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ABSTRACT OF THE DISSERTATION

Toward Resilience and Data Reduction in Exascale Scientific Computing

by

Xin Liang

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2019

Dr. Zizhong Chen, Co-Chairperson
Dr. Franck Cappello, Co-Chairperson

Because of the ever-increasing execution scale, reliability and data management are

becoming more and more important for scientific applications. On the one hand, exascale

systems are anticipated to be more susceptible to soft errors ,e.g. silent data corruptions,

due to the reduction in the size of transistors and the increase of the number of compo-

nents. These errors will lead to corrupted results without warning, making the output of

the computation untrustable. On the other hand, large volumes of highly variable data

are produced by scientific computing with high velocity on exascale systems or advanced

instruments, and the I/O time on storing these data is prohibitive due to the I/O bottleneck

in parallel file systems. In this work, we leverage algorithm-based fault tolerance (ABFT)

and error-bound lossy compression to tackle the two problems, in order to support efficient

scientific computing on exascale systems.

We propose an efficient fault tolerant scheme to tolerant soft errors in Fast Fourier

Transform (FFT), one of the most important computation kernels widely used in scientific

computing. Traditional redundancy approaches will at least double the execution time or
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resources, limiting the usage in practice because of the large overhead. Previous works on

offline ABFT algorithms for FFT mitigate this problem by providing resilient FFT with

lower overhead, but these algorithms fail to make progress in vulnerable environments with

high error rates because they can only detect and correct errors after the whole computation

finishes. We propose an online ABFT scheme for large-scale FFT inspired by the divide-

and-conquer nature of the FFT computation. We devise fault tolerant schemes for both

computational and memory errors in FFT, with both serial and parallel optimizations.

Experimental results demonstrate that the proposed approach provides more timely error

detection and recovery as well as better fault coverage with less overhead, compared to the

offline ABFT algorithm.

To alleviate the I/O bottleneck in the parallel file systems, we work on a prediction-

based error-bounded lossy compressor to significantly reduce the size of scientific datasets

while retaining the accuracy of the decompressed data, with adaptive prediction algorithms

and compression models. We first propose a regression-based predictor for better predic-

tion accuracy than traditional approaches under large error bounds, followed by an adaptive

algorithm that dynamically selects between the traditional Lorenzo predictor and the pro-

posed regression-based predictor, leading to very high compression ratios with little visual

distortion. We further unify the prediction-based model and transform-based model by

using transform-based compressors as a predictor, with novel optimizations toward efficient

coefficient encoding for both the two models. The proposed adaptive multi-algorithm design

provides better compression ratios given the same distortion, significantly reducing storage

requirements and I/O time.

ix



We further adapt the compression algorithms and compressors to different re-

quirements and/or objectives in realistic scenarios. We leverage a logarithmic transform

to precondition the data, which turns a relative-error-bound compression problem into an

absolute-error-bound compression problem. This transform aligns two different error re-

quirements while improving the compression quality, efficiently reducing the workload for

compressor design. We also correlate the compression algorithm with system information

to achieve better I/O performance compared to traditional single compressor deployment.

These studies further improve the efficiency of lossy compression from the perspective of

efficient I/O in the context of scientific simulation, making scientific applications running

on exascale systems more efficient.

x



Contents

List of Figures xiv

List of Tables xvii

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 For Soft Errors in FFT . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 For Error-bounded Lossy Compression Algorithms . . . . . . . . . . 9
1.3.3 For Error-bounded Lossy Compression With Different Requirements/Objectives 10

2 Correcting Soft Errors Online in Fast Fourier Transform 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 DFT and FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Previous Fault Tolerant Work for FFT . . . . . . . . . . . . . . . . . 16

2.3 Online ABFT FFT Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Computational Fault Tolerance . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Memory Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Sequential Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Memory Checksum Modification . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Verification & Correction Postponing . . . . . . . . . . . . . . . . . . 25
2.4.3 Incremental Checksum Generation . . . . . . . . . . . . . . . . . . . 26
2.4.4 Non-contiguous Memory Access . . . . . . . . . . . . . . . . . . . . . 26

2.5 Online ABFT FFT on Parallel Systems . . . . . . . . . . . . . . . . . . . . 27
2.6 Parallel Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.1 Computation-Communication Overlap . . . . . . . . . . . . . . . . . 31
2.6.2 Re-design Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Overhead Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7.1 Overhead in the Sequential Scheme . . . . . . . . . . . . . . . . . . . 34
2.7.2 Sequential Space Overhead . . . . . . . . . . . . . . . . . . . . . . . 37

xi



2.7.3 Overhead in the Parallel Scheme . . . . . . . . . . . . . . . . . . . . 37
2.7.4 Parallel Space Overhead . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7.5 Parallel Communication Overhead . . . . . . . . . . . . . . . . . . . 38

2.8 Impact of Round-off Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.8.1 Round-off Errors in Computational FT . . . . . . . . . . . . . . . . 39
2.8.2 Round-off Errors in Memory FT . . . . . . . . . . . . . . . . . . . . 40

2.9 Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.9.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.9.2 Overhead in Sequential Scheme . . . . . . . . . . . . . . . . . . . . . 41
2.9.3 Performance in Parallel Scheme . . . . . . . . . . . . . . . . . . . . . 44
2.9.4 Round-off Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Optimizing Error-controlled Lossy Compression for High Performance
I/O in Scientific Simulations 50
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Multi-algorithm Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.2 Mean-integrated Lorenzo Predictor . . . . . . . . . . . . . . . . . . . 59
3.3.3 Regression-based Prediction . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.4 Adaptive Selection of Best-fit Predictor . . . . . . . . . . . . . . . . 65
3.3.5 Optimizing Block-wise Prediction Accuracy . . . . . . . . . . . . . . 69

3.4 Hybrid Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.1 Optimization of Lossy Compression with Data-Fitting Predictor . . 71
3.4.2 Optimization of Lossy Compression with Transform-Based Predictor 76
3.4.3 Selecting the Best-Fit Prediction Method . . . . . . . . . . . . . . . 84

3.5 Experimental Evalutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.5.1 Multi-algorithm Predictor . . . . . . . . . . . . . . . . . . . . . . . . 86
3.5.2 Hybrid Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . 97

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4 Enhancing Lossy Compression Efficiency for Relative Error Bound and
I/O Performance 109
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.1 Lossy Compression with Relative Error Bound . . . . . . . . . . . . 111
4.2.2 Lossy Compression for I/O Performance . . . . . . . . . . . . . . . . 112

4.3 An Efficient Transformation Scheme for Relative Error Bound . . . . . . . . 113
4.3.1 Mathematical Foundation of the Transformation Scheme . . . . . . . 114
4.3.2 Impact of Base Selection . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.4 Improving Data Dumping via Adaptive Compressor Selection . . . . . . . . 126
4.4.1 I/O Model with Compression . . . . . . . . . . . . . . . . . . . . . . 126

xii



4.4.2 I/O Performance Model of Parallel File Systems under Write Concur-
rency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4.3 Adaptive Lossy Compression Framework . . . . . . . . . . . . . . . . 132
4.5 Experimental Evalutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.5.1 Preconditioner for Relative Error Bound . . . . . . . . . . . . . . . . 144
4.5.2 Adaptive Compression Framework for I/O Performance . . . . . . . 156

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5 Conclusions 164

Bibliography 167

xiii



List of Figures

2.1 The Two-Layer ABFT FFT Scheme (When N = m ∗ k) . . . . . . . . . . . 20
2.2 Hierarchy of Memory Protection . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Optimized Hierarchy of Memory Protection . . . . . . . . . . . . . . . . . . 27
2.4 Flowchart of Protected In-Place FFT. . . . . . . . . . . . . . . . . . . . . . 29
2.5 Sequential ABFT scheme no longer works: if an error occurs in the red part,

it will be detected in the blue part. At this time, the procedure has to fail
since original input is overwritten. Twiddle multiplication is omitted. . . . . 29

2.6 Online ABFT Scheme for Parallel In-Place FFT After Communication-Computation
Overlap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Overhead of ABFT-FFT Schemes on TIANHE-2 When There Is No Fault:
(a) Computational FT (b) Computational & Memory FT . . . . . . . . . . 42

2.8 Execution Time (Seconds) of Parallel FT-FFT Schemes on TIANHE-2 When
There Is No Fault: (a) Fixed size on each processor: n = 226 (b) Fixed
number of processors: p = 256 . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Illustration of mean-integrated Lorenzo predictor . . . . . . . . . . . . . . . 60
3.2 Sample points and decompressed noise estimation . . . . . . . . . . . . . . . 67
3.3 Steps of Our Adaptive Error-Bounded Lossy Compressor . . . . . . . . . . . 71
3.4 Analysis of Regression Coefficients on the Hurricane Simulation . . . . . . . 74
3.5 Ratio Distortion of Coefficients Compression on Hurricane Simulation . . . 76
3.6 Embedded Coding (shaded bits would be dropped) . . . . . . . . . . . . . . 77
3.7 Visualizing Raw Data and Transform Coefficients (NYX:Velocity x) . . . . 79
3.8 Efficiency of Compressing Coefficients (NYX: Velocity x with value-range

based error bound 6e-3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.9 Illustration of Best-Fit Predictor Selection Algorithm . . . . . . . . . . . . . 84
3.10 Effectiveness of Mean-Integrated Lorenzo Predictor using Hurricane-ISABEL 89
3.11 Significance Analysis for penalty coefficient using Hurricane-ISABEL . . . . 89
3.12 Rate-distortion (PSNR versus Bit-rate or Compression Ratio) . . . . . . . . 91
3.13 Data Distortion of NYX(dark matter:slice 100) with CR=58:1 . . . . . . . . 93
3.14 Data Distortion of Hurricane(CLOUDf:slice 50) with CR=66:1 . . . . . . . 94
3.15 Data distortion of uniform down-sampling and tricubic interpolation of NYX

dataset with similar compression ratios . . . . . . . . . . . . . . . . . . . . . 95

xiv



3.16 Performance evaluation using NYX . . . . . . . . . . . . . . . . . . . . . . . 97
3.17 Assessment of Bestfit Selection Algorithm on Hurricane Isabel . . . . . . . . 99
3.18 Assessment of Bestfit Selection Algorithm on NYX . . . . . . . . . . . . . . 99
3.19 Assessment of Best-Fit Selection Algorithm on SCALE-LETKF . . . . . . . 99
3.20 Rate Distortion in Hurricane Isabel Simulation . . . . . . . . . . . . . . . . 103
3.21 Rate Distortion in NYX Simulation . . . . . . . . . . . . . . . . . . . . . . . 103
3.22 Rate Distortion in SCALE-LETKF Simulation . . . . . . . . . . . . . . . . 103
3.23 Visualization of NYX (velocity x) by Comparing Raw Data and Recon-

structed Data with Different PSNRs . . . . . . . . . . . . . . . . . . . . . . 104
3.24 Visualization of SCALE-LETKF (QS) by Comparing Raw Data and Recon-

structed Data with Different PSNRs . . . . . . . . . . . . . . . . . . . . . . 105
3.25 Parallel Performance on Hurricane Isabel Simulation . . . . . . . . . . . . . 107
3.26 Parallel Performance on NYX Simulation . . . . . . . . . . . . . . . . . . . 107
3.27 Parallel Performance on SCALE-LETKF Simulation . . . . . . . . . . . . . 107

4.1 Write/Read bandwidth (BW) on Theta . . . . . . . . . . . . . . . . . . . . 131
4.2 Performance of different compressors on two typical fields in NYX dataset

on Theta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.3 Design Overview of Adaptive Lossy Compression Framework . . . . . . . . 134
4.4 Performance of different predict dimensions on two typical fields in NYX

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.5 Rate distortion of different bases for ZFP T on 2 fields in NYX . . . . . . . 147
4.6 Compression ratio on given point relative error bound . . . . . . . . . . . . 151
4.7 Compression/decompression rate on given point relative error bound . . . . 152
4.8 Multiprecision distortion of Slice 100 in dark matter density (NYX, 512 ×

512 × 512) when the compression ratio is 7. The original data is shown in
range [0, 1], and enlarged windows are observed with a higher precision [0,
0.1]. Compared with SZ ABS, FPZIP clearly keeps the features in blue parts
(e.g., data in the center). However, it exploits more local loss and adds certain
noise to regions between the blue and red parts (i.e., data in the top right
and bottom left parts) since its max pointwise relative error is 0.5, which is
much larger than that of SZ T (0.15). . . . . . . . . . . . . . . . . . . . . . 153

4.9 Angle skews of different compressors on HACC datasets when compression
ratio is 8. The absolute-error-bounded compressor leads to large angle skews
because the universal error bound (15 in this case) may greatly affect a small
value. SZ T has better performance because it has a stricter pointwise error
bound (0.145) than that of FPZIP (0.334) under the given compression ratio. 154

4.10 Dumping and loading performance of NYX in parallel execution . . . . . . 155
4.11 Dumping performance of different error bounds (1E-3 ∼ 1E-6) on Bebop with

1 node (32 cores) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.12 Detailed breakdown of I/O Performance on each field (error bound 1E-6) on

Bebop with 1 nodes (32 cores) . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.13 Dumping performance of different error bounds (1E-3 ∼ 1E-6) on Bebop with

4 nodes (128 cores) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

xv



4.14 Detailed breakdown of dumping performance on each field (error bound 1E-6)
on Bebop with 4 nodes (128 cores) . . . . . . . . . . . . . . . . . . . . . . . 160

4.15 Dumping performance of different error bounds (1E-3 ∼ 1E-6) on Theta with
256 nodes (16,384 cores) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.16 Detailed breakdown of dumping performance on each field (error bound 1E-6)
on Theta with 256 nodes (16,384 cores) . . . . . . . . . . . . . . . . . . . . 161

4.17 Dumping performance of different error bounds (1E-3 ∼ 1E-6) on Theta with
512 nodes (32,768 cores) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

4.18 Detailed breakdown of dumping performance on each field (error bound 1E-6)
on Theta with 512 nodes (32,768 cores) . . . . . . . . . . . . . . . . . . . . 162

xvi



List of Tables

2.1 FFTW Execution Time (Seconds) of Different Radices on TIANHE-2 . . . 19
2.2 Execution Time (Seconds) Comparison of FT-FFT on TIANHE-2 When

There Are Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3 Execution Time (Seconds) Comparison of FT-FFTW (Fixed n = 226) on

TIANHE-2 When There Are Faults . . . . . . . . . . . . . . . . . . . . . . . 45
2.4 Execution Time (Seconds) Comparison of FT-FFTW (Fixed p = 256) on

TIANHE-2 When There Are Faults . . . . . . . . . . . . . . . . . . . . . . . 45
2.5 Approximation of Round-off Error . . . . . . . . . . . . . . . . . . . . . . . 47
2.6 Minimal Magnitude of Error That Can Be Detected . . . . . . . . . . . . . 48
2.7 Distribution of Relative Errors of FFT Output in 1000 Runs When One

Random Fault Is Injected in Each Run . . . . . . . . . . . . . . . . . . . . . 48

3.1 Storage Decomposition of the Transform Coefficients on NYX Velocity x with
Value-Range-Based Error Bound 6e-3 . . . . . . . . . . . . . . . . . . . . . 79

3.2 Simulation fields used in the evaluation . . . . . . . . . . . . . . . . . . . . 87
3.3 Maximum Compression Error vs. Error Bound . . . . . . . . . . . . . . . . 88
3.4 Pearson Correlation Coefficients of 6 Fields in NYX . . . . . . . . . . . . . 95
3.5 Compression Ratios (Raw Size over Compressed Size) and Memory Overhead 104

4.1 Variable Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.2 Accuracy of the Uniform Sampling Approach . . . . . . . . . . . . . . . . . 135
4.3 Simulation fields used in the evaluation . . . . . . . . . . . . . . . . . . . . 146
4.4 Compression ratio of different bases for SZ T on 2 fields in NYX . . . . . . 147
4.5 Performance overhead of different bases on 2 fields in NYX . . . . . . . . . 148
4.6 Pointwise relative error bound on 2 representative fields in NYX . . . . . . 149

xvii



Chapter 1

Introduction

Resilience and data reduction are two of the most important problems for scientific

applications in the comming exascale era. Due to the increasing complexity of the systems

as well as renewed emphasis on limiting power and energy consumption, the failure rate

on exascale systems is expected to keep growing [17, 39], resulting in soft errors in both

logic circuits and memory subsystems. These soft errors do not lead to noticeable system

crashes, but to silent data corruption (SDC) that corrupts the output without warning.

This phenomenon has already been observed on several real-world leadership-class super-

computers, which severely affects the reliability of the output from large-scale scientific

applications. How to make these applications resilient to such errors is still an open ques-

tion. On the other hand, extreme-scale scientific simulations and experiments on scientific

instruments are already generating more data than that can be stored, transmitted and an-

alyzed. The up-comping exascale systems and higher-resolution scientific instruments are

going to exacerbate this problem, due to the slow increase of storage capacity and trans-
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mission bandwidth compared with the fast increase of data generation. Data compression

is a direct way to cope with such difficulty, because it can drastically reduce the storage

requirement and accelerate data transmission. Currently, scientists choose to perform the

analysis on decimated data, which leads to suspect results that cannot be trusted.

Although many techniques have been proposed to detect and/or correct soft errors

in fault tolerance literature, the system-level approaches can be very expensive on HPC

systems. For example, the best-known general technique to detect soft errors is the double

modular redundancy (DMR) approach, which either uses two different hardware units to

perform the same computation at the same time or performs the same computation on the

same hardware twice, then compares the two results to detect whether errors occur or not,

leading to at least 200% overhead to detect errors. The most well-known general technique

to correct single soft errors is the triple modular redundancy (TMR) approach, which either

performs the same computation on three different hardware units or uses the same hardware

to perform the same computation for three times, then compares and votes the majority

results as the correct result, resulting in 200% overhead for error correction.

In order to mitigate the high overhead from the system-level approaches, algorithm-

based fault tolerance (ABFT) is proposed to leverage the semantics and structure of a spe-

cific application for resilience. It is dedicated to the detection and correction of errors in

a certain algorithm, sacrificing part of the generality for performance. ABFT is first pro-

posed by Abraham and Huang [44] for matrix multiplication where massive computations

are necessary and the overhead of DMR/TMR is not acceptable, and applied to various

aspects [6, 10–14, 18–20, 22, 31, 34, 38, 48, 57, 61, 76, 80, 83, 84, 86, 88, 97, 112, 114]. Later, the
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ABFT has also been extended by [29, 111, 113] to detect and correct errors online so that

lower latency detection and faster recovery can be achieved.

Fast Fourier transform (FFT) is one of the most important kernels widely used in

scientific applications. Because of its importance and impact in wide areas, fault tolerant

FFT schemes have been extensively studied over the last three decades. In [5], Antola

et al. proposed a time-redundant scheme for 2-dimensional FFT. In [24], Choi and Malek

introduced a fault tolerance scheme that is based on recomputing through an alternate path.

But their throughput is only 50%. In [50], Jou and Abraham proposed an ABFT scheme for

the FFT networks. They can achieve 100% fault coverage and throughput theoretically at

the cost of O( 2
log2N

) hardware overhead. But either fault coverage or throughput may not

be very satisfactory due to round-off errors. Later, Tao and Hartmann [98] came up with

a novel encoding scheme for FFT networks which has higher fault coverage by adding 5%

hardware. They also gave some formulas to estimate the upper and lower bound of fault

coverage that influenced by round-off error. After that, Wang and Jha [105] presented

a new concurrent error detection (CED) scheme that achieves same or better result with

less or equal hardware redundancy. Also, Oh [75] showed a similar CED scheme using a

different checksum aimed at increasing fault coverage. However, these approaches suffer

from either high overhead or low fault coverage. They also have high detection latency such

that they can only detect and correct the error after the whole computation. To address

this problem, we propose an online resilient scheme for FFT by leveraging its divide-and-

conquer nature, which is able to detect and correct errors with low overhead, high fault

coverage and timely fault detection and correction.
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Another problem arising from exascale scientific computing is storage and trans-

mission of the extremely large volume of data produced scientific applications. These big

data are generally stored in a parallel file system (PFS), with limited storage space and

limited I/O bandwidth to access. Some climate studies, for example, need to run large

ensembles of 1 km×1 km simulations, with each instance simulating 15 years of climate in

24 h of computing time. Every 16 seconds, 260 TB of data will be generated across the

ensemble, when estimating even one ensemble member per simulated day [35]. For another

instance, the Hardware/Hybrid Accelerated Cosmology Code (HACC) [43] can simulate

1∼10 trillion particles in one simulation [103], producing up to 220 TB of data for each

snapshot, for a total of 22 PB of data if there are 100 snapshots during the simulation. Even

considering a sustained bandwidth of 500 GB/s, the I/O time will still exceed 10 hours,

which is prohibitive. As a result, the researchers has to output the data by decimation,

in other words, storing one snapshot every K time steps in the simulation. This process

definitely degrades the temporal constructiveness of the simulation and also loses valuable

information for postanalysis.

Compared to the traditional decimation approach, designing efficient data com-

pressors is an alternative way to address the big data problem. Error-controlled lossy

compression techniques have been proposed as an option, becase lossless compressors such

as [4,15,25,30,45,71,79,115,116] cannot achieve high compression ratios [68,87] whereas

general lossy compressor compressors [99,104] cannot guarantee the fidelity of the decom-

pressed data. In the past decade, several error-controlled lossy data compressors (including

[2,3,9,32,55,59,67,69,81,91,92,94]) have been developed to significantly reduce the scientific
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data size for different purposes [16]. These lossy compressors can be classified into two

groups, based on how they decorrelate the original data. The first group of compressors

[9, 58, 67, 81, 85] use a transform-based model that leverages invertible transforms for the

decorrelation. The second group of compressors [32, 55, 60, 64, 69, 91, 92] use a prediction-

based model that leverages various prediction methods for the decorrelation. Generally

speaking, no compression model can always outperform the others. Even for the same

dataset, the best-fit model may differ depending on distortions. Hence, the method must

be carefully selected at runtime. Inspired by this nature, we propose adapive compres-

sion algorithms with combined prediction methods and compression models to improve the

quality of error-bounded lossy compression.

The adaptive compression algorithms may not be sufficient for scientific applica-

tions due to the variaties in the requirements and/or objectives. For example, scientific

application users may prefer relative error bound to traditional absolute error bound, and

favor I/O performance over storage reduction. In comparison with the absolute error bound

that has been widely used to control the data distortion by existing state-of-the-art lossy

compressors [67,92], pointwise relative error bound is significant for many scientific applica-

tions but much tougher to deal with than absolute error bound according to the principles

of lossy compressions. Under such requirement, the smaller the data value is, the lower

the absolute error bound is applied on the data point. Some application users demand

pointwise relative error bound based on the physical meaning of the simulation. According

to cosmologists (such as the users and developers of HACC and NYX), for instance, the

higher a particle’s velocity is, the larger the compression error it can tolerate. Similarly,
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I/O performance may be more important to users when minimal storage requirements are

met. To deal with these variaties, we use an efficient logarithmic transform to solve the

relative error bound requirement and propose a general compression framework for I/O

performance.

1.1 Problem Statement

This thesis mainly tackle the two important problem arising from exascale scientific

computing, namely resilience and data reduction. The algorithms and implementations are

designed for scientific applications on high-performance computing facilities, especially the

up-coming exascale systems. The targets are large-scale scientific applications including,

but not limited to, cosmological simluations such as HACC [43] and NYX [73], climate

simulation such as Hurricane ISABEL [46] and CESM [53], molecular dynamic simulations

such as EXAALT [77], quantum simulations such as QMCpack [54], scientific instruments

from facilities such as Argonne Advanced Phonton Source (APS) and Linear Coherent Light

Source (LCLS) [78], and so on. For resilience, soft errors including single and multiple bit-

flips in on-chip and off-chip memory systems and computation error in logic circuits are

both considered.

1.2 Thesis Statement

The proposed fault tolerant scheme for FFT is able to detect and correct errors

with low overhead, high fault coverage and timely fault detection and correction in FFT

computations widely used in scientific applications. The proposed compression algorithms
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can significantly reduce the storage and I/O burden for scientific applications while guar-

anteeing the fidelity of the decompressed data. The adaption to different requirements and

objectives can further improve the efficiency of the compression algorithms for scientific

applications.

1.3 Contribution

1.3.1 For Soft Errors in FFT

To achieve low overhead, high fault coverage and timely fault detection and cor-

rection in FFT computations, we take advantage the divide-and-conquer nature of the

algorithm to protect the divided FFTs, with multiple serial and parallel optimizations.

Specifically, the contributions of this work include

• The first online ABFT scheme for FFT: Existing ABFT schemes for FFT [5,24,

50,74,75,98,105] detect soft errors offline after the FFT computation finishes. Even if

an error occurs at the beginning of the FFT, existing ABFT schemes can not detect

it in a timely manner, hence, have to allow the corrupted computation to continue

until it finishes, then verify the correctness. After an error is detected, the whole

FFT computation has to be restarted. This paper designs an online ABFT scheme

that is able to detect errors online soon after the error occurs so that the corrupted

computation can be terminated in a timely manner. After the corrupted computation

is terminated, instead of repeating the whole computation from the beginning, the

proposed online ABFT scheme only need to repeat a small fraction the computation,

which greatly improves the computation efficiency when errors occur.
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• The first soft-error-resilient FFT software implementation - FT-FFTW:

Existing FFT ABFT schemes are mostly designed under the context of hardware im-

plementation. This paper develops soft-error-resilient FFT software for the first time.

We develop FT-FFTW, which incorporates both the existing offline ABFT and the

proposed online ABFT into one of the today’s fastest FFT software libraries - FFTW,

and validate the implementations on TIANHE-2 supercomputer. Experimental results

demonstrate that the proposed online ABFT is able to detect soft errors in a timely

manner and improve the computation efficiency by a factor of two when errors occur.

• Multiple optimizations for online ABFT FFT: It is very challenging to add

fault tolerance capability to the highly optimized FFTW library without introduc-

ing significant performance penalty. Simply applying existing ABFT to each small

FFTs within a large FFT introduces too much overhead. This paper develops several

optimization strategies to reduce the overhead. The optimized online ABFT FFT

introduces lower overhead than the existing offline scheme even if no error occurs.

• The first online ABFT scheme for parallel in-place FFT: Different from the

out-of-place sequential FFT, the parallel FFT tends to use in-place FFT with no

auxiliary space. We develop an online ABFT scheme for in-place FFT and extend our

FFT ABFT scheme from sequential to parallel.

• Parallel optimization strategy to minimize the overhead: We develop a communication-

computation overlap strategy to hide half of the fault tolerance cost for our parallel

FT-FFTW. With the re-designed plan, the parallel FT-FFTW is able to achieve com-

parable performance to the original FFTW library.
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• Significant improvement in numerical stability and fault coverage: Round-off

errors for floating point calculations affect the numerical stability and fault coverage.

This paper analyzes the impact of round-off errors for our online ABFT scheme in

detail and shows that our online ABFT scheme has higher numerical stability and

better fault coverage than the existing schemes.

1.3.2 For Error-bounded Lossy Compression Algorithms

Inspired by the fact that the best-fit model differ in distortions, we propose adapive

compression algorithms with mutiple prediction methods and hybrid compression models,

as well as selection method to automatically choose the best-fit methods/models to improve

the quality of error-bounded lossy compression. The contributions are

• We propose an adaptive lossy compression framework that is more effective in com-

pressing the scientific datasets with relatively large error bounds. In particular, we

split the whole dataset into multiple non-overlapped blocks, and select the best-fit

prediction method based on their data features.

• We develop new prediction methods that are particularly effective for the lossy com-

pression with relatively large error bounds. On the one hand, we develop a hybrid

Lorenzo prediction method by combining the classic Lorenzo predictor [47] and the

densest mean-value based data approximation method (also called mean-integrated

Lorenzo prediction). On the other hand, we develop a linear regression method that

can obtain much higher prediction accuracy in this case since the design is beyond

the limitation that the decompressed values have to be used in the prediction.
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• We explore how to select adaptively and efficiently the best-fit prediction method

based on the data features across blocks during the compression.

• We improve the coefficient-encoding efficiency for the data-fitting predictor such that

the compression ratio is improved significantly for relatively high-compression cases.

• We design a transform-based predictor by adopting the transform techniques of transform-

based models in the prediction stage of prediction-based models. This is the first such

design, to the best of our knowledge.

• We optimize the encoding strategy for the transform-based predictor, significantly

improving the compression ratio for cases requiring relatively high compression ratios.

• We develop a best-fit predictor selection algorithm that can automatically select the

best predictor between the data-fitting one and transform-based one during the com-

pression.

1.3.3 For Error-bounded Lossy Compression With Different Require-

ments/Objectives

With respect to different requirements and objectives from scientific application,

we propose an efficient logarithmic transform, which serves as a predictioner for scientific

data, to deal with relative error bound as well as a general compression framework for I/O

performance. The contributions are

• We formalize the transformation problem between absolute error bound and relative

error bound in the context of lossy data compression mathematically. We also solve
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this problem and find the unique mapping function, which is consistent with using

logarithmic change for error measurement.

