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spVC for the detection and interpretation 
of spatial gene expression variation
Shan Yu1*†    and Wei Vivian Li2*†    

Background
Advances in spatially resolved transcriptomics technologies have enabled transcriptome 
profiling in single cells while retaining the spatial information, providing new opportuni-
ties to understand gene expression heterogeneity in the spatial contexts. A critical task in 
the analysis of spatial transcriptomics data is to discover spatially variable genes (SVGs) 
that have distinct expression patterns across different spatial locations [1]. Spatial varia-
tion of gene expression can reflect the state of cells in specific locations, ligand-receptor 
interactions, and cell-cell communications [2, 3]. Therefore, SVGs are also important for 
understanding disease microenvironment and identifying potential therapeutic targets 
[4]. For example, Wang et al. [5] identified spatially variable metabolic genes in tumor 
tissues of prostate cancer patients and suggested further investigation of spatial meta-
bolic heterogeneity to guide targeted therapy; Chen et  al. [6] identified genes whose 
expression levels increased gradually with accumulating amyloid plaques in spatial tran-
scriptomics data for studying Alzheimer’s disease. In addition to their capacity for yield-
ing valuable biological insights, SVGs also play significant roles in the dimensionality 
reduction of spatial data, which is a necessary step in standard spatial transcriptomics 
analysis [2, 7].

Abstract 

Spatially resolved transcriptomics technologies have opened new avenues for under-
standing gene expression heterogeneity in spatial contexts. However, existing meth-
ods for identifying spatially variable genes often focus solely on statistical significance, 
limiting their ability to capture continuous expression patterns and integrate spot-level 
covariates. To address these challenges, we introduce spVC, a statistical method based 
on a generalized Poisson model. spVC seamlessly integrates constant and spatially 
varying effects of covariates, facilitating comprehensive exploration of gene expression 
variability and enhancing interpretability. Simulation and real data applications confirm 
spVC’s accuracy in these tasks, highlighting its versatility in spatial transcriptomics 
analysis.
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Diverse computational methods have been developed for the identification of SVGs 
from spatial transcriptomics data [2, 8–13]. Since observed expression levels of a gene 
may present spatial variation due to random noises, the identification of SVGs is typi-
cally formulated as a statistical problem to determine if the observed spatial variation 
is statistically significant. For example, SpatialDE [14] uses normalized expression 
levels of a gene to construct a Gaussian process regression model, where the spa-
tial locations are incorporated through a spatial covariance function. The statistical 
significance of spatial variation is evaluated by a likelihood ratio test between mod-
els with and without the spatial covariance. SPARK [15] uses a generalized Poisson 
regression model to directly fit the read counts, and also uses the Gaussian process to 
model spatial correlation patterns. Then, SPARK evaluates the statistical significance 
using a score test. The SPARK-X method [16], on the other hand, uses a non-paramet-
ric test to evaluate the similarity between the gene expression covariance matrix and 
the spatial distance covariance matrix. The MERINGUE method [17] uses the spa-
tial autocorrelation measure, Moran’s I, and its statistical significance to quantify the 
association between gene expression and spatial locations.

Most existing methods focus on the identification of SVGs based on their statistical 
significance, and are subject to two major limitations. First, it is difficult to quantify 
how gene expression changes in a spatial domain with existing models. The continu-
ous expected expression patterns across the spatial domain cannot be easily estimated 
by the generalized regression models with Gaussian processes or non-parametric 
methods. Second, most existing methods cannot incorporate cell-level (or spot-level) 
covariates in the modeling process, making it challenging to comprehensively analyze 
the dependence between gene expression and distinct types of cellular characteristics, 
such as spatial locations and cell types or states. Another drawback of methods una-
ble to account for cell/spot covariates lies in their incapability to distinguish between 
cell-type-specific genes, which exhibit spatial variation due to the non-random distri-
bution of different cell types, and genes that, while not inherently cell-type-specific, 
display spatial variation resulting from local cellular communications or other under-
lying factors.

To address the above challenges in identifying and interpreting SVGs from spatial 
transcriptomics data, we propose a statistical method named spVC, which is based on 
a generalized Poisson model that allows spatially Varying Coefficients of cell/spot-level 
covariates. We would like to summarize three key novel features of spVC. First, spVC 
integrates constant and spatially varying effects of cell/spot-level covariates, enabling 
a comprehensive exploration of how spatial locations and other covariates collectively 
contribute to gene expression variability. By incorporating various sources of informa-
tion such as cell types, cell states, or regulation factor activities, spVC serves as a ver-
satile tool for investigating diverse biological questions. Second, spVC offers statistical 
inference tools for each of the constant or spatially varying coefficient, providing a sta-
tistically principled approach to selecting different types of SVGs. Third, in addition to 
statistical significance, spVC is able to estimate the expected effect of spatial locations 
and other covariates on gene expression in the designated spatial domain. This addi-
tional layer of information facilitates the characterization and interpretation of identified 
SVGs, enhancing our ability to understand their functional implications. In summary, 
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we anticipate that the spVC method will improve our capability to detect, interpret, and 
comprehend variation of gene expression with spatial transcriptomics data.

Results
An overview of the spVC method

The spVC method aims to provide a flexible spatial regression model and correspond-
ing inference tool to elucidate the relationships between gene expression, spatial 
locations, and other cell/spot-level covariates in a streamlined approach. To high-
light the importance of incoporating covariate information in the interpretation of 
SVGs, we consider three hypothetical gene examples corresponding to three differ-
ent scenarios (Fig. 1A). We assume the studied spatial domain is a square region, and 
there is one spot-level covariate which represents the proportion of a specific cell 
type at the spots (Fig. 1B). In scenario 1, the gene’s true expression only depends on 
a constant (i.e., spatially invariant) effect of the cell type proportion, and there are 
no other factors that would introduce additional spatial patterns. Since the cell type 
proportion changes in the spatial domain, the observed read counts would present 
spatial variation (Fig.  1C). In scenario 2, the gene’s expression depends on spatially 
varying effects of the cell type proportion (Fig.  1D), and there are no other factors 

