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Abstract
In spring 2021, Nepal underwent a record wildfire season in which active fires were detected 
at a rate 10 times greater than the 2002–2020 average. Prior to these major wildfire events, 
the country experienced a prolonged precipitation deficit and extreme drought during the 
post-monsoon period (starting in October 2020). An analysis using observational, reanalysis, 
and climate model ensemble data indicates that both climate variability and climate change-
induced severe drought conditions were at play. Further analysis of climate model outputs 
suggests the likely reoccurrence of drought conditions, thus favoring active wildfire seasons 
in Nepal throughout the twenty-first century. While the inter-model uncertainty is large and 
direct modeling of wildfire spread and suppression has not been completed, the demonstrated 
relationship between a drought index (the standardized precipitation and evapotranspiration 
index) and subsequent fire activity may offer actionable opportunities for forest managers to 
employ the monitoring and projection of climate anomalies at sub-seasonal to decadal time-
scales to inform their management strategies for Nepal’s wildlands.
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1 Introduction

Wildfires have major impacts on forest health. While many forests are adapted to, if 
not dependent on, low-to-moderate severity fire, high-severity wildfires can negatively 
impact the ecological function of the natural landscape, devastating native species and 
human communities (Sullivan et al. 2022). Wildfires also are major sources of toxic gases 
and aerosols that contribute to significant increases in air pollution both locally and far 
downstream (Jaffe et al. 2020; Stockwell et al. 2016). The extent and severity of fires are 
dependent on numerous factors including fuels, weather, and topography, as well as fire 
management strategies. Wildfires in South Asia are mostly human-ignited—sometimes 
accidentally and sometimes intentionally to prepare land for shifting cultivation, as part 
of commercial timber harvesting operations, for controlled burning, to encourage grass 
regrowth, for the collection of minor forest products, and due to firewood burning (Reddy 
et al. 2020). The role of climate drivers in fire regimes is ecosystem-dependent, and a range 
of regional climate-fire relationships have been well-documented in the USA (Littell et al. 
2018) and Australia (Canadell et al. 2021). However, similar analyses are less common in 
South Asia in general and especially in Nepal.

In 1976, Nepal adopted a community forest management program focused on the 
nation’s middle-elevation hills (those between 200 and 3000 m) and the southern plains 
(known as terai, at elevations less than 200  m) (Springate-Baginski et  al. 2003). These 
reforms were followed in 2010 with the establishment of a new forest fire management 
strategy which includes policy, legal, and institutional reform, community awareness cam-
paigns, participatory research, and strengthening collaboration with national and interna-
tional stakeholders working in forest fire management (MFSC 2014; Pandey et al. 2022). 
Under these policies, about 3 million hectares of forests in Nepal came under the control of 
community-based forest management groups. These groups have been widely credited with 
driving significant increases in forest growth via restoration efforts, an unusual achieve-
ment among developing nations (Ghimire and Lamichhane 2020). However, reforestation 
may increase the chances of forest fires (Sapkota et al. 2015) as more fuel is available with 
the potential for both inadvertent and adverse effects on local communities.

Seasonal fires after the summer monsoon ends are common in Nepal as farmers burn 
residual of agricultural biomass to manage farmlands and pastures (Matin et  al. 2017). 
Most of these fires occur during the hot and dry season, which lasts from March to May 
(Matin et  al. 2017). In the winter of 2020 through the spring of 2021, however, Nepal 
experienced a historic wildfire season (https:// phys. org/ news/ 2021- 04- nepal- worst- wildf 
ires- decade. html). Multiple lives were claimed by the widespread fires, which also forced 
school closures due to hazardous air quality conditions (https:// earth obser vatory. nasa. gov/ 
images/ 148185/ a- fierce- fire- season- in- nepal). Meanwhile, black and brown carbon deposi-
tion was observed across the Himalayas (Choudhary et  al. 2022; Gertler et  al. 2016; Li 
et  al. 2016). This extreme fire season followed anomalously low precipitation between 
October and March (only 23% of normal, the lowest Nepal-wide precipitation recorded 
since 1980). Similar cases of drought have been identified as one of the primary drivers for 
other notable wildfire seasons in Nepal, such as 2008 and 2016 (Matin et al. 2017).
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Past research reveal that remote sensing data are central to the study of wildfire activ-
ity around the globe (Goss et  al. 2020; Radočaj et  al. 2022; Seydi et  al. 2022; Wang 
and Zhang 2020). These data are not only useful to assess the characteristics of wildfire 
(Reddy et al. 2020; Seydi et al. 2022), but also to understand post-fire impacts (Radočaj 
et al. 2022) and to evaluate the impact of climate change on wildfire (Goss et al. 2020). 
The recent drought is part of a longer trend of consecutive and worsening winter 
drought conditions since 2000 (Wang et al. 2013). Decreased precipitation from satellite 
and rain gauge observations, and the associated decreases in soil moisture, have been 
noted in tandem with increased temperature—a recipe for enhanced drought intensity 
(Hamal et al. 2020a; Shrestha et al. 2012; Wang et al. 2013). Warming in the Himalayan 
region has outpaced the global average (Shrestha et al. 1999), increasing Nepal’s sus-
ceptibility to drought impacts (Alamgir et al. 2014; Bhatta and Aggarwal 2016; Macchi 
et al. 2015; Pandey and Bardsley 2015). While wildfire activity is strongly influenced by 
other factors, including fuel loading, fuel characteristics, human fire suppression, and 
human ignition (Abatzoglou et al. 2019; Hantson et al. 2015; Littell et al. 2018), climate 
change is expected to drive increases in fire activity in most regions amidst fire and 
fuel feedbacks (Abatzoglou et al. 2021). Although there is a general understanding that 
active wildfire years in Nepal follow severe winter droughts, the physical relationship 
between meteorological drought and fire potential in Nepal has not been quantitatively 
assessed either historically or into the future.

