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Schizophrenia and bipolar disorder (BD) are associated with debilitating psychiatric and cognitive dysfunction,
worse health outcomes, and shorter life expectancies. The pathophysiological understanding of and therapeutic
resources for these neuropsychiatric disorders are still limited. Humans harbor over 1000 unique bacterial spe-
cies in our gut, which have been linked to both physical and mental/cognitive health. The gut microbiome is a
novel and promising avenue to understand the attributes of psychiatric diseases and, potentially, to modify
them. Building upon our previous work, this systematic review evaluates the most recent evidence of the gut
microbiome in clinical populations with serious mental illness (SMI). Sixteen articles that met our selection
criteria were reviewed, including cross-sectional cohort studies and longitudinal treatment trials. All studies re-
ported alterations in the gut microbiome of patients with SMI compared to non-psychiatric comparison subjects
(NCs), and beta-diversity was consistently reported to be different between schizophrenia and NCs.
Ruminococcaceae and Faecalibacterium were relatively decreased in BD, and abundance of Ruminococcaceae
was reported across several investigations of SMI to be associated with better clinical characteristics. Lactic
acid bacteria were relatively more abundant in SMI and associated with worse clinical outcomes. There was
very limited evidence for the efficacy of probiotic or prebiotic interventions in SMI. As microbiome research in
psychiatry is still nascent, the extant literature has several limitations. We critically evaluate the current data, in-
cluding experimental approaches. There is a need formore unifiedmethodological standards in order to arrive at
robust biological understanding of microbial contributions to SMI.

© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Schizophrenia and bipolar disorder (BD) are severe neuropsychiatric
disorders, which combined have a lifetime prevalence of 3.5% (Perälä
et al., 2007). Patients with these serious mental illnesses (SMI) face
not only debilitating psychiatric and cognitive impairment but also
worse physical health outcomes and considerably shorter life expectan-
cies (Brown, 1997; Casey et al., 2009; Viron and Stern, 2010). SMI con-
tribute substantially to the global burden of disease (Whiteford et al.,
2013) and rank among the leading causes of disability (Chong et al.,
2016) and mortality worldwide (Walker et al., 2015). Younger adults
an Diego, 9500 Gilman Drive
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with SMI are prone to diseases associated with aging (Czepielewski
et al., 2013; Hennekens et al., 2005; Soreca et al., 2008) and have
twice the risk of dying from cardiovascular and gastrointestinal diseases
compared to the general population (Saha et al., 2007). Physiological
changes seen throughout the body with normal aging occur at earlier
ages, including chronic inflammation and oxidative stress, which has
led to the theoretical framework of SMI as disorders of accelerated bio-
logical aging (Jeste et al., 2011; Kirkpatrick et al., 2008; Nguyen et al.,
2018a; Palmer et al., 2018; Rizzo et al., 2014). Given that lifespans are
generally increasing for the general population (Christensen et al.,
2009), while the mortality gap for schizophrenia is growing (Lee et al.,
2018), understanding the mechanisms of potential accelerated aging
in SMI is imperative.

Despite decades of research, our understanding of the pathophysiol-
ogy of these disorders is still limited. Genomic research has identified
ut microbiome in serious mental illnesses: A systematic review and
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susceptibility genes, but the results have not yet led to new therapies.
The human gut microbiome is a dynamic population of microbes in
our large intestine that form a symbiotic superorganism, with which
we have co-evolved (Dinan et al., 2014). Containing 1013 microorgan-
isms with over 1000 unique bacterial species containing 2 to 20million
unique genes, the gut microbiome is a complex genomic structure with
100 timesmore genes than the humangenome (Gill et al., 2006; Human
MicrobiomeProject Consortium, 2012; Qin et al., 2010; Turnbaugh et al.,
2007). Unlike the human genome, which is fixed and unchangeable, the
gut microbiome is highly dynamic and malleable. It can be shaped by
various developmental and environmental influences, such as age, ge-
ography, cultural traditions and lifestyles (e.g., diet, cohabitation,
travel), and medications (Caporaso et al., 2011; Koenig et al., 2011;
Yatsunenko et al., 2012). In fact, the overall heritability of the
microbiome is low, and the microbiomes of genetically unrelated, co-
habiting individuals is more similar than of those who are members of
the same family but living apart (Caussy et al., 2019; Cekanaviciute
et al., 2017; Yatsunenko et al., 2012). Furthermore, the gutmetagenome
is a better predictor of many human physical phenotypes (e.g., body
mass index [BMI], waist circumference, glucose and high-density lipo-
protein [HDL] levels, lactose consumption) than the human genome
(Rothschild et al., 2018). Both of these characteristics of themicrobiome
have important implications for the development of new therapeutic
approaches.

The gut microbiome is critical in maintaining human physiology. It
regulates many metabolic processes essential for optimal health that
cannot be maintained by human cells, stimulates normal immunemat-
uration, defends against pathogens, and stabilizes the gut barrier
(Carroll et al., 2009). SMI are characterized by increased gut permeabil-
ity (Severance et al., 2014, 2013, 2012). With a compromised intestinal
lumen, enteric microbes are exposed to systemic circulation. Gut
dysbiosis may underlie the pro-inflammatory milieu and other physio-
logical abnormalities that have been implicated in SMI (Hsiao et al.,
2013).Moreover, themicrobiomeplays amajor role in the development
and functioning of the central nervous system (Clarke et al., 2013; Cryan
and Dinan, 2012; Diaz Heijtz et al., 2011; Neufeld et al., 2011). Recent
preclinical investigations indicate that gut microbes can influence
brain and behavior (Crumeyrolle-Arias et al., 2014; Hsiao et al., 2013;
Jørgensen et al., 2015; Sampson et al., 2016; Sudo et al., 2004; Zheng
et al., 2016), leading to a resurgent interest in the role of gut microbes
in neuropsychiatric disorders and the potential ability to improve psy-
chiatric and cognitive well-being through their manipulation.

Given the bidirectional communication between the gut and brain,
via the “gut-brain axis,” the concept of “psychobiotics” has emerged in
recent years (Dinan et al., 2013; Sarkar et al., 2016; Wall et al., 2014;
Zhou and Foster, 2015). Probiotics are live microorganisms that confer
a beneficial health effect. Prebiotics are nondigestible food components
that are selectively fermented by intestinalmicroflora,which are associ-
ated with health and wellbeing (Gibson et al., 2004). Much of
psychobiotic research is based on animal models, which have demon-
strated improvements in cognition,mood, and neurophysiology follow-
ing probiotic and prebiotic treatment (Sarkar et al., 2016; Savignac et al.,
2013). Human clinical investigations have begun only recently.

This article updates our prior systematic review of studies of the
microbiome in schizophrenia and BD (Nguyen et al., 2018b). In the
short time since, a number of additional empirical studies have been
published, and more conceptual reviews and commentaries have been
written on the gut-brain axis and its role in mental illnesses. However,
aside from our own paper, we did not find other systematic reviews of
the composition of the gut microbiome in SMI and its relationship to
clinical, physical, and disease-related aspects of these disorders. This re-
view is distinctly different from our previous article in that it is only fo-
cused on the gut microbiome (i.e., does not include studies of
microbiomes of other tissues/organs) and includes 13 new studies.
We provide a narrative synthesis of what can be a complex and seem-
ingly contradictory field of knowledge, and we posit reasons for
Please cite this article as: T.T. Nguyen, H. Hathaway, T. Kosciolek, et al., G
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seemingly discrepant findings across investigations. Although more
useful insights may have been drawn from a meta-analysis of data
across studies, considerable heterogeneity in study designs and meth-
odologies to quantify and analyze the gut microbiome and few publicly
available data from individual reports made this endeavor impractical.
Instead, we highlighted commonalities and differences among these
investigations.

2. Methods

2.1. Search strategy

We searched PubMed, PsycINFO, and Embase for articles pub-
lished before March 7, 2019 using the following search string:
microbiome AND (schizophrenia OR psychosis OR bipolar OR serious
mental illness). Reference lists of the retrieved articles and relevant
review articles were cross-referenced. We examined the titles and
abstracts of all citations and selected empirical reports based on
our inclusion/exclusion criteria.

2.2. Inclusion/exclusion criteria

Studieswere selected if theymet the following criteria: 1)were em-
pirical studies of individuals clinically diagnosed with schizophrenia,
schizoaffective disorder, BD, or related psychotic disorders, 2) utilized
high-throughput sequencing methods to characterize microorganisms
in the gut or distal large intestine, and 3) were published in English.
Both cross-sectional and longitudinal studies were included. We ex-
cluded review papers, meta-analyses, abstracts, case reports, and stud-
ies exclusively using animal models.

2.3. Review process

Our database search yielded 184 articles, once duplicates were re-
moved. The titles and abstracts of all articles were screened and, of
these, 37 were assessed for eligibility. In total, 16 met all of the above-
mentioned criteria for review. The PRISMA flow chart depicting infor-
mation through different stages of the systematic review is shown in
Fig. 1.

Only three articles (Evans et al., 2017; Flowers et al., 2017; Schwarz
et al., 2018) overlappedwith our original review (Nguyen et al., 2018b),
which included five papers on themicrobiome; the other two investiga-
tions were of the oropharyngeal microbiome and did not qualify for the
current review.

3. Results

3.1. Characteristics of reviewed studies

Detailed sample and methodology characteristics for each study are
provided in Table 1. A summary of relevant data from the 16 reviewed
studies is presented in Table 2. Five studies included individuals with
schizophrenia and/or schizoaffective disorder, seven studies included
persons with BD, one study comprised a mixed sample of patients
with schizophrenia and BD, two included patients with first episode
psychosis (FEP), and one article was of high-risk individuals. Most stud-
ies (62.5%) sampled outpatients,while three investigations recruited in-
patients. A majority of studies were cross-sectional (75%). Four studies
involved longitudinal assessment of the gut microbiome. All reviewed
studies had at least one comparison group: 11 compared SMI to a
non-psychiatric comparison (NC) group; five involved another psychi-
atric comparison group; four compared subjects pre-post treatment. Fi-
nally, studies were conducted worldwide, with 25% from the US, 44%
from Asia, and 31% from Europe.

Below we summarize findings for different clinical populations
(Tables 3–5).Within each,we highlight cross-sectional and longitudinal
ut microbiome in serious mental illnesses: A systematic review and
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Fig. 1. PRISMA flow diagram for selection of published articles for review.
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findings related to 1) global community diversity, 2) taxonomic differ-
ences, 3) clinical characteristics associated with microbial biomarkers,
and 4) functional potential (if applicable).

