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Abstract

Motivation: Current statistical models of haplotypes are limited to panels of haplotypes whose

genetic variation can be represented by arrays of values at linearly ordered bi- or multiallelic loci.

These methods cannot model structural variants or variants that nest or overlap.

Results: A variation graph is a mathematical structure that can encode arbitrarily complex genetic

variation. We present the first haplotype model that operates on a variation graph-embedded

population reference cohort. We describe an algorithm to calculate the likelihood that a haplotype

arose from this cohort through recombinations and demonstrate time complexity linear in haplo-

type length and sublinear in population size. We furthermore demonstrate a method of rapidly

calculating likelihoods for related haplotypes. We describe mathematical extensions to allow mod-

elling of mutations. This work is an important incremental step for clinical genomics and genetic

epidemiology since it is the first haplotype model which can represent all sorts of variation in the

population.

Availability and Implementation: Available on GitHub at https://github.com/yoheirosen/vg.

Contact: benedict@soe.ucsc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Background

Statistical modelling of individual haplotypes within population

distributions of genetic variation dates back to the Kingman (1982)

n-coalescent. In general, the coalescent and other models describe

haplotypes as generated from some structured state space via recom-

bination and mutation events.

Although coalescent models are powerful generative tools, their

computational complexity is unsuited to inference on chromosome

length haplotypes. Therefore, the dominant haplotype likelihood

model used for statistical inference is the Li and Stephens (2003)

model (LS) and its various modifications. LS closely approximates

the more exact coalescent models but admits implementations with

rapid runtime.

Orthogonal to statistical models, another important frontier in

genomics is the development of the variation graph, as described in

Paten et al. (2014). This is a structure which encodes the wide variety

of variation found in the population, including many types of vari-

ation which cannot be represented by conventional models. Variation

graphs are a natural structure to represent reference cohorts of haplo-

types since they encode haplotypes in a canonical manner: as node se-

quences embedded in the graph (see Novak et al., 2016).

Dilthey et al. (2015) demonstrate the benefit of incorporating a

graph representation of population information into a model for gen-

ome inference. However, their model does not account for haplotype

phasing. In this paper, we present the first statistical model for haplo-

type modelling with respect to graph-embedded populations.

We also describe an efficient algorithm for calculating haplotype

likelihoods with respect to large reference panels. The algorithm

makes significant use of the graph positional Burrows-Wheeler trans-

form (gPBWT) index of haplotypes described by Novak et al. (2016).

2 Materials and methods

2.1 Encoding the full set of human variation
Haplotypes in the Kingman (1982) n-coalescent and Li and Stephens

(2003) models are represented as sequences of values at linearly

ordered, non-overlapping binary loci. Some authors model multial-

lelic loci (for example, single base positions taking on values of A, C,

T, G or gap) as in Lunter (2016), but all assume that the entirety of

genetic variation can be expressed by values at linearly ordered loci.

However, many types of genetic variation cannot be repre-

sented in this manner. Copy number variations, inversions or
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transpositions of sequence create cyclic paths which cannot be to-

tally ordered. Large population cohorts such as the 1000 Genomes

Project Consortium et al. (2015) project data contain simple inser-

tions, deletions and substitution at a sufficient density that these

variants sometimes overlap or nest into structures not representable

by linearly ordered sites. Two examples of this phenomenon from

1000 Genomes data [Phase 3 Variant Call Format file (VCF)] for

chromosome 22 are pictured in Figure 1.

In order to represent these more challenging types of variation,

we use a variation graph. This is a type of sequence graph—a math-

ematical graph in which nodes represent elements of sequence, aug-

mented with 50 and 30sides, and edges are drawn between sides if the

adjacency of sequence is observed in the population cohort (see

Paten et al., 2017). Haplotypes are embedded as paths through ori-

ented nodes in the graph. We are able to represent novel recombin-

ations, deletions, copy number variations or other structural events

by adding paths with new edges to the graph, and novel inserted se-

quence by paths through new nodes.

2.2 Adapting the recombination component of LS to

graphs
The Li and Stephens (2003) model (LS) can be described by an

HMM with a state space consisting of previously observed haplo-

types and observations consisting of the haplotypes’ alleles at loci.

Recombinations correspond to transitions between states and muta-

tions are modelled within the emission probabilities. Since variation

graphs encode full nucleic acid sequences rather than lists of sites we

extend the model to allow recombinations at base-pair resolution ra-

ther than just between loci.

