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Abstract 41 

Recent work has suggested that variability in levels of neural activation may be related to 42 

behavioral and cognitive performance across a number of domains, and may offer information 43 

that is not captured by more traditional measures that use the average level of brain activation. 44 

We examined the relationship between reading skill in school-aged children and neural 45 

activation variability during an fMRI reading task after taking into account average levels of 46 

activity. The reading task involved matching printed and spoken words to pictures of items. 47 

Single trial activation estimates were used to calculate the mean and standard deviation of 48 

children’s responses to print and speech stimuli; multiple regression analyses evaluated the 49 

relationship between reading skill and trial-by-trial activation variability. The reliability of 50 

observed findings from the discovery sample (N = 44; ages 8-11; 18 female) was then confirmed 51 

in an independent sample of children (N = 32; ages 8-11; 14 female). Across the two samples, 52 

reading skill was positively related to trial-by-trial variability in the activation response to print 53 

in the left inferior frontal gyrus pars triangularis. This relationship held even when accounting 54 

for mean levels of activation. This finding suggests that intrasubject variability in trial-by-trial 55 

fMRI activation responses to printed words accounts for individual differences in human 56 

reading ability that are not fully captured by traditional mean levels of brain activity. 57 

Furthermore, this positive relationship between trial-by-trial activation variability and reading 58 

skill may provide evidence that neural variability plays a beneficial role during early reading 59 

development. 60 

Keywords: Trial-by-trial variability; BOLD variability; Reading disability; Neural noise; Individual 61 

differences; Beta series; Event-related fMRI 62 
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Significance Statement 63 

Recent work has suggested that neural activation variability, or moment-to-moment changes in 64 

the engagement of brain regions, is related to individual differences in behavioral and cognitive 65 

performance across multiple domains. However, differences in neural activation variability have 66 

not yet been evaluated in relation to reading skill. In the current study, we analyzed data from 67 

two independent groups of children who performed an fMRI task involving reading and 68 

listening to words. Across both samples, reading skill was positively related to trial-by-trial 69 

variability in activation to print stimuli in the left inferior frontal gyrus pars triangularis, even 70 

when accounting for the more conventional measure of mean levels of brain activity. This 71 

finding suggests that neural variability could be beneficial in developing readers. 72 

 73 

  74 



 

 

4 

4 

Introduction 75 

A growing body of neuroimaging research has linked reading skill to variation in structural and 76 

functional circuitry in the brain (Norton, Beach, & Gabrieli, 2015). Broadly, investigations 77 

concerning the functional neuroanatomy of reading have focused on mean levels of activation 78 

across trials while children are engaged in different reading tasks. Yet, an emerging literature 79 

suggests that mean differences in activation and connectivity reflect only part of the complex 80 

neural foundation of reading ability. Recent studies have linked reading skill to the stability of 81 

neural responses to speech sounds (Hornickel & Kraus, 2013). In addition, animal work has 82 

shown that expression of the rat homolog of the dyslexia susceptibility gene KIAA0319 is linked 83 

to increased trial-by-trial variability in speech sound responses (Centanni, Booker, et al., 2014; 84 

Centanni, Chen, et al., 2014). Together, these studies have helped motivate the neural noise 85 

hypothesis of reading disability, which postulates that levels of neural noise can influence 86 

timing mechanisms that impact signal variability and thereby affect reading performance 87 

(Hancock, Pugh, & Hoeft, 2017).  88 

This previous work leads to an expectation that reading skill in children is related to within-89 

subject measures of neural activation variability. Yet, to date, neural activation variability has 90 

been evaluated with respect to reading skill in children only by examining brainstem 91 

electrophysiological responses to speech sounds (Hornickel & Kraus, 2013). In the current study, 92 

we instead asked children to perform a task involving word reading, and examined trialwise 93 

variability in cortical activation using fMRI, a technique that has been successfully used to 94 

examine the relationship between neural activation variability and behavioral performance in 95 

multiple domains outside of reading (Garrett et al., 2013).  96 
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Across these other domains, there exists some debate concerning whether increased variability 97 

in the blood oxygen level-dependent (BOLD) signal confers a positive or negative impact on 98 

behavior. The directionality of the effect appears in part to be related to the extent to which a 99 

task entails cognitive versus sensory processing. For example, increased BOLD signal variability 100 

has been associated with faster and more consistent reaction times in younger versus older 101 

adults during cognitive tasks including attentional cueing and delayed match-to-sample (Garrett, 102 

Kovacevic, McIntosh, & Grady, 2011), whereas in a study examining cognitive flexibility and 103 

stability (Armbruster-Genc, Ueltzhoffer, & Fiebach, 2016), the direction of the relationship 104 

between BOLD signal variability and cognitive performance has been characterized as positive 105 

or negative depending on the task. Conversely, for sensory processing, increased BOLD signal 106 

variability has been associated with increased behavioral variability in older compared to 107 

younger adults during audiovisual speech perception (Baum & Beauchamp, 2014), and has been 108 

considered maladaptive in adults with autism, who showed greater trial-to-trial variability 109 

compared to matched controls in primary sensory areas during a low-level sensory task (Haigh 110 

et al., 2016). Given that reading involves both sensory and cognitive components, the direction 111 

of the relationship between BOLD signal variability and reading skill therefore remains an open 112 

question. 113 

In the current study, we address the following novel questions: (1) does trial-by-trial neural 114 

activation variability account for variance in reading skill in children above and beyond 115 

differences in mean activation; (2) if so, what is the direction of the relationship between neural 116 

activation variability and reading skill? To address these questions, we first conducted analyses 117 

on fMRI data from a discovery sample of children who performed a task in which they judged 118 



 

 

6 

6 

whether printed or spoken words matched pictures of items. We then confirmed whether 119 

observed effects held in a separate, independent sample of children. Analyses focused on using 120 

single trial beta estimates to quantify mean activation across trials, as well as trial-by-trial 121 

variability, in the evoked response to print and speech within regions of the reading network. 122 