Mitigating risk associated with fire in Nepal will require forecast tools, but the nation 
currently lacks operational drought and fire forecasting services. Previous studies have gen-
erated long-term fire risk maps for Nepal (Parajuli et al. 2020; Sharma et al. 2014). While 
drought has been anecdotally associated with recent wildfire extremes worldwide (Son 
et al. 2021a), climate-based fire prediction has emerged as an important tool for environ-
mental planning and fire management (Chen et al. 2020; Marshall et al. 2022; Turco et al. 
2018), and Nepal’s community fire management may similarly benefit from readily-availa-
ble prediction tools. Here, we present the first analysis of the historical and projected rela-
tionships between drought and wildfire activity in Nepal. Our main objective is to leverage 
historical drought and fire relationships to evaluate historical fire activity and to project fire 
activity under a high-emissions greenhouse gas scenario. Given the exceptional vulnerabil-
ity of Nepal to climate change (World Bank Group 2022) and the extreme wildfire season 
of 2021, we aim to highlight the impacts and compounding factors of extreme fire seasons 
in Nepal. Finally, as a potential adaptation tool for fire variability from year-to-year, we 
assess the potential for sub-seasonal predictability of fire activity from drought indices.

2  Materials and methods

2.1  Study area

The study area covers all of Nepal (Fig. 1a), located in South Asia between India and 
China with a total geographical area of 147,516  km2. About 42% of this area is covered 
by forests with ten major classes of forest that are distributed along altitudinal gradi-
ents (Aryal 2022). The climate of this area is dominated by the south Asian summer 
monsoon (SASM) system during June–September and transient westerly disturbances in 
December–February (Hamal et al. 2020a; Sharma et al. 2020b).
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2.2  Observational data

More than 300 climatological stations in Nepal are maintained by the Department of 
Hydrology and Meteorology (DHM). Some of these stations were established after 2000 
and do not feature continuous climate data (Sharma et  al. 2020a). After screening all 
available climatological stations, 117 stations were identified in which both temperature 
and precipitation data we recorded on at least 80% of the days in the record from 1980 to 
2021. From these data, annual, seasonal, and monthly averages of temperature and totals 
for precipitation have been computed. The stations are unevenly distributed, with greater 
density in the lower-lying southern areas of the country and increased scarcity over the 
mountainous northern regions (Chen et al. 2021). Such a paucity of coverage that is not 
uncommon in many mountainous regions of the world (Sun et al. 2018). Due to its rug-
gedness and sparse population, remote sensing is the only long-term observational data 

Fig. 1  a Average LAI from 
January to April over the period 
of 1981–2010 in the southern 
Himalayas, b cumulative fire 
detections from Aqua and Terra 
MODIS from 2002/2003 to 
2020/2021, and c total pre-
cipitation from October to March 
based on rain gauge data in 
Nepal. The black line in lower 
panel b indicates the 6-year 
moving average; the orange bar 
indicates drought defined as 
precipitation less than 15 mm; 
and the red bar indicates the 
2020/2021 drought
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set available to study wildfire characteristics in Nepal and the Himalayan region (Bhujel 
et al. 2022; Matin et al. 2017; Qadir et al. 2021).

