A novel Sarcocystis neurona genotype XIII is associated with severe encephalitis in an unexpectedly broad range of marine mammals from the northeastern Pacific Ocean.

Permalink
https://escholarship.org/uc/item/2nx76302

Journal
International Journal for Parasitology, 45(9-10)

ISSN
0020-7519

Authors
Barbosa, Lorraine
Johnson, Christine K
Lambourn, Dyanna M
et al.

Publication Date
2015-08-01

DOI
10.1016/j.ijpara.2015.02.013

Peer reviewed
A novel *Sarcocystis neurona* genotype XIII is associated with severe encephalitis in an unexpectedly broad range of marine mammals from the northeastern Pacific Ocean

Lorraine Barbosa, Christine K. Johnson, Dyanna M. Lambourn, Amanda K. Gibson, Katherine H. Haman, Jessica L. Huggins, Amy R. Sweeney, Natarajan Sundar, Stephen A. Raverty, Michael E. Grigg

Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
Department of Parasitology, National Institutes of Health, NIAID, Bethesda, MD 20892, USA
Department of Fish and Wildlife, Olympia, WA 98501, USA
University of British Columbia, Department of Zoology, Fisheries Centre, Marine Mammal Research Unit, Vancouver, British Columbia V6T 1Z4, Canada
Cascadia Research Collective, Olympia, WA 98501, USA
Animal Health Center, Ministry of Agriculture, Abbotsford, British Columbia V3G 2M3, Canada

Article info

Article history:
Received 20 November 2014
Received in revised form 4 February 2015
Accepted 5 February 2015
Available online 18 May 2015

Keywords:
Sarcocystis neurona
Marine mammal
Protozoal disease
Coccidia
Parasite
Genotype
SnSAG
Encephalitis

Abstract

Sarcocystis neurona is an important cause of protozoal encephalitis among marine mammals in the northeastern Pacific Ocean. To characterise the genetic type of *S. neurona* in this region, samples from 227 stranded marine mammals, most with clinical or pathological evidence of protozoal disease, were tested for the presence of coccidian parasites using a nested PCR assay. The frequency of *S. neurona* infection was 60% (136/227) among pinnipeds and cetaceans, including seven marine mammal species not previously known to be susceptible to infection by this parasite. Eight *S. neurona* fetal infections identified this coccidian parasite as capable of being transmitted transplacentally. Thirty-seven *S. neurona*-positive samples were multilocus sequence genotyped using three genetic markers: SnSAG1–5–6, SnSAG3 and SnSAG4. A novel genotype, referred to as Type XIII within the *S. neurona* population genetic structure, has emerged recently in the northeastern Pacific Ocean and is significantly associated with an increased severity of protozoal encephalitis and mortality among multiple stranded marine mammal species.

1. Introduction

The protozoan parasite *Sarcocystis neurona* is well recognised for causing equine protozoal myeloencephalitis (EPM), a severe neurological disease in horses (Dubey et al., 1991). In North America, the life cycle of *S. neurona* includes the Virginia opossum (*Didelphis virginiana*) as the definitive host (Fenger et al., 1995; Dubey and Lindsay, 1998) and a variety of mammals as intermediate hosts, including raccoons (*Procyon lotor*), nine-banded armadillos (*Dasypus novemcinctus*), dogs (*Canis familiaris*), and southern sea otters (*Enhydra lutris*) (Cheadle et al., 2001; Dubey et al., 2001a,b, 2003, 2006; Cooley et al., 2007). Opossums excrete infective sporocysts in their feces (Dubey et al., 2000), and infection in intermediate hosts occurs when sporocysts are ingested. *Sarcocystis neurona* typically encysts in muscle cells of intermediate hosts without causing clinical disease, but may cause encephalomyelitis if the parasite migrates into the CNS (Dubey et al., 2000, 2001a).

The recent development of molecular genotyping markers has allowed for multilocus sequence typing (MLST) of *S. neurona* isolates in order to determine whether particular genotypes associate with disease (Rejmanek et al., 2010; Wendte et al., 2010b). *Sarcocystis neurona* is known to possess six major surface antigen genes, SnSAGs 1–6 (Ellison et al., 2002; Hyun et al., 2003; Howe et al., 2005; Crowds et al., 2008; Wendte et al., 2010b). Analysis for the presence or absence and allelic variation within these genes allows for classification of *S. neurona* isolates into genotypes or antigen genetic (Ag) types. Microsatellite (MS) markers are also used for the classification of epidemiological clones of *S. neurona*.