Fig. 1  Spatial variation of gene expression introduced by different factors. A Three hypothetical genes with 
observed spatial variation introduced by different underlying factors. “Constant effect” and “Spatially varying 
effect” refer to constant and spatially varying coefficients of the covariate, respectively. “Residual spatial effect” 
refers to spatial effects independent of the covariate. A “ � ” means that the effect is present. B Spot-level cell 
type proportions. C Read counts generated from Poisson distributions, whose mean parameters are based 
on the scenarios specified in A. For simplicity, we assume no difference in library size across spots. D Spatially 
varying effects of the cell type proportion in scenario 2. The average effect is 0 in this square domain so it 
remains identifiable. E Residual spatial effects in scenario 3. The average effect is 0 in this square domain so it 
remains identifiable from the constant effect of cell type proportion
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that would introduce additional spatial patterns. In scenario 3, the gene’s expression 
depends on a constant effect of the cell type proportion, and there exists a residual 
spatial effect that is independent of the cell type proportion (Fig. 1E). Even though the 
three example genes all present spatial variation in their observed counts (Fig.  1C), 
the underlying factors that regulate gene expression are apparently different. In real 
data applications, only the read counts are observed, so statistical tools are in need 
to disentangle the relationships between gene expression, spatial locations, and other 
available covariates.

The spVC method requires spatial transcriptomics data (the read count matrix and 
the corresponding spatial location matrix) and spot-level covariate data as its input 
(Fig.  2A). For every gene, spVC constructs a generalized Poisson regression model 
with the response variable being the read counts, and the explanatory variables being 
the spatial coordinates and cell/spot-level covariates (Methods; Fig. 2B). For example, 
the covariates could be cell type labels (categorical), cell type proportions (continu-
ous), or activities of relevant regulation factors (continuous or binary). To improve 
the interpretation of spatial expression variation, spVC decomposes the expected 
gene expression in every cell/spot into four components: the intercept, the constant 
(spatially invariant) effect of the covariates, the spatially varying effects of the covari-
ates, and the unexplained residual spatial effects. The estimation of the spVC model 
is achieved using a Quasi-Poisson approach to account for potential over-dispersion 
in spatial transcriptomics data. For the estimation of spatial effects, spVC uses mul-
tivariate splines and is flexible to learn diverse spatial patterns. For each constant or 
spatial effect, spVC also evaluates its statistical significance and outputs the corre-
sponding P value (Fig. 2C-D).

Fig. 2  Overview of the spVC method. A The required input of spVC includes the spatial transcriptomics data 
(the read count matrix and the corresponding spatial location matrix) and the spot-level covariate data. The 
covariates should be provided for the same spots observed in the spatial transcriptomics data. B The four 
main steps in spVC’s estimation procedure. C The two-step testing procedure used in this article. D For each 
gene, spVC outputs the estimated constant and spatial effects as well as their corresponding P values
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spVC accurately detects spatial gene expression patterns given spot‑level covariates

The observed gene expression levels in real spatial transcriptomics data reflect the com-
bined effects of cell/spot-level covariates and any residual spatial patterns unexplained by 
available covariates, but the ground truth information remains unknown. Therefore, we 
first designed a simulation study to generate synthetic spatial transcriptomics data with 
known underlying expression patterns (see the “Methods” section for details). Using our 
simulation procedure, we generated five datasets with 20,000 genes and varying spot 
numbers ( 500, 1000, 2000, 5000, and 8000 ). The corresponding spatial coordinates and 
spot covariates (proportions of four cell types) were directly sampled from a real spatial 
transcriptomics dataset of mouse cerebellum [18] (Fig. 3A). In every simulated dataset, 
we considered four gene groups, each with 5000 genes. In Group 1, the expected gene 
expression did not depend on cell type proportions or spatial coordinates (no covariate 
effect + no residual spatial effect). In Group 2, the expected gene expression depended 
on cell type proportions but not on spatial coordinates (constant covariate effect + no 
residual spatial effect). In Group 3, the expected gene expression depended on both cell 
type proportions and spatial coordinates (constant covariate effect + residual spatial 
effect). In Group 4, in addition to the assumption on Group 3, the coefficients of two 
cell type proportions were spatially varying (spatially varying covariate effect + residual 
spatial effect).

We applied spVC and another four methods developed for SVG detection, SpatialDE 
[14], SPARK [15], SPARK-X [16], and MERINGUE [17], to the simulated data. SpatialDE 
and MERINGUE cannot directly account for covariate information in their SVG detec-
tion models, so the covariates were regressed out from normalized gene expression 
before SVG detection (Methods). We first calculated their type I errors and statistical 
power for detecting the residual spatial effects, after applying a threshold of 0.05 to P 
values adjusted by the Benjamini-Hochberg (BH) procedure [19]. We found that spVC, 

Fig. 3  Comparison of spVC and four alternatives methods on simulated data. A Proportions of the four cell 
types in the simulated spatial transcriptomics data with 5000 spots. B Statistical power of the five methods on 
genes in Groups 3 and 4 for detecting residual spatial gene expression variation in the presence of covariates
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SpatialDE, and MERINGUE could control the type I errors below 0.05 for genes in both 
Group 1 and Group 2 (Additional file  1: Fig. S1), indicating that they are able to dis-
tinguish between the covariate effects and unexplained residual spatial effects. SPARK 
achieved a good control of type I error on Group 2 when the spot number was relatively 
small, but had an error of 0.063 and 0.241 when spot number was 5000 and 8000, respec-
tively. SPARK-X would identify most genes in Groups 1 and 2 as SVGs after accounting 
for the cell type proportion information, even though the simulated gene expression did 
not directly depend on spatial coordinates. As for the statistical power, spVC consist-
ently demonstrated higher power than SpatialDE and MERINGUE, and both spVC and 
SpatialDE had a power > 0.9 when the spot number was a least 5000 (Fig. 3B).

