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Abstract

Background—Overexpression of the voltage gated calcium channel (VGCC) alpha-2-delta1 

subunit protein (Cavα2δ1) has been shown to cause pain states. However, whether VGCC are 

involved in pain states driven by abnormal Cavα2δ1 expression is not known.

Methods—Intrathecal injection of N-, P/Q-, and L-type VGCC blockers were tested in two 

models: a transgenic neuronal Cavα2δ1 overexpression (TG) model with behavioral 

hypersensitivity and a spinal nerve ligation (SNL) model with Cavα2δ1 overexpression in sensory 

pathways and neuropathy pain states.

Results—The nociceptive response to mechanical stimuli was significantly attenuated in both 

models with ω-conotoxin GVIA (an N-type VGCC blocker) and nifedipine (a L-type VGCC 

blocker), in which ω-conotoxin GVIA appeared more potent than nifedipine. Treatments with ω-

agatoxin IVA (P-VGCC blocker), but not ω-conotoxin MVIIC (Q-VGCC blocker) had similar 

potency in the TG model as the N-type VGCC blocker, while both ω-agatoxin IVA and ω-

conotoxin MVIIC had minimal effects in the SNL model compared to controls.
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Conclusion—These findings suggest that, at the spinal level, N- and L-type VGCC are likely 

involved in behavioral hypersensitivity states driven by Cavα2δ1 overexpression. Q-type VGCC 

have minimal effects in both models. The anti-nociceptive effects of P-type VGCC blocker in the 

Cavα2δ1 TG mice, but minimally at the SNL model with presynaptic Cavα2δ1 upregulation, 

suggest that its potential action site(s) is at the post-synaptic and/or supraspinal level. These 

findings support that N-, L- and P/Q-type VGCC have differential contributions to behavioral 

hypersensitivity modulated by Cavα2δ1 dysregulation at the spinal cord level.

Introduction

Chronic pain can adversely affect patients’ quality of life, and also have psychosocial/

economical consequences which, based on a recent survey, could cost up to $635 billion a 

year in medical expenses and lost of productivity (Gaskin and Richard 2012). Current pain 

medications, both opioid and non-opioid, provide only partial pain relief at best with 

intolerable side effects and adverse sequela. Therefore, there is a vital need to provide safer 

and more specific analgesic medications for chronic pain management.

Blocking high-threshold voltage-gated Ca2+ channels (VGCC) may hold part of the answer 

(Park and Luo 2010; Perret and Luo 2009). There are five distinct high-threshold VGCC 

subtypes identified as N-, P/Q-, L- and R- type based on their electrophysiological properties 

and sensitivity to specific antagonists (Park and Luo 2010). The N- and P/Q-types are the 

predominant VGCC found in the primary afferent fibers in the superficial dorsal horn with a 

greater number for the N-type VGCC (Westenbroek et al., 1998). N-type VGCC are mainly 

on the presynaptic terminals of primary sensory fibers and modulate peptidergic or non-

peptidergic neurotransmitter release within the spinal cord (Gruner and Silva 1994; Kato et 

al., 2002; Westenbroek et al., 1998; Yu et al., 1992). P/Q-type VGCC are involved in 

glutamatergic, but not peptidergic, neurotransmission (Araque et al., 1994; Evans et al., 

1996; Kato et al., 2002; Krieger et al., 1999; Matthews and Dickenson 2001; Takahashi and 

Momiyama 1993; Westenbroek et al., 1998). P/Q-type VGCC normally participate in 

inhibitory synaptic mechanisms under normal conditions, and participate in excitatory 

synaptic mechanisms under conditions leading to central sensitization (Vanegas and 

Schaible 2000). L-type VGCC can be found in postsynaptic membranes in cell bodies and 

dendrites throughout the dorsal horn (Murakami et al., 2004; Westenbroek et al., 1998). L-

type VGCC blockers can modulate post-synaptic neurons in the dorsal horn and nociceptive 

responses induced by pain-inducing peptide Substance P (Kato et al., 2002).

