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Synergy between the small intrinsically
disordered protein Hsp12 and trehalose
sustain viability after severe desiccation
Skylar Xantus Kim, Gamze Çamdere, Xuchen Hu, Douglas Koshland*,
Hugo Tapia*

Department of Molecular and Cell Biology, University of California, Berkeley,
Berkeley, United States

Abstract Anhydrobiotes are rare microbes, plants and animals that tolerate severe water loss.

Understanding the molecular basis for their desiccation tolerance may provide novel insights into

stress biology and critical tools for engineering drought-tolerant crops. Using the anhydrobiote,

budding yeast, we show that trehalose and Hsp12, a small intrinsically disordered protein (sIDP) of

the hydrophilin family, synergize to mitigate completely the inviability caused by the lethal stresses

of desiccation. We show that these two molecules help to stabilize the activity and prevent

aggregation of model proteins both in vivo and in vitro. We also identify a novel in vitro role for

Hsp12 as a membrane remodeler, a protective feature not shared by another yeast hydrophilin,

suggesting that sIDPs have distinct biological functions.

DOI: https://doi.org/10.7554/eLife.38337.001

Introduction
In the near future, global food security will be challenged by the effect of climate change on crop

yields (Schwalm et al., 2017; Tirado et al., 2013). Potential solutions to more frequent drought may

come from the study of diverse organisms, collectively named anhydrobiotes, which can survive

extreme water loss. Anhydrobiotes include single celled organisms (bacteria and yeast), simple multi-

cellular organisms (plant seeds), as well as complex multicellular plants and animals (resurrection

ferns, tardigrades and nematodes). The acquisition of a desiccation tolerant state of all these organ-

isms requires pre-exposure to a stress condition like nutrient starvation or reduced water that indu-

ces dramatic changes in the profile of gene expression and cellular constituents. Among all these

changes, the identity of the stress effectors that are necessary and sufficient to mitigate all the

stresses of desiccation remained unknown. Furthermore, the removal of water from organisms has

the potential to induce many potential stresses, given the ubiquitous function of water in so many

biological processes. Which of these potential stresses must be mitigated to allow desiccation toler-

ance also remains incomplete.

An important clue to the identification of critical stress effectors of desiccation came from the dis-

covery that almost all anhydrobiotes have high levels of the disaccharide trehalose and small, hydro-

philic, and intrinsically disordered proteins collectively called hydrophilins (Crowe et al., 1992;

Potts, 2001). Recently, the in vivo requirements for trehalose and hydrophilins in desiccation toler-

ance have been addressed in nematodes, yeast and tardigrades that lack trehalose or hydrophilins

because of either mutations or gene knock-downs using RNAi (Boothby et al., 2017; Erkut et al.,

2011; Tapia and Koshland, 2014). The abrogation of these factors caused diverse impacts on desic-

cation tolerance, as measured by the organism’s survival to drying. Nematodes lacking trehalose are

extremely sensitive to short term desiccation, while yeast lacking trehalose are sensitive to only long

term-tolerance desiccation (Erkut et al., 2011; Tapia and Koshland, 2014). At least one species of
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tardigrade is desiccation tolerant although naturally lacking trehalose (Boothby et al., 2017). Loss of

individual different hydrophilins only partially reduces tolerance in nematodes, tardigrades, and

yeast, and never to the degree as observed when lacking trehalose (Boothby et al., 2017;

Calahan et al., 2011; Erkut et al., 2013). Indeed, in nematodes, even when a specific hydrophilin is

missing, >10% of nematodes survive, demonstrating moderately high levels of desiccation tolerance

never observed in sensitive species (Erkut et al., 2013). The fact that loss of trehalose or individual

hydrophilins can reduce desiccation tolerance shows they can mitigate one or more stresses of desic-

cation. However, the variability of their impact suggests that unknown combinations of trehalose,

hydrophilins or additional, as yet unidentified, stress effectors must help mitigate the same or differ-

ent lethal stresses of desiccation.

To complement these loss of function tests, we developed a system in budding yeast to examine

the combinatorial roles of stress effectors in desiccation. Only 0.001% of exponentially dividing yeast

cells survive desiccation compared to 20–40% survival of stationary phase cells (Calahan et al.,

2011). To assess the sufficiency of different stress effectors (e.g. of trehalose or hydrophilins) to con-

fer desiccation tolerance, we engineered exponentially dividing cells to have increased levels of only

trehalose or individual tardigrade hydrophilins (independent of all the other cellular factors that dif-

fer between exponential and stationary phase cells) (Boothby et al., 2017). The desiccation toler-

ance of these cells increased by 1000-fold, but remained one to two orders of magnitude less than

the tolerance naturally reached in stationary phase cells (Boothby et al., 2017; Tapia et al., 2015).

These observations further reinforce the notion that robust desiccation tolerance likely requires an

unknown combination of trehalose, hydrophilins or other stress effectors working in concert to allevi-

ate one or more stresses imposed by complete water loss.

What are the stresses imposed by desiccation? Given the ubiquitous molecular functions of water

in biological processes, its absence has been proposed to induce a plethora of stresses. After drying,

desiccation sensitive nematodes and yeast exhibit membrane blebbing and protein aggregation,

respectively (Erkut et al., 2011; Tapia and Koshland, 2014). These results suggest that desiccation

may induce perturbations to membrane integrity and proteostasis. In nematodes, a partial loss of

desiccation tolerance has also been observed with defects in protection against ROS (Erkut et al.,

2013). Different hydrophilins have been reported to localize to different organelles, suggesting that

unique organellar stress (i.e. mitochondria) may be an important feature of desiccation stress

(Candat et al., 2014; Hand et al., 2011). These results led to the idea that desiccation causes a vari-

ety of lethal stresses, impacting multiple cellular constituencies, that require a host of specific stress

effectors to mitigate.

We sought to identify stress effectors sufficient for desiccation tolerance, and to characterize their

molecular functions. Here, using genetic assays with stationary and exponential phase cells, we dem-

onstrate that trehalose and a single hydrophilin, Hsp12, unexpectedly synergize to completely allevi-

ate all of the lethal damage that occurs due to severe water loss. We provide evidence that these

two small molecules have both independent and synergistic activities to counter the misfolding and

aggregation of protein reporters that occurs upon desiccation both in vivo and in vitro. We identify

a novel in vitro role for Hsp12 as a membrane remodeler, an activity likely required to provide desic-

cation tolerance. Finally, our data suggest that despite sharing many of the same properties (high

glycine content, small size, high hydrophilicity, disordered secondary structure), yeast hydrophilins

clearly have distinct functions. These findings have profound implications for both stress biology and

potential translational applications.