There are multiple levels on which the microbiome can be analyzed
and characterized.We provide a brief summary of these techniques and
measures to provide the reader context to understand and interpret the
findings presented below (see Knight et al., 2018 for a more compre-
hensive review of best practices for analyzing microbiomes). Marker
gene amplification and sequencing (e.g., 16S rRNA amplicon sequenc-
ing) uses primers that target a specific region of a gene of interest to de-
termine microbial phylogenies of a sample. These methods are well-
tested, fast, and cost-effective for obtaining a low-resolution view ofmi-
crobial communities (often limited to a genus taxonomic level). Shot-
gun metagenomics is a method of sequencing all microbial genomes
within a sample that yields more detailed genomic information than
marker gene sequencing alone (Quince et al., 2017). It may bemore ex-
pensive and is presently less streamlined than 16S sequencing, but cap-
tures all DNA present in a sample and allows for greater taxonomic
resolution to species or strain level.
Please cite this article as: T.T. Nguyen, H. Hathaway, T. Kosciolek, et al., G
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For each of these methods, various levels of analysis and statisti-
cal treatment can be used to extract meaningful results. Overall pat-
terns in microbiome variation and community structure are typically
assessed by alpha-diversity and beta-diversity (Fig. 2). Alpha-
diversity quantifies feature diversity within individual samples,
which can be compared across groups. Various indices of alpha-
diversity characterize the number and distribution of species in a
community, representing species richness and evenness. It is com-
monly observed that low alpha-diversity is a hallmark of dysbiosis
(Yatsunenko et al., 2012). Beta-diversity captures dissimilarity be-
tween a pair of samples, generating a distance matrix based on ei-
ther presence-absence of quantitative species abundance data.
Another approach is to examine differentially abundant taxa or func-
tional elements (e.g., genes and pathways) between groups. How-
ever, this approach to understanding differences between
diagnostic groups versus controls can be challenging given that
microbiome datasets are high-dimensional and compositional. The
compositionality problem has been discussed in our previous review
(Nguyen et al., 2018b), and is further mentioned in Section 4.
ut microbiome in serious mental illnesses: A systematic review and
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Table 1
Sample and methodology characteristics of reviewed studies.

Publication Country Sample size Mean age Gender Sample characteristics Assessments Sequencing Data processing/analysis Diversity
assessments

High-risk and first episode psychosis
He et al.,

2018
China HR: 81

UHR: 19
NC: 69

HR: 21.67
(SD = 5.75)
UHR: 20.47
(SD = 4.57)
NC: 23.13
(SD = 3.89)

HR: 41M/40F
UHR: 15M/4F
NC: 37M/32F

UHR: met one of following on SIPS:
BIPS, APSS, GRDS; Outpatients; no
AP, AD, anticonvulsants; no info on
BMI
HR: one first-degree relative with SZ
NC: No info on matching; No info on
BMI

DSM-IV; prodromal sx (SIPS, SOPS);
global functioning (GAF)

16S rRNA (V4 region, 515F/806R);
Sequencing; Illumina MiSeq 250 bp
paired-end

QIIME2 pipeline; sPLS-DA to
cluster samples; PICRUSt with
Greengenes and KEGG Databases
(3 KEGG levels); LEfSe

α: observed OTUs,
Shannon Index
β: PCoA, PLS-DA

Schwarz
et al.,
2018

Finland FEP: 28
NC: 16

FEP: 25.9
(SD = 5.5)
NC: 27.1
(SD = 6.0)

FEP: 16M:12F
NC: 8M:8F

FEP: 14 SZ, 4 SZP, 1 SZA, 2 BD I, 1 UD,
6 PD NOS; AOS = 25.9 (SD = 5.5);
outpatients; AP: 10 olanzapine, 7
risperidone, 8 quetiapine; BMI =
23.8 (SD = 4.3)
NC: Matched by age, sex and region
of residence; BMI = 23.9 (SD = 3.1)

DSM-IV; positive and negative sx
(BPRS, SANS); global functioning
(GAF); medical hx; diet (Health
Behavior and Health among the
Finnish Adult Population survey);
physical activity (Gothenburg scale)

qPCR for 16S primers; analysis of 7
bacterial groups [Lachnospiraceae
(Eubacterium rectale group),
Ruminococcaceae (Clostridium
leptum group), Bacteroides spp.,
Atopobium group in addition to
Bifidobacteria and
Lactobacillus-group (comprising of
the genera Lactobacillus,
Leuconostoc, Pediococcus, and
Weissella)]; NanoDrop 2000c
Metagenomic; Illumina Hi Seq 2000
100 bp paired-end

CLC Genomics Workbench V6
pipeline; Sequences filtered to
≥60 bp, sequences matching
human genome build 37
removed, remaining reads
matched to Refseq Bacterial
Database (length fraction = 0.8,
similarity = 0.8); LEfSe

α: did not assess
β: did not assess

Yuan et al.,
2018

China FESZ: 41
(pre-post)
NC: 41

FESZ: 23.1
(SD = 8.0)
NC: 24.7
(SD = 6.7)

FESZ: 23M/18F
NC: 20M/21F

FESZ: AOS = 17.9 (SD = 3.2); DOI =
5.9 months (SD = 3.0 months);
inpatients; AP naïve at baseline; BMI
= 20.54 (SD = 2.52)
NC: No info on matching; BMI =
20.75 (SD = 2.85)

DSM-IV; positive and negative sx
(PANSS); medical and psychiatric
hx; physical exam; metabolic
parameters (glucose, triglycerides,
HDL, LDL, insulin, hs-CRP, SOD,
HOMA-IR)

qPCR for 16S primers; analysis of 5
bacterial taxa [Bifidobacterium spp.,
Escherichia coli, Clostridium
coccoides group, Lactobacillus spp.,
Bacteroides spp.]

SPSS v24.0 statistical analysis;
qPCR quantification according to
cycle threshold;

α: did not assess
β: did not assess

Schizophrenia
Nagamine

et al.,
2018

Japan SZ: 16 (pre-post) SZ: 63.0
(SD = 10.9)

SZ: 5M:11F SZ: no info on AOS or DOI; inpatients,
length of hospital stay = 3053 days
(SD = 2805); CPZE = 729.7; BMI =
20.9 (SD = 3.7) (pre), 22.3 (SD =
4.3) (post)

Psychotic sx (BPRS); weight;
metabolic parameters (glucose,
triglycerides, total cholesterol,
albumin); ADRs (fever, abdominal
pain, constipation, diarrhoea)

Terminal restriction fragment
length polymorphism analysis for
16S primers (no info on region,
516F/1492R)

Genemapper genotyping
software; division into 29 OTUs,
no information on OTU picking
process

α: did not assess
β: did not assess

Nguyen
et al.,
2019

USA SZ: 25
NC: 25

SZ: 52.9
(SD = 11.2)
NC: 54.7
(SD = 10.7)

SZ: 14M:11F
NC: 15M:10F

SZ: SZ or SZA; AOS = 21.5, DOI =
32.4; outpatients; WHO DDD =
2.01; BMI = 31.8 (SD = 5.4)
NC: Matched by age and sex; BMI =
28.9 (SD = 4.0)

DSM-IV; positive and negative sx
(SAPS, SANS), depression sx
(PHQ-9), psychiatric and medical
hx; physical and mental well-being
(SF-36), medical comorbidity
(CIRS); CHD and CVD risk
(Framingham)

16S rRNA (V4 region, 501F/806RB)
Sequencing: Illumina HiSeq 2000
150 bp paired-end

QIIME2 pipeline; sOTU definition
with deblur; rarified to 7905
sequences per sample;

α: observed OTUs,
Shannon Index,
Faith's PD
β: unweighted
UniFrac,
Bray-Curtis
dissimilarity

Okubo
et al.,
2019

Japan SZ: 29 (pre-post)
Tx responders:
12
Tx
non-responders:
17

SZ: 45
(median)
(IQR = 16)
Tx
responders:
46 (median)
(IQR = 12)
Tx non-
responders:
41 (median)
(IQR = 16)

SZ: 11M:17F
Tx responders:
3M:8F
Tx
non-responders:
8M:9F

SZ: no info on AOS or DOI;
outpatients; HADS ≥ 10; CPZE = 600
(median) (IQR = 400); BMI = 25.7
(median) (IQR = 5.4)
Tx responders: CPZE = 600
(median) (IQR = 508); BMI = 26.5
(median) (IQR = 6.4)
Tx non-responders: CPZE = 643
(median); BMI = 23.6 (SD = 5.1)

DSM-V; anxiety and depression sx
(HADS, PANSS); diet
(semi-structured food frequency
questionnaire); positive, negative,
affective, and disorganized sx
(BPRS); inflammatory markers (34
pro- and anti-inflammatory
cytokines, related molecules,
e.g., ligands and receptors)

16S rRNA (V3–4 region,
Tru357F/Tru806R);
strain specific 16S PCR for
bifidobacterium breve A1 (A1F/A1R)
Sequencing: Illumina MiSeq

QIIME pipeline; Sequences
filtered to ≥150 bp; Open
reference OTU picking with 97%
threshold;

α: Shannon Index
β: UniFrac
distances

Shen et al.,
2018

China SZ: 64
NC: 53

SZ: 42
(SD = 11)
NC: 39
(SD = 14)

SZ: 36M:28F
NC: 35M:18F

SZ: no info on AOS or DOI;
outpatients; no info on medications;
BMI = 23.49 (SD = 3.8)
NC: No info on matching; BMI =
23.14 (SD = 2.8)

ICD-10; psychiatric sx (PANSS);
psychiatric and medical hx

16S rRNA (V3–4 region, 341F/805R)
Sequencing: Illumina HiSeq 2500

QIIME pipeline; removal of low
quality sequences; open
reference OTU picking with 97%
threshold; Rarefaction to 10,000
sequences per sample; LEfSe

α: number of
reads, Faith's PD,
observed OTUs,
Shannon Index,
Simpson, ACE,
Chao1
β: unweighted
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UniFrac, PCoA
Zheng

et al.,
2019

China SZ: 63
UD: 58
NC cohort 1: 69
NC cohort 2: 63

SZ: 43.49
(SD = 1.68)
UD: 40.6
(SD = 11.7)
NC cohort 1:
39.99
(SD = 1.62)
NC cohort 2:
41.8
(SD = 12.3)