Various drought indices are used to quantify drought and its relationship with fire 
occurrence or intensity (Littell et al. 2016) including the Palmer drought severity index 
(PDSI) (Littell et al. 2009; Miller et al. 2012) and the standardized precipitation index 
(SPI) (Riley et  al. 2013), as well as relationships with key meteorological variables 
such as precipitation and temperature (Littell et al. 2009, 2016; Morgan et al. 2008). 
Vapor pressure deficit (VPD), a composite variable that includes air temperature and 
relative humidity, has emerged as one of the most reliable indicators of fire conditions 
(Chiodi et al. 2021; Seager et al. 2015; Williams et al. 2014). However, in Nepal, only 
temperature and precipitation variables are available in long-term measurement net-
works. Thus, to analyze the relationship between drought and fire potential, we used 
the standardized precipitation and evapotranspiration index (SPEI), because it could 
be calculated from the available meteorological variables in Nepal’s in situ measure-
ment network. SPEI also has a simpler methodology that provides robust results (Liu 
et al. 2018; Vicente-Serrano et al. 2010), and it overcomes some of the known limita-
tions of the SPI and PDSI. Here, SPEI is calculated using a time series of precipi-
tation and potential evapotranspiration (PET) as introduced by Vicente-Serrano et al. 
(2010). PET is calculated using the Thornthwaite method (Thornthwaite 1948), which 
uses only temperature and has been widely used in previous studies in Asia (Talchab-
hadel et al. 2019; Van der Schrier et al. 2011). Other methods for calculating PET are 
considered superior to the Thornthwaite method (e.g., Penman–Monteith); those meth-
ods require more variables (e.g., relative humidity) and thus are not adopted here. The 
Thornthwaite method has been used effectively for several drought and fire studies in 
Nepal (Hamal et al. 2020b, 2021; Sharma et al. 2021). Here, we considered three dif-
ferent timescales, monthly (SPEI-1), seasonal (SPEI-3, SPEI-6), and annual (SPEI-12), 
to compute the drought indices. A summary of all observational data used in this study 
and explained here is given in Table S1 and includes the data periods of record, tempo-
ral and spatial resolutions, and data sources.

2.2.1  Fire data

To depict active fire points in Nepal, we used the Moderate Resolution Imaging Spec-
troradiometer (MODIS) (Aqua and Terra combined) active fire detection products 
(data  accessed from: https:// firms. modaps. eosdis. nasa. gov/ active_ fire/) (Giglio and 
Justice 2020). These data sets include latitude and longitude at the center of the pixel 
where the fire is detected, the retrieved fire radiative power (FRP), and the fire detec-
tion confidence level that is provided as a percentage. We only used data with a confi-
dence level of 30% or greater, assuring fewer false detections. The combined MODIS 
data are available from 2002, and burned area product are used in this study simply 
for a qualitative assessment of wildfire and not for the wildfire-drought analysis. This 
is because MODIS detects active fire points and not individual fire events; thus, one 
large fire can consist of many active fire points. As the Pearson correlation coefficient 
between burned area and active fire points from November through March is 0.96 dur-
ing 2002––2021, we use daily active fire points as an analog for burned area.
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2.2.2  Fire weather index

To analyze the relationship between climate and fire weather conditions in Nepal, we use 
the fire weather index (FWI) from the Canadian National Wildfire Coordinating Group 
(Van Wagner et al., 1987), calculated from ERA5 reanalysis data (Vitolo et al. 2020). 
The FWI estimates the atmosphere’s impact on fire weather through wind, temperature, 
humidity, and precipitation. It also accounts for the impact of the atmosphere on fuel 
moisture at three subsurface levels. Generally, an increase in the depth and compactness 
of fuel moisture results in a slower response to atmospheric forcing (Vitolo et al. 2020). 
The FWI is then produced from an integration of fire spread potential due to fuel mois-
ture and surface winds, along with the potential heat release in heavier fuels, resulting 
in a unitless index of extreme fire behavior potential (Van Wagner 1987). These data are 
available from the Copernicus Climate Data Store (https:// cds. clima te. coper nicus. eu/).

2.2.3  Aerosol observations

We used the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 
(CALIPSO) Level 2 vertical feature mask product derived from lidar backscatter meas-
urements (Han et  al. 2022; Yao et  al. 2018). The CALIPSO product provides vertical 
profile information about aerosol subtypes and the location of each aerosol layer at a 
resolution of 30  m vertical and 333  m horizontal, up to an altitude of 8.2  km (Omar 
et al. 2009; Winker et al. 2007). This information is crucial to the identification of the 
distribution, transport, and dominant types of aerosols and is also used to observe par-
ticulate matter concentration, forest fire, and black carbon globally (Shikwambana 2019; 
Yao et al. 2018). In this study, we use the latest version (4.21) of the standard vertical 
feature mask, which classifies tropospheric aerosols into seven subtypes (e.g., dust, pol-
luted dust, clean continental, polluted continental/smoke, elevated smoke, clean marine, 
and dusty marine) based on combined lidar measurements and surface type (Kim et al. 
2018; Omar et al. 2009).

2.2.4  Leaf area index

Vegetation plays a key role in land-atmospheric interactions through evapotranspiration 
and controls the amount and type of fuel for wildfire. To evaluate how changes to vegeta-
tion during the past three decades may have contributed to the 2020–21 fire season, we 
employed the MODIS leaf area index (LAI), which is defined for broadleaf canopies as the 
one-sided green leaf area per unit ground area and in coniferous canopies as half the total 
needle surface area per unit ground area (Myneni et  al. 2015). We considered LAI data 
from a global reanalysis of vegetation phenology (Stöckli et al. 2011) to analyze the veg-
etation coverage climatology in Nepal.