• We investigate the impact of the selection of different logarithmic bases on the com-

pression quality for SZ and ZFP, respectively. We prove that various bases lead to

the similar compression results theoretically.

• We propose an efficient pointwise relative-error-bounded lossy compression algorithm

by combining the logarithmic data transform scheme and state-of-the-art absolute-

error-bounded compressors. Specifically, we integrate the transformation scheme into

both SZ and ZFP.

• We propose an optimized data dumping performance model that can effectively rep-

resent the writing performance with different execution scales and data sizes.

• We analyze our proposed performance model in terms of the lossy compression tech-

nique, which is a fundamental guideline to develop an efficient algorithm for optimizing

the data dumping performance.

• We develop an adaptive lossy compression framework with a series of optimization

strategies to improve the dumping performance for the scientific simulations with

error-bounded lossy compressors. The optimized framework has two critical steps:

compression quality estimation and online optimization of compression settings.
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Chapter 2

Correcting Soft Errors Online in

Fast Fourier Transform

2.1 Introduction

Fast Fourier Transform (FFT) is widely used to compute the discrete Fourier trans-

form (DFT). DFT plays a very important role in engineering, science, and mathematics.

Therefore, reliable and fast computing of DFT will benefit not only a large number of people

but also a wide range of fields.

As the size of transistors continues to reduce and the number of components con-

tinues to increase, large-scale FFTs are also susceptible to soft errors in supercomputers.

As mentioned before, system-level approaches such as DMR and TMR introduces at least

100% overhead for error deteation and 200% overhead for error correction, significantly im-

pacting its practical use. While many ABFT schemes have been proposed for FFT over the
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past thirty years, a careful review of the existing ABFT literature indicates that no previ-

ous ABFT schemes can detect and correct soft errors online before an FFT computation

finishes. To address this issue, this paper proposes an online ABFT scheme to efficiently

tolerant computational and memory errors in FFT by taking advantages of its divide-and-

conquer nature. Both serial and parallel optimizations have been adopted to reduce the

fault tolerant overhead. Specifically, the contributions of this paper can be summarized as

follows:

• The first online ABFT scheme for FFT: Existing ABFT schemes for FFT [5,24,

50,74,75,98,105] detect soft errors offline after the FFT computation finishes. Even if

an error occurs at the beginning of the FFT, existing ABFT schemes can not detect

it in a timely manner, hence, have to allow the corrupted computation to continue

until it finishes, then verify the correctness. After an error is detected, the whole

FFT computation has to be restarted. This paper designs an online ABFT scheme

that is able to detect errors online soon after the error occurs so that the corrupted

computation can be terminated in a timely manner. After the corrupted computation

is terminated, instead of repeating the whole computation from the beginning, the

proposed online ABFT scheme only need to repeat a small fraction the computation,

which greatly improves the computation efficiency when errors occur.

• The first soft-error-resilient FFT software implementation - FT-FFTW:

Existing FFT ABFT schemes are either designed for hard errors or designed under

the context of hardware implementation. This paper develops soft-error-resilient FFT

software for the first time. We develop FT-FFTW, incorporate both the existing
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offline ABFT and the newly proposed online ABFT into one of the today’s fastest

FFT software libraries - FFTW, and validate the implementations on TIANHE-2

supercomputer. Experimental results demonstrate that the proposed online ABFT

is able to detect soft errors in a timely manner before the computation finishes and

improve the computation efficiency by a factor of two when errors occur.

• Innovative optimizations for online ABFT FFT: It is very challenging to add

fault tolerance capability to the highly optimized FFTW library without introduc-

ing significant performance penalty. Simply applying existing ABFT to each small

FFTs within a large FFT introduces too much overhead. This paper develops several

optimization strategies to reduce the overhead. The optimized online ABFT FFT

introduces lower overhead than the existing offline scheme even if no error occurs.

• The first online ABFT scheme for parallel in-place FFT: Different from the

out-of-place sequential FFT, the parallel FFT tends to use in-place FFT with no

auxiliary space. We develop an online ABFT scheme for in-place FFT and extend our

FFT ABFT scheme from sequential to parallel.

• Parallel optimization strategy to minimize the overhead: We develop a communication-

computation overlap strategy to hide half of the fault tolerance cost for our parallel

FT-FFTW. With the re-designed plan, the parallel FT-FFTW is able to achieve com-

parable performance to the original FFTW library.

• Significant improvement in numerical stability and fault coverage: Round-off

errors for floating point calculations affect the numerical stability and fault coverage.
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This paper analyzes the impact of round-off errors for our online ABFT scheme in

detail and shows that our online ABFT scheme has higher numerical stability and

better fault coverage than the existing schemes.

2.2 Background

2.2.1 DFT and FFT

The DFT for a complex sequence can be calculated as follows:

Xj =

N−1∑
n=0

xnω
jn
N , j = 0, 1, . . . , N − 1

where ωN = exp−i
2π
N and i =

√
−1 is the unit imaginary root. Correspondingly, the inverse

discrete Fourier transform (IDFT) can be calculated as:

Xj =
1

N

N−1∑
n=0

xnω
−jn
N , j = 0, 1, . . . , N − 1

If DFT or IDFT is calculated directly, it is obvious that O(N2) operations are needed as

each element costs O(N) operations. To save more time, the fast Fourier transform (FFT)

has been proposed to reduce the number of operations to O(N logN). The most popular

Cooley-Tukey algorithm for FFT can be derived as follows. If the size N can be factorized

into two smaller integers as N = N1N2, (1) can be rewritten by letting j = j1N2 + j2 and

n = n2N1 + n1:

Xj1N2+j2 =

N1−1∑
n1=0

(

N2−1∑
n2=0

(xn2N1+n1ω
n2j2
N2

)ωn1j2
N )ωn1j1

N1∑N2−1
n2=0 xn2N1+n1ω

n2j2
N2

is an N2-point DFT and
∑N1−1

n1=0 (. . . )ωn1j1
N1

is an N1-point DFT. Thus

the original N -point DFT is decomposed to N1 inner DFTs of size N2 and N2 outer DFTs

of size N1. These N1-point DFTs and N2-point DFTs can also be decomposed into DFTs
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of smaller sizes recursively. By this means, the total operations of DFT is reduced to

O(N logN).

2.2.2 Previous Fault Tolerant Work for FFT

Many ABFT schemes have been designed to detect and correct soft errors in FFT.

These schemes typically use concurrent error detection scheme with encoding and decoding

system. To illustrate how these ABFT schemes work, we take Wang’s approach in [105] as

an example. As a special case of matrix-vector multiplication, a DFT can be written into

matrix form according to equation (1):



X(0)

X(1)

...

X(N − 1)


=



ω0
N ω0

N . . . ω0
N

ω0
N ω1

N . . . ωn−1N

ω0
N ω2

N . . . ω
2(n−1)
N

...
...

. . .
...

ω0
N ωn−1N . . . ω

(n−1)2
N





x(0)

x(1)

...

x(N − 1)



Let A denote the coefficient matrix where Aij = ωijN , X denotes the output vector, x denotes

the input vector, the matrix form can be simply written as X = Ax. The equation maintains

by multiplying X and Ax with a selected checksum vector r:X
rX

 =

 Ax
rAx


r is called the weighted checksum for this matrix operation. The last row of the matrix can

be expanded as:
N−1∑
j=0

rjXj =
N−1∑
j=0

(rA)jxj
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Then by comparing the results of the two checksums, any computational error can be

detected.

However, not all checksum schemes are suitable for ABFT FFT. It has been proved

in [105] that the following checksum scheme works well for ABFT FFT:

r = (ω0
3, ω

1
3, . . . , ω

N−1
3 )

where ω3 = −1
2 +

√
3
2 i is the first cube root of 1.

As for error correction, time redundancy methods are preferred in almost all the

approaches. Re-calculation is necessary to produce the correct result.

Algorithm 1 Offline ABFT FFT Algorithm

1: Set the calculation flag calcF lag = true

2: Calculate input checksum vector c = rA

3: while calcF lag do

4: Calculate the FFT: X = Ax

5: calcF lag = (|rX − cx| > η)

6: end while

All of these ABFT schemes mentioned above are proposed for hardware implemen-

tation with an assumption that the size of input is fixed for a specific FFT implementation.

Under this assumption, the input checksum vector rA can be pre-calculated when output

checksum vector r is given. Then they detect errors by comparing the difference of rX and

rAx. However, software FFT implementations usually accept varying sizes of input, and

thus extra overhead will be introduced to calculate rA. The software-level implementation

of this approach is shown in Algorithm 1.
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2.3 Online ABFT FFT Schemes

To correct errors in a more timely manner, two online schemes are proposed in

this section. As faults are categorized into two types in this work, the first subsection

introduces an online scheme aiming at computational faults while the second subsection

proposes an online scheme that can deal with both computational faults and memory faults.

The computational fault tolerant scheme in the first subsection is also complementary to

ECC memory. It can detect and correct computational errors that ECC may not be able

to handle.

2.3.1 Computational Fault Tolerance

A basic idea to detect errors in FFT online is to use a hybrid scheme of offline

ABFT and DMR. For example, anN -point can be decomposed into 2 N
2 -point FFTs, twiddle

multiplication and then N
2 2-point FFTs. The first 2 N

2 -point FFTs can be executed and

checked one by one. If any error is detected in any one of the 2 N
2 -point FFTs, the corrupted

N
2 -point FFT will be re-executed. It would be faster than the offline when an error occurs

since the offline one can only detect the error at the end of the computation and restart the

whole computation.

Although this approach is able to detect errors online, it suffers from certain per-

formance loss when the chosen radix is small. Experiments show that the performance loss

varies from 5% to 20% for tested initial radices and FFT sizes according to Table 2.1.

To keep comparable performance with the original FFT computation, the default

radix of
√
N should be adopted. However, the DMR part will introduce a lot of overhead
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Table 2.1: FFTW Execution Time (Seconds) of Different Radices on TIANHE-2

Initial Radix N = 225 N = 226 N = 227 N = 228

k = 4 4.27 8.79 18.64 38.21

k = 8 4.19 8.63 17.79 37.43

k = 16 4.27 8.87 17.34 37.64

k ≈
√
N(default) 3.67 7.91 16.79 35.1

in this situation. For example, if the default initial radix is equal to
√
N , the DMR part

will incur about 50% overhead as the re-calculated part will take up around half time of

the total computation. Because of the divide-and-conquer nature of FFT computation, it is

noticeable that the residue computation contain a twiddle multiplication with another FFT

(2-point FFT in the above example). Therefore, we leverage this algorithmic characteristic

and offline ABFT FFT scheme to propose an online ABFT scheme for FFT computation.

The key idea is to protect each decomposed FFT by offline ABFT. Taking the tradeoff of

fault tolerant ability and overhead into consideration, we opt to a two-layer approach that

leverages the highest level of decomposition of a Cooley-Tukey FFT to protect the first part

and second part by two separate ABFT schemes.

The structure of online ABFT scheme is shown in Fig. 2.1. From the view of

the highest level of decomposition, an N -point FFT is calculated by computing k m-point

FFTs, twiddle multiplications and m k-point FFTs when N = m ∗ k. The k m-point FFTs

can be protected separately by the ABFT approach. So can the m k-point FFTs. On the

other hand, the twiddle multiplication that is left over can be protected by DMR with low
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Figure 2.1: The Two-Layer ABFT FFT Scheme (When N = m ∗ k)

overhead because it is memory-intensive. The colored parts in this figure are protected

by their own FFTs while the red parts, including the twiddle multiplication and input

checksum vector generation, are protected by DMR.

Algorithm 2 Online ABFT FFT Algorithm

1: Get initial radix k and corresponding m = N
k

2: Calculate checksum vector cm=rmAm with DMR

3: for i from 0 to k − 1 do

4: Set the calculation flag calcF lag = true

5: while calcF lag do

6: Calculate the i-th FFT: X ′i = Amxi
7: calcF lag = (|rmX ′i − cmxi| > η1)

8: end while

9: end for

10: Calculate checksum vector ck=rkAk with DMR

11: for i from 0 to m− 1 do

12: Multiply twiddle factor X ′′i =twdi.∗X ′i with DMR

13: Set the calculation flag calcF lag = true

14: while calcF lag do

15: Calculate the i-th FFT: Xi = AkX
′′
i

16: calcF lag = (|rkX ′′i − ckXi| > η2)

17: end while

18: end for
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The corresponding algorithm of this approach is shown in Algorithm 2. At first, the

input checksum cm = rmAm is calculated, and the m-point FFTs are executed and verified

one by one. If there is error in the i-th FFT, it can be detected by comparing the checksum

cmxi and rmXi and corrected by an immediate re-execution of current FFT. Note that the

re-execution overhead is negligible because the arithmetic operations in the decomposed

FFT is only 1
2
√
N

of the total ones. After the output is verified to be correct, each element

in the intermediate output will multiply itself with the corresponding twiddle factor (ωn1j2
N )

to generate the input for the latter k-point FFTs. Then the k-point FFTs are executed and

verified in a similar way. However, if an error strikes the twiddle multiplication, the ABFT

scheme cannot detect the error since the input has already been corrupted. Therefore, online

DMR is equipped for the twiddle multiplication. Each multiplication is executed twice and

verified immediately to ensure correctness. If an error is detected here, a third execution

is performed and the final result would be the majority of the three executions. Since

computation would only happen in one of the three parts or in the checksum calculation,

any single computational error can be revealed. Besides these parts, the other parts are

protected by one and only one ABFT FFT so that no computation is wasted. This ensures

no masked error and no repeated protection on the same data.

The two-layer online scheme only needs to compute two input checksum vectors

of size m and k while the offline one needs to compute one input checksum vector of size

N . As this computation is one of major overhead, the online scheme should have better

performance. Furthermore, since each small FFT is equipped with separate protection, the

online scheme is expected to achieve timely recovery when errors occur.

21



2.3.2 Memory Fault Tolerance

Besides the logic units, faults may also strike memory to cause memory errors.

This may be even more common than computational errors. If memory fault strikes some

intermediate result during computation in some decomposed FFT, this error would behave

like a computational error and can be detected and recovered by the ABFT schemes above.

However, if it strikes the input before the calculation or the output after the calculation, the

error cannot be detected by this scheme alone. Thus, more strict mechanisms are needed

to tolerate memory faults.

As usual, two checksums r1 = (1, 1, . . . , 1) and r2 = (1, 2, . . . , n) are used to detect

and recover from a memory error. If any error occurs and changes the input xj into x′j , the

difference will be:

r1x− r1x′ = xj − x′j

r2x− r2x′ = j(xj − x′j)

Then the error can be located by (r2x− r2x′)/(r1x− r1x′) and corrected by adding r1x−r1x′

to the corrupted value.

In our fault model for the memory faults, we assume that memory faults would

not occur when the checksums are being generated, otherwise, the error cannot be detected

by ABFT approaches. This is reasonable because the checksum generation would only take

very little time (the time complexity is O(N) and its coefficient is very small). Our basic

idea to detect memory error is to verify data before use. Denote CCG as computational

checksum generation, MCG as memory checksum generation, CCV as computational check-
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Figure 2.2: Hierarchy of Memory Protection

sum verification, MCV as memory checksum verification, TM as twiddle multiplication, s

as the number of FFTs to be computed together, then the hierarchy of memory protection

is shown in Fig. 2. Bold italic operations are original operations in FFTW. To ensure

the correctness of the input, memory checksums of each m-point FFT are generated before

any of the m-point FFT calculations. Then the k m-point FFT calculations would start

one by one and verifications are invoked at the beginning of these calculations. If an error

occurs, the corrupted input will be located and recovered by the 2 checksums and a restart

will be performed immediately. Otherwise, the computation is thought as fault-free and

memory checksums for the intermediate output are generated. These checksums will be

used for verification before twiddle multiplication to make sure there is no memory error in

the output between the end of this m-point FFT and the end of all the k m-point FFTs.

The same goes for the second part. Each k-point FFT needs memory checksum

verification before computation, computational checksum verification, and output memory

checksum generation after computation. At last, the final output is verified to ensure

correctness of the result.
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Besides the protection of the input, output and intermediate result, the input

checksum vector rA for the m-point FFT and k-point FFT should also be checked. These

verifications can be done in time intervals related to the error rate, which is quite feasible

across the whole computation. As there is only O(
√
n) time consumed in each verification,

it introduces little overhead.

2.4 Sequential Optimizations

This section introduces sequential/serial optimizations that we apply to minimize

overhead.

2.4.1 Memory Checksum Modification

Though the traditional checksums r1 = (1, 1, . . . , 1) and r2 = (1, 2, . . . , n) work

well for correcting memory error, they may involve redundant computation because they

do not make use of the computational checksum r = (ω0
3, ω

1
3, . . . , ω

N−1
3 ). Since rAx will

be calculated under any circumstance to detect computational error, r1 can be replaced

by r′1 = r directly to save the computation time of r1x. Correspondingly the j-th element

in the second checksum r2 can be replaced by (r′2)j = j ∗ (rA)j . Similar to the original

checksum r1 and r2, the difference the new checksums would be:

r′1x− r′1x′ = (rA)j(xj − x′j)

r′2x− r′2x′ = j ∗ (rA)j(xj − x′j)

Then the error can be located by (r′2x− r′2x′)/(r′1x− r′1x′) and correction can be done by

adding (r′1x− r′1x′)/(rA)j to the corrupted element. As the generation time for r′1 and r′2
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is O(
√
N), the extra overhead on input checksum vector generation is negligible. On the

other hand, it saves the checksum generation time since it only costs 10N operations (8N

for r′1x, 2N for r′2x) while the original one costs 14N (8N for rx, 2N for r1x, 4N for r2x).

2.4.2 Verification & Correction Postponing

According to Fig. 2, there is input memory checksum generation when FFT starts,

followed immediately by memory checksum verification and m-point FFTs. Inspired by the

fact that the errors, both computational errors and memory errors, would propagate to the

end of each decomposed FFT, MCVs before each m-point FFT can be postponed to the

CCVs after this m-point FFT. Since CCV can detect the error, the postponed MCV is

eliminated.

Similarly, the MCVs after k-point FFTs can be postponed to the final MCV and

these MCVs as well as the MCGs after k-point FFTs can be eliminated for lower overhead.

Unfortunately, this cannot be done directly since the second part is always done in-place

where the input will be overwritten by the output. If the output verification is postponed,

the error can still be detected since the checksums will not match. However, it cannot be

corrected since the input is overwritten. Thus, another copy of the intermediate output is

needed. It can be copied to the original input array for no extra memory. Though the copy

operation also involves N elements, it would be much faster than the original redundant

MCVs and MCGs.

Besides, the correction operations r′2x can be postponed to the time when an error

is detected at the cost of slower recovery. It trades higher overhead in error-occurring runs

for lower overhead in error-free runs.
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2.4.3 Incremental Checksum Generation

From Section 3.2, the MCG before twiddle multiplication is necessary because

there is a rearrangement of data between the two ABFT parts. However, the verification

mechanism still seems inefficient since each element is verified twice. In this optimization,

we use incremental generation for the checksums to reorganize the memory checksums

efficiently.

After the input checksums are generated in the beginning, extra space is allocated

to store the information of the output. Unlike the previous approach, these output check-

sums directly store the checksums for the k-point FFTs in the second part. At first, these

checksums are initialized to 0. At the end of each m-point FFT, the k outputs increase

their corresponding slots by their own value, i. e. the first element X ′0 would increase the

first slot in the checksum by X ′0 while the second element X ′1 would increase the second slot

by X ′1. By this means, the j-th slot in the checksum would be the checksum for elements

in the j-th k-point FFT. Thus only one verification is needed before the second part.

2.4.4 Non-contiguous Memory Access

When a big FFT is broken down into smaller ones, the inputs of each smaller

FFT would be non-contiguous as the first k m-point FFTs in Fig. 2. The stride (distance

between adjacent inputs) of each m-point FFT would be 2k. It is usually O(
√
N) and will

result in low spatial locality in the cache. Besides basic use in FFT to compute the result,

the inputs are also needed in CCGs and MCVs. Another read would be relatively expensive

since there would be cache misses all the time, which leads to large overhead. This happens
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to MCG in the first part. To resolve this, the corresponding MCGs are brought forward to

the beginning of all the m-point FFTs and the new MCGs are computed via the incremental

checksum generation approach above. It actually accesses each element twice. But each

access has little low overhead due to cache reuse.

Denote CMCG as the modified checksum generation and CMCV as the modified

checksum verification in Section 4.1, the hierarchy of memory protection can be simplified to

Fig. 2.3 with all the optimizations above. Compared to the original memory fault tolerance

scheme (Fig. 2.2), the optimized one is much simpler and faster.

2.5 Online ABFT FFT on Parallel Systems

FFT of large sizes becomes very common nowadays [28]. Therefore, FFT may need

to be performed in parallel to avoid the limited memory and low computational efficiency on

single processor when FFT size becomes large. Although the idea of sequential ABFT FFT

can be borrowed, challenge comes that parallel FFTs are always done in-place for better
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utilization of memory. In-place and out-of-place are property of an algorithm. In-place

means that the algorithm will be done without auxiliary data structure. To make it simple

for FFT, the in-place algorithm will store the output in the original input memory and

does not bother to allocate a new memory space of size N . The out-of-place algorithm will

allocate the memory space to store output in the beginning of the algorithm.

To compute parallel FFT, FFTW tends to choose a plan which computes N
p p-

point FFTs at first and then p N
p -point FFTs. Unfortunately, the data needed for each

FFT is not always on the same processor. Thus communication among processors is needed

during the computation. Assume FFT size is N and the number of processors is p. Data on

each processor is divided into p blocks of size N
p2

. Then a six-step algorithm that involves

3 transpositions is adopted for 1D parallel FFTs. A transposition is a communication that

exchanges the i-th block of data in processor i with the j-th block of data in processor j

for all i and j from 0 to p − 1. Denote the N
p2
p-point FFTs on a processor as FFT 1 and

the latter N
p -point FFT as FFT 2. The first transposition is performed at first to deliver

data needed for FFT 1 to the same processor. Then FFT 1 is done on each processor in

parallel. After that, the second transposition occurs to exchange data for FFT 2. FFT 2

is performed as the next step. When FFT 2 is done, the third transposition is executed to

deliver data to its belonging processor. At last, there is some local adjustment to place the

final output in a correct order.

Because original input will be overwritten by output, the restart would not work

for in-place FFTs. Fig. 4 shows the flowchart of adding fault tolerance to in-place FFTs.

Compared to the out-of-place protection in the sequential scheme, input in each in-place
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FFT should have a backup in case an error occurs. Also, checksum verifications should

be done immediately after the output is generated. When a memory error is detected, it

should be corrected right away. After that, the input will be recovered by the backup and

a restart will be performed.

FFT1 can be protected by the mechanism above because each p-point FFT only

asks for 2p space. However, FFT2 cannot be protected in this way because space will be

doubled. Fortunately, the idea of the online sequential ABFT scheme can be applied here for

timely detection, faster recovery and less space overhead because FFT 2 will be decomposed

to smaller FFTs. Nevertheless, the sequential ABFT scheme cannot be leveraged directly

because in-place FFTs tend to select a different execution plan from out-of-place FFTs for

efficiency. For example, if N
p is a square number, FFTW may choose a plan similar to the

out-of-place one to employ a two-layer decomposition; if it is not, i. e. N
p = r ∗ k2, FFTW

would prefer a more complicated plan. It may perform r ∗ k k-point FFTs at first, then
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do twiddle multiplications and k2 r-point FFTs, finally another twiddle multiplications and

r∗k k-point FFTs. In this situation, the original two-layer online ABFT can no longer work

as shown in Fig. 5. Because the FFT is done in-place, the initial input is overwritten after

the k ∗ r k-point FFTs so any restart after the r ∗ k k-point FFTs cannot be performed. A

checkpoint for input would definitely work here. However, it will have 100% space overhead

and longer correction time.

The solution to this kind of plan is to add one flexible verification layer between

the original two layers. The added layer would be protected by DMR since r is usually

small (2 or 8 for N
p is a power of 2), making the k m-point FFTs an ABFT-DMR scheme.

As the execution time of the DMR part is very small (the same magnitude of the time for

checksum generation and verification), we can assume there is no memory error in this part.

Then the input verification can be brought forward to all the DMR computations and the

output checksum generation can be postponed to end of this part.

Besides the modifications on fault-tolerant mechanisms, there are some modifi-

cations on communication as well. In order to detect and correct errors that occur in

communication, checksums for communicated data should be generated and sent. As there

are only 2 checksums for each block of communicated data, the communication overhead

would be negligible.

This scheme can be optimized by some of the optimizations mentioned in previous

part. After these optimizations, it is good from the sequential point of view because there

are no redundant checksum generations and verifications.
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Figure 2.6: Online ABFT Scheme for Parallel In-Place FFT After Communication-

Computation Overlap.

2.6 Parallel Optimizations

Besides sequential optimizations that mentioned in previous part, we also adopt

several optimizations specifically for parallel FFTs. In this section, we introduce the parallel

optimizations that are incorporated into our implementation for lower overhead.

2.6.1 Computation-Communication Overlap

In FFTW, blocking communication is used for transpositions. It is good be-

cause the following step usually needs data from all processors so the non-blocking method

would have little benefit. However, the checksum generation and verification in the ABFT

FFT scheme are totally uncorrelated with FFT computation, showing great potential for

computation-communication overlap.

The adopted communication-computation overlap algorithm is shown in Algorithm

3. It is very similar to the idea of pipeline. It doubles the number of send buffer and receive

buffer. When Isend() is used to send data in send buffer sb1 and Irecv() is used to receive

data in receive buffer rb1, data received in another receive buffer rb2 can be processed
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and data to be sent in another send buffer sb2 can be generated. When these operations

are done, Wait() can be used to wait for communication. After that, data in rb1 can be

processed and data to be sent to next processor can be generated in sb1 while sending data

in sb2 and receiving data in rb2.

With this technique, MCV and CCG before the p-point FFTs can be overlapped

with transpose1. MCV, TM and CMCG before the k-point FFTs can be overlapped with

transpose2. Besides, the send buffer initialization and receive buffer data transfer in each

communication can also be overlapped.

The online ABFT scheme for parallel in-place FFT after overlap is shown in Fig.

2.6. Bold italic operations are original operations in FFTW. This overlap is optimal since

all the other operations are either in the critical path or dependent on the communication.

Also, this optimization can be applied to FFTW to overlap the twiddle multiplication in

FFT 2.1 with communication.

2.6.2 Re-design Plan

Since the input and output are both non-contiguous with a large stride in FFT 1,

there is high latency in accessing these elements due to cache misses. Fault-free FFTs do not

suffer much from this because the input and output are read and written once during the

whole computation. However, with the fault tolerant operations, the input and output are

at least accessed twice, which may lead to high overhead. Inspired by the implementation

of sequential FFT, we use a similar idea to adjust the execution plan of FFT 1.

In order to mitigate the overhead in multiple accesses, one buffer is allocated
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Algorithm 3 Communication-Computation Overlap

1: sched[0 to p-1]: schedule for communication

2: alloc send buffers sb1,sb2 and receive buffers rb1,rb2
3: generate data for processor sched[0] in sb1
4: Isend(sb1) to and Irecv(rb1) from processor sched[0]

5: generate data for processor sched[1] in sb2
6: Wait() for processor sched[0]

7: for i from 1 to p-3 do

8: Isend(sb2), Irecv(rb2) with processor sched[i]

9: process data from processor sched[i-1] in rb1
10: generate data for processor sched[i+1] in sb1
11: Wait() for processor sched[i]

12: Isend(sb1), Irecv(rb1) with processor sched[i+1]

13: process data from processor sched[i] in rb2
14: generate data for processor sched[i+2] in sb2
15: Wait() for processor sched[i+1]

16: increase i by 2

17: end for

18: Isend(sb2), Irecv(rb2) with processor sched[p-1]

19: process data from processor sched[p-2] in rb1
20: Wait() for processor sched[p-1]

21: process data from processor sched[p-1] in rb2

to store the input contiguously. The input is read into the buffer and computed in the

buffer. The result is then verified in the buffer and copied to the output location when the

computation is correct. To maximum reuse for data in the cache, the buffer can be made c

times the size of data in the p-point FFT, where c is the number of data in the cache line.

Each time one element is read into the buffer, the latter c elements are also read and stored

in the buffer as well. In this way, cache can be better utilized.

This change may have more operations because there are data assignments between

input, output and the buffer. However, it may perform quite well when the p-point FFT

barely fits in the cache. In this case, the original implementation would suffer a lot since

there is no reuse of cached data. On the other hand, this optimization can make use of

cache because data are moved into the buffer. It would be more scalable compared to the

original plan.
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2.7 Overhead Analysis

This section analyzes the theoretical overhead for the various ABFT schemes men-

tioned above. In the following subsections, c1, c2, r1, r2 will be used to denote one operation

of complex number multiplication, complex number addition, real number multiplication,

real number addition. Assume one real number addition or one real number multiplication

is the unit of operation, c1 = 6, c2 = 2 and 8r1 + 3r2 = 11 for the complex number division

can be derived. This part only discusses the number of operations needed to add fault

tolerance. The true overhead may differ since it heavily depends on the implementation.