Let G denote a variation graph. Let S Gð Þ be the set of all

possible finite paths visiting oriented nodes of G. A path h in S Gð Þ
encodes a potential haplotype. A variation graph posesses an

embedded population reference cohort H which is a multiset

of haplotypes p 2 S Gð Þ. Given a pair G;Hð Þ, we seek the like-

lihood P hjG;Hð Þ that h arose from haplotypes in H via

recombinations.

Recall that every oriented node of G is labelled with a nucleic

acid sequence. Therefore, every path h 2 S corresponds to a nucleic

acid sequence seq hð Þ formed by concatenation of its node labels.

We represent recombinations between haplotypes by assembling

subsequences of these sequences seq hð Þ for h 2 H. We call a

concatenation of such subsequences a recombination mosaic. This is

pictured in Figure 2.

We can assign a likelihood to a mosaic x by analogy with

the recombination model from LS. Assume that nucleotide in x

has precisely one successor in each p 2 H to which it could

recombine. Then, between each base pair, we assign a probability

pr of recombining to a given other p 2 H, and therefore a prob-

ability 1� jHj � 1ð Þprð Þ of not recombining. Write pc for

1� jHj � 1ð Þprð Þ.
By the same argument underlying the LS recombination model,

we then we have a probability of a given mosaic having arisen from

G;Hð Þ through recombinations:

P xjG;Hð Þ ¼ pR xð Þ
r pjxj�R xð Þ

c (1)

where jxj is the length of x in base pairs and R xð Þ the number of re-

combinations in x. We will use this to determine the probability P

hjG;Hð Þ for a given h 2 S Gð Þ, noting that multiple mosaics x can

correspond to the same node path h 2 S Gð Þ.
Given a haplotype h 2 S Gð Þ, let v hð Þ be the set of all mosaics

involving the same path through the graph as h. The law of total

probability gives

P hjG;Hð Þ ¼
X

x2v hð ÞP xjG;Hð Þ (2)

¼
X

x2v hð Þp
jhj�R xð Þ
c pR xð Þ

r ¼ pjhjc

X
x2v hð Þ

pr

pc

� �R xð Þ
(3)

Let q :¼ pr

pc
; then P hjG;Hð Þ is proportional to a qR xð Þ-weighted enu-

meration of x 2 v hð Þ.
We can extend this model by allowing recombination rate p nð Þ

and effective population size jHjeff nð Þ to vary across the genome ac-

cording to node n 2 G in the graph. Varying the effective population

size allows the model to remain sensible in regions traversed mul-

tiple times by cycle-containing haplotypes. In our basic implementa-

tion we will assume that p nð Þ is constant and jHjeff nð Þ ¼ jHj;
however varying these parameters does not add to the computa-

tional complexity of the model.

2.3 A linear-time dynamic programming for likelihood

calculation
We wish to calculate the sum

P
x2v hð Þq

R xð Þ efficiently. (See (3) above)

We will achieve this by traversing the node sequence h left-to-right,

computing the sum for all prefixes of h. Write hb for the prefix of h

ending with node b.

DEFINITION 1. A subinterval s of a haplotype h is a contiguous

subpath of h. Two subintervals s1; s2 of haplotypes h1; h2 are con-

sistent if s1 ¼ s2 as paths, however we distinguish them as separate

objects.

DEFINITION 2. Given a indices a; b of nodes of a haplotype h, Sa
b is

the set of subintervals s� of p 2 H such that

1. there exists a subinterval s of h which begins with a, ends with b

and is consistent with s�

2. there exists no such subinterval of p which begins with a� 1,

the node before a in h (left-maximality)

DEFINITION 3. For a given prefix hb of h and a subinterval s� of a

haplotype p 2 H, define the subset v hð Þs� � v hð Þ as the set of all mo-

saics whose rightmost segment arose as a subsequence of s�.

The following result is key to being able to efficiently enumerate

mosaics:

Fig. 1. Two examples of non-linearly orderable loci in a graph of 1000

Genomes variation data for chromosome 22 which form overlapping or

nested sites
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CLAIM 1. If s1; s2 2 Sa
b for some a, then there exists a

recombination-count preserving bijection between v hbð Þs1
and

v hbð Þs2
.

PROOF. See Supplementary Material.