Next, using genes in Group 4, we evaluated spVC’s power in detecting the spatially 
varying effects of cell type proportions. The other four methods were not designed for 
this goal and, as a result, were not included in this analysis. In our simulation, the pro-
portions of cell type 2 and cell type 4 had spatially varying effects on the expected gene 
expression in Group 4, and spVC had a power > 0.785 for both cell types when the spot 
number was at least 5000 (Fig. 4A). We also noticed a consistent trend where the power 
for cell type 2 remained higher than that for cell type 4. This observation can likely be 
attributed to the higher abundance of the former in the simulated spatial data.

An important feature of spVC is its ability to simultaneously estimate covariate effects 
and residual spatial effects on gene expression in addition to evaluating the statisti-
cal significance of spatial variation. To demonstrate the estimation ability of spVC, we 
selected one example gene from each of the four groups (from the dataset with 5000 
spots). Gene 1 was from Group 1 without any covariate or spatial effects; the expres-
sion of Gene 2 (from Group 2) depended on the proportions of cell types 1 and 2 (with 
constant effects); the expression of Gene 3 (from Group 3) depended on the proportions 
of cell types 3 and 4 (with constant effects) and residual spatial effects; the expression 
of Gene 4 (from Group 4) depended on the proportions of cell types 2 and 4 (with spa-
tially varying effects) and residual spatial effects (Fig. 4B). It was not possible to distin-
guish these different effects by visualizing the normalized gene expression data (Fig. 4C). 
However, the residual spatial effects estimated by spVC correctly reflected the fact that 
only the expression of Gene 3 and Gene 4 directly depended on spatial coordinates 
(Fig. 4D–E). The P values of these four genes were 9.533× 10−1, 1.000, 1.268× 10−7 and 
2.220× 10−16 , respectively. In addition, spVC was able to estimate the spatially varying 
coefficients of cell type proportions for Gene 4, which were in close agreement with the 
true coefficients (Fig. 4F).

Besides the above individual gene examples, we compared the complete sets of true 
and estimated values for different components. This encompassed intercepts (for all 
4 groups; Additional file 1: Fig. S2), constant effects of the covariates (for Groups 2 
to 4; Additional file 1: Fig. S3), spatially varying effects of the covariates (for Group 4; 
Additional file 1: Fig. S4), and unexplained residual spatial effects (for Groups 3 and 4; 
Additional file 1: Fig. S5). The results provided further validation of spVC’s capacity to 
accurately discern the directions of association between gene expression and covari-
ates, as well as its precision in estimating covariates’ and residual spatial effects across 
genes. Notably, in Group 4, as spot size increased from 500 to 8000, the median Pear-
son correlation between true and estimated residual spatial effects (evaluated at the 
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observed spots) rose from 0.75 to 0.95. Similarly, the median correlation between true 
and estimated covariates’ spatial effects increased from 0.89 to 0.96. These findings 
underscore the importance of sample size in spatial variation analysis of sparse tran-
scriptomics data.

In addition to estimation and inference accuracy, we also summarized the compu-
tational cost on the simulated datasets (Additional file 1: Fig. S6). The fastest method 
was SPARK-X, which uses a non-parametric approach. It finished running on all 
four datasets within 1 minute. spVC was the second fastest, and finished running 
on all four datasets within 1 h. On the largest dataset with 8000 spots, SpatialDE, 
MERINGUE, and SPARK took 3.10, 16.60, and 27.25 h to complete, respectively. In 
terms of maximum memory usage, while spVC initially consumed more memory than 

Fig. 4  spVC’s estimation and inference on simulated data. A spVC’s power in detecting spatially varying 
covariate effects. B True log-transformed expected expression, µ(x i , si) (i = 1, . . . , 5000) , of the four 
example genes. C Relative expression levels of the four example genes based on the simulated data. 
The simulated counts were normalized by library size, log-transformed, and then scaled by the min-max 
normalization to obtain the relative expression levels. D True spatial effects, γ0(si) (i = 1, . . . , 5000) , of 
the four example genes. Data were scaled to the range of [−1, 1] for visualization. E spVC’s Estimated 
spatial effects, γ̂0(si) (i = 1, . . . , 5000) , of the four example genes. Data were scaled to the range of 
[−1, 1] for visualization. F (Top) True and estimated spatially varying effects of cell type 2’s proportion, 
γ2(si) and γ̂2(si) (i = 1, . . . , 5000) , of Gene 4. (Bottom) True and estimated spatially varying effects of cell 
type 4’s proportion, γ4(si) and γ̂4(si) (i = 1, . . . , 5000) , of Gene 4. Data were scaled to the range of [−1, 1] for 
visualization
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the other methods for smaller datasets, its memory requirement increased at a slower 
rate as the number of spots reached 8000.

Lastly, we performed a simulation study using an independent simulator named SRT-
sim [20], which allowed us to generate spatial transcriptomics data while specifying 
whether a gene had constant covariate effects. We used SRTsim to generate six simu-
lated datasets (see the “Methods” section for details). Each dataset included 150 genes 
with constant covariate effects (similar to Group 2 genes in our previous simulation) and 
850 genes with no spatial or covariate effects (similar to Group 1 genes in our previ-
ous simulation). Then, we evaluated the type I errors of different methods in identifying 
residual spatial effects. Consistent with our previous simulation findings, we observed 
that all methods except for SPARK-X had a type I error of 0; SPARK-X’s type I error 
was between 0.86 and 0.90. Additionally, we noted that most methods demonstrated 
improved type I error control in this simulation, likely attributed to the constraint of set-
ting a constant mean and dispersion parameter (of the Negative Binomial distribution) 
for all genes, thereby reducing the complexity of the simulated data.