SZ: 42M:21F
UD: 22M:36F
NC cohort 1:
36M:33F
NC cohort 2:
23M:40F

SZ: no info on AOS or DOI; AP: 15
clozapine, 14 risperidone, 9
olanzapine, 5 chlorpromazine, 3
aripiprazole, 3 quetiapine, 9 2+ AP, 5
unmedicated; BMI = 22.90 (SD =
0.32)
UD: 19 taking medications (no
further info); BMI = 22.0 (SD = 2.4)
NC cohort 1: Matched with SZ; BMI
= 23.16 (SD = 0.33)
NC cohort 2: Matched with UD; BMI
= 22.6 (SD = 2.5)

DSM-IV; positive and negative sx
(PANSS); depression sx (HAM-D);
psychiatric and medical hx

16S rRNA (V3–4 region, 338F/806R)
Sequencing: Illumina MiSeq 250 bp
paired-end

QIIME pipeline; removal of low
quality and chimeric sequences;
open reference OTU picking with
97% threshold; Taxonomy
assignment with SILVA database;
LEfSe

α: ACE, Chao,
Shannon Index
Beta: PLS-DA

Bipolar disorder
Aizawa

et al.,
2018

Japan BD: 39
NC: 58

BD: 40.3
(SD = 9.2)
NC: 43.1
(SD = 12.9)

BD: 17M:22F
NC: 22M:36F

BD: 13 BD I, 26 BD II; mood state: 23
depressed, 2 manic, 12 euthymic, 1
mixed; AOS = 28.2 (SD = 9.4); no
info on DOI; outpatient; mean
medication doses (n): CPZE = 182.9
(13); imipramine equivalence = 204
(12); lithium = 418.8 (16);
valproate = 725.0 (8); lamotrigine
= 186.5 (13); carbamazepine =
325.0 (4); no meds (3); BMI = 23.9
(SD = 4.7)
Comparison: Matched by age and
sex; BMI = 22.4 (SD = 3.8)

DSM-IV; depression sx (HAM-D);
mania sx (YMRS); psychiatric and
medical hx

RT-qPCR for 16S or 23S primers;
analysis of only Bifidobacterium and
Lactobacillus subgroups; Yakult
Intestinal Flora-SCAN

ANCOVA adjusted for age and
sex and BMI to compare
Bifidobacterium and Lactobacillus
abundance; partial correlation
analysis against continuous
variables

α: did not assess
β: did not assess

Bengesser
et al.,
2019

Austria BD depressed: 13
BD euthymic: 19

BD (both
sub-cohorts):
41.67
(SD = 17.51)

BD (both
sub-cohorts):
25M:7F

BD depressed (HAM-D N 10); BD
euthymic (HAM-D b 10); subtype
not indicated; outpatients; no info
on AOS or DOI; no info on
medications; BMI = 27.99 (SD =
6.45)

DSM-IV; psychiatric and medical
hx; HAM-D; YMRS; BDI

16S rRNA (V1-V2 region); Ion
Torrent One Touch 2.0 Kit

Sequence processing: DeconSeq,
Acacia tool, Usearch algorithm;
analysis: QIIME 1.8; Rarified to
8000 sequences per sample

α: Simpson Index
and Evenness
Index
β: did not assess

Coello
et al.,
2019

Denmark BD: 113
UR: 39
NC: 77

BD: 31 (no SD
provided;
range 26–39)
UR: 28 (no SD
provided;
range 22–34)
NC: 29 (no SD
provided;
range
24.5–40.5)

BD: 43M:70F
UR: 18M:21F
NC: 30M:47F

BD: 44 BD I, 65 BD II; newly
diagnosed; mood states: 68
euthymic, 26 depressed, 4 manic, 8
hypomanic, 6 mixed; AOS = 17; DOI
= 11; BMI = 24.8 (no SD provided;
range 22.2–27.8)
UR: unaffected first-degree relatives;
BMI = 24.4 (no SD provided; range
21.8–26.4)
NC: age- and sex-matched; BMI =
24.2 (no SD provided; range
22.0–26.3)

ICD-10; depression sx (HAM-D);
mania sx (YMRS); psychiatric and
medical hx; physical activity (IPAQ)

16S rRNA (V3-V4 region);
Sequencing: Illumina MiSeq (MiSeq
Reagent Kit V3, 2 × 300 bp
paired-end)

USEARCH 10.0, mothur 1.38 and
inhouse script pipeline; removal
of low quality and chimeric
sequences; closed reference OTU
picking with 97% threshold;
Taxonomy assignment with
SINTAX

α: observed OTUs,
Shannon Index
β: weighted and
unweighted
UniFrac distances

Evans
et al.,
2017

USA BD: 115
NC: 64

BD: 50.2
(SD = 12.8)
NC: 48.6
(SD = 16.6)

BD: 32M:83F
NC: 24M:40F

BD: 76 BD I, 29 BD II, 10 BD NOS;
outpatients; most on more than one
psychiatric medication; no info on
AOS or DOI; BMI = 29.3 (SD = 7.2)
NC: No info on matching; BMI =
26.0 (SD = 4.6)

DSM-IV, DIGS; depression sx
(PHQ-9); mania sx (ASRM); anxiety
sx (GAD-7); psychiatric and
medical hx; physical and mental
well-being (SF-12); sleep (PSQI)

16S rRNA (V4 region)
Sequencing: Illumina MiSeq

mothur 1.36.1 pipeline;
sequence alignment to SILVA
database; OTU picking with 97%
threshold;

α: did not assess
β: Yue and
Clayton distance

Flowers
et al.,
2017

USA BD on AP
treatment: 46
BD off AP
treatment: 69

BD on AP
treatment:
46.0
(SD = 12.0)
BD off AP
treatment:
51.7
(SD = 13.5)

BD on AP
treatment:
12M:34F
BD off AP
treatment:
21M:48F

BD I, BD II, BD NOS (ns not
provided); outpatients
AP group: inclusion defined by use of
an atypical AP (clozapine,
olanzapine, risperidone, quetiapine,
asenipine, ziprasodone, lurasidone,
aripiprazole, paliperidone, and
iloperidone). Other medications: 26
AD, 32 MS, 20 lithium, 13 BZ; groups
did not differ in treatment with MS
or AD, though the AP group used

DSM-IV, DIGS; psychiatric and
medical hx

16S rRNA (V4 region)
Sequencing: Illumina MiSeq V2

mothur 1.36.0 pipeline; removal
of low quality and chimeric
sequences; OTU picking with
97% threshold; LEfSe

α: Simpson
Diversity Index
β: Yue and
Clayton distance
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Table 1 (continued)

Publication Country Sample size Mean age Gender Sample characteristics Assessments Sequencing Data processing/analysis Diversity
assessments

more BZ; no info on AOS or DOI; BMI
= 31 (SD = 7)
Non-AP group: matched for previous
hospitalizations and other metabolic
comorbidities; BMI = 27.5 (SD = 6)

Flowers
et al.,
2019

USA SZ/BD on AP: 21
(19 pre-post)
SZ/BD not on AP
(on MS): 16

SZ/BD on AP:
54 (SD = 10)
SZ/BD not on
AP (on MS):
50 (SD = 15)

SZ/BD on AP:
12M:9F
SZ/BD not on AP
(on MS): 9M:7F

BD I, BD II, BD NOS, BD with
psychosis, SZA, or SZA; outpatients;
inclusion was defined by the use of
an atypical AP (clozapine,
olanzapine, risperidone, quetiapine,
or ziprasidone) or lithium and/or
lamotrigine for at least 6 months; no
info on AOS or DOI; BD subjects may
overlap with Flowers et al. (2017)
AP group: 9 BD I, 3 BD II, 4 SZ, 5 SZA;
other medications: 9 AD, 5 BZ, 12 for
hypertension, 2 for diabetes, 10 for
hyperlipidemia; BMI = 30.6
Non-AP group: 10 BD I, 6 BD II; other
medications: 12 AD, 4 BZ, 4 for
hypertension, 2 for hyperlipidemia;
BMI = 31.1

DSM-IV; psychiatric and medical
hx; physical and mental well-being
(SF-36); 24 h dietary recall
(ASA24); anthropometric
measurements (height, weight,
blood pressure)

16S rRNA (V4 region);
Sequencing: Illumina MiSeq 250 bp
paired-end

mothur 1.36.0 pipeline; removal
of low quality and chimeric
sequences; OTU picking with
97% threshold; LEfSe

α: Inverse
Simpson Index
β: Bray-Curtis
dissimilarity

Painold
et al.,
2019

Austria BD: 32
NC: 10

BD: 41.31
(SD = 14.73)
NC: 31.4
(SD = 7.61)

BD: 18M:14F
NC: 4M:6F

BD: BD I; inpatients hospitalized for
depressive episode; all on
medications: 24 atypical AP, 8
lithium, 11 anticonvulsants, 23
antidepressants; DOI = 17.5; BMI =
28.44 (SD = 6.08)
NC: No info on matching; BMI =
24.26 (SD = 3.76)

DSM-IV; depression sx (BDI;
HAM-D); psychiatric and medical
hx; metabolic parameters
(triglycerides, HDL cholesterol,
fasting plasma glucose);
anthropometric measurements
(waist-to-hip ratio, waist-to-height
ratio)

16S rRNA (V1-V2 region);
Sequencing: Ion Torrent One Touch
2.0 Kit

QIIME pipeline; Sequences
filtered to ≥100 bp; removal of
low quality and chimeric
sequences; OTU picking with
97% threshold

α: observed OTUs,
Chao1, Shannon
Index, Simpson
Index
β: weighted and
unweighted
UniFrac distances

Vinberg
et al.,
2019

Denmark MZT Affected: 71
MZT HR: 32
MZT LR: 25

MZT Affected:
37.7
(CI = 8.9)
MZT HR: 38.2
(CI = 9.4)
MZT LR: 37.2
(CI = 7.7)

MZT Affected:
18M:53F
MZT HR: 9M:23F
MZT LR: 5M:20F

Affected: twins in remission
(HAM-D, YMRS b 14); 27 BD, 45 UD;
outpatients; 44 medications: 22
antidepressants, 15 AP, 11
anticonvulsant, 4 lithium, 7 BZ; BMI
= 26.5 (SD = 7.0)
HR: unaffected twins with co-twin
history of affective disorder; 10 BD,
22 UD; 1 on medication (not
specified); BMI = 23.9 (SD = 3.1)
LR: no personal of family history of
affective disorder; BMI = 24.5 (SD=
3.1)