In the United States, the population genetic structure of *S. neurona* is defined by 12 Ag types that further sub-divide into 22 MS types.
(Rejmanek et al., 2010; Wendte et al., 2010a,b). Not only has this classification system served to identify geographic clustering of genotypes, but it has revealed that genotypes are shared between terrestrial and marine species, supporting the idea of land-to-sea movement of this parasite (Sundar et al., 2008; Rejmanek et al., 2010; Wendte et al., 2010b), analogous to the related protozoal agents Toxoplasma, Giardia and Cryptosporidium (Miller et al., 2002, 2008; Fayer et al., 2004; Conrad et al., 2005).

In the Americas, certain S. neurona genotypes are thought to have emerged on the west coast via repeated introductions of opossums to California over many years (Grinnell et al., 1937; Rejmanek et al., 2010). Since the association between protozoa and fatal neurological disease in southern sea otters was first established (Thomas and Cole, 1996), S. neurona has been reported as an important cause of fatal encephalitis among marine mammals, including free-ranging Pacific harbour seals and sea otters off the coasts of California, Washington and Alaska, USA (Lapointe et al., 1998; Lindsay et al., 2000; Miller et al., 2001a,b; Kreuder et al., 2003; Thomas et al., 2007; Gibson et al., 2011). In 2004, an unusually pathogenic genotype of S. neurona (Type I) was identified as the primary cause of death in a mass mortality event that resulted in nearly 60 southern sea otter deaths in the space of 1 month (Miller et al., 2010; Wendte et al., 2010a). This was the first recorded apicomplexan-associated epizootic event in a marine mammal. Molecular analysis of isolates collected from the outbreak identified a genetically distinct clone that had expanded by self-mating in the opossum definitive host (Wendte et al., 2010b). Not only has this movement of this parasite (Sundar et al., 2008; Rejmanek et al., 2010) been categorised by stranding region. Individuals from Gertrude Island, USA and those stranding east of the entrance to the Strait of Juan de Fuca, USA were classified as inner coast, while individuals stranding along the Pacific Ocean coastline were classified as outer coast. Size of animal, sex and age class (fetus, pup/calf, sub-adult and adult, estimated using dentition) were determined at necropsy.

The majority of samples were from stranded animals with clinical or pathological evidence of protozoal disease, manifesting as: (i) observation of ante-mortem neurological behavior, or (ii) post-mortem gross lesions indicative of protozoal encephalitis. Additionally, Guadalupe fur seals and harbour porpoises that stranded during the study period were submitted as suspected protozoal cases due to region-wide unusual mortality events, and sea otters were submitted as suspected protozoal cases due to previous outbreaks of protozoal disease in sea otter populations. A subset of Pacific harbour seals without evidence of protozoal disease and a number of large cetaceans were also submitted.

Complete necropsies were performed on all marine mammal carcasses. Tissue samples for molecular detection of protozoal agents were sent to the Molecular Parasitology Section at the National Institutes of Health (NIH), USA where they were stored at −80 °C until analysis. Following necropsy, a veterinary pathologist examined tissue samples by histology for the presence of parasites, inflammation and associated pathology in a blinded fashion. An encephalitis score (absent, mild to moderate or marked to severe) was assigned based on histological severity of the encephalitis due specifically to the presence and number of protozoa and the extent and severity of the associated inflammatory infiltrate detected in the brain of infected animals. A cause of death category (incidental, contributing or direct) was also assigned to each individual based on the anatomic location and density of infection, extent of inflammation and whether other agents (i.e., domoic acid, starvation, injury) may have influenced the overall contribution of S. neurona infection to the death of the animal, according to Gibson et al. (2011).

2. Materials and methods

2.1. Sample collection

A total of 227 study subjects of beach-cast marine mammal carcasses were collected between 2004 and 2012 in two main areas: (i) the outer coastal regions (n = 131) of Oregon (n = 9), Washington (n = 120), and southern British Columbia (n = 2) and (ii) the inland coastal regions (n = 96) of Washington (n = 93) and southern British Columbia (n = 3). Carcasses were opportunistically collected from these regions by the Washington Department of Fish and Wildlife, USA, Cascadia Research, USA and the Department of Fish and Oceans, Canada as part of a coastal health monitoring program by the Northwestern Marine Mammal Stranding Network, USA. This work was authorised under the Marine Mammal Protection Act (MMPA) Stranding Agreements and Section 109(h) (16 U.S.C. 1379(h)), USA. Additional samples were acquired under a National Marine Fisheries Service (NMFS), USA MMPA Section 120 Letter of Authorisation and NMFS MMPA Scientific Research Permits 782-1702 and 13430. According to the Convention of International Trade of Endangered Species (CITES), both United States CITES export and Canadian CITES import permits were obtained in accordance with international protocols, and United States Fish and Wildlife declarations were completed prior to the transport of specimens across the international border.

