
𝑝w𝑇w

𝑝w𝑇w + 𝑝c𝑇 c + (1 − 𝑝c − 𝑝w)𝑇loc
. (20)

Similarly, we can show that

𝑞c =
𝑓
cell

𝑇
cell

𝑝w𝑇w + 𝑝c𝑇 c + (1 − 𝑝c − 𝑝w)𝑇loc
, (21)

1
Note that the extreme case of 𝑝c = 1 is not of interest. If 𝑝c = 1, once a user enters the

cellular network, it never exits.
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𝑞
rej

loc
=

(𝑝c − 𝑓
cell

) (𝑇access +𝑇loc)
𝑝w𝑇w + 𝑝c𝑇 c + (1 − 𝑝c − 𝑝w)𝑇loc

, (22)

𝑞
loc

=
(1 − 𝑝w − 𝑝c)𝑇loc

𝑝w𝑇w + 𝑝c𝑇 c + (1 − 𝑝c − 𝑝w)𝑇loc
. (23)

Equations (20), (21), (22), and (23) constitute four fixed-point equa-

tions in four variables. We solve these numerically to determine 𝑞w,

𝑞c, 𝑞loc, and 𝑞
rej

loc
. Substituting these solutions in (11) and (13) yields

the average latency as a function of 𝑝c and 𝑝w. We then numerically

find the optimal 𝑝c and 𝑝w and the optimal delay.

4 UCB-BASED OFFLOADING POLICY
The UCB algorithm is used to choose between different actions in

the face of uncertainty in the multi-armed bandit (MAB) problem

framework [2]. It has been used extensively to tackle the exploration-

exploitation trade-off in a multi-RAT system [16]. We propose a

distributed UCB-based policy for RAT selection, treating negative

latencies of various networks as their rewards. The users do not

need to know the system parameters to execute the policy.

Let us consider a tagged user. Let 𝑎(𝑘) ∈ I ≜ {1, 2, 3} be the

network it uses for its 𝑘th task, where 1, 2 and 3 represent the local

network, WLAN and cellular network, respectively. Let 𝐿𝑘 be the

latency incurred by its 𝑘th task. The user chooses the RATs to mini-

mize the average latency across the tasks. Its offloading decision for

a task depends on the delays incurred by its previous tasks. Let 𝑐𝑖 (𝑘)
be the number of tasks it has offloaded to network 𝑖 up to the 𝑘th

task and 𝑇 𝑖 (𝑘) be the average delay incurred by these 𝑐𝑖 (𝑘) tasks.
The UCB-based offloading policy, inspired by [2], is shown in

Algorithm 1. The policy is initialized by offloading the first three

tasks to the local network, to the WLAN and to the cellular network,

respectively, and updating the average delays 𝑇 𝑖 (3) for 𝑖 ∈ I. For

𝑘 ≥ 4, the 𝑘th task is offloaded to the network with the highest

𝑟𝑖 (𝑘). The exploration factor 𝜂 controls how often a user explores

networks other than the one it estimates to be the optimal.

Algorithm 1 UCB-Based Offloading Policy

1: for 𝑘 = 1 : 3 do //initialization

2: Choose 𝑎(𝑘) = 𝑘

3: Observe 𝐿𝑘
4: Update 𝑐𝑘 (3) = 1, 𝑇𝑘 (3) = 𝐿𝑘
5: end for
6: for 𝑘 ≥ 4 do
7: Set 𝑟𝑖 (𝑘) = −𝑇 𝑖 (𝑘 − 1) + 𝜂

√︃
log(𝑘−1)
𝑐𝑖 (𝑘−1) , ∀ 𝑖 ∈ I

8: Choose 𝑎(𝑘) = argmax𝑖∈I {𝑟𝑖 (𝑘)}
9: Observe 𝐿𝑘
10: Update 𝑐𝑖 (𝑘) = 𝑐𝑖 (𝑘 − 1) + 1(𝑖 = 𝑎(𝑘)),