ICD-10; depression sx (HAM-D);
mania sx (YMRS); psychiatric and
medical hx; fasting samples (urine,
blood)

16S rRNA (V3-V4 region);
Sequencing: Illumina MiSeq, 2 ×
300 bp paired-end

USEARCH 9.2 and mothur 1.38.1
pipeline; removal of low quality
and chimeric sequences; OTU
picking with 97% threshold;
rarified to 5244 sequences per
sample

α: observed OTUs,
Shannon Index
β: generalized
UniFrac distances

ACE=Abundance-based Coverage Estimator; AD= antidepressantmedication; ADR= adverse drug reactions; ANCOVA=analysis of covariance; APSS=Attenuated Positive Symptom Syndrome; ASA24=Automated Self-Administered 24-Hour
Dietary Assessment Tool; ASRM= Altman Self-Rating Mania Scale; AOS = age of onset; AP= antipsychotic medication; BD (I/II) = bipolar disorder (type I/II); BDI = Beck depression index; BIPS = Brief Intermittent Psychotic Syndrome; BMI =
BodyMass Index; bp=base pair; BPRS(−E)=Brief Psychiatric Rating Scale(−Extended); BZ=benzodiazepine; CHD=coronary heart disease; CVD=cardiovascular disease; CI= confidence interval; CIRS=Cumulative Illness Rating Scale; CPZE
= chlorpromazine equivalence; DIGS = Diagnostic Interview for Genetic Studies; DOI = duration of illness; DSM-IV/V = Diagnostic and Statistical Manual of Mental Disorders - Fourth/Fifth Edition; F = female; Faith's PD = Faith's phylogenetic
diversity; FEP= first-episode psychosis (all primary psychotic disorders include); FESZ= first-episode schizophrenia; GAD-7= Generalized Anxiety Disorder 7-item scale; GRDS= Genetic Risk and Deterioration Syndrome; GAF= Global Assess-
ment of Functioning; HADS=Hospital Anxiety and Depression Scale; HAM-D=Hamilton Depression Scale; HDL= high density lipoprotein; HOMA-IR=Homeostatic Model Assessment of Insulin Resistance; HR= high-risk; hs-CRP= high-sen-
sitivity C-reactive protein; hx=history; ICD-10= International Classification of Diseases 10th edition; IPAQ=The International Physical Activity Questionnaire; IQR= interquartile range; KEGG=Kyoto Encyclopedia of Genes andGenomes; LDL=
low-density lipoproteins; LEfSe = linear discriminant analysis effect size; LR = low-risk; M = male; MS = mood stabilizer; MZT = monozygotic twins; NC = non-psychiatric comparison group; NOS = not otherwise specified; (s)OTU = (sub)
operational taxonomic unit; PANSS = positive and negative syndrome score; PCoA = principal coordinates analysis; (q)PCR = (quantitative real-time) polymerase chain reaction; PD = Psychotic Disorder; PHQ-9 = Patient Health Questionnaire
9; (s)PLS-DA= (sparse) partial least-squares discriminant analysis; PSQI= Pittsburgh Sleep Quality Index; QIIME(2)= quantitative insights into microbial ecology (2); rRNA= ribosomal ribonucleic acid; SANS= Scale for the Assessment of Neg-
ative Symptoms; SAPS=Scale for the Assessment of Positive Symptoms; SD=standard deviation; SF-12/36=12/36-Item Short-FormHealth Survey; SOD= superoxide dismutase; spp.= species; SIPS=Structured Interview for Prodromal Symp-
toms; SOD=;SOPS=Scale of Prodromal Syndromes; SPSS=Statistical Package for Social Sciences; SZ= schizophrenia; SZA=schizoaffective disorder; SZP=SchizophreniformDisorder; Tx=Treatment; UD=Unipolar Affective Disorder; UHR=
ultra-high-risk individuals; UR = unaffected relative; WHO DDD = World Health Organization antipsychotic defined daily dose; y = years; YMRS = young mania rating scale.

6
T.T.N

guyen
etal./Schizophrenia

Research
xxx

(xxxx)
xxx

Please
cite

this
article

as:T.T.N
guyen,H

.H
athaw

ay,T.K
osciolek,et

al.,G
ut

m
icrobiom

e
in

serious
m
entalillnesses:A

system
atic

review
and

criticalevaluation,Schizophrenia
Research,https://doi.org/10.1016/j.schres.2019.08.026

https://doi.org/10.1016/j.schres.2019.08.026


Table 2
Summary of study characteristics for reports in review.

Sample characteristics Clinical sample Comparison sample

Mean (SD) Median Range Mean (SD) Median Range

Number of participants 46.5 (31.7) 35.5 12–115 42.3 (23.7) 41.0 10–77
Mean age (years) 39.6 (12.1) 41.3 20–63 37.9 (10.3) 37.9 23–55
Minimum age (years) 19.6 (5.2) 19.0 13–30 21.2 (5.3) 21.0 13–30
Maximum Age (years) 49.9 (16.4) 52.0 30–76 44.8 (16.5) 40.3 30–76
Gender ratio (M/F) 1.2 (1.0) 1.2 0–4 0.92 (0.4) 0.98 0–2
Body mass index 26.0 (3.5) 25.7 21–32 24.7 (2.7) 24.2 21–31
Age of onset (years) 22.1 (4.9) 21.5 17–28 – – –
Duration of illness (years) 15.3 (14.1) 14.3 0–32 – – –

F = females; M = males; SD = standard deviation.
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Knowing the taxonomic composition of a microbial community tells
only one part of the story. The research field is increasingly moving to-
ward understanding the functions of specific strains of these communi-
ties, which offers biotechnological promise in therapeutic discovery and
provides greater insight into the contributions of microorganisms to
human health. This can be done by facilitating additional analysis of cur-
rent sequencing techniques and/or integrating other omics data, includ-
ingmetatranscriptomics, metaproteomics, andmetabolomics. Although
marker gene analysis does not provide direct evidence of a community's
functional capabilities, PICRUSt (phylogenetic investigation of commu-
nities by reconstruction of unobserved states) is a computational ap-
proach that can use 16S data to predict the functional composition of
a metagenome (Langille et al., 2013). Metagenomic sequencing can
also produce detailed metabolic and functional profiles of microbial
communities by giving access to all genes, which can then be mapped
onto known functional annotations. Metabolomics and genome-scale
metabolic modelling can identify bacterialmetabolites and predictmet-
abolic pathways and products from genomic and transcriptomic data,
respectively (Kim et al., 2017; Ursell et al., 2014). These methods cap-
ture microbially produced metabolites, which can signal neighboring
microorganisms and influence host physiology, and highlight potential
metabolic pathways by which gut microbes may meaningfully impact
human health and function.

3.2. High-risk and first episode psychosis

Three articles met our inclusion criteria, including one of individuals
at high-risk (HR) and ultra-HR for schizophrenia and two of persons
with FEP. Each study used different methods for quantifying the gut
microbiome, including 16S sequencing, quantitative real-time polymer-
ase chain reaction (qPCR) analyses using 16S rRNA primers, and
metagenomics sequencing.

3.2.1. Cross-sectional findings
Only one study reported community-level characteristics and found

nodifferences in alpha-diversity amongHR, ultra-HR, andNCs (He et al.,
2018). However, beta-diversity analysis revealed that ultra-HR and HR
had significantly different global microbiome composition than NCs,
with ultra-HR showing greater heterogeneity in clustering across the
principal coordinate analysis space compared to other groups.

All studies reported on taxonomic differences between groups. To-
gether, these investigations revealed 25 taxa that were significantly dif-
ferent among FEP, HR groups, and NCs. Between the two studies using
qPCR analysis, the single common finding was that Bacteroides spp.
was not significantly different between FEP and NC groups. Yuan et al.
(2018) reported reduced numbers of Bifidobacterium spp., Escherichia
coli, and Lactobacillus spp. and increased numbers of Clostridium
coccoides group in FEP compared to NCs, while Schwarz et al. (2018)
found no differences in bacterial numbers between FEP and NCs. On dif-
ferential abundance testing, family Lactobacillaceae was overrepre-
sented among the taxa that were most strongly increased in FEP
Please cite this article as: T.T. Nguyen, H. Hathaway, T. Kosciolek, et al., G
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(Schwarz et al., 2018). Similarly, order Lactobacillales was differentially
increased in ultra-HR compared to HR and NCs (He et al., 2018).

Lactobacillus group was associated with increased severity of psy-
chotic symptoms and worse global functioning in FEP patients at the
time of hospitalization (Schwarz et al., 2018). These studies also showed
an association between the microbiome and systemic inflammation.
Bifidobacterium spp. was correlated with lower serum low-density lipo-
protein (LDL), while Escherichia coli correlated with lower serum tri-
glycerides and high-sensitivity C-reactive protein (Yuan et al., 2018).
Finally, one study explored possible functional pathways using PICRUSt
to infer genetic potentials based on 16S sequences, with no differences
in any KEGG pathways to three levels (He et al., 2018).

3.2.2. Longitudinal findings
Two studies assessed the microbiome longitudinally, tracking pa-

tient outcomes following initial hospitalization (Schwarz et al., 2018)
and a period of risperidone treatment (Yuan et al., 2018). FEP patients
who showed the greatest abnormalities in microbial composition from
NCs at hospitalization showed lower rate of disease remission at one-
year follow-up, even after considering potential confounders such as
baseline level of global functioning, level of physical activity, BMI, dura-
tion of antipsychotic treatment, and food intake (Schwarz et al., 2018).
Following 24 weeks of risperidone treatment, FEP patients showed in-
creases in Bifidobacterium spp. and Escherichia coli and decreases in Clos-
tridium coccoides group and Lactobacillus spp. Notably, increases in
Bifidobacterium spp. predicted increases in weight and BMI over the
treatment period.

3.3. Schizophrenia

There were five articles of the gut microbiome in patients with
schizophrenia. Three studies were cross-sectional investigations, and
two studies sampled themicrobiome longitudinally. All studies utilized
16S sequencing.

3.3.1. Cross-sectional findings
All studies analyzed diversity metrics, but findings were mixed.

Zheng et al. (2019) observed reduced microbial richness and evenness
in schizophrenia relative to NCs, while two other studies found no dif-
ferences in alpha-diversity using similar indices (Nguyen et al., 2019;
Shen et al., 2018). Nevertheless, all studies revealed beta-diversity dif-
ferences between schizophrenia and NC groups.