As a comparison, the total number of computational operations in the original FFT would

roughly be 5N log2N .

2.7.1 Overhead in the Sequential Scheme

Computational FT in the Offline Scheme

The overhead in the offline scheme comes from input checksum vector generation,

CCG and CCV. In the offline scheme, rA can be calculated according to characteristics of

arithmetic arrays to reduce overhead:

(rA)j = ω0
3ω

0j
n + ω1

3ω
1j
n + ...+ ωn−13 ω(n−1)j

n =
1− ωn3

1− ω1
3ω

j
n

Then it can be optimized by replacing trigonometric functions with 2 complex number

multiplications. Then the overhead would be:

TrAGen = (c1 + c1 + 2c2 + 8r1 + 3r2) ∗N = 27N
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CCG involves 1 complex number multiplication and 1 complex number addition

for each element. Its overhead would be:

TCCG = N ∗ c1 +N ∗ c2 = 8N

As for CCV, the total number of complex multiplications can be reduced to 2 by merging

elements of same factors. So the overhead turns out to be:

TCCV = 2 ∗ c1 +N ∗ c2 ≈ 2N

Therefore, the total overhead for the offline scheme would be 37N . If an error occurs, the

correction would be another run of the whole FFT and final verification. So the correction

time would be 39N + 5N log2N .

Computational FT in the Online ABFT Scheme

The overhead for the online scheme comes from checksum operations in the two

ABFT parts and DMR for input checksum vector generation and twiddle multiplication.

DMR for input checksum vector generation is negligible since the checksum sizes areO(
√
N).

DMR for twiddle multiplication would cost 12N because it needs 2 complex number mul-

tiplications.

Overhead for ABFT comes from CCG and CCV. They cost 8N and 2N respec-

tively. The two ABFT parts have the same overhead. Thus the total overhead for the

two-layer ABFT scheme would be:

TABFT = 12N + 2 ∗ (8N + 2N) = 32N

If an error occurs in DMR, it will be detected and corrected in no time. If an error strikes

the ABFT parts, it will be detected by the ABFT scheme and an FFT of size k or m will

35



be performed. As k and m are usually θ(
√
N), the recalculation will always be an FFT of

size θ(
√
N), which is negligible. Therefore, the overhead for the online scheme would still

be 32N even if an error occurs.

Total Overhead in the Offline Scheme

The extra operations in the offline scheme would be the computation of r′2x when

the corresponding optimizations are applied. This computation will cost 4N operations.

Therefore, the total overhead for the offline scheme would be:

Tofflinem = 37N + 4N = 41N

If there is error, whole computation after checksums generation will be restarted, including

the verification operations. The overhead would be 5N log2N + 43N .

Total Overhead in the Online Scheme

In CMCG, there are 4N extra operations for the new checksum r′2 calculation.

Besides, there is one more MCG and MCV, which corresponds to 6N operations. Also,

there is one more CMCV of 2N operations in the end. Then the total overhead will be:

TABFTm = TABFT + 4N + 6N + 2N + 2N = 46N

As the recovery time for both computational error and memory error is negligible, the

overhead would still be 46N when an error occurs during the execution.
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2.7.2 Sequential Space Overhead

When FFT is calculated on single processor, the space overhead only comes from

the checksums of each small FFTs and protection for the buffered intermediate output. As

these sizes are at most 4k or 4m, the whole scheme only requires O(
√
N) extra space.

2.7.3 Overhead in the Parallel Scheme

Overhead Before Communication-Computation Overlap

Before overlap, the fault tolerant operations for parallel online scheme include

MCG before transpose1, MCV, CMCG after transpose1, CMCV and MCG before transpose2,

MCV, and CMCG after transpose2, CMCV and MCG in FFT 2.1, 2 MCVs, CCG, MCG in

FFT 2.2 and MCV after transpose3. So there are 2 CMCGs, 2 CMCVs, 4 MCGs, 4 MCVs,

1 CCG and 1 CCV when r = 1. The overhead for this situation would be:

TABFT p1 = 2 ∗ (12n+ 2n+ 8n+ 2n) + 4 ∗ (6n+ 2n) = 96n

When r 6= 1, there is 1 more MCV and 1 more MCV as well as DMR for TM and r-point

FFTs, thus the overhead in this situation is:

TABFT p2 = 96n+ 6n+ 2n+ 12n+ 5n log2 r = 116n+ 5n log2 r

Overhead After Communication-Computation Overlap

The overlapped communication includes 2 MCVs, 2 CMCGs and 1 TM, thus the

new overhead when r = 1 would be:

T ′ABFT p1 = 96n− (2 ∗ (12n+ 2n) + 12n) = 56n

37



The overhead when r is not equal to 1 can be computed in a similar way, which

will lead to:

T ′ABFT p2 = 116n+ 5n log2 r − (2 ∗ (12n+ 2n) + 12n) = 76n+ 5n log2 r

The correction time for the parallel online scheme would also be negligible since correction

in each part would cost negligible time.

2.7.4 Parallel Space Overhead

Assume the size of used space is n = N
p on each processor, the largest allocated

extra memory would be the checksum arrays in FFT1, which totally take up 2n
p space.

Besides, there are buffers for communication. Our communication-computation overlap

operations allocate four buffers, each of which takes up n
p space. Thus total space overhead

would be 6n
p . The other extra memory are all O(m) or O(k), which is θ(

√
n). Also, the

operations in communication can reuse the space freed from the send and receive buffers in

the communication, which requires no extra memory. Therefore, the required extra space

would be 6n
p , then the relative space overhead would be 6

p .

2.7.5 Parallel Communication Overhead

The communication overhead of the ABFT scheme comes from the increased mes-

sage size in the communication. During each communication, the proposed scheme needs to

send and receive two checksums for each block of data, which corresponds to an overhead of

2p2

N . As there is no extra overhead in the number of messages, the communication overhead

would be at most 2p2

N = 2p
n .
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2.8 Impact of Round-off Errors

Due to the finite word length in floating number arithmetic, round-off errors are

unavoidable in software level implementations. Therefore, the two checksums in the ABFT

scheme may not be equal even though the whole FFT system is fault free. To avoid the

situation above to be diagnosed as faulty, a small difference η between the result is allowed as

in previous work. The selection of η is essential because it is a tradeoff between throughput

(true negative, fault-free while diagnosed as faulty) and fault coverage (false positive, faulty

while diagnosed as fault-free). This section analyzes the estimation of round-off errors and

how to choose suitable η.

2.8.1 Round-off Errors in Computational FT

In existing work, the hardware implementations always employ the fixed-point

round off strategy, which is quite different from the floating point arithmetic in the software

level. Fortunately, Liu [52], Weinstein [109] and Gentleman [40] have already conducted

some research on this topic. Assuming the N real numbers and N imaginary numbers in

the input are mutually uncorrelated random variables with zero means. According to [109],

the noise-to-signal ratio in an N -point FFT computation would be:

σ2E
σ2X

= 2σ2ε log2N

Where σ2E is the variance of round-off error, σ2X is the variance of the output, σε is the error

due to rounding floating point multiplication or addition. σε can be assumed uniformly

distributed in (−2−t, 2−t) or experimentally measured as σε
2 = (0.21)2−2t in [40], where t

is the number of bits in the mantissa part of a floating point.

39



Assume the input x of an m-point FFT has zero means and variance σ0. Its

output X will have zero means and variance σ1 =
√
mσ0. According to equation (3), the

variance of round-off would be σe =
√

2mσ20σ
2
ε log2m. We use m ∗ σe to estimate the

round-off error after the summation. As the input precision loss would be much smaller

than the output precision loss, the variance of the final difference would be σroe = m ∗σe =

m
√

2mσ20σ
2
ε log2m. In the k-point FFTs, the input has variance

√
mσ0 and output has

variance
√
kmσ0. Similarly, we can derive σroe2 = k

√
2kmσ20σ

2
ε log2 k.

After that, an approach similar to [105] can be employed to set the coefficient η.

According to central limit theory, the throughput of an N-point FFT can be estimated as:

throughput(η,N, σi) =
1

1 + P ( |F |√
Nσ

> η√
Nσ

)
=

1

3− 2Φ( η√
Nσ

)

When η = 3
√
Nσ, the theoretical throughput is 0.997. According to this formula, different η

can be set to different parts of the online ABFT scheme. I.e., η1 = 3
√
mσroe, η2 = 3

√
kσroe2

can be chosen respectively form-point FFTs and k-point FFTs in sequential FFT. In parallel

FFT, things are similar. The only difference is that there are three ηs to be set respectively

for FFT 1, FFT 2.1 and FFT 2.2.

2.8.2 Round-off Errors in Memory FT

Memory round-off errors would be much smaller since it only involves simple sum-

mation. According to the analysis above, the summation of m elements in the array x will

result in a variance m ∗
√
var(x)σε in the precision loss in the result for data with high

precision. Then threshold can be set by the approach above.

40



2.9 Experimental Evaluations

We implement the proposed ABFT scheme into the widely used FFTW library [36,

37] - one of the fastest software implementations of FFT and reports the experimental results

in this section.

2.9.1 Experiment Setup

We evaluated our implementation on TIANHE-2, the current 2nd fastest super-

computer in the world. Each node of TIANHE-2 has 2 E5-2692 processors (with 24 cores

in all) and 64GB memory.

2.9.2 Overhead in Sequential Scheme

This section evaluates the sequential schemes for out-of-place FFT on single pro-

cessor. FFT sizes from 225 to 228 are tested. Each experiment is run 9 times and the average

number is recorded.

Experiments without Fault

Four schemes are evaluated at this part and the results are shown in Fig. 7. Fig.

7(a) shows the evaluations for computational FT schemes. The first bar shows the overhead

of the naive offline scheme. The second bar is the evaluation of the optimized offline scheme.

A naive online scheme is displayed as the third bar and an optimized online scheme is shown

as the last bar. Fig. 7(b) shows the evaluations for computational and memory FT schemes.

The only difference is that the third bar displays the online scheme with computational FT

optimizations.
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Figure 2.7: Overhead of ABFT-FFT Schemes on TIANHE-2 When There Is No Fault: (a)

Computational FT (b) Computational & Memory FT

From the figure, we can see that the optimization techniques play an important role

in the FT-FFT schemes. The optimized offline scheme is much better than the naive offline

scheme due to the number of calls to the trigonometric functions. The optimized online

scheme outperforms the offline one a lot when only computational errors are considered.

Also, it has comparable performance to the optimized offline scheme even when memory

errors are considered.

Experiments with Faults

This part shows the timely recovery of the online scheme. As the offline scheme

only guarantees to detect one error, only one memory fault is injected in the optimized offline

scheme. Three fault injections are performed on the online scheme: one computational

fault (1c); one computational fault and a memory fault (1m + 1c); two computational

faults and one memory fault (1m + 2c). (0) indicates fault-free executions as comparison.
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Table 2.2: Execution Time (Seconds) Comparison of FT-FFT on TIANHE-2 When There

Are Faults

Problem Size N = 225 N = 226 N = 227 N = 228

FFTW (0) 3.71 8.04 16.79 34.97

Opt−Offline(0) 4.88 10.01 19.86 40.52

Opt−Offline(1m) 9.63 20.21 42.89 87.65

Opt−Online(0) 4.64 9.83 19.94 40.64

Opt−Online(1c) 4.78 9.92 20.17 40.92

Opt−Online(1m+ 1c) 4.83 9.98 20.44 41.28

Opt−Online(1m+ 2c) 4.86 10.17 20.77 41.68

Computational fault is simulated as adding some constant to an element while memory fault

is simulated by changing one element to another constant. Table 1 shows the execution time

of the optimized schemes with different number of errors.

According to the table, the online scheme does have strong fault tolerant ability.

The offline scheme suffers from the re-execution when an error occurs thus it costs about

twice the time the online scheme does. On the other hand, because one error only leads

to a recalculation of a m-point FFT or s k-point FFTs which costs O(
√
N log

√
N) time,

the execution time of the online scheme can almost maintain the same when the number of

errors increases. In fact, as long as no two errors strike the same m-point FFT or s k-point

FFTs at the same time, the online scheme is able to detect and correct all of them quickly.

Therefore, the online scheme is able to perform well even when the error rate is relatively

high, showing great advantage over the offline scheme.
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Figure 2.8: Execution Time (Seconds) of Parallel FT-FFT Schemes on TIANHE-2 When

There Is No Fault: (a) Fixed size on each processor: n = 226 (b) Fixed number of processors:

p = 256

2.9.3 Performance in Parallel Scheme

This section evaluates the parallel online scheme for in-place FFT in large scale.

Because of fluctuations, each experiment is run 20 times and the average number is recorded.

Experiments without Fault

Three implementations together with original FFTW are evaluated at this part.

The results are shown in Fig. 8. The first bar shows the execution time of original FFTW .

The sequentially optimized fault tolerant scheme FT − FFTW is displayed as the second

bar. The third bar opt−FFTW is FFTW with parallel optimizations in Section 6. The last

bar opt−FT−FFTW is the parallel fault tolerant scheme with both sequential and parallel

optimizations. According to the figure, the sequentially optimized ABFT scheme has some

overhead over the original FFTW . The overhead comes from the checksum operations. On

the other hand, the online scheme with parallel optimizations beats the original FFTW in
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Table 2.3: Execution Time (Seconds) Comparison of FT-FFTW (Fixed n = 226) on

TIANHE-2 When There Are Faults

Number of Cores p = 128 p = 256 p = 512 p = 1024

Opt− FT − FFTW (0) 7.83 10.24 11.34 12.47

Opt− FT − FFTW (2m) 7.85 10.23 11.39 12.57

Opt− FT − FFTW (2c) 7.85 10.28 11.33 12.59

Opt− FT − FFTW (2m+ 2c) 7.86 10.23 11.34 12.56

Table 2.4: Execution Time (Seconds) Comparison of FT-FFTW (Fixed p = 256) on

TIANHE-2 When There Are Faults

Problem Size N = 231 N = 232 N = 233 N = 234

Opt− FT − FFTW (0) 5.45 10.35 22.45 45.63

Opt− FT − FFTW (2m) 5.42 10.35 22.55 45.31

Opt− FT − FFTW (2c) 5.43 10.36 22.47 45.46

Opt− FT − FFTW (2m+ 2c) 5.45 10.31 22.55 45.47

error-free runs because the parallel optimizations work very well. However, it still has some

overhead over opt− FFTW due to checksum operations.

Experiments with Faults

This part shows the fault tolerant ability of the parallel online scheme. Fault injec-

tion mechanimsm is similar to the one used in Section 9.2.2 except that faults are injected

in each processor. Experiments of no faults (0), 2 memory faults (2m), 2 computational

faults (2c), 2 memory faults and 2 computational faults (2m+2c) are shown in Table 2 and

Table 3, respectively.
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According to the tables, this scheme does have strong fault tolerant ability. It

only takes very little time to recover from multiple faults because each fault only revokes a

restart of one or several p-point FFTs or
√

n
p -point FFTs. Note that sometimes the error

free run may have longer execution time. This is caused by fluctuation.

2.9.4 Round-off Errors

As parallel FFTs have similar round-off error impact to sequential scheme, only

experiments on sequential schemes of 225-point FFT are tested. These results can be gen-

eralized to the parallel scheme.

Round-off Error Approximation

In this part, the accuracy of round-off analysis in Section 8 is evaluated. Input

from uniform distribution U(−1, 1) and normal distribution N(0, 1) is tested respectively.

1000 runs are performed thus there are 8192000 m-point FFTs and 1024000 s k-point FFTs.

The result is shown in Table 4.

In Table 4, the column Max1 shows the max round-off error in the m-point FFTs.

Est1 shows the estimated η for this part. Thput1 shows the throughput of the scheme. The

latter three columns show the same property of the k-point FFTs. The selected η provides

nearly 100% throughput while keeping close to the round-off error bound. It promises good

coverage.

46



Table 2.5: Approximation of Round-off Error

Input Max1 Est1 Thput1 Max2 Est2 Thput2

U(−1, 1) 0.92 ∗ 10−8 1.45 ∗ 10−8 100% 0.61 ∗ 10−6 3.86 ∗ 10−6 100%

N(0, 1) 3.8 ∗ 10−8 2.51 ∗ 10−8 99.96% 1.11 ∗ 10−6 6.69 ∗ 10−6 100%

Detection Ability Comparison

This section compares the detection ability of the online scheme and the offline

scheme. Same fault is injected into the same position of the different schemes. Three

fault injection positions are tested in this part. e1 is injected in the input after checksum

verification; e2 is injected in the input of the second FFT; e3 is injected in the final output.

In the fault injection, the selected element will increase itself by the given error magnitude.

I. e., if the magnitude of error is 10−3, 10−3 is added to the selected element and whether

the error is detected is observed. η of the offline scheme is set as the round-off error bound of

error-free runs to allow for 100% throughput. From Table 5, the online scheme can detect

a much smaller magnitude of errors than the offline scheme. Thus, when throughput is

similar, the online scheme should have much larger fault coverage.

Fault Coverage Tests

This section shows the relative errors of FFT output after an error occurs in a 225-

point sequential FFT with input drawn from U(−1, 1). As random computational errors

are hard to simulate and some of them can be simulated as memory errors, only memory

error of single bit flip is tested here.
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Table 2.6: Minimal Magnitude of Error That Can Be Detected

Schemes e1 e2 e3

Offline 10−2 10−2 10−2

Online 10−7 10−6 10−6

Table 2.7: Distribution of Relative Errors of FFT Output in 1000 Runs When One Random

Fault Is Injected in Each Run

||x′−x||∞
||x||∞ Uncorrected > 10−6 > 10−8 > 10−10 > 10−12

No Correction − 73.4% 82.4% 84.0% 84.2%

Offline 4.4% 5.2% 20.8% 33.4% 35.7%

Online 2.5% 2.5% 2.5% 2.5% 3.9%

Some fault-free runs of 225-point FFT are performed at first to get a rough upper

bound of the round-off errors of the offline schemes. After that, η is set as this rough

upper-bound to allow for nearly 100% throughput and relative errors are evaluated after

randomly flipping one higher bit (flipping lower bit is usually masked) in the input or output

array. Define the relative error as ||x
′−x||∞
||x||∞ , where x is the correct output, x′ is the output

with fault injection and || • ||∞ is the infinity norm of vector. 1000 independent runs are

performed and the distribution of relative errors is shown in Table 6. The first row shows

the relative error of runs without correction. It indicates the impact of errors on output as

a comparison. The second column Uncorrected shows the percentage of uncorrected errors

due to wrong indexing caused by round-off errors. It can be improved by changing the

indexing checksum r2. For these situations, the relative error is set as infinite.

According to the table, the online scheme outperforms the offline scheme a lot in

fault coverage because the relative errors it introduces are of much smaller magnitude. For
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example, if the error bound is set as 10−12, the fault coverage in the online scheme would

be 96.1% compared to 64.3% in the offline scheme. It shows great potential in practical use.

2.10 Summary

We present an online ABFT scheme to correct soft errors online in the widely

used FFT computations. The proposed scheme only needs to repeat a small fraction of

the computation after errors occur. Experimental results demonstrate that the proposed

scheme improves the computing efficiency by 2X over existing schemes when errors occur.

49



Chapter 3

Optimizing Error-controlled Lossy

Compression for High Performance

I/O in Scientific Simulations

3.1 Introduction

An efficient data compressor is increasingly critical to today’s scientific research

because of the extremely large volume of data produced by high performance computing

(HPC) simulations and experimental instruments. Based on our communication with re-

searchers working on extreme-scale HPC simulations, they expect to see a compression ratio

up to dozens of times or even 100:1, meaning that the bit-rate (i.e., the number of bits used

to represent one data point on average after compression) should be no greater than 2 and

best less than 1.

50



Although considerably reducing the data size can definitely improve I/O perfor-

mance significantly as well as the post-analysis efficiency, the decompressed data may suffer

from significant distortion compared with the original dataset. If the compression ratio

reaches 64:1 (that is, the bit-rate is about 0.5 bit per 32 bit data point), the precision of the

decompressed data will degrade significantly in general, even using the best existing lossy

compressors such as SZ [92], ZFP [67], and FPZIP [69]. This will cause a huge distortion

in the visualization (shown in Section 4.4.1). The question addressed in this paper is, can

we significantly improve the precision of the decompressed data for the lossy compression

with a fairly low bit-rate compared to state-of-the-art lossy compressors?

In the past decade, several error-controlled lossy data compressors (including [2,

3, 7, 9, 21, 27, 32, 41, 42, 55, 67, 69, 72, 81, 91, 91, 92]) have been developed to significantly

reduce the scientific data size for different purposes [16, 49, 95]. These lossy compressors

can be classified into two groups, based on how they decorrelate the original data. The first

group of compressors [9,27,67,81,85] use a transform-based model that leverages invertible

transforms for the decorrelation. The second group of compressors [32, 55, 69, 91, 92] use

a prediction-based model that leverages various prediction methods for the decorrelation.

Generally speaking, no compression model can always outperform the others. Even for the

same dataset, the best-fit model may differ depending on distortions. Hence, the method

must be carefully selected at runtime.

Designing an efficient error-bounded lossy compressor that can significantly reduce

the data size with a relatively high resolution of decompressed data is very challenging. We

explain this point based on the two most effective lossy compressors [70]: SZ and ZFP. SZ
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and ZFP adopt largely different compression models: respectively, a data prediction model

and an orthogonal transform model. In the data prediction model [92], each data value

needs to be predicted by using its adjacent data points in multidimensional space according

to the order of scanning data points. Moreover, the data used in the prediction during

the compression have to be the decompressed values, in order to guarantee that the error

bound is respected during the decompression, which is a strict limitation to the design of

SZ [92]. Such a limitation may significantly degrade the prediction accuracy, especially for

the lossy compression with a relatively large error bound, leading to limited compression

quality. On the other hand, in the orthogonal transform-based compressor such as ZFP [67],

the entire dataset has to be split into many small blocks (e.g., 4x4x4 for 3D data), each

of which will be transformed to another decorrelated domain individually based on a fixed

coefficient matrix. Relatively large error bound setting will introduce significant loss to the

coefficients, leading to the over-distortion of decompressed data in turn.

In this part, we propose an adaptive lossy compression framework in terms of the

data prediction compression model that can obtain a stable, high compression quality when

the error bound is set to a large value for reaching a high compression ratio. We also fo-

cus on the significant improvement of compression quality over the existing state-of-the-art

lossy compression techniques. This task raises the following challenges. (1) Scientific sim-

ulations may produce vast volumes of data with largely different characteristics, such that

none of the existing lossy compression techniques can work well stably on all datasets. (2)

Designing a lightweight, adaptive framework that can always choose the best compressor is

nontrivial because many lossy compressors exist each with distinct design principles. More-
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over, comparing the compression quality between any two lossy compressors is nontrivial

because, given the same error bound, one compressor may have a higher compression ra-

tio with higher overall precision—such as the peak signal-to-noise ratio (PSNR)—than the

other compressor has, leading to a dilemma in making a choice. (3) Further improving any

of these compressors is nontrivial because each has an elaborate design and optimized im-

plementation. ZFP, for instance, adopts an optimized transformation method by extensive

explorations on various transforms and couples it with embedded encoding to provide fast

and efficient lossy compression. Specifically, our contributions are as follows:

• We propose an adaptive lossy compression framework that is more effective in com-

pressing the scientific datasets with relatively large error bounds. In particular, we

split the whole dataset into multiple non-overlapped blocks, and select the best-fit

prediction method based on their data features.

• We develop new prediction methods that are particularly effective for the lossy com-

pression with relatively large error bounds. On the one hand, we develop a hybrid

Lorenzo prediction method by combining the classic Lorenzo predictor [47] and the

densest mean-value based data approximation method (also called mean-integrated

Lorenzo prediction). On the other hand, we develop a linear regression method that

can obtain much higher prediction accuracy in this case since the design is beyond

the limitation that the decompressed values have to be used in the prediction.

• We explore how to select adaptively and efficiently the best-fit prediction method

based on the data features across blocks during the compression, with optimizations

ito improve prediction accuracy.
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• We improve the coefficient-encoding efficiency for the data-fitting predictor such that

the compression ratio is improved significantly for relatively high-compression cases.

• We design a transform-based predictor by adopting the transform techniques of transform-

based models in the prediction stage of prediction-based models. This is the first such

design, to the best of our knowledge.

• We optimize the encoding strategy for the transform-based predictor, significantly

improving the compression ratio for cases requiring relatively high compression ratios.

• We develop a best-fit predictor selection algorithm that can automatically select the

best predictor between the data-fitting one and transform-based one in the compres-

sion.

3.2 Background

In this paper, we focus on how to improve the compression quality under the

restrictions of error-bounded lossy compression. Here we mainly use PSNR instead of the

error bounds to assess the compression quality, because domain scientists often care more

about the overall statistical errors, especially for visualization purposes. Specifically, our

objective is to ensure that the decompressed data follow the error-bounding requirements

and to optimize the rate distortion metric (i.e., statistical errors), while incurring little

degradation on the compression speed.

Rate distortion is one of the most important metrics to assess lossy compression

quality. The rate here is short for bit rate (denoted τ), which refers to the mean number of
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bits used to represent one data point after compression. We define the compression ratio

(denoted R) to be the ratio of the original raw data size to the compressed data size. For

a floating-point dataset, we have following equations: τ = 32
R , based on single precision,

and τ = 64
R , based on double precision. Obviously, the lower the bit rate, the higher the

compression ratio.

To assess the data distortion, we use PSNR as follows:

PSNR = 20 · log10 (value range)− 10 · log10 (MSE), (3.1)

where MSE stands for mean-squared error. This formula has been widely used in the

community [67, 69, 92, 93], because a higher PSNR generally indicates better visual quality

or higher overall precision. In this case, given a dataset with N floating-point data values,

the research problem can be formulated as follows,

min
∀PSNR

(τ) s.t. |di − d′i| ≤ e,∀i = 1, 2, · · · , N (3.2)

where {d1, d2, · · · , dN} and {d′1, d′2, · · · , d′N} refer to the original raw data values and

decompressed data values, respectively.

I/O performance on parallel file systems is also an important evaluation metric

when lossy compressors are used. Specifically, we also target significantly reducing the

overall data-dumping time (dumping data to parallel file systems) and the data-loading

time (loading data from parallel file systems) for large-scale parallel executions. In addition

to the optimization of the rate distortion within an error-bounded setting, the compres-

sion/decompression time are also essential for I/O performance, because the data-dumping

time is the compression time plus the compressed data-writing time and the data-loading
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time is the compressed data-reading time plus the decompression time for lossy/lossless

compressors.

3.3 Multi-algorithm Predictor

3.3.1 Design Overview

In the following, we first present an overview of our adaptive lossy compression

framework and then describe the compression techniques in detail.

The key idea of our adaptive solution is splitting the entire dataset into multi-

ple non-overlapped equal-sized blocks in multidimensional space and selecting the best-fit

data prediction method dynamically for each block based on its data feature. Algorithm

4 presents the pseudo-code of the entire design. The basic idea is to select in each block

the best-fit prediction method, from among the three data prediction approaches: classic

Lorenzo predictor [47], mean-integrated Lorenzo predictor, and linear regression-based pre-

dictor. The first one was already adopted by some existing compressors such as SZ and

FPZIP, while the other two are proposed as a critical contribution in this paper, because

they can improve the lossy compression quality significantly.

We describe our algorithm in the following text. At the beginning (line 1), the

algorithm searches for the densest interval based on the error-bound ε and calculates its

data frequency (denoted by p1), in order to estimate the prediction ability of the mean-

integrated Lorenzo predictor. This part involves three steps: (1)
√
N data points will be

sampled uniformly in space; (2) the mean value of the sampled data points is calculated
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Algorithm 4 Adaptive Error-bounded Compressor
Input: user-specified error bound ε

Output: compressed data stream in form of bytes

1: Estimate the densest position (denoted as v0) and calculate the frequency (denoted p1) of the densest

error-bound-based interval surrounding it;

2: Calculate the densest frequency of classic Lorenzo predictor (denoted p2);

3: if (p1>p2) then

4: µ←
∑
|di−v0|≤ε di

‖{di||di−v0|≤ε }‖
; /*Compute mean value of densest interval*/

5: `-Predictor ← mean-integrated Lorenzo predictor;

6: else

7: `-Predictor ← classic Lorenzo predictor;

8: end if

9: for (each block in the multi-dimensional space) do

10: Calculate regression coefficients; /*4 coefficients/block in 3d dataset*/

11: end for

12: Calculate statistics of all coefficients for compression of coefficients later;

13: for (each block in the multi-dimensional space) do

14: Create a sampling set (denoted SM ) with M sampled data points;

15: Compute cost values Ereg-predictor and E`-Predictor based on SM ;

16: if (Ereg-predictor < E`-Predictor) then

17: Execute regression-based prediction and quantization;

18: else

19: Execute `-Predictor and quantization;

20: end if

21: end for

22: Construct Huffman tree according to the quantization array;

23: Encode/compress quantization array by Huffman tree;

24: Compress regression coefficients;

and a set of consecutive intervals (each with 2ε in length) will be constructed surrounding

the mean value; (3) we then calculate the number of data points in the consecutive intervals

and select the one with the highest frequency of data points as the densest interval, whose

center is called the densest position (denoted as v0). Here
√
N is chosen by heuristics

because it already exhibits good accuracy. On line 2, the algorithm checks the prediction

ability of the classic Lorenzo predictor, by calculating the data frequency (denoted p2) of its

error-bound based prediction interval (i.e., [pred value−ε , pred value+ε], where pred value

refers to the predicted value), based on 1% of uniformly sampled data points. The number

of sampled data points (i.e., 1%) is a heuristic setting, which is similar to the configuration
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of SZ. Based on the sampled data points, we select the best-fit Lorenzo predictor (denoted

as `-Predictor) according to our estimated prediction ability of the two predictors (line

3-8). If the best-fit predictor is the mean-integrated Lorenzo predictor, we need to calculate

the mean value of the densest interval (line 4), which will be used later.