Upon carcass collection, species identification and date were documented, and GPS coordinates (latitude/longitude) were recorded as an estimate for stranding location. Species were also categorised as per the Stranding Network, USA. This work was authorised under the Marine Mammal Protection Act (MMPA) Stranding Agreements and Section 109(h) (16 U.S.C. 1379(h)), USA. Additional samples

2.2. DNA extraction

DNA was extracted from tissue samples (including brain, heart, muscle and lymph node) according to the DNeasy Purification of Total DNA from Animal Tissues protocol (QIAGEN, Valencia, California, USA). Briefly, approximately 25 mg of tissue was digested overnight (approximately 20 h) at 55 °C with Proteinase K and processed as described previously (Gibson et al., 2011). DNA extraction was performed on multiple (between 1 and 10) separate tissue sections from each individual. All extracted DNA was stored at −20 °C until required for PCR analysis.

2.3. Molecular characterisation

Extracted DNA from tissue samples was used for multiple PCRs, with primer sets for the internal transcribed spacer 1 (ITS1) and ITS1-500 loci for initial coccidian screening. The ITS1 locus is specific
for apicomplexan DNA and was used to differentiate between *S. neurona*, *Toxoplasma gondii* and *Neospora caninum* by their electrophoretic size polymorphism in a DNA agarose gel and by DNA sequencing (Gibson et al., 2011). The ITS1500 locus is highly specific for the detection of *S. neurona* and *Sarcocystis falcata* (Wendte et al., 2010b). For most tissue samples from carcasses collected between 2006 and 2009 (*n* = 147), PCRs at the ITS1 and ITS1500 loci were performed as part of the Gibson et al. (2011) study. Those samples were revisited here in order to determine the *S. neurona* genotype infecting those marine mammals. They were augmented with additional carcasses collected between 2005 and 2012 (*n* = 80), providing a total of 227 samples.

PCR amplification was conducted according to Wendte et al. (2010b). DNA product was stored at 4 °C until gel electrophoresis on 0.8% agarose gels stained with Gel Red dye (Biotium, Inc., Hayward, California, USA) for visualisation under UV light. Positive amplifications were digested using Exo-SAP (USB Corporation, Cleveland, Ohio, USA) according to the manufacturer’s instructions prior to DNA sequencing. DNA sequencing was carried out by Rocky Mountain Laboratory Genomics Unit DNA Sequencing Center, Division of Intramural Research (Hamilton, Montana, USA). The resulting sequences and polymorphisms were identified by alignment against a reference *S. neurona* isolate designated SN1 (Marsh et al., 1999) using the Seqman component of the Lasergene software. (DNASTAR, Inc., Madison, Wisconsin, USA). In order to decrease the chances of having false positive or false negative results, only specimens that tested *S. neurona* DNA-positive in a minimum of two tissue samples or negative in a minimum of two tissue samples were included in the study as cases and controls, respectively.

For samples with enough extracted DNA product remaining after initial PCR screening, molecular genotyping was performed. Three sets of nested surface antigen primers (for use in external and internal PCRs), SnSAG1-5-6, SnSAG3 and SnSAG4 were used, which allowed for *S. neurona* genotyping based on allelic presence at SnSAGs 1, 5 and 6, and polymorphisms at specific nucleotide positions in SnSAG3 and SnSAG4 (Crowdus et al., 2008; Howe et al., 2008; Rejmanek et al., 2010; Wendte et al., 2010b). The SnSAG1-5-6 genes are differentially encoded among *S. neurona* strains, whereas SnSAG3 and SnSAG4 are polymorphic. The SnSAG2 gene is non-polymorphic (Rejmanek et al., 2010; Wendte et al., 2010b), and was not utilised in this study. In order to increase sensitivity, a set of forward and reverse internal primers were developed for SnSAG4 for use in a nested reaction, and for a forward internal primer was developed for SnSAG5-6 for use in a semi-nested reaction. The primers designed were as follows: SnSAG4 INTFWD – CAAGCAACACCGGTACACAGA, INTREV – CTC TGGCAACCGGAGATTAG; SnSAG5-6 INTFWD – TGACACTCTGTCTGCGCAGA.

External PCRs consisted of 3 µL of sample DNA, 5 µL of 10× PCR buffer containing 15 mM MgCl2 (Sigma–Aldrich, St. Louis, Missouri, USA), 5 µL of 2 mM dNTPs mix, 25 pmol of each primer (forward and reverse), 0.5 µL of DNA Taq polymerase (Sigma–Aldrich) and denaturated in a total reaction volume of 50 µL. PCR conditions included initial denaturation at 95 °C for 5 min; followed by 35 cycles consisting of 95 °C for 40 s, 58 °C for 40 s and 72 °C for 40 s; and a final extension for 10 min at 72 °C. All nested PCRs utilized 1 µL of PCR product from the primary reaction as template, and reaction protocols and conditions were the same as for the initial PCR. Negative controls for both external and internal nested reactions consisted of molecular grade de-ionised water as well as DNA extracted from muscle tissue of an uninfectec mouse. Product visualisation and DNA sequencing were performed as described above. Because immunosuppression due to morbillivirus infection can contribute to the development of protozoal disease, all animals were tested for morbillivirus infection by PCR (Haas et al., 1991).