Data from previous studies in an unilateral spinal nerve ligation (SNL) model have indicated 

a critical role of upregulated dorsal root ganglion and spinal cord VGCC alpha-2-delta-1 

subunit (Cavα2δ1) in neuropathic pain development (Bauer et al., 2009; Boroujerdi et al., 

2008; Li et al., 2004; Luo et al., 2002; Luo et al., 2001; Newton et al., 2001). It is not clear, 

however, if elevated spinal Cavα2δ1 mediates neuropathic pain states through differential 

modulation of VGCC or a mechanism independent of VGCC functions (Eroglu et al., 2009; 

Zhou and Luo 2013). Since SNL leads to an upregulation of a large number of genes 

(Costigan et al., 2002; Kim et al., 2009; Valder et al., 2003; Wang et al., 2002), which could 

contribute to nociception through different pathways, the SNL model alone is not suitable to 

address this question. In this study, we compared the effects of N-, L- and P/Q-type VGCC 

Chang et al. Page 2

Eur J Pain. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



blockers in Cavα2δ1-mediated behavioral hypersensitivities between the SNL model and a 

Cavα2δ1 overexpressing transgenic (TG) mouse line with dorsal horn neuron sensitization 

and similar behavioral hypersensitivities as the SNL model (Chang et al., 2013; Li et al., 

2006; Nguyen et al., 2009; Zhou and Luo 2014).

Methods

Animals

Adult male mice with 129SV background were purchased from Charles River Laboratories 

International, Inc. (Hollister, CA). The Cavα2δ1 TG mice were bred in house and 

characterized and reported previously (Li et al., 2006). These mice developed normally, 

groomed appropriately, and were fertile. They showed no signs of distress, ataxia, motor 

function defects, tremor, seizure, or other abnormalities (Li et al., 2006). Only adult male 

TG mice and their wild type (WT) littermates were used for the experiments. Food and 

water were provided to the animals ad libitum. All the animal care and experimental 

procedures were performed based on protocols approved by the Institutional Animal Care 

Committee of the University of California, Irvine.

Neuropathic lesions

The SNL surgery was performed as described (Kim and Chung 1992). Briefly, the mouse 

left L4 spinal nerve (Rigaud et al., 2008) was exposed, and tightly ligated under isoflurane 

anesthesia with a 7.0 silk suture between the DRG and the junction where spinal nerves 

form the sciatic nerve. In sham operations, the same procedure as described above was 

performed except that the L4 spinal nerve was left intact.

Drug injection

ω-conotoxin GVIA (Sigma-Aldrich U.S.A.), ω-conotoxin MVIIC (Alomone Labs, 

Jerusalem, Israel), and ω-agatoxin IVA (Sigma-Aldrich U.S.A.) were dissolved in sterile 

saline. Nifedipine (Sigma-Aldrich U.S.A.) was first dissolved in a stock solution of 10 mM 

with 50% DMSO in saline. This was further diluted to the appropriate testing dilutions with 

saline to a final DMSO concentration <0.0001%, which did not affect the behavioral 

sensitivity of animals (data not shown). These drug solutions were injected intrathecally (5 

µL/mouse) between lumbar regions L4–L5 via a 30-gauge, 1/2-inch needle attached to a 

microinjector (Tritech Research Inc, Los Angeles, CA) (Inoue et al., 2004). In the case that 

mice were used for repetitive injections, a drug-free period of at least 48 hours after the last 

drug injection was introduced. Molarity of injected drugs was calculated based on estimated 

40 µL mouse cerebrospinal fluid (Johanson et al., 2008).

Behavioral Test

Animals were tested between the hours of 9am to 5pm. Briefly, the hindpaw withdrawal 

sensitivities to von Frey filament (mechanical) stimuli were tested blindly before and after 

drug treatments as described previously (Li et al., 2006). After acclimatization for 1 hour in 

a plastic box with a wire mesh bottom, the mice were tested for the 50% paw withdrawal 

thresholds (PWT) to von Frey filament (Stoelting, Wood Dale, IL) stimulation using a 

modified up-down method (Dixon 1980). In a consecutive order, a set of 6 von Frey 
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filaments, starting with the one with 0.40 grams, was applied perpendicularly to the hindpaw 

plantar surface of each mouse until the filament was slightly bent. Lifting of the hindpaw 

within 5 s was considered a positive response and led to the application of the next weaker 

filament. Absence of a response within 5 seconds led to the use of the next stiffer filament. 