2.2.5  Sea surface temperature

The relationship between sea surface temperature (SST) variability and fire weather in 
Nepal was assessed using correlation analysis of monthly optimum interpolation SSTs 
and local fire weather from the FWI. Monthly SST data at 1° horizontal resolution was 
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obtained from the National Oceanic and Atmospheric Administration with a consistent 
data record available from 1979 through near-present (Reynolds et al. 2002).

2.3  Climate model projections

We use the Coupled Model Intercomparison Project Version 6 (CMIP6) ensemble with 
the historical, natural, and SSP585 high-emissions future scenario. We utilize two dif-
ferent CMIP6 products. The first one is the high-resolution, bias-corrected downscaling 
data generated by Mishra et al. (2020) for South Asia consisting of 13 models (hereafter 
high-resolution CMIP6). They used the output from 13 CMIP6-GCMs of daily precipi-
tation, maximum temperature, and minimum temperature for the historical and four sce-
narios (SSP126, SSP245, SSP370, SSP585), which are available at different resolutions. 
For the downscale and bias correction, empirical quantile mapping (EQM) was applied to 
statistically downscale the daily maximum and minimum temperatures and precipitation 
for South Asia and Indian sub-continental river basins. A non-parametric transformation 
approach has shown better skill in comparison to parametric methods in reducing biases 
from GCM as well as regional climate model (RCM) outputs. Observations for the three 
variables at the resolution of 0.25–degree are obtained from the India Meteorological 
Department (IMD) for the Indian Region and Sheffield et al. (2006) for grid-points within 
and outside India, respectively, used for bias-correction. The high-resolution CMIP6 data 
are considered for the historical simulation of 1951–2014 and high-emission scenario 
(SSP585) future projection of 2015–2100, considering 13 models (Table S2). The high-
resolution CMIP6 monthly mean temperature and precipitation were further bias-corrected 
for Nepal with respect to the observed data by following the methods of Hawkins et  al. 
(2013) that used “delta” (change factor) and “nudging” (bias correction) approaches. We 
then calculate the SPEI and estimate the future fire projection under the SSP585 scenario, 
based on the statistical relationship of SPEI-3 and active fire points.

The second version of CMIP6 data has a coarser (original) spatial resolution, and it 
includes two more single-forcing runs: all-forcing (historical) and natural (without anthro-
pogenic greenhouse gas emissions) runs. This coarser-resolution CMIP6 data set contains 
twelve models with 68 and 50 ensembles for the all and natural forcing runs, respectively 
(Table S3). Using this coarser-resolution CMIP6 allows for future examination on the cli-
mate change signal and provides a comparison with the historical fire record. Here, we 
compare the SPEI-1 and SPEI-12 in the all-forcing and natural runs from 1981 to 2014 that 
are computed from each ensemble member using low-resolution CMIP6 data. We are lim-
ited here by the availability of bias-corrected downscaled products as they are usually con-
fined to the historical all-forcings and future scenario experiments. However, in a previous 
analysis of PDSI in North America, bias correction substantially increased projected future 
drought (Wehner et al. 2011). We do not expect that SPEI trends would behave differently; 
hence, the native resolution CMIP6 results could be considered a conservative estimate of 
the anthropogenic influence on SPEI. Readers may consider this coarser-resolution CMIP6 
data as a supplemental analysis for climate attribution purposes.

2.4  Non‑linear fire prediction

The empirical relationship between SPEI-3 and active fire points in Nepal, together with 
the ability to calculate SPEI-3 from near real-time temperature and precipitation data 
from Nepal’s weather stations, makes antecedent SPEI-3 a potential predictor for fire 
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activity with 1- to 2-month lead time. Empirical prediction is computationally inexpensive 
in depicting large-scale burned areas (Eden et al. 2020; Turco et al. 2018). After compar-
ing various regressive models and accessing their skill (see example in Fig. S1), we found 
a non-linear regression model (also known as exponential regression) that shows the best 
skill in using SPEI-3 as a predictor to predict the March and April active fires (Fig. 4b), as 
follows:

where β is a regression coefficient, e is Euler’s number, t is the year, and ε is the error 
term. Here, we use January and February SPEI-3 to predict March active fire points, while 
February and March SPEI-3 are predictors for April active fire points. The β parameter is 
optimized so that the sum of the squared residuals is minimized for a given intercept and 
alpha value. The optimization of � is done using the Python package SciPy and its optimiz-
ing curve fitting function (https:// docs. scipy. org/). As a single parameter can be optimized 
for user specified α and intercept values, we iteratively fit the non-linear regression model 
for alpha values and intercepts ranging from zero to 1000 at intervals of 50 to find the 
combination of alpha and the intercept that yield the lowest residual standard error. The 
model is cross-validated using leave-one-out and leave-three-out cross-validation practices 
(Wang et al. 2017). The leave-three-out technique involves iteratively removing 3 consecu-
tive years from the observed data and training the model with the remainder. For a measure 
of fit of these non-linear regressions, we employ a pseudo-R2 value from Schabenberger 
and Pierce (2001), which is calculated by subtracting one by the dividend of the sum of 
squares of the residuals by the total sum of squares (sum of the squared distance between 
observations and the mean). While this pseudo-R2 (“hereafter” pR2) provides a sense of 
model fit, it cannot be interpreted as the percent of variance explained by the regression 
model (Schabenberger and Pierce 2001). Additionally, we include the standard error of the 
residuals, along with mean bias, which is obtained by calculating the percent difference 
between the average predicted fire points and observations.

