Lawrence Berkeley National Laboratory

Recent Work

Title
Poster reception---Optimized collectives for PGAS languages with one-sided communication

Permalink
https://escholarship.org/uc/item/2p00516t

ISBN
9780769527000

Authors
Bonachea, Dan
Hargrove, Paul
Nishtala, Rajesh
et al.

Publication Date
2006

DOI
10.1145/1188455.1188604

Peer reviewed
Optimized Collectives for PGAS Languages with One-Sided Communication

Dan Bonachea, Rajesh Nishtala, Paul Hargrove, Mike Welcome, Kathy Yelick

Partitioned Global Address Space Languages

- Partitioned Global Address Space (PGAS) Languages
 - Global pointers and distributed arrays
 - User-controlled access to data array codes
 - Communicate using implicit reads & writes of remote memory

- Languages: UPC, Titanium, Co-Array Fortran
 - Productivity benefits of shared-memory programming
 - Competitive performance on distributed memory
 - Use Single Program Multiple Data (SPMD) control
 - Fixed number of compute threads
 - Global synchronization, barriers, collectives
 - Exploit fast one-sided communication
 - Individual accesses and bulk copies
 - Berkeley implementations use GASNet

GASNet Portability

- Native network hardware support:
 - Quadrics QM6Ex (Irix,Elan4)
 - Clx X1 - Gray shmem
 - SGI I10 - 3G shmem
 - Clx X3 - Gray Ports (intranet)
 - Dolphin - SCI
 - Infineon - Marvell VAPI
 - Meyrin Myrinet - GM-1 and GM-2
 - IBM Colony and Federation - LAPI
 - Portable network support:
 - Ethernet, UDP works with any TCP/IP
 - MPI 1: portable imt for other HPC systems
 - Berkeley UPC, Titanium & GASNet highly portable
 - Runtime and generated code all ANSI C
 - New platform ports in 2-3 days
 - New network hardware 2-3 weeks
 - CPUs: all, Itanium, Opteron, Athlon, Alpha
 - PowerPC, MIPS, PA-RISC, SPARC, T3E, X-1, 3K-6
 - Other Unix, FreeBSD, NetBSD, Tru64, AIX, IRIX, HPUX, Solaris, MS-Windows/Cygwin
 - Mac OSX, Unicos, BeOS/Catamount, BlueGene

GASNet on the Cray XT3

- GASNet Put/Get operations implemented over Portals Put/Get
 - Remote access region covered by Portals Memory Descriptor
 - Portals Events used for GASNet operation completion
 - Put/Get injection throttled to prevent local event queue overflow
 - No remote thread generation
 - Local Put source and Get destination regions:
 - copied through pre-pinned bounce buffers for small messages
 - Performance of local remote messages = 1 MB

- GASNet Active Message layer currently prototyped over MPI
 - Port to native Portals-based AM is underway
 - UPC LU Application:
 - of remote memory
 - Superset of collective support in UPC and Titanium languages
 - Extensible to variable-contribution and teams-based subset collectives
 - Global and private address space
 - GASNet Communication System
 - Per-thread sync: data has affinity to producer or consumer (MPI style)
 - Global sync: barrier-like data sync (more efficient than full barrier)
 - Extensible infrastructure to allow for future auto-tuning features

- Productivity benefits of shared-memory programming
 - Exploit fast one-sided communication
 - One-sided, lightweight communication semantics
 - Eliminates masking & redundant overheads
 - Better match to hardware capabilities
 - Leverages widespread availability support for remote direct memory access
 - Active Messages support provides extensibility

- Communication micro-benchmarks show GASNet consistently matches or outperforms MPI
 - One-sided, lightweight communication semantics
 - Eliminates masking & redundant overheads
 - Better match to hardware capabilities
 - Leverages widespread availability support for remote direct memory access
 - Active Messages support provides extensibility

- Algorithm selection based on hardware characteristics & network state
 - Eventually enable auto-tuning – find best algorithm & params
 - Leverage hardware collective support (eg. hardware broadcast)

- GASNet put+ack consistently matches or outperforms MPI
 - Better match to hardware capabilities

- Active Messages support provides extensibility
 - Enables network specific tuning & optimization
 - Algorithm selection based on hardware characteristics & network state
 - Eventually enable auto-tuning – find best algorithm & params
 - Leverage hardware collective support (eg. hardware broadcast)

- GASNet put_nb bulk, slab-based and pencil-based implementations - Slab best on XT3
 - New platform ports in 2-3 days
 - New network hardware 2-3 weeks

- Leverage hardware collective support (eg. hardware broadcast)
 - Supports multiple overlapped collectives of any variety

- NAS Fortran/MPI
 - Bandwidth (MB/sec)
 - InfiniBand / Opteron / 64
 - Roundtrip Latency Comparison
 - Time (microseconds)

- NAS Fortran/MPI
 - Message Size (bytes)
 - InfiniBand / Opteron / 64
 - Time (microseconds)

- InfiniBand / G5
 - Bandwidth (MB/sec)
 - Message Size (bytes)

- Cray XT3
 - Performance Comparison
 - Time (microseconds)
 - Transfer Size (Bytes)

- Cray XT3 Porting characterization
 - Data Perpetual Rate (MB/s)
 - Data Perpetual Rate (MB/s)