Application of spVC to human cortex data

For the first real data application, we applied spVC to spatial transcriptomics data of 
the six-layered human dorsolateral prefrontal cortex sequenced by the 10x Genomics 
Visium platform [21]. After filtering genes that were detected in fewer than 100 spots, 
this dataset included 11,242 genes and 3611 spatial spots. The human cerebral cortex has 
a laminar organization, in which different layers demonstrate layer-specific gene expres-
sion patterns [21]. Therefore, it would be useful to distinguish spatial variation of gene 
expression led by the laminar organization from the spatial variation that is independent 
of layer-specific expression. Spots in the above dataset were annotated by seven layers 
(six neocortical layers, L1 to L6, and the white matter) (Fig. 5A). We treated these cat-
egorical labels as the covariates in the spVC model, with the white matter (WM) as the 
baseline category. As outlined in the “Methods” section, this dataset fits into the sce-
nario where the categorical covariates exhibit clustered patterns, rather than dispersed 
patterns. Therefore, we applied the spVC method without the spatially varying covariate 
effects (i.e., formula (4)) to ensure proper identifiability.

To evaluate the false discovery rate of spVC, we first performed a permutation analysis 
by randomly permuting the spatial coordinates of the spots. In this permuted dataset, 
none of the genes were expected to have any significant spatial effects in their expres-
sion levels, so we evaluated the type I errors of different methods in identifying resid-
ual spatial effects in the presence of covariate information. Using 0.05 as a threshold on 
adjusted P values, we found that spVC had a type I error of 0.001 on this dataset. For 
comparison, the type I error rates of SpatialDE, SPARK, SPARK-X, and MERINGUE 
were 0.000, 0.161, 0.898, and 0.001 , respectively (Fig. 5B). To further evaluate the theo-
retical null distributions of the test statistics ( Tα

j  ; see the “Methods” section) used in 
spVC, we repeated the permutation procedure 100 times and obtained 100 P values for 
each gene. The quantile-quantile plots of the P values for two example genes are shown 
in Additional file 1: Fig. S7A–B. To quantitatively evaluate the results across all genes, 
we calculated the root of mean squared error (RMSE) between the observed quantile-
quantile curve and the y = x reference line for each gene. The average RMSE was 0.026, 
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indicating that the realized null distributions could be well approximated by the theo-
retical distributions.

We then applied spVC to the real cortex spatial transcriptomics data. Using 0.05 as 
a threshold on adjusted P values of the constant covariate coefficients, we discovered 
3593 genes whose expression levels were layer-associated and had a significant differ-
ence between WM and at least one of the neocortical layers (Fig. 5C–D). For example, 
Fig. 5E shows six genes, NEFM, LAMP5, HAPLN4, NEFH, PCP4, and CPLX2, which had 
significantly higher expression in L1 to L6 layers, respectively. In addition to the indi-
vidual gene examples, we also observed layer-specific gene expression patterns among 
the top genes with the largest regression coefficients of the layer covariates (Additional 
file 1: Fig. S8).

To further investigate the layer-associated genes identified by spVC, we compared 
these genes with the cortex layer-associated genes studied in Maynard et  al. [21], 

Fig. 5  Analysis of the prefrontal cortex spatial transcriptomics data. A Spatial coordinates and layer 
annotations of the cortex data. B Type I errors of SpatialDE, SPARK, SPARK-X, MERINGUE, and spVC in the 
permutation analysis. C Number of significant genes whose expression was up-regulated in each of the six 
neocortical layers compared with the white matter. D Number of significant genes whose expression was 
down-regulated in each of the six neocortical layers compared with the white matter. E Relative expression 
levels of six example genes with significantly higher expression in L1 to L6 layers, respectively. The top row 
shows all spots and the bottom row only shows spots in the corresponding layers and WM . The read counts 
were normalized by library size, log-transformed, and then scaled by the min-max normalization to obtain 
the relative expression levels
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which used a model-based method to identify the layers associated with 126 previously 
reported marker genes. Among these, 92 genes were detected in the spatial transcrip-
tomics data. Maynard et al. reported associations with layers L1 to L6 for 4, 44, 46, 19, 
47, and 48 genes, respectively. Our analysis revealed that the percentages of these genes 
positively associated with the layers, as identified by spVC (using WM as the baseline), 
were 25.0% (1), 31.8% (14), 41.3% (19), 36.8% (7), 42.6% (20), and 41.7% (20). These genes 
indeed demonstrated layer-associated expression patterns, and in particular, differential 
expression between the associated layers and the WM layer (Additional file 1: Fig. S9). It 
is noteworthy that marker genes are expected to be a subset of significant genes identi-
fied by spVC, as spVC can potentially identify both layer-specific and layer-associated 
genes. We then evaluated the 2097 genes only reported to be layer-associated by spVC, 
and also observed apparent differences between the identified layers and WM (Addi-
tional file 1: Fig. S10). Notably, only two of the six example genes (NEFH and PCP4) in 
Fig. 5E were in the previously reported gene list. In contrast, the 67 genes solely reported 
to be layer-associated in Maynard et  al. did not present obvious differences between 
the neocortical layers and WM (Additional file 1: Fig. S11). These comparisons suggest 
spVC’s ability to identify known and novel tissue-layer-associated genes from spatial 
transcriptomics data.

Since the cortex has a laminar organization and many genes in the cortex have layer-
specific or layer-associated expression, a large portion of these genes would be consid-
ered to possess a spatial effect in their expression if the layer-specific information is not 
taken into account during the modeling process. Instead, we used spVC to investigate 
which genes presented a significant residual spatial effect after accounting for the layer 
covariates. Using 0.05 as a threshold on the adjusted P values, we discovered 823 genes 
with a significant spatial effect in their expression after adjusting for the layer covari-
ates. Among these genes, 552 genes overlapped with the 3593 genes whose expression 
were layer-associated. In comparison, the number of genes with significant residual spa-
tial effects identified by SpatialDE, SPARK, SPARK-X, and MERINGUE were 404, 5068, 
11,055, and 496, respectively. We compared these genes and found that the 823 genes 
discovered by spVC were also identified by at least one other method, with 97.0% of its 
genes being identified by at least three methods. In contrast, only 19.0% of SPARK genes, 
8.7% of SPARKX genes, and 85.1% of MERINGUE genes were identified by at least three 
methods. We then investigated the 3022 genes which only had constant layer effects in 
spVC’s results but were identified to have significant residual spatial effects by non-spVC 
methods, and found that they had much smaller estimated residual spatial effects com-
pared with the 823 genes identified by spVC (Additional file  1: Fig. S12). In addition, 
we evaluated the nine genes that were identified as significant by all methods except for 
spVC, and they did not present obvious spatial variation that could not be explained by 
the layer distributions (Additional file 1: Fig. S13).