COROLLARY 1. If we define

Rb sið Þ :¼
X

x2v hbð Þsi
qR xð Þ (4)

then Rb s1ð Þ ¼ Rb s2ð Þ if s1; s2 2 Sa
b for some a. Call this shared value

Rb að Þ.
DEFINITION 4. Ab is the set of all nodes a 2 G such that Sa

b is

nonempty.

Using these results, the likelihood P hbjG;Hð Þ of the prefix hb

ending at index b can be written as

P hbjG;Hð Þ ¼ pjhb j
c

X
si
Rb sið Þ ¼ pjhb j

c

X
a2Ab
jSa

bRb að Þ (5)

Let b� 1 represent the node preceding b in h; we wish to show

that if we know Rb�1 að Þ for all a 2 Ab�1, we can calculate Rb að Þ for

all a 2 Ab in constant time with respect to jhj. This can be recog-

nized by inspection of the following linear transformation:

Rb að Þ ¼ qfs w; ‘ð Þ Aþ Bð Þþ

1a6¼b 1� qð Þ ft ‘ð ÞRb�1 að Þþð

fs w; ‘ð Þ þ ft ‘ð Þ
w

AÞ (6)

where w ¼
P

ajSa
bj, fs w; ‘ð Þ :¼ 1þ w� 1ð Þqð Þ‘�1, ft ‘ð Þ :¼ 1� qð Þ‘�1,

and A;B are the jAb�1j-element sums

A :¼
X

a2Ab�1
jSa

bjRb�1 að Þ; (7)

B :¼
X

a2Ab�1
jSa

b�1j � jSa
bj

� �
Rb�1 að Þ (8)

Proof that (6) computes Rb �ð Þ from Rb�1 �ð Þ is straightforward but

lengthy and therefore deferred to the Supplementary Material.

If we assume memoization of the polynomials fs h; ‘ð Þ; ft ‘ð Þ, and

knowledge of w; ‘ and all jSa
bj’s, then all Rb að Þ’s can be calculated to-

gether in two shared jAb�1j-element sums (to calculate A and Aþ B)

followed by a single sum per Rb að Þ. Therefore, by computing

increasing prefixes hb of h, we can compute P hjG;Hð Þ in time

complexity which is O n �mð Þ in n ¼ jhj, and m ¼ maxbjAbj. The

latter quantity is bounded by jHj in the worst theoretical case;

we will show experimentally that runtime is asymptotically sublin-

ear in jHj.

2.4 Using the gPBWT to enumerate equivalence classes

in linear time
The gPBWT index described by Novak et al. (2016) is a succinct

data structure which allows for linear-time subpath search in a vari-

ation graph. This is graph analogue of the positional Burrows

Wheeler transform by Durbin (2014) which is used in the Lunter

(2016) fast implementation of the Viterbi algorithm in the LS model.

Like other Burrows-Wheeler transform variants, the gPBWT pos-

sesses a subsequence search function which returns intervals in a

sorted path index.

Novak et al. (2016) prove that the gPBWT allows O nð Þ query of

the number of subintervals from a set of graph-embedded paths con-

taining a sequence of length n. Therefore, for any indices a; b in a

path h we can compute the following quantity in O b� að Þ time.

DEFINITION 5. Ja
b :¼ the number of subpaths in H matching h be-

tween nodes a and b.

Since we can cache the search interval used to compute Ja
b from

the gPBWT, we can also calculate Ja
b in O 1ð Þ time given that we

have already computed Ja
b�1. This is important because

CLAIM 2. jSa
bj ¼ Ja

b � Ja�1
b

Proof. By straightforward manipulation of definitions 2 and 5.

And therefore, if we have already calculated fjSa
b�1j : a 2 Ab�1g,

then in order to compute fjSa
bj : a 2 Abg, we need only perform j

Ab�1j O 1ð Þ extensions of the gPBWT search intervals used to com-

pute the jSa
b�1j’s and one additional O 1ð Þ query to compute jSb

bj.
Therefore, we can compute all nonzero values jSa

bj, for indices a

� b of h, using jAb�1j þ 1 O 1ð Þ gPBWT search interval extensions

for each node b 2 h. This makes the calculation of all such nonzero

jSa
bj’s calculable in O n �mð Þ time overall, where n ¼ jhj and

m ¼ maxbjAbj. This result, combined with the results of Section 2.3,

show that we can calculate P hjG;Hð Þ in O n �mð Þ time, for n ¼ jhj
and m ¼ maxbjAbj.