These mean and variability measures were then entered into multiple regression models 123 

characterizing the manner in which trial-by-trial activation variability is associated with reading 124 

skill after accounting for mean task-related activation as well as predictors of non-interest such 125 

as subject age. 126 

Methods 127 

Discovery Sample 128 

Participants. Children were selected from a larger study examining response to intervention for 129 

reading disability; the data presented here correspond to baseline scans prior to the onset of 130 

any intervention. Of this larger sample of 82 children, 44 were selected who met the following 131 

inclusion criteria: in third or fourth grade (71/82; the other 11 participants belonged to a cohort 132 

of seventh and eighth graders who participated in the larger study), an average Euclidean 133 

movement of .25 mm or less (58/71), and at least 70% accuracy in each of the auditory and 134 

visual mismatch conditions (44/58). Euclidean movement was calculated per volume by first 135 

computing point-to-point change for each the six motion parameters (i.e., three translation and 136 

three rotation), and then taking the square root of the sum of squares of these measures; 137 

average Euclidean movement was calculated by taking the mean value of this measure across 138 

all volumes of data collection. The accuracy cutoffs were selected in order to have a sufficient 139 
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number of correct trials per participant to calculate dependable standard deviation (SD) 140 

measurements. The motion cutoff was selected in order to increase power to detect effects 141 

related to differences in trial-by-trial variability that are unrelated to motion, because we 142 

expected that intrasubject variability would be impacted by movement in the scanner (Lund et 143 

al., 2005). We acknowledge that the percent of data lost is larger than comparable fMRI studies 144 

with pediatric populations; however, data quality criteria were particularly stringent for this 145 

investigation given our concerns regarding participant motion as well as the requirement of 146 

having a sufficient number of trials to calculate valid SD measurements.  147 

All children completed a battery of standardized cognitive assessments (Table 1). These 148 

included assessments of single word reading, pseudoword decoding, and passage 149 

comprehension from the Woodcock-Johnson III Tests of Achievement (WJ-III; Woodcock, 150 

McGrew, & Mather, 2001); the Peabody Picture Vocabulary Test (PPVT-4; Dunn & Dunn, 2007), 151 

which measures receptive vocabulary; the Comprehensive Test of Phonological Awareness 152 

(CTOPP-2; Wagner, Torgesen, Rashotte, & Pearson, 2013), which measures metalinguistic 153 

knowledge of the structure of speech, or phonological awareness, by assessing skills including 154 

phoneme elision, blending, and isolation; and the Wechsler Abbreviated Scale of Intelligence 155 

(WASI-II; Wechsler & Hsiao-Pin, 2011), which measures verbal and non-verbal intelligence. As 156 

can be observed in Table 1, the range of reading scores was very broad, and some children in 157 

the sample would be considered typically developing whereas others would be classified as 158 

having reading disability using traditional diagnostic criteria. However, we treated reading skill 159 

as a continuous dimension, in line with recent views concerning the multifactorial nature of 160 
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reading skill as well as the pitfalls of grouping children into diagnostic categories using cutoff 161 

scores (Pennington et al., 2012; Branum-Martin et al., 2013). 162 

fMRI Task. Functional volumes were acquired while participants completed a task in which they 163 

judged whether picture cues matched auditory and visual target words (Frost et al., 2009; 164 

Jasińska et al., 2016; Landi et al., 2013; Preston et al., 2016). In this task, participants were 165 

presented with pictures of common items (e.g., “cake”) that remained on the screen for 40-65 166 

seconds – corresponding to between seven and eight trials – before being replaced by another 167 

picture. This procedure encouraged participants to generate strong expectations of target items, 168 

thereby maximizing responses to mismatches, and also obviated the need to associate targets 169 

with a new picture on every single trial, which could have been overly taxing. While each 170 

picture remained on the screen, participants were presented with target items in an event-171 

related fashion; specifically, printed words appeared in a box below the picture (presented for 172 

3000 ms in 40-point Arial font), or auditory words were presented via headphones. Importantly, 173 

in one sixth of trials, the printed or spoken word matched the picture, while in the other five 174 

sixths of trials the printed or spoken word mismatched the picture. Participants were asked to 175 

indicate via button press whether or not the printed or spoken word matched the picture. In 176 

total, participants completed 25 trials in each of the auditory (spoken) and visual (print) 177 

mismatch conditions. A sample trial sequence is illustrated in Figure 1.  178 

Acquisition of MRI Data. Images were acquired using a 3T Siemens Trio scanner with a 12-179 

channel head coil located at the GSU/GaTech Center for Advanced Brain Imaging in Atlanta, 180 

Georgia. T2*-weighted images were acquired in an axial-oblique orientation parallel to the 181 

intercommissural line (32 slices; 4 mm slice thickness; no gap) using single-shot echo planar 182 
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imaging (matrix size = 64 × 64; voxel size = 3.438 × 3.438 × 4 mm; FoV = 220 mm; TR = 2000 ms; 183 

TE = 30 ms; flip angle = 80°). To allow for stabilization of the magnetic field, the first four 184 

volumes within each run were discarded. Anatomical scans were collected in the same 185 

orientation as the functional volumes (MPRAGE; matrix size = 256 × 256; voxel size = 1 × 1 × 1 186 

mm; FoV = 256 mm; TR = 2530 ms; TE = 2.77 ms; flip angle = 7°); these were acquired either 187 

following or between the functional runs. In total, participants completed two runs of the 188 

functional task, which had a combined duration of 7 minutes 32 seconds (226 volumes). Across 189 

all trials in the experiment, the time between trial onsets was jittered between 4 and 13 190 

seconds; trial order and ITIs were optimized by an in-house Matlab program that balanced ITIs 191 

and null trials across conditions, and minimized the variability of the measured response in 192 