After determining the best-fit Lorenzo predictor, the algorithm calculates the linear

regression coefficients (lines 9-11) as well as the statistics (such as the value range of the

coefficients), which will be used in the compression of the coefficients later (Section 3.3.3).

The most critical stage is scanning the entire dataset and performing the best-fit

prediction and linear-scaling quantization in each block (lines 13-21). In each block, M

data points (1/8 data points for 2D dataset and 1/9 for 3D dataset) are sampled uniformly

in space, in order to select the best-fit prediction method as accurately as possible. The

sampling method will be further detailed in Section 3.3.3. Then, the algorithm determines

which prediction method (either regression-based predictor or `-Predictor) should be

used in the current block in terms of their estimated overall prediction errors (denoted by

Ereg-predictor and E`-Predictor respectively). How to estimate the prediction errors for the

two predictors will be detailed in Section 3.3.4.

Our algorithm then compresses the quantization array constructed in the predic-

tion stage by Huffman encoding (lines 22-23). It also compresses the regression coefficients

for the blocks selecting the regression-based prediction methods, by IEEE 754 binary anal-

ysis (detailed in Section 3.3.3).

The time complexity of the algorithm is O(N), because the algorithm is composed

of three parts, whose time complexities are no greater than O(N). Specifically, the first
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part estimates densest frequency (lines 1-2) with a time complexity of O(
√
N); the second

part calculates regression coefficients (lines 9-11) that costs O(N) in total (for details, see

Lemma 1 to be presented later); and the last part performs prediction+quantization (lines

13-21), which also costs O(N) since each data point will be scanned only once.

3.3.2 Mean-integrated Lorenzo Predictor

In this section, we develop a new predictor based on the Lorenzo predictor [47].

Fig. 3.1(a) illustrates the classic Lorenzo prediction method in a 3D dataset. Specifically,

it predicts the current data point based on the following formula for a 3D dataset:

f
(L)
111 = f ′000 + f ′011 + f ′101 + f ′110 − f ′001 − f ′010 − f ′100 (3.3)

where f (L) and f ′ refer to the predicted value and decompressed value, respectively. {111}

is the current data point to deal with, and the other seven data points are adjacent to it on

a unit cube which have been processed. f
(L)
111 is the predicted value for the data point {111}

and the decompressed value f ′111 can be obtained by applying the linear-scaling quantization

on the difference between f
(L)
111 and the origin data value at {111}. The compressor will

continue this procedure data point by data point until all the data are processed.

The classic Lorenzo predictor has a significant defect: many predicted values would

be uniformly skewed from the original values if the error bound is relatively large in the

lossy compression, leading to an unexpected artifact issue. Our developed mean-integrated

Lorenzo predictor can solve this issue well.

The fundamental idea is approximating those data points whose values are clus-

tered intensively by a fixed value, if majority of data values are clustered to a small interval
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Figure 3.1: Illustration of mean-integrated Lorenzo predictor

with pretty high density (called densest interval). This situation appears in about one-third

of the fields of the NYX cosmology simulation [73] and about half the fields of the Hurricane

simulation [46]. In the dark matter density field of NYX, for instance, 84+% of the data

values are in the range of [0,1], while the remaining data are in the range of [1,1.34×104].

Suppose we are given a dataset D = {di|i = 1, . . . , N} such that the interval

[v0−ε,v0+ε] can cover a large percentage of data points, where ε is the compression error

bound and v0 is the densest position (as illustrated in Fig. 3.1(b)). If this percentage

is greater than some threshold, we will select the mean-integrated Lorenzo predicator. In

practice, we set the threshold to the sampled prediction accuracy of classic Lorenzo predictor

(line 3 in Algorithm 4). However, the classic Lorenzo predictor would be highly over-

estimated when error bound is relatively large because the sampling stage does not take

into account the impact of decompressed data, leading to a serious artifact issue. In order to

mitigate this issue, we let the algorithm opt to select the mean-integrated Lorenzo predictor

directly when [v0−ε,v0+ε] can cover more than half of the data. Now, we need to derive an

optimal value to approximate the data in this interval.
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Lemma 1. The optimal value used to approximate the majority of data points should be

the mean value of data in the densest interval [v0−ε,v0+ε].

Proof. If a fixed value v is used to approximate all the data points in this interval, the

corresponding MSE can be represented as follows:

MSE =

∫ v0+ε

v0−ε
pd(x)(x− v)2dx

where pd(x) is the probability density function. Then, the problem becomes an optimiza-

tion problem aiming to minimize MSE. Letting the partial derivative ∂MSE
∂v = 0, we have

−2
∫ v0+ε
v0−ε pd(x)xdx + 2v

∫ v0+ε
v0−ε pd(x)dx = 0. Solving this equation will obtain the optimal

value ṽ=

∫ v0+ε
v0−ε

pd(x)xdx∫ v0+ε
v0−ε

pd(x)dx
. It is the mean value of all data points in this interval (as shown in

Fig. 3.1(b)). This lemma also holds in discrete cases, where the optimal approximation

value ṽ can be calculated by

∑
x∈[v0−ε,v0+ε]

x

‖{x||x−v0|≤ε}‖ in practice, where ‖{x ||x− v0| ≤ ε}‖ is the

number of data points in the densest interval.

3.3.3 Regression-based Prediction

Although the proposed mean-integrated Lorenzo predictor alleviates the artifact

and reduces prediction errors in predicting the intensively-clustered data, it does not work

well on the data following a rather uniform distribution. To address this issue, we propose

a regression-based prediction model, which can deal with generic datasets. We adopt a

linear-regression model instead of a higher-order regression model considering the overhead.

Quadratic regression model, for example, requires 2.5X the number of coefficients the linear-

regression model needs, with ≥3X the computation workload.
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Derivation of Regression Coefficients

In what follows, we derive the regression coefficients from a generic perspective in

terms of a dataset with m dimensions (n1×n2×· · ·×nm), which can be easily extended to

block-wise situations. The value at position x = (i1, . . . , im) is denoted as f(x) = fi1...im ,

where ij is its index along each dimension. We also denote f (r) as the linear regression

prediction. Then the linear regression model can be built as:

f (r)(x) = xTβ + α

where β = (β1,. . . ,βm) denotes the slope coefficient vector and the constant α is the intercept

coefficient. By redefining x′ = (1, i1, . . . , im) and β′ = (β0=α,β1,. . . ,βm), the formula above

can be rewritten as:

f (r)(x′) = x′Tβ′

Since each data point corresponds to a position x and its value f(x), the objective of the

regression model is to minimize the squared error (SE) between predicated and original

values:

SE =
∑

x′∈{(1,i1,...,im)|0≤ij<nj}

(x′Tβ′ − fi1...im)2

This is a convex function, and its optimal can be obtained by derivation. The derivation

over each element in β′ will result in a linear system of m unknowns. By solving the linear

system, the optimal solution can be achieved as:

β′ = (XTX)−1XT y (3.4)

X is the full permutation of {i1,i2,· · · ,im}, where ij∈{0,1,· · · ,nj−1}, and y is the sequence

of the corresponding data values (f00...0,f00...1,· · · ,f(n1−1)(n2−1)...(nm−1)).
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Since X is a {
∏

1≤i≤m ni}×(m + 1) matrix, computing the closed-form solution

(3.4) is very expensive. However, we can derive the solution to a simple form, significantly

reducing the computation cost. Let us take a 3D dataset as an example to describe our

method, which can be extended to datasets with higher dimensions easily without loss of

generality.

Lemma 2. The regression coefficients of a 3D dataset with dimensions n1, n2, n3 can be

calculated as: 

β1 = 6
n1n2n3(n1+1)(

2Vx
n1−1 − V0)

β2 = 6
n1n2n3(n2+1)(

2Vy
n2−1 − V0)

β3 = 6
n1n2n3(n3+1)(

2Vz
n3−1 − V0)

β0 = V0
n1n2n3

− (n1−1
2 β1 + n2−1

2 β2 + n3−1
2 β3)

(3.5)

where V0 =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

fijk, Vx =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

i ∗ fijk,

Vy =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

j ∗ fijk, Vz =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

k ∗ fijk.

Proof. Substitute the index with the coordinate values. The SE expression will turn out to

be:

SE =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

(β0 + β1i+ β2j + β3k − fijk)2

The following linear system can be derived by getting all its partial derivatives over the

coefficients and setting them to 0:

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0



1 i j k

i i2 ij ik

j ij j2 jk

k ik jk k2





β0

β1

β2

β3


=



V0

Vx

Vy

Vz
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Since
∑n−1

i=0 i = n(n−1)
2 and

∑n−1
i=0 i

2 = (2n−1)n(n−1)
6 , the above linear system can be simpli-

fied to: 

1 (n1−1)
2

(n2−1)
2

(n3−1)
2

1 (2n1−1)
3

(n2−1)
2

(n3−1)
2

1 (n1−1)
2

(2n2−1)
3

(n3−1)
2

1 (n1−1)
2

(n2−1)
2

(2n3−1)
3





β0

β1

β2

β3


=



V0

n1n2n3

2Vx

n1n2n3(n1−1)

2Vy

n1n2n3(n2−1)

2Vz

n1n2n3(n3−1)


After that, Gaussian elimination can be leveraged to transfer the linear system to the

following: 

1 (n1−1)
2

(n2−1)
2

(n3−1)
2

0 1 0 0

0 0 1 0

0 0 0 1





β0

β1

β2

β3


=



V0

n1n2n3

6
n1n2n3(n1+1) (

2Vx

n1−1 − V0)

6
n1n2n3(n2+1) (

2Vy

n2−1 − V0)

6
n1n2n3(n3+1) (

2Vz

n3−1 − V0)


Then Equation (3.5) can be derived accordingly.

These coefficients will be used in the regression model for predicting the data

accurately. Each data point with index (i, j, k) will be predicted as f
(r)
ijk = β0+iβ1+jβ2+kβ3.

Then, we will compute the difference between each predicted value f
(r)
ijk and its original value

fijk, and perform the linear-scaling quantization [92] to convert the floating-point values to

integer codes. The data size will be significantly reduced after conducting Huffman encoding

on the quantization codes.

Compressing Regression Coefficients

We adopt the block size 6×6×6 for 3D data and 12×12 data for 2D data in our

implementation, since such settings already lead to satisfying compression quality. For

each block that adopts the linear regression model, four coefficients have to be kept in
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the compressed bytes together with the encoding of regression-based predicted values in

that block. If each block is a 6×6×6 cube, the overhead of saving the four coefficients

(single-precision floating-point values) would be 4
6×6×6= 1

54 of the original data size (i.e.,

bit-rate=0.6). Note that we are targeting high-compression ratios (such as 100:1), so we

have to further compress the coefficients significantly by a lossy compression technique with

controlled impact of lossy coefficients on the prediction accuracy. We reorganize all the

coefficients into four groups and compress each group of coefficients in a similar way by the

unpredictable data compression method used in SZ [32].

3.3.4 Adaptive Selection of Best-fit Predictor

In this section, we analyze the nature of the linear regression-based predictor

(proposed in Section 3.3.3) and Lorenzo predictor (introduced in Section 3.3.2). We also

propose a cost function (or a metric), based on which we can accurately select the best-fit

predictor via a sampling approach.

Analysis of Linear Regression versus Lorenzo Predictor

The two predictors are particularly suitable for various data blocks with different

data features. For each data point to predict, the Lorenzo predictor [47] constructs a fixed

quadratic hyperplane based on its 7 adjacent data points in a 2×2×2 cube. No coefficients

need to be saved for reconstructing the hyperplane during the decompression. However,

Lorenzo predictor must conform to a strict condition when being used in lossy compres-

sion [92]. The prediction performed during the compression must use the decompressed

values instead of original values; otherwise, unexpected data loss would be accumulated
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during the decompression, introducing significant distortion of data eventually. Using the

decompressed values to perform the Lorenzo predictor would degrade the prediction accu-

racy significantly especially when the error bound is relatively large [92], leading to limited

compression quality.

Unlike Lorenzo predictor, the linear regression-based predictor constructs an MSE-

minimized linear hyperplane (f
(r)
111=β0 + β1x+ β2y+ β3z) with four coefficients to store for

each data block. The advantage of this predictor, however, is that it does not depend

on the decompressed values during the prediction stage because the hyperplane will be

reconstructed by the coefficients. In contrast, linear-regression may not be as accurate

as Lorenzo predictor if the data exhibit spiky changes in a pretty small region or the

compression error bound is relatively small, because the Lorenzo predictor corresponds to

a quadratic hyperplane. This issue inspires us to seek an adaptive solution between the two

predictors.

Estimate Prediction Errors and Select Best-fit Predictor

We adopt an effective, lightweight sampling method to select the best of the two

predictors. In the following, we use the 3D dataset to explain our idea, cases with other

dimensions could be extended similarly.

In a 3D block (6×6×6), we sample 24 points that are distributed along the diagonal

lines. These points can also be regarded as on the 8 corners of the innermost 2×2×2 cube,

4×4×4 cube and 6×6×6 cube, respectively, as shown in Fig. 3.2(a). We denote the set of

the 24 sample points by {S24}. Then, the cost function for both regression model and the

Lorenzo predictor is defined as follows:
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(a) Points sampled in a block (b) Decompressed noise estimation

Figure 3.2: Sample points and decompressed noise estimation

E′predictor =
∑

(i,j,k)∈{S24}

|f (p)ijk − fijk| (3.6)

where f
(p)
ijk refers to the predicted values (f

(r)
ijk , f

(L)
ijk ). If one predictor is better than the

other, it tends to have a lower cost (i.e., summed error). The reason we adopt absolute

error instead of squared error in the cost function is that the squared errors may easily

over amplify the cost value if there is one outlier, leading to skewed cost values. Formula

(3.6) can be used directly as the cost function (denoted Ereg-predictor in Algorithm 4) for

the regression-based predictor.

The Lorenzo predictor, however, would be overestimated because the formula does

not take into account the influence of decompressed data, such that we have to further adjust

the cost function for the Lorenzo predictor. Without loss of generality, we assume that the

compression errors are independent random variables following a uniform distribution in

[−ε, ε], according to the recent study on the distribution of compression errors [68]. Then,

the perturbation in the final prediction will be a random variable e following a shifted

and scaled Irwin-Hall distribution with parameter n = 7, which is a piecewise function.

However, the expectation of the absolute value is hard to derive. Fortunately, since the
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Lorenzo predictor always adopts 7 points to predict the data, the corresponding value can

be approximated offline. We take 1M samples from this distribution and compute the

expectation of their absolute values. The fitting curve is supposed to be a linear curve,

because the error bound is only a scale factor for this distribution. Then, we achieved

a very good fitting curve (E(|e|) = 1.22ε) as illustrated in Fig. 3.2(b). The cost (i.e.,

aggregated error) of the classic Lorenzo predictor can be adjusted as follows:

E′LP =
∑

(i,j,k)∈{S24} |f
(L)
ijk − fijk + e|

≤
∑

(i,j,k)∈{S24} |f
(L)
ijk − fijk|+

∑
(i,j,k)∈{S24} |e|

≈
∑

(i,j,k)∈{S24} |f
(L)
ijk − fijk|+ 24 ∗ 1.22ε

(3.7)

We estimate the prediction cost by this inequality because we opt to select the regression

model considering the artifact issue that may occur to the Lorenzo predictor in the situation

with relatively large error bounds. When the error bound is small, this extra adjustment

has little impact on the final selection.

The cost value of the mean-integrated Lorenzo predictor(denoted E′mLP ) is esti-

mated as the minimum value between the classic Lorenzo prediction error (i.e., Formula

(3.7)) and mean prediction error, as shown below:

E′mLP ≈
∑

(i,j,k)∈{S24}

min(|f (L)ijk − fijk|+1.22ε , |µ− fijk|) (3.8)

where µ is calculated in line 4 of Algorithm 4.

In summary, as for the `-Predictor proposed in Algorithm 4, we estimate the

error cost for the classic Lorenzo predictor and mean-integrated Lorenzo predictor by For-

mula (3.7) and Formula (3.8), respectively. In each data block, we select the final predictor

with lowest cost based on their cost functions.
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3.3.5 Optimizing Block-wise Prediction Accuracy

In this section, we introduce an optimization strategy that can further enhance

the prediction accuracy in the block-wise design, such that the compression quality could

be further improved.

A straightforward block-wise implementation idea is splitting the entire 3D dataset

into multiple blocks/cubes and performing the prediction inside each block individually.

ZFP, for example, adopts such a way to organize all the blocks in the compression, in that

the blocks in ZFP are independent with each other. Such a straightforward block-wise

implementation, however, may significantly degrade the overall data prediction accuracy in

that many data points are located at boundaries of cubes such that they cannot be predicted

by leveraging 3D Lorenzo predictor. For instance, if the block is a 6×6×6 cube, there will be

63−53
63

=41% of data points that can be predicted only by using 2D or 1D Lorenzo prediction

method, significantly limiting the prediction accuracy. By comparison, if we perform as

many 3D Lorenzo predictions as possible (similar to SZ [92] and FPZIP [69]) without block-

wise limitation, only 5123−5113
5123

=0.6% of the data points will suffer from degraded prediction

accuracy for a 512×512×512 dataset.

We try to keep 3D Lorenzo predictions for the boundary points in our imple-

mentation. In the compression phase, we use ghost elements outside the prediction buffer.

Suppose the global dataset is N1×N2×N3 in three dimensions, and each block is a b1×b2×b3

cube. Then, we allocate two (b1 + 1) × (N2 + 1) × (N3 + 1) prediction buffers and fill the

bottom, front and left surface with 0s. Then, we apply the 3D prediction for each data point

in the current prediction buffer and write predicted data into current data buffer for later
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prediction. Similarly, the data points on the top of the block (highest index is n1−1) will

be written to the bottom of the other buffer to eliminate unnecessary copy for prediction

in next layer. Based on this method, only the boundary points on the entire N1×N2×N3

dataset have to be predicted by degraded lower dimension prediction.

As for the decompression, ghost elements are no longer used because no buffers

should be used in this situation. We unroll the loops in the prediction to eliminate conditions

and branches for the boundary data points.

3.4 Hybrid Prediction Model

In this section, we propose a novel, adaptive lossy compression method based on

the prediction-based model, which can improve the lossy compression quality significantly

over that of existing state-of-the-art compressors. The fundamental idea is to improve the

prediction accuracy by leveraging both data-fitting predictors (such as the Lorenzo predictor

[47]) from prediction-based models and transform-based predictors from transform-based

models. The design motivation comes from the fact that these two prediction models

are particularly effective on different datasets or different error bounds, as we observed in

numerous experiments based on large-scale simulation datasets.

We present a workflow of our adaptive error-controlled lossy compressor in Fig. 3.3.

Highlighted boxes indicate the key modules to be described in the following text. The arrows

in this figure indicate the execution order of each operation. We note that only one of the

dashed boxes in step 4 is executed at runtime because we select the better solution of the two.

In the first step we use a lightweight blockwise data sampling technique that samples the
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data along the diagonal of the datasets (with a granularity of block size 8, e.g., 8x8x8 for 3D

datasets). The most critical parts are steps 2∼4, which are also the key novelty of our new

design. Specifically, we estimate the overall rate distortion for the two types of predictors

based on the data sampled in the previous step, respectively. Our estimation method

covers the whole compression procedure for each type of predictor, including the efficiency

of data prediction, the effectiveness of the corresponding coefficient compression, and the

error-bounded quantization and encoding algorithms. We also optimize the strategies of

encoding/compressing coefficients for both predictors, which will be detailed later. Step

5 involves error-bounded quantization and encoding, as a result, the overall compression

method can strictly respect the user-specified error bound; details can be found in [92].
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Figure 3.3: Steps of Our Adaptive Error-Bounded Lossy Compressor

3.4.1 Optimization of Lossy Compression with Data-Fitting Predictor

For the data-fitting predictor, we adopt the existing hybrid predictor used by

SZ2.0 [65], and we propose an improved coefficient-compression strategy that can increase

the compression ratio for high-compression cases. In what follows, we introduce the hybrid

prediction model first and then describe our improvement strategy.
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Hybrid Design in SZ2.0

In SZ2.0, the whole dataset is split into non-overlapped blocks (e.g., multiple

6x6x6 cubes for the 3D dataset), and the prediction method—either a Lorenzo predic-

tor [47] or a linear regression method—is selected in each block by a sampling method.

The former method is the same as the prediction method proposed in [92]. In the lat-

ter method, a linear hyperplane (f(i, j, k) = β0 + β1i + β2j + β3k, where i,j,k are the

indices of the data points), is constructed to fit the data in each block by using a least-

squares linear regression method. Specifically, the four coefficients β0, β1, β2, and β3 (as

per block) are calculated by letting the partial derivatives of the squared error loss function∑n1−1
i=0

∑n2−1
j=0

∑n3−1
k=0 (β0 + β1i+ β2j + β3k − fijk)2 be equal to 0. The constructed linear

hyperplane is then used to predict the data values in the data block. In our implementation,

we set the block size to 8x8x8, since it is neither too small for SZ to avoid high coefficient

overhead (usually requiring 6+) nor indivisible by the block size required by ZFP (4) so

that the efficiency of the two types of predictors on the same block is comparable.

Improved Regression Coefficient Compression

To improve the compression ratio significantly for high-compression cases in the

data-fitting predictor, we propose a more efficient coefficient compression strategy for the

linear regression prediction. In SZ 2.0 [65], all the regression coefficients were collected in

terms of their types and then compressed by an IEEE-754-binary analysis. Compressing

each group of coefficients is similar to the unpredictable data compression method used in

SZ [32]. Four steps are involved: (1) calculate the value range and median value based on
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the coefficients in this group, (2) normalize all coefficients by taking away the median value

from each data value, (3) encode the XOR-leading zero bytes using a 2-bit code for the

data values that have the same leading bits with their preceding adjacent values, and (4)

truncate the insignificant mantissa bits based on the error bound. Although this approach

alleviates the required storage for the regression coefficients, it cannot help much when the

error bound is large, because of the limitation of the XOR encoding.

In our new solution, we compress these coefficients based on the relatively high

smoothness of the coefficients across the adjacent blocks selecting the linear-regression

method. Specifically, we predict the current coefficient according to its adjacent coeffi-

cients of the same type, and we perform the linear quantization on the difference, followed

by the Huffman encoding algorithm. That is, we apply a separate compression pipeline

(except the lossless compression) to these coefficients besides the data points, at a cost

of 4
n1n2n3

overhead since 4 coefficients out of n1n2n3 data points in the block need to be

compressed. Since the blocks selecting the linear regression may not be consecutive, the

multidimensional prediction mechanism in the Lorenzo predictor cannot be used anymore

to discard the unused regression coefficients. To overcome this issue, we first linearize the re-

gression coefficients in the blocks selecting linear regression and perform the 1D prediction.

If many blocks use regression, this method will lead to a high compression ratio because of

the high smoothness in adjacent blocks. If only a small fraction of blocks use regression,

the performance will degrade because the prediction cannot be accurate in this case. At

this time, however, the data would be hard to compress, and the number of coefficients to

be stored is small. Thus, the regression coefficients would take only a small percentage of
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storage, making little difference to the final rate distortion. A sample visualization of the

regression coefficients (Hurricane Uf48, value-range-based error bound 5e− 3) is displayed

in Fig. 3.4(a), when 86% of the blocks are choosing linear regression. The black pixels in-

dicate the blocks selecting the Lorenzo predictor. From this figure, we can observe that the

regression coefficients are smooth, from which the prediction mechanism would definitely

benefit.

β0 β1

β2 β3

(a) Visualization of regression coefficients

(b) Overall CR vs. Coefficients' CR (Uf48)

(c) Overall CR vs. Coefficients' CR (PRECIPf48)

Figure 3.4: Analysis of Regression Coefficients on the Hurricane Simulation

A critical parameter for this approach is the error bound for the regression coeffi-

cients. We choose it so that the deviation caused by the decompressed regression coefficients

(compared with the computed regression coefficients) will be bounded by an error bound ε.

Let ε0, ε1, ε2, and ε3 stand for the absolute error bound for β0, β1, β2, and β3, respectively. A

sufficient condition is ε0 = ε
4 , ε1 = ε

4(n1−1) , ε2 = ε
4(n2−1) , and ε3 = ε

4(n3−1) because it guaran-

tees |β′0+β′1i+β
′
2j+β

′
3k−(β0+β1i+β2j+β3k)| ≤ |ε0|+|ε1(n1−1)|+|ε2(n2−1)|+|ε3(n3−1)| ≤

ε, where β′0, β
′
1, β

′
2, and β′3 denote the decompressed regression coefficients.
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This method provides a solution to bound the prediction error, but how to set

the error bound ε is still problematic. One must make a tradeoff between the efficiency of

regression coefficients compression and the accuracy of regression prediction. A large error

bound will lead to higher compression ratios for the regression coefficients, while degrading

the overall compression ratio and/or PSNR since the prediction is not as accurate as before.

On the contrary, a small error bound could guarantee the deviation of regression prediction

at the cost of a lower compression ratio for the coefficients. We explore the error setting

relative to the user-set error bound via an empirical way and the results of two representative

fields of the hurricane datasets are shown in Fig. 3.4(b) and Fig. 3.4(c) when the value-

range-based error bound is set to 5e − 3. In the figure, 86% and 66% of the blocks select

regression for the given settings, respectively. Both figures indicate that the compression

ratio of the regression coefficients keeps increasing while the overall compression ratio goes

up and then down as the error bound gets looser, a result consistent with our analysis. We

also note that the PSNR also decreases slowly with the looser error bound, from 51.85 to

50.94 (Uf48) and 52.62 to 51.11 (PRECIPf48). Therefore, we choose ε = 0.1 as our default

setting, because it has a reasonable overall compression ratio and PSNR while guaranteeing

that the regression prediction is relatively accurate.

Figure 3.5 shows the improvement of the compression ratio based on our new

coefficient compression method compared with the XOR encoding used by SZ 2.0 (denoted

by old coeff. compression) for two example fields from the hurricane simulation. We can

clearly observe that our new solution improves the compression ratio by up to 200∼300%

in relatively high-compression cases.
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Figure 3.5: Ratio Distortion of Coefficients Compression on Hurricane Simulation

3.4.2 Optimization of Lossy Compression with Transform-Based Predic-

tor

Another critical contribution in this work is that we develop and optimize a

transform-based predictor based on transform-based compression models. This contribution

can significantly improve the compression quality in many cases.

Transform-based models usually leverage a multidimensional transform for the

purpose of value decorrelation [67], followed by some encoding algorithm. Embedded en-

coding is one of the most efficient encoding strategies. The key idea of our optimization

is to improve the coefficient encoding in the embedded encoding stage for transform-based

predictors. We adopt ZFP’s nonorthogonal transform [67] as our transform-based predictor

because its decorrelation efficiency has been confirmed to be more efficient than that of

other transforms such as a discrete cosine transform or wavelet transform. Our approach is

a generic solution that can also be applied to other types of transforms.

We apply the transform-based predictor on each data block with block size of 4

(e.g., 4x4x4 for 3D data), following three steps: (1) perform nonorthogonal transform to
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convert the 64 data points to 64 coefficients, (2) perform our improved coding strategy

to compress the coefficients, and (3) predict each data value by the inverse nonorthogonal

transform based on the reconstructed coefficients. Step 2 is the most critical in our improve-

ment, and it has two key issues to resolve: developing an efficient coefficient compression

method and estimating the optimal error setting for the transform-based predictor.