Results

Trehalose and Hsp12 are necessary and sufficient for desiccation
tolerance
We reasoned that previous screens of the yeast deletion collection for sensitivity to short-term desic-

cation sensitivity were unproductive because likely more than one stress effector needed to be inac-

tivated to significantly compromise tolerance. At least one of these factors was likely trehalose,

given its role in long-term desiccation tolerance. Therefore, we started with a base strain that was

unable to synthesize trehalose (tps1D) and introduced into it deletions for the remaining ~5000 non-

essential genes in yeast (Tong et al., 2001). These double mutants were grown to stationary phase
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and assayed for survival after short-term and long-term desiccation. We identified three groups with

distinct phenotypes. The strains in the first group were inviable when dried for six days

(Supplementary file 2A2, Supplementary file 2B). The strains in the second group were inviable

even in the absence of stress (Supplementary file 2A1). The strains in the third group suppressed

the long-term desiccation sensitivity of a tps1D (Supplementary file 2A3). While the strains in these

last two groups identify potentially interesting genes for future study, we focused on the first group;

the gene deletions in this group potentially inactivated candidate stress effectors besides trehalose

that were needed for short-term desiccation tolerance.

One candidate gene from this group was HSP12. Hsp12 encodes one of 12 previously identified

yeast hydrophilins and is the most highly expressed member of the family in stationary phase cells

(Garay-Arroyo et al., 2000). To further investigate the potential synergism between Hsp12 and tre-

halose we compared quantitatively short- and long-term desiccation tolerance of stationary phase

cells that were wild type, tps1D, hsp12D and tps1Dhsp12D. After a 30 day desiccation period, the

viability of stationary phase wild type cells decreased only two-fold (Figure 1A). Although the viabil-

ity of tps1D cells was similar to that of wild type cells after two days of desiccation, after the 30 day

desiccation period, tps1D cell viability dropped more than 100-fold (Figure 1A). This result corrobo-

rated our previous evidence demonstrating a requirement of trehalose for long-term but not short-

term desiccation tolerance (Tapia and Koshland, 2014). While hsp12D cells exhibited wild type lev-

els of desiccation tolerance after both short- and long-term desiccation, the tps1Dhsp12D cells dis-

played a 100-fold drop in viability after only 2 days of drying. Furthermore, after 30 days of

desiccation, no viable tps1Dhsp12D cells remained (Figure 1A). These results revealed that trehalose

and Hsp12 act cooperatively to promote tolerance to both short- and long-term desiccation. Fur-

thermore, although tps1D and hsp12D had both been shown to confer elevated sensitivity to heat

stress, the tps1Dhsp12D double mutant was no more heat-sensitive than either single mutant alone

(Figure 1—figure supplement 1) (Gibney et al., 2015; Welker et al., 2010). Thus, the protective

synergism we observe between trehalose and Hsp12 is specific to desiccation stress.

We have shown previously that exponentially-growing cells with increased intracellular trehalose

show a 1000-fold increase in desiccation tolerance relative to wild-type cells (Tapia et al., 2015).

Hence, we tested whether exponentially dividing cells with engineered high-level expression of

Hsp12 would also exhibit increased desiccation tolerance. Normally, Hsp12 is not highly expressed

in unstressed dividing cells (Praekelt and Meacock, 1990). Therefore, we swapped its promoter

with a strong constitutive promoter to drive Hsp12 expression in dividing cells to a level similar to

that observed in stationary phase cells. These dividing cells exhibited a 1000-fold increase in desicca-

tion tolerance, comparable to survival conferred by increased intracellular trehalose (Figure 1B).

Thus, Hsp12, like trehalose, had a significant ability to mitigate one or more of the lethal stresses

imposed by desiccation.

Next, we tested for potential synergy between trehalose and Hsp12 by examining the desiccation

tolerance of exponentially-dividing yeast cells containing high levels of both factors. The desiccation

tolerance of these cells was ~60 fold greater than cells that expressed only Hsp12 or trehalose. Fur-

thermore, the absolute amount of tolerance (65–80% survival) was even greater than the tolerance

of wild type cells in stationary phase (20–40% survival), the highest tolerance previously reported for

yeast cells (Figure 1B) (Calahan et al., 2011). Our findings suggest that the functions of these two

stress effectors must synergize to counter all the lethal effects of desiccation and subsequent rehy-

dration on exponentially dividing yeast.

Hsp12 can protect protein activity and aggregation of soluble cytosolic
proteins during desiccation
Different in vitro experiments have suggested that trehalose helps prevent desiccation-induced pro-

teotoxicity (Kaushik and Bhat, 2003; Olsson et al., 2016; Singer and Lindquist, 1998). With this in

mind, we tested the ability of Hsp12 to modulate proteostasis under desiccation conditions. First,

we examined the impact of Hsp12 on the in vitro activity of the well-established model proteostasis

substrate citrate synthase (CS). We desiccated solutions of CS alone or with varying concentrations

of Hsp12. These samples were rehydrated, and CS enzymatic activity was measured. Desiccation of

CS caused an approximately 50% reduction in its enzymatic activity (Figure 2A). The presence of

Hsp12 during drying maintained nearly all CS enzymatic activity in a concentration-dependent
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Figure 1. Trehalose and Hsp12 are necessary and sufficient for desiccation tolerance. (A) Yeast cells were grown to saturation (5 days), air-dried for 2,

15, or 30 days at 23˚C, 60% relative humidity (RH), then rehydrated and assessed for viability by counting colony forming units (CFU). Desiccation

tolerance of wild type, tps1D, hsp12D and tps1Dhsp12D cells. (B) Yeast cells (nth1D) were grown to mid-exponential phase (OD <0.5) in minimal media

lacking histidine. Cells were then transferred to either minimal media lacking histidine (SC-His, 0% trehalose) or minimal media lacking histidine with

Figure 1 continued on next page
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manner (Figure 2A). These results suggest that Hsp12 on its own can stabilize protein activity

against desiccation in vitro.

We also examined the impact of Hsp12 on the in vivo activity of firefly luciferase (FFL) after desic-

cation. We expressed FFL in exponentially dividing wild type cells either expressing or not express-

ing Hsp12. Before desiccation, the levels of FFL luminescence were the same for all strains tested.

After desiccation, luminescence in wild type cells not expressing Hsp12 was reduced by a factor of

105 (Figure 2—figure supplement 1A). The presence of Hsp12 in these cells did not increase the

activity of this very sensitive reporter (Figure 2—figure supplement 1A). Thus, Hsp12 clearly is not

competent to stabilize the activity of all proteins against desiccation.

We next examined the ability of Hsp12 to protect against desiccation-induced aggregation in

vitro and in vivo. CS was incubated and desiccated alone or with Hsp12. When dried alone, CS dem-

onstrated high levels of aggregation, a 20-fold increase in its aggregation (Figure 2B). Increasing

amounts of Hsp12 added before desiccation decreased aggregation of CS in a concentration-depen-

dent manner (Figure 2B). Significant solubilization of CS occurred at a 2:1 ratio of Hsp12 to CS

(Figure 2B, 225:120 mg/ml). This stoichiometry suggests this solubilization function of Hsp12 is not

enzymatic, consistent with Hsp12s high expression during stress in vivo. Similarly, we desiccated

exponentially dividing cultures of strains that expressed FFL either expressing or not expressing

Hsp12. Upon rehydration, we prepared lysates of these cultures and subjected them to centrifuga-

tion to separate soluble FFL from insoluble FFL that had aggregated with itself or other insoluble

proteins. For all strains tested, equivalent amounts of total FFL were present in cell lysates (Fig-

ure 2—figure supplement 1B). In the wild type strain not expressing Hsp12, no FFL was detected in

the soluble fraction (Figure 2—figure supplement 1B). Increased Hsp12 expression significantly

increased luciferase solubility. Thus, both in vivo and in vitro, Hsp12 helps mitigate desiccation-

induced protein aggregation.