Monte Carlo simulations.  193 

Analysis Pipeline. Preprocessing. Data were analyzed using AFNI (Cox, 1996; RRID:SCR_005927). 194 

Functional images were pre-processed by first correcting for slice acquisition time (3dTshift). 195 

Following this, functional images were aligned with anatomical images, were corrected for 196 

motion using a six-parameter rigid-body transform (3dvolreg), and were normalized to the 197 

Colin27 brain in Talairach space using an affine transform (@auto_tlrc). These three steps were 198 

combined into a single transform that also forced a 3 mm isotropic voxel size on the data. All 199 

images were then smoothed (3dmerge) using a Gaussian kernel with a FWHM of 8 mm (i.e., 200 

twice the between-plane distance of 4 mm; Skudlarski, Constable, & Gore, 1999), and data 201 

were scaled (3dcalc) so that each voxel’s time series had a mean of 100 for each run. During 202 

this scaling step, values in excess of 200 were clipped; this is the default value for scaling in 203 

AFNI, and was selected in order to retain the precision of scaled short values. 204 
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We elected to use the Talairach atlas for normalization because Burgund et al. (2002) have 205 

shown that relative to the resolution of fMRI data, there are minimal anatomical differences 206 

between children ages 7 and 8 compared to adults. Given that the children in the current study 207 

were even older than the children in the Burgund et al. (2002) study (i.e., between 8 and 12 208 

years of age), our view is that use of the Talairach atlas should allow for broader comparability 209 

between our study and others, including developmental investigations with adult samples. 210 

GLM Analysis. Single trial beta estimates were obtained using a single GLM including nuisance 211 

regressors for the six motion parameters as well as a separate regressor for each trial (least-212 

squares all, or LS-A; Mumford, Turner, Ashby, & Poldrack, 2012; Rissman et al., 2004). This 213 

model was specified using the -stim_times_IM flag for 3dDeconvolve in AFNI. The HRF was 214 

approximated using a gamma function. Because we were interested in intrinsic neural 215 

variability as opposed to variability related to individual differences in behavioral performance 216 

on the task, we included reaction times for each trial as duration modulators in the GLM 217 

(Grinband, Wager, Lindquist, Ferrera, & Hirsch, 2008; Yarkoni, Barch, Gray, Conturo, & Braver, 218 

2009). For trials in which a participant either did not respond, responded with an RT less than 219 

200 ms (i.e., invalid anticipation), or responded with an RT greater than 1.5 times the 220 

interquartile range above the third quartile for a participant’s distribution of reaction times, 221 

overall mean RT for that participant was used as a duration modulator; however, these trials 222 

were not considered in further analyses. 223 

Beta estimates corresponded to the amplitude assigned to each regressor in the GLM, and the 224 

set of beta estimates across trials for a given voxel constituted that voxel’s beta series. When 225 

performing the GLM, any volume that exceeded the thresholds of .3 mm Euclidean movement 226 
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and/or 10% outliers were censored from further analysis, resulting in an average loss of less 227 

than one trial in each of the auditory and visual mismatch conditions. It should be noted that 228 

this approach gave rise to some extreme outlier beta values due to rare spikes that were still 229 

present in the data even after censoring these volumes. To handle these, outlier beta values 230 

were identified for each participant using the program 3dToutcount in AFNI, which flags outliers 231 

using an algorithm based on median absolute deviation. Trials with outliers in greater than 10% 232 

of voxels in the brain were censored from analysis; this occurred for an average of two trials in 233 

each of the auditory and visual mismatch conditions. In all other trials, outlier values were 234 

replaced with zeroes and ignored when calculating average beta values within regions of 235 

interest (the mean number of voxels with outlier values across all trials and participants was 236 

less than one in both the auditory and visual mismatch conditions in each of the ROIs detailed 237 

in the next section). 238 

ROI Selection. Given that mean activation was one of the predictors we aimed to include in the 239 

multiple regression models evaluating relationships with reading skill, we elected not to analyze 240 

mean activation at the whole brain level because this would have biased selection of ROIs. 241 

Moreover, we did not predict perfect concordance between areas in which the reading task 242 

resulted in overall levels of activation and areas in which the task resulted in increased levels of 243 

variance in activation. Therefore, we instead defined ROIs using a recent meta-analysis that 244 

took the results of 20 different imaging studies of reading in children and combined them to 245 

identify a set of coordinates which showed convergence across studies (Martin, Schurz, 246 

Kronbichler, & Richlan, 2015). Because this meta-analysis combined results across tasks 247 

examining different aspects of reading, our view was that by using these co-ordinates, we were 248 
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more likely to include regions that may show a relationship between neural activation 249 

variability and reading skill, even if these regions do not appear in a map of mean activation for 250 

the current task; with that said, we acknowledge the limitation that the meta-analysis also used 251 

mean activation to define ROIs. 252 

We created spheres with a radius of 6 mm (two voxels) centered on the Martin et al. (2015) 253 

coordinates for the following regions: left inferior frontal gyrus (IFG) pars opercularis, left IFG 254 

pars triangularis, left middle temporal gyrus, left superior temporal gyrus, left superior parietal 255 

lobule, and left inferior temporal gyrus. In addition, we also included an ROI for left thalamus, 256 

given extant findings indicating that the thalamus contributes to the reading network 257 

(Galaburda, Sherman, Rosen, Aboitiz, & Geschwind, 1985; Pugh et al., 2013). The full set of ROIs 258 

selected for analysis are detailed in Table 3 and displayed in Figure 2. For reference, we overlaid 259 

these ROIs on a conjunction map that shows the extent of overlap in task-related activation 260 

between the Discovery Sample and the Confirmation Sample (further details below). This map 261 

was created by running a standard GLM for each participant with a single regressor per 262 

condition; groupwise evoked response maps across all task conditions were then generated for 263 

both the Discovery and Confirmation samples using the program 3dANOVA2 (corrected at FDR 264 