Efficient Transform Coefficient Compression Method
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Figure 3.6: Embedded Coding (shaded bits would be dropped)

In what follows, we illustrate in Fig. 3.6 the classic embedded encoding proposed

in [67] and then describe our improvement method. This classic coding strategy first reorders

the transform coefficients from the upper left corner (highest energy in the transformed

domain) to the bottom right corner (lowest energy in the transformed domain) such that

these coefficients will be roughly sorted in a descending order automatically. Then, it

divides the 64 coefficients into nine groups, according to the group sizes displayed in Table

3.1 (see second row). Next, it computes the max bit plane (in terms of the user-defined error
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bound and max value in current block), after which the bit planes are negligible and can

be discarded. The bit planes located before the max bit plane (called significant bit planes,

bits 0–9 in Fig. 3.6) will be compressed one by one losslessly. Since there are many zero bits

due to the previous reordering of the coefficients, only a few bits (called encoding bits) that

are organized in groups need to be stored (as highlighted in Fig. 3.6). In addition, three

more types of metadata need to be stored: (1) sign bits, used to indicate the sign for the

nonzero coefficients; (2) group bits, used to mark the grouping outlines; and (3) skip bits,

used to indicate the ending bit of the current bit plane. As shown in Fig. 3.6, for example,

group 1 has 8 encoding bits, 1 sign bit, 1 group bit, and 5 skip bits; group 2 has 9 (=3×3)

encoding bits, 2 sign bits (because one data is 0), 1 group bit, and 2 skip bits; and group 3

has 6 (=1×6) encoding bits, 3 sign bits, 1 group bit, and 1 skip bit. In this example, other

groups are not recorded because they are all zeros. Therefore, the total number of bits

used to encode this block of data is 15+14+11=40. Note that from among the 40 bits, the

number of encoding bits is 9+8+6=23, which means that 17 bits belong to metadata. They

cannot be overlooked, as is validated by Table 3.1, because of the large difference between

the average overall bit rate (see row 4) and the average encoding bit rate (see row 3).

A critical drawback of this embedded encoding method is the significantly uneven

compression quality for different coefficients. As demonstrated in Table 3.1, the first and

the second groups of coefficients are compressed poorly—only 2x for coefficients in the first

group and 7x for those in the second group, far less than desired given the error bound.

Nevertheless, these two groups of coefficients take up more than 75% of the storage space

in the compressed data, significantly affecting the final compression ratio.
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Table 3.1: Storage Decomposition of the Transform Coefficients on NYX Velocity x with

Value-Range-Based Error Bound 6e-3

Group ID 1 2 3 4 5 6 7 8 9

# coeffcients 1 3 6 10 12 12 10 6 4

bit rate (encoding) 8.29 2.938 0.4837 0.1835 0.09343 0.05405 0.03231 0.01808 0.009857

bit rate (overall) 15.64 4.847 0.6865 0.2324 0.1148 0.06632 0.04093 0.02534 0.01462

weighted percent 39.678 36.8899 10.4497 5.8959 3.4949 2.019 1.0384 0.3857 0.1484

We propose a novel encoding algorithm that can significantly improve the coding

efficiency. The key idea comes from our observation that the coefficients are still consecutive

across blocks such that we can improve the compression efficiency by taking advantage of

this feature. As an example, we demonstrate in Fig. 3.7 the visualization of the first four

sets of transform coefficients (128x128) aggregated across all blocks for the slice 300 (a

512x512 image) of the NYX velocity x field. In particular, the first coefficients extracted

from all the blocks construct an image that looks much like the original raw data image

(the left image in Fig. 3.7). The second, third, and fourth transform coefficients across all

blocks also have a relatively high spatial continuity, based on which we can further improve

the coefficients’ compression ratios.

Coefficient 1 Coefficient 2

Coefficient 3 Coefficient 4

Figure 3.7: Visualizing Raw Data and Transform Coefficients (NYX:Velocity x)
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In our solution, we adopt the data-fitting compression method (see Section 3.4.1) to

compress/encode these coefficients with the same error bound as the traditional embedded

encoding. We call it SZ encoding in this section. The groupwise average bit rates of these

coefficients are displayed and compared with those of embedded encoding in Fig. 3.8(a).

This figure illustrates an interesting trend of the groupwise bit rates on the two encoding

strategies: the SZ encoding outperforms the embedded encoding on the first two groups,

while the embedded encoding is better on the other groups. These results inspire us to seek

a hybrid approach selecting SZ encoding for the first few groups and switching to embedded

encoding for the remaining groups.

We use a sampling approach to determine the appropriate number of coefficients to

be compressed by SZ encoding. We sample the data blocks on the diagonal of the dataset

to involve data with different positions with low sampling rate. Specifically, we divide

the whole dataset into N1
Nm
× N2
Nm
× N3
Nm

subblocks (each being a NmxNmxNm cube), where

Nm = min(N1, N2, N3), and Ni refer to the dimension sizes (i.e., number of elements along

the dimension i). Then, we sample the four diagonals in each subblock by the granularity

of 8x8x8 blocks,1 which will glean 4 ∗ Nm8
N1N2N3
N3
m
∗ 83 = 256N1N2N3

N2
m

data points, introducing

small overhead to the dataset with the comparable dimension sizes. In fact, other sampling

methods such as uniform sampling could work equally well as long as they are done in block

granularity. But this diagonal sampling method could lead to reasonable result with quite

small sampling rate when the dimension sizes are close.

The sampled data will be transformed to the coefficients, which will be used to es-

timate the bit rates of the two encoding approaches by our designed estimation method. For

1We choose the granularity of 8x8x8 blocks in order to be consistent with the sampling granularity.
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the embedded encoding approach, its groupwise number of encoded bits can be computed

precisely. The encoding bits of a data point can be computed exactly by subtracting the

max bit plane by the position of the first nonzero element. The sign bits of a group can be

approximated as the number of coefficients whose encoding bits have at least one nonzero

bit. The group bit of one group is incremented by 1 as long as there exhibits one coeffi-

cient with non-all-zero encoding bits. The skip bits, on the other hand, can be computed

by taking away the length of the encoding bits of the next group from the length of the

encoding bits of the current group. Therefore, we can estimate the overall bit rate of each

group for the embedded encoding accurately. For the estimation of SZ encoding’s bit rate,

we estimate the Lorenzo prediction errors by computing the differences between the four

top 4x4x4 subblocks and the four bottom 4x4x4 subblocks in each sampled 8x8x8 block.

This is accurate enough for the bit rate estimation because it simulates the 1D Lorenzo pre-

dictor. We then compute quantization indices and use the entropy formula br=Σipi log pi

to estimate the final bit rate, since SZ adopts a Huffman encoding in the last step.

Figure 3.8 presents the estimated bit rates based on the sampled data versus the

real bit rates based on all data when compressing the transform coefficients over the Veloc-

ity x field in the NYX dataset. By comparing the blue curves and red curves between the

two subfigures, respectively, we can see that our estimation is accurate for both embedded

encoding and SZ encoding for the first ten coefficients, which take the majority of the stor-

age space (over 85% according to Table 3.1). The estimation for the remaining coefficients of

the SZ encoding is not that accurate because the bit rate estimated by the entropy formula

is a lower bound. We argue that it would not degrade the overall performance prominently
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(b) Estimated Bit Rates of Coefficients Compression on Sampled Data

Figure 3.8: Efficiency of Compressing Coefficients (NYX: Velocity x with value-range based

error bound 6e-3)

because the difference of SZ encoding and embedded encoding is relatively small and the

weighted percentages of the remaining coefficients are low for the target bit rate. If we

compress the example coefficients in Fig. 3.6 using our hybrid approach, the average num-

ber of bits after the coefficient compression would be 5.1+2.3×3+11=23, obtaining 70+%

improvement over the original embedded encoding (40 bits).

Estimation of the Optimal Error Setting

In the transform-based prediction model, we still need to set an error bound to

compress the transformed coefficients. Doing so involves tradeoffs. Too small an error bound

may degrade the prediction model to the domain-transform kernel without quantization,

overpreserving the errors unexpectedly. Too large an error bound, on the other hand, will

cause a large loss after the inverse-transform and thus result in low quantization efficiency.
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To obtain the best tradeoff, we develop an efficient strategy by a sampling method.

We reuse the same sampled data as well as the transformed coefficients to reduce the

overhead. Our objective is to search for the optimal error bound ratio (i.e., the ratio of the

error bound used by the transform-based predictor to the user’s target error bound) in terms

of the sampled data. Specifically, we set the initial error bound ratio to 1, which means that

the prediction model is degraded to the domain-transform kernel because the reconstructed

data must be within the user’s error bound. Then, we estimate the optimal numbers of

the transform coefficients for SZ encoding and embedded encoding. Next, we reconstruct

the transform coefficients, based on which the inverse transform will be performed. After

that, the bit rate can be estimated by adopting the remaining steps of the prediction-

based compression model (i.e., error-bounded quantization and lossless compression), and

the mean squared error (MSE) can be calculated. This procedure is repeated with doubled

error bound ratios 8 times (we set it to 8 times because it can always cover the best tradeoff

based on our experiential observations).

Our algorithm selects the best error bound setting based on the 8 rate-distortion

results collected from above. Specifically, the rate distortion with an error bound ratio of 1

serves as the baseline (i.e., bit rate br0 and MSE mse0) and increases by 2x for each trial.

We define the bit-rate decay rate as log br0
bri

and the MSE increase rate as log msei
mse0

for all

other rate distortion results. The optimal error setting is the one that maximizes
log

br0
bri

log
msei
mse0

,

because it indicates the highest bit-rate decay over the MSE increase rate.
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3.4.3 Selecting the Best-Fit Prediction Method

The basic idea in choosing the best-fit prediction method is to compared the rate

distortion estimated from the previous sections between the two types of predictors and

selecting the better solution. A good rate distortion means the situation with high PSNR

and low bit rate. Based on this, we present the pseudo-code in Algorithm 5, where Rf (e) and

Pf (e) refer to the bit rate and PSNR, respectively, using the data-fitting-based prediction

method with the error bound e. Similarly, Rt(e) and Pt(e) refer to the bit rate and PSNR

using the transform-based prediction method. Given a specific error bound, our algorithm

involves two critical stages:

Stage I (line 1): Using the sampled data, estimate the optimal error bound setting (denoted

ε∗t ) based on Section 3.4.2, such that the selected setting may result in the rate distortion

being better than others for the transform-based predictor. We denote the corresponding

bit rate and PSNR by R∗t and P ∗t , respectively.

Stage II (line 4∼22): Using the same sampled data, estimate the rate distortion for the

data-fitting-based prediction model, in the vicinity of the rate distortion point (R∗t , P
∗
t )

optimized in Stage I.
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Figure 3.9: Illustration of Best-Fit Predictor Selection Algorithm
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Algorithm 5 Best-Fit Predictor Selection Algorithm

Input: user-specified error bound (denoted as ε)

Output: bestfit predictor (either data-fitting or domain-transform)

1: Estimate the optimal rate-distortion point, denoted by (R∗t , P
∗
t ), for the transform-based prediction

model (Section 3.4.2);

2: e ← ε; /*Set the initial error setting to the user-specified error bound*/

3: Selection←null, R′f←null, P ′f←null;/*initialization*/

4: repeat

5: if (Rf (e)≤R∗t and Pf (e)>P ∗t ) then

6: Selection ← data-fitting; /*data-fitting is better*/

7: break;

8: else if (Rf (e)≥R∗t and Pf (e)<P ∗t ) then

9: Selection ← domain-transform; /*domain-transform is better*/

10: break;

11: else if (((R′f<R
∗
t and P ′f<P

∗
t ) and (Rf (e)>R∗t and Pf (e)>P ∗t )) or ((R′f>R

∗
t and P ′f>P

∗
t ) and

(Rf (e)<R∗t and Pf (e)<P ∗t ))) then

12: Estimate Pf (ε∗t ) by linear interpolation with the two rate-distortion points (R′f ,P ′f ) and

(Rf (e),Pf (e));

13: Selection← arg max (Pf (ε∗t ), P
∗
t );/*select with higher PSNR*/

14: break;

15: else if (Rf (e)<R∗t and Pf (e)<P ∗t ) then

16: R′f←Rf (e), P ′f←Pf (e); /*record the rate-distortion point*/

17: e← 2e; /*double the error bound for next checking*/

18: else if (Rf (e)>R∗t and Pf (e)>P ∗t ) then

19: R′f←Rf (e), P ′f←Pf (e); /*record the rate-distortion point*/

20: e← e/2; /*half the error bound for next checking*/

21: end if

22: until (Selection 6= null)

23: Output selection;

We illustrate in Fig. 3.9 all six cases corresponding to the if-branches of Algo-

rithm 5. The algorithm keeps searching for the error bound setting (with exponential

increase/decrease) for the data-fitting-based prediction model (in the cases (e) and (f)) un-

til we can judge which predictor is better (via the cases (a)–(d)). That is, the subfigures

(a)–(d) are the termination condition, corresponding to lines 5–7, lines 8–10, and lines 11–

14, respectively, in the algorithm, while the subfigures (e) and (f) correspond to lines 15–21,

meaning that the error bound needs to be doubled or halved to keep searching toward the

target estimated optimal point (R∗t ,P
∗
t ).
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3.5 Experimental Evalutions

In this section, we compare our proposed compression method with other state of

the art error-bounded compressors (SZ [92], ZFP [67]), which are currently the best existing

generic lossy compressors for scientific data compression [70]. We also compare our method

with other lossy compressors that are widely used in the scientific simulations. We also try

best to optimize the compression quality of all the six lossy compressors from the perspective

of PSNR. For instance, we adopt the absolute error bound mode for both SZ and ZFP in

that they lead to better compression quality than other modes in our experiments.

3.5.1 Multi-algorithm Predictor

Experimental Setting

We conduct our experimental evaluations on a supercomputer using 8,192 cores

(i.e., 256 nodes, each with two Intel Xeon E5-2695 v4 processors and 128 GB of memory,

and each processor with 16 cores). The storage system uses General Parallel File Systems

(GPFS). These file systems are located on a raid array and served by multiple file servers.

The I/O and storage systems are typical high-end supercomputer facilities. We use the

file-per-process mode with POSIX I/O [110] on each process for reading/writing data in

parallel 1. The HPC application data are from multiple domains including CESM-ATM

climate simulation [53], Hurricane ISABEL simulation [46], NYX cosmology simulation

[73], SCALE-LETKF weather simulation (called S-L Sim for short) [108]. All of the data

are available online [82] Each application involves many simulation snapshots (or time

1POSIX I/O is comparable to MPI-IO [100] on thousands of simultaneous write/read [102].
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steps). We assess only meaningful fields with relatively large data sizes (other fields have

constant data or too small data sizes). Table 3.2 presents all the 104 fields across these

simulations. The data sizes per snapshot are 1.2 GB, 3.2 GB, 3 GB and 2 GB for the above

four applications respectively.

Table 3.2: Simulation fields used in the evaluation

Application # Fields Dimensions Examples

CESM-ATM 79 1800×3600 CLDHGH, CLDLOW · · ·

Hurricane 13 100×500×500 CLOUDf48, Uf48 · · ·

NYX 6 512×512×512 dark matter density, v x · · ·

S-L Sim 6 98×1200×1200 U, V, W, QC · · ·

We assess the compression quality based on the four criteria proposed in Section

4.4.1. Since PSNR is the most critical indicator as discussed in Section 4.4.1, we mainly

adopt this metric to assess the distortion of data. In addition, we also evaluate the Pearson

correlation and structural similarity (SSIM) index for different compressors because they

were mentioned in some literatures [8, 106, 107]. Pearson correlation can be computed by

ρX,Y =E(X−µX)E(Y−µY )
σXσY

, where µc and σc (c∈{X,Y }) are means and deviations of X and

Y , respectively. SSIM is considered a critical metric of lossy compression by the climate

community [106]. The higher the Pearson correlation or SSIM, the better the compression

quality.

Evaluation Results

We first check the maximum compression errors of our compressor using all the

104 fields and confirm that our compressor can respect the error bound (denoted by ε)
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strictly. We present a few examples in Table 3.3.

Table 3.3: Maximum Compression Error vs. Error Bound

fields bound max err bound max err

Hurricane-CLOUDf48 0.1 0.099999955 0.01 0.00999998

NYX-v x 0.1 0.0999966 0.01 0.009999995

CESM-CLDHGH 0.1 0.099949 0.01 0.0099999

In what follows, we first compare the three fundamental predictors (Lorenzo, mean-

integrated Lorenzo and linear regression) to showcase the importance of the adaptive design

in Fig. 3.10 and Fig. 3.11. After that, we compare the overall rate-distortion among all

the 6 lossy compressors in Fig. 3.12, which is the most critical evaluation result in terms

of compression quality. We also demonstrate the difference of visual quality across various

lossy compressors with the same compression ratios. Finally, we investigate the parallel

I/O performance gain with different execution scales using our compressor against two

other most efficient state-of-the-art compressors.

Fig. 3.10 demonstrates the effectiveness of our mean-integrated Lorenzo predictor

(denoted M-Lorenzo) over the original Lorenzo predictor, using Hurricane ISABEL dataset.

As shown in Fig. 3.10 (a), the mean-integrated Lorenzo always leads to a smaller bit-rate

(or higher compression ratio) than the original Lorenzo predictor does with the same level of

rate distortion (i.e., PSNR). Specifically, the mean-integrated Lorenzo predictor obtains the

compression ratio about 3X as high as that of the original Lorenzo predictor, when the PSNR

is around 30. Fig. 3.10 (b) shows the fraction of the fields adopting the mean-integrated

Lorenzo predictor in the Hurricane datasets. We observe that the percentage drops as bit-
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rate increases, due to the fact that higher bit-rate corresponds to lower coverage of the

densest interval, which leads to lower percentage on choosing the mean-integrated Lorenzo

predictor in turn. Similar phenomenons can also be observed in other datasets, which we

did not show here because of the page limitation.
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Figure 3.10: Effectiveness of Mean-Integrated Lorenzo Predictor using Hurricane-ISABEL
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Figure 3.11: Significance Analysis for penalty coefficient using Hurricane-ISABEL

In Section 3.3.4, we derived a penalty coefficient, which is critical to determine the

best-fit predictor. In Fig. 3.11, we present the significance of the penalty coefficient, by

comparing three solutions (the solution with/without penalty coefficient and the solution
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adopting only regression-based predictor). As shown in Fig. 3.11(a), the solution with

our derived penalty coefficient outperforms the other two significantly. As illustrated in

Fig. 3.11(b), without the penalty coefficient, the compression quality would be degraded

significantly, since a large majority (99.6%) of blocks would select the Lorenzo predictor

(see red curve in the bottom sub-figure of Fig. 3.11(b)) because of over-estimation of the

Lorenzo prediction ability as discussed in Section 3.3.4. We also present the percentage of

blocks selecting the regression-based predictors, demonstrating that our adaptive solution

does select different predictors for different blocks during the compression. The percent of

regression blocks drops from 98% to 3% as the bit-rate increases, which is consistent with

the compression quality of the two methods.

In Fig. 3.12, we present the overall rate-distortion (PSNR versus bit-rate (or

compression ratio)) calculated using all the fields for each application (Fig. 3.12 (a) is

missing TTHRESH because it cannot work on 2D dataset). It is observed that under the

same compression ratio, our solution leads to higher PSNR with than other compressors.

Specifically, our solution, SZ and ZFP generally exhibit better rate-distortion than other

compressors including FPZIP, VAPOR, and TTHRESH, all of which outperform ISABELA.

From among the three best compressors, the PSNR of our compressor is 10%∼100% higher

than that of the other two (SZ and ZFP) when the compression ratio is the same. This

gap increases with higher compression ratio, as shown in the four sub-figures/BigData18.

In particular, as for CESM-ATM data, when the PSNR is about 45, our compressor leads

the compression ratio to 200:1, while SZ and ZFP get the compression ratio of 76:1 and

25:1 respectively. Based on the four applications, we observe that the compression ratio of
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our compressor is 1.5X∼8X as high as that of SZ and ZFP with the same PSNR, which is

a significant improvement.
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Figure 3.12: Rate-distortion (PSNR versus Bit-rate or Compression Ratio)

We select three typical examples from the 104 fields across different applications to

demonstrate the visual quality of the decompressed data with different compression ratios

compared with the original data (also known as raw data).

The decompressed data under our solution has a better visual quality than either

SZ or ZFP does, based on the NYX (velocity x) dataset. Correspondingly, the SSIM index

of our solution (0.9855) is higher than that of SZ (0.7349) and that of ZFP (0.7004) by 34%

and 40%, respectively.
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As mentioned previously, we note that some fields have very large value ranges

while most of data are clustered in a small close-to-zero range, so the users compute the

logarithm of the data before their analysis or visualization. We compress the log data

instead of the original data since this would improve the compression quality for all lossy

compressors, as suggested by users. As an example, we present the compression result

of dark matter density field from NYX simulation in Fig. 3.13. By zooming in a small

region, we can clearly see that our solution has much higher resolution than others. This is

consistent with the SSIM measure: the SSIM index of SZ is higher than others by 62.8% and

82.5%, respectively. By observing the decompressed images, SZ suffers from a serious data

loss as shown in Fig. 3.13 (c) because many data points would be flushed to the same values

when the error bound is relatively large. ZFP suffers from the unexpected mosaic effect

because it splits the entire dataset into pretty small blocks (4×4×4) and the decompressed

data are flushed to the same value in each block when compression ratio is high.

Furthermore, we show the visualization result of the CLOUDf field in Hurricane-

ISABELA in Fig. 3.14. Similarly, the decompressed data under our solution has a better

visual quality than does SZ or ZFP. Besides some unconspicuous strips (artifacts) in the

blue background, SZ also has some distortion in the enlarged region. On the other hand,

ZFP has little distortion in the background, but exhibits block-wise effects in the enlarged

region. Our solution has little distortion in both the background and local region, which

leads to very high overall visual quality (SSIM 0.9966).

In addition to error-bounded lossy compressors, we also present the visual quality

of using down-sampling methods as compression and interpolation methods as decompres-
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(a) original raw data (b) our sol. (PSNR=29,SSIM=0.6867)

(c) SZ (PSNR=24.5,SSIM=0.4218) (d) ZFP (PSNR=21.3,SSIM=0.3762)

Figure 3.13: Data Distortion of NYX(dark matter:slice 100) with CR=58:1

sion (a mechanism widely used in the visualization community) in Fig. 3.15 for comparison.

During the compression, one data point would be sampled uniformly every 4 points for each

field in each dimension, leading to the compression ratios of 64:1. During the decompres-

sion, tricubic interpolation [56] is used to reconstruct the missing points. We can clearly

observe that our solution exhibits much better visual quality (see Fig. 3.13 (b) vs. Fig. 3.15

(a); Fig. 3.14 (b) vs. Fig. 3.15 (b)), in that the downsampling+interpolation method over-
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(a) original raw data (b) our sol. (PSNR=51, SSIM=0.9966)

(c) SZ (PSNR=29.9, SSIM=0.6573) (d) ZFP (PSNR=22.5, SSIM=0.8893)

Figure 3.14: Data Distortion of Hurricane(CLOUDf:slice 50) with CR=66:1

smoothed the regions with diverse values (Fig. 3.15 (a)) and over-amplified some boundary

data points (Fig. 3.15 (b)).

Pearson correlation coefficient has been used to assess the correlation between

the original dataset and decompressed dataset [8] by the community. We have validated

that the Pearson correlation coefficients under our solution are higher than those of SZ

and ZFP in a large majority of cases across all the four applications. We here exemplify
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(a) dark matter density(CR=64:1,PSNR=18.1,

SSIM=0.4345)

(b) CLOUDf(CR=64:1,PSNR=17.7,SSIM=0.7681)

Figure 3.15: Data distortion of uniform down-sampling and tricubic interpolation of NYX

dataset with similar compression ratios

the correlation results in Table 3.4 using only NYX data due to the space limitation. We

run three compressors and tune their compression ratios to be 60:1∼70:1. The reason we

cannot fix the compression ratio across fields is that ZFP exhibits piece-wise compression

ratios with various error bounds. We did not use fixed-rate mode for ZFP because it is

always worse than its fixed-absolute-error mode in our experiments with respect to the

rate-distortion.

Table 3.4: Pearson Correlation Coefficients of 6 Fields in NYX

fields our solution SZ ZFP CR

dark matter density 0.959274616 0.939890773 0.763353467 58:1

baryon density 0.999537914 0.986076774 0.999529095 66:1

temperature 0.992798653 0.870542883 0.995984391 66:1

velocity x 0.999961851 0.996793357 0.999871972 70:1

velocity y 0.999944697 0.997787266 0.999912867 70:1

velocity z 0.999867946 0.992133964 0.999826937 63:1
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We evaluate the overall data dumping/loading performance on the NYX simulation

using different lossy compressors with the same level of data distortion. Specifically, we set

the PSNR for its fields to 60 except for dark matter density (PSNR=30) and baryon density

(PSNR=40), because such a setting already reaches a high visual quality (as exemplified

in Fig. 3.13(b)). The evaluation is weak-scaling. Each rank processes 3 GB data and the

total data size increases linearly with the number of cores. We assess the performance by

running different scales (2,048 cores ∼ 8,192 cores), and each core needs to process a total

of 3 GB data during the execution. The total data size is up to 24 TB when using 8,192

cores, which may take over six hours to dump. We present the breakdown of the data

dumping performance (sum of compression time and data writing time) and data loading

performance (sum of data reading time and decompression time) in Fig. 3.16. Since the

parallel performance is dominated by the data reading/writing time (to be shown later)

and VAPOR, FPZIP and ISABELA have low compression ratios, they exhibit much higher

overall data dumping/loading time than the other compressors. Accordingly, we omit their

results in the figure to clearly observe the performance difference among the three best

solutions (our solution, SZ and ZFP).
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Figure 3.16: Performance evaluation using NYX

It is observed that the overall data dumping time under our solution takes only

24% and 54% of the time cost by SZ and ZFP when adopting 8,192 cores, which correspond

to 4.12X and 1.86X performance, respectively. The key reason is that our compressor leads

to significantly higher compression ratios than the other two compressors when the PSNR

is in the range of [30,60], as shown in Fig. 3.12(c). When running the simulation with

8,192 cores, our solution can also obtain 1.95X higher data loading performance (49% lower

time cost) than the second best solution (ZFP) does. It is a little higher in comparison

with data dumping performance (1.86X), because of the higher decompression rate than

the compression rate.

3.5.2 Hybrid Prediction Model

Experimental Setting

We conducted our experimental evaluation on the Bebop supercomputer [89] at

Argonne National Laboratory using 2,048∼8,192 cores (i.e., 64∼256 nodes, each with two

Intel Xeon E5-2695 v4 processors and 128 GB of memory, and each processor with 18
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cores). The storage system uses General Parallel File Systems (GPFS), which are located

on a raid array and served by multiple file servers. The I/O and storage systems are typical

high-end supercomputer facilities equipped with two I/O nodes. Such a system is a good

case for demonstrating the I/O bottleneck when I/O is saturated, which is a common case

when running extremely large-scale applications (e.g., with millions of cores) on cutting-

edge supercomputers because I/O nodes are always far fewer than compute nodes. We use

the file-per-process mode with POSIX I/O [110] on each process for reading/writing data

in parallel.

The application data is from multiple domains including Hurricane Isabel climate

simulation [46], NYX cosmology simulation [73], and SCALE-LETKF weather simulation

[108]. Each application involves multiple simulation snapshots (or time steps). Without loss

of generality, we assessed only meaningful fields with relatively large data sizes (other fields

have either constant data or data sizes that are too small). Also, some datasets with closed

clustered data in [0, 1] are transformed to its logarithmic domain for better visualization

quality, as suggested by the domain scientists. The data sizes per snapshot are 1.3 GB, 3

GB, and 6 GB per core for the three applications, respectively. Thus, the total data sizes

per snapshot are 10.4 TB, 24 TB, and 48 TB, respectively, when the execution scale is 8,192

cores in our experiment.

We focus on the improvement in rate distortion and in parallel I/O performance

by leveraging our designed lossy compressor, as compared with three state-of-the-art lossy

compression methods: SZ2.0 [65], ZFP0.5.4 [67], and an automatic online selection between

SZ and ZFP from [96] (called AOS for short). They have been confirmed as the best in
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Figure 3.17: Assessment of Bestfit Selection Algorithm on Hurricane Isabel
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Figure 3.18: Assessment of Bestfit Selection Algorithm on NYX
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Figure 3.19: Assessment of Best-Fit Selection Algorithm on SCALE-LETKF
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class [23,70,96]. Since the compression ratio will dominate the I/O performance in a large-

scale environment (as discussed in Section 4.4.1), we also investigated the rate distortion

of different compressors. We note that we did not evaluate error bounds as compression

quality because domain scientists care more about overall statistical errors, as mentioned

in Section 4.4.1.

In what follows, we first assess our selection algorithm in terms of the overall

rate distortion results, that is, the bit rate vs. data distortion (assessed via PSNR). Next

we compare the overall rate distortion of our compressor with that of other state-of-the-

art compressors, and we investigate the satisfactory level of data distortion by visualizing

the decompressed data compared with the original raw data in high resolution. We then

report on a series of parallel experiments to evaluate the I/O performance gain of our lossy

compressor against other state-of-the-art compressors.