The mice were tested until six scores, starting from the one prior to the first change in 

response, were obtained that were used to calculate the 50% paw withdrawal thresholds as 

described previously (Li et al., 2004; Luo et al., 2002; Luo et al., 2001). In the case of four 

consecutive positive or three consecutive negative responses, a score of 0.01 g or 3.0 g, 

respectively, was assigned. Paw withdrawal thresholds from injured and uninjured hindpaws 

of the SNL model were recorded individually, and data from the sham or SNL groups were 

used for comparisons between injury and noninjury side before or after intrathecal drug 

treatments. Data from each hindpaw of the injury-free Cavα2δ1 TG and wild-type (WT) 

mice were collected, and averaged for comparisons between the TG and WT mice before or 

after intrathecal drug treatments.

Statistic analysis

Significant changes from baseline for the time-course compared to pre-treatment and among 

different dosages of toxin were determined by using Kruskal-Wallis test followed by Dunn’s 

post-test analysis. Wilcoxon signed rank test was used for pair-wise comparison with the 

pretreatment level. A p value < 0.05 was considered statistically significant.

Results

Previous data have shown that Cavα2δ1 over-expression in neuronal cells of the transgenic 

mice and the injury side of the SNL model induces similar dorsal horn neuron sensitization 

(Zhou and Luo 2014), that leads to reduced paw withdrawal thresholds to innocuous 

mechanical stimuli (tactile allodynia) to a similar degree in both models (Chang et al., 2013; 

Li et al., 2006), which is confirmed in this study (Fig. 1). Intrathecal treatments with ω-

conotoxin GVIA in TG mice, ranging from 1.25 fM – 1.25 pM, induced a statistically 

significant, dose-dependent, reversal of the allodynia state compared with that at the pre-

treatment level and in saline treated TG mice. The window between no statistical 

significance and potentially a full reversal was narrow, between 1.25 fM and 12.5 fM (Fig. 

1A). At the highest dose tested (1.25 pM), the anti-allodynic effects of ω-conotoxin GVIA in 

TG mice were fast in onset and short in duration, with the peak effects occurring 30 min 

post injection, and lasted for less than 2 hours (Fig. 1B). These findings are consistent with 

the reported anti-nociceptive effects of ω-conotoxin GVIA in SNL and inflammatory pain 

models with no motor function side effects (Bowersox et al., 1996; Chaplan et al., 1994; 

Fukuizumi et al., 2003a; Murakami et al., 2004; Sluka 1997; 1998; Yamamoto and Sakashita 

1998).

Similar efficacy of intrathecal ω-conotoxin in allodynia reversal was observed in the SNL 

model (Fig. 1C). At the highest dose tested (1.25 pM), the anti-allodynic effect of ω-

conotoxin GVIA peaked 30–60 minutes post injection, and lasted about 2 hrs (Fig. 1D). For 

both models, the baseline behavioral sensitivity in age- and sex-matched WT littermates, 

sham, and non-injury side of the SNL mice was not affected by the highest dose of ω-
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conotoxin GVIA. Similar saline injection did not cause allodynia reversal in the TG mice, 

nor in the injury side of the SNL mice (Fig 1B and 1D).