< .01). The conjunction map was created using step functions (3dcalc) and adding together 265 

resultant maps. 266 

Analysis of Trialwise Variability. For analysis of trialwise variability, we considered correct trials 267 

in the auditory and visual word mismatch conditions with RTs within the acceptable range. Our 268 

rationale for analyzing both print and speech trials was that even though we were specifically 269 

interested in responses to printed words, the paradigm included spoken words, and analyzing 270 
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neural responses in this condition afforded us the ability to examine whether any potential 271 

relationships between neural activation variability and reading skill were print-specific or were 272 

instead more general for language. Our rationale for analyzing only the mismatch conditions 273 

was that these were the predominant conditions in the experiment in terms of the overall 274 

number of trials; related to this, there were too few trials in the match conditions to calculate 275 

valid SD measurements. For each trial and each ROI, we calculated the average beta weight 276 

across the voxels in the ROI (3dROIstats), ignoring outlier voxels that had been replaced with 277 

zero. 278 

Next, we calculated the mean and SD of the beta series in each ROI. Intrasubject SD measures 279 

were calculated by using leave-one-out jack-knife estimation in version 2015.2 of the package 280 

‘bootstrap’ (Tibshirani & Leisch, 2015) in the R Project for Statistical Computing 281 

(RRID:SCR_001905) and taking the mean across estimates. Jack-knife estimation was used to 282 

mitigate bias of SD estimates, especially given the relatively small number of measurements 283 

from which these SDs were derived (Efron, 1981). Then, in each ROI, we ran separate multiple 284 

regression models for the auditory and visual mismatch conditions with reading skill as the 285 

dependent variable, which was quantified using raw scores for Letter-Word Identification 286 

(LWID) from the Woodcock-Johnson III Tests of Achievement. We started with a full model that 287 

included the mean and SD of the beta series in either the auditory or visual mismatch condition 288 

as well as the following predictors of non-interest: age in months (Garrett et al., 2011; McIntosh, 289 

Kovacevic, & Itier, 2008); amount of subject motion, defined as the average point-to-point 290 

Euclidean movement across all volumes of data collection (Power, Barnes, Snyder, Schlaggar, & 291 

Petersen, 2012); and the number of trials used to calculate the mean and SD of the beta series 292 
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(i.e., the number of correct trials following removal of trials that exceeded motion, outlier, or 293 

RT thresholds). Using the program dropterm in version 7.43-45 of the ‘MASS’ package in R 294 

(Venables & Ripley, 2002), we removed, in a stepwise fashion, any of the three predictors of 295 

non-interest that did not account for significant variance in reading skill (an alpha criterion 296 

of .05 was used for backward selection; at each step, the predictor with the largest associated 297 

p-value was removed). Then, for the resulting models, change in AIC, change in BIC, and change 298 

in adjusted R2 were quantified for both the mean and SD of the beta series by comparing final 299 

models with models in which each of these respective terms were removed. 300 

Confirmation Sample 301 

Participants. Children were selected for this analysis from a large dataset that has been the 302 

subject of other reports (Frost et al., 2009; Jasińska et al., 2016; Landi et al., 2013; Preston et al., 303 

2016). From this larger sample of 122 children, we first selected participants whose average 304 

Euclidean movement was .25 mm or less (81/122). Next, because the distribution of reading 305 

ability in the larger sample differed from the Discovery Sample, which was weighted toward the 306 

lower end of the reading skill distribution, we selected a subset of children who were matched 307 

to the Discovery Sample in age and raw single word reading scores (WJ-III LWID) using version 308 

3.0.1 of the R package ‘MatchIt’ (Ho, Imai, King, & Stuart, 2011). From this subset of children, 309 

we then selected those who attained at least 70% accuracy in each of the auditory and visual 310 

mismatch conditions, which resulted in 32 children in the Confirmation Sample (14 female). 311 

Assessment scores for the Confirmation Sample are listed in Table 1; as can be noted from the 312 

table, mean raw reading scores and mean age were not significantly different across the two 313 

samples (WJ-III LWID raw scores: t(55) = -1.51, p = .14; age: t(47) = -.30, p = .77), although 314 
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standard single word reading scores, phonological awareness, vocabulary, and IQ were lower in 315 

the Discovery Sample compared to the Confirmation Sample (WJ-III LWID standard scores: t(64) 316 

= -2.26, p = .03; CTOPP phonological awareness composite standard scores: t(57) = -5.51, p 317 

< .001; PPVT standard scores: t(72) = -3.39, p = .001; WASI FSIQ-2 standard scores: t(68) = -3.15, 318 

p < .01).  We would argue that such sample differences provide for increased generalizability of 319 

results. 320 

fMRI Task. Functional volumes were acquired while participants completed the same picture 321 

cue-target word identification task as the children in the Discovery Sample. However, the task 322 

in this sample included a larger number of conditions. More specifically, for both the auditory 323 

and visual modalities, mismatches were either real words or pseudowords; in addition, for the 324 

visual modality, some mismatches were either semantically related words or meaningless 325 

consonant strings. As a result of this different design, the match to mismatch ratio was 1:4 326 

instead of 1:5; in addition, printed words were presented for a duration of 2000 ms and in 18-327 

point Verdana font. To keep the confirmatory analyses as comparable as possible to the 328 

analyses employed for the Discovery Sample, only the real word conditions in both modalities 329 

were considered. 330 

Acquisition of MRI Data. Images were acquired using a 1.5T Siemens Sonata scanner with a 331 

one-channel head coil located at the Yale Magnetic Resonance Research Center in New Haven, 332 

Connecticut. T2*-weighted images were acquired in an axial-oblique orientation parallel to the 333 

intercommissural line (20 slices; 6 mm slice thickness; no gap) using single-shot echo planar 334 

imaging (matrix size = 64 × 64; voxel size = 3.125 × 3.125 × 6 mm; FoV = 200 mm; TR = 2000 ms; 335 