Assessment of Our Bestfit Prediction Selection Algorithm

In this subsubsection, we analyze the effectiveness of our best-fit prediction selec-

tion algorithm proposed in Section 3.4.3. We present the rate distortion curves of the three

solutions based on our improved data-fitting prediction, our improved transform-based pre-

diction, and our best-fit selection algorithm, respectively, in Figs. 3.17, 3.18, and 3.19.

We demonstrate three fields for each application because of the limited space; other fields

lead to the similar results. Based on the definitions of PSNR and bit rate given in Section

4.4.1, the more left a curve is located, the higher its overall compression quality is. We

can see that our selection algorithm can always select the best-fit predictor in the given bit

rate range, such that the rate distortion result is optimized for any point in this range. In
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Fig. 3.17(a), for instance, our solution selects the data-fitting predictor when the bit-rate

is lower than 0.1 or higher than 2.5 and the transform-based predictor otherwise, leading

to the best rate distortion for all bit rates. On the other hand, our solution is able to select

the data-fitting predictor when it is better than the transform-based predictor, as shown

in 3.17 (c). Therefore, our solution can lead to a much better result when all the fields

in the dataset are considered. We note that our solution does not fully overlap with the

data-fitting predictor because it does not yield the same error bound (due to the selection

mechanism) as the data-fitting predictor for one or two points on the switching boundary.

They would have the same result, however, when the error bound in the selector is restricted

to the same value.

Rate Distortion of Our Solution versus State-of-the-Art Methods

We present the rate distortion curves (bit rate vs. PSNR) for the three applications

in Figs. 3.20, 3.21, and 3.22. In each figure, we present the overall result (with the same

error bounds for all fields) in the first subfigure and demonstrate the results for two specific

fields in the other two subfigures/SC19. One can clearly see that our solution always

outperforms other compressors in compression quality. The key reason is that our new

encoding scheme for the transform-based predictor is more efficient than the traditional

embedded encoding. Also, it can automatically switch to the data-fitting predictor when

the data-fitting predictor performs well as our sampling strategy can effectively select the

best-fit one. Note that AOS is worse than SZ2.0 in some cases because it builds on the

Lorenzo predictor in SZ1.4 and its mechanism cannot be applied to the hybrid design

in SZ2.0 directly. Also note that the overall improvement on all fields for each application
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appears not as high as the individual gain on each field, because we can only adopt the same

error bound to perform the compression for each field, such that the PSNR values across

different fields have a high variance, leading to a mitigated overall PSNR. This situation

would not happen when people compress the data based on the statistical distortion (PSNR)

instead of the same error bound for different fields, which is a usual case in the real world.

Parallel Performance

Before performing the evaluation of parallel I/O performance with different lossy

compressors, we need to determine the acceptable level of data distortion. To this end,

we plot the data using a visualization tool for each field involved in our experiment and

select the distortion level (PSNR) with a high visual quality for each field. We demonstrate

two examples in Figure 3.23 and Figure 3.24, respectively. In the NYX simulation, for

instance, the reconstructed data of the velocity x field has a fairly high visual quality (even

visualizing it with a higher resolution) when the PSNR is about 68, whereas its visual

quality decreases with lower PSNR. By comparison, for the QS field in the SCALE-LETKF

simulation, PSNR=46 is enough for getting a good visual quality (see Fig. 3.24), whereas

PSNR=32 causes a noticeable distortion with high resolution. In our experiments, we tune

the PSNR to the same value for different lossy compressors. This value is set to 60 ∼ 70

for normal data (e.g. NYX velocity x) and 40 ∼ 50 for the logarithmic data (e.g. SCALE-

LETKF QS).

1exact number in the brackets
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Figure 3.20: Rate Distortion in Hurricane Isabel Simulation
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Figure 3.21: Rate Distortion in NYX Simulation
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Figure 3.22: Rate Distortion in SCALE-LETKF Simulation

103



(a) original raw data (b) dec data (PSNR=68) (c) dec data (PSNR=52)

Figure 3.23: Visualization of NYX (velocity x) by Comparing Raw Data and Reconstructed

Data with Different PSNRs

Table 3.5: Compression Ratios (Raw Size over Compressed Size) and Memory Overhead

SZ2.0 ZFP0.5.4 AOS OurSol OurSol b

Hurricane Isabel 36.83 29.46 (�1%) 30.04 54.5 51.69 (1.1%)

NYX 53.78 46.51 (�1%) 46.51 103.7 96.92 (1.6%)

SCALE-LETKF 51.72 41.26(�1%) 43.82 109.5 102.1 (1.1%)

Memory Overhead 100% Constant1 100% 100% Constant1

Table 3.5 presents the compression ratios when compressing the three application

datasets by four compressors with the same data distortion (PSNR). The table shows that

our solution leads to the highest compression ratio in all cases. In absolute terms, its

compression ratio is higher than that of the others by 48∼85%, 93∼123%, and 112∼165%,

respectively. We also show the memory overhead of these different approaches. Since SZ

requires extra space to store the frequencies in the Huffman tree, it incurs 100% memory

overhead. On the other hand, ZFP only has constant memory overhead since it processes the
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(a) original raw data (b) dec data (PSNR=46) (c) dec data (PSNR=32)

Figure 3.24: Visualization of SCALE-LETKF (QS) by Comparing Raw Data and Recon-

structed Data with Different PSNRs

data block by block. AOS follows either SZ or ZFP, so it has 100% memory overhead in the

worst case. Our vanilla solution adopts the SZ prediction scheme as it is, leading to 100%

overhead. In fact, the memory overhead can be significantly reduced by dividing the data

into small blocks and performing the compression block by block, such that the memory

overhead can be limited to the block size (constant). We show the result of this blockwise

optimization with 128x128x128 block division (64x64x64 for Hurricane to keep around 1%

memory overhead) in the last column “OurSol b”. It has constant memory overhead with

slightly lower compression ratio (less than 7%) due to the overhead of the Huffman tree in

each block. But it still keeps the dominance in compression ratios, compared with other

existing lossy compressors.

As discussed in Section 4.4.1, the data dumping/loading performance with lossy

compression includes both I/O performance of the parallel file system and compression/decompression

performance of the compressor. For large-scale executions when I/O is saturated, however,
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the compression ratio will dominate the overall data dumping/loading performance for

weak-scaling problems, which is often the case for scientific simulations. The reason is that

the I/O throughput will remain constant while the total I/O size will increase linearly with

the scale. On the other hand, the compression/decompression time will not change because

the workload on each rank/node will remain the same even when the scale increases because

of limited memory capacity per rank/node (i.e., weak-scaling case). Therefore, the com-

pression ratio will always be the dominant factor for the total I/O performance of current

parallel systems when the scale becomes large, as confirmed in our following experiments.

We present the overall data-dumping time and data-loading time for the three ap-

plications (Hurricane Isabel climate simulation, NYX cosmological simulation, and SCALE-

LETKF weather simulation), in Figs. 3.25, 3.26, and 3.27, respectively. Specifically, we

launched 2,048 ranks (∼ 8,192 ranks) to dump and load the total data in parallel. The

original raw data writing times would be over 2 hours, 5 hours, and 10 hours, respectively,

because of the extremely large data size (10 TB∼48 TB) to process. We ran each case five

times and record the compression/decompression time and writing/reading time, as well

as the error bars of the total time. The three figures/SC19 clearly show that the solution

with our new compressor improves the total I/O performance by 60X than the original

I/O performance without any compressor. Moreover, our solution outperforms the other

three solutions significantly, especially when the execution scale reaches 8,192 cores. The

performance gains over other solutions are approaching the compression ratios with exe-

cution scale (or total data size), as is consistent with our analysis. For instance, for the

data-dumping performance of the SCALE-LETKF application, our solution outperforms
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Figure 3.25: Parallel Performance on Hurricane Isabel Simulation
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(a) Data dumping performance
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(b) Data loading performance

Figure 3.26: Parallel Performance on NYX Simulation
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Figure 3.27: Parallel Performance on SCALE-LETKF Simulation
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others by 9.6∼15%, 39.1∼64%, and 72.5∼110%, respectively, which gets closer and closer

to the gains on the compression ratios (112%∼165%). For the NYX simulation, our solution

outperforms the other solutions by 17.8∼30% in dumping 6 TB of data by 2,048 cores, and

it increases up to 85.3∼94% for dumping 24 TB data by 8,192 cores. Moreover, our solution

may get further I/O performance gains over other solutions at larger execution scales when

I/O is saturated, since the compression time is constant whereas the I/O increases nearly

linearly with scale.

3.6 Summary

In this work, we seek to optimize the rate distortion of error-bounded lossy com-

pression by adopting an adaptive, hybrid prediction framework that combines the prediction-

based compression model and transform-based compression model. We improve the coeffi-

cient encoding efficiency for both models and also optimize the estimation accuracy to select

the best-fit predictor. We perform our evaluation using large real-world simulation datasets

across different scientific domains on a supercomputer with up to 8,192 cores. Experiments

demonstrate that our solution leads to higher compression ratios compared with other lossy

compressors, leading to significantly improved I/O performance.
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Chapter 4

Enhancing Lossy Compression

Efficiency for Relative Error

Bound and I/O Performance

4.1 Introduction

Today’s scientific research is in urgent need of efficient error-bounded lossy com-

pressors due to the extremely large volumes of data produced in high performance comput-

ing (HPC) simulations and applications. Although the previous chapter proposes several

algorithms to improve the efficiency of error-bounded lossy compression, these are still dis-

crepancies between the compressors and the demands from domain scientists. On the one

hand, the proposed approaches either target PSNR or absolute error bound, whereas a

bunch of scientific applications [43,73] require relative error bound at least for some of the
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data fields. On the other hand, these algorithms focus on how to maximize the compression

ratios given the error bound or distortion instead of how to get the best I/O performance.

In this chapter, we tackle these two problems by leveraging an efficient preconditioner for

applications demanding relative error bound and an adaptive compression framework tar-

geting I/O performance. Our contributions are summarized as follows.

• We formalize the transformation problem between absolute error bound and relative

error bound in the context of lossy data compression mathematically. We also solve

this problem and find the unique mapping function, which is consistent with using

logarithmic change for error measurement.

• We investigate the impact of the selection of different logarithmic bases on the com-

pression quality for SZ and ZFP, respectively. We prove that various bases lead to

the similar compression results theoretically.

• We propose an efficient pointwise relative-error-bounded lossy compression algorithm

by combining the logarithmic data transform scheme and state-of-the-art absolute-

error-bounded compressors. Specifically, we integrate the transformation scheme into

both SZ and ZFP.

• We propose an optimized data dumping performance model that can effectively rep-

resent the writing performance with different execution scales and data sizes.

• We analyze our proposed performance model in terms of the lossy compression tech-

nique, which is a fundamental guideline to develop an efficient algorithm for optimizing

the data dumping performance.
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• We develop an adaptive lossy compression framework with a series of optimization

strategies to improve the dumping performance for the scientific simulations with

error-bounded lossy compressors. The optimized framework has two critical steps:

compression quality estimation and online optimization of compression settings.

4.2 Background

4.2.1 Lossy Compression with Relative Error Bound

In comparison with the absolute error bound that has been widely used to control

the data distortion by existing state of the art lossy compressors [67,92], pointwise relative

error bound is significant for many scientific applications. Unlike absolute-error-bounded

compression (i.e., the difference between each decompressed data value and its corresponding

original value must be bounded within a constant number), pointwise relative-error-bounded

compression means that the compression error of each data point should be bounded within

a constant percentage of its data value. That is, the smaller the data value, the lower the

absolute error bound to be applied on the data point. Obviously, the pointwise relative error

bound can preserve more details in regions with small values. On the other hand, some

application users demand pointwise relative error bound based on the physical meaning of

the simulation. According to cosmologists (such as the users and developers of HACC and

NYX), for example, the higher a particle’s velocity is, the larger the compression error it

can tolerate.

Pointwise relative error bound is much tougher to deal with than absolute error

bound according to the principles of lossy compressions. SZ [32,33,92], for example, predicts
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the value for each data point based on the consecutiveness of the dataset and control the

compression errors by a linear-scaling quantization method. Since the bin size is fixed

for each data point, the compression errors can be bounded within a constant value (i.e.,

absolute error bound). However, such a design cannot adapt to the demand of pointwise

relative error bound, which requires diverse error controls on different data points. In

order to enable SZ to support point-wise relative error bound, a blockwise strategy was

proposed [33]: the entire data is split into multiple non-overlapped data blocks each adopting

an absolute-error-bounded compression where the error bound is calculated by using the

minimal value in the block. This strategy may significantly degrade the compression ratio,

especially when the minimal values in some blocks are far smaller than other data values in

those blocks, because the absolute error bounds would be too small to get a high compression

ratio. The developers of ZFP [67] proposed an approximate compression mode (called

precision) to achieve a similar effect with pointwise relative error bound. However, it

cannot fully respect the pointwise relative error bound (to be presented later) because the

data transformation and embedded encoding adopted in the compression are designed for

the optimization of rate distortion, that is, peak signal-to-noise ratio (PSNR) vs. bit-rate

(the number of bits used to represent one data point on average).

4.2.2 Lossy Compression for I/O Performance

Improving the overall I/O performance of lossy compression is important in scien-

tific simulations because the prohibitive I/O time is the main reason for preventing scientific

simulations from scaling up. The goal is to provide users with an error-bounded lossy com-

pressor of possibly optimal output throughput. The key challenge that we address is how to
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optimize the trade-off between compression overhead, compression ratio when the quality

of the data is guaranteed. This trade-off poses difficult challenges because of the antagonis-

tic effects of these aspects: better compression ratio typically leads to higher compression

overhead. Therefore, in order to optimize the I/O performance, we need to find the sweet

spot that can minimize the sum between the compression overhead and the write overhead

to the PFS without violating the desired quality properties. While compression can be

applied in an embarrassingly parallel fashion, writes to the PFS are subject to a limited

global I/O bandwidth. Therefore, it is non-trivial to find such a sweet spot. To solve this

problem, we introduce an novel adaptive approach that relies on I/O performance modeling

to characterize the write overhead to the PFS under variable number of ranks and data size

per rank. Then, using this performance model and data sampling, we propose a strategy to

choose an optimal lossy compression algorithm and fine-tune it such that it has the lowest

dumping time.

4.3 An Efficient Transformation Scheme for Relative Error

Bound

In this part, we propose to leverage the logarithmic transformation to change a

relative-error-bound compression problem to an absolute-error-bound compression problem,

which coud serve as a preconditioner for scenarios demanding relative error bound.
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4.3.1 Mathematical Foundation of the Transformation Scheme

In this section, we leverage a specialized data transformation scheme that can

convert the pointwise relative-error-bounded lossy compression problem to an absolute-

error-bounded lossy compression problem. That is, under our designed mapping scheme,

any absolute-error-bounded lossy compressor can be enabled to support pointwise relative

error bound such that more details can be preserved in the regions with small data values.

In what follows, we first derive an efficient data mapping/transformation scheme and then

prove that the mapping method is the unique solution to the data conversion between the

absolute error bound and pointwise relative error bound. We also analyze how to adjust the

absolute error bound for the lossy compression to strictly respect the pointwise relative error

bound, considering the impact of the possible round-off errors raised during the mapping.

Theories of the Transformation Scheme

The research problem can be formulated as follows: find a bijective and continuous

function (denoted by f) that can map the original dataset (denoted by x) to another

domain f(x) such that the pointwise relative error bound (denoted by br) can be mapped

to an absolute error bound (denoted by ba) using another mapping function g (i.e., ba =

g(br)). Note that the mapping function (g) used to convert the error bound is different

from the mapping function (f) used to transform the data, which will be discussed later

in more detail. Moreover, the mapping function f should be bijective because we need to

map the data reconstructed by the absolute-error-bounded compressor back to the original

data domain (i.e., x=f−1(f(x))) during the decompression. It also needs to be continuous
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because otherwise the mapping function may affect the continuity of the original data,

degrading the data prediction accuracy in turn. With such a continuous bijective mapping

function, the original data can be mapped to another domain and then compressed by

the corresponding absolute error bound ba. In the decompression phase, the data will

be mapped back to the original domain via the corresponding inverse function, and the

pointwise relative error bound will automatically hold. We derive Theorem 3 in order to

search for the most effective mapping function.

Theorem 3. Given a dataset whose data values are denoted by x, Equation (4.1) is a

sufficient condition of transforming it to another data domain by a mapping function f ,

such that if the transformed data are compressed with an absolute error bound g(br), the

corresponding inverse mapping of the decompressed transformed data will always be bounded

by the pointwise relative error bound br in the original domain.

f−1(f(x) + g(br))− x
x

= br (4.1)

Proof. The pointwise relative-error-bounded compression regarding the mapping function

can be formalized as

|f−1(f(x) + ε)− x|
|x|

≤ br

where ε∈[−g(br), g(br)] refers to compression error, f is the target forward-mapping function

to be applied before the compression, and f−1 refers to the inverse function to be applied

after the decompression.

Since f and f−1 are bijective and continuous, they must be strictly monotonic.

Without loss of generality, we denote x as a positive value, and f(x) is a monotonically

increasing function (in fact, if x < 0, it can be mapped to −x first and then we can derive
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the same result by the following derivation). Since f is a monotonic function and x > 0, we

have f−1(f(x) + ε) must be always in interval [f−1(f(x)− g(br)), f
−1(f(x) + g(br))].

In order to reach the maximum compression ratio, the absolute compression error

ε and the pointwise relative compression error are expected to be equal to their bounds (i.e.,

g(br) and br) at the same time. This leads to f−1(f(x)+g(br))−x
x = br and f−1(f(x)−g(br))−x

x =

−br. Although g is defined only in [0, +∞) because of the pointwise relative error bound

br ≥ 0, we can merge the two equations to Formula (3) if we introduce a definition g(x) =

−g(−x)(∀x < 0) without loss of generality.

This theorem indicates that the pointwise relative error bound can be transformed

to an absolute error bound as long as Equation (3) holds for the data-mapping function f

and the error-bound-mapping function g. In what follows, we derive a theorem (Theorem

(5)) to find the corresponding functions.

Before proposing the theorem, we recall a critical lemma based on the theory of

functional equations.

Lemma 4. The exponential function is the only continuous and nonconstant function that

satisfies f(x+ y) = f(x)f(y), where x and y are both real numbers.

Theorem 5. f(x) = logbase x + C is the unique mapping function that satisfies the Equation

(4.1), where base > 1 and C = f(1) ∈ R. In this situation, the mapping function g of the

absolute error bound is ba = g(br) = logbase(1 + br).

Proof. We rewrite Equation (4.1) and apply f to both sides

f(x) + g(br) = f((1 + br)x).
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Let us set x = 1. Then the function g can be represented as g(br) = f(1 + br)− f(1). Let

y = 1 + br, and substitute g in the above equation. Then we have

f(x) + f(y)− f(1) = f(xy)

Let h(x) = f(x)−f(1), then we can derive h−1(x) = f−1(x+f(1)). According to the above

equation, we can get:

h(x) + h(y) = f(x) + f(y)− 2f(1) = f(xy)− f(1) = h(xy).

Applying h−1 to the left-most and right-most sides of the above equation, we get the

following equation:

h−1(h(x) + h(y)) = xy = h−1(h(x))h−1(h(y)).

Let x′ = h(x) and y′ = h(y). The equation turns out to be h−1(x′ + y′) = h−1(x′)h−1(y′).

Denoting h−1(1) = base leads to h−1(x) = basex according to Lemma 4. Thus, h(x) =

logbase x. Let f(1) = C. We have f(x) = h(x) + f(1) = logbase x + C. Accordingly,

ba = g(br) = f(1 + br)− f(1) = logbase(1 + br).

Without loss of generality, C can be set to 0 because of two factors. On the one

hand, C just adds a static shift to the mapped data, which means that it has no effect on

the prediction accuracy of the Lorenzo predictor. On the other hand, more perturbations

may be introduced to the result because of round-off errors if C is nonzero. Therefore we

fix C = 0 in our implementation.

As previously mentioned, the logarithmic function is used for relative error mea-

surement in some scientific domains such as economics and ocean observations. The theory

presented in this paper, in addition, further indicates that the logarithmic function family
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is the unique mapping function for transformation between relative error and absolute error

in the context of lossy data compression.

Round-off Error Considerations

Because of the inexact representation of floating-point arithmetic, we cannot pro-

duce exact calculation results. Thus, there is also round-off error while applying the mapping

function f and f−1. When this error is taken into consideration, the pointwise relative error

bound may no longer be respected. In this subsection we analyze how to control this error.

Now that we have our mapping function f(x) = loga x and its reverse function

f−1(x) = ax. To find the error bound in the logarithmic domain such that the original

point-wise error bound can be respected, we have the following lemma.

Lemma 6. The absolute error derived in Theorem 5 should be adjusted to b′a = loga(1 + br)−

maxx | loga x|ε0 to respect the pointwise relative error bound considering round-off errors,

where maxx | loga x| is the maximum absolute value of the mapped data loga x and ε0 is the

round-off error introduced to f(x) because of machine precision.

Proof. For any data point x, its decompressed value xd will be

xd = f−1(f(x)(1 + ε0) + ε) = a(1+ε0) loga x+ε = xaε0 loga x+ε

where ε ∈ [−b′a, b′a] is the compression error of data in the transformed domain (i.e., loga-

rithmic data domain). Similar to the analysis above, in order to respect the error bound,

the absolute error bound b′a should be set as follows: aε0 loga x+b
′
a ≤ 1+ br for any data point

x. Therefore, we have b′a = g′(br) = loga (1 + br)−maxx |logax|ε0.

118



We set ε0 to machine epsilon in our implementation. This setting can already

have all of the data points strictly bounded within the specified error bounds during the

compression in our evaluation, as will be presented later.

4.3.2 Impact of Base Selection

In this section, we investigate the impact of base selection for the logarithmic

mapping solution in Theorem 5. Specifically, we prove that different logarithmic bases

lead to similar compression results; therefore, simply changing the logarithmic base cannot

improve the compression quality.

Impact of Base Selection on SZ

Review of SZ. To understand the impact of base selection on SZ, we need to

review the principle of the SZ compressor. SZ [92] is a prediction-based lossy compressor.

It consists of three stages during the compression. In the stage I, it predicts each data value

in the dataset according to some deterministic prediction model. Then, it applies a linear-

scaling quantization on the prediction errors such that all the floating-point values could be

converted to a set of integer quantization codes. In stage II, SZ adopts a customized Huffman

encoder constructed in terms of the quantization codes and performs the compression. Stage

III applies GZIP to the encoded data to further improve the compression ratio. This step is

optional depending on how hard the data is to be compressed and the error bound specified.

During the decompression, SZ first decompresses the data by GZIP and the Huffman encoder

and then recovers the data by the prediction model with the decoded prediction errors.

For the data prediction, SZ adopts the Lorenzo predictor [47] with a limited number of
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neighbors by default since more neighbors may cause degraded prediction accuracy because

of the impact of the decompressed values.

Logarithmic Base Analysis. We notice that the selection of different bases for

the log mapping function does not affect clearly the compression quality of SZ. In absolute

terms, we have the following lemma.

Lemma 7. For SZ lossy compressor with Lorenzo predictor and linear-scaling quantization,

different bases will lead to the same prediction accuracy, if the arithmetic operations lead to

the exact results.

Proof. Suppose a mapping function f(x) = loga x is used to compress the same 1D dataset.

Then the quantization index i should satisfy Equation (4.2), when predicting the next point

x1 by the previous data point x0.

loga x1 = loga x0 + q loga(1 + br) (4.2)

Thus, q can be solved as follows.

q =
loga x1 − loga x0

loga (1 + br)
=

loga
x1
x0

loga (1 + br)
= log1+br

x1
x0

Therefore, the quantization index is independent of the mapping base a if the arithmetic

operations lead to exact results. This also holds for 2D and 3D Lorenzo predictors since

the quantization index can be computed as follows.

q2D =
loga x01 + loga x10 − loga x00 − loga x11

loga (1 + br)
= log1+br

x01x10
x00x11
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q3D =
loga x001 + loga x010 + loga x100 + loga x111

loga (1 + br)

− loga x000 + loga x011 + loga x101 + loga x110
loga (1 + br)

= log1+br
x001x010x100x111
x000x011x101x110

However, the floating-point arithmetic operations may cause nonexact results be-

cause of round-off errors, introducing certain deviation to the distribution of quantization

index codes. Fortunately, we can derive a strict bound for the quantization index with

different bases as follows.

Theorem 8. Given two coding integer values (q0 and q1) at ith quantization index bin

based on two different bases, the difference in between is bounded by | log1+br (1− br) − 1|,

3| log1+br (1− br)− 1|, 7| log1+br (1− br)− 1| for the 1D, 2D, and 3D Lorenzo predictions,

respectively.

Proof. Let us start with the 1D case. Without loss of generality, assume that the decom-

pressed data of two bases are x1d and x1d′ . Then the difference of their quantization indices

q0 and q1 can be derived according to Lemma 7.

q0 − q1 = log1+br
x1
x0d
− log1+br

x1
x0d′

= log1+br
x0d′

x0d

Since (1− br)x0 ≤ x0d ≤ (1 + br)x0 and (1− br)x0 ≤ x0d′ ≤ (1 + br)x0, we have

log1+br
(1− br)x0
(1 + br)x0

≤ q0 − q1 ≤ log1+br
(1 + br)x0
(1− br)x0

.

It can be simplified to

log1+br (1− br)− 1 ≤ q0 − q1 ≤ 1− log1+br (1− br).
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As for the 2D and 3D Lorenzo predictions, the difference involves 3 and 7 multiplication of

decompressed data. Thus they are bounded by

log1+br (
1− br
1 + br

)3 ≤ q0 − q1 ≤ log1+br (
1 + br
1− br

)3

log1+br (
1− br
1 + br

)7 ≤ q0 − q1 ≤ log1+br (
1 + br
1− br

)7,

which corresponds to the given bounds in the theorem.

Impact of Base Selection on ZFP

Review of ZFP. Similarly, we first go over how ZFP works as an error-bounded

lossy compressor and the metrics to assess the effectiveness of its orthogonal transform.

ZFP [67] adopts a largely different method to compress a floating-point dataset compared

with SZ. Briefly, it involves two critical steps: an invertible blockwise transform on the input

data and an embedded encoding for the transformed coefficients. Specifically, it divides

the whole dataset into independent blocks, aligns the exponents, and turns the floating-

point representations into fixed-point representations. Then, ZFP applies a data transform

in each block. Finally, it performs an embedded encoding on the transformed data (or

transformed coefficients). Such a design obtains an optimized rate distortion (i.e., PSNR

vs. bit-rate), although it may not maximize the compression ratio given an error bound

because it conservatively overestimates the errors in the maximum bit-plane computation

for the purpose of strictly respecting the error bound.

The transform is the most critical part in ZFP compression, and it is the key

factor of the final compression quality. Its effectiveness can be determined by two metrics,
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decorrelation efficiency and coding gain, as introduced in [26,67]. Therefore, we analyze the

impact of the logarithmic base selection according to the two metrics, defined as follows.

Definition 9. Considering that each entry in a block is a random variable, the decorrelation

efficiency η and coding gain γ can be defined by

η =

∑
i σ

2
ii∑

i

∑
j σ

2
ij

γ =

∑
i σ

2
ii

n(
∏
i σ

2
ii)

1
n

, (4.3)

where σij is the element in the ith row and jth column of the covariance matrix of trans-

formed coefficients and n is the number of elements in a block.

Logarithmic Base Anaylsis. With these two metrics, we can analyze the impact

of different logarithmic bases on the quality of ZFP compression with the following lemma.

Lemma 10. Decorrelation efficiency η and coding gain γ will be unchanged across different

logarithmic bases.

Proof. For simplicity, we only discuss 1D cases. The multi-dimensional cases can be de-

ducted accordingly. We use A to denote any generic transform matrix.

Denote X = (X1, . . . , Xn)T as random variables of origin data in each block,

V = (V1, . . . , Vn)T as the random variables of coefficients. The data will turn out to be

Y = logaX = lnX
ln a after the logarithmic transformation. Correspondingly, the coefficients

will be V = AY . More specifically, let us denote A = (A1, . . . , An)T , where Ai is the ith

row vector of A. Then the covariance between any of two variables can be computed by

σij = cov(Vi, Vj) = E(ViVj)− E(Vi)E(Vj)

= E(Y TAT
i AjY )− E(Y )AT

i A
T
j E(Y )

= E((
lnX

ln a
)TAT

i Aj
lnX

ln a
)− E((

lnX

ln a
)T )AT

i AjE(
lnX

ln a
)

=
1

(ln a)2
[E((lnX)TAT

i Aj lnX)− E(lnX)TAT
i AjE(lnX)].
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Thus, the logarithmic base a serves only as a multiplicand factor. During the computation

of η and γ as shown in Equation (4.3), 1
(ln a)2

can be extracted as a common factor of both

numerator and denominator and thus canceled. Therefore, the base selection will not affect

the decorrelation efficiency and coding gain of ZFP.

As such, we have proved that the ZFP transform will work equally well on different

logarithmic bases. In fact, different logarithmic bases just apply different multiplicands to

the transformed coefficients. Under these circumstances, the compression quality of ZFP

will hardly change, as will be validated in the evaluation section.