3  Results

3.1  Putting the 2020–2021 drought and fire into perspective

Fire events in Nepal from 2002 through 2021 can be observed through the cumulative fire 
frequency in Fig. 1b suggesting that the 2021 fire events were anomalous, with more than 
8000 detections counted through April. By January, the accumulated count exceeded the 
20-year average, and by mid-March, it exceeded all other years. As was the case in other 
years, including two other notably anomalous fire seasons, 2008–2009 and 2015–2016, fire 
activity declined soon after the summer monsoon season began. October through March 
total precipitation from 1980 to 2021 indicates that, as was especially evident during 
2020–2021, drought was present during the 2008–2009 and 2015–2016 seasons (Fig. 1c). 
This demonstrates the likelihood that low precipitation in October–March can enhance 
the number of fire events during the pre-monsoon season. Figure  2a shows the wide-
spread nature of fire detections, ranging from the lowlands to the mid-hills during 2 days 

March active fire points(t) = 200 ∗ e−�∗SPEI3(t) + 150 + �,

April active fire points(t) = 150 ∗ e−�∗SPEI3(t) + 700 + �,
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in late March, a period when numerous uncontrolled fires were burning across Nepal. At 
this same time, CALIPSO data indicates dust and smoke reached up to 8 km in elevation, 
depositing pollutants throughout the Himalaya region (Fig. 2c–d).

Preceding these events, a negative SPEI that was more than twofold the long-term aver-
age was observed beginning in November 2020 (Fig. 3a, top). Excessively dry conditions 
persisted through April (Fig.  1b). In each of these months, the number of fires was well 
above the long-term average (Fig. 3a, bottom). Between 2002 and 2020, the sum of active 
fire points from November through April averaged 2,327; this 6-month total was exceeded 
in March of 2021 alone. It then doubled again in April. Fire activity was highest in Nepal’s 
western lowlands, the region immediately southeast of the Annapurna Conservation Area, 
and the countryside surrounding the Kathmandu Valley. Both regions saw a tenfold increase 
in the active fire points in 2020–2021 compared to the long-term mean (Fig. 3b).

This record-setting fire season corresponds to an environment with increasing fuels. An 
analysis of leaf area index (LAI), obtained from a global reanalysis of vegetation phenology, 
indicates that the January–April average of LAI increased by about 10% during 1981–2010 
(Fig. 3c). Satellite-derived LAI change from 2003 to 2020 indicates a continual increase follow-
ing that trend (result not shown). The LAI analysis aligns with recent research showing forest 
cover expansion across Nepal (Fox et al. 2019; Van Den Hoek et al. 2021), suggesting greater 
fuel availability now than 30 years ago.

Next, we examined the non-linear relationships between March fire detection points 
and seasonal precipitation deficits and drought as outlined in Sect. 2.4. Figure 4a shows 
a robust regression skill between SPEI and fire, ranging from a strong relationship 
(pR2 > 0.3), when November and December precipitation are considered, together to a very 
strong skill (pR2 > 0.7) when January and February are included. Including the months of 
March and April nominally strengthens the relationship (Fig.  4a, center). However, the 
relationship between the active fire points and March SPEI-3 appears best quantified by 
a non-linear, or exponential, model (Fig. 4b) based on the November–March total active 

Fig. 2  MODIS fire detections (dots in left panel, a and b) and vertical distribution of aerosol subtypes, 
which are depicted with different colors from CALIPSO measurements (right panel, c and d). Upper and 
lower panels are based on 25 March and 28 March 2021 measurements, respectively. The orbital path of the 
CALIPSO satellite is shown by the red line in a and b 
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Fig. 3  MODIS (Aqua and Terra satellite) measured fire detection points, leaf area index (LAI) and 
observed SPEI3. a Total monthly fires during 2020–2021, long-term average fires from 2002 to 2020, the 
SPEI 3-month drought index for November through April during 2020–2021, and SPEI3 long-term average 
in Nepal. b Ratio of the active fire points in 2020–2021 to the long-term average (2003–2020) for Novem-
ber through March. c Change in LAI (%) from 1981 to 1990 compared to 2001–2010