Hsp12 proteostasis activities can act synergistically with, or
independently of trehalose
Given the synergism between trehalose and Hsp12 to promote survival to desiccation, we used the

CS and FFL assays to ask whether their activities in proteostasis also exhibited synergism. In vitro,

trehalose, like Hsp12, increased the activity and solubility of CS after desiccation in a concentration

dependent manner (Figure 2E,F). We looked for protective synergism of CS between trehalose and

Hsp12 at suboptimal concentrations (Figure 2—figure supplement 1C–D). While trehalose and

Hsp12 synergize to restore CS activity, limited synergistic protection against aggregation was

observed. In vivo FFL activity was stabilized four-fold against desiccation in cells with high trehalose

alone, but 14-fold in cells with both high Hsp12 and trehalose (Figure 2C). Thus, while Hsp12 had

no effect on FFL activity on its own, it could synergize with trehalose to increase the activity of this

reporter. Trehalose, like Hsp12, also increased the solubility of FFL after desiccation. Cells express-

ing both Hsp12 and trehalose further elevated FFL solubility (Figure 2C,D). These results demon-

strate that Hsp12 and trehalose can modulate the activity and solubility of proteins independently or

cooperatively depending upon the substrates, suggesting that Hsp12 and trehalose have both inde-

pendent and dependent functions in proteostasis.

Figure 1 continued

trehalose (SC-His, 2% trehalose) for 1 hr. Cells were collected, washed, and air dried for 2 d at 23˚C, 60% relative humidity (RH), then rehydrated and

assessed for viability by counting colony forming units (CFU). Yeast cells are ± Trehalose transporter (AGT1) and ± Hps12 (p423-GPD-Hsp12).

DOI: https://doi.org/10.7554/eLife.38337.002

The following source data and figure supplement are available for figure 1:

Source data 1. Source data for Figure 1A and B.

DOI: https://doi.org/10.7554/eLife.38337.004

Figure supplement 1. Trehalose and Hsp12 heat tolerance.

DOI: https://doi.org/10.7554/eLife.38337.003

Kim et al. eLife 2018;7:e38337. DOI: https://doi.org/10.7554/eLife.38337 5 of 20

Research article Biochemistry and Chemical Biology Cell Biology

https://doi.org/10.7554/eLife.38337.002
https://doi.org/10.7554/eLife.38337.004
https://doi.org/10.7554/eLife.38337.003
https://doi.org/10.7554/eLife.38337


Hsp12 and trehalose act synergistically to propagate a membrane prion
Previously, we have used prion propagation as a sensitive measure of proteostasis (Tapia and Kosh-

land, 2014). Prion propagation requires chaperones that promote oligomerization to generate new

prions. Prion propagation also requires factors that prevent prion over-oligomerization. If the prion

aggregate becomes too large, it fails to transfer into daughter cells during cell division, resulting in

curing over time. Previously, we showed that [PSI+], a cytoplasmic prion, or [GAR+], a membrane-

associated prion, are propagated efficiently between desiccated stationary phase cells and their

Figure 2. Hsp12 proteostasis activities can act synergistically with, or independent of trehalose. (A–B) (A) Enzymatic activity after drying of CS in

presence of varying concentrations of Hsp12. CS enzymatic activity was measured by examining activity-induced changes in absorbance at 412 nm after

drying compared to measurements before drying. (B) Citrate synthase desiccation-induced aggregation in the presence of varying concentrations of

Hsp12. Absorbance at 340 nm. Citrate Synthase (0.12 mg). Absorbance measured after drying at 36˚C for 24 hr followed by 5 hr at 23˚C, then
rehydration in water. Measurements after drying compared to measurements before drying. (C–D) (C) Enzymatic activity after drying of CS in presence

of varying concentrations of trehalose. CS enzymatic was measured by examining activity-induced changes in absorbance at 412 nm after drying

compared to measurements before drying. (D) Citrate synthase desiccation-induced aggregation in the presence of varying concentrations of trehalose.

Absorbance at 340 nm. Citrate Synthase (0.12 mg). Absorbance measured after drying at 36˚C for 24 hr followed by 5 hr at 23˚C, then rehydration in

water. Measurements after drying compared to measurements before drying.

DOI: https://doi.org/10.7554/eLife.38337.005

The following source data and figure supplement are available for figure 2:

Source data 1. Source data for Figure 2A–D.

DOI: https://doi.org/10.7554/eLife.38337.007

Figure supplement 1. Synergistic protection by trehalose and Hsp12

DOI: https://doi.org/10.7554/eLife.38337.006
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daughter cells that form upon rehydration in growth media (Tapia and Koshland, 2014). This propa-

gation is greatly impaired if the desiccated cells lack trehalose.

Unlike tps1D cells, hsp12D cells were able to propagate [PSI+] with or without desiccation, sug-

gesting that trehalose, but not Hsp12, is required to prevent [PSI+] hyper-aggregation (Figure 3A).

This distinction provides another example of independent function of Hsp12 and trehalose in the

proteostasis of cytosolic proteins. However, our analysis of the propagation of the membrane prion

[GAR+] revealed a striking phenotype in the tps1Dhsp12D double mutant. Even in the absence of

desiccation, the percentage of [GAR+] cells in tps1Dhsp12D cultures was reduced almost 500-fold

relative to wild type or hsp12D cells, and 50-fold relative to tps1D (Figure 3B). Thus, Hsp12 and tre-

halose promote propagation of this membrane prion even under aqueous conditions. After desicca-

tion, the percentage of [GAR+] cells was unchanged in hsp12D mutant cells but was undetectable in

both the tps1D and tps1Dhsp12D cells (Figure 3B). The dramatic impact of tps1D alone on [GAR+]

propagation after desiccation likely masked the additional impact of the loss of Hsp12.

Hsp12 remodels lipid vesicles
The synergistic function of trehalose and Hsp12 in [GAR+] propagation could be due to their direct

effect on membrane proteins and/or an indirect effect on overall membrane structure and integrity.

Intriguingly, prior studies indicate that trehalose stabilizes membranes in vitro and this stabilization

may prevent disruptive phase transitions that occur upon rehydration (Crowe et al., 1984,

1987; Erkut et al., 2011; Leslie et al., 1994). Hsp12 also has been reported to increase membrane

stability (Sales et al., 2000; Welker et al., 2010). An alternative/additional membrane function for

Hsp12 was suggested by the fact the addition of certain lipids induce the transition of Hsp12 from a

disordered state to one with secondary structure (Herbert et al., 2012; Singarapu et al., 2011;

Welker et al., 2010). Secondary structure prediction and NMR data identify four alpha-helical

regions in Hsp12, with each of the three larger helices having the features of an amphipathic helix

(Herbert et al., 2012; Singarapu et al., 2011; Welker et al., 2010). Numerous membrane-remodel-

ing proteins use amphipathic helices, embedding the hydrophobic face partway into the bilayer to

shape membranes (Boucrot et al., 2012; Meinecke et al., 2013). Given these considerations, we

hypothesized that Hsp12 might have membrane remodeling activities.