TE = 50 ms; flip angle = 80°). To allow for stabilization of the magnetic field, the first four 336 
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volumes within each run were discarded. Anatomical scans were collected in a sagittal 337 

orientation (MPRAGE; matrix size = 256 × 256; voxel size = 1 × 1 × 1 mm; FoV = 256 mm; TR = 338 

2000 ms; TE = 3.65 ms; flip angle = 8°); these were acquired either following or between the 339 

functional runs. Participants completed between seven and ten functional runs each 3:46 (113 340 

volumes) in length, which corresponded to up to 40 trials in each of the auditory and visual 341 

mismatch conditions (i.e., four trials in each condition in each run). Across all trials in the 342 

experiment, the time between trial onsets was jittered between 4 and 13 seconds. 343 

Analysis Pipeline. All analyses were conducted in the exact same fashion as they were for the 344 

Discovery Sample. Removal of volumes that exceeded the thresholds of .3 mm Euclidean 345 

movement and/or 10% outliers prior to the GLM resulted in an average loss of less than one 346 

trial in each of the auditory and visual mismatch conditions. Following the GLM, removal of 347 

trials with outliers in greater than 10% of voxels in the brain resulted in a further loss of three 348 

trials on average in the auditory mismatch condition and two trials on average in the visual 349 

mismatch condition; subsequently, the mean number of voxels with outlier values across all 350 

trials and participants was less than one in both the auditory and visual mismatch conditions in 351 

each ROI. Analyses focused solely on the ROIs and experimental conditions for which we 352 

observed effects in the Discovery Sample for either the mean or SD of the beta series. When 353 

performing these confirmatory analyses, we opted to use a Bonferroni-corrected alpha 354 

threshold for significance of .0125, which was calculated by dividing .05 by 4, the total number 355 

of models tested. 356 
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Results 357 

Behavioral performance for the in-scanner task for both samples is summarized in Table 2, 358 

along with data concerning average amount of movement in the scanner and the number of 359 

trials in the beta series in each condition. Average values across participants for the mean and 360 

SD of the beta series within each ROI are presented in Table 3; results for the multiple 361 

regression analysis are detailed in Table 4 for the Discovery Sample and Table 5 for the 362 

Confirmation Sample.  363 

Across the two samples, we observed a positive relationship between reading skill and trial-by-364 

trial neural activation variability for printed words in the left IFG pars triangularis (Figure 3). In 365 

this region, trial-by-trial neural activation variability for printed words not only accounted for 366 

significant variance in reading skill above and beyond mean levels of activation, but actually 367 

accounted for a greater proportion of variance in reading skill than did mean activation. The 368 

relationship between reading skill and neural activation variability in this region appears to be 369 

fairly selective for print, as we did not observe a significant relationship between reading skill 370 

and trial-by-trial variability in neural activation for spoken words in this region. For spoken 371 

words, the only relationship we observed between reading skill and trial-by-trial neural 372 

activation variability was a negative association in the left STG in the Discovery Sample; 373 

however, this finding did not hold in the Confirmation Sample. These results also appear to be 374 

fairly selective for reading ability, as we ran a secondary analysis with performance IQ as the 375 

dependent variable to assess whether neural activation variability was related to general 376 

cognitive ability. These analyses did not reveal any significant relationship between 377 

performance IQ and neural activation variability for print or speech in any region of interest. In 378 



 

 

18 

18 

addition, we also re-ran the analysis with single word reading skill as the dependent variable, 379 

this time including performance IQ as a covariate in the multiple regression models. The 380 

positive relationship between reading skill and neural activation variability for print in the left 381 

IFG pars triangularis was still marginally significant in both the Discovery and Confirmation 382 

samples, even when accounting for individual differences in performance IQ (Discovery Sample: 383 

p = .055; Confirmation Sample: p = .017). 384 

The above results stand in contrast to those for mean activation, which only showed a 385 

significant relationship between reading skill and activation for printed and spoken words in the 386 

left thalamus in the Discovery Sample but not the Confirmation Sample. We should also note 387 

that the alternative predictors did not show systematic patterns across both samples; however, 388 

we did observe that average Euclidean motion and the number of trials within the beta series 389 

accounted for significant variance in reading skill in a number of regions. To further test for the 390 

influence of subject motion and the number of trials in the beta series on the observed results, 391 

we ran a secondary analysis in which we relaxed the subject inclusion criteria to a maximum 392 

of .40 mm average Euclidean motion and a minimum of 50% accuracy for both the auditory and 393 

visual mismatch conditions. This resulted in a sample size of 50 for the Discovery Sample and 43 394 

for the Confirmation Sample. The relationship between reading skill and neural activation 395 

variability for print in the left IFG pars triangularis was still significant in the same direction in 396 

both samples (Discovery Sample: p = .012; Confirmation Sample: p = .002). 397 
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Discussion 398 

Our aim was to assess the relationship between reading skill in school-aged children and trial-399 

by-trial variability in fMRI activation for print or speech. This stemmed from recent advances 400 

concerning individual differences in neural response stability in relation to reading skill 401 

(Hornickel & Kraus, 2013), as well as the potential impact of neural noise on the timing and 402 

systematic variability of processes important for reading (Hancock, Pugh, & Hoeft, 2017). Based 403 

on this previous work, we hypothesized that reading skill would be related to trial-by-trial 404 

variability in neural activation even after accounting for intrasubject differences in mean levels 405 

of task-related activation. However, the direction of this relationship remained an open 406 

question, as domains outside of reading have shown different relationships between behavioral 407 

performance and variability in the fMRI BOLD response, whether measured from moment-to-408 

moment within blocks (Garrett et al., 2011), or from trial-to-trial in experiments employing 409 

event-related designs (Armbruster-Genc et al., 2016; Baum & Beauchamp, 2014; Haigh et al., 410 