4.3.3 Implementation

In this section, we discuss how to implement the pointwise relative error bound by

combining the logarithmic data transform scheme and the existing state-of-the-art absolute-

error-bounded lossy compressors.

The pseudo-code of the logarithmic-mapping-based lossy compression in terms of

pointwise relative error bound is presented as Algorithm 6.

In the algorithm, we first calculate the required absolute error bound (denoted by

b′a) based on the given pointwise relative error bound br, with a consideration of the possible

round-off errors to be introduced during the mapping operation due to the machine epsilon

(line 1), according to Lemma 6. Then, the algorithm performs the data transformation

based on the logarithmic function (line 2∼8). If the original data point’s value is equal

to 0, we will map it to the lower-bound exponent of the floating-point data value range

minus 2b′a. Specifically, the minimal positive values of a single-precision number and a
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Algorithm 6 Logarithmic-mapping based lossy compression for point-wise rel-

ative error bound
Input: a dataset (denoted by D), user-specified point-wise relative error bound br
Output: compressed data stream in form of bytes

1: b′a = loga(1 + br) − maxx | loga x|ε0; /*Calculate the absolute error bound in the transformed data

domain*/

2: signs[‖D‖] = {0}, P = 1

3: for (each data point Di in the dataset D) do

4: if (Di == 0) then

5: di = log2(min) − 2b′a, where min refers to the minimum floating-point value; /*set di to be two

error bounds less than the lower-bound exponent of the data value range*/

6: else

7: if (Di > 0) then

8: Compute di = log2(Di); /*Perform the data mapping*/

9: else

10: Compute di = log2(−Di);
11: P = 0, sign[i] = 1;

12: end if

13: end if

14: end for

15: if (P==0) then

16: compress signs with gzip

17: end if

18: Perform the compression of the transformed dataset {di} by a lossy compressor (such as SZ or ZFP)

using the absolute error bound b′a;

19: Output the compressed data stream in bytes;

double-precision number are 2−2
7
=2−127 and 2−2

11
=2−1024, respectively, because their IEEE

754 representations [51] adopt 1+7 bits and 1+11 bits to represent a signed exponent,

respectively. In the decompression phase, the data values decompressed by the absolute-

error-bounded compressor in the transformed domain will be back-transformed to 0, as long

as their reconstructed values are lower than or equal to the minimal positive values minus

b′a. Such a design can ensure that almost all the zero-value data points will be decompressed

to an exact zero number, unlike the SZ 1.4 that may reconstruct the zeros to be close-to-

zero numbers approximately. After the data transformation step (line 3∼8), the algorithm

will perform the absolute-error-bounded lossy compression over the transformed dataset,

by leveraging an existing compressor such as SZ and ZFP (line 19).
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4.4 Improving Data Dumping via Adaptive Compressor Se-

lection

In this part, we discuss how to improve the overall data dumping performance

with system information and an adaptive compression framework.

4.4.1 I/O Model with Compression

Our target is to optimize the data dumping performance by lossy compression

such that the simulation data can be dumped to a PFS as fast as possible, while still

guaranteeing that the data is valid for user’s post-analysis. This contrasts other research

with multi-objectives regarding lossy compression [67,69,70].

Adding compression to the I/O performance model makes the problem a trade-off,

since the compression introduces extra time on compression while saving cerntain time on

data writing because of reduced data size. In the following text, we extend the I/O model

by taking the impact of error-bounded lossy compression into consideration.

The error-bounded lossy compressor allows users to compress the data based on

a specific error setting (absolute error bound, relative error bound, or PSNR), and its

impact on the original I/O model can be formulated by some functions of the given error

setting. In our analysis, we focus on absolute error bound (denoted as eb) because it

has been widely used in the community. In general, compression ratio, compression rate

and decompression rate are determined by the absolute error bound. Suppose the lossy

compressor achieves a compression ratio1 of ρ(eb) : 1 and the minimum compression rate

1Compression ratio is the ratio of original data size to compressed size.
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is denoted as fcomp(eb) GB/s. Since each rank compresses its local data independently,

there is no communication cost across ranks (except the negligible Allreduce operation for

synchronization which determines the final size), thus the overall data dumping time can

be formulated as tdump(eb) = MN/ρ(eb)
fwrite(M/ρ(eb),N) + M

fcomp(eb)
. The overall data dumping rate

with respect to the given error bound eb can be derived as Formula (4.4).

Ratedump(eb) = (
MN/ρ(eb)

fwrite(M/ρ(eb), N)
+

M

fcomp(eb)
)−1 (4.4)

Based on the above formula, we note that the key factors affecting the compression-

based data dumping rate include data writing rate function fwrite, compression ratio ρ, and

compression rate fcomp. Even though the execution scale is fixed, there is still a complicated

interplay among them. Although the intermediate cases are complicated, we can interpret

some extreme cases intuitively. Considering each rank handles the same amount of simu-

lation data, fwrite would be much larger than fcomp if the simulation runs in a relatively

small scale, such that a faster compressor would be more favored. On the other hand, if the

execution scale is extremely large, fwrite could be close to the peak performance of the file

system (a situation with saturated I/O). In this situation, larger N would increase writing

time linearly, in which a compressor featuring higher compression ratio should be consid-

ered. Therefore, having a good knowledge of the I/O information is essential to designing

an adaptive compressor with the best I/O performance.

In fact, our model is not restricted to only the I/O use-case. It can be extended to

any other scenarios associated with compression involving a resource having a performance

that can be modeled as a roof-line. For instance, if one wants to leverage compression to

accelerate the data transfer between memory and cache, the time tdump could be replaced
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by the data transferring time. Similarly, if compression is used in data communication,

tdump corresponds to the communication time for the message.

4.4.2 I/O Performance Model of Parallel File Systems under Write Con-

currency

In this section, we introduce an I/O performance model for parallel file systems to

address the concurrent data dumping scenario we explore in this paper. Specifically, lossy

compression usually leads to similar compression ratios for similar data, which means all

application processes write roughly the same amount of data concurrently. Therefore, the

question our performance model aims to answer is what I/O bandwidth can be achieved if

N application processes (ranks) need to write M GB of data simultaneously to the parallel

file system?

To answer this question, we introduce a methodology to build a performance model

that we illustrate using the Theta [90] supercomputer, ranked 24th as of November 2018 in

the Top 500 [101] and featuring a 10 PB Lustre parallel file system. The same methodology

can be applied for other supercomputers and parallel file system configurations.

As a first step, we analyze the write throughput on Theta under weak scalability

(increasing number of writers) and different data size per writer. We assume the application

consists of N ranks, each of which needs to dump M GB of data per snapshot. Although

the parallel file system has a theoretical peak I/O bandwidth P , it is not enough to simply

approximate the total write time asM ·N/P . This is because the degree of write concurrency

and the size per writer can lead significant variability even when the total size M ·N remains

the same. Furthermore, the behavior of the PFS can become even more complex when its
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peak bandwidth is not saturated. To account for these factors, we consider the overall

write bandwidth as a function of the file size per node (x) and the number of ranks (N):

f(x,N) GB/s. In this case, the time dump the whole snapshot onto the PFS can be

approximated as tw= MN
f(M,N) .

To obtain f , we perform an I/O performance profiling with different execution

scales (i.e., we consider a set of usual values for N). Through experimentation, we observed

that f tends to grow linearly with the logarithm of M up to a threshold (below the peak

bandwidth P ), after which it remains constant. These experimental results are illustrated

in Figure 4.1. Such an observation is consistent with the intuitive behavior of parallel file

systems, as the peak bandwidth is hardly achievable given overheads and limits that could

be set by the system administrator. Therefore, we propose to formulate f using a roof-line

model, as shown in Formula (4.5).

f(x) =


ax+ b x < xt

c x ≥ xt
(4.5)

where x refers to the logarithm of the data size per rank and xt is the turning point indicating

the saturation of the I/O bandwidth. To obtain the coefficients a, b, c, we use least-square

fitting of the experimental data (which uses a variable size from 21 MB to 29 MB and

covers the typical file sizes generated by lossy compression). Then, once the coefficients

were determined, we can use f to predict the performance for any data size.

Unfortunately, the point of saturation xt is not the same for all N . Therefore, we

assume that xt is a function of N , which leads to a separate optimization problem for all

usual values of N we consider (denoted by i). The process of determining the parameters

in the roof-line model can be formulated as Equation (4.6).
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fi(x) =


ax+ b x < xi

c x ≥ xi
(4.6)

where {xi} and {yi} are referred to the turning point (i.e., the profiling case i) and the cor-

responding I/O bandwidth, respectively. Specifically, for each execution scale with various

data sizes per rank, the least-square optimization problem can be formulated as follows.

We need to identify the coefficients a, b and c that can minimize
∑

j (fi(xj)− yj)2,

where i is assumed to be the profiling case number (as shown in Formula (4.7)).

min
a,b,c

∑
j

(fi(xj)− yj)2 (4.7)

We denote the corresponding least-square optimized coefficients as a∗i , b
∗
i , and c∗i , respec-

tively. Then, the optimal profiling case number (denoted by i∗) can be determined by the

following equation (i.e., the one leading to the least-square).

i∗ = arg min
i
{ min
a∗i ,b

∗
i ,c
∗
i

∑
j

(fi(xj)− yj)2}

Then, the optimal turning point (denoted by x∗t ) can be calculated as follows:

x∗t =
c∗ − b∗

a∗

where a∗, b∗ and c∗ refer to the corresponding coefficients with the turning point being set

to the profiling case i∗. The final optimal I/O model is presented in Formula (4.8)

f∗(x) =


a∗x+ b∗ x < x∗t

c∗ x ≥ x∗t

(4.8)

There is a specific situation we have to deal particularly with during the above

model optimization. In fact, the above calculation might result in a situation that c∗ is

smaller than a∗x∗t +b∗, implying that the I/O saturated case has lower bandwidth than does

the I/O unsaturated simulation with unsaturated I/O, which is a little counter-intuitive.
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Hence, we need to do an adjustment to our I/O model to respect the ground-truth. If this

counter-intuitive situation occurs, we set c to a∗x∗t +b∗ in the roof-line model and recompute

the error and corresponding parameters. This can always give us a valid roof-line model,

where the constant part is always no less than the maximal of the linear part. Fig. 4.1

shows the experiments and the resulting roof-line model for the data writing bandwidth on

theta with 256, and 512 nodes. The roof-model (blue curve) does provide a better trend

compared to vanilla least-square model (red curve) according to this figure.

(a) Write BW (256 nodes) (b) Write BW (512 nodes)

Figure 4.1: Write/Read bandwidth (BW) on Theta

Note that the above-mentioned I/O performance profiling just needs to be done

once for each supercomputer and our optimized I/O model based on the profiling results can

be reused for all the applications running on the supercomputer. Thus, the I/O performance

profiling is not overhead that needs to be paid every time an application is running.
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4.4.3 Adaptive Lossy Compression Framework

In this section, we present the design of our adaptive lossy compression framework

for getting the best overall parallel data dumping performance. In the following text, we

first introduce the design motivation, and then present our solution in details. Because of

limited space, we only show the examples done on the Theta supercomputer in this section

as it represents the modern supercomputers with fast I/O.

Design Motivation

Our target is to design an adaptive framework that can maximize the data dumping

performance by automatically selecting the bestfit compressor, given the basic profiling

information of the I/O environment (such as sampled I/O bandwidth based on execution

scale and data sizes). In our framework, we use error bound as our metric. Then, we choose

two state-of-the-art lossy compressors - SZ and ZFP, because they have been considered

the best two error-bounded lossy compressors on different datasets in literature [65, 67].

In general, SZ has higher compression ratios for fixed error bounds while ZFP has higher

compression rate, especially because of their different compression principles. SZ contains

four critical steps: (1) predict each data value, (2) perform linear-scaling quantization,

(3) a customized variable-length encoding, and (4) optional lossless compression such as

Zstd [116]. By comparison, ZFP contains five critical steps: (1) align values in each block

to a common exponent; (2) convert floating-point values to a fixed-point representation;

(3)decorrelation by applying orthogonal transforms; (4) order transform coefficients; and

(5) embedded encoding.
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(b) dark matter density

Figure 4.2: Performance of different compressors on two typical fields in NYX dataset on

Theta

Figure 4.2 shows the compression ratio and compression speed for two example

fields in the NYX dataset. From this figure, we can see that SZ leads to much higher

compression ratios given the error bound, especially on some easy-to-compress dataset such

as dark matter density. The compression ratio could be 10X higher than that of ZFP.

However, this does not imply it will always lead to better overall data dumping performance.

This is because the compression speed of SZ is only one fourth of that of ZFP, such that

the performance gain achieved from data reduction cannot beat over the compression time

cost especially when the the data size is small (e.g. in small execution scale or with large

compression ratios). As such, selecting the bestfit compressor is critical to the overall

data dumping performance. Furthermore, we also perform some optimization steps and

fine-tuning on the compressors to achieve higher data dumping performance.

Design Overview

We present the design overview of our adaptive lossy compression framework in

Figure 4.3. It has a sampling stage at the very beginning to collect the information for the
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different compressors. After that, we have a decision process to determine which compressor

to use and whether lossless compression should be performed on the compressed data. If the

selected compressor is SZ, we perform further optimization regarding the tradeoff between

compression ratio and compression speed. Specifically, we re-design the key stages in the

SZ compression and offer more options to fine-tune the compressor. We also perform a fast

parameter search to get the best parameter settings. We then perform the compression

using the selected bestfit compression strategy (either ZFP or fine-tuned SZ). Finally, we

get the maximum size of the compressed data and pack all the data segments to the multiple

of 64KB to maximize the I/O bandwidth, as required by the Lustre file system on Theta

(stripe size) for the best performance, and write the files into the parallel file system.

Sampling

Assessing ZFP

Assessing SZ

Compression time

Use lossless cmpr?

Compression time

Use lossless cmpr?

Selecting 

better 

based on 

optimal 

tradeoff
Parameter 

tunning

Better to use ZFP

Better to use SZ

Perform 

compression 

and I/O

Figure 4.3: Design Overview of Adaptive Lossy Compression Framework

Table 4.1: Variable Definitions

N Number of ranks used

M File size on each rank

tcomp Lossy compression time

tll comp Lossless compression time

ρl Lossy compression ratio

ρll Lossless compression ratio

fwrite(x) Write bandwidth collected from previous section
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We list the key notations to be used in Table 4.1. Based on the definition of these

notations, we can infer the total dumping performance with/without the compressor as well

as with/without lossy compression by Equation (4.4) as follows:

Ratedump =
fwrite(M)

MN

Ratedump l =
1

MN/ρl
fwrite(M/ρl)

+ tcomp

Ratedump ll =
1

MN/ρll
fwrite(M/ρll)

+ tcomp + tll comp

Table 4.2: Accuracy of the Uniform Sampling Approach

tcomp tll comp ρl ρll

field eb compressor real estimated error real estimated error real estimated error real estimated error

velocity x

1e-3
SZ 12.36 11.66 -5.7% 3.62 2.91 -19.6% 14.92 15.81 6.0% 19.33 21.60 11.7%

ZFP 6.11 5.74 -6.2% 1.45 0.94 -35.2% 8.24 8.61 4.6% 8.52 8.89 4.4%

1e-4
SZ 12.92 12.36 -4.3% 0.54 0.67 24.9% 11.29 11.44 1.3% 11.82 11.77 -0.4%

ZFP 6.95 6.38 -8.1% 1.37 1.43 4.4% 4.65 4.87 4.7% 4.65 4.87 4.7%

1e-5
SZ 14.10 13.69 -2.9% 0.53 0.75 41.4% 5.76 5.71 -0.9% 5.76 5.78 0.3%

ZFP 7.66 6.95 -9.3% 2.14 1.98 -7.3% 2.94 3.08 4.7% 2.94 3.08 4.7%

1e-6
SZ 15.53 17.28 11.2% 0.86 1.36 58.5% 3.59 3.41 -5.2% 3.60 3.56 -1.1%

ZFP 8.14 7.63 -6.3% 2.70 2.71 0.6% 2.31 2.41 4.8% 2.30 2.41 4.8%

1e-3
SZ 6.07 5.76 -5.1% 0.15 0.22 46.2% 31.41 32.81 4.5% 578.95 557.89 -3.6%

ZFP 4.05 3.87 -4.5% 2.79 2.44 -12.7% 19.80 20.64 4.2% 24.98 25.72 3.0%

dark
1e-4

SZ 7.17 6.83 -4.8% 1.36 1.17 -14.0% 15.06 15.75 4.5% 60.40 61.81 2.3%

matter ZFP 5.26 4.88 -7.2% 7.83 6.88 -12.1% 7.03 7.36 4.7% 7.59 7.93 4.5%

density
1e-5

SZ 12.44 12.11 -2.6% 2.98 0.83 -72.0% 9.27 9.55 3.0% 9.70 9.90 2.1%

ZFP 5.86 5.31 -9.3% 11.46 10.45 -8.8% 4.24 4.44 4.7% 4.37 4.57 4.7%

1e-6
SZ 14.87 15.26 2.6% 0.89 0.91 2.7% 4.91 4.83 -1.6% 4.92 4.97 1.0%

ZFP 6.52 5.79 -11.2% 12.93 9.87 -23.7% 2.77 2.90 4.8% 2.77 2.90 4.8%
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Block-wise data sampling and statistics estimation

According to the analysis in the previous section, we need to know the compression

ratio and compression speed to compute the corresponding dumping performance given the

I/O information and error settings. However, it is very hard to find some surrogate function

to do so without data information since the compression ratio as well as the compression

speed may depend on specific datasets and/or different error settings significantly. Some

of existing works [96] adopted sampling methods to estimate the compression ratio roughly

for these compressors. However, they overestimated the compression ratios for SZ as they

used the entropy formula which represents an ideal situation that is hardly reached by the

compressor (even when SZ is equipped with outstanding lossless compressors such as Zstd)

in practice. For the performance estimation of ZFP, the existing sampling methods either

overlooked the meta data in the embedded encoding or did not study the impact of lossless

compression. Furthermore, they did not have any study on the compression speed since

they focus on on compression ratios.

In our approach, we extend the sampling idea to estimate both the compression

ratios and compression speed for the two compressors. Apart from the compression ratio

estimation, we notice that sampling can offer an effective compression speed approximation

based on our in-depth analysis of the compression algorithms. ZFP, for example, performs

a customized transform, fixed point alignment and embedded encoding individually on each

4x4x4 block. Its compression time is linear to the number of blocks as well as the time to

compress each block. The sampling method would give us a quite accurate estimation in

this case. As for SZ, the most time-consuming stage would be the block-wise prediction
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and quantization, together with the following Huffman encoding. The operations in the

block-wise prediction and quantization would be the same for each data block, which also

implies linearity in the compression time. As for the Huffman encoding, the sampling would

also give good approximations as long as the sampled data leads to similar distributions of

quantization index (which likely appears as long as the sampling is not biased).

The detailed sampling method we designed is described as follows. We need to

sample the data in common multiples (12x12x12) of 6x6x6 and 4x4x4 because the default

6x6x6 block setting in SZ would usually lead to a better result. To restrict the overhead, we

restrict the sampled data to be around 1% of the original data and this already leads to a

great performance gain (to be shown later). Specifically, we use a uniform sampling method

in the granularity of 12x12x12 block. That is, we sample one 12x12x12 block from every

certain number of blocks along each dimension of the data. The distance is fixed for every

dimension and is restricted by the 1% requirement. For example, we have 512x512x512

data in the NYX dataset, which corresponds to 42x42x42 blocks. Then, we slightly increase

the sampling until around 1% sampling rate is reached. In this case, we will sample 1

every 4 blocks along each dimension, leading to around 1.7% sampling rate. This sampling

approach would produce a deterministic result, which is also the reason why we did not

adopt the randomize algorithms.

Table 4.2 shows the sampling accuracy of the statistics (listed in Table 4.1) on

two typical fields in the NYX dataset. Please note that the SZ result here denotes the

improved SZ with fastest setting (to be detailed later) as we need to compare this version

with ZFP in our final solution. The column “real”, “estimated” and “error” stand for
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the real execution time, estimated execution time from sampling, and the corresponding

relative error of estimated time with respect to the real time, respectively. From this table,

we can see that the uniform sampling approach already get a satisfactory accuracy as most

of the error for tcomp, ρl and ρll is within 5%. The only exception is tll comp, which indicates

the lossless compression time on the lossy compressed data. This is because the lossless

compression time relies heavily on the data layout so it expresses less linearity on the data

size. However, on the one hand, as lossless compression time only takes a small percentage

compared to the SZ compression (around 5% on average), this inaccuracy would have little

impact on the final result for SZ. On the other hand, although the lossless compression time

may be higher than the compression time of ZFP (e.g. error bound 1E−5 and 1E−6 in

dark matter density), our framework would make an easy decision to not apply the lossless

compression due to the high time overhead and little benefit in the compression ratio in

normal cases. All in all, this sampling approach would provide us descent results, as will

be validated in the evaluation section.

Adjustments and Optimizations on SZ

We further improve the performance and flexibility of the SZ compressor by ap-

plying some adjustments and optimizations to either improve the performance or provide

more chances to get better speed-ratio tradeoffs because of more options we create. This

is inspired by the fact that the performance gain actually can be further improved if we

choose SZ, compared with the best selection of original SZ and ZFP. From our experiments,

we obverse that SZ usually “over-compress” the data with respect to the overall dumping

performance. For example, SZ spends 20 seconds to compress the velocity x field in the
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NYX dataset by 40X when the error bound is set to 1E-3, leading to less than 4 seconds

in writing with 256 nodes on Theta due to the significant reduced data size thus 24s total

dumping time. On the other hand, if we can use less computation to compress the data

with a lower compression ratio, say 10 seconds to compress the data by 10X, we end up

with around 9 seconds on data writing and thus 19 seconds on total data dumping time

(because 40X compression corresponds to around 54GB/s writing performance while 10X

compression corresponds to around 90GB/s in terms of Figure 4.1). In this case, we improve

the overall performance of SZ by 26% due to 2X faster compression speed with 4X lower

compression ratio. As an important contribution of this paper, we explore how to optimize

SZ to get the best ratio-speed tradeoffs in different situations.

Online Determination on Lossless Compression. Although SZ provides a

configuration file allowing users to decide whether to apply lossless compression, it cannot

make an online decision automatically. By contrast, our adaptive framework is able to

decide whether to use the lossless compression stage in SZ under different I/O environment,

as presented in previous section. We note it here as it is a good example to offer the

flexibility for the ratio-speed tradeoff.

Lower Precision Operations Alignment. In our previous SZ implementation,

we adopt double precision for most of the computation as it gives more accurate result than

the single-precision, avoiding the round-off errors effectively. Thus, when the data is in

single precision, there would be many implicit type conversions between double and float,

which may incur noticeable performance overhead. This is especially observed for the

KNL nodes on Theta. Therefore, we align all the variables used in the SZ prediction and
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quantization to the data precision and eliminate the conversion overhead and accelerate the

computation since single-precision operations are usually faster than the double precision

operations, especially in the KNL nodes on Theta. Furthermore, this alignment would have

little impact on the final compression ratio because single-precision is accurate enough to

perform the error-bounded lossy compression for single-precision datasets.

Low Dimensional Prediction and Unpredictable Data Re-organization

for Dependency Removal. We also re-design the prediction scheme in SZ to provide

higher feasibility to tradeoff between compression ratios and compression speeds. Specifi-

cally, We study the ratio-speed tradeoffs for the prediction dimensions in SZ and remove

the dependencies to let the compiler have a better optimization for the code.

We consider to revise the 3D prediction in the Lorenzo [47] predictor for higher

performance as the heavy dependencies in the Lorenzo predictor greatly prevents the com-

piler from optimizing the code. In the 3D Lorenzo predictor, each data point depends on

all its 7 adjacent neighbors, making it impossible for parallelism. To alleviate this problem,

we propose to use lower dimension prediction for less dependencies and less computations.

For instance, if 2D prediction is used for 3D data, the dependency only exist along the

2D plane. Then, the operations along the other dimension could potentially be done using

some instruction-level-parallelism techniques. Furthermore, if 1D prediction is used, the

operations along the other two dimensions could both be done in parallel. Besides, SZ also

have a special strategy for unpredictable data (which is far away from predicted value and

have to be stored separately). We also isolate this process to remove the dependencies for

the same purpose. Consequently, this adjustment could lead to worse compression ratio as
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higher dimensional prediction usually leads to better accuracy, which requires us to make

a careful selection among them.
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Figure 4.4: Performance of different predict dimensions on two typical fields in NYX dataset

The compression/decompression speed and the corresponding compression ratio

for prediction using different dimensions are shown in Figure 4.4. From this figure, we can

see that the 3D prediction can usually leads to the best compression, while it has the worse

compression/decompression speed due to more computation operations and less potential

for parallelization, which may not be the best option in some cases. While 1D prediction

is unstable sometimes (probably due to the different number of unpredictable data), it

always leads the compression speed when the error bound is relatively small. For instance,

we would rather use 1d prediction for the dark matter density field, as it has 20% higher

compression speed while keeping almost the same compression ratio.

Simplified parameter search

Besides the optimizations on performance, we do a simplified parameter search

to the reach the best configuration for SZ as it is a highly tunable compressor with many
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parameters such as block sizes, prediction dimensions, max number of quantization index,

etc. However, as each parameter combination requires a synchronization on all the ranks

(otherwise we may have some ranks with high compression speed and low compress ratio

while others with low compression speed and high compression ratio, which gives us the

worst result), the number of searches should be minimal. After numerous analysis and

experiments, we identify block size and prediction dimension as the most important param-

eters in SZ. We then use a heuristic to explore how to reach the best parameter setting on

the two parameters with minimal overhead.

Block size and all Lorenzo prediction. The latest SZ 2.0 [65] adopts a block-

wise design which automatically selects between a Lorenzo predictor and a linear-regression

based predictor for each block. It uses a block size of 6 by default, as it seems to be the

most reasonable option across different datasets and error settings [65]. However, it is never

the optimal in any case. Generally speaking, a small block size (but not too small) is

preferred when the error bound is loose (e.g. 1E-2) as it can predict data more accurately.

However, as smaller block sizes introduce larger overhead, it will affect the performance

when the error bound is tight (e.g. 1E-5). On the other hand, we find that the best setting

of tight error bounds is to use Lorenzo prediction in all the blocks, as it eliminates all the

necessary computation related to regression (which potentially increases the speed) and

does not waste any space on storing the regression coefficients and the corresponding meta

data (which potentially increases the ratio). Therefore, we select the better one between

the default block size 6 and all Lorenzo prediction (in fact it is the extreme case when the

block size is the data size and Lorenzo predictor is chosen for the only block), which can
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already lead to optimal solutions with relatively tight error bounds. For the loose error

bound, we stick to the block size 6 as 1) we can reuse the sampled data; 2) it has similar

performance to the optimal block size; and 3) the benefit from slighter higher compression

ratio would not be much because the I/O time is not dominant in this case and the I/O

bandwidth will drop.

Prediction dimension search. Another key parameter is prediction dimension

discussed in the previous subsection, as it could lead to up to 20% difference in compression

time and 50% compression ratios between 1D and 3D predictions as shown in Figure 4.4.

Therefore, we do another parameter search along the prediction dimension to get the optimal

one. As 1D prediction is the fastest, we will start there and check how it is compared to 2D

prediction. If it is better, we will return 1D prediction as the optimal solution. Otherwise,

we will continue to search between 2D prediction and 3D prediction.

Algorithm 7 Heuristic to explore best parameter setting for SZ
Input: sampled data D, I/O information io, estimated time t0 for fastest setting, fastest setting s0
Output: Optimal SZ parameter setting

1: s1 = SZ WITH REGRESSION AND 1D PRED;

2: t1 = estimate time(D, io, s1); sync(); /*Estimate the time for the regression setting*/

3: if (t0 < t1) then

4: s1 = s0;s1.pred dim = 2; /*Explore 2D prediction*/

5: t1 = estimate time(D, io, s1); sync();

6: if (t0 < t1) then

7: return s0; /*Return setting with 1D prediction when 1D prediction is better than 2D prediction*/

8: else

9: s0.pred dim = 3; /*Explore 3D prediction*/

10: t0 = estimate time(D, io, s0); sync();

11: if (t0 < t1) then

12: return s0; /*Return setting with 3D prediction*/

13: else

14: return s1; /*Return setting with 2D prediction*/

15: end if

16: end if

17: else

18: return s1 /*Return the regression setting*/

19: end if
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Algorithm 7 concludes our parameter search approach. The sync operation in the

pseudo code indicates the MPI Allreduce operation to collect the best selection from all

the ranks. It will gather the votes for the best selection and then collect the corresponding

lossless settings. As we are given the profile for SZ with fastest setting (when compared

with ZFP), we perform SZ with the regression setting (block size 6 with 3D prediction) on

the sample data to gather the information. We then select the one with the lower estimated

time as before. If the regression setting works better, we will use the default regression

setting directly as further parameter adjustment would make little difference to the final

result. On the other hand, if the all Lorenzo setting works better, it indicates either the

error bound is relatively low (the compression ratio is relatively high) or the compression

time is more important. In this case, we will continue search along prediction dimensions

to find the best one. Please note that we will stop exploration for 3D prediction when 1D

prediction is better than 2D prediction as it is very unlikely to be better than 1D prediction

in this case. This early stopping criterion will save one execution on the sample data.