One readout of membrane remodeling activity is the capacity to vesiculate large liposomes into

small vesicles (Boucrot et al., 2012). For example, proteins known to be involved in endocytic mem-

brane trafficking lead to the vesiculation of liposomes (Boucrot et al., 2012). Therefore, we tested

whether addition of Hsp12 to dimyristoylphosphatidylglycerol (DMPG) liposomes would generate

nanovesicles. DMPG liposomes incubated in the absence of Hsp12 sedimented into the pellet frac-

tion due to their large size (Figure 4A). By contrast, when incubated in the presence of Hsp12,

DMPG appeared in the supernatant fraction (Figure 4A). Liposome vesiculation mediated by Hsp12

was incredibly robust and occurred even at low concentrations (Hsp12 - 1.5 mg/ml), with complete

vesiculation occurring in a concentration-dependent manner (Figure 4B). To assess vesiculation

directly, we examined these same samples by electron microscopy. Prior to the addition of Hsp12,

liposomes exhibited expected spherical shapes and sizes (<200 nm). After the addition of Hsp12,

very few intact liposomes were observed, replaced by membrane remnants (Figure 4C). Trehalose

alone did not have any vesiculation activity nor did it inhibit the effect of Hsp12 on liposomes under

the conditions tested (Figure 4A). These results show that Hsp12, but not trehalose, exhibits mem-

brane remodeling activity in vitro and suggest that their synergistic impact on [GAR+] propagation

may result from different biophysical activities.

Desiccation protection is not conserved among all hydrophilins
In previously reported in vitro assays, different hydrophilin functions appear to be interchangeable

(Chakrabortee et al., 2007; Goyal et al., 2005; Hand et al., 2011; Liu et al., 2011). Their inter-

changeability has led to models for a common function (for example, protein coating) based upon

simple biophysical properties dictated by their shared primary sequence features of charge and gly-

cine richness, and their unstructured state. This common function would explain the previously

reported minor changes in desiccation sensitivity upon inactivation of individual hydrophilins, as their

redundant functional properties should be present in all hydrophilins. To address possible functional

redundancy, a single strain lacking all non-essential yeast hydrophilins was engineered (8XD: hsp12D
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Figure 3. Hsp12 and trehalose can act synergistically in membrane proteostasis. (A–B) Prion propagation as a measure of in vivo protein propagation

after desiccation. (A) [PSI+] prion propagation before, and after desiccation. To assess [PSI+] prion state, cells were plated on media lacking adenine

(SC-ADE) compared to non-dried controls. (B) [GAR+] prion propagation before, and after desiccation. To assess [GAR+] prion state, cells were plated

on YP media with 2% glycerol and 0.05% glucosamine compared to non-dried controls.

Figure 3 continued on next page
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gre1D sip18D stf2D nop6D ybr016wD yjl144wD ynl190wD) (Suzuki et al., 2011). However, even when

lacking all non-essential hydrophilins, stationary phase yeast cells still demonstrated robust desicca-

tion tolerance (Figure 5A). This result suggested that the lack of a phenotype was not due to hydro-

philin redundancy. Indeed, we could not have observed a strong synergism between tps1D and

hsp12D mutations if other hydrophilins could substitute for the missing Hsp12.

To address more directly whether the remarkable features of Hsp12 were common to other yeast

hydrophilins, we studied a second yeast hydrophilin, Stf2, that is also expressed in stationary phase

cells (Garay-Arroyo et al., 2000). Expressing high levels of Stf2 in exponentially-dividing cells did

not significantly improve desiccation tolerance and failed to provide any synergistic tolerance with

trehalose (Figure 5B, Figure 5—figure supplement 1A,B). Additionally, deletion of Stf2 alone

(stf2D), or in combination with a loss of trehalose synthesis (tps1Dstf2D) had no effect on the short-

term desiccation tolerance of stationary phase yeast, unlike the pronounced increase in sensitivity

displayed by tps1Dhsp12D cells (Figures 1A and 5B). Unlike Hsp12, Stf2 also did not exhibit any

detectable secondary structure in the presence or absence of DMPG (Figure 5C, Hsp12 + DMPG

demonstrates classical alpha-helical CD signature). Stf2 also fails in vesiculating membranes

(Figure 5D–E). These functional differences between Hsp12 and Stf2 suggest that hydrophilins likely

carry out distinct biological and molecular functions, despite sharing general physical properties.

Moreover, the biological and biochemical differences between Hsp12 and Stf2 further support the

view that the specific membrane remodeling activity of Hsp12 contributes to its desiccation toler-

ance-promoting function.

Discussion
We exploited the conditional desiccation tolerance of yeast to provide important new insights into

the stress effectors of desiccation tolerance. While previous studies in yeast, nematodes and tardi-

grades have examined the impact of individual hydrophilins or trehalose on desiccation tolerance,

no in vivo studies have looked at the combined effect of loss or gain of both trehalose and a hydro-

philin. Here, we demonstrate that stationary phase yeast cells lacking both trehalose and Hsp12

(tps1Dhsp12D) exhibit a greater than 100-fold loss in short-term desiccation tolerance and 10,000-

fold loss in long-term desiccation. The magnitude of the desiccation sensitivity suggests that these

two factors are critical to mitigate most of the lethal stresses associated with desiccation. In addition,

we show that supplementing cells with only trehalose and Hsp12 was sufficient to make desiccation-

sensitive dividing cells desiccation tolerant, this tolerance is higher than that which is observed natu-

rally in stationary phase cells. This increase in desiccation tolerance was far greater than cells

expressing each factor alone, again suggesting a synergistic interaction to suppress desiccation-

induced stresses. In summary, while dividing cells have mechanisms to deal with the stresses

imposed by subtler changes in available water; the new or increased amplitude of stresses imposed

by severe/complete water loss can all be mitigated by trehalose and Hsp12 alone.

Hsp12 had not previously been implicated in desiccation tolerance. Rather, Hsp12 had been

reported to mitigate lethality due to heat stress and osmolarity (Welker et al., 2010). We were

unable to reproduce those findings. Furthermore, the heat stress that was used in the previous study

was 58˚C, a temperature that budding yeast is unlikely to experience in the wild or in fermenting

vats. In contrast, desiccation occurs commonly in nature, so the desiccation tolerance conferred by

Hsp12 is likely one of its physiological functions. Our results, coupled with the previous demonstra-

tion for the importance of individual hydrophilins for desiccation tolerance in tardigrade and nemat-

odes provide compelling evidence for the causal roles of a hydrophilin in desiccation tolerance in all

anhydrobiotes (Boothby et al., 2017; Erkut et al., 2013).

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.38337.008

The following source data is available for figure 3:

Source data 1. Source data for Figure 3A and B.