Fig. 4  The relationship between 2002–2020 monthly precipitation deficits and subsequent active fire points 
in Nepal. a shows the skill of regression (pseudo-R2) between the total active fire points, starting in Novem-
ber, and average precipitation from the preceding month, average SPEI-1 from October to a given month, 
a given month’s SPEI-3, and preceding month lag for SPEI-3 from left to right, respectively. For example, 
November fire is regressed with SPEI-1 and precipitation averaged for October and November, Novem-
ber–December fire is regressed with SPEI-1 averaged for October, November, and December. Fire for Nov 
is regressed with SPEI-3 of November, fire for Nov-Dec is correlated with SPEI-3 of December, and so 
on. Similarly, November fire is correlated with SPEI-lag (SPEI of October), November–December fire 
is regressed with SPEI-lag (November SPEI-3), and so on. b shows the scatter plot relationship between 
November-March total active fire points and the SPEI-3 in March and the non-linear regression fit (red 
line); 2021 is highlighted via an arrow
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fire points. The record number of active fire points in 2021 was associated with the most 
severe SPEI-3 values observed in the past 18  years and closely follows the best-fit line 
from non-linear regression (Fig. 4b). The fire prediction model for each month from Janu-
ary to May, with a lead time of 0 and 1 month, performs well as indicated by small bias 
and high pR2 (Table 1). However, the bias is greater during the high-fire months (March 
and April). Regardless, drought quantified by SPEI-3 strongly fits fire detection points over 
Nepal, a relationship that is comparable with different forests/climates like California (Son 
et al. 2021b) and is consistent with studies connecting global wildfire and VPD (Abatzo-
glou et al. 2021, 2018).

3.2  Attribution of the drought trend

The identified association between drought and wildfire in Nepal indicates that the observed 
increase in drought is partially responsible for the enhanced wildfire potential. We note that 
SPEI-1 and SPEI-12, which both exhibited fluctuating but predominantly positive values 
between 1981 and 2005, have been mostly negative ever since (Fig. S2), underscoring the long-
term drought trend. However, low-frequency climate variability can also result in prolonged 
drought conditions over Nepal (Wang and Gillies 2013). To address this, we evaluated the role 
of anthropogenic climate change to determine if these trends are associated with changes to the 
climate mean state, using the low-resolution CMIP6 ensemble (Table S3) of all-forcing experi-
ments. This analysis is based on the multi-model and multi-realization average of the 1980–2014 
trends of SPEI-1 and SPEI-12. The SPEI-1 and SPEI-12 trends were calculated from individ-
ual model ensembles (Table S3) before being averaged for the ensemble means. The historical 
simulations of SPEI-1 and SPEI-12, which included all anthropogenic forcings, are substantially 
negative. Histograms comparing trends from the 68 “historical” simulations to the 50 “natural” 
ones, as shown in Fig. 5, reveal a shift toward negative values when anthropogenic forcings are 
included in the simulations. While there is considerable overlap between these distributions, a 
Student’s t test (p < 0.01) indicates they are statistically distinguishable. Within either of these 
distributions, the observed 1980–2014 annual trends are low-probability events, and the longer 
observed 1981–2020 annual trends are even lower. But as the likelihood of the observations is 
higher in the simulations, including anthropogenic forcing, than it is without, we conclude that 
anthropogenic climate change has contributed to the drying trend in Nepal during the winter-dry 
season. While these low-resolution CMIP6 results are not bias-corrected, Wehner et al. (2011) 
found that bias correction increased simulated drought trends, not decreased. Hence, our con-
clusion of an attributable human influence on SPEI trends is likely conservative. This result is 

Table 1  Statistics and parameters 
of the non-linear regression 
models (exponential model) 
used to predict from January to 
May active fire points at 0- and 
1-month leads Bias for the cross-
validation techniques is obtained 
by determining the percent 
difference between the average 
predicted active fire points and 
monthly observations from 2002 
and 2020

Month (SPEI3/fire) Model pR2 Bias (%)

Jan/Jan y = 94.993e−0.419x 0.45  − 18.5
Jan/Feb y = 114.51e−0.46x 0.76 44.13
Feb/Feb y = 120.89e−0.46x 0.74  − 4.25
Feb/Mar y = 417.92e−0.721x 0.68 289.19
Mar/Mar y = 444.59e−0.712x 0.55  − 19.35
Mar/Apr y = 992.18e−0.602x 0.77  − 167.74
Apr/April y = 885.32e−0.714x 0.44  − 21.21
April/May y = 188.52e−0.801x 0.14 73.84
May/May y = 188.07e−0.482x 0.33 39.18
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also comparable to previous work based on earlier-generation simulations of CMIP5 (Wang et al. 
2013).