A unique feature of spVC is that it’s not only able to detect the significance of spatial 
effects in the presence of cell covariates, but also to quantify the expected strength 
of spatial effects across locations. Therefore, we focused on the 645 genes that had 
significant residual spatial effects and were detected in more than 500 spots, and 
performed a hierarchical clustering analysis of these genes based on their estimated 
residual spatial effects, γ̂0(·) (Methods). We discovered 11 gene clusters with distinct 
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spatial patterns (Fig.  6A). These discovered patterns were different from those pre-
sented by the organization of cortical layers. It is worth noting that, as the observed 
gene expression levels were confounded by layer covariates (Additional file  1: Fig. 
S14), such spatial patterns in Fig. 6A can only be revealed by spVC’s estimation but 
not from the observed spatial transcriptomics data.

To further understand the potential biological functions of the above significant 
genes, we performed a Gene Ontology (GO) enrichment analysis on three sets of 
genes: 3041 genes whose expression was layer-associated but did not have residual 
spatial effects (“layer-associated”), 271 genes whose expression had residual spa-
tial effects but was not layer-associated (“spatial-associated”), and 512 genes whose 
expression was layer-associated and also had residual spatial effects (“both”). We 
found that the enriched GO terms in the three sets of genes had apparent differences 
(Fig. 6B). In the layer-associated genes, many enriched GO terms were related to syn-
aptic signaling and transmembrane transport; in the spatial-associated genes, most 
enriched GO terms were related to immune response and cell activation; in genes that 
were both layer- and spatial-associated, there were also enriched terms relevant to 
neuron development and differentiation and system process, such as axon develop-
ment and glial cell differentiation (Fig. 6C and Additional file 1: Fig. S15).

Fig. 6  spVC’s estimation results on the prefrontal cortex spatial transcriptomics data. A 11 gene clusters 
identified from genes with significant residual spatial effects identified by spVC. For every cluster, the residual 
spatial effects ( ̂γ0(·) ) were scaled by the min-max normalization, and the the average was taken across all 
genes in the cluster to obtain the average spatial expression. B Venn diagram of enriched biological process 
GO terms in the three sets of genes identified by spVC. C Selected enriched GO terms in the three sets of 
genes and their corresponding adjusted P values
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Application of spVC to mouse cerebellum data

For the second real data application, we applied spVC to spatial transcriptomics data 
of mouse cerebellum sequenced by the Slide-seqV2 technology [18, 22]. After filter-
ing genes that were detected in fewer than 100 spots, this dataset included 8213 genes 
and 11,626 spatial spots. As the gene expression measurements in a spatial spot may 
reflect a mixture of multiple cells belonging to different cell types, spVC used the 
estimated proportions of six major cell types (granule, oligodendrocytes, astrocytes, 
molecular layer interneurons, Bergmann, and Purkinje) by the RCTD method [18] as 
continuous covariates in this application (see the “Methods” section and Fig. 7A).

On this dataset, we also performed a permutation analysis by randomly permuting 
the spatial coordinates of the spots, in order to evaluate the type I errors of different 
methods in detecting residual spatial effects given covariate information. Using 0.05 
as a threshold on the adjusted P values, we found that spVC had a type I error of 0.001 
on this dataset. For comparison, the type I error rates of SpatialDE, SPARK, SPARK-
X, and MERINGUE were 0.286, 0.001, 0.345, and 0.004 , respectively (Fig. 7B). Like in 
the previous analysis, we repeated the permutation procedure 100 times and obtained 
100 P values for each gene. The quantile-quantile plots of the P values for two exam-
ple genes are shown in Additional file  1: Fig. S7C-D. The average RMSE was 0.014, 
confirming the accuracy of spVC again.

Fig. 7  spVC’s estimation results on the cerebellum spatial transcriptomics data. A Cell type proportions 
of granule cells, Bergmann cells, oligodendrocytes, Purkinje cells, molecular layer interneurons (MLIs), and 
astrocytes. B Type I errors of SpatialDE, SPARK, SPARK-X, MERINGUE, and spVC in the permutation analysis. 
C Number of significant genes whose expression was positively associated with the proportion of each 
of the six cell types. D Number of significant genes whose expression was negatively associated with the 
proportion of each of the six cell types. E Relative expression levels of six example genes positively associated 
with granule cells, Bergmann cells, oligodendrocytes, Purkinje cells, molecular layer interneurons (MLIs), and 
astrocytes, respectively. The read counts were normalized by library size, log-transformed, and then scaled by 
the min-max normalization to obtain the relative expression levels
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Next, we applied spVC to the real data to identify cell-type-associated genes. Using 
0.05 as a threshold on adjusted P values of constant covariate coefficients, we discovered 
4759 genes whose expression levels were cell-type-associated and had a significant con-
stant coefficient on at least one of the six cell types (Fig. 7C–D). For example, Malat1, 
Slc1a3, Plp1, Chn2, Pvalb, and Glul had significantly higher expression in granule, Berg-
mann, oligodendrocyte, Purkinje, molecular layer interneurons (MLIs), and astrocyte 
cells, respectively (Fig.  7E). Other top genes with the greatest statistical significance 
also presented cell-type-specific or cell-type-associated expression patterns (Additional 
file 1: Fig. S16).