DOI: https://doi.org/10.7554/eLife.38337.009
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Figure 4. Hsp12 causes membrane remodeling. (A) DMPG liposomes (5 mg/ml) where incubated for 1 hr at room temperature in the presence or

absence of Hsp12 (25 mg/ml) and/or in the presence or absence of trehalose (2% final). Pellet (p) and supernatant (s) fractions where separated by high-

speed centrifugation, and lipid distribution was assessed by SDS-PAGE followed by altered Coomassie staining (10% acetic acid only). (B) DMPG

liposomes (5 mg/ml) where incubated for 1 hr at room temperature in the presence or absence of Hsp12 (1.5–5 mg/ml). Pellet (p) and supernatant (s)

Figure 4 continued on next page
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Surprisingly, the important role of Hsp12 in desiccation tolerance appears to reflect a unique

function amongst the hydrophilin family based on several considerations. First, if any of the other 11

hydrophilins in yeast had the same activity as Hsp12, then an hsp12D strain would not show synergis-

tic desiccation sensitivity with tps1D, and hsp12D would not have been picked up in our screen for

trehalose desiccation synthetic-sensitivity. Second, desiccation sensitivity was not observed in a

strain deleted for Hsp12 and all the other seven non-essential hydrophilin genes, again suggesting

the absence of functional redundancy between hydrophilins. Third, further analysis of one of these

eight hydrophilins, Stf2, showed that it displayed none of the synergism for desiccation tolerance or

sensitivity with the presence or absence of trehalose that we observe with Hsp12. A previous report

suggested that stf2D demonstrated a subtle 5-fold loss in desiccation tolerance that we do not

observe; this previous study rehydrated cells with warmed media introducing a heat shock variable

wherein the function of Stf2 might be required (López-Martı́nez et al., 2012). The apparent unique-

ness of Hsp12 as a critical factor for desiccation tolerance challenges the notion that all hydrophilins

belong to a redundant family of proteins with common biological functions. Indeed, the uniqueness

of Hsp12 may be the tip of the iceberg in which studies of the other hydrophilins in yeast will reveal

unique functions in different aspects of cell biology.

What is the molecular function of Hsp12 underlying its distinct role in desiccation tolerance? Sev-

eral studies have been reported the ability of hydrophilins in vitro to protect against protein aggre-

gation and protein misfolding (Goyal et al., 2005; Hincha and Thalhammer, 2012). However,

evidence for the in vivo relevance of these in vitro findings was lacking. Here, we show that Hsp12

demonstrates both of these activities with analyzed substrates both in vitro and in vivo. Specific pro-

tein substrates of Hsp12 may be critical for organismal desiccation tolerance. Support for this idea

will require identifying such key substrates and testing their protection by Hsp12. However, we show

that the in vivo ability of Hsp12 to promote desiccation tolerance correlates with the ability of Hsp12

to acquire secondary structure in the presence of lipids and to cause membrane vesiculation. This

membrane remodeling activity is consistent with the requirement of Hsp12 and trehalose to allow

propagation of the membrane prion [GAR+]. Given the impact of Hsp12 and trehalose on [GAR+]

prion propagation in aqueous conditions, Hsp12’s vesiculation function may play an important role

during rehydration.

The synergistic biological interactions of trehalose and Hsp12 in desiccation tolerance may reflect

their ability to modulate common stresses by different yet complementary mechanisms. As sug-

gested by in vitro experiments, the protective effect of trehalose on cytosolic proteins may result

from its ability to form an amorphous liquid glass inside cells in the absence of water, while Hsp12’s

protective effect may result from aiding in the formation and strength of trehalose in its vitrified

state. Additionally, trehalose has also been proposed to protect against severe membrane damage

during desiccation. Damage that escapes protection by trehalose may be removed by Hsp12’s vesic-

ulation function. Interestingly, it has recently been noted that intrinsically disordered proteins and

protein regions have been shown to contribute to phase transitions leading to a more ordered cell

(Alberti and Hyman, 2016; Mitrea and Kriwacki, 2016; Uversky et al., 2015). Hsp12 might protect

proteins from aggregating via means of phase separating susceptible proteins and hence buffering

the cytosol. Additional genetic and biochemical experiments will be needed to test these models.

Hsp12’s lipid-induced folding, its in vitro membrane remodeling activity and its in vivo role in des-

iccation tolerance are not shared with Stf2, another yeast hydrophilin. These apparently unique

Figure 4 continued

fractions where separated by high-speed centrifugation, lipid distribution was assessed by SDS-PAGE followed by altered Coomassie staining (10%

acetic acid only). (C) Samples for electron microscopy were prepared the same as in A, with Hsp12 at 2.5 mg/ml. Images where taken from samples prior

to centrifugation. Samples where spread on glow-discharged EM grids and stained using 2% uranyl acetate.

DOI: https://doi.org/10.7554/eLife.38337.010

The following source data is available for figure 4:

Source data 1. Source data for Figure 4B.

DOI: https://doi.org/10.7554/eLife.38337.011

Source data 2. Source data for Figure 4C.

DOI: https://doi.org/10.7554/eLife.38337.012
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Figure 5. Desiccation protection not a common hydrophilin feature. (A) Yeast cells were grown to saturation (5 days), air-dried for 2 days at 23˚C, 60%
relative humidity (RH), then rehydrated and assessed for viability by counting colony forming units (CFU). Desiccation tolerance of wild type vs. 8XD:

hsp12D gre1D sip18D stf2D nop6D ybr016wD yjl144wD ynl190wD cells. (B) Exponential Phase. Yeast cells (nth1D, AGT1+) were grown to mid-exponential

phase (OD <0.5) in rich media (YPD). Cells were then transferred to either rich media (YPD, 0% trehalose) or rich media with trehalose (YPD, 2%

trehalose) for 1 hr. Cells were collected, washed, and air dried for 2 d at 23˚C, 60% relative humidity (RH), then rehydrated and assessed for viability by

counting colony forming units (CFU). Stationary Phase. Yeast cells are ± AGT1 (trehalose transporter) and ± Stf2 (over-expression from 2m plasmid, GPD

promoter). Yeast cells were grown to saturation (5 days), air-dried for 2 days at 23˚C, 60% relative humidity (RH), then rehydrated and assessed for

viability by counting colony forming units (CFU). Desiccation tolerance of wild type, tps1D, stf2D and tps1Dstf2D cells. (C) Circular dichroism

spectroscopy performed on 0.32 mg/ml Hsp12 or 0.32 mg/ml of Stf2 in the presence or absence of 1.2 mg/ml DMPG small unilamellar vesicles (SUVs),

measuring from 250 to 190 nm. Units converted to Mean Molar Residue Ellipticity, accounting for concentration and protein size. (D) DMPG liposomes

(5 mg/ml) where incubated for 1 hr at room temperature in the presence or absence of Stf2 (1.5–5 mg/ml). Pellet (p) and supernatant (s) fractions where

separated by high-speed centrifugation, lipid distribution was assessed by SDS-PAGE followed by altered Coomassie staining (10% acetic acid only).

(D) Samples for electron microscopy where the same as in A, with Stf2 at 5 mg/ml. Images where taken from samples prior to centrifugation. Samples

where spread on glow-discharged EM grids and stained using 2% uranyl acetate.

DOI: https://doi.org/10.7554/eLife.38337.013

The following source data and figure supplement are available for figure 5:

Source data 1. Source data for Figure 5A–C.

DOI: https://doi.org/10.7554/eLife.38337.015

Source data 2. Source data for Figure 5D.