2016).  411 

Trial-by-Trial Activation Variability versus Mean Activation 412 

For each of two samples of children who performed an fMRI picture-word matching task, we 413 

entered intrasubject means and SDs of single trial beta estimates for print and speech trials into 414 

multiple regression models predicting reading skill. We observed that in the left inferior frontal 415 

gyrus pars triangularis, the SD of the beta series for printed words not only accounted for 416 

additional variance in reading skill that was not captured by the mean of the beta series, but 417 

actually accounted for a greater proportion of variance in reading skill than did mean levels of 418 

activation. This effect held across the two samples, despite differences in participants, scanners, 419 
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and slight differences in trial context. Moreover, these effects were fairly selective for print, as 420 

we did not observe a relationship between reading skill and activation variability for spoken 421 

words in this region; the only effect we observed for spoken words was a negative relationship 422 

between reading skill and activation variability in the left STG in the Discovery Sample that was 423 

not observed in the Confirmation Sample. In contrast to the findings for activation variability, 424 

for mean activation, the only relationships we observed were positive correlations between 425 

reading skill and mean activation for both printed and spoken words in the left thalamus in the 426 

Discovery Sample, supporting previous studies documenting the important contributions of the 427 

thalamus to reading (Galaburda et al., 1985; Pugh et al., 2013); however, these relationships 428 

were not observed in the Confirmation Sample.  429 

The left IFG has long been implicated as a critical part of the skilled reading network in adults, 430 

with more anterior and lateral subregions of IFG such as pars triangularis thought to be 431 

involved in semantic processing (Bookheimer, 2002; Poldrack et al., 1999). Moreover, activation 432 

of the left IFG, as well as connectivity between the left IFG and certain components of the 433 

reading network, has been associated with age-related increases over the course of reading 434 

development, and this region has been linked to processes such as phonological segmentation 435 

and covert articulation (Bitan et al., 2007; Schlaggar et al., 2002; Turkeltaub et al., 2003). 436 

However, the current study is the first time that individual differences in reading ability in 437 

children have been associated with variability in fMRI activation for printed words in this region. 438 
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The Direction of the Relationship between Reading Skill and BOLD Signal Variability 439 

In the left IFG pars triangularis, trial-by-trial variability in neural activation for print was 440 

positively related to reading skill. A positive relationship between BOLD signal variability and 441 

behavioral performance has been previously observed by Garrett et al. (2011), who found that 442 

increased levels of BOLD signal variability were associated with faster and more consistent 443 

behavioral performance in younger versus older adults across a range of cognitive tasks, as well 444 

as by Armbruster-Genc et al. (2016), who found that increased levels of BOLD signal variability 445 

were associated with greater cognitive flexibility in adults, which manifested as reduced 446 

behavioral switching costs in a task-switching paradigm.  447 

Based on EEG measures in children, McIntosh et al. (2008) suggest that increased neural 448 

variability reflects a greater dynamic range of cognitive states as well as a greater ability to 449 

transition between them, which perhaps translates to a greater ability to adapt to the 450 

environment. It is possible that the increased neural variability observed in the better readers 451 

in the current study could reflect greater neural adaptability; however, we interpret this with 452 

caution given that we assessed trial-by-trial variability as opposed to moment-to-moment 453 

variability at a finer within-trial timescale. Furthermore, increased neural variability may not 454 

always have a positive effect on behavioral performance. Armbruster-Genc et al. (2016) 455 

observed that one of the brain regions that showed a positive association between neural 456 

variability and cognitive flexibility – that is, the left inferior frontal junction – actually showed a 457 

negative association with cognitive stability, which manifested as more extensive behavioral 458 

costs for distractor inhibition. This dissociation in terms of directionality may depend on the 459 

level of hierarchical organization in which a brain region is situated as well as the extent to 460 
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which a task is weighted towards sensory versus cognitive processing. For example, individuals 461 

with autism – a neurodevelopmental disorder that can co-occur with reading disability – have 462 

shown increased fMRI BOLD signal variability in primary sensory areas in response to low-level 463 

sensory stimulation, and this finding has been used to explain why individuals with autism may 464 

experience difficulties in highly sensory environments (Haigh et al., 2016). This distinction 465 

between sensory and cognitive processing may help reconcile the current results with the 466 

observation that low-level neural responses to speech sounds show greater variability in 467 

children with reading disability compared to typically developing children (Hornickel & Kraus, 468 

2013). In addition, these findings – as well as future experiments that more directly tease apart 469 

sensory versus cognitive processing – may inform the neural noise hypothesis put forth by 470 

Hancock et al. (2017) by elucidating the conditions that promote greater versus lesser neural 471 

variability in developing readers as well as how these relationships pattern across different 472 

brain regions as a function of reading experience. The differentiation of the role of random 473 

neural “noise” versus systemic components that drive “dynamic range” or “adaptability” within 474 

such greater neural variability indices may be a critical conceptual and analytic challenge.         475 

In the electrophysiological literature, He and Zempel (2013) have asserted that a certain 476 

amount of neural variability is beneficial, but if the level of variability is too high, brain activity 477 

could be scattered across too wide a range, which could be detrimental. Thus, it is possible that 478 

the relationship between neural variability and behavioral performance is non-monotonic, and 479 

that we are only observing the ascending portion of an inverted U-shaped curve. Future studies 480 

could address this possibility by including children who are more severely impaired than the 481 

poorest readers in the present sample.  482 



 

 

23 

23 

Possible Mechanisms of Neural Variability 483 

The increased neural variability observed in the more skilled readers in the current study could 484 

be the result of spontaneous fluctuations in the BOLD signal that are intrinsically generated in 485 

the brain and not attributable to specific inputs or outputs (Fox & Raichle, 2007; Fox, Snyder, 486 