We compared the cell-type-associated genes identified by spVC with the differentially 
expressed marker genes identified from an snRNA-seq dataset of the mouse cerebellum, 
which has a median transcript capture of 2862 unique molecular identifiers (UMIs) per 
cell [23]. In contrast, the Slide-seq data used by spVC only has a median transcript cap-
ture of 329 UMIs per spot. Among the 3639 differentially expressed markers detected in 
both datasets, the numbers of genes upregulated in granule, Bergmann, oligodendrocyte, 
Purkinje, MLI, and astrocyte cells were 680, 837, 893, 2227, 742, and 783, respectively. In 
these cell types, the proportion of genes overlapping with those identified by spVC were 
54.1% (368), 45.9% (384), 49.2% (439), 24.8% (553), 13.3% (99), and 51.7% (405), respec-
tively. These overlapping genes demonstrated differential expression patterns associated 
with the corresponding cell type proportions (Additional file 1: Fig. S17). We then evalu-
ated the 2605 genes that were only identified from the snRNA-seq data and the 1676 
genes that were only reported by spVC. The genes from snRNA-seq data did not present 
obviously upregulated expression levels in the claimed cell types (Additional file 1: Fig. 
S18A), while the genes found by spVC presented expression patterns that were similar to 
those of the overlapping genes (Additional file 1: Fig. S18B), demonstrating the sensitiv-
ity of spVC in identifying cell-type-associated genes from sparse spatial transcriptomics 
data.

In addition to the cell-type-associated genes, we also identified 304 genes that had sig-
nificant residual spatial patterns. We compared the deviance of spVC models with and 
without the spatial effects. For these 304 significant genes, considering the spatial effects 
led to an apparent decrease of model deviance, compared with the 7909 genes with-
out significant residual spatial patterns (Additional file 1: Fig. S19). For example, spVC 
found that Fxyd6 had a significant residual spatial pattern with an adjusted P value of 
3.89× 10−4 (Fig.  8A–B). Its expression had spatial effects that could not be explained 
by the varying cell type proportions, and the localization of Fxyd6 in granule cells and 
cerebellum has been previously reported [24]. Another two examples were the Sparc 
gene (adjusted P = 1.87× 10−13 ), which has potential roles in mediating the inflamma-
tion and repair processes of the central nervous system [25], and the Ttr gene (adjusted 
P = 1.48× 10−13 ), which is involved in the distribution of thyroid hormones and has 
protective roles during neurological strokes [26]. The estimated spatial effects ( ̂γ0(·) ) by 
spVC clearly reflected how their expression levels were associated with the spatial coor-
dinates (Fig. 8A–B).

We then tested which genes were subject to spatially varying effects of the cell type 
proportions, and found 87 genes with significant spatially varying effects of at least one 
cell type (Fig.  8C). We compared the deviance of spVC models with and without the 
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spatially varying effects of cell types (see the “Methods” section). For the 87 significant 
genes, considering the spatially varying effects led to an apparent decrease of model 
deviance, compared with the 217 genes that had significant residual spatial patterns but 
without spatially varying effects of cell types (Additional file 1: Fig. S20).

We use three genes as examples to demonstrate the identified spatially vary-
ing effects of the cell type proportions (Fig. 8D–E). The first example gene is Aldoc, 
which encodes a glycolytic enzyme and is known to be expressed in subpopulations of 
Purkinje cells [27]. The observed expression of Aldoc presented obvious variation in 
different lobules. Based on spVC’s inference, we found that its expression was subject 
to spatially varying effects of three cell types: granule cells (adjusted P = 2.38× 10−6) , 
Purkinje cells (adjusted P = 2.01× 10−15) , and MLIs (adjusted P = 1.20× 10−4) . In 
particular, the estimated spatial varying effects of Purkinje cell proportions precisely 
reflected the variation of Aldoc expression among different lobules, confirming previ-
ous observation that Aldoc is expressed heterogeneously in Purkinje cells [27]. The 
second example gene is Calb2, which encodes an intracellular calcium-binding pro-
tein. It is expressed in granule cells and modulates intrinsic neuronal excitability [28]. 
Based on spVC’s inference, we found that the expression of Calb2 was dependent on 

Fig. 8  Spatially variable genes identified by spVC in the cerebellum spatial transcriptomics data. A Relative 
expression levels of Fxyd6, Sparc, and Ttr. The read counts were normalized by library size, log-transformed, 
and then scaled by the min-max normalization to obtain the relative expression levels. B Estimated residual 
spatial effects ( ̂γ0(·) ) of Fxyd6, Sparc, and Ttr. C Number of genes with significant spatially varying effects 
of each of the six cell types. D Relative expression levels of Aldoc, Calb2, and Snhg11. E Estimated spatially 
varying effects of cell type proportions for Aldoc (Purkinje cells), Calb2 (granule cells), and Snhg11 (granule 
cells). F Expected gene expression of Aldoc, Calb2, and Snhg11 estimated by the reduced model which did 
not consider the spatially varying coefficients of cell type proportions. The shown values were scaled by the 
min-max normalization. G Expected gene expression of Aldoc, Calb2, and Snhg11 estimated by the full spVC 
model. The shown values were scaled by the min-max normalization
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spatially varying effects of two cell types: granule cells (adjusted P = 1.63× 10−15) 
and oligodendrocytes (adjusted P = 2.33× 10−2) . Its expression variation in differ-
ent lobules could be largely explained by the spatially varying coefficients of granule 
cell proportions (Fig.  8E). The third example is Snhg11, which encodes a long non-
coding RNA shown to be important for synaptic function [29]. Its expression had 
spatially varying effects of three cell types: granule cells (adjusted P = 1.90× 10−7) , 
Purkinje cells (adjusted P = 6.39× 10−5) and MLIs (adjusted P = 3.11× 10−4) . Simi-
lar as Calb2, the observed expression variation of Snhg11 in different lobules were 
explained by the spatially varying coefficients of granule cell proportions (Fig.  8E). 
In addition, we also compared the fitted expected expression of the three genes by 
the full spVC model and the reduced model without considering the spatially vary-
ing coefficients of cell type proportions. The full spVC model provided a much better 
fitting of the spatial expression than the reduced model (Fig. 8F–G), highlighting the 
advantages of incorporating covariates’ spatially varying effects in explaining spatial 
transcriptomics data.