Given the observed relationship between SPEI-3 and seasonal wildfire detections 
(Fig. 4) and the role of anthropogenic warming on drought (Fig. 5), we next provide 
a simple projection of fire activity in Nepal. This projection is based on the calcula-
tion of SPEI-3 from the high-resolution CMIP6 ensemble of the historical and high-
emission scenario (SSP585) simulations. To calculate SPEI-3, model monthly pre-
cipitation and temperature were used for each member from high-resolution CMIP6 
data. The CMIP6 SPEI-3 was then used to estimate the November–March active fire 
points using the regression model from Fig.  4b. The interquartile range (IQR) and 
median is calculated based on the active fire points of all ensembles. The CMIP6 
ensemble mean of March SPEI-3 from historical period (1980–2014) and under the 
SSP585 warming scenario (2015–2100) and its multi-model spread (Fig. 6) indicates 
a distinct decreasing trend that began in the early twenty-first century and is projected 
to continue through the end of the twenty-first century. This indicates longer periods 
of increasingly severe drought. Based on statistical modeling, the derived active fire 
points in association with drought are also projected to increase, a trend that prior 
research has indicated to be driven by climate warming, which will lower fuel mois-
ture in Nepal (Hamal et al. 2022). Notably, the spread of fire anomalies across indi-
vidual CMIP6 model projections becomes amplified. However, readers should not 
directly compare CMIP6 data to the 2021 fire season because the historical CMIP6 
simulations end in 2014; thus, it is unclear whether CMIP6 would have reflected the 
severity of that event.

The statistical nature of this future assessment and the single predictor of SPEI-3 for 
wildfire detections warrant further caution, as well. Many factors, including fire suppres-
sion strategies, available fuels, land-cover change, and vegetation type, distribution, and 
density can also impact wildfire metrics (as measured through active fire detections and 
burned area) and how fire behaves and ultimately spreads (Abatzoglou et al. 2021, 2018; 
Littell et al. 2018). These factors are not included in the presented model. Additionally, as 

Fig. 5  Histograms of CMIP6 simulated 1981–2014 trends in October–March SPEI-1 (a) and annual SPEI-
12 (b). Red bars are the all-forcing runs, and gray bars are the natural runs. The observed trends over this 
simulation period are shown as a black vertical line, and the observed trends are shown as a blue vertical 
line
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the spread of active fire points grows with time, its cause may increasingly come from the 
diverged future conditions between ensemble members or the extremes of exponential rela-
tionships (Abatzoglou et al. 2018; Littell et al. 2018). Regardless, the signal of anthropo-
genic warming on drought and the fire points it derives is robust and is likely to increase 
beyond historical levels.

3.3  Sub‑seasonal predictability

Using non-linear regression, Fig. 7 depicts the one-month predictions of fire points in March 
(Fig. 7a) and April (Fig. 7b) using SPEI-3 from February and March, respectively. Active fire 
points in March and April are highly predictable at the 1-month lead, but the 2-month prediction 
lacks skill for both months (Fig. S1). The regression model has good skill for the cross-validation 
as well, with the leave-one-out and leave-three-out methods producing similar results to the hind-
cast; the summary statistics of residual standard error and mean bias are provided in Table S4. 
These regression models predicted the increased fires in March 2021 but fell short of its record-
setting magnitude (Fig. 7a). This shortcoming is mostly likely caused by non-climatic factors, 
such as fuel characteristics, frequency of human ignitions, suppression, fire behavior in complex 
terrain, and vegetation distributions and response to climate change, as well as the inability of 
SPEI-3 alone to account for fuel moisture and abundance at finer scales. Regardless, the fact that 
these simple regression models show good skill for most fire years (high pseudo-R2 values, low 
error, and bias) suggests this simple method of assessment offers potentially useful fire outlooks 
for March and April in Nepal, peeking into the following month’s wildfire tendency.

Fig. 6  CMIP6 historical and future projection of active fire points from November to March over Nepal 
with observed fire (orange bars)
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3.4  Interannual variation

While the 2020–2021 fire season appears to have been exacerbated by climate change, cli-
mate variability likely played an important role in the seasonal drought conditions. His-
torically, Nepal’s winter climate variability correlates with the El Niño and La Niña events 
(Hamal et al. 2020a). Further analysis shows that the global sea surface temperature anom-
alies (SSTA) from November 2020 to March 2021 outlines a canonical La Niña pattern in 
the equatorial Pacific Ocean (Fig. 8a), while the SSTA correlation maps with March FWI 
in Nepal (Fig. 8b) and “reversed” March SPEI-6 (Fig. 8c) demarcate clear La Niña fea-
tures that bear a marked resemblance with the 2020–2021 SSTA structure. El Niño and La 
Niña teleconnections have strengthened in an anthropogenically driven warming climate 
(Stevenson et  al. 2012; Wang et  al. 2015). Thus, the increasing spread with time in the 
projected fire activity (Fig. 6) may be partially attributed to natural variability and ampli-
fied by global warming. In addition, persistent warming in the Indian Ocean has acted to 
enhance the winter drought trend in Nepal through modifications of the local Hadley circu-
lation, which strengthens subsidence over northern India and the Himalaya region (Wang 
et  al. 2013). In 2020–2021, warm SSTA were observed in the Northern Indian Ocean 
(Fig. 8a), strengthening the subsidence in Nepal (figure not shown).