DOI: https://doi.org/10.7554/eLife.38337.016

Figure 5 continued on next page
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features of Hsp12 provide new insights into hydrophilins and stress biology. Like yeast, most organ-

isms express a large family of hydrophilins genes. However, the reason why hydrophilin families are

so large remains a mystery. The distinct causal role of Hsp12 in desiccation tolerance reveals that the

generic properties of hydrophilins of charge, glycine composition and disorder are not sufficient to

mitigate the stresses of desiccation. Thus, other hydrophilins, like Stf2, must have other distinct func-

tions. One simple idea is that these other functions mitigate yet to be determined cellular processes

or different stresses.

We provide in vivo and in vitro evidence that both trehalose and Hsp12 can modulate proteosta-

sis in response to desiccation. We show that in vivo they prevent desiccation-induced aggregation of

firefly luciferase and of citrate synthase in vitro. Trehalose and Hsp12 also synergize, albeit weakly,

to protect firefly luciferase activity in vivo, and individually they protect citrate synthase activity in

vitro. Whether the stabilization of enzyme activity is different or just another manifestation of their

anti-aggregation activity is not clear. Interestingly, the proteostasis functions of trehalose and Hsp12

are not identical as cells lacking only trehalose are compromised for [PSI+] and [GAR+] propagation

while lacking cells Hsp12 alone are not. These differences likely indicate that trehalose and Hsp12

may modulate proteostasis by different mechanisms.

We propose a working model based upon the requirements of Hsp12 and trehalose for desicca-

tion tolerance and observations reported previously. Trehalose prevents abnormal membrane

vesicles in desiccated nematodes (Erkut et al., 2011). In vitro experiments suggest that trehalose

intercalates into membranes to alter their melting properties (Crowe et al., 1984,

1987; Leslie et al., 1994). Based upon these observations we propose that desiccation induces

membrane damage that can be prevented by intercalation of trehalose. If damage occurs, it could

then be removed by Hsp12’s remodeling activity. These distinct activities provide a possible expla-

nation for the synergistic requirement for trehalose and Hsp12 in both short- and long-term desicca-

tion tolerance.

The finding that trehalose and Hsp12 together are sufficient to mitigate the major stresses of des-

iccation has major implications for engineering desiccation/drought tolerance in other organisms.

The ability to generate desiccation tolerance with only two factors makes this engineering eminently

more feasible and approachable from an evolutionary perspective. Attempts to engineer plants to

synthesize more trehalose have met with technical difficulties because of the disaccharide’s addi-

tional roles in metabolism. Our results provide new impetus to overcome those hurdles. Further-

more, manipulation of Hsp12 expression has no known metabolic side effects, at least in budding

yeast. Given the sufficiency of Hsp12 alone to confer partial desiccation tolerance, it will be very

interesting to test whether Hsp12 by itself might confer drought tolerance to plants or other organ-

isms that might benefit from this remarkable trait.

Materials and methods

Strains and growth conditions
Standard yeast propagation and transformation procedures were used. Yeast strains are described

in Supplementary file 3. Strains were grown in nonselective (YP, 1% yeast extract and 2% peptone)

or selective (synthetic complete, SC) media containing 2% glucose lacking specific selectable amino

acids. Cultures were grown to saturation from a single colony by incubating cultures 5 days at 30˚C
for stationary phase experiments. Cultures where grown to an OD – 0.5 for mid-log experiments. All

experiments were repeated at least two times on separate days with separate isolates when

appropriate.

Figure 5 continued

Source data 3. Source data for Figure 5E.

DOI: https://doi.org/10.7554/eLife.38337.017

Figure supplement 1. Hsp12 and Stf2 are expressed to similar levels in growing cells.

DOI: https://doi.org/10.7554/eLife.38337.014
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Desiccation tolerance assay
Saturated Cultures: Approximately 107 cells were withdrawn from liquid cultures and washed twice

in dilute water and then brought to a final volume of 1 ml. Undesiccated controls were plated for

colony counting. Two hundred microliter aliquots were then transferred to a 96-well tissue culture

plate (Becton Dickinson, 353075) and centrifugated, and water was removed without disturbing the

cell pellet. Cells were allowed to desiccate in a 23˚C incubator with a constant 60% relative humidity

(RH), with the lid raised, for at least 48 hr. Long-term desiccation experiments were kept for indi-

cated time periods in a 96-well tissue culture plates at 23˚C, 60% RH. Samples were resuspended in

assay buffer and plated for colony counting.

Logarithmic Samples: Cells were grown to midexponential phase (OD <0.5) in selective media,

depending on strain and plasmid necessities. Cells were then transferred to inducible media: ±2%

trehalose, for 1 hr. Following induction, ~107 cells were withdrawn from liquid cultures and same

parameters for drying where used as with saturated cultures. Data were entered into a spreadsheet

(Microsoft Excel 2008 for Mac version 12.3), and the number of colony forming units per milliliter

(cfu/mL) for each plate was computed. For each experiment, number of colony forming units per mil-

liliter for the two controls was averaged. The relative viability of each of the two experimental sam-

ples was determined by dividing the number of colony forming units per milliliter for that sample by

the average number of colony forming units per milliliter of the control plates. These two relative via-

bility values were then averaged and their SD was computed using the STDEVP worksheet function.

Luciferase assay
Yeast cells (nth1D, AGT1 strains) (±2% Trehalose, ±Hsp12), bearing 2m plasmids that direct the

expression of a temperature-sensitive firefly luciferase-fusion protein from the constitutive glyceral-

dehyde-3-phosphate (GPD) promoter (p426-GPD-FFL) or empty vector (pEV, p426-GPD), were

grown to mid-log phase in SC –His - Ura. Luciferase activity was measured in vivo by addition of 0.5

mM D-Luciferin (Sigma) to equal number of intact cells. Light emission was measured immediately

with a TD-20/20 Luminometer (Turner Designs, Sunnyvale CA). Desiccated samples were air dried

for two days followed by rehydration in SC-His - Ura + cycloheximide (10 ml/ml, to block new FFL

protein synthesis) and subjected to the same assay treatment after rehydration. Measurements are

reported as Relative Light Units. Using glass bead lysis, total cellular protein was extracted. After

removing unbroken cells by low-speed centrifugation (1000 g for 3 min), cleared lysates were spun

at high speed (350,000 g for 10 min, Beckman Coulter TLA-100) to collect insoluble aggregates.

Total protein from cleared lysates and high-speed supernatants were then followed by SDS-PAGE

and reacted with antiserum recognizing luciferase. All experiments were repeated three times on

separate days with separate isolates.

Citrate synthase assay
Citrate synthase preparation
Citrate Synthase from Porcine Heart ammonium sulfate suspension (C3260) was purchased from

Sigma Aldrich. Suspension was centrifugated at 14,000 rpm for 10 min at 4˚C. Supernatant was dis-

carded and the pellet was resuspended in 750 ml MilliQ water. To remove residual ammonium sul-

fate, citrate synthase was desalted in MilliQ water using a 5 ml HiTrap Desalting Column (GE

Healthcare). Fractions were evaluated for protein content via staining 30 ml of each fraction with 100

ml of Coomassie protein assay reagent (Sigma) diluted 1:5 in MilliQ water. Fractions with detectable

protein content were pooled and concentrated using an Amicon Ultra 0.5 ml 10K centrifugal filter

unit (Merck Millipore Ltd). Final concentration determined via measuring absorbance at 280 nm on a

Nanodrop 2000 spectrophotometer (Thermo Scientific).