We also performed a GO enrichment analysis to investigate the biological processes 
represented by the identified genes. We considered two gene sets, the 4463 genes which 
had a significant constant coefficient on at least one of the six cell types but did not have 
significant residual spatial patterns (“cell-type-associated”), and the 304 genes which 
had significant residual spatial patterns (“spatial-associated”). Using 0.05 as a threshold 
on adjusted P values, we found 745 and 268 enriched GO terms in the cell-type-associ-
ated and spatial-associated genes, respectively, and 152 of these GO terms were shared. 
Among the 593 GO terms that were only enriched in the cell-type-associated genes, we 
found biological processes that were related to cellular component organization, cell 
adhesion, and nervous system development, such as gliogenesis, oligodendrocyte dif-
ferentiation, and astrocyte differentiation (Additional file 1: Table S1). Among the 116 
GO terms that were only enriched in the spatial-associated genes, many top GO terms 
were relevant to transmembrane transport and regulation of transport (Additional file 1: 
Table S2). In addition, multiple enriched processes were related to muscle contraction 
and regulation of muscle contraction, suggesting that the spatial-associated genes play 
key roles in cerebellum’s function of motor movement and balance control [30]. Lastly, 
among the 152 GO terms that were enriched in both gene sets, top terms were related to 
synaptic signaling and transmembrane transport (Additional file 1: Table S3).

Lastly, we conducted a comparison between the spatially variable genes identified by 
spVC and those identified by alternative methods. After adjusting for the cell type pro-
portions, spVC identified 304 genes with significant residual spatial effects, while Spa-
tialDE, SPARK, SPARK-X, and MERINGUE identified 2183, 820, 3818, and 278 genes, 
respectively. We found that 96.4% of spVC’s spatial genes were identified by at least one 
other method. However, the proportion of overlap for SpatialDE, SPARK, SPARK-X, and 
MERINGUE reduced to 44.2%, 84.8%, 34.2%, and 80.2%, respectively. We also found that 
a large proportion of genes reported to have significant residual spatial patterns by other 
methods were only found to be cell-type-associated by spVC (SpatialDE: 44.5%; SPARK: 
58.5%; SPARK-X: 63.0%; MERINGUE: 46.8%; Additional file 1: Table S4). Among these 
genes, we visualized the top ones by P values, and didn’t observe obvious spatial patterns 
not explained by the cell type proportions (Additional file 1: Fig. S21).
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Application of spVC to mouse testis data

To further investigate spVC’s potential in uncovering spatially varying effects of covari-
ates on gene expression, we applied spVC to a mouse testis dataset [31] obtained using 
the Slide-seq technology. After filtering, this dataset comprised 10,527 genes and 18,097 
spots (Methods). In order to analyze the spatio-temporal gene expression regulation, we 
used the pseudotime orders inferred by Chen et al. [31] as a continuous covariate in this 
application. These pseudotime orders confirmed the recognized developmental trajec-
tory of germ cells, which starts from the basement membrane and progresses towards 
the lumen of the seminiferous tubules (Fig. 9A).

Using spVC and 0.05 as a threshold on adjusted P values, we first identified 8998 genes 
with a significant constant coefficient of the pseudotime orders. Among these, 1370 
genes exhibited increased expression in the trajectory of germ cell development, while 
the remaining 7628 genes showed decreased expression. For example, the Smcp gene, 
which encodes a sperm mitochondria-associated cysteine-rich protein, had a positive 
coefficient of 3.79 (adjusted P ≈ 0), indicating higher expression in the later stage of the 
germ cell development trajectory as confirmed by single-molecule fluorescence in situ 
hybridization (smFISH) image [31] (Fig. 9B). Conversely, the Lyar gene, which encodes 
a cell growth-regulating nucleolar protein, had a negative coefficient of −2.91 (adjusted 
P ≈ 0), and was shown to have higher expression in the earlier stage of the develop-
ment trajectory by smFISH image (Fig. 9B). Subsequently, we identified 546 genes that 
presented significant spatially varying coefficients of the pseudotime orders, suggesting 

Fig. 9  Application of spVC to the mouse testis dataset. A Pseudotime values of the observed spatial spots. B 
Relative expression levels of Lyar and Smcp. The read counts were normalized by library size, log-transformed, 
and then scaled by the min-max normalization to obtain the relative expression levels. C Five spot clusters 
identified based on the spatially varying effects ( γ1(·)) of pseudotime inferred by spVC. D Distribution of 
pseudotime values within the five clusters shown in C. E: Eight spot clusters identified based on the observed 
gene expression levels. F Distribution of pseudotime values within the eight clusters shown in E. G Relative 
expression levels of Prm2 and Tnp1 within the five clusters shown in C. H Estimated spatially varying effects of 
Prm2 and Tnp1 within the five clusters shown in C 
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a dynamic interplay between spatial and temporal dimensions. To further understand 
these identified spatial effects, we clustered the spots based on their corresponding spa-
tially varying coefficients ( γ1(·) ) of the 546 genes, and obtained five spot clusters (Fig. 9C; 
Methods). The median pseudotime of these clusters was similar, indicating that the clus-
tering analysis based on spVC’s estimated spatial coefficients was not confounded by the 
actual pseudotime values of the spots (Fig.  9D). In contrast, direct clustering analysis 
using observed gene expression yielded eight spot clusters with apparent differences in 
their pseudotime values, suggesting that the clustering process was primarily driven by 
expression changes along the germ cell development trajectory (Fig. 9E–F).