Fig. 7  One-month lead, cross-validated hindcasts of March (a) and April (b) fire detection points from non-
linear regression with SPEI3 as the independent variable. Leave-one-out and leave-three-out cross-validated 
models are shown in orange and red, respectively. Pseudo-R2 values are included in the figure legend for 
(a) and (b). The scatter plot of March and April fire detection points is included in (c) along with the fitted 
relationships from non-linear regression (solid lines). Panel (d) shows the well distributed residuals from 
non-linear regression
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4  Discussion

Decades of increasingly prolonged and severe droughts since 2000 (Fig. S2) appear to be 
leading to an unintended consequence of increased wildfires, a situation that may be being 
exacerbated by well-intentioned community-led efforts to re-forest Nepal. Given that fires 
in Nepal are managed by communities rather than a centralized agency, with no national-
level policy or plan for forest fire management, an increase in forest fires poses a significant 
challenge to the effectiveness of community management (Sapkota et al. 2015). While the 
Nepal Army is often mobilized if a fire threatens settlements, there is no dedicated team 

Fig. 8  Sea-surface temperature (SST) anomalies over the Northern Hemisphere. a shows the average SST 
anomalies from November through March 2021. b and c show SST (November–February) Pearson correla-
tions with the March fire weather index (FWI) and March SPEI6, respectively. The correlation analysis in 
b and c was applied on data from 1979 to 2021, and area under black dashed line represents the significant 
values with p < 0.05 (2-tailed). SPEI6 is multiplied by − 1 for sign consistency
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to suppress wildland fires in Nepal, and local community members are often trained as 
firefighting volunteer groups at the district or village level (Matin et al. 2017; Parajuli et al. 
2022). Assuming that there is no significant change in these policies at a national level, 
community-based fire management capacity will be critical to control and, when needed, to 
suppress wildfires in Nepal to ensure successful and sustainable forest management (Para-
juli et al. 2022), and these ad hoc groups may benefit from easily derived prediction met-
rics and a reference of early warming.

Qadir et al. (2021) developed a fire forecast model for Nepal that used multiple sources of 
satellite data. They found that temperature and precipitation are key factors for forest fire occur-
rence. However, our statistical model is much simpler than the Qadir et al. (2021) model and can 
potentially predict the anomalous fire activity 1–2 months earlier. Matin et al. (2017) also indi-
cated three main factors for the forest fire in Nepal that include temperature, fuel availability, and 
ignition potential. These studies highlight drought factors as key environmental components of 
wildfire in Nepal. The main limitations of our study are that we did not consider fuel types, fire 
behavior, fire suppression, or ignitions, and these are among the many factors that could impact 
future predictability using our statistical model, which is dependent upon the stationarity of the 
previously observed relationship between between SPEI and fire activity. In future work, we 
plan to improve the fire prediction model by considering these other factors to further inform fire 
management strategies.

Previous studies on wildfire in Nepal have mainly focused on fire climatology, forest 
mapping, and factors affecting forest fire management (Parajuli et al. 2020; Sapkota et al. 
2015), and, as far as we know, no previous work has utilized a climate projection model 
approach to provide insight about the future of forest fires in Nepal. The projections in this 
study should nonetheless be interpreted with caution, owing to substantial uncertainty at 
local scales in climate model projections, particularly in complex terrain such as the Hima-
layan region. Nonetheless, the CMIP6 results for Nepal echo prior research that projects 
declining winter precipitation under the SSP585 high-emissions scenario, alongside mod-
erately increased monsoon precipitation (Sharma et al. 2021). This transition may already 
be underway, as significant declines have been identified in Mediterranean-originating 
winter precipitation sources (Dakhlaoui et al. 2019; Marchane et al. 2017).

5  Conclusion

Nepal’s 2020–2021 fire season commenced 4 months earlier than normal, resulted in a fire 
detection rate 10 times greater than the long-term average, and elevated air pollution to 
hazardous levels. We investigated the connections between Nepal’s climate and wildfires 
and found a strong drought-fire association in observational data that is also projected by 
future climate simulations. We developed a fire prediction non-linear regression model at 
sub-seasonal timescale and used this model to assess future trends of fire risk as inferred 
from projected changes in drought severity within Nepal. The historical climate model 
simulations also indicate that climate change likely bore significant responsibility for the 
prolonged drought conditions that led to the exceptional 2020–2021 fire activity. While 
forewarning a likely reoccurrence of intensified fire seasons in Nepal through the end of 
the twenty-first century (if anthropogenic climate change continues along a high emissions 
scenario), this research also proposes a simple, accessible statistical model for sub-seasonal 
fire activity prediction that warrants future research and may offer actionable opportunities 
for preparation, mitigation, cooperation, and capacity-building in a nation in which forest 
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management is handled at the community level. We suggest that simple predictive models 
can be employed to aid national fire watch efforts on a monthly basis, since 58% of the 
fires in Nepal were started intentionally by people (Kunwar and Khaling 2006). Taking 
these factors into account, changes to community management in response to sub-seasonal 
drought forecasts might mitigate the fire hazard during anomalously dry conditions.
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