2.4. Parasite isolation and microsatellite analysis

High resolution microsatellite typing is an excellent tool for identifying subtle genetic variations within Ag types, however it is an inherently less sensitive and more labor-intensive technique than nested MLST analysis. It requires sufficient parasite DNA from cloned isolates, which can only be achieved by culturing the parasite from infected tissues harvested from recently deceased animals. When fresh carcasses were available, parasites for MS typing were isolated according to Miller et al. (2004). Briefly, fresh brain tissue from stranded marine mammals with suspected protozoal infections were washed in antibiotic saline solution, trypsinised, disrupted by pipetting and seeded onto MA104 monkey kidney cell monolayers to isolate parasites. In total, six *S. neurona* isolates were recovered. Parasite DNA was extracted from parasite pellets and analysed at 12 MS markers according to Wendte et al. (2010b). MS allelic types were assigned based on the number of di-, tri- or complex-repeats obtained at each marker. The inheritance pattern of the repeats identified across the 12 MS markers was used to determine a multilocus MS type.

2.5. Data analysis

Statistical associations were evaluated between *S. neurona* genotype and putative risk factors including species, age class, sex, stranding year, stranding region (inner versus outer coast), and co-infection status (singular *S. neurona* infection versus co-infection with *T. gondii* in brain tissue), using the Fisher exact test and the chi square test for trend. Associations between *S. neurona* genotype and the encephalitis score and the cause of death category were evaluated on a subset of samples for which sufficient DNA was present to permit MLST genotyping using the two-sided Fisher exact test. *P* values < or =0.05 were considered statistically significant. Statistical analyses were conducted using Epi Info (version 7.1.2.0, Center for Disease Control, Atlanta, GA, USA), and STATA statistical software (version 12.1, StataCorp, College Station, TX, USA).

3. Results

3.1. Sarcocystis neurona infections among stranded marine mammals from the northeastern Pacific Ocean

The overall frequency of *S. neurona* infection in our population of marine mammals exhibiting mainly pre- or post-mortem signs of neurological disease or stranding during peak seasons when neurological disease is observed was 60% (136/227). *Sarcocystis neurona* infection was documented in 63% (76/121) of Pacific harbour seals (*Phoca vitulina*), 70% (32/46) of California sea lions (*Zalophus californianus*), and all (3/3) Northern elephant seals (*Mirounga angustirostris*), and all (1/1) of Pacific white-sided dolphins (*Lagenorhynchus obliquidens*). *Sarcocystis neurona* was also detected in a pregnant adult pygmy sperm whale (*Kogia breviceps*) as well as her second trimester fetus. Two killer whales (*Orcinus Orca*), two gray whales, a Bryde’s whale (*Balaenoptera brydei*), and a sperm whale (*Physeter macrocephalus*) were not found to be infected with *S. neurona*. Sixty-two percent (8/13) of fetuses, 50% (27/54) of pups/calves, 57% (39/69) of yearling/subadults, and 69% (61/89) of adults were positive for *S. neurona* by PCR. Sixty-three percent (63/100) of

597
females and 57% (71/124) of males were *S. neurona*-positive. In three individuals, the sex was not known.

Sarcocystis neurona infections were identified in 50% (48/96) of inner coast individuals and 67% (88/131) of outer coast individuals. Stranding region was analysed on a species-specific basis among residential species that had sufficient sample sizes (Pacific harbour seals and harbour porpoises). Pacific harbour seals were significantly more likely to be infected with *S. neurona* if stranded on the outer coast than if stranded on the inner coast (*P* = 0.0002) (Fig. 1). Samples analysed in 2006–2009 by Gibson et al. (2011) identified a high prevalence of co-infections with multiple coccidian species, as was likewise observed among the additional samples collected during 2005–2012 for the current study. In total, tissues from 66% (90/136) of *S. neurona*-positive individuals were infected with at least one additional coccidian parasite, including *T. gondii* (85/90), *N. caninum* (8/90), and other species within the family Sarcocystidae (13/90) (*Sarcocystis canis*-like, *Sarcocystis cruzi*-like, *Sarcocystis columbae*-like, *Sarcocystis* sp. CRC-836, Coccidia A, B or C, among others). Nineteen individuals were infected with three or more coccidian species. All animals in this study were PCR negative for morbillivirus (Barrett et al., 1985), and there was no evidence of viral inclusions detected.