Next, we examined the role of L-type VGCC on Cavα2δ1 protein mediated behavioral 

hypersensitivity states using nifedipine, an L-type VGCC blocker. Data from i.t. nifedipine 

treatments on TG mice showed that nifedipine appeared less potent than ω-conotoxin GVIA 

in reversing allodynia states in the TG mice. A statistically significant reversal of the 

allodynia state was observed at the dose of 1.25 nM compared to saline treatment, and at a 

lower dose, 312.5 pM, when compared with the pre-treatment level within the same group of 

animals (Fig. 2A). At the highest dose tested, 1.25 nM, the anti-allodynic effects of 

nifedipine were fast in onset and short in duration, with the peak effects occurring 30 

minutes post-injection, and lasting less than 1 hour (Fig. 2B). Similar intrathecal nifedipine 

treatments in the SNL model caused a statistically significant reversal of allodynia at the 

dose of 1.25 nM compared with the saline treated SNL mice (Fig. 2C). At this dose (1.25 

nM), a complete allodynia reversal occurred at 30 min post-injection, and the anti-allodynic 

effects lasted about 2 hours (Fig. 2D). However, nifedipine appeared less potent than ω-

conotoxin in reversing allodynia states. For both models, the baseline behavioral sensitivity 

was not affected by the highest dose of nifedipine in age- and sex-matched WT littermates, 

sham mice, and non-injury side of the SNL mice. Similar intrathecal saline injections with 

diluted DMSO (<0.0001%) did not cause allodynia nor reverse pain states in TG, WT, sham, 

or injury side of the SNL mice (data not shown).

Finally, we investigated the role of P/Q-type VGCC in Cavα2δ1 protein mediated behavioral 

hypersensitivity states in the TG and SNL models, respectively. Similar to i.t. ω-conotoxin 

GVIA and nifedipine treatments (Fig 3A), intrathecal ω-agatoxin, a P-type VGCC blocker at 

the dosages used (Nimmrich and Gross 2012), caused a statistically significant, dose-

dependent reversal of allodynia states, starting at the dose of 0.125 pM, compared to the 

saline treated TG mice. The window between no statistical significance and potentially full 

reversal was narrow when compared to saline, between 12.5 fM– 0.125 pM (Fig. 3A). The 

anti-allodynic effects of ω-agatoxin started at a lower dose (12.5 fM) when compared with 

the pre-treatment level within the same group of animals. At the highest dose tested (1.25 

pM), the anti-allodynia effects of ω-agatoxin were fast in onset and short in duration, with 

the peak effect occurring 30 min post injection, and lasting for less than 2 hours (Fig 3B). 

On the contrary, intrathecal injection of various doses (12.5 fM – 1.25 pM) of ω-agatoxin 

into the SNL model did not produce a significant allodynia reversal compared to saline 

treated SNL mice (Fig. 3C), though at the maximum dose (1.25 pM) tested, there was a paw 

withdrawal threshold reversal to <21% of the maximum possible effect compared to the pre-

treatment level in the same group of mice (Figure 3C and Figure 3D). Baseline behavioral 

sensitivity in age- and sex-matched WT, sham, and non-injury side of the SNL littermates 

were not affected by the highest dose of ω-agatoxin nor saline (Fig. 3B, 3D).

To investigate Q-type VGCC function, we utilized ω-conotoxin MVIIC intrathecally to 

block Q-type VGCC (Hillyard et al., 1992; McDonough et al., 1996; Nimmrich and Gross 

2012). We repeated the experiments with the highest dose of ω-conotoxin MVIIC (6 µM) 

reported without producing side effects (Chaplan et al., 1994; Dalmolin et al., 2011; 

Malmberg and Yaksh 1994) and found no significant anti-allodynic effect in both the TG 
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(Figure 4A) and SNL (Figure 4B) models. This supports similar findings from other groups 

that Q-type VGCC play a limited role in peripheral nerve injury-induced pain states 

(Chaplan et al., 1994; Malmberg and Yaksh 1994; Nimmrich and Gross 2012). Again, we 

found that baseline behavioral sensitivity in age- and sex-matched WT, sham, and non-

injury side of the SNL littermates were not affected by ω-conotoxin MVIIC nor saline (Fig. 

4).