𝑇 𝑖 (𝑘) = 𝑇 𝑖 (𝑘 − 1) + 1(𝑖 = 𝑎(𝑘)) (𝐿𝑘−𝑇 𝑖 (𝑘−1) )
𝑐𝑖 (𝑘 ) ,

∀ 𝑖 ∈ I

11: end for

5 NUMERICAL RESULTS
We now present simulation results to assess the accuracy of the

analysis, and to evaluate the performance of the probabilistic and

UCB-based offloading policies. The simulation parameters are listed

Table 1: Simulation parameters

Parameter Value Parameter Value

𝛿 9 𝜇sec 𝑓c,MEC 10 GHz

𝑇DIFS 34 𝜇sec 𝑇SIFS 16 𝜇sec

𝑅w 100 Mbps 𝑅c 10 Mbps

CWmax 1024 CWmin 16

𝑇access 4 msec 𝑑 140 cycles/bit

𝐿UL 64 Kb 𝐿DL 12 Kb

𝑓u 2.2 GHz 𝑓w,MEC 10 GHz

0 0.1 0.2 0.3 0.4 0.5 0.6
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45
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Analysis

No contention assumption

Figure 5: Average latency as a function of 𝑝c for different values of 𝑝w (𝑁 =

50 and𝑀 = 10) .

in Table 1. The parameter values for 𝐿UL, 𝐿DL, and 𝑑 correspond to

an augmented reality application [3].

5.1 Probabilistic Offloading Policy
Fig. 5 plots the average latency as a function of 𝑝c for different 𝑝w.

Note that given 𝑝w, 𝑝c can vary from 0 to 1 − 𝑝w. For a given 𝑝w, as

𝑝c increases, the average latency first decreases and then gradually

increases. This is because more users enter the cellular network

until all the𝑀 channels are occupied. Beyond this, the BS rejects the

users that attempt to enter the cellular network, which increases the

average latency. For a given 𝑝c, as 𝑝w increases, the average latency

decreases up to 𝑝w = 0.4 and then increases. This is because the

WLAN with its high data rate has a lower average latency than the

cellular or local network when few users contend in it. However,

the MAC contention delays increase as more users enter the WLAN.

The analysis and simulation results match. We also show the results

for the model where the uplink and downlink contention delays

are ignored in the WLAN, as done in [9]. Neglecting the contention

delays leads to an underestimation of the average latency, especially

when 𝑝𝑤 is large.

Fig. 6 plots the optimal delay as a function of the number of

users for different values of 𝑀 . For every value of 𝑁 and 𝑀 , the

optimal delay that minimizes the average latency, which is given

in (1), is determined numerically. For any𝑀 , the delay increases as

𝑁 increases. For 𝑁 > 𝑀 , the delay decreases as𝑀 increases because

more users can be served by the cellular network. For 𝑁 ≤ 𝑀 , the

delay is insensitive to 𝑀 because most users choose to offload their

tasks to the lightly-loaded WLAN due to its lower contention delays.

 

84



Modeling and Analysis of Latencies in Multi-User, Multi-RAT Edge Computing Q2SWinet ’23, October 30-November 3, 2023, Montreal, QC, Canada

10 20 30 40 50 60

10

15

20

25

30

Figure 6: Optimal average latency as a function of the number of users for
different values of𝑀 .
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(a) Cellular offloading probabilities (𝑝★c ).
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(b) WLAN offloading probabilities (𝑝★w).

Figure 7: Optimal offloading probabilities as a function of number of users for
different number of cellular channels.

Fig. 7a plots the optimal cellular offloading probabilities 𝑝★
c
as a

function of 𝑁 for different values of𝑀 . Fig. 7b plots the correspond-

ing optimal WLAN offloading probabilities 𝑝★
w
. For given cellular

network capacity𝑀 , 𝑝★
c
increases with 𝑁 until the average number

of users in the cellular network exceeds 𝑀 . Thereafter, it decreases

with 𝑁 since rejections from the cellular network entail higher aver-

age delays. The trends are different for 𝑝★
w
. For any𝑀 , 𝑝★

w
decreases

monotonically as𝑁 increases because the contention delay increases.