3.2. Molecular genetic analysis of *S. neurona* genotypes

Thirty-seven of the 136 *S. neurona*-infected individuals had sufficient DNA available to permit MLST analyses at the SnSAG1-5-6, SnSAG3 and SnSAG4 genes in order to determine the *Sarcocystis* genotype responsible for infection. In 26 individuals, all markers were successfully PCR amplified and DNA sequenced, permitting an MLST genotype designation (Table 1). Two genotypes were identified: genotype VI (*n* = 15), a widely distributed genotype...
Species, stranding year, Sarcocystis neurona surface antigen (SnSAG) sequencing and histopathological data for S. neurona-infected marine mammals stranded along the northeastern coast of the Pacific.

<table>
<thead>
<tr>
<th>Animal ID</th>
<th>Species</th>
<th>Stranding year</th>
<th>Genotype</th>
<th>SnSAG1-5-6</th>
<th>SnSAG3</th>
<th>SnSAG4</th>
<th>Protozoal encephalitis</th>
<th>Cause of death</th>
<th>Brain coinfection</th>
<th>Used in statistical analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN1</td>
<td>Reference</td>
<td></td>
<td>II</td>
<td>1</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>C</td>
</tr>
<tr>
<td>ZC1</td>
<td>California Sea Lion</td>
<td>2008</td>
<td>ind</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>PP1</td>
<td>Harbour Porpoise</td>
<td>2007</td>
<td>VI</td>
<td>5</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>PP2</td>
<td>Harbour Porpoise</td>
<td>2008</td>
<td>VI</td>
<td>5</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>PP3</td>
<td>Harbour Porpoise</td>
<td>2008</td>
<td>VI</td>
<td>5</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>PP4</td>
<td>Harbour Porpoise</td>
<td>2008</td>
<td>VI</td>
<td>5</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>PP5</td>
<td>Harbour Porpoise</td>
<td>2008</td>
<td>VI</td>
<td>5</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>PP6</td>
<td>Harbour Porpoise</td>
<td>2008</td>
<td>VI</td>
<td>5</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>PP7</td>
<td>Harbour Porpoise</td>
<td>2009</td>
<td>XIII</td>
<td>1</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>C</td>
</tr>
<tr>
<td>PP8</td>
<td>Harbour Porpoise</td>
<td>2009</td>
<td>ind</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td>C</td>
</tr>
<tr>
<td>PP9</td>
<td>Harbour Porpoise</td>
<td>2009</td>
<td>VI</td>
<td>5</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>PP10</td>
<td>Harbour Porpoise</td>
<td>2009</td>
<td>VI</td>
<td>5</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>PP11</td>
<td>Harbour Porpoise</td>
<td>2011</td>
<td>VI</td>
<td>5</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>PP12</td>
<td>Harbour Porpoise</td>
<td>2012</td>
<td>VI</td>
<td>5</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>C</td>
</tr>
<tr>
<td>PV1</td>
<td>Pacific Harbour Seal</td>
<td>2005</td>
<td>ind</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PV2</td>
<td>Pacific Harbour Seal</td>
<td>2007</td>
<td>ind</td>
<td>1</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>PV3</td>
<td>Pacific Harbour Seal</td>
<td>2007</td>
<td>VI</td>
<td>5</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>PV4</td>
<td>Pacific Harbour Seal</td>
<td>2008</td>
<td>ind</td>
<td>1</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>PV5</td>
<td>Pacific Harbour Seal</td>
<td>2008</td>
<td>XIII</td>
<td>1</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PV6</td>
<td>Pacific Harbour Seal</td>
<td>2008</td>
<td>XIII</td>
<td>1</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PV7</td>
<td>Pacific Harbour Seal</td>
<td>2008</td>
<td>XIII</td>
<td>1</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PV8</td>
<td>Pacific Harbour Seal</td>
<td>2009</td>
<td>ind</td>
<td>1</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>PV9</td>
<td>Pacific Harbour Seal</td>
<td>2009</td>
<td>XIII</td>
<td>1</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PV10</td>
<td>Pacific Harbour Seal</td>
<td>2009</td>
<td>ind</td>
<td>1</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PV11</td>
<td>Pacific Harbour Seal</td>
<td>2009</td>
<td>VI</td>
<td>5</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>PV12</td>
<td>Pacific Harbour Seal</td>
<td>2009</td>
<td>VI</td>
<td>5</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>PV13</td>
<td>Pacific Harbour Seal</td>
<td>2009</td>
<td>VI</td>
<td>5</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>PV14</td>
<td>Pacific Harbour Seal</td>
<td>2009</td>
<td>XIII</td>
<td>1</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PV15</td>
<td>Pacific Harbour Seal</td>
<td>2010</td>
<td>XIII</td>
<td>1</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PV16</td>
<td>Pacific Harbour Seal</td>
<td>2011</td>
<td>XIII</td>
<td>1</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PV17</td>
<td>Pacific Harbour Seal</td>
<td>2011</td>
<td>ind</td>
<td>1</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>PV18</td>
<td>Pacific Harbour Seal</td>
<td>2011</td>
<td>XIII</td>
<td>1</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PV19</td>
<td>Pacific Harbour Seal</td>
<td>2011</td>
<td>ind</td>
<td>1</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>PV20</td>
<td>Pacific Harbour Seal</td>
<td>2012</td>
<td>ind</td>
<td>1</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PV21</td>
<td>Pacific Harbour Seal</td>
<td>2012</td>
<td>ind</td>
<td>1</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PV22</td>
<td>Pacific Harbour Seal</td>
<td>2012</td>
<td>VI</td>
<td>5</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>PV23</td>
<td>Pacific Harbour Seal</td>
<td>2012</td>
<td>VI</td>
<td>5</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>EJ1</td>
<td>Steller Sea Lion</td>
<td>2008</td>
<td>XIII</td>
<td>1</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