4.5 Experimental Evalutions

In this section, we conduct experiments with datasets from scientific simulations

to demonstrate the effectiveness of our approaches.

4.5.1 Preconditioner for Relative Error Bound

In this section, we compare our approaches with four state-of-the-art lossy com-

pressors providing pointwise relative error bounds: ISABELA [55], SZ PW REL mode
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(denoted SZ PWR) [33, 92], ZFP precision mode (denoted ZFP P) [67], and FPZIP [69].

We also demonstrate the effectiveness of pointwise relative error from the perspective of

visual quality by comparing it with the absolute-error-bound mode in SZ (SZ ABS). To

distinguish from the existing SZ and ZFP compressors, we name our approaches SZ T and

ZFP T for SZ and ZFP with our transformation scheme, respectively.

Experiment Setup

We conduct our experimental evaluations on a supercomputer [89] using up to

4,096 cores (i.e., 128 nodes, each with two Intel Xeon E5-2695 v4 processors and 128 GB of

memory, and each processor with 16 cores). The storage system uses General Parallel File

Systems (GPFS). These file systems are located on a raid array and served by multiple file

servers. The I/O and storage systems are typical high-end supercomputer facilities. We use

the file-per-process mode with POSIX I/O [110] on each process for reading/writing data in

parallel. The HPC application data are from multiple domains, namely, HACC cosmology

simulation [43], CESM-ATM climate simulation [53], NYX cosmology simulation [73], and

Hurricane ISABEL simulation [46]. Each application involves many simulation snapshots

(or time steps). We assess only meaningful fields with relatively large data sizes (other fields

have constant data or too small data sizes). Table 4.3 presents all the 101 fields across these

simulations. The data sizes per snapshot are 3.1 GB, 1.9 GB, 1.2 GB, and 3 GB for the

four applications, respectively.
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Table 4.3: Simulation fields used in the evaluation

Application # Fields Dimensions Examples

HACC 3 280953867 velocity x, velocity y, velocity z

CESM-ATM 79 1800×3600 CLDHGH, CLDLOW · · ·

NYX 6 512×512×512 dark matter density, temperature · · ·

Hurricane 13 100×500×500 CLOUDf48, Uf48 · · ·

Impact of Base Selection

We choose two representative fields, dark matter density and velocity x, in NYX to

demonstrate the influence of different logarithmic bases on the final result. Dark matter density

is a typical use case for pointwise relative error. A large majority (84%) of its data is dis-

tributed in [0, 1], and the rest is distributed in [1, 1.378E+4]. Simply applying the absolute

value will result in huge distortion when users need to focus on the densest data in [0, 1].

Velocity x, on the other hand, has usually large values with positive/negative signs indicat-

ing directions. Pointwise relative error is also needed when accurate directions of the 3D

velocity are required for each point. We evaluate 3 most widely used logarithmic bases: 2,

e and 10 on both SZ and ZFP on these two fields.

Table 4.4 shows the compression ratio of SZ with six different pointwise relative

error bounds ranging from 10−4 to 0.3. According to the table, the different logarithmic

bases impact only 1% and 3% on the final compression ratio on average for the two fields,

respectively. This variance is less when the pointwise relative error bound is small because

of larger number of quantization intervals and tighter bound (Theorem 8) on the difference

of quantization index at that time, resulting in a low ratio in frequency difference of the
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Table 4.4: Compression ratio of different bases for SZ T on 2 fields in NYX

fields dark matter density velocity x

log bases 2 e 10 2 e 10

0.0001 2.033 2.036 2.036 4.235 4.202 4.254

0.001 2.724 2.725 2.585 7.647 7.509 7.482

0.01 3.842 3.843 3.847 13.047 13.115 13.131

0.1 6.298 6.249 6.307 20.788 18.171 20.079

0.2 7.619 7.595 7.562 22.623 23.090 24.635

0.3 8.529 8.427 8.541 29.696 28.799 29.361

Huffman tree. When the pointwise relative error bound grows, the variance becomes slightly

larger because of the smaller number of quantization intervals and the looser bound.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 4  6  8  10  12  14  16  18

R
e
la

ti
v
e

 e
rr

o
r 

b
a

s
e

d
P

S
N

R

Bit Rate

base_2
base_e
base_10

(a) dark matter density

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  1  2  3  4  5  6  7  8  9  10

R
e
la

ti
v
e

 e
rr

o
r 

b
a

s
e

d
P

S
N

R

Bit Rate

base_2
base_e
base_10

(b) velocity x

Figure 4.5: Rate distortion of different bases for ZFP T on 2 fields in NYX

As mentioned, we prove that different bases do not affect the decorrelation effi-

ciency and coding gain of ZFP. However, since ZFP aims at optimizing the rate distortion

given an absolute error bound, it may not keep the same compression ratio because of the

different maximum bit-plane computed in embedded coding. Thus, we show the point-wise

relative error based rate distortion of ZFP T in Figure 4.5, in which the PSNR is calculated
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based on point-wise relative errors with the value range being set to 1. From this figure, we

can see that the different bases make little difference in terms of point-wise rate distortion,

which is a result that is consistent with our analysis.

Table 4.5: Performance overhead of different bases on 2 fields in NYX

fields dark matter density velocity x

log bases 2 e 10 2 e 10

pre-processing time(s) 1.67 1.59 2.23 2.18 2.08 2.74

post-processing time(s) 1.73 2.30 7.11 2.04 2.52 7.35

Table 4.5 shows the overhead of preprocessing and postprocessing steps in our

transformation scheme under difference bases. The overhead in preprocessing comes from

two aspects: logarithmic mapping on the original dataset and lossless compression on the

signs if the dataset is not always positive or negative. Correspondingly, the postprocess-

ing step decompresses the signs if necessary and performs the inverse mapping. Field

dark matter density has faster preprocessing and postprocessing time compared with veloc-

ity x because its data are always positive and omit the sign compression. Base 10 performs

badly during postprocessing because it does not have fast implementation in a standard

C library such as base 2 (exp2) and base e (exp). Also it is not competitive on prepro-

cessing, so we do not use it. Although base e is faster than base 2 while preprocessing,

it is much slower during the postprocessing step. Thus we use logarithmic base 2 in our

implementation, and we fix it for both SZ T and ZFP T in the rest part of evaluation.
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Table 4.6: Pointwise relative error bound on 2 representative fields in NYX

dark matter density velocity x

pwr eb type name settings bounded Avg E Max E CR settings bounded Avg E Max E CR

1E-3

prediction

ISABELA 1E-3 ≈ 100% 4.6E-4 ≈ 1E-3 1.35 1E-3 ≈ 100% 4.7E-4 ≈ 1E-3 1.71

FPZIP -p 19 100% 3.4E-4 9.8E-4 2.28 -p 19 100% 3.5E-4 9.8E-4 6.15

SZ PWR -P 1E-3 ≈ 100%* 1.2E-4 ≈ 1E-3 1.87 -P 1E-3 ≈ 100% 4.5E-4 ≈ 1E-3 6.77

SZ T -P 1E-3 100% 4.7E-4 9.9E-4 2.72 -P 1E-3 100% 4.9E-4 9.9E-4 7.58

transform
ZFP P -p 26 99.93%* 5.7E-5 2.9E+4 1.5 -p 20 99.94% 2.3E-5 1.5E+2 3.4

ZFP T -p 1E-3 100% 2.2E-5 2.1E-4 1.81 -p 1E-3 100% 2.3E-5 2.1E-4 3.58

1E-2

prediction

ISABELA 1E-2 ≈ 100% 4E-3 ≈ 1E-2 1.91 1E-2 ≈ 100% 2.9E-3 ≈ 1E-2 2.42

FPZIP -p 16 100% 2.7E-3 7.8E-3 2.89 -p 16 100% 2.8E-3 7.8E-3 10.79

SZ PWR -P 1E-2 ≈ 100%* 1.2E-3 ≈ 1E-2 2.46 -P 1E-2 ≈ 100% 4.5E-3 ≈ 1E-2 11.08

SZ T -P 1E-2 100% 4.8E-3 1E-2 3.85 -P 1E-2 100% 5E-3 1E-2 13.49

transform
ZFP P -p 23 99.94%* 5.7E-4 2.5E+5 1.75 -p 16 99.91% 3.4E-4 7.7E+2 5.42

ZFP T -p 1E-2 100% 1.8E-4 1.6E-3 2.18 -p 1E-2 100% 1.8E-4 1.6E-3 5.38

1E-1

prediction

ISABELA 1E-1 ≈ 100% 1.8E-2 ≈ 1E-1 2.52 1E-1 100% 7.6E-3 1E-1 2.75

FPZIP -p 13 100% 2.2E-2 5.9E-2 3.97 -p 13 100% 2.2E-2 5.9E-2 19.08

SZ PWR -P 1E-1 ≈ 100%* 1.2E-2 ≈ 1E-1 3.37 -P 1E-1 100% 4.5E-2 1E-1 13.73

SZ T -P 1E-1 100% 4.6E-2 1E-1 6.31 -P 1E-2 100% 4.8E-2 1E-1 22.07

transform
ZFP P -p 19 99.91%* 5.7E-3 1.9E+5 2.23 -p 13 99.93% 2.6E-3 2E+5 12.1

ZFP T -p 1E-1 100% 2.8E-3 2.6E-2 3.00 -p 1E-1 100% 2.1E-3 2.5E-2 13.3

Strict Error Bound Test

In this subsection, we check the maximum pointwise relative errors of our approach

and state-of-the-art approaches. As mentioned, ZFP overpreserves the absolute error bound

and thus may not be competitive with other compressors given an absolute error bound.

Therefore, we select SZ T as our final solution in order to get the maximal possible the

compression ratio with the transformation scheme given the pointwise relative error bound.

However, we still compare ZFP T with the precision mode of ZFP to demonstrate that our

transformation scheme can also be used to improved transform-based compressors such as

ZFP.
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The results of three most widely used pointwise error bounds (0.1, 0.01, 0,001)

are shown in Table 4.6. Columns 4 and 9 (settings) indicate the parameters we choose

for each compressor. Columns 5 and 10 show the percentage of decompressed data that is

strictly bounded by the given error bound. The notation ≈ indicates that most of the data is

bounded by the error bound, but there exists little data (usually much less than 0.01%) that

exceeds the bound, likely because of round-off errors. The notation * in the table indicates

that the compressor modifies original 0 in the data. The compressors without the notation

* keep the original 0 as it is, such that the decompression has no loss on the values 0. The

columns Avg E and Max E indicate the average and maximum pointwise relative errors,

respectively. From this table, one can clearly see that only FPZIP and the compressors

under our transformation scheme (SZ T and ZFP T) can strictly respect the given error

bound and keep the original zeros as they are. Furthermore, the SZ T compressor also

yields the best compression ratio on the two fields, demonstrating its high quality and good

efficiency.

We also compare ZFP under our transformation scheme (denoted ZFP T) with the

-p option given by the original ZFP lossy compressor (denoted ZFP P). Since ZFP P does

not strictly respect the error bound, we set the percentage threshold for bounded data in

ZFP P to 99.9%, in order to keep the same order of average error with ZFP T. According

to the table, ZFP T outperforms ZFP P in almost all aspects, demonstrating that our

transformation scheme can really improve the compression quality for ZFP as well. Its

compression ratio is not as high as those of other compressors because of the over-preserved

error bound. If there exist some other transform-based compressors that may lead to a very
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high compression ratio given specific absolute error bounds, our transformation scheme can

also turn them into outstanding compressors respecting pointwise relative error bound.
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Figure 4.6: Compression ratio on given point relative error bound

Here we showcase the compression performance (compression ratio and compres-

sion/decompression rate) of the above lossy compressors. However, tuning the parameter

for ZFP P for each field under each error bound is complicated because it does not respect

the error bound. Also, according to two fields in NYX (Table 4.6), ZFP is not as competi-

tive as FPZIP and SZ PWR in terms of the compression ratio. Thus we do not test ZFP P

for overall performance from this section on.

The compression ratios of the lossy compressors on the four datasets are displayed

in Figure 4.6. ISABELA usually cannot achieve a high compression ratio because of its high

index overhead. SZ PWR is competitive when the error bound is small, but its performance

degrades for larger error bounds. Also, it is not good at sharply varying datasets such

as HACC because of the group minimum design. FPZIP is good in most cases, but its

performance suffers on 2D datasets, especially when the error bound is small. Our SZ T

almost outperforms all the other compressors by a certain scale under all the tested error
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bounds. However, ZFP T does not exhibit a high compression ratio because it overpreserves

the error bound.
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(b) CESM Comp.
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(d) Hurricane Comp.
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(e) HACC Decomp.
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(f) CESM Decomp.
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(g) NYX Decomp.
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Figure 4.7: Compression/decompression rate on given point relative error bound

We also evaluate the compression/decompression rate of these lossy compressors.

The results are shown in Figure 4.7. According to this figure, FPZIP leads all the other

compressors in all the datasets in terms of compression speed. ZFP T usually gets the

second place because ZFP is faster than SZ. SZ T is better than SZ PWR since it does not

compute complicated block information. ISABELA is slow because of the high sorting over-

head. Regarding decompression, all the compressors except ISABELA exhibit comparable

performance. SZ PWR shows considerable improvement compared with its compression

rate because it saves the block information and does not compute it during decompression.
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Visualization for Multiprecision and Angle Skews

Besides compression performance, compression quality, such as the multiprecision

visualization, is also important. Unlike absolute error bound, which requires universal re-

striction on each data point, pointwise relative error bound provides value-based restrictions

that are usually different for different data points. Under this requirement, smaller value

will have a smaller error bound on this data point and vice versa. Respecting this error

bound is very effective when all the data points are all equally important regardless of

their data value; otherwise, the small data value will be easily distorted by the universal

restriction. In this section, we analyze the quality of pointwise error bound by visualizing

the decompressed data generated by difference compressors.
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Figure 4.8: Multiprecision distortion of Slice 100 in dark matter density (NYX, 512×512×
512) when the compression ratio is 7. The original data is shown in range [0, 1], and

enlarged windows are observed with a higher precision [0, 0.1]. Compared with SZ ABS,

FPZIP clearly keeps the features in blue parts (e.g., data in the center). However, it exploits

more local loss and adds certain noise to regions between the blue and red parts (i.e., data

in the top right and bottom left parts) since its max pointwise relative error is 0.5, which

is much larger than that of SZ T (0.15).

Figure 4.8 shows the multiprecision visualization results of original data, SZ ABS,

FPZIP, and SZ T on the 100th slice in dark matter density fields of the NYX dataset

when the compression ratio is set to 7. The absolute-error-bound mode of SZ is used as a
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comparison to demonstrate the advantages of pointwise relative error bound. Only FPZIP

and SZ T are selected because the other compressors cannot achieve such a compression

ratio when the point-wise relative error bound is set to less than 100%. The original images

show the visualization of a data range [0, 1] (value greater than 1 is shown as 1). The

zoomed-in windows show a more precise range of [0, 0.1]. According to this figure, absolute

error bound mode leads to noticeable distortion. The blue region in the center is distorted

a lot because the universal restriction on each point is 0.055, which is large for data in

range [0, 0.1]. On the other hand, FPZIP keeps the rough features in the center because

of pointwise relative error bound, which has tighter restrictions on those regions. However,

since it has to relax its pointwise error bound to 0.5 to reach such a compression ratio, there

is large distortion for data in range (0.1, 1), leading to the artifacts in the bottom left and

top right. As a contrast, SZ T uses a pointwise relative error bound of 0.15 to get the same

compression ratio with little distortion.

(a) SZ ABS (b) FPZIP (c) SZ T

Figure 4.9: Angle skews of different compressors on HACC datasets when compression

ratio is 8. The absolute-error-bounded compressor leads to large angle skews because the

universal error bound (15 in this case) may greatly affect a small value. SZ T has better

performance because it has a stricter pointwise error bound (0.145) than that of FPZIP

(0.334) under the given compression ratio.
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Figure 4.10: Dumping and loading performance of NYX in parallel execution

We also compare the skewed angles between original data and decompressed data

for the velocity fields in HACC. A particle’s skewed angle is defined as the angle between

its original velocity and its reconstructed velocity in 3D space. It is calculated by θ =

arccos ~v ~vd
||~v|||| ~vd|| , where ~v is the original velocity in the 3D space and ~vd is the reconstructed

one. Because data points in HACC are scattered in the 3D space, we divide the whole space

into 200×200×200 blocks and compute the average skewed angle values in each block. We

present the result at slice 100 in Figure 4.9. The brighter a region is, the larger distortion it

has, meaning a worse result. The figure shows that the absolute-error-bounded compressor

has larger skewed angles (usually > 6), while pointwise relative-error-bounded compressors

have much smaller skewed angles (around 4 for FPZIP and 2 for SZ T). SZ T is better than

FPZIP because it has a stricter error bound (0.145 versus 0.334) at this compression ratio.

Parallel Evaluation

We still use the NYX dataset to demonstrate the data-dumping and data-loading

performance in parallel execution. Since ISABELA and ZFP T have a much lower com-

pression ratio (ISABELA also has a relatively lower compression rate), we do not involve
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them in the parallel execution. For the rest of the compressors (SZ PWR, FPZIP, SZ T),

we fix the pointwise error bound to 0.01 for all six fields in NYX datasets. We evaluate

the three compressors on three scales (1,024 cores ∼ 4,096 cores). Each rank in the eval-

uation needs to process 3 GB of data, which corresponds to a total of 3 TB ∼ 12 TB of

data. We plot the breakdown of data-dumping time (compression and writing) and data

loading time (reading and decompression) in Figure 4.10. As a comparison, the original

data needs about 0.7 ∼ 2.8 hours and 1 ∼ 4 hours for dumping and loading, respectively.

From this figure, we can observe that our transformation scheme is able to achieve 1.62X,

1.38X dumping performance and 1.55X, 1.31X loading performance over SZ PWR and

FPZIP on 4k cores, respectively, thanks to the higher compression ratio and acceptable

compression/decompression rates. Also, we tend to have more advantages when the scale

continues to increase.

4.5.2 Adaptive Compression Framework for I/O Performance

In this section, we present the performance evaluation results on two supercom-

puters to show the efficiency of our adaptive compression framework.

Experimental Setting

We conducted our experimental evaluation on two supercomputers with different

scales. We first evaluate our framework on Bebop [89], a medium-scale supercomputer

with relatively low bandwidth I/O facilities. Bebop has 1024 public nodes, each with

two Intel Xeon E5-2695 v4 processors and 128GB of memory, and each processor with 18

cores. It uses General Parallel File Systems (GPFS) equipped with 2 I/O nodes, providing

156



around 2GB/s I/O bandwidth. Bebop is a good example for extreme case when I/O is

saturated all the time (which is usually the case for scientific simulations), as its 2 I/O

nodes are always used. We also validate our framework on Theta [90], a supercomputer

with relatively low CPU frequency (KNL nodes) and high I/O bandwidth. Each node

on Theta is a 64-core processor with 16GB high bandwidth in-package memory and 192

GB of DDR4 RAM. It is also equipped with 10 PB Lustre file system [1] with a total

bandwidth of 172 GB/s for write and 240 GB/s for read, which is representative of realistic

systems with high-performance I/O. We use MPI-IO [100] for all the experiments as it

is efficient and widely used. The application data is from 2 typical scientific simulations,

namely NYX [73] cosmology simulation and SCALE-LETKF [108] weather simulation. Each

application involves six data fields, each of which contains 512MB/540MB data on each

rank for the two applications, respectively. This yields to a total of 96TB/101.25TB data

on Theta when the scale is 512 nodes.

We focus on the overall dumping performance on the parallel file systems, including

both compression time and writing time. We applied our solution to two state-of-the-art

lossy compressors - ZFP [67] that often has higher compression speed and SZ [65] which

generally leads to higher compression ratios. In the following sections, we first show the

dumping performance of our adaptive framework compared to these two state-of-the-art

compressors, and then we show a detailed breakdown of the time and overhead.

Dumping performance on Bebop

We first present the dumping performance on the Bebop cluster. Specifically, we

first show the result on only 1 node. We choose this scale because it is the turning point on
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selecting between ZFP and SZ for most of the fields. It happens at such a low scale because

1) ZFP does not have as much dominance in speed as that on Theta; 2) I/O bandwidth in

Bebop is very low such that compression ratio would easily dominate.
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Figure 4.11: Dumping performance of different error bounds (1E-3 ∼ 1E-6) on Bebop with

1 node (32 cores)
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Figure 4.12: Detailed breakdown of I/O Performance on each field (error bound 1E-6) on

Bebop with 1 nodes (32 cores)

The overall dumping performance on Bebop with 1 node is shown in Figure 4.11.

From this figure, we can see that the compression time takes the major part of the total

dumping time. Even in this case, ZFP can only be better than SZ when the error bound is

large because it only has slightly higher compression speed than that of SZ, which could not

compensate for the loss in writing time on this platform. On the other hand, our solution

always leads to the shortest dumping time except for the error bound 1E-3 on NYX dataset,
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because the adaptive framework is able to switch to the most suitable option for the different

fields in the dataset. As for the error bound 1E-3 on NYX dataset, our solution selects ZFP

correctly for all the fields, with a slight overhead because of the sampling and other decision

process in our design.

We also show the detailed time breakdown on the six fields of the two datasets in

Figure 4.12, where we can easily figure out how our adaptive framework makes the decision.

For instance, the adaptive framework selects SZ for all the fields, and it discards the lossless

compression in SZ for the last 4 fields. Therefore, although our solution may have higher

writing time, it has much lower compression time thanks to our optimization of parameter

settings and the removal of lossless compression.
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Figure 4.13: Dumping performance of different error bounds (1E-3 ∼ 1E-6) on Bebop with

4 nodes (128 cores)

We then perform the experiments with 4 nodes on Bebop in 4.13. In this case,

our solution also leads to the best overall dumping performance. Please note that our

solution costs more time than SZ in the ”bd” field, as shown in Figure 4.14. This is due

to the fact that I/O bandwidth is shared thus not stable. When we do the profiling, we

get the writing speed in Bebop is around 2 GB/s. However, when the data is dumped, the
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Figure 4.14: Detailed breakdown of dumping performance on each field (error bound 1E-6)

on Bebop with 4 nodes (128 cores)

actual writing speed is only 1.05 GB/s, which leads to the wrong decision for discarding the

lossless compression stage in our solution. However, this situation only occurs around the

turning point, which would not incur much overhead even when the decision is wrong (even

in this case when the writing speed is inaccurate by 50%). Generally speaking, our solution

would work better in a relatively stable environment like Theta, as will be discussed in next

section.

Dumping performance on Theta

We perform similar experiments on Theta. Unlike Bebop, the turning point for

choosing SZ and ZFP is around 256 ∼ 512 nodes. Therefore, we show the result on Theta

with 256 nodes and 512 nodes, respectively. Please note that we pad the compressed data

to multiple of 64KB and set the maximal padded size as the stripe size (which is the real

compressed size) for best performance, as required by the Lustre file system on Theta.

The overall dumping performance on Theta with 256 nodes (16,384 cores) is dis-

played in Figure 4.15. In this case, the total data to be dumped in a single snapshot

would be 48TB and 51TB, costing ∼410s and ∼440s on data writing, respectively. For each
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Figure 4.15: Dumping performance of different error bounds (1E-3 ∼ 1E-6) on Theta with

256 nodes (16,384 cores)
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Figure 4.16: Detailed breakdown of dumping performance on each field (error bound 1E-6)

on Theta with 256 nodes (16,384 cores)

dataset, the writing bandwidth is 115GB/s according to Figure 4.1). In this situation, the

compression time for SZ would easily become larger than the writing time, as shown in this

figure. Then, our adaptive framework would prefer ZFP in most cases, as shown in the

detailed performance breakdown on each field in Figure 4.16. From this figure, we can see

that our solution always selects ZFP for the NYX dataset, leading to similar execution time

compared with ZFP. Please note that our solution would have a low overhead due to the

sampling and synchronization process. It is around 5% when the error bound is 1E-3 and

reduces to less than 2% when the error bound is 1E-6 on the two datasets, due to the fact

that the percentage of compression time over total dumping time would decrease with the

decreasing error bound (low error bound leads to low compression ratio thus high writing
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time). Nevertheless, our solution outperforms ZFP when the error bound is tight, since our

framework accurately picks four fields (the first, second, third and last) out of the six fields

in which the optimized SZ is faster than ZFP considering the overall dumping performance.
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Figure 4.17: Dumping performance of different error bounds (1E-3 ∼ 1E-6) on Theta with

512 nodes (32,768 cores)
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Figure 4.18: Detailed breakdown of dumping performance on each field (error bound 1E-6)

on Theta with 512 nodes (32,768 cores)

We then show the result with slightly increased scale in Figure 4.17, by using 512

nodes (32,768 cores) on Theta. Note that the experiments here are all weak-scaling thus

the file size to be dumped is doubled. Compression ratios become more important in this

case because of the increased time on writing, especially when the error bound is relatively

small. In this case, our adaptive solution would select the optimized SZ for most of the

time. As shown in Figure 4.18, it chooses to use the optimized SZ for five out of six fields
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in NYX and four out of six fields in SCALE-LETKF, when the error bound is set to 1e-5.

This decision leads to over 20% performance gain in these fields (e.g. the first, second, third

and fifth field in NYX and the first, second, third and the last field in SCALE-LETKF). As

these fields dominate the total dumping time, the final performance gains for our solution

are 20% and 27%, respectively, compared to the second-best compressor for the two datasets

in this case.

4.6 Summary

In this section, we propose two methods to enhance the lossy compression efficiency

according to different demands. We propose to use logarithmic transform as a preditioner

for scientific data requiring relative error bound and leverage the existing state of the art

compressors with slight modifidications. Then, we design an adaptive lossy compression

framework selecting best-fit lossy compressor and optimal compression settings for different

scales at runtime. The proposed methods further improve lossy compression effciency with

respect to different demands, making lossy compression more efficient under these demands.
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Chapter 5

Conclusions

To tolerate soft errors while enabling low overhead, high fault coverage and timely

fault detection and correction in fast Fourier Transform computations, we proposed an on-

line ABFT scheme for FFT by taking advantage of divide-and-conquer nature of FFT algo-

rithm. We divide a large FFT computation into smaller ones and apply the offline ABFT to

the small FFTs with reused checksum generations. Unlike traditional offline ABFT schemes

that can only detect and correct error at the end of the computation, our design can detect

and correct errors in each decomposed FFT which is much finer-grained than the original

FFT, leading to timely error recovery. We also apply various optimizations including se-

rial ones such as checksum re-design and parallel ones such as communication-computation

overlap. Experimental results demonstrate that the proposed scheme introduces less over-

head in error-free executions, and improves the computing efficiency by 2X over existing

schemes when errors occur. Futhermore, it has higher fault coverage due to higher numerical

stability.
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To improve the quality of error-bounded lossy compression for better serving sci-

entific applications, we propose adaptive compression algorithms with multiple prediction

methods and compression models, as well as strategies to select the best-fit prediction

method and compression model in terms of the data features in different regions or fields of

the dataset. We evaluate our solution using 100+ fields across 4 well-known HPC simula-

tions, by comparing to six existing state-of-the-art lossy compressors (SZ, ZFP, TTHRESH,

VAPOR, FPZIP and ISABELA). Experiments demonstrate that our the multi-predictor

design can achieve up to 8x compression ratio as that of other compressors with the same

PSNR. By running the three best lossy compressors (SZ, ZFP and our solution) using up

to 8,192 cores, our solution has 1.86X dumping performance and 1.95X loading perfor-

mance over the second best compressor because of the significant reduction of data size.

In addition, the proposed compression algorithm with hybrid compression models further

improves the compression quality thanks to the improved coefficient encoding algorithms

and the accurate selection algorithms.

To meet the different requirements and objectives from scientific applications, we

propose two methods to enhance the lossy compression efficiency with respect to the relative

error bound requirement and I/O performance. For the relative error bound, we formulate

the bidirectional mapping problem between relative error bound and absolute error bound

in order to use the existing lossy compressors in their best compression mode (absolute error

mode). Under the specific constraints of lossy compression, we conclude that the logarithm

in base 2 is the most effective transform from relative error bound to absolute error bound.

We also prove the uniqueness of the logarithmic transform to solve our initial mapping
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problem. Experiments demonstrate that the proposed solution can significantly improve the

compression ratios (up to 60%) under the demand of relative error bound. Then, we design

an adaptive lossy compression framework selecting best-fit lossy compressor and optimal

compression settings for different scales at runtime. The proposed solution achieves up to

27% performance gain over other approaches on Theta supercomputer with 32k cores. These

methods further improve lossy compression effciency with respect to different demands from

scientific applications.
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