Administrations of VGCC antagonists in high doses can affect normal spinal processing of 

somatosensory, including nociceptive, information, and elicit motor function deficit and 

other side effects. However, the dosages used for the N-, L-, and P/Q- type VGCC blockers 

in this study are at least three magnitudes smaller than other studies (Bowersox et al., 1996; 

Chaplan et al., 1994; Fukuizumi et al., 2003b; Jayamanne et al., 2013; Kato et al., 2002; 

Malmberg and Yaksh 1994; Murakami et al., 2004; Sluka 1997; 1998; Yamamoto and 

Sakashita 1998), so no motor function deficits were observed in treated mice at any dose.

Discussion

The detailed mechanism underlying neuropathic pain processing in the SNL model has not 

been fully elucidated. Cavα2δ1 upregulation in this model may contribute to neuropathic 

pain processing (Bauer et al., 2009; Li et al., 2004; Luo et al., 2001; Newton et al., 2001), 

but it is not clear if this neuroplasticity mediates abnormal sensations through a VGCC-

dependent or VGCC-independent pathway. Since SNL injury leads to dysregulation of other 

genes in addition to the Cavα2δ1 gene (Kim et al., 2009; Valder et al., 2003; Wang et al., 

2002), using this model alone is not sufficient to address this question. By comparing VGCC 

blocker effects in allodynia reversal between the SNL model and the injury-free Cavα2δ1 TG 

model, which has similar behavioral hypersensitivity states as the SNL model but lack other 

injury-induced factors, we have assessed the influence of different VGCC in Cavα2δ1-

mediated behavioral hypersensitivity.

One of the differences between these two models is that the Cavα2δ1 TG model has 

increased Cavα2δ1 proteins in the central and peripheral nervous systems (Li et al., 2006), 

while the SNL model has increased Cavα2δ1 expression in dorsal root ganglion sensory 

neurons that results in elevated Cavα2δ1 transportation to their pre-synaptic terminals in 

dorsal spinal cord (Bauer et al., 2009; Li et al., 2004). In both models, increased Cavα2δ1 

expression has been shown to increase behavioral hypersensitivity and the frequency, but 

not amplitude, of dorsal horn neuron miniature excitatory post-synaptic currents, a reflection 

of increased pre-synaptic excitatory input. This suggests that enhanced pre-synaptic 

excitatory neurotransmitter release is likely contributing to Cavα2δ1 mediated behavioral 

hypersensitivity in both models (Nguyen et al., 2009; Zhou and Luo 2014).

Our data indicate that ω-conotoxin GVIA has the highest efficacy and potency in allodynia 

reversal among VGCC blockers tested, supporting that N-type VGCC play a critical role in 

pain processing in these models. This is supported by findings that null N-type VGCC 

expression in mice results in diminished pain states (Saegusa et al., 2001). Administration of 

N-type VGCC antagonists leads to mechanical allodynia relief in rat models of painful 

peripheral neuropathy (Xiao and Bennett 1995) and SNL (Bowersox et al., 1996; Chaplan et 
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al., 1994). Since N-type VGCC are mainly located pre-synaptically in spinal cord and 

involved in regulating excitatory neurotransmitter release (Evans et al., 1996; Maggi et al., 

1990; McGivern and McDonough 2004; Santicioli et al., 1992), blocking N-type VGCC 

may lead to a reversal of behavioral hypersensitivity by normalizing abnormal pre-synaptic 

neurotransmitter release in the spinal cord (Jayamanne et al., 2013; Matthews and 

Dickenson 2001; Motin and Adams 2008). However, our data would not allow us to 

determine if increased Cavα2δ1 mediates abnormal pre-synaptic neurotransmitter release and 

behavioral hypersensitivity through modulating pre-synaptic N-type VGCC expression/

function or an N-type VGCC independent pathway such as increasing excitatory synapse 

formation (Eroglu et al., 2009).

Compared with ω-conotoxin GVIA, intrathecal L-type VGCC antagonist nifedipine has a 

similar efficacy, but lower potency, in allodynia reversal in both models. Since L-type 

VGCC are primarily on the soma and indirectly involved in neurotransmitter release, the 

inhibitory effects of L-type VGCC antagonists on nociceptive responses are theorized to act 

through modulation of post-synaptic dorsal horn neurons, and secondarily through 

projection neurons and interneurons (Kato et al., 2002).