All investigations reported taxonomic differences between schizo-
phrenia and NCs, although the drivers of community separation varied
considerably across studies. Combining these studies, 130 taxawere sig-
nificantly different between schizophrenia and NCs. At the phylum
level, two studies found Proteobacteria to be different between groups;
however, it was relatively decreased in schizophrenia in one (Nguyen
et al., 2019) but relatively increased in another (Shen et al., 2018). Di-
vergent findings were also reported for genus Clostridium (Nguyen
et al., 2019; Shen et al., 2018). Six genera were relatively increased in
schizophrenia: Anaerococcus, Succinivibrio, Megasphaera, Collinsella,
ut microbiome in serious mental illnesses: A systematic review and
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Table 3
Studies of the microbiome in individuals at high-risk for and with first episode psychosis.

Publication Diversity patterns Taxonomic differencesa Association with clinical
features

Functional potential Longitudinal changes Limitations

He et al.,
2018

α: no difference
between HR, UHR,
and NC (observed
OTUs, Shannon
Index)
β: HR and UHR
different from NC
(PCoA) with
increased
heterogeneity in
clustering in UHR
compared to HR
and NC (PLS-DA)

Orders: UHR ↑
Clostridiales,
Lactobacillales, and
Bacteroidales compared
to HR and NC
Genera: UHR ↑
Lactobacillus and
Prevotella compared to
HR and NC
Species: UHR ↑
Lactobacillus ruminis
compared to HR and NC

N/A No differences in KEGG
pathways into 3 levels;
UHR ↑ acetyl coenzyme
A synthesis pathway
compared to HR and
NC using KEGG
Orthology database

N/A − Small sample size for
UHR group

− Did not examine rela-
tionship of community
diversity/specific taxa
to demographic or
clinical/disease--
specific features in
groups

− No data on BMI or diet
− Functional profiling

performed on the
basis of 16S rRNA gene
data is limited; only
inferences can be
made about the
genome correspond-
ing to the specific
marker gene
sequence, as well as
about the functional
potential of a given
genome

Schwarz
et al.,
2018

N/A qPCR: numbers of
bacteria not different
between FEP and NC
Metagenomic
sequencing: Families:
FEP ↑ Lactobacillaceae,
Halothiobacillaceae,
Brucellaceae, and
Micrococcineae, ↓
Veillonellaceae
Genera: FEP ↑
Lactobacillus,
Tropheryma,
Halothiobacillus,
Saccharophagus,
Ochrobactrum,
Deferribacter, and
Halorubrum, ↓ Anabaena,
Nitrosospira, and
Gallionella

Lachnospiraceae, Bacteroides
spp., Lactobacillus
correlated with ↑ psychotic
symptoms. Lachnospiraceae,
Bacteroides spp., and
predominant bacteria
associated with ↑ negative
symptoms. Lactobacillus
correlated with ↑ positive
symptoms.
Ruminococcaceae,
Bacteroides spp.,
Lactobacillus, and
predominant bacteria
associated with ↓ GAF.
Duration of AP treatment
not correlated with
bacteria. Subgroup of FEP
with greatest differences in
composition from NCs
showed ↑ negative
symptoms and ↓ GAF but
not with positive
symptoms.

N/A Microbiota clustering at
intake associated with ↑
remission at 12-month
follow-up; 70% FEP that
clustered with NCs showed
remission, compared to
only 28% of patients with
“abnormal,” even after
controlling for baseline GAF

− Small sample size
− No community-level

characteristics
reported (alpha- and
beta-diversity)

− qPCR analysis limited
to only 5 bacterial
groups

− Model predicting
remission only used
top 5 families rather
than the entire popu-
lation

− More specific informa-
tion about/-
examination of the
impact of AP medica-
tion use

− Further examination
of relationship with
metabolic and inflam-
matory biomarkers
collected

− No information
regarding diet

− No analyses of func-
tional potential

Yuan et al.,
2018

N/A FESZ ↓
Bifidobacteriumspp.,
Escherichia coli,
Lactobacillusspp., and ↑
Clostridium coccoides
group. No difference in
Bacteroidesspp. between
groups

At baseline, Bifidobacterium
spp. correlated with ↓
serum LDL; Escherichia coli
correlated with ↓ serum
triglycerides and hs-CRP,
after controlling for age,
gender, smoking status, and
DOI

N/A After 24 weeks of
risperidone treatment, ↑
Bifidobacterium spp. and
Escherichia coli and ↓
Clostridium coccoides group
and Lactobacillus spp. No
change in Bacteroides spp.
Hierarchical multiple linear
regression analysis shows
that only △Bifidobacterium
spp. was correlated with
△weight over 24 weeks,
after controlling for age,
gender, smoking status, and
DOI. No other relationships
between changes in fecal
bacteria and changes in
metabolic parameters.

− Single arm study: lack
of non-treatment con-
trol group, no follow--
up in NC

− No community-level
characteristics
reported (alpha- and
beta-diversity)

− Limited microbiome
investigation to qPCR
analysis of only 5
bacteria, rather than
performing OTU
analysis

AP=antipsychoticmedication; DOI=duration of illness; F= female; FEP=first-episode psychosis (all primary psychotic disorders include); FESZ=first-episode schizophrenia; GAF=
Global Assessment of Functioning; HR = high-risk individuals; hs-CRP = high-sensitivity C-reactive protein; KEGG = Kyoto Encyclopedia of Genes and Genomes; LDL = low-density
lipoproteins;M=male; NC=non-psychiatric comparison group;OTU=operational taxonomic unit; PCoA=principal coordinates analysis; PLS-DA=partial least-squares discriminant
analysis; qPCR=quantitative real-time polymerase chain reaction; rRNA= ribosomal ribonucelic acid; SD= standard deviation; spp.= species, SZ= schizophrenia; UHR=ultra-high-
risk individuals.

a ↑↓ arrows indicate increase or decrease in relative abundance, when referring to taxonomic differences.
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Klebsiella, Methanobrevibacter, while five genera were decreased in
schizophrenia: Haemophilus, Sutterella, Blautia, Coprococcus, and
Roseburia. At the family level, Veillonellaceae, Prevotellaceae,
Bacteroidaceae, and Coriobacteriaceae were increased in schizophrenia,
whereas Lachnospiraceae, Ruminococcaceae, Norank, and Enterobacteria-
ceae were decreased. One study evaluated the specificity of its findings
in schizophrenia, comparing results to a previous study of patients
with major depressive disorder (Zheng et al., 2016), and found that
only a minority of taxa overlapped, suggesting that schizophrenia has
a somewhat distinct microbial signature.

Psychosis symptom severity was positively correlated with
Bacteroidaceae, Streptococcaceae, and Lachnospiracea and negatively
with Veillonellaceae (Zheng et al., 2019). Findings for Ruminococcaceae
were mixed. One study observed two different operational taxonomic
units correlated with psychosis symptoms severity, one positively and
the other negatively (Zheng et al., 2019). Another study reported
Ruminococcaceae to be inversely associated with severity of negative
symptoms (Nguyen et al., 2019). Bacteroides was positively related to
depressive symptoms, and Verrucomicrobia with self-reported mental
well-being. These studies also reported relationships with other clinical
and health variables. Cyanobacteria correlated with increased age of
onset, Coprococcus with greater risk for developing coronary heart dis-
ease, and Actinobacteria with greater number of years of smoking
(Nguyen et al., 2019).

Finally, several functional metabolic pathways differed between
schizophrenia and NCs, including vitamin B6, fatty acid, starch and
sucrose, tryptophan, cysteine, methionine, and linoleic acid metabo-
lism, as well as degradation of some xenobiotics (e.g., foreign sub-
stances to the body or ecological system) (Shen et al., 2018).
Specific taxa were associated with these differential metabolic path-
ways: Blautia, Coprococcus, and Roseburia were negatively associ-
ated with vitamin B6, taurine, hypotaurine metabolic pathways
and positively associated with the methane metabolic pathway
(Shen et al., 2018).

3.3.2. Longitudinal findings
Two studies evaluated changes in the gutmicrobiome followingpro-

biotic and prebiotic administration. Nagamine et al. (2018) explored
whether 6-month supplementation of prebiotic 4G-β-D-
galactosylsucrose, an oligosaccharide that is selectively utilized by
Bifidobacterium and has been reported to be beneficial in chronic in-
flammatory bowel disease (Teramoto et al., 1996), could improve low
body weight in schizophrenia. They observed that Bifidobacterium was
increased and Clostridium subcluster XIVa was reduced. Changes in mi-
crobial composition were also accompanied by significant increases in
weight and BMI. On the other hand, there were no changes in
Bifidobacterium following 4-week administration of probiotic
Bifidobacterium breve A-1, despite improved depression and anxiety
symptoms (Okubo et al., 2019). When the baseline microbial composi-
tions were evaluated, there was no significant difference in alpha-
diversity, beta-diversity, or relative abundances at the phylum level be-
tween treatment responders compared to non-responders; at the genus
level, treatment non-responders had higher levels of Parabacteroides.

3.4. Bipolar disorder

Eight articles investigated the gut microbiome in BD. All studies
were cross-sectional except for one longitudinal investigation, which
explored intestinal microbial changes following prebiotic administra-
tion. Seven studies utilized 16S sequencing, and one utilized qPCR (ex-
amining only Bifidobacterium and Lactobacillus subgroups).

3.4.1. Cross-sectional findings
Six articles reported on measures of alpha- and beta-diversity.

Monozygotic twins concordant for affective disorders had reduced spe-
cies richness compared to unaffected twins, but richness did not differ
Please cite this article as: T.T. Nguyen, H. Hathaway, T. Kosciolek, et al., G
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between concordant and discordant pairs (Vinberg et al., 2019). Two ar-
ticles reported no differences between BD and NCs or their unaffected
first-degree relatives (Coello et al., 2019; Painold et al., 2019). Differ-
ences in alpha-diversity within BD subgroups suggested that diversity
patterns may vary depending on mood state and gender; species even-
ness was reduced in depressed BD compared to euthymic BD
(Bengesser et al., 2019), and species richness was decreased in
women with schizophrenia or BD who were treated with antipsychotic
medications, compared to those not-treated with antipsychotics
(Flowers et al., 2019).With regards to beta-diversity differences, reports
weremixed. One study found that communitymembership differed be-
tween BD and NCs (Coello et al., 2019), while another investigation
using the samemeasure did not (Painold et al., 2019). Likewise, one ar-
ticle revealed community structure differences (Evans et al., 2017),
while two investigations found no differences (Coello et al., 2019;
Painold et al., 2019). Beta-diversity was also not different amongmono-
zygotic twins concordant or discordant for affective disorders and those
without affective disorders (Vinberg et al., 2019).