2.5 Modelling mutations
We can assign to two haplotypes h; h0 the probability Pm hjh0ð Þ that

h arose from h0 through a mutation event. As in LS model, we can

assume conditional independence properties such that

Ptot hjG;Hð Þ ¼
X

h02seq Gð ÞPm hjh0ð ÞPr h0jG;Hð Þ (9)

It is reasonable to make the simplifying assumption that Pm hjh0ð Þ ¼ 0

unless h0 differs from h exclusively at short, non-overlapping substi-

tutions, indels and cycles since more dramatic mutation events are

vanishingly rare. This assumption is implicitly contained in the

n-coalescent and LS models by their inability to model more complex

mutations.

Fig. 2. The labelled path shows the recombination mosaic x superimposed on the embedded haplotypes H in our 1000 Genomes project chr 22 graph; below, x

is mapped onto its nucleic acid sequence
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Detection of all simple sites in the graph traversed by h can be

achieved in linear time with respect to the length of h. The number

of such paths remains exponential in the number of simple sites.

However, our model allows us to perform branch-and-bound type

approaches to exploring these paths. This is possible since we can

calculate upper bounds for likelihood from either a prefix, or from

interval censored haplotypes where we do not specify variants

within encapsulated regions in the middle of the path.

Furthermore, it is evident from our algorithm that if two paths

share the same prefix, then we can reuse the calculation over this

prefix. If two paths share the same suffix, in general we only need to

recompute the jSa
bj values for a small number of nodes. This is dem-

onstrated in Section 4.2.

3 Implementation

We implemented the algorithms described in Cþþ, building on the

variation graph toolkit vg by Garrison (2016). This is found in the

‘haplotypes’ branch at https://github.com/yoheirosen/vg. No com-

parable graph-based haplotype models exist, so we could not pro-

vide comparative performance data; absolute performance on a

single machine is presented instead.

4 Results

4.1 Runtime for individual haplotype queries
We assessed time complexity of our likelihood algorithm using the

implementation described above. Tests were run on single threads of

an Intel Xeon X7560 running at 2.27 GHz.

To assess for time dependence on haplotype length, we measured

runtime for queries against a 5008 haplotype graph of human

chromosome 22 built from the 1000 Genomes Phase 3 VCF on

the hg19 assembly created using vg and 1000 Genomes Project

Consortium et al. (2015) project data. Starting nodes and haplotypes

at these nodes were randomly selected, then walked out to specific

lengths. In our graph, 1 million nodes correspond, on average, to

16.6 million base pairs. Reported runtimes are for performing

both the rectangular decomposition and likelihood calculation steps

(Fig. 4).

The observed relationship (see Fig. 4) of runtime to haplotype

length is consistent with O nð Þ time complexity with respect to

n ¼ jhj.
We also assessed the effect of reference cohort size on runtime.

Random subsets of the 1000 Genomes data were made using

vcftools (Danecek et al., 2011) and our graph-building process was

repeated. Five replicate subset graphs were made per population size

with the exception of the full population graph of 2504 individuals.

We observe (see Fig. 5) an asymptotically sublinear relationship

between runtime and reference cohort size.

4.2 Time needed to compute the rectangular

decomposition of a haplotype formed by a

recombination of two previously queried haplotypes
The assessments described above are for computing the likelihood of

a single haplotype in isolation. However, haplotypes are generally

similar along most of their length. It is straightforward to generate

rectangular decompositions for all haplotypes h 2 H in the popula-

tion reference cohort by a branching process, where rectangular de-

compositions for shared prefixes are calculated only once. This will

capture all variants observed in the reference cohort.

Haplotypes not in the reference cohort can then be generated

through recombinations between the h 2 H. If this produces another

haplotype also in H, it suffices to recognize this fact. If not, then

given that h is formed by a recombination of h1 and h2, then h must

contain some sequence of nodes c! j contained in neither h1 nor

h2. We only need to recalculate Sa
b for a � j � b.

We have implemented methods to recognize these nodes and per-

form the necessary gPBWT queries to build the rectangular decom-

position for h. The distribution of time taken (in milliseconds) to

generate this new rectangular decomposition for randomly chosen

h1;h2 and recombination point is shown in Figure 6.

Mean time is 141 ms, median time 34 ms, first quartile time

12 ms and third quartile time 99 ms. To compute a rectangular de-

composition from scratch mean time is 71 160 ms, first quartile time

68 690 ms and third quartile time 73 590 ms.