"-" represents an insertion or deletion at SnSAG3. Only specimens possessing full multilocus sequence types (MLST) were used for statistical analysis. ind, indeterminate; unable to assign a strain genotype. The protozoal encephalitis category was assigned based on the histological severity of the encephalitis due specifically to the protozoal infection. The cause of death category was assigned based on the overall contribution of S. neurona infection to the death of the animal. Empty cells represent a lack of available data.
common throughout the United States, and genotype XIII \((n = 11)\), a novel genotype not previously observed. For the remaining 11 \(S. neurona\)-infected individuals, it was not possible to assign a genotype due to a lack of sequence information at one or more of the SnSAG genes.

Since high resolution MS typing is a less sensitive technique that cannot readily be set up in a nested or multiplexed PCR configuration, this technique was only applied against the six \(S. neurona\) isolates that were recovered by cell culture (Table 2). The two isolates identified as Type VI had different MS types, \(p^\prime\) and \(r\). In contrast, the two Type XIII isolates shared the same novel MS type, \(hh\). The other two isolates (PV17, PV19) did not amplify at the SnSAG1, SnSAG5 or SnSAG6 gene. However, they both possessed the same MS type, \(u\), and were presumed to be either Ag type VI or VII based on alleles present at the SnSAG3 and SnSAG4 genes. This Ag/MS type combination has been identified previously in an infected southern sea otter from Monterey CA, USA (Wendte et al., 2010a).

3.3. Risk factors for parasite infection

Genotype XIII was significantly more common in harbour seals and genotype VI was significantly more common in harbour porpoises \((P = 0.012)\), although each genotype was capable of infecting both pinnipeds and cetaceans. Age class, sex, stranding region, stranding year and co-infection status did not differ among animals infected with genotype XIII compared with genotype VI, although insufficient power may have precluded determining significance. Genotype XIII was first identified in stranded animals in 2008, and all 11 genotype XIII individuals were collected from the outer coast of Washington State.

Of the 26 individuals to whom an MLST genotype was assigned, one individual (PV11; genotype VI) was excluded from the encephalitis and cause of death analyses due to a lack of histopathological data, and two more individuals (PV12, genotype VI; and PV5, genotype XIII) were excluded because they were infected transplacentally and did not represent environmentally-acquired infections. Another seven individuals were excluded from the pathological analyses due to brain co-infections with other protozoan species based on evidence that co-infections with both \(S. neurona\) and \(T. gondii\) are associated with increased encephalitis and mortality (Gibson et al., 2011). Among the remaining 16 singly-infected animals, those infected with genotype XIII \((n = 8)\) were significantly more likely to develop a marked or severe encephalitis than those animals infected with genotype VI \((n = 8)\) \((P = 0.01)\). Accordingly, cause of death by \(S. neurona\) was significant among genotype XIII infected individuals – all animals died directly as a result of their \(S. neurona\) infection, whereas the majority of genotype VI infected individuals did not \((P = 0.03)\). When the seven individuals with brain co-infections were also considered, those infected with genotype XIII \((n = 10)\) all died directly as a result of their \(S. neurona\) infection and were still significantly more likely to develop severe encephalitis than those infected with genotype VI \((n = 13)\) \((P = 0.05)\).