L-type VGCC are composed of three subtypes (Cav1.1, Cav1.2 and Cav1.3), which could be 

dysregulated in DRG and spinal cord of neuropathic pain models. Cav1.2 is upregulated in 

the spinal cord and correlates with neuropathic pain states in the SNL model (Fossat et al., 

2010). However, Cav1.2 and Cav1.3 are down regulated in rat DRG neurons following 

chronic constriction injury of the sciatic nerve (Kim et al., 2001). It has been reported that 

knocking down Cav1.2 with intrathecal anti-sense or small interfering RNA can lead to a 

reversal of dorsal horn hyperexcitability and pain states in the SNL model, suggesting that 

injury-induced Cav1.2 upregulation may contribute to the maintenance of chronic pain states 

(Fossat et al., 2010). These findings are consistent with our findings, but contradict with 

findings showing that intrathecal L-type VGCC blockers (verapamil, diltiazem, and 

nimodipine) are not effective in blocking neuropathic pain states in models of diabetic, and 

vincristine-induced neuropathies (Calcutt and Chaplan 1997; Fukuizumi et al., 2003a) or 

SNL (Chaplan et al., 1994). These discrepancies may be due to differences in Cav1 subtype 

specific regulation among rat models and in species sensitivity of L-type VGCC blockers 

between rat and mouse models. In addition, various other inflammatory mediators at 

peripheral sites post-injury may elicit different patterns of excitation of phenotypically 

heterogeneous sensory neurons (Shibata et al., 1989) thus contributing to these discrepancies 

(Kato et al., 2002).

Our data indicates that P/Q-type VGCC appear to play a less critical role in modulating 

neuropathic pain states in the SNL model. Highest dose treatments of ω-agatoxin or ω-

conotoxin MVIIC, when compared with the pre-treatment level, did not inhibit pain states in 

the SNL model significantly. For the TG model, ω-agatoxin produced dose-dependent pain 

state reversal, but ω-conotoxin MVIIC failed to do so even at a much higher dose. These 

suggest that P-type VGCC may contribute to sensory processing in the TG, but not SNL 

model, while the contribution from Q-type VGCC is minimum in both models.
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This is consistent with the current literature showing that blocking spinal P/Q-type VGCC 

has no effect on mechanical allodynia and thermal hyperalgesia in chronic pain models of 

peripheral neuropathies (Chaplan et al., 1994; Yamamoto and Sakashita 1998). P/Q-type 

VGCC are expressed at the pre-synaptic terminals of afferents in laminae II–VI of spinal 

dorsal horn (Westenbroek et al., 1998). They are less likely involved in release of pain-

inducing peptides, such as substance P and CGRP, from primary afferents since they show 

little colocalization with pain-inducing peptides, and ω-agatoxin treatment does not affect 

the release of these peptides from dorsal horn neurons (Evans et al., 1996; Westenbroek et 

al., 1998). However, P/Q-type VGCC are likely participate in release of both excitatory and 

inhibitory neurotransmitters (Araque et al., 1994; Takahashi and Momiyama 1993) from 

dorsal horn interneurons. It has been reported that ω-agatoxin has a strong effect on 

polysynaptic nociceptive transmission, but a minimal effect on monosynaptic inputs from 

nociceptive C- and Aδ-fibers (Heinke et al., 2004), suggesting that P/Q-type VGCC are 

likely involved in the modulation of synaptic transmission among spinal cord interneurons 

(Araque et al., 1994; Heinke et al., 2004; McCallum et al., 2011; Park and Luo 2010; 

Takahashi and Momiyama 1993). In addition, P/Q-type VGCC in the rostral ventromedial 

medulla have been shown to contribute to tactile allodynia via modulation of descending 

facilitatory systems (Porreca et al., 2002; Urban et al., 2005). Our data indicate that 

intrathecal ω-agatoxin at a dose blocking P-type VGCC can reverse behavioral 

hypersensitivity in the Cavα2δ1 TG mice. Thus, Cavα2δ1 overexpression may induce P-type 

VGCC function changes in this model, likely in spinal interneurons and/or descending 

facilitatory pathways, that may contribute to behavioral hypersensitivity. However, the role 

of P/Q VGCC in sensory transmission is not changed post SNL as demonstrated by findings 

from in vivo spinal neuron recording (Matthews and Dickenson 2001), thus ω-agatoxin is no 

effective in the SNL model.