Vincent, & Raichle, 2007). These spontaneous fluctuations may serve to coordinate neuronal 487 

activity between distal brain regions, and may be the product of changes in the power of high-488 

frequency electrical activity such as the gamma band (Leopold, Murayama, & Logothetis, 2003). 489 

These changes in gamma oscillation frequency may in turn be associated with differences in 490 

GABA concentrations and their resulting influence on the balance of neural excitation and 491 

inhibition (Muthukumaraswamy, Edden, Jones, Swettenham, & Singh, 2009). It is also possible 492 

that the balance of excitation and inhibition could have been influenced by glutamatergic 493 

inputs, especially given recent findings documenting an association between glutamate 494 

concentrations and reading skill (Pugh et al., 2014), as well as similar support from animal 495 

models (Che, Truong, Fitch, & LoTurco, 2015). Based on these findings, future investigations 496 

should target the neural mechanisms of BOLD signal variability and their links to other 497 

neurobiological indices, including neural oscillations, neurochemistry, indices of neural noise, 498 

and neuroanatomical measures (Becker, Reinacher, Freyer, Villringer, & Ritter, 2011).  499 

Conclusions and Future Directions 500 

Overall, this investigation lends support to work advocating for the added value of evaluating 501 

intrasubject variability in brain signals compared to solely evaluating mean levels of neural 502 

activity (Faisal, Selen, & Wolpert, 2008; Garrett et al., 2011, 2010; Garrett et al., 2013; Pernet, 503 

Sajda, & Rousselet, 2011), and highlights the importance of considering individual difference 504 
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dimensions beyond subject age as contributors to, or reflections of, individual differences in 505 

neural activation variability (Grady & Garrett, 2014; McIntosh et al., 2008). Furthermore, the 506 

current findings constitute a critical first step in considering the role of adaptability in 507 

developing brain systems involved in reading, and motivate future investigations concerning 508 

the mechanistic link between neural activation variability, neural noise, and reading skill. Finally, 509 

from an applied standpoint, these results beg the tantalizing question of whether trial-by-trial 510 

activation variability in reading-related brain areas could serve as a useful biomarker for 511 

clinically relevant phenotypes such as response to intervention for reading disability. 512 
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Figure Captions 677 

Figure 1. A sample trial sequence for the fMRI task. 678 

Figure 2. Location of each of the ROIs tested in the multiple regression analyses. These ROIs, 679 

shown in white, are peak coordinates from the Martin et al. (2015) meta-analysis, and are 680 

overlaid on a conjunction map that shows the overlap in task-related activation between the 681 

Discovery and Confirmation samples (each corrected at FDR < .01; for more details on how this 682 

map was constructed, refer to the Methods section). IFGtr = inferior frontal gyrus pars 683 

triangularis; IFGop =  inferior frontal gyrus pars opercularis; SPL = superior parietal lobule; STG = 684 

superior temporal gyrus; MTG = middle temporal gyrus; ITG = inferior temporal gyrus 685 

Figure 3. Partial correlation results for the multiple regression analyses performed for the left 686 

inferior frontal gyrus pars triangularis ROI. The x-axis specifies adjusted trial-by-trial neural 687 

activation variability, which corresponds to residuals from a model where the standard 688 

deviation (SD) of the beta series is the dependent variable and the mean of the beta series as 689 

well as any significant predictors of non-interest (i.e., age, average Euclidean motion, and/or 690 

the number of trials in the beta series) are the regressors; the y-axis specifies adjusted reading 691 

scores, which are the size of the residuals from a model where Letter Word Identification raw 692 

scores are the dependent variable, and the regressors are the mean of the beta series as well as 693 

the same predictors of non-interest. The regression line is superimposed on the plot; the 694 

shaded region represents the 95% confidence interval. 695 
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Table 1. Descriptive information concerning the two groups of children who performed the fMRI experiment. 
 

Assessment Measure 
Discovery Sample (N = 44; 18 female) Confirmation Sample (N = 32; 14 female) 

Mean SD Range Mean SD Range 

–  Age 9.3 0.6 7.8–11.3 9.4 1.1 7.5-11.3 

WJ-III Letter Word ID – raw score Single word reading 43.0 9.0 31-61 46.8 12.1 23-69 

WJ-III Letter Word ID – standard score Single word reading 95.5 13.9 67-124 103.1 14.9 76-133 

WASI Full Scale IQ-21 Intelligence 99.6 15.8 80-140 110.8 14.6 76-138 

CTOPP phonological awareness – 

composite score2 

Phonological awareness 85.5 13.4 65-112 104.4 15.2 67-145 

PPVT – standard score3 Receptive vocabulary 103.3 16.9 73-135 114.9 12.5 84-135 

Note. WJ-III = Woodcock-Johnson Tests of Cognitive Abilities; WASI = Wechsler Abbreviated Scale of Intelligence; CTOPP = Comprehensive Test of Phonological 
Processing; PPVT = Peabody Picture Vocabulary Test. For the Discovery Sample, the following versions were used: WASI-II, CTOPP-2, PPVT-4. For the 
Confirmation Sample, the following versions were used: WASI-I, CTOPP-1, PPVT-3. 
1Full scale IQ-4 was measured instead of Full Scale IQ-2 for one participant in the Discovery Sample. Furthermore, Full Scale IQ-2 is missing from one participant 
in the Confirmation Sample. 
2CTOPP scores are missing from two participants in the Confirmation Sample. 
3PPVT scores are missing from one participant in the Discovery Sample and one participant in the Confirmation Sample. 
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Table 2. MRI quality control parameters and performance for the in-scanner picture cue-target word identification task for the two 
groups of children who performed the fMRI experiment. 
 