Combining these studies, seven taxa were different between BD and
NCs. At the phylum level, only Actinobacteria was found to be signifi-
cantly different between groups, with abundance relatively increased
in BD (Painold et al., 2019). At the family and genus levels, two studies
revealed Ruminococcaceae and Faecalibacterium to be relatively de-
creased in BD (Evans et al., 2017; Painold et al., 2019). Other signifi-
cantly different taxa included Coriobacteriaceae and Flavonifractor,
which were increased in BD, and Christensenellaceae, which was de-
creased. Neither Bifidobacteriumnor Lactobacilluswas found to bediffer-
ent between BD and NCs (Aizawa et al., 2018).

All these studies examined the relationship of the gut microbiome
with clinical variables, includingdisease severity, psychiatric symptoms,
medication use, and health variables. Longer duration of illness was as-
sociated with decreased alpha-diversity (Painold et al., 2019). Depres-
sion symptom severity was positively correlated with
Enterobacteriaceae and negatively with Faecalibacterium, Clostridiaceae
and Roseburia (Painold et al., 2019), whereas sleep was positively asso-
ciated with Faecalibacterium (Evans et al., 2017). Atypical antipsychotic
treatment was associated with reduced gut biodiversity, particularly in
women (Flowers et al., 2019, 2017). Patients on atypical antipsychotics
had relatively increased levels of Lachnospiraceae, while non-treated in-
dividuals had preferentially higher levels of Akkermansia and Alistipes.
Smoking correlated with increased presence of Flavonifractor (Coello
et al., 2019), and better self-reported physical health was associated
with increased Faecalibacterium, Anaerostipes and Ruminococcaceae
and decreased Enterobacteriaceae (Evans et al., 2017). BD patients
with higher BMI and metabolic syndrome showed increased
Lactobacillaceae, Lactobacillus, and Coriobacteriaceae (Painold et al.,
2019). Microbiome composition was also related to serum inflamma-
tory and metabolic biomarkers (Painold et al., 2019). BD with higher
IL-6 had increased Lactobacillales, Lactobacillaceae, Lactobacillus,
Streptococcaceae, and Streptococcus, compared to BD with lower IL-6.
Similarly, higher total cholesterol was associated with increased
Clostridiaceae and lower LDL was associated with increased
Prevotellaceae and Prevotella. Increased thiobarbituric acid reactive sub-
stances, a parameter of oxidative stress, were associated with increased
Eubacterium, and higher tryptophan levels were associated with Lacto-
bacillus, Lactobacillaceae, Coriobacteriaceae, and Clostridiaceae.

3.4.2. Longitudinal findings
One article evaluated changes in the gut microbiome in patients

with schizophrenia and BD following administration of resistant starch
(Flowers et al., 2019), based on evidence from prior studies that have
shown an inverse association between diets consisting of resistant
starch and occurrence of obesity and diabetes mellitus in the general
population (Higgins et al., 2004; Johnston et al., 2010). Nondigestible
plant fibers, such as resistant starches, are selectively fermented by bac-
terial species in the large intestine and lead to the production of short-
ut microbiome in serious mental illnesses: A systematic review and
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Table 4
Studies of the microbiome in patients with schizophrenia.

Publication Diversity patterns Taxonomic differencesa Association with clinical
features

Functional potential Longitudinal changes Limitations

Nagamine
et al.,
2018

N/A N/A N/A N/A After 6 months of treatment with
4G-β-D-galactosylsucrose
(prebiotic treatment for
underweight patients), ↑
Bifidobacterium and ↓ Clostridium
subcluster XIVa, which was
accompanied by increase in
weight/BMI in underweight SZ

− Small sample size
− Lack of non-treatment control

group, cannot exclude a placebo
effect

− No community-level character-
istics reported (alpha and beta--
diversity)

− Further investigation of whether
gut microbiome composition
could predict changes in
weight/BMI and other targeted
outcomes

Nguyen
et al.,
2019

α: no difference between
SZ and NC (observed
OTUs, Shannon Index,
Faith's PD)
β: different between SZ
and NC (unweighted
UniFrac, Bray-Curtis
dissimilarity), with
tighter clustering in NC
than SZ (unweighted
UniFrac, Bray-Curtis
dissimilarity)

Phyla: SZ ↓ Proteobacteria
Genera: SZ ↑ Anaerococcus, and ↓
Haemophilus, Sutterella, Clostridium
Across all taxonomic levels: 35 OTUs
different between SZ and NC (33
order Clostridiales, 1 class
Gammaproteobacteria, 1 class
Erysipelotrichi)

Cyanobacteria correlated with ↑ age
of onset; Bacteroides associated with
↑ depressive symptoms;
Ruminococcaceae correlated with ↓
negative psychosis symptoms;
Coprococcus associated with ↑
Framingham CHD risk;
Verrucomicrobia correlated with ↑
mental well-being; Actinobacteria
correlated with ↑ greater number of
years of smoking in SZ

N/A N/A − Small sample size
− Did not assess relationship with

AP medications
− Heterogeneous sample includ-

ing patients with SZA and some
chronic disease

Okubo
et al.,
2019

α: at baseline, no
difference between
responders and
non-responders
(Shannon Index)
β: no difference between
responders and
non-responders (UniFrac
distances)

Phlyla: at baseline, no differences in
relative abundances between
responders and non-responders
Genera: at baseline, non-responders
↑ Parabacteroides

N/A N/A No change in the genus
Bifidobacterium after 4 weeks of
Bifidobacterium breve A-1 treatment
or 8 weeks (post-observation),
although anxiety and depressive
symptoms were improved

− Open-label, single arm study:
lack of non-treatment control
group, cannot exclude a placebo
effect

− Further investigation of whether
gut microbiome composition
could predict changes in anxiety
and depressive symptoms and
cytokines

Shen et al.,
2018

α: no difference between
SZ and NC (number of
reads, Faith's PD,
observed OTUs, Shannon
Index, Simpson, ACE,
Chao1)
β: different between SZ
and NC (unweighted
UniFrac, PCoA), with
tighter clustering in NC
than SZ (unweighted
UniFrac)

Phyla: SZ ↑ Proteobacteria
Genera: SZ ↑ Succinivibrio,
Megasphaera, Collinsella, Clostridium,
Klebsiella, Methanobrevibacter; NC ↑
Blautia, Coprococcus, and
Roseburiawere
Species: SZ ↑ Collinsella aerofaciens,
Bacteroides fragilis, and ↓ Roseburia
faecis, Blautia producta, Collinsella
plebeius

N/A Vitamin B6, fatty acid, starch and
sucrose, tryptophan, cysteine,
methionine, and linoleic acid
metabolism; and degradation of
xenobiotics different between SZ
and NC. Blautia, Coprococcus, and
Roseburia associated with ↓ vitamin
B6, taurine, hypotaurine metabolic
pathways and ↑ methane metabolic
pathway

N/A − Excluded patients with chronic
disease, which is less represen-
tative of the SZ population

− Excluded patients with SZA and
other SZ spectrum disorders

− No indication of whether sam-
ples were matched on demo-
graphic variables

− Validation of a microbiome--
based schizophrenia classifier
based on small sub-sample

− Did not examine relationship of
community diversity/specific
taxa to demographic or
clinical/disease-specific features
in groups

− Functional profiling performed
on the basis of 16S rRNA gene
data is limited; only inferences
can be made about the genome
corresponding to the specific
marker gene sequence, as well
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chain fatty acids (SCFA) that have the potential to improve health (Louis
et al., 2007; Nugent, 2005). One particular SCFA, butyrate, has been
found to be associated with improved depression-related behaviors in
a mouse model by increasing serotonin concentration and brain-
derived neurotrophic factor (BDNF) expression as well as restoring
blood-brain barrier impairments (Sun et al., 2016). Although alpha-
diversity remained unchanged, beta-diversity differences were ob-
served following 14-day supplementation of resistant starch. Specifi-
cally, the relative abundances of phylum Actinobacteria increased,
genera Bacteroides and Parabacteroides decreased, and resistant
starch–degrading species Bifidobacterium faecale and Bifidobacterium
adolescentis increased.

4. Discussion

Themicrobiome revolution has opened new frontiers for examining
host-microbe associations in the context of understanding brain and be-
havioral health and better conceptualizing psychiatric disorders. In-
deed, there have been more conceptual reviews and opinion papers
on the gut-brain axis and its potential role in psychiatric disorders
than there are empirical, data-driven investigations examining the com-
position of themicrobiota in SMI and its role in disease presentation and
treatment. This paper provides a detailed summary of the evidence re-
garding alterations of the gut microbiome in people with SMI, including
FEP, schizophrenia, and BD, building upon our previous study (Nguyen
et al., 2018b).We did not find any other published paper that systemat-
ically reviewed the available data on the gut microbiome in SMI. In our
previous review, there were five studies, only three of which were fo-
cused on the gutmicrobiome. Since then, in just under two years, 13 ad-
ditional papers on the gut microbiome have been published. Although
multiple papers were published from the same groups of investigators,
presumably using overlapping participant cohorts, the studies reviewed
here represent a broader range of patient types and reflect individuals
with a wider geographical spread across the US, Europe, and Asia, com-
pared to our earlier article.

All the reviewed studies found alterations of the gut microbiome in
patientswith SMI compared to NCs. However, specificmicrobialmetrics
reported to be anomalous across articles varied, and there wasminimal
consensus with regards to microbial diversity patterns, relative abun-
dance, or directionality of differences in taxa. Even within specific pa-
tient populations, there were more differences in findings across
investigations than similarities. The most consistent finding was
among studies of schizophrenia, all of which reported differences in
beta-diversity between patients and NCs. Yet, when looking at the tax-
onomic drivers of these global community differences, 130 taxa were
found to be different acrossfive studies, with little consistency across in-
vestigations. Two studies revealed Ruminococcaceae and
Faecalibacterium to be relatively decreased in BD. Abundance of
Ruminococcaceae was also reported across several investigations of
schizophrenia and BD to be associated with better clinical characteris-
tics, including reduced psychosis symptom severity (and specifically
negative symptoms) and improved self-reported physical health
(Evans et al., 2017; Nguyen et al., 2019; Zheng et al., 2019), suggesting
that this taxon may be protective.