This rapid calculation of rectangular decompositions formed by re-

combinations of already-queried haplotypes is promising for the feasibil-

ity of a mutation model or of sampling the likelihoods of large numbers

of haplotypes. Similar methods for the likelihood computation using

this rectangular decomposition are a subject of our current research.

Fig. 3. A sketch of the flow of information in the likelihood calculation algo-

rithm described. Blue arrows a represent the rectangular decomposition, R�ð�Þ
are prefix likelihoods

Fig. 4. Runtime (s) versus haplotype length (nodes) for Chr 22 1000 Genomes

data. Line with slope 1:01 and R2 ¼ 0:972 was fitted to samples with length

>50 000 nodes in the log-log plot. This supports a OðnÞ time complexity with

respect to haplotype length
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4.3 Qualitative assessment of the likelihood function’s

ability to reflect rare-in-reference features in reads
We used vg to map the 1000 Genomes low coverage read set for in-

dividual NA12878 on chromosome 22 against the variation graph

described previously. 1 476 977 reads were mapped. Read likeli-

hoods were computed by treating each read as a short haplotype.

These likelihoods were normalized to ‘relative log-likelihoods’ by

computing their log-ratio against the maximum theoretical likeli-

hood of a sequence of the same length. An arbitrary value of 10�9

was used for precomb.

We define a read to contain n ‘novel recombinations’ if it is a

subsequence of no haplotype in the reference, but it could be made

into one using a minimum of n recombination events. We define the

prevalence of the rarest variant of a read to be the lowest percentage

of haplotypes in the index which pass through any node in the read’s

sequence.

We segregated our set of mapped reads according to these fea-

tures. We make three qualitative observations, which can be

observed in (Fig. 7). First, the likelihood of a read containing a novel

recombination is lower than one without any novel recombinations.

Second, this likelihood decreases as novel recombinations increase.

Third, the likelihood of a read decreases with decreasing prevalence

of its rarest variant.

A further comparison (Fig. 8) of these same mapped reads

against reads which were randomly simulated without regard to

haplotype structure shows that the majority of mapped reads from

NA12878 score are assigned higher relative log-likelihoods than the

majority of randomly simulated reads.

5 Conclusions

We have introduced a method of describing a haplotype with respect

to the sequence it shares with a variation graph-encoded reference

cohort. We have extended this into an efficient algorithm for haplo-

type likelihood calculation based on the gPBWT described by

Novak et al. (2016). We applied this method to a full-chromosome

graph consisting of 5008 haplotypes from the 1000 Genomes data

set to show that this algorithm can efficiently model recombination

with respect to both long sequences and large reference cohorts.

Fig. 5. Runtime (s) versus reference cohort size (diploid individuals) for

chromosome 22 1000 Genomes data. Line with slope 0:27 and R2 ¼ 0:888

was fitted to samples with population size >300 individuals in the log-log

plot. This supports an asymptotically sublinear time complexity with respect

to reference cohort size

Fig. 6. Distribution of times (in milliseconds) required to recompute the rect-

angular decomposition of a haplotye given that it was formed by recombin-

ation of two haplotypes for which rectangular decompositions have been

constructed. This graph omits 0.6% of observations which are outliers be-

yond 1 s of time

Fig. 7. Left: density plot of relative log-likelihood of reads not containing vari-

ants below 5% prevalence or novel recombinations (black line) versus reads

containing novel recombinations. Right, density plot of relative log-likelihood

of reads not containing variants below 5% prevalence or novel recombin-

ations (black line) versus reads containing variants present at under 5%

prevalence and under 1% prevalence

i122 Y.Rosen et al.
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This is an important proof of concept for translating haplotype

modelling to the breadth of genetic variant types and structures rep-

resentable on variation graphs.

Our basic algorithm does not directly model mutation, however

we describe an extension which does. Making this extension compu-

tationally tractable will depend on being able to very rapidly com-

pute likelihoods of sets of similar haplotypes. We demonstrate that

our algorithm can be modified to compute rectangular decom-

positions for haplotypes related by a recombination event in

millisecond-range times. We have also devised mathematical meth-

ods for recomputing likelihoods of similar haplotypes which take

advantage of analogous redundancy properties; however, they have

yet to be implemented and tested. However, we anticipate that we

will be able to compute likelihoods of large sets of related haplo-

types on a time scale which makes modelling mutation feasible.
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