Citrate synthase aggregation and enzymatic activity assay
Citrate synthase (CS) and protectants were added to MilliQ water to achieve final concentration of

0.12 mg/ml CS, and varying concentrations of protectants in 100 ml.

For measuring enzymatic activity, 1 ml of each sample was diluted by a factor of 17 in MilliQ

water. 2 ml of this dilution was then mixed with 198 ml of Enzymatic Activity Assay Solution [100 mM

oxaloacetic acid (Sigma-Aldrich), 100 mM 5,5’-Dithiobis(2-nitrobenzoic acid) (Sigma-Aldrich), 150

mM Acetyl Coenzyme A (Sigma-Aldrich)] and absorbance at 412 nm was measured immediately and
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after 120 s in a 50 ml Micro Cell cuvette (Beckman Coulter) with measurements made with a 720 UV/

Vis spectrophotomer (Beckman Coulter) equipped with a 50 ml Micro Cell adapter (Beckman Coul-

ter). After measurement, samples were moved to 1.5 ml microcentrifuge tubes and set to dry in a

Centrivap Concentrator (Labconco) set to 35˚C and 29 bar for 24 hr. Samples were then moved to a

23˚C incubator and allowed to incubate open to atmospheric pressure for an additional 5 hr. Sam-

ples were rehydrated in 100 ml MilliQ water, resuspended vigorously 5 min after addition of water. 2

ml of this resuspension was added to 198 ml Enzymatic Activity Assay Solution, mixed and moved to

a cuvette, measuring absorbance at 412 nm immediately and after two minutes. Change in absor-

bance across two minutes after drying compared to before drying to achieve relative activity. For

measuring aggregation, absorbance at 340 nm was measured for each sample before and after dry-

ing. Drying and rehydration performed as described for enzymatic activity assay. Measurements after

drying subtracted from before drying measurements to achieve change in aggregation after drying.

Cuvette was washed with MilliQ water and 95% ethanol between all measurements.

Expression and purification of Hsp12p
BL21 E. coli cells transformed with a pET-15B vector with HSP12 behind a galactose-inducible pro-

moter grown overnight in 30 ml cultures in LB with 100 ng/ml ampicillin. Transformants were grown

up overnight in 30 mL cultures in LB with 100 ng/ml ampicillin at 37˚C. 20 mL of this culture were

added to 2L of LB with ampicillin and incubated at 37˚ C until culture reached an OD600 of 0.5–0.9,

as determined by spectrophotometry using a 720 UV/Vis spectrophotomer (Beckman Coulter).

HSP12 expression induced by addition of IPTG (Isopropyl b-D-1-thiogalactopyranoside) to final con-

centration of 1 mM and incubation for an additional 4 hr at 37˚C. Cultures were then pelleted by

centrifugation at 4000 rpm for 30 min at 4˚C. Discarded supernatant and resuspended cells in 50 mL

of 1x PBS. Cells were frozen with liquid nitrogen, and stored at �80˚C until use. Pellets were isolated

and resuspended in lysis buffer (2 mM EDTA, 2 mM DTT, 20 mM HEPES, pH 7.4) then sonicated

using a blunt tip sonicator set to 30% amplitude, 20 min, pulse 1 s on, 1 s off at 4˚C. Sonication-lysed
cells were then centrifugated and supernatant was collected. This sample was then boiled at 95˚C
for 15 mins and immediately moved to ice. A pale yellow precipitate was separated away from the

proteins that are still soluble after boiling by centrifugation. Supernatant was then applied to a

HiTrap Capto-Q ImpRes anion exchange column (GE Healthcare Life Sciences), and washed with lysis

buffer with increasing concentrations of NaCl. Hsp12 was eventually eluted by buffer between 7.5

and 10 mM NaCl. The protein was then concentrated using a MW3000 filtration unit, aliquoted, fro-

zen in liquid nitrogen, and stored at �80˚C until use (Supplementary file 1).

Expression and purification of Stf2p
STF2 fused to GST was cloned into a pGEX6 vector behind a galactose-inducible promoter and

transformed into BL21 cells. Transformants were grown overnight at 37˚C in 30 mL of LB liquid

media, selecting for plasmid with 75 ng/ml ampicillin. 2 L LB cultures with 75 ng/ml ampicillin were

inoculated with 20 ml of these overnight cultures and set to 37˚C and 140 rpm in an Innova 4330

incubator (New Brunswick Scientific). After 4 hr, expression of STF2 was induced with 4 mL of 0.1M

IPTG and cultures were allowed to incubate overnight at 18˚C. Cells were harvested and lysed in

lysis buffer 2 (150 mM NaCl, 2 mM EDTA, 2 mM DTT, 20 mM HEPES, pH 7.4) using the same sonica-

tion method as above (see Purification of Hsp12). Then, lysed cells were centrifugated and the super-

natant was collected. 1.5 ml of Pierce Glutathione Agarose beads from Thermo Fisher Scientific

were added and incubated in the supernatant for an hour at 4˚C. Beads were washed in 3 washes in

lysis buffer 2, 3 washes in lysis buffer 3 (500 mM NaCl, 2 mM EDTA, 2 mM DTT, 20 mM HEPES, pH

7.4), and 3 washes in lysis buffer 2, and resuspended in lysis buffer 2. Prescission protease was

added to washed beads and this mixture was incubated at 4˚C overnight. The mixture was then cen-

trifugated and the supernatant was collected, concentrated with an Amicon Ultra-4 Ultracel 3K cen-

trifugal filter unit from Millipore, alliquoted, frozen in liquid nitrogen, and stored at �80˚C
(Supplementary Figure 1).

Prion phenotypic assays
To assess the prion state, cells were plated on media lacking adenine (SC-ADE) for [PSI+] strains, or

on YP media with 0.05% Glucosamine and 2% Glycerol for [GAR+] growth was compared to their
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ability to grow on rich YPD/GAL media. To determine % Prion = 100 X CFU Desiccated Cells (Prion

Selective Media)/CFU Desiccated Cells (Non-Selective Rich Media).

Liposome preparation and vesiculation
DMPG liposomes (Avanti Polar Lipids (840445) in 100 mM NaCl, 20 mM Tris-Hcl pH 7.4 were soni-

cated for 2 min in a water bath at room temperature. Liposomes were incubated with protein for 60

min and centrifugated at 250,000 g for 15 min in a Beckman Coulter TLA-100 rotor. Resuspended

pellets and supernatants were analyzed by SDS-PAGE. Gels were stained with 0.1% Coomassie in

10% Acetic acid and destained in water. For EM, samples were spread prior to centrifugation on

glow-discharged electron microscopy grids and stained using 2% uranyl acetate and viewed in a

Joel 1200 EX Transmission Electron Microscope.