Another notable finding was that lactic acid bacteria (i.e., order
Lactobacillales, family Lactobacillaceae, genus Lactobacillus) were rela-
tively more abundant in SMI and associated with worse outcomes, in-
cluding increased severity of psychotic symptoms, poorer global
functioning (He et al., 2018; Schwarz et al., 2018), higher BMI and met-
abolic syndrome, and higher serum levels of pro-inflammatory IL-6
(Painold et al., 2019). These results are consistent with prior studies of
the oropharyngeal microbiome, in which Lactobacillus gasseri, along
with a bacteriophage that preferentially infects Lactobacillus gasseri,
were relatively increased in schizophrenia (Castro-Nallar et al., 2015;
Yolken et al., 2015). Transmission of microbes from the mouth to the
gut is a constant process, and oral-fecal transmission is an important
ut microbiome in serious mental illnesses: A systematic review and
s.2019.08.026
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Table 5
Studies of the microbiome in patients with bipolar disorder.

Publication Diversity patterns Taxonomic differencesa Association with clinical
features

Functional
potential

Longitudinal changes Limitations

Aizawa
et al.,
2018

N/A No difference in Bifidobacterium or
Lactobacillus counts between BD and NC, even
when BDI/BDII patients and males/females
examined separately and controlling for BMI.

Bifidobacterium and Lactobacillus counts
correlated with ↓ sleep symptoms. No
association with overall depressive or manic
symptoms. Bifidobacterium counts associated
with ↓ cortisol levels. No relationship between
bacteria counts and dose of AP or between
those on/off MS.

N/A N/A − qPCR analysis limited to only 2
bacterial groups

− Mixed sample of BD (different
sub-diagnoses, mood states)
may have diluted findings

− Did not account for length/-
type of medication use

Bengesser
et al.,
2019

α: BD depressed ↓ evenness
(Simpson Index) compared to BD
euthymic

N/A Methylation of cg05733463 of the clock gene
ARNTL correlated with ↓ alpha-diversity (both
richness and evenness) in BD. Neither
depressive nor manic symptoms were
associated with any measure of
alpha-diversity.

N/A N/A − Small sample size
− Did not report on beta--

diversity or taxonomic differ-
ences

− Did not examine patients in
manic or mixed states

− Did not account for medica-
tion use or diet

Coello
et al.,
2019

α: no difference among BD, UR, and
NC (observed OTUs, Shannon Index)
β: unweighted UniFrac different
between BD and NC (but not
weighted UniFrac); weighted
UniFrac different between BD and
UR; no difference between UR and
NC (unweighted and weighted
UniFrac)

BD ↑ Flavonifractor compared to UR and NC,
even after controlling for age, sex, smoking,
waist circumference, and physical activity;
Non-smoking BD ↑ Flavonifractor compared to
non-smoking NC

Flavonifractor associated with smoking and
female sex, but not age, waist circumference,
physical activity, DOI, depressive and manic
symptoms, medication, and hs-CRP; no
difference in Flavonifractor among BD subtype
or mood states

N/A N/A − Most BD and UR were
smokers, although statistically
controlled for this variable,
cannot rule out potential con-
founding effect

− Mood states evaluated as a
dichotomous variable
(euthymic vs. affective state),
rather than individual states,
which may have diluted find-
ings

− No data on diet
Evans

et al.,
2017

β: different between BD and NC (Yue
and Clayton distance)

BD ↓ Faecalibacterium and an unclassified
member from the Ruminococcaceae family

Faecalibacterium associated with ↑ physical
health, ↓ depression, ↑ sleep quality;
Anaerostipes and Ruminococcaceae associated
with ↑ physical health, Enterobacteriaceae
associated with ↓ physical health.

N/A N/A − Did not report alpha-diversity
− Requires further examination

of associations with disease--
specific features
(e.g., duration of illness, num-
ber of mood episodes)

− Did not quantify the amount
of or investigate the effects of
medication use among BD

− Used mean scores on self--
report scales rather than
assessment(s) most tempo-
rally related to time of stool
collection

Flowers
et al.,
2017

α: AP-treated women ↓ diversity
(Simpson Diversity Index); no
differences between BD men
β: different between BD medication
groups (Yue and Clayton distance).
OTUs identified for differing
directions of the medication groups:
Lachnospiraceae, Alistipes, and
Akkermansia.

AP-treated patients ↑ Lachnospiraceae
Non-AP-treated patients ↑ Akkermansia and
Sutterella

Akkermansia ↓ in non-obese AP-treated
patients.

N/A N/A − Further examination of rela-
tionship with duration of ill-
ness or other indicators of
disease or symptom severity

− Further investigation of rela-
tionship of comorbid medical
conditions or other metabolic
biomarkers on microbiome,
given the relationship
between atypical APs and
metabolic disease

− No information regarding diet,
which is an important envi-
ronmental factor that drives
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gut microbial composition and
as atypical APs could increase
appetite

Flowers
et al.,
2019

α: at baseline, no difference between
AP and non-AP groups (Inverse
Simpson Index)
β: at baseline, no difference between
AP and non-AP groups (Bray-Curtis)

non-AP ↑ Alistipes compared to AP group AP-treated women ↓ alpha-diversity (Simpson
Diversity Index); no differences between men.

N/A Following 14-day prebiotic (resistant starch)
administration, no changes in alpha-diversity;
significant beta-diversity differences
(Bray-Curtis); ↑ phylum Actinobacteria and ↓
genera Bacteroides and Parabacteroides.
4.2-fold ↑ resistant starch–degrading species
Bifidobacterium faecale and Bifidobacterium
adolescentis.
No changes to phyla Firmicutes, Bacteroidetes,
and Proteobacteria; other Bifidobacteria;
Ruminococcus bromii (resistant
starch–degrading species); or Faecalibacterium
prausnitzii, Eubacterium rectale, and
Eubacterium hallii (butyrate-producing
species)

− Single arm study: lack of
non-treatment control group,
no follow-up in non-AP
treated group

− No data on adherence, which
may contribute to variability
in results

− Differences in represented
diagnoses within the AP
group, with increased num-
bers of SZ and SZA patients

− Further analyses between
diagnostic groups (SZ vs. BD)

Painold
et al.,
2019

α: no difference between BD and NC
(observed OTUs, Chao1, Shannon
Index, Simpson Index), even after
patients with diabetes and severe
obesity (BMI N 35) excluded
β: no difference between BD and NC
(unweighted and weighted UniFrac),
even after excluding patients with
diabetes and severe obesity

Phyla: BD ↑ Actinobacteria, compared to NC
Class: BD ↑ Coriobacteria
Order: BD ↑ Coriobacteriales
Family: BD ↑ Coriobacteriaceae and ↓
Ruminococcaceae
Genus: BD ↓ Faecalibacterium

Alpha-diversity (observed OTUs) correlated
with ↓ DOI. No relationship between
alpha-diversity and serum concentrations of
CRP, IL-6, total cholesterol, HDL, LDL, TRP, KYN,
oxidative stress parameters, depression levels,
or anthropometric measurements. Sample
median split of BD with high/low values of
serum biomarkers: BD with high IL-6 ↑
Lactobacillales, Lactobacillaceae, Lactobacillus,
Streptococcaceae, and Streptococcus compared
to BD with lower IL-6; high total cholesterol ↑
Clostridiaceae; low LDL cholesterol ↑
Prevotellaceae and Prevotella. No difference
between high and low HDL groups. High TRP
differed significantly in the Lactobacillus,
Lactobacillaceae, Coriobacteriaceae and
Clostridiaceae; no difference in KYN; high
TBARS ↑ Eubacterium; low MDA ↑
Faecalibacterium. BD with high BMI ↑
Lactobacillus, Lactobacillaceae, and Bacilli. BD
with metabolic syndrome ↑ Lactobacillaceae,
Lactobacillus, and Coriobacteriaceae. BD with
clinically relevant depressive symptoms (BDI ≥
18) ↑ Enterobacteriaceae and ↓ Clostridiaceae
and Roseburia

N/A N/A − BD had significant higher BMI
values; although analyses
were repeated with severely
obese patients excluded, sub-
sample size is considerably
smaller

− BD patients acutely ill and on
different medications, which
may have contributed to vari-
ability

− Did not examine or account
for medication differences

Vinberg
et al.,
2019

α: difference between affected, HR,
and LR MZT (observed OTUs); LR ↑
richness than affected group; no
difference between affected and HR
β: no difference between affected,
HR, and LR (generalized UniFrac)

At phylum, class, order, family, and genus
levels, unclassified Firmicutes was only
predictive taxa of ‘disease.’
At OTU level, single OTU Christensenellaceae ↓
in affected and HR compared to LR.
Christensenellaceae ↓ in UD affected/HR and BD
affected/HR, compared to LR. In only
discordant MZT, no differences in
Christensenellaceae between affected and HR
when looking at UD, BD, or both combined.