We see that 𝑝★
c
is more sensitive to changes in𝑀 than 𝑝★

w
, especially

for 𝑁 > 𝑀 . This is because the users that would have locally com-

puted their tasks enter the cellular network as𝑀 increases.

5.2 UCB-Based Offloading Policy
Fig. 8 compares the optimal average delays of the UCB-based and

probabilistic offloading policies for different values of the number

of users 𝑁 . For each 𝑁 , the optimal average delay of the UCB-based

policy is determined by sweeping the parameter 𝜂 over the range

[0, 100] and then using the value that provides the lowest delay. As

expected, the optimal delay of both policies increases as 𝑁 increases.

The UCB-based policy has a similar, albeit marginally lower, delay

compared to the probabilistic policy. In classical MAB problems with
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Figure 8: Comparison of the optimal average latency of the probabilistic and
UCB-based offloading policies for different numbers of users.

a reward structure as described in Section 4, the UCB algorithm

would give inferior rewards. However, in the RAT selection problem,

the UCB-based policy adapts based on the previous task delays and

exploits the correlation of rewards across the networks and the users.

Unlike the static probabilistic offloading policy, it opportunistically

offloads tasks to the networks, yielding a superior performance.

6 CONCLUSIONS
We studied an MEC network in which the users offloaded their tasks

to a WLAN or a cellular network, or could compute them locally. We

developed a novel analytical framework to characterize the average

latency. The policy brought out the interplay between the offloading

probabilities and loading of the networks. The analysis accounted for

the coupled uplink and downlink transmissions by the users and the

AP, respectively, variations in the number of users served by each

RAT, and the non-negligible AP queuing delays that arise due to

contention.We saw that ignoringWLANMAC contention could lead

to underestimation of the average latency. We also proposed a UCB-

based offloading policy. The average latencies of the two policies

were similar though the UCB-based policy marginally outperformed.
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A PROOF OF LEMMA 1
In a renewal cycle of the Markov chain, let 𝑅(𝑛cont) denote the

reward when 𝑛cont users contend for channel access along with the

AP. Using the Markov renewal reward theorem [5, Chap. 5.4], the

AP throughput ΘAP (𝑛) is given by

ΘAP (𝑛) =
Encont [R(ncont)]

Encont [E [X(ncont)]]
. (24)

a) Evaluating Encont [R(ncont)]: The reward is 1 when the AP wins

contention, which happens with a probability of 1/(𝑛cont + 1), for
0 ≤ 𝑛cont ≤ 𝑛 − 1. It is 0 otherwise. When 𝑛cont = 𝑛, the AP is not

contending and the reward is 0. Hence, the average reward is given

by

∑𝑛−1
𝑛cont=0

𝜋w (𝑛cont)/(𝑛cont + 1).
b) Evaluating Encont [E [X(ncont)]]: A renewal cycle ends with the

completion of an uplink or downlink transmission. For 0 ≤ 𝑛cont ≤
𝑛− 1, the following four mutually exclusive events dictate the length

of the renewal cycle: (i) Channel is idle and remains so for 1 slot. The

probability of this event occurring is (1−𝛽𝑛cont+1)𝑛cont+1. The renewal
cycle then continues. (ii) The channel is busy due to a transmission

by the AP. The probability of this event is 𝛽𝑛cont+1 (1 − 𝛽𝑛cont+1)𝑛cont
and duration is𝑇DL

w,p
. (iii) The channel is busy due to a transmission by

a user. The probability of this event is 𝑛cont𝛽𝑛cont+1 (1− 𝛽𝑛cont+1)𝑛cont
and duration is 𝑇UL

w,p
. (iv) The channel is busy due to a collision of

duration 𝑇
coll

. The probability of this event is 𝑃
(𝑛cont+1)
coll

. Hence,

E [𝑋 (𝑛cont)] =(1 − 𝛽𝑛cont+1)𝑛cont+1 (1 + E [𝑋 (𝑛cont)])