We further scrutinized the five spot clusters unveiled by spVC and observed sig-
nificant differences in genes previously known to be associated with various stages of 
the epithelium cycle of seminiferous tubules [31, 32], including Prm1 ( P ≈ 0 ), Tnp1 
( 4.68× 10−192 ), Prm2 ( 4.57× 10−122 ), H3f3b ( 5.11× 10−64 ), Habp4 ( 1.84 × 10−18 ), 
Trim24 ( 4.68× 10−4 ), Smarca2 ( 6.54 × 10−4 ), and Ezh2 ( 9.30× 10−4 ). The P values 
were obtained by conducting the Kruskal-Wallis test on relative gene expression lev-
els followed by the BH correction. For example, Prm1 has been associated with step 
15 spermatids onward, while Tnp1 has been linked to spermatids of steps 9–12 [32]. 
In addition to presenting significant difference in observed gene expression, these two 
genes exhibited more distinct cluster-dependent patterns in the spatial coefficients esti-
mated by spVC (Fig.  9G–H). The germ cell development cycle and the seminiferous 
epithelium cycle are two interrelated yet distinct processes occurring within the testes, 
working together to ensure a continuous production of spermatozoa. Our analysis dem-
onstrates the potential of spVC to unveil spot clusters representing different stages of the 
seminiferous epithelium cycle by estimating the spatially varying effects of spot pseudo-
times and characterizing the spatio-temporal dynamics of gene expression during sper-
matogenesis. This potential is obscured when analyzing observed gene expression alone.

Discussion
In this article, we propose a statistical method named spVC for analyzing and interpret-
ing spatial variation of gene expression in spatial transcriptomics data. The spVC method 
provides a convenient tool to identify potential factors that contribute to gene expres-
sion variability, including spatial locations and other cell/spot-level covariates such as 
cell types or cell states. The flexible statistical model also enables the quantification of 
constant or spatially varying effects of covariates across the studied spatial domain. Our 
simulation study demonstrates that spVC can effectively distinguish between spatial 
variation introduced by covariate effects and residual spatial effects which cannot be 
explained by available covariates.

The spVC method not only performs the detection of SVGs but also integrates informa-
tion from cell/spot-level covariates to untangle interactions between spatial locations and 
other factors that govern gene expression. For instance, when applied to the human cortex 
data, spVC identified diverse types of SVGs. These include layer-associated genes, where 
observed spatial variation arose solely from the distribution pattern of different cortex lay-
ers; spatial-associated genes, whose expression did not differ between cortex layers but 
was directly dependent on spatial coordinates; and genes showing spatial variation result-
ing from a combination of layer-specific expression and unexplained spatial effects. In the 
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context of the mouse cerebellum data, alongside the discovery of cell-type-associated genes 
and spatial-associated genes, spVC revealed a group of genes subject to spatially varying 
effects of cell type proportions. While our real-data applications utilized cellular layers or 
cell type proportions as spot-level covariates, it is noteworthy that the spVC model itself 
does not constrain the types of covariates that can be incorporated into the analysis. By 
inputting various factors into the model, we anticipate that spVC will address previously 
unapproachable questions related to transcriptional regulation in the spatial context. 
Meanwhile, we would like to point out that the current spVC model treats the covariate 
information as given and fixed, so potential estimation or measurement errors contained in 
the covariates are not modeled in spVC. Therefore, if the covariates require computational 
inference, we recommend utilizing tools that have demonstrated good performance in pre-
vious benchmark studies.

We would like to discuss several methods that address pertinent questions while empha-
sizing different computational challenges from those considered by spVC. First, while the 
objective of spVC is to examine the spatial variation of gene expression from spatial tran-
scriptomics data (and available covariates), the SPADE method [33] aims to identify marker 
genes through a combined analysis of transcriptomics data and corresponding histology 
images. Our previous benchmark study indicates that the inclusion of histology informa-
tion does not always enhance clustering analysis of spatial transcriptomics data [7]. How-
ever, it remains valuable to explore how histology data contributes to the identification and 
comprehension of SVGs. Second, spVC diverges from SVG detection methods relying on 
differential expression tests [34]. These methods primarily focus on identifying genes that 
are enriched within a particular spatial subdomain in contrast to other subdomains. Third, 
when cell type labels or proportions are integrated as covariates in spVC, it can investigate 
interactions between cell types and spatial locations in the context of gene expression regu-
lation. In camparison, the CTSV method [35] examines whether genes are spatially vari-
able within individual cell types, assuming spatial patterns to be linear, squared exponential, 
or periodic; the C-SIDE method [36] also uses cell type proportions to infer differential 
expression in spatial data. However, unlike spVC, these two methods do not attempt to 
decompose spatial variation into effects explainable by covariates and unexplained residual 
spatial effects. Fourth, we have highlighted that an important feature of spVC is its ability 
to estimate the expected covariate effects and spatial effects on gene expression in a desig-
nated spatial domain. A recent method named GASTON [37] is able to characterize spatial 
expression variation using piece-wise linear expression functions, while it does not aim to 
perform inference on covariate-associated and residual spatial patterns.

In summary, spVC expands the analysis of spatial transcriptomics data by simultaneously 
achieving the detection of SVGs and the decomposition of spatial expression variation into 
covariate effects (constant or spatially varying) and residual spatial effects. We anticipate 
that spVC will be a useful tool in spatial transcriptomics and provide new perspectives on 
the spatial variation and regulation of gene expression.

Conclusions
In this article, we introduce spVC, a novel statistical method to detect and interpret 
SVGs based on a generalized Poisson model. spVC provides a convenient tool to iden-
tify potential factors that contribute to gene expression variability, including spatial 
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locations and other cell/spot-level covariates such as cell types or tissue layers. It offers 
estimation and statistical inference tools for both constant and spatially varying coeffi-
cients, allowing for the selection of different types of SVGs. Our simulation and real data 
applications have demonstrated spVC’s accuracy in the above tasks. In summary, spVC is 
a versatile tool for the identification, interpretation, and comprehension of gene expres-
sion variation in spatial transcriptomics data.

Methods
The spVC model

In this section, we introduce the spVC model, which is a generalized regression model 
that allows spatially varying coefficients of explanatory variables (Fig. 2A). For simplicity 
of notations, we focus the discussion on spatial transcriptomics data with two-dimen-
sional spatial locations, but the statistical model is also applicable to three-dimensional 
data. Let si = (si1, si2)

⊤ be the location of the ith cell (or spot), i = 1, . . . , n , which 
belongs to a bounded domain � ⊆ R

2 of an arbitrary shape. At location si , Yi is the count 
of RNA-seq reads, xi = (xi1, . . . , xip)

⊤ is a vector of cell/spot-level covariