Title
Engineered Recognition of Tetravalent Zirconium and Thorium by Chelator-Protein Systems: Toward Flexible Radiotherapy and Imaging Platforms.

Permalink
https://escholarship.org/uc/item/2nx8r6pz

Journal
Inorganic chemistry, 55(22)

ISSN
0020-1669

Authors
Captain, Ilya
Deblonde, Gauthier J-P
Rupert, Peter B
et al.

Publication Date
2016-11-01

DOI
10.1021/acs.inorgchem.6b02041

Peer reviewed
Engineered Recognition of Tetravalent Zirconium and Thorium by Chelator–Protein Systems: Toward Flexible Radiotherapy and Imaging Platforms

Ilya Captain,‡ Gauthier J.-P. Deblonde,‡ Peter B. Rupert,‡ Dahlia D. An,† Marie-Claire Illy,‡ Emeline Rostan,† Corie Y. Ralston,§ Roland K. Strong,*,‡ and Rebecca J. Abergel*,‡

†Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
‡Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
§Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

Supporting Information

ABSTRACT: Targeted α therapy holds tremendous potential as a cancer treatment: it offers the possibility of delivering a highly cytotoxic dose to targeted cells while minimizing damage to surrounding healthy tissue. The metallic α-generating radioisotopes 225Ac and 227Th are promising radionuclides for therapeutic use, provided adequate chelation and targeting. Here we demonstrate a new chelating platform composed of a multidentate high-affinity oxygen-donating ligand 3,4,3-LI(CAM) bound to the mammalian protein siderocalin. Respective stability constants log β10 = 29.65 ± 0.65, 57.26 ± 0.20, and 47.71 ± 0.08, determined for the Eu(III) (a lanthanide surrogate for Ac(VI)), Zr(IV), and Th(IV) complexes of 3,4,3-LI(CAM) through spectrophotometric titrations, reveal this ligand to be one of the most powerful chelators for both trivalent and tetravalent metal ions at physiological pH. The resulting metal–ligand complexes are also recognized with extremely high affinity by the siderophore-binding protein siderocalin, with dissociation constants below 40 nM and tight electrostatic interactions, as evidenced by X-ray structures of the protein:ligand:metal adducts with Zr(IV) and Th(IV). Finally, differences in biodistribution profiles between free and siderocalin-bound 238Pu(IV), 3,4,3-LI(CAM) complexes confirm in vivo stability of the protein construct. The siderocalin:3,4,3-LI(CAM) assembly can therefore serve as a “lock” to consolidate binding to the therapeutic 225Ac and 227Th isotopes or to the positron emission tomography emitter 89Zr, independent of metal valence state.

INTRODUCTION

Targeted α therapy (TAT), or radioimmunotherapy that uses α-particle emitting nuclides, is a promising treatment strategy for small metastatic tumors and other localized diseases. Owing to α-particles’ short path length, much of the decay energy may be deposited into target areas while mitigating damage to surrounding tissue.¹ A number of radionuclides that emit single α particles, including 211At (t1/2 = 7.2 h), 212Bi (t1/2 = 0.8 h), and 212Bi (t1/2 = 1.0 h), are currently under investigation.² A growing subset of the field includes in vivo α-generator radionuclides 225Ac (t1/2 = 10.0 d), 225Ra (t1/2 = 11.4 d), and 227Th (t1/2 = 18.7 d), isotopes that emit multiple α particles in their decay chains and dramatically increase the potential delivered dose.³⁻⁶ This principle was recently exploited in the development of Alpharadin, 225RaCl2, a drug for bone metastases.⁷ While Alpharadin relies on the natural propensity of 225Ra for bone, other specifically targeted α-radiation delivery strategies use constructs formed with chelating agents to complex metallic α-emitters and biological targeting vectors.² Though sound in theory, these designs have been slow to appear in the clinic, with only scarce examples of promising α-generator immunoconjugates, such as the lintuzumab conjugate 225Ac-HuM195⁸ and the sialic-acid receptor CD33 conjugate 227Th-CD33-TTC⁹ for myeloid leukemia treatment, or 227Th-DOTA-trastuzumab for treating HER-2 positive breast and ovarian cancer.¹⁰ Reasons for this slow development are largely economical and related to costs associated with radionuclide production, clinical material production, as well as preclinical and clinical studies. Nevertheless, a better understanding of radiometal chelation and biodistribution is also direly needed to advance this field and to provide new chelating platforms that may be tailored on the basis of indication and isotope selection.

The 225Ac and 227Th radioisotopes are members of the actinium (An) series of elements. They display high coordination numbers and are best chelated by high-denticity ligands that contain hard donor atoms, such as the multidentate hydroxypyridinone-based (HOPO) compounds, our workhorse ligands for in vivo actinide decolorization.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹ The ligand 3,4,3-LI(1,2-HOPO) is an octadentate, tetraprotic compound that forms stable complexes and is among the most promising candidates for actinide decorporation.¹¹

Received: August 23, 2016

DOI: 10.1021/acs.inorgchem.6b02041
Inorg. Chem. XXXX, XXX, XXX−XXX

© XXXX American Chemical Society

© XXXX American Chemical Society
ligand complex and Scn. In order to restore complex binding by Scn, we must use a ligand of high denticity that captures both 3+ and 4+ metals, forms overall negatively charged complexes, and does not cause steric clashes in Scn’s tight binding pocket. This work aims to address the inability of the Scn-3,4,3-LI(1,2-HOPO) system to bind 4+ ions by exploring more suitable ligands that can complex both 3+ and 4+ metal ions.

METHODS

Caution: 232Th, 238Pu, 242Pu, 243Am, and 248Cm are hazardous radionuclides with high specific activities that should only be manipulated in specifically designated facilities in accordance with appropriate safety controls.

General Considerations

Chemicals were obtained from commercial suppliers and were used as received. The LnCl$_3$·nH$_2$O lanthanide salts utilized were of the highest purity available (>99.9%). Stock solutions of 232ThIV and ZrIV were prepared from 232ThCl$_3$·8H$_2$O (Baker & Adamson, ACS grade) and ZrCl$_4$ (Sigma-Aldrich, 99.99%), respectively. A stock of 238PuIV was purchased as 238Pu(NO$_3$)$_4$ in 4 M HNO$_3$ from Eckert & Ziegler (lot 118521). 239Pu was received from Oak Ridge National Laboratory as PuO$_2$ (lot Pu-242-327 A, 99.93 wt % of metal 242Pu), and a stock solution of 238PuIV was prepared as described previously.17 The 241Pu isotope was used for *in vitro* binding experiments whereas 239Pu was used in biodistribution studies. Aliquots of acidified stocks of carrier-free 241Am and 248Cm (95.78% 248Cm, 4.12% 246Cm, 0.06% 245Cm, 0.02% 246Cm, 248Cm isotopic distribution by atom percentage) from Lawrence Berkeley National Laboratory were used. All solutions were prepared using deionized water purified by a Millipore Milli-Q reverse osmosis cartridge system, and the pH was adjusted with concentrated HCl, H$_2$SO$_4$, KOH, or NaOH when needed. Measurements were conducted at room temperature using standard instrumentation unless otherwise noted (see Supporting Information for details).

Metal, Ligand, and Protein Working Solutions

The trivalent lanthanide LnIII working stock solutions were prepared in 0.1 M HCl. A ZrIV stock solution was prepared by dissolving ZrCl$_4$ in 3.0 M H$_2$SO$_4$ to prevent hydrolysis. The metal salt ZrCl$_4$ was handled and stored in a glovebox kept under inert atmosphere. The ZrIV stock solution was standardized against EDTA, with xylene orange as the indicator.18 A ThIV stock solution was prepared in 0.1 M H$_2$SO$_4$. Stock solutions (4 mM) of Ent and 3,4,3-LI(CAM) were prepared by direct dissolution of a weighed portion of ligand in DMSO, and aliquots were removed prior to each set of experiments. Recombinant human Scn was prepared as previously described.19

Incremental Spectrophotometric Titrations

This method was used to determine the protonation constants of 3,4,3-LI(CAM) as well as the stability constants of its complexes formed with EuIII, ZrIV, and 232ThIV. The experimental titration setup is similar to previously described systems, and details are provided as Supporting Information.20 For the 3,4,3-LI(CAM) protonation (and EuIII,3,4,3-LI(CAM) complexes), titrations were performed with an initial concentration of 50 μM of 3,4,3-LI(CAM) (and 50 μM of EuIII) resulting in absorbance values between 0 and 1.0 throughout the titration. For the ZrIV and ThIV complexes, titrations were performed similarly but in the presence of DTPA to avoid the formation of metal hydroxides at low pH, before the uptake by 3,4,3-LI(CAM).
Inorganic Chemistry

Protein-Binding Assay and Crystallography. Scn binding of metal–ligand complexes was measured by fluorescence quenching, as described previously, and detailed in the Supporting Information. Diffraction-quality crystals were grown by vapor diffusion from drops containing the ternary metal–chelator–protein complex according to standard methods (Supporting Information). Diffraction data were collected on beamline 5.0.2 at the Advanced Light Source (ALS, Berkeley, CA) and processed as detailed in Supporting Information. Crystallographic statistics are reported in Supporting Information Table S1. Final models have been deposited in the PDB.

In Vivo Biodistribution Assay. All procedures and protocols used in the presented in vivo studies were reviewed and approved by the Institutional Animal Care and Use Committee at Lawrence Berkeley National Laboratory and performed in AAALAC accredited facilities. The animals used were adult female CD-1 mice (180 ± 7 days old, 40.8 ± 5.8 g). Solutions of 238Pu complexed by 3,4,3-LI(CAM) and Scn:3,4,3-LI(CAM) were prepared in situ at molar ratios protein:ligand:238Pu of 0:100:1 and 100:100:1, respectively, by mixing and incubating the appropriate quantities of 238Pu(NO3)4, Scn, and 3,4,3-LI(CAM). The 3,4,3-LI(CAM) octadentate ligand showed a very high affinity for both 3+ and 4+ ions (Table 1). The affinity of 3,4,3-LI(CAM) for both 3+ and 4+ ions (Table 1). The overall acidity of 3,4,3-LI(CAM) can be dehydrated by using the protected diphenylmethylene acetal derivative (5), which greatly simplifies purification of the final product.

Affinity of 3,4,3-LI(CAM) toward 3+ and 4+ Metals. A comprehensive solution thermodynamic analysis was performed to characterize the affinity of 3,4,3-LI(CAM) for trivalent and tetravalent metals and to understand the effect of substituting 1,2-HOPO for CAM binding units on the octadentate spermine scaffold. The protonation constants of 3,4,3-LI(CAM) were determined by spectrophotometric titrations, and eight protonation equilibria were assigned to sequential removal of two protons from each of the four CAM units (Table 1). Previous studies of Ent and other CAM-containing synthetic analogues established that the protonation constants (pK_a – pK_a) of the meta-hydroxyl oxygen atoms are well-separated from the ortho-hydroxyl oxygen atoms (pK_a – pK_a). The last four pK_a values are most relevant to metal binding as moieties corresponding to these values have to be deprotonated at physiological pH in order to bind the metal ions. The overall acidity of 3,4,3-LI(CAM) can be defined as \(\sum pK_a = 27.8 \) versus 3,4,3-LI(1,2-HOPO)’s 21.2, with lower values representing higher acidity. 3,4,3-LI(CAM) is therefore less prone to bind hard Lewis acids at low pH than its 1,2-HOPO analogue, due to competition between metal uptake and protonation of the CAM moieties.

Results and Discussion

Synthesis of Octadentate Ligand 3,4,3-LI(CAM). Since electrostatic interactions between Scn and Ln/An complexes play a key role in binding, we chose to explore ligands that would form overall negative complexes with both 3+ and 4+ metals. Although Scn exhibits a broad, degenerate recognition mechanism for native siderophores, previous studies probing the extent of Scn binding to synthetic siderophore analogues showed that the Scn binding site allows only limited changes to its ligands. Thus, the simplest way to correct the binding would be to employ ligands with similar structural features. We chose to follow Occam’s razor by using 3,4,3-LI(CAM) (Figure 1), a compound first prepared by Raymond and co-workers for plutonium sequestration purposes. This octadentate ligand leverages grafting of catecholamide (CAM) moieties found in microbial siderophores on the spermine scaffold to form a hybrid version of Ent and 3,4,3-LI(1,2-HOPO) that should display increased complex stability over Ent due to its higher denticity and (ii) bear more negative charges than 3,4,3-LI(1,2-HOPO) due to CAM units requiring further deprotonation for metal binding (Figure 1). 3,4,3-LI(CAM) was synthesized here from readily available building blocks using a process developed in-house (Scheme 1). The new preparation moves away from using harsh reaction conditions by using the protected diphenylmethylene acetal derivative (5), which greatly simplifies purification of the final product.

Scheme 1. Synthesis of 3,4,3-LI(CAM).
parts, with log β_{10} values of 29.7, 47.7, and 57.3, respectively. Consequently, 3,4,3-LI(CAM) is one of the strongest ligands ever reported for the chelation of both trivalent and tetravalent f-elements. For comparison, a cyclic octadentate terephthalamidic derivative was recently designed to bind Th$^{4+}$ in vivo and showed an unprecedented affinity for Th$^{4+}$ with a log β_{110} (ThL$^{10-}$) value of 53.7.30 It is worth mentioning, however, that terephthalamidic ligands would not be recognized by Scn, due to steric hindrance generated by the bulky substituents on the para position of the catecholate-like unit. To inspect the pH dependency of metal complex formation, speciation diagrams were calculated for 3,4,3-LI(CAM) in the presence of 1 equivalent of EuIII, ZrIV, or ThIV (Figures S1–S3). Both ZrIV and ThIV complexes start forming at around pH 3, with the mono and fully deprotonated species, [MIVLH]$^{5-}$ and [MIVL]$^{4-}$, being predominant at physiological pH (7.4). This behavior departs from that of 3,4,3-LI(1,2-HOPO), with which 4$^+$ metal complexes are formed even under very acidic conditions (pH < 0).32,33 For EuIII, complexation by 3,4,3-LI(CAM) starts at pH 5, and the monoprotonated complex, [EuIIILH]$^{4+}$, is the only species present at pH 7.4. Similar to what is observed with 4$^+$ metals, the pH at which EuIII, EuIII-3,4,3-LI(CAM) complexes start forming is higher than in the case of EuIII-3,4,3-LI(1,2-HOPO) species that already appear at pH 1 under those same conditions.29 However, it is important to note the multiple negative charges of the 3,4,3-LI(CAM) complexes with 3$^+$ and 4$^+$ metal complexes under physiologically relevant conditions ([MIVLH]$^{5-}$, [MIVL]$^{4-}$, and [MIVL]$^{3-}$), which are now capable of forming electrostatic interactions with the Scn protein. This represents a large advantage over 3,4,3-LI(1,2-HOPO), for which the complexes with MIII at pH 7.4 have only one negative charge and are neutral in the case of MIV ions.

Scn Recognition of 3,4,3-LI(CAM)-Metal Complexes. As described in several previous reports,15,21,33 the affinity of Scn for ligands or metal–ligand complexes is quantified by monitoring protein fluorescence quenching upon ligand or complex binding. The equilibrium dissociation constant of Scn for the apo form of the ligand 3,4,3-LI(CAM), K_d = 1.2 ± 0.4 nM, is nearly identical to that determined for the native siderophore apo-Ent,21 indicating that the addition of a fourth CAM unit does not affect ligand recognition by the protein. Subsequent determination of K_d values for various metal complexes of 3,4,3-LI(CAM) (MIII = Sm, Eu, Gd, 243Am, or 248Cm, and MIV = Zr, 232Th, or 242Pu) confirms tight binding to the protein, independent of the metal valence, with values well below 40 nM (Figure 2). As hypothesized, these data demonstrate a substantial difference in protein recognition between the 3,4,3-LI(CAM) and 3,4,3-LI(1,2-HOPO) complexes of tetravalent metals. Use of the diprotic CAM units in lieu of the monoprotic 1,2-HOPO moieties led to the formation of negatively charged complexes, enabling electrostatic interactions with the protein trilobal calyx. Moreover, while the addition of a fourth CAM metal-binding group in the octadentate 3,4,3-LI(CAM) was important for increased stability of the metal–ligand complexes at pH 7.4, it did not prevent the high Scn affinities initially observed with hexacoordinated Ent complexes. Subtle differences were observed with the recognition patterns: for similarly charged

Table 1. Protonation and EuIII, ZrIV, and ThIV Complex Formation Constants for 3,4,3-LI(CAM)a

<table>
<thead>
<tr>
<th>species</th>
<th>ml</th>
<th>log β_{10}</th>
<th>pK_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH$^{-}$</td>
<td>011</td>
<td>12.50 ± 0.30</td>
<td>12.50 ± 0.30</td>
</tr>
<tr>
<td>LH$^{2-}$</td>
<td>012</td>
<td>24.50 ± 0.35</td>
<td>12.00 ± 0.35</td>
</tr>
<tr>
<td>LH$^{3-}$</td>
<td>013</td>
<td>35.81 ± 0.55</td>
<td>11.31 ± 0.55</td>
</tr>
<tr>
<td>LH$^{4-}$</td>
<td>014</td>
<td>45.41 ± 0.47</td>
<td>9.60 ± 0.47</td>
</tr>
<tr>
<td>LH$^{5-}$</td>
<td>015</td>
<td>54.11 ± 0.23</td>
<td>8.70 ± 0.27</td>
</tr>
<tr>
<td>LH$^{6-}$</td>
<td>016</td>
<td>61.93 ± 0.56</td>
<td>7.82 ± 0.57</td>
</tr>
<tr>
<td>LH$^{7-}$</td>
<td>017</td>
<td>68.67 ± 1.45</td>
<td>6.73 ± 0.61</td>
</tr>
<tr>
<td>LH$^{8-}$</td>
<td>018</td>
<td>73.24 ± 1.38</td>
<td>4.57 ± 0.29</td>
</tr>
</tbody>
</table>

aI = 0.1 M (KCl), T = 25 °C. Errors correspond to standard deviations from at least three independent titrations. Protonation and EuIII, ZrIV, and ThIV complex formation constants previously reported for 3,4,3-LI(1,2-HOPO) are also given for comparison.

Figure 2. Scn dissociation constants determined from fluorescence quenching analyses for MIII and MIV complexes formed with Ent15 (a, top left), 3,4,3-LI(1,2-HOPO)15 (b, top right), or 3,4,3-LI(CAM) (c, bottom left), and crystal pictures for the Scn adducts formed with the ZrIV (d, bottom middle) and ThIV (e, bottom right) complexes of 3,4,3-LI(CAM). The charges of the discussed metal complexes vary from 0 to 4$^+$ at pH 7.4 and are indicated above each bar; asterisks indicate that no binding was observed. Ent and 3,4,3-LI(1,2-HOPO) data are plotted on the basis of previously reported values,15 except for the ZrIV complex K_d values that were determined in this work; the affinity observed with the ferric complex of Ent is shown for reference, as it is the native Scn ligand.
complexes, weaker binding was observed with actinide complexes (AmIII, CmIII, ThIV, and PuIV) as compared to corresponding lanthanide or d-block metal complexes (SmII, EuIII, GdIII, ZrIV) in the case of 3,4,3-LI(CAM). The opposite trend had been noted with Ent complexes of MVI metals and was confirmed here with ZrIV, while no significant differences are discernible with 3,4,3-LI(1,2-HOPO).

Structural Characterization of Scn-3,4,3-LI(CAM) Adducts. X-ray crystallography was used as previously described to determine the structures of the Scn adducts formed with the 232Th-3,4,3-LI(CAM) and 90Zr-3,4,3-LI(CAM) complexes (Table S1). As expected, and as observed in previous Scn complex structures (e.g., with 243Am-3,4,3-LI(1,2-HOPO)), the compounds are bound in the deeply recessed trilobal binding site, or calyx, of Scn (Figure 3a–c). As in previous structures of Scn bound to CAM-bearing ligands with An ions, only one CAM substituent is ordered in the crystal structures along with the bound metal, Zr or Th. This was likely a result of the remainder of the chelator sampling multiple conformations between molecules in the crystal, but clearly confirmed binding of chelator and metal in both adducts. The CAM substituent bound in the key binding pocket in the Scn calyx, between the side-chains of two bracketing lysine residues (K125 and K134; Figure 3d). The structure of the Scn calyx is highly conserved with prior structures, reflecting its rigidity, with the side-chains of two residues, W79 and R81, as the only elements flexing to accommodate different ligands (Figure 3e). In prior Ent or Ent analogue chelator/actinide structures, where two of the three CAM groups are also disordered, the side-chain of W79 adopted an unusual rotamer, flipping inward toward the metal to contribute a cation−π interaction. However, in these structures, this side-chain adopts more conventional orientations, either sampling multiple rotamers, rendering it disordered in the crystallographic analysis (in the Zr complex), or lying against the calyx wall in the Th complex. Apart from this, the overall impression conveyed by these and previous results is that the chelator flexes and distorts to fit in an essentially rigid and unyielding calyx.

Biodistribution Evaluation of Scn-3,4,3-LI(CAM) Adducts. To evaluate the in vivo retention and excretion patterns of MVI-, 3,4,3-LI(CAM) complexes and their Scn adducts, 238Pu$^+$ was used as a radiolabel. 238Pu was selected as a surrogate radionuclide to mimic 227Th or 90Zr for the following reasons: (i) It forms tetravalent coordination species under physiological conditions. (ii) Its ionic radius is between those of ZrIV and ThIV. (iii) It is easier to handle and allows for more flexibility in the extremely rigid Scn calyx. Other atoms in the chelator have been removed for clarity, and the molecular surface has been rendered partially transparent. Metal and carbon atoms have been recolored to indicate the complex: 232Pr-3,4,3-LI(CAM) in aqua, and 233U-3,4,3-LI(CAM) in green. (e) The side-chains of W79 and R81 and the connecting protein backbone have been isolated and superimposed from the three complexes; they are shown in a licorice-stick representation, colored as in part d. This view highlights the different rotamers selected in the different complexes, the only element of conformational flexibility in the extremely rigid Scn calyx.

3,4,3-LI(CAM) is strikingly different from that observed for the 238Pu-3,4,3-LI(1,2-HOPO) complex in previous studies (albeit performed in a different strain of mice and with younger animals), in which quantitative excretion was observed by 24 h. In both Scn-bound and free 238Pu-3,4,3-LI(CAM) cases, and at all time points, more 238Pu was found in the urine than in the feces. However, the kidney and liver contents reveal a key difference in excretion pattern: when free, the 3,4,3-LI(CAM) complex is predominantly found in the liver at early time points after administration and follows a biliary pathway, similar to what is known for HOPO complexes. However, insertion within the protein favors elimination through the renal system, with up to ~52% of 238Pu found in the kidneys 4 h after administration of the Scn adducts, a burden that subsequently
slowly decreases. In combination with significantly faster rates of excretion and considerably lower skeleton and soft tissue burden when compared with free 238Pu, this major difference between kidney versus liver 238Pu retention of the Scn-bound versus free complex provide evidence for the high in vivo stability of the Scn:[Pu$^{4+}$(3,4,3-LI(CAM))] adduct.

CONCLUSIONS

Results obtained with the Scn:3,4,3-LI(CAM) system suggest a novel concept that enables the engineering of new radiopharmaceuticals comprising protein targeting vectors, such as antibodies, coupled with radionuclide capture moieties based on Scn. The protein’s highly specific binding to 3,4,3-LI(CAM)-M$^{4+}$ and 3,4,3-LI(CAM)-M$^{3+}$ complexes eliminates the need for costly synthetic bioconjugation of ligands to targeting molecules. Interestingly, one can envision a system where both imaging (89Zr$^{4+}$) and therapeutic (227Th$^{4+}$ or 225Ac$^{3+}$) metallic radioisotopes may be used in conjunction for dual diagnostics/treatment applications. Our results illustrate the promise of this system. It is also likely that, with further tuning, a more effective protein–ligand arrangement may be developed: current work is underway to explore other ligands based on the 3,4,3-LI scaffold in order to reconcile the metal/protein binding compromise by incorporating both monoprotic HOPO and diprotic CAM units. Finally, future efforts will focus on evaluating the kinetics of release of different radionuclides from the Scn:ligand systems, as well as the distribution of daughter products. We will perform in vitro and in vivo studies with the more suited medical isotopes 225Ac, 227Th, and 89Zr, in lieu of the low-activity surrogates used in the presented solution studies.

ASSOCIATED CONTENT

* Supporting Information
 The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorg-chem.6b02041.

AUTHOR INFORMATION

Corresponding Authors
*E-mail: rstrong@fhcrc.org.
E-mail: rjabergel@lbl.gov.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division at the Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231 (R.J.A.), and by the National Institutes of Health under award number R01DK073462 (subcontract to R.K.S.). R.J.A. is the recipient of a U.S. Department of Energy, Office of Science Early Career Award. M.-C.I. is the recipient of a mobility grant from the ParisTech chair of nuclear engineering supported by Areva. The Advanced Light Source (ALS) is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. We thank M. Allaire, S. Morton, J. Bramble, K. Engle, L. Tadesse, and M. Dupray for their assistance in planning and implementing diffraction data collection on radioactive crystals at the ALS 5.0.2 beamline. We also thank K. Raymond for providing us with purified Ent. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

REFERENCES

(20) Sturzbecher-Hoehne, M.; Deblonde, G.-P.; Abergel, R. Solution thermodynamic evaluation of hydroxypyridinonate chelators 3, 4, 3-LI (1, 2-HOPO) and 5-LIO (Me-3, 2-HOPO) for UO2 (VI) and Th (IV) decoration. *Radiochim. Acta* 2013, 101, 359–366.