+ 𝛽𝑛cont+1 (1 − 𝛽𝑛cont+1)𝑛cont𝑇DL

w,p

+ 𝑃
(𝑛cont+1)
coll

(𝑇
coll

+ E [𝑋 (𝑛cont)])

+ 𝑛cont𝛽𝑛cont+1 (1 − 𝛽𝑛cont+1)𝑛cont𝑇UL

w,p
.

Rearranging the terms yields (7).

For 𝑛cont = 𝑛, the renewal cycle duration calculations are similar

except that the AP does not contend.

B PROOF OF LEMMA 2
Let 𝜈 be the stationary distribution of the Markov chain 𝑌1, 𝑌2, . . .. It

can be shown that

𝜈 (1) = 𝑝c (1 − 𝜂
full

)/(1 − 𝑝c𝜂full). (25)

Since 𝑓
cell

= 𝜈 (1), (14) follows.
Next, let 𝐿𝑖 be the latency incurred by the 𝑖th task of the tagged

user. Also, define 𝑒 (𝑖), for 𝑖 ≥ 1, as follows: 𝑒 (𝑖) = 1 if the user

chooses to offload the 𝑖th task to the cellular network and 𝑒 (𝑖) = 0

otherwise. Then,

𝑇 c = lim

𝐾→∞

E
[∑K

i=1 Lie(i)
]

E
[∑K

i=1 e(i)
] . (26)

Applying theMarkov renewal reward theorem to both the numerator

and denominator of (26) and simplifying, we can show that

𝑇 c = 𝜈 (1)𝑇
cell

+ 𝜈 (0) [(1 − 𝜂
full

)𝑇
cell

+ 𝜂
full

(𝑇access +𝑇loc)] , (27)

Since 𝜈 (1) + 𝜈 (0) (1 − 𝜂
full

) = 𝑓
cell

/𝑝c and 𝜈 (0)𝜂full = 1 − (𝑓
cell

/𝑝c),
(13) follows.

C PROOF OF LEMMA 3
Each user that is in the WLAN finishes computing its task in a

slot and chooses to offload its next task to the cellular network

with probability
𝑝c

E[𝑇w (𝑛w ) ] . Similarly, each user that is in the local

network finishes computing its task in a slot and chooses to offload

its next task to the cellular network with probability
𝑝c
𝑇loc

. Hence,

given that there are 𝑛w users in the WLAN and 𝑛
l
users in the local

network, the probability 𝜁 (𝑛w, 𝑛loc) of exactly one of these users

choosing to offload its task to the cellular network is

𝑛w𝑝c

E [𝑇w (𝑛w)]

(
1 − 𝑝c

E [𝑇w (𝑛w)]

)𝑛w−1 (
1 − 𝑝c

𝑇
loc

)𝑛l
+ 𝑛

l
𝑝c

𝑇
loc

(
1 − 𝑝c

𝑇
loc

)𝑛l−1 (
1 − 𝑝c

E [𝑇w (𝑛w)]

)𝑛w
.

This establishes (16).

Further, note that there are 𝑘 users in the cellular network and

𝑁 − 𝑘 in other networks. A user that is not in the cellular network

is in the WLAN with probability
𝑞w
1−𝑞c and in the local network with

probability

𝑞loc+𝑞rej
loc

1−𝑞c . Hence, assuming independence across the non-

cellular users and across slots, the number of users in the WLAN

is a Binomial random variable with parameters 𝑁 − 𝑘 and
𝑞w
1−𝑞c .

Therefore, unconditioning on the numbers of users in the WLAN

and in the local network, we obtain the probability 𝜂enter
𝑘

of one non-

cellular user choosing to offload a new task to the cellular network

in a given slot, as given in (15).
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