4. Discussion

Sarcocystis neurona has previously been documented infecting sea otters, harbour porpoises and harbour seals (Wendte et al., 2010a). This study establishes that \(S. neurona\) is capable of infecting a wider range of marine pinnipeds and cetaceans, including a Steller sea lion, Guadalupe fur seal, Northern elephant seal, Northern fur seal, pygmy sperm whale and Pacific white-sided dolphin. The molecular genetic analyses identified three MS genetic signatures among two genotype VI isolates and two additional isolates that did not PCR amplify at the SnSAG1-5-6 locus (Table 2). All of these Ag/MS genotypes have been identified previously among northeastern Pacific Ocean marine mammals and intermediate terrestrial hosts throughout the United States (Wendte et al., 2010a). In contrast, a new, unique molecular signature (Ag type XIII, MS type \(hh\)) was identified in this study and is responsible for fatal infections among both pinnipeds and cetaceans in the northeastern Pacific Ocean. All but one individual with single genotype XIII infections, and all individuals with co-infections that included genotype XIII, had marked/severe protozoal encephalitis and all died of protozoal disease, demonstrating that this genotype is highly pathogenic and an important cause of mortality in marine mammals. Although protozoal disease has been seen in association with immunosuppression due to morbilivirus infection (Haas et al., 1991), all animals in this study were PCR-negative for this virus. The mortalities appear to be attributed to genotype XIII, however, other disease processes potentially contributing to immunosuppression were not screened for in this study. Sarcocystis neurona Type XIII was first detected in the northeastern Pacific Ocean in 2008 and is likely an emerging disease in this region. Infections with this parasite genotype have now occurred over several years, indicating a persistent source of infection that has the potential to cause long-term impacts on marine mammal populations, and possibly be even more detrimental than the Type I epizootic, which emerged in 2004 and caused mass mortality among sea otters off the coast of California before subsequently disappearing (Miller et al., 2010; Wendte et al., 2010a).

The population genetic structure of \(S. neurona\) is not complex. In the United States it is largely comprised of 12 MLST Ag types that appear largely clonal in origin (Wendte et al., 2010a). Despite this relative lack of overall diversity, local populations of \(S. neurona\) are known to exhibit substantial smaller-scale variability, as evidenced by the application of MS markers (Asmundsson et al., 2006; Sundar et al., 2008; Wendte et al., 2010a). The discovery of a highly pathogenic genotype of \(S. neurona\) infecting pinnipeds and cetaceans in
the northeastern Pacific Ocean is of particular interest. Current efforts to sequence the Type XIII genome are ongoing to determine the genetic history of the strain and whether it is a recent strain that has emerged by sexual recombination in its definitive opossum host from a cross between strains of *S. neurona* circulating in the United States. Previous studies have demonstrated that experimental crosses between avirulent strains of the closely related coccidian parasite, *T. gondii*, are capable of producing offspring more virulent than either parent, and that this appears to be occurring in nature (Grigg and Sundar, 2009; Grigg et al., 2001; Wendte et al., 2010a). Hence, sexual reproduction has the potential to rapidly produce new gene combinations that can lead to a spectrum of disease, ranging from largely incidental infections to mass mortality events (Miller et al., 2004; Wendte et al., 2010a).

In this context, the *S. neurona* 2004 outbreak in southern sea otters was determined to be the result of infection by a single, distinct genotype (Ag type I, MS type c), that was amplified by its opossum host from a cross between strains of *S. neurona* circulating in the United States. Previous studies have demonstrated that experimental crosses between avirulent strains of the closely related coccidian parasite, *T. gondii*, are capable of producing offspring more virulent than either parent, and that this appears to be occurring in nature (Grigg and Sundar, 2009; Grigg et al., 2001; Wendte et al., 2010a). Hence, sexual reproduction has the potential to rapidly produce new gene combinations that can lead to a spectrum of disease, ranging from largely incidental infections to mass mortality events (Miller et al., 2004; Wendte et al., 2010a).

In this context, the *S. neurona* 2004 outbreak in southern sea otters was determined to be the result of infection by a single, distinct genotype (Ag type I, MS type c), that was amplified by its opossum host from a cross between strains of *S. neurona* circulating in the United States. Previous studies have demonstrated that experimental crosses between avirulent strains of the closely related coccidian parasite, *T. gondii*, are capable of producing offspring more virulent than either parent, and that this appears to be occurring in nature (Grigg and Sundar, 2009; Grigg et al., 2001; Wendte et al., 2010a). Hence, sexual reproduction has the potential to rapidly produce new gene combinations that can lead to a spectrum of disease, ranging from largely incidental infections to mass mortality events (Miller et al., 2004; Wendte et al., 2010a).

In this context, the *S. neurona* 2004 outbreak in southern sea otters was determined to be the result of infection by a single, distinct genotype (Ag type I, MS type c), that was amplified by its opossum host from a cross between strains of *S. neurona* circulating in the United States. Previous studies have demonstrated that experimental crosses between avirulent strains of the closely related coccidian parasite, *T. gondii*, are capable of producing offspring more virulent than either parent, and that this appears to be occurring in nature (Grigg and Sundar, 2009; Grigg et al., 2001; Wendte et al., 2010a). Hence, sexual reproduction has the potential to rapidly produce new gene combinations that can lead to a spectrum of disease, ranging from largely incidental infections to mass mortality events (Miller et al., 2004; Wendte et al., 2010a).