Christensenellaceae not associated with
difference in depressive symptoms between
MZT

N/A N/A − Unclear if lower
Christensenellaceae due to
decreased relative abundance
or detection limitations

− Uneven group sizes
− Affected and HR MZT smoked

had higher prevalence of
smoking and higher BMI; LR
had higher rates of alcohol
consumption

− Further investigation of medi-
cation use in affected group

AOS = age of onset; AP = antipsychotic medication; ARNTL = Aryl hydrocarbon receptor nuclear translocator-like protein 1; BD (I/II) = bipolar disorder (type I/II); BDI = Beck Depression Index; BMI = body mass index; CHD= coronary heart
disease; CRP= C-reactive protein; DOI = duration of illness; F = female; Faith's PD= Faith's phylogenetic diversity; HDL= high-density lipoprotein; hs-CRP= high sensitivity C-reactive protein; IL = interleukin; KYN= kynurenine; LDL= low-
density lipoprotein; LR = low risk; M=male; MDA=malondialdehyde; MS =mood stabilizer; MZT =monozygotic twin; NC= non-psychiatric comparison group; qPCR = quantitative real-time polymerase chain reaction; rRNA= ribosomal
ribonucleic acid; SD = standard deviation; SZ = schizophrenia; SZA = schizoaffective disorder; TBARS = thiobarbituric acid reactive substances; TRP = tryptophan; UD = unipolar affective disorder; UR = unaffected relative.

a ↑↓ arrows indicate increase or decrease in relative abundance, when referring to taxonomic differences.
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Fig. 2. Schematic representation of alpha- and beta-diversity. Three samples fromdifferent
populations are present, each containing different numbers and proportions of taxa (blue
triangles, green squares, and red stars). Alpha-diversity quantifies microbial diversity
within a sample by characterizing species number, distribution, etc. and represents
within-sample diversity. Hence, each sample receives a single numeric value
representing its α-diversity (i.e., univariate variable); the exact numeric values will de-
pend on the metric used (e.g. Shannon diversity, number of observed features, or Faith's
phylogenetic diversity). Beta-diversity represents between-sample diversity and com-
pares microbial dissimilarity between each pair of samples. In this case, each pair of sam-
ples has a numeric value representing their β-diversity (i.e., multivariate variable), which
may be represented as a matrix of values. Similar to alpha-diversity, the exact numeric
valueswill depend on themetric used (e.g., Bray-Curtis dissimilarity, or UniFrac [phyloge-
netic] distance).
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factor that can determine gut composition (Schmidt et al., 2019). The in-
creased presence of lactic acid bacteria in this population and its associ-
ation with worse clinical, inflammatory, and metabolic profiles is
surprising given that lactic acid bacteria are often considered health-
promoting and anti-inflammatory (Ménard et al., 2004). These taxa
are commonly found in the composition of probiotics (Naidu et al.,
1999) and have been shown to enhance immunity following supple-
mentation (Schiffrin et al., 1997; Sheih et al., 2001). Schizophrenia and
BD have been associated with chronic inflammatory states (Berk et al.,
2011; Kirkpatrick and Miller, 2013), so reduced abundance of these
taxa might have been expected. Findings of lactic acid bacteria among
other psychiatric and neurological disorders have also been mixed,
with lower levels reported in major depressive disorder (Aizawa et al.,
2016) and increased levels in autism spectrum disorders (Tomova
et al., 2015).

Although findings hint at the possibility that psychotropic medica-
tions may impact gut microbial composition, the data are still too lim-
ited to draw definitive conclusions. Only six studies examined
antipsychotic treatment. Two cross-sectional studies, reporting on over-
lapping cohort of patients, showed that atypical antipsychotic treat-
ment may be associated with reduced gut biodiversity, particularly in
women (Flowers et al., 2019, 2017). Another longitudinal study found
that risperidone treatment may result in increased Bifidobacterium
spp. and Escherichia coli and decreased in Clostridium coccoides group
and Lactobacillus spp. (Yuan et al., 2018). Three articles did not find
any association between microbial composition or taxa with antipsy-
chotic dose or treatment duration (Aizawa et al., 2018; Nguyen et al.,
2018a, 2018b; Schwarz et al., 2018).

Discrepancies across articles may be explained, at least partly, by
heterogeneity in study designs, methodologies, and study participant
characteristics. Although a strength of some investigations included
strict within-sample classification and characterization, between-
sample variability across studies likely contributed to differences in
comparability. For example, Shen et al. (2018) excluded participants
Please cite this article as: T.T. Nguyen, H. Hathaway, T. Kosciolek, et al., G
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with certain chronic diseases, including hypertension and diabetes,
that may affect the stability of the gut microbiota, while Nguyen et al.
(2019) did not exclude patients with these diseases, as physiological
and metabolic changes are inherent to the disorder and its associated
lifestyle (Mitchell et al., 2011). Articles on BD tended to bemost hetero-
geneous in terms of patient samples, with many studies including pa-
tients with various subtypes and in different mood states. Indeed,
alpha-diversity was decreased in depressed compared to euthymic pa-
tients, suggesting that diversity patterns may also vary depending on
mood state (Bengesser et al., 2019).

The potential clinical implications of gut microbiome research are
exciting. Despite decades of pharmacological treatment development,
many patients with SMI do not respond to medications and experience
many adverse side effects (Lally and MacCabe, 2015). The available
medications reduce symptoms and prevent relapse but do not affect
the underlying etiopathology. Modulation of the gut microbiota may
be a tractable strategy for developing novel treatments without major
side effects or high costs. Probiotic bacteria may exert health-
promoting effects through various mechanisms that may be strain-
specific (e.g., lactic acid bacteria) or widespread across a diversity of
strains, including normalization of perturbed microbiota, inhibition of
potential pathogens, production of useful metabolites or enzymes, and
immunomodulation (Hill et al., 2014). Trials of probiotics have reported
to improve symptoms of depression and psychological distress in pa-
tients with major depression (Akkasheh et al., 2016; Chahwan et al.,
2019), multiple sclerosis (Kouchaki et al., 2017), chronic fatigue syn-
drome (Rao et al., 2009), and irritable bowel syndrome (Pinto-
Sanchez et al., 2017). However, the findings are far from conclusive
and there is very limited evidence for the efficacy of probiotic or prebi-
otic interventions on changing microbial composition in SMI (Okubo
et al., 2019). Conversely, prebiotics led to changes in microbial compo-
sition but without changes in mood or psychiatric symptoms (Flowers
et al., 2019; Nagamine et al., 2018). These investigations shared a
major weakness in that they were all open-label, single-arm treatment
studies without a non-treatment control group. Thus, we cannot deter-
mine whether observed microbial changes are due to treatment or
other potential sources of bias. Earlier randomized, double-blinded,
placebo-controlled trials investigating probiotic interventions in SMI
have reported to improve bowel function (Dickerson et al., 2014), re-
duce levels of intestinal inflammatory indices (Severance et al., 2017),
and increase levels of systemic immunomodulatory proteins (Tomasik
et al., 2015), but the findings with regards to psychiatric outcomes are
still mixed (Dickerson et al., 2018, 2014; Severance et al., 2017). These
studies did not assess microbial biomarkers pre- or post-treatment, so
the relationship of the immune and clinical responses to gut microbial
composition remains unclear.

In light of significant discrepancies, particularly as they relate to
differences and directionality of specific taxa, we find it important
to highlight the issue of compositionality. All microbiome data are
compositional, meaning that they are relative and, on their own,
carry no information about absolute abundances, regardless of nor-
malization steps taken (e.g., rarefaction or differential expression
analysis, such as DESeq) (Gloor et al., 2017). Relevant statistical
methods that account for the compositional nature of the data
(e.g., based on log-ratios) must be used, otherwise large numbers
of false-positive data are likely (Knight et al., 2018; Mandal et al.,
2015; Weiss et al., 2017). Also, this calls for caution in language de-
termining the directionality of differential abundance changes. For
example, it may be misleading to state that a genus of bacteria has
increased without specifying a point of reference (i.e., another
genus) in relation to which this has happened (Christensen et al.,
2009; Morton et al., 2019, 2017). Thus, the compositionality problem
may partially explain inconsistencies and sparse overlap in the re-
sults of specific microbial investigations.

The studies discussed represent a variety of experimental ap-
proaches to analyze the microbiome (e.g., 16S rRNA marker gene
ut microbiome in serious mental illnesses: A systematic review and
es.2019.08.026

https://doi.org/10.1016/j.schres.2019.08.026


15T.T. Nguyen et al. / Schizophrenia Research xxx (xxxx) xxx
sequencing, shotgun metagenomics, qPCR). They all provide a varying
degree of complementary, but not easily integratable information.
Moreover, the microbiome is known to vary by geography. Western
and Eastern populations have distinct microbiomes (Yatsunenko et al.,
2012), but differences have also been shown between countries sharing
similar lifestyles (e.g., USA and UK) and even among different regions in
the same country (McDonald et al., 2018). Hence, it is important to scru-
tinize those experimental approaches in order to arrive at robust biolog-
ical understanding of microbial contributions to SMI. It should be
emphasized, however, that despite differences across investigations,
participants within each study were more homogeneous and less likely
confounded by geographical and methodological variations, and the
findings of altered gut microbiome reported in each study are more
likely driven bydisease-related factors rather than geographical or tech-
nical variations. The problem occurs when trying to compare studies
across different laboratories (and regions, etc.) and drawing confident
and generalizable conclusions about microbial contributions to SMI,
which calls formore unifiedmethodological standards. It is understand-
able that various groups across the globe employ experimental tech-
niques at hand. To make findings translatable and useful across
different disciplines, cohorts, and geographic regions, there is an imper-
ative need for using consensus-based methodology for such studies.
Some of the technical or geographical variation in detected specific
taxa may be mitigated through the use of functional profiles, rather
than taxonomic ones (Cheung et al., 2019). Adoption of standard pro-
cessing techniques is the only viable solution, arguably more feasible
and reasonable than conducting a single worldwide multi-billion dollar
massive-scale study.

An advantage of using specialized techniques, such as qPCR to quan-
tify bacteria of interest or specific 16S rRNA primer sets, is that it helps
to address specific hypothesis-driven questions posed by psychiatry re-
searchers. On the other hand, the use of case-specific techniques makes
integrating studies difficult or impossible due to systematic variations
(Debelius et al., 2016). In themicrobiome field, there has been a consis-
tent push for unification through the use of standardized primers and
sample preparation protocols (Caporaso et al., 2012; Knight et al.,
2018; Minich et al., 2018; Thompson et al., 2017). These universal pro-
cedures result in less specificity but have been shown to provide most
versatility. The advantage of such an approach is the possible effect of
scale that may be exemplified by the Earth Microbiome Project
(Thompson et al., 2017). This project crowd-sourced samples from the
entire planet attempting to characterize microbial biodiversity across
all possible environments. Standardized procedures allowed for the in-
tegration of samples from diverse environments including soil, oceans,
and human gut onto a single communal catalogue spanning over
20,000 samples.

Another facet crucial to making substantial progress in understand-
ing how the gut microbiome contributes to SMI is the availability of
data. Many researchers are justifiably hesitant to share raw data that
they have accumulated at great time, effort, and expense; nonetheless,
it is necessary for reproducibility and integration efforts (Knight et al.,
2018). Tools such as Qiita (qiita.ucsd.edu), which is free and open-
source, make the upload, storage, processing, analysis, and sharing of
data feasible (Gonzalez et al., 2018). It is a standard and requirement
for many journals that researchers deposit data in long-term reposito-
ries (e.g., NCBI-SRA, EBI-ENA, or GSA). Once those necessary steps are
widely adopted, using key resources like Qiita, it will it be possible to
conductmeta-analyses across different studies and arrive at robust con-
clusions providing the community with insights and hypotheses on the
impact of the gut microbiome in SMI.
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