Preparing liposomes for circular dichroism
1,2-dimyristoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (DMPG) from Avanti Polar was stored in chlo-

roform at �80˚C in glass tubes until used. DMPG aliquots were thawed and aspirated using a stream

of nitrogen gas to form a clear, dry film on the inside surface of the tube. Tubes were then placed

inside a vacuum desiccator and sealed. Vacuum was then applied to the desiccator, and the samples

were left at room temperature under vacuum overnight to remove any remaining chloroform. Then,

they were resuspended in 10 mM sodium phosphate, pH 7.4 and moved to a 1.5 ml plastic micro-

centrifuge tube. Resuspended aliquots were then vortexed until a homogenous, cloudy white solu-

tion was formed. Tubes were placed on ice in a 4˚C room, and sonicated using a probe tip sonicator

equipped with a blunt tip and set to 20% amplification, 7.5 min, with pulses of 2 s on and 2 s off. Lip-

ids were then spun down at 14,000 rpm at 4˚C for 10 min to precipitate any metal shards from soni-

cation. Supernatant was then moved to a new 1.5 ml microcentrifuge tube and left on ice until use in

circular dichroism.

Circular dichroism spectra
Circular Dichroism (CD) spectra were obtained as previously described with some adjustments, using

an Aviv 2000 Circular Dichroism Spectrometer Model 410 (Aviv Biomedical Inc.) (12). CD signal was

measured from 250 to 190 nm at 25˚C, averaging measurements at every nm for 10 s. Hydrophilins

and DMPG were kept on ice until added to samples. Once added, samples were mixed well by mix-

ing and incubated at room temperature for 10 min before spectra were measured. A 1M stock of

trehalose and 100 mM stock of SDS were prepared in 10 mM sodium phosphate, pH 7.4 and added

to achieve desired concentrations. Proteins were added to samples to achieve a concentration of. 32

mg/ml. For samples with DMPG, DMPG was added to achieve a concentration of 1.32 mM (1.2 mg/

ml. Samples were made at a volume of 400 and 300 mL were pipetted into a 0.1 cm cuvette for CD

measurements. The cuvette was washed with water and ethanol between measurements, drying

completely each time. Samples with protein were blanked against those with the same buffer and

concentration of DMPG without hydrophilins. All spectra were converted to units of mean residue

molar ellipticity before plotting on graph.

SGA strain construction
Strains were construction according to published SGA protocol from Tong et al. with minor altera-

tions. In brief, tps1D was grown overnight as well as every strain in the ATCC deletion collection.

Using a 48-density prong, tps1D was pinned onto solid YEP + Galactose media and the deletion col-

lection were pinned on top. This was allowed to grow overnight at 30˚C. Cells were then replica

plated onto YEP +Galactose + G418 (100 mg/mL) + Hygromycin (100 mg/mL) to select for diploids.

These were grown at 30˚C overnight. Diploids were then replica plated onto sporulation media (10

g Potassium Acetate, 1 g Yeast Extract, 0.5 g Galactose, 0.1 g amino acid Histidine, Lysine, Leucine,

and Uracil supplement, Zinc Acetate, 0.2 g Raffinose). Cells were sporulated for 5 days. After sporu-

lation, we selected for MATa haploids on SC + Galactose – Histidine – Arginine + Canavanine (50

mg/L) + Thialysine (50 mg/L). Then we selected for G418 resistance on SC + Galactose – Histidine –

Arginine + Canavanine (50 mg/L) + Thialysine (50 mg/L) + G418 (100 mg/mL). Finally, we selected

for Hygromycin resistance on SC + Galactose – Histidine – Arginine + Canavanine (50 mg/

L) + Thialysine (50 mg/L) + G418 (100 mg/mL) + Hygromycin (100 mg/mL).
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High throughput desiccation tolerance assay
Single colonies of newly constructed double mutants are placed into 200 mL of YEP + 2% Galactose

in wells of 96-well plates and allowed to grow to saturation at 30˚C with agitation. Strains were then

pinned using a 48-density prong onto YEP + Galactose plates and allowed to grow for 2 days as

non-desiccated controls. 20 mL of each strain was also transferred into new 96-well plates to let air

dry for 6 and 30 days at 23˚C. Drying was done as previously mentioned. After desiccation, strains

are rehydrated in 200 mL of YEP + Galactose and pinned onto solid media as before. Desiccation tol-

erance is assayed by comparing growth of strains after desiccation with non-desiccated controls.

Heat tolerance assay
Supplemental Figure 1 (A) Cells (wild type, hsp12D, tps1D, or tps1D hsp12D) were grown to midex-

ponential phase (OD <0.5) in non-selective media (YP, 1% yeast extract and 2% peptone) containing

2% glucose at 30C. Cells were plated and grown at either 30 or 37C, or grown for one hour at 34C

(pre-heat shock) before growing at either 30 or 37C. (B) Cells (wild type, hsp12D, tps1D, or tps1D

hsp12D) were grown to midexponential phase (OD <0.5) in non-selective media (YP, 1% yeast

extract and 2% peptone) containing 2% glucose at 30C. Cells were then heat-shocked for 30 min at

temperatures ranging from 42 to 60C, followed by plating and growing at 30C. Cells were also

grown at 34C prior to heat shock.

8XD strain construction
Knocking out hydrophilin redundancies via cycles of sexual assortment and fluorescence selection

(Green Monster Protocol) Adapted from Suzuki et al. (2011). Using deletion collection (a, BY4741),

streak out and confirm deletions of interest. hsp12::G418, gre1::G418, sip18::G418, stf2::G418,

ybr016w::G418, yjl144w::G418, and ynl190w::G418. Transform deletions with GFP-URA replacement

cassette, plate on SC-URA. Confirm GFP replacements by PCR. Cross deletion GFP-URA strains with

(Mat alpha) GMToolkit a and alpha, on a YPD plate, grow overnight. Replica plate on diploid selec-

tive media, SC-URA + Clonat (TKalpha) and SC-URA +G418, (TKa). Sporulate diploid strains. Isolate

random spores. Recover haploids for each strain in different mating type backgrounds. (a cells

should grow on SC-URA-HIS, and alpha cells should grow on SC-URA-LEU.) Sexual cycling of green

monsters. Pool deletions Mat a and Mat alpha in 1:1 mix. Take 100 ul from each strain (a and alpha).

Mix well. Wash 1x in YPD, resuspend in 1 ml YPD. Spin down at 735 g for 5 min. Incubate mating

mix at 30˚C for 24 hr. Transfer 100 ul of mating mix into 5 ml of GNA-G418 + Clonat (select for dip-

loids) for 24 hr. Split equally into two tubes. Centrifuge at 735 g for 5 min. To pellet, add 5 ml of SC-

HIS or SC-LEU, grow for 24 hr. For GFP induction: Spin down culture and resuspend in 5 ml of SC-

HIS or SC-LEU with Doxycycline (10 ug/ml, final) and grow for 2 days at 30˚C. Filter 500 ul of GFP

induced culture using cells strainer into 1 ml of TE Buffer (pH 7.5) containing Doxycycline (10 ug/ml).

Vortex before sorting. Flow Cytometry Cell Sorting. Prepare a BY4741 negative control and the

appropiate 1x GFP strain and a 16x GFP control strains. Sort by fluorescent intensity. Confirm by

PCR. Strain recovered: hsp12::GFP, gre1::GFP, sip18::GFP, stf2::GFP, ybr016w::GFP, yjl144w::GFP

and ynl190w::GFP. nop6D was deleted from 7XD strain with Hygromycin cassette replacement

nop6::Hyg.
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