Measure 
Discovery Sample Confirmation Sample 

Mean SD Range Mean SD Range 

Average motion per brain volume (mm/TR) .12 .05 .04-.23 .13 .05 .05-.25 

Visual mismatch condition (Print)       

     Number of trials in the beta series 19.6 2.8 12-25 26.7 3.9 19-37 

     Percent accuracy 90.8 7.3 76-100 91.3 7.4 75-100 

     Mean reaction time for correct trials 1670 348 1159-3013 1479 355 989-2125 

     SD of reaction time for correct trials 506 203 181-1001 442 166 169-700 

Auditory mismatch condition (Speech)       

     Number of trials in the beta series 21.0 2.1 17-24 27.3 3.7 20-36 

     Percent accuracy 96.5 4.7 80-100 93.0 4.9 81-100 

     Mean reaction time for correct trials 1698 296 1121-2335 1419 237 1072-1933 

     SD of reaction time for correct trials 456 194 135-1015 373 123 171-633 
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Table 3. Location of each of the ROIs selected for the multiple regression analysis as well as average values across participants for 
the mean and standard deviation (SD) of the beta series within each ROI.  
    Discovery Sample Confirmation Sample 

   Centre of Mass (Talairach)1 Print Speech Print Speech 

Region Abbreviation x y z Mean SD Mean SD Mean SD Mean SD 

Left inferior frontal gyrus 

pars opercularis 

IFGop -49 22 3 1.11 2.83 1.24 2.56 .41 3.30 .88 3.02 

Left inferior frontal gyrus 

pars triangularis 

IFGtr -51 24 15 .58 1.83 .61 1.70 .49 2.10 .54 1.96 

Left superior parietal lobule SPL -22 -48 50 .16 1.13 .12 1.05 .03 1.18 .07 1.16 

Left middle temporal gyrus  MTG -57 -25 -4 .24 1.69 .47 1.52 -.17 1.84 .37 1.79 

Left inferior temporal gyrus  ITG -52 -59 -9 .66 2.28 .07 2.44 .55 3.18 .19 2.97 

Left superior temporal 

gyrus  

STG -55 -30 16 .45 1.91 1.61 1.89 .11 1.89 1.53 1.82 

Left thalamus – -12 -25 10 .59 1.29 .45 1.23 .27 1.15 .45 1.13 

Note: Each ROI was 891 mm3 in size (33 voxels; 3 mm isotropic).  
1LPI orientation. 
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Table 4. Multiple regressions for the Discovery Sample. Each model quantifies the contribution of mean activation and trial-by-trial 
activation variability to WJ-III Letter Word ID raw scores.  
 
  Print Speech 

Region Regressor β SE AIC BIC R2
adj F p β SE AIC BIC R2

adj F p 

Left IFGop Mean activation -.072 .146 1.73 3.52 -.015 .246 .623 -.043 .158 1.92 3.71 -.021 .075 .786 

Activation variability .177 .146 .405 2.19 .009 1.48 .231 .208 .179 .536 2.32 .008 1.35 .252 

Left IFGtr Mean activation .042 .130 1.88 3.67 -.015 .106 .746 -.043 .150 1.91 3.69 -.021 .083 .775 

Activation variability .329 .129 -4.66 -2.87 .095 6.53 .014 .150 .150 .904 2.69 <.001 1.01 .321 

Left SPL Mean activation -.006 .136 2.00 3.78 -.019 .002 .964 -.011 .150 1.99 3.78 -.023 .006 .939 

Activation variability .221 .141 -.644 1.14 .028 2.48 .123 .086 .166 1.71 3.49 -.017 .267 .608 

Left MTG Mean activation .046 .137 1.88 3.66 -.017 .111 .741 .057 .153 1.85 3.63 -.020 .138 .712 

Activation variability .211 .137 -.537 1.25 .026 2.37 .131 .107 .153 1.47 3.25 -.012 .490 .488 

Left ITG Mean activation -.093 .138 1.51 3.29 -.011 .449 .507 .103 .171 1.61 3.40 -.015 .364 .549 

 Activation variability .102 .141 1.42 3.21 -.009 .527 .472 -.187 .171 .739 2.52 .005 1.19 .281 

Left STG Mean activation -.039 .140 1.92 3.70 -.018 .077 .782 .224 .179 .353 2.14 .013 1.56 .218 

Activation variability .102 .141 1.42 3.21 -.009 .530 .471 -.399 .179 -3.01 -1.23 .088 4.95 .032 

Left thalamus Mean activation .413 .119 -9.52 -7.74 .160 12.0 .001 .304 .147 -2.39 -.604 .072 4.30 .044 

Activation variability .160 .120 .095 1.88 .011 1.77 .191 -.156 .147 .802 2.59 .003 1.13 .294 

Note: In all models, removal of the activation variability term did not impact the significance of the mean activation term. 
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Table 5. Multiple regressions for the Confirmation Sample. Each model quantifies the 
contribution of mean activation and trial-by-trial activation variability to WJ-III Letter Word ID 
raw scores. 
 

Experimental 
Condition 

Region Regressor β SE AIC BIC R2
adj F p1 

Print Left IFGtr Mean activation -.062 .139 1.76 3.23 -.014 .200 .658 

Activation variability .465 .142 -8.70 -7.23 .171 10.7 .003 

Left thalamus Mean activation -.003 .141 2.00 3.47 -.021 .001 .982 

  Activation variability -.037 .145 1.92 3.39 -.019 .065 .801 

Speech Left STG Mean activation .214 .152 -.189 1.28 .022 1.98 .170 

Activation variability -.179 .152 .461 1.93 .009 1.38 .250 

Left thalamus Mean activation .178 .156 .545 2.01 .007 1.30 .263 

 Activation variability -.121 .156 1.32 2.79 -.009 .598 .446 

Note: In all models, removal of the activation variability term did not impact the significance of the mean activation term. 
1 For this confirmatory analysis, we adopted a Bonferroni-corrected alpha threshold for significance of .0125 (.05 divided by 4, 
the total number of models tested). 