The antinociceptive effects of VGCC blockers from our study support a state-dependent 

function of VGCC at the spinal cord level since the drugs are effective only after SNL or 

Cavα2δ1 overexpression. This is consistent with a similar role of N-type VGCC in long-term 

potentiation of rat spinal cord neurons (Ohnami et al., 2011), and changes in functional roles 

of N-type VGCC in spinal sensory transmission after nerve injury (Matthews and Dickenson 

2001) that may contribute to behavioral hypersensitivity in animal models (Bowersox et al., 

1996; Chaplan et al., 1994; Jayamanne et al., 2013; Vanegas and Schaible 2000). Our 

findings support that different VGCC may play distinct roles in behavioral hypersensitivity 

mediated by Cavα2δ1 dysregulation. Targeting selective VGCC for pain management, even 

at the spinal level, is often associated with severe side effects due to widely distribution and 

various functional roles of VGCC (Penn and Paice 2000). However, SNL-induced Cavα2δ1 

upregulation at the pre-synaptic terminals of sensory fibers could be one form of plasticity 

that potentiates the inhibitory effects of low dose of N-type VGCC blockers on central 

sensitization (Matthews and Dickenson 2001), which could contribute to the anti-

hyperalgesic effects of low doses of N-type VGCC toxin demonstrated in our study. 

Interestingly, Cavα2δ1 has been shown to modulate the affinity and reversibility of selective 

ω-conotoxin binding to recombinant N-type VGCC in vitro (Brust et al., 1993; Mould et al., 

2004). It seems that further investigations are necessary to confirm the effects of Cavα2δ1 

upregulation on inhibitory effects of VGCC toxins in vivo. While the transient nature of the 
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anti-hyperalgesic effects of low dose toxin seems not suitable for therapeutic application, it 

maybe possible to improve the efficacy and/or duration of actions of selective VGCC toxins 

by blocking Cavα2δ1 with gabapentinoids in combination treatment of pain states. Further 

investigation regarding the beneficial effects of such combination therapy will help to 

explore the potential of this alternative approach in pain management.
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What's already known about this topic?

• It is known that increased voltage gated calcium channel (VGCC) alpha-2-

delta-1 subunit protein in either a transgenic neuronal overexpression model or a 

spinal nerve ligation model leads to behavioral hypersensitivities. It is not 

known whether spinal N-, L-, and P/Q-type VGCC contribute to the behavioral 

hypersensitivity modulated specifically by this plasticity.

What does this study add?

• Findings from this study support that different-type of VGCC have differential 

contributions to the behavioral hypersensitivity modulated by alpha-2-delta-1 

dysregulation at the spinal cord level.
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Figure 1. 
Intrathecal administration of ω-conotoxin reversed tactile allodynia similarly in Cavα2δ1 

transgenic (TG) and unilateral spinal nerve ligation (SNL) mice. Hindpaw withdrawal 

thresholds (PWT) to mechanical von Frey filament stimulation were tested prior to and after 

i.t. ω-conotoxin treatments in injury-free Cavα2δ1 TG or WT mice, and SNL or sham mice 

at least 1 week post-injury. (A) PWT in TG mice after dose-dependent treatments with ω-

conotoxin or saline for 30 min. (B) Time-dependent effects of 1.25 pM ω-conotoxin GVIA 

or saline on PWT in TG and WT mice. (C) PWT in SNL mice after dose-dependent 

treatments with ω-conotoxin GVIA or saline for 30 min. (D) Time-dependent effects of 1.25 

pM ω-conotoxin GVIA or saline in SNL or sham mice. Ip, ipsilateral to the injury; C, 

contralateral to the injury. Data presented are the means ± SEM from 7–11 mice for the ω-

conotoxin treated groups, 17–19 mice for the saline treated groups. *p<0.05, **p<0.01, 