In this context, the *S. neurona* 2004 outbreak in southern sea otters was determined to be the result of infection by a single, distinct genotype (Ag type I, MS type c), that was amplified by its opossum host from a cross between strains of *S. neurona* circulating in the United States. Previous studies have demonstrated that experimental crosses between avirulent strains of the closely related coccidian parasite, *T. gondii*, are capable of producing offspring more virulent than either parent, and that this appears to be occurring in nature (Grigg and Sundar, 2009; Grigg et al., 2001; Wendte et al., 2010a). Hence, sexual reproduction has the potential to rapidly produce new gene combinations that can lead to a spectrum of disease, ranging from largely incidental infections to mass mortality events (Miller et al., 2004; Wendte et al., 2010a).

In this context, the *S. neurona* 2004 outbreak in southern sea otters was determined to be the result of infection by a single, distinct genotype (Ag type I, MS type c), that was amplified by its opossum host from a cross between strains of *S. neurona* circulating in the United States. Previous studies have demonstrated that experimental crosses between avirulent strains of the closely related coccidian parasite, *T. gondii*, are capable of producing offspring more virulent than either parent, and that this appears to be occurring in nature (Grigg and Sundar, 2009; Grigg et al., 2001; Wendte et al., 2010a). Hence, sexual reproduction has the potential to rapidly produce new gene combinations that can lead to a spectrum of disease, ranging from largely incidental infections to mass mortality events (Miller et al., 2004; Wendte et al., 2010a).

In this context, the *S. neurona* 2004 outbreak in southern sea otters was determined to be the result of infection by a single, distinct genotype (Ag type I, MS type c), that was amplified by its opossum host from a cross between strains of *S. neurona* circulating in the United States. Previous studies have demonstrated that experimental crosses between avirulent strains of the closely related coccidian parasite, *T. gondii*, are capable of producing offspring more virulent than either parent, and that this appears to be occurring in nature (Grigg and Sundar, 2009; Grigg et al., 2001; Wendte et al., 2010a). Hence, sexual reproduction has the potential to rapidly produce new gene combinations that can lead to a spectrum of disease, ranging from largely incidental infections to mass mortality events (Miller et al., 2004; Wendte et al., 2010a).

In this context, the *S. neurona* 2004 outbreak in southern sea otters was determined to be the result of infection by a single, distinct genotype (Ag type I, MS type c), that was amplified by its opossum host from a cross between strains of *S. neurona* circulating in the United States. Previous studies have demonstrated that experimental crosses between avirulent strains of the closely related coccidian parasite, *T. gondii*, are capable of producing offspring more virulent than either parent, and that this appears to be occurring in nature (Grigg and Sundar, 2009; Grigg et al., 2001; Wendte et al., 2010a). Hence, sexual reproduction has the potential to rapidly produce new gene combinations that can lead to a spectrum of disease, ranging from largely incidental infections to mass mortality events (Miller et al., 2004; Wendte et al., 2010a).

In this context, the *S. neurona* 2004 outbreak in southern sea otters was determined to be the result of infection by a single, distinct genotype (Ag type I, MS type c), that was amplified by its opossum host from a cross between strains of *S. neurona* circulating in the United States. Previous studies have demonstrated that experimental crosses between avirulent strains of the closely related coccidian parasite, *T. gondii*, are capable of producing offspring more virulent than either parent, and that this appears to be occurring in nature (Grigg and Sundar, 2009; Grigg et al., 2001; Wendte et al., 2010a). Hence, sexual reproduction has the potential to rapidly produce new gene combinations that can lead to a spectrum of disease, ranging from largely incidental infections to mass mortality events (Miller et al., 2004; Wendte et al., 2010a).

In this context, the *S. neurona* 2004 outbreak in southern sea otters was determined to be the result of infection by a single, distinct genotype (Ag type I, MS type c), that was amplified by its opossum host from a cross between strains of *S. neurona* circulating in the United States. Previous studies have demonstrated that experimental crosses between avirulent strains of the closely related coccidian parasite, *T. gondii*, are capable of producing offspring more virulent than either parent, and that this appears to be occurring in nature (Grigg and Sundar, 2009; Grigg et al., 2001; Wendte et al., 2010a). Hence, sexual reproduction has the potential to rapidly produce new gene combinations that can lead to a spectrum of disease, ranging from largely incidental infections to mass mortality events (Miller et al., 2004; Wendte et al., 2010a).
Etheridge of the Animal Health Center, Canada for immunohistochemistry. Stranding response and diagnostic costs were supported by the John H. Prescott Marine Mammal Rescue Assistance Grant Program, USA; NOAA Prescott Marine Mammal Rescue Grants, USA; Washington Department of Fish and Wildlife, USA; the Cascadia Research Collective, USA; and the Animal Health Center, British Columbia Ministry of Agriculture, Canada.

References