***p<0.001 by Wilcoxon signed rank test for pair-wise comparisons or by Kruskal-Wallis 

Test with Dunn’s post-test compared with the pre-treatment level.
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Figure 2. 
Intrathecal administration of nifedipine reversed tactile allodynia similarly in Cavα2δ1 

transgenic (TG) and unilateral spinal nerve ligation (SNL) mice. Hindpaw withdrawal 

thresholds (PWT) to mechanical von Frey filament stimulation were tested prior to and after 

i.t. nifedipine treatments in injury-free Cavα2δ1 TG or WT mice, and unilateral SNL or sham 

mice at least 1 week post-injury. (A) PWT in TG mice after dose-dependent treatments with 

nifedipine or saline for 30 min. (B) Time-dependent effects of 1.25 nM nifedipine or saline 

on PWT in TG and WT mice. (C) PWT in SNL mice after dose-dependent treatments of 

nifedipine or saline for 30 min. (D) Time-dependent effects of 1.25 nM nifedipine or saline 

in SNL or sham mice. Ip, ipsilateral to the injury; C, contralateral to the injury. Data 

presented are the means ± SEM from 9–12 mice for the nifedipine treated groups, 19 mice 

for the saline treated groups. *p<0.05, **p<0.01, ***p<0.001 by Wilcoxon signed rank test 

for pair-wise comparisons or by Kruskal-Wallis Test with Dunn’s post-test compared with 

the pre-treatment level.
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Figure 3. 
Intrathecal administration of ω-agatoxin IVA reversed tactile allodynia in Cavα2δ1 

transgenic (TG), but not in the unilateral spinal nerve ligation (SNL) mice. Hindpaw 

withdrawal thresholds (PWT) to von Frey filament stimulation were tested prior to and after 

i.t. ω-agatoxin IVA treatments in injury-free Cavα2δ1 TG mice or WT mice, and SNL or 

sham mice at least 1 week post-injury. (A) PWT in TG mice after dose-dependent treatments 

with ω-agatoxin IVA or saline for 30 min. (B) Time-dependent effects of 1.25 pM ω-

agatoxin IVA or saline on PWT in TG and WT mice. (C) PWT in SNL mice after dose-

dependent treatments with ω-agatoxin IVA or saline for 30 min. (D) Time-dependent effects 

of 1.25 pM ω-agatoxin IVA or saline in SNL or sham mice. Ip, ipsilateral to the injury; C, 

contralateral to the injury. Data presented are the means ± SEM from 8 mice for the ω-

agatoxin treated groups, 17–19 mice for the saline treated groups. *p<0.05, **p<0.01, 

***p<0.001 by Wilcoxon signed rank test for pair-wise comparisons or by Kruskal-Wallis 

Test with Dunn’s post-test compared with the pre-treatment level.
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Figure 4. 
Intrathecal administration of ω-conotoxin MVIIC did not reverse tactile allodynia in 

Cavα2δ1 transgenic (TG) nor in unilateral spinal nerve ligation (SNL) mice. Hindpaw 

withdrawal thresholds (PWT) to von Frey filament stimulation were tested prior to and after 

i.t. ω-conotoxin MVIIC treatments in injury-free Cavα2δ1 TG mice or WT mice, and SNL or 

sham mice at least 1 week post-injury. (A) Time-dependent effects of 6 µM ω-conotoxin 

MVIIC or saline on PWT in TG and WT mice. (B) Time-dependent effects of 6 µM ω-

conotoxin MVIIC or saline in SNL or sham mice. Ip, ipsilateral to the injury; C, 
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contralateral to the injury. Data presented are the means ± SEM from 8–10 mice for the ω-

conotoxin MVIIC treated groups, 8–12 mice for the saline treated groups. *p<0.05, 

**p<0.01, ***p<0.001 by Kruskal-Wallis Test with Dunn’s post-test compared with the pre-

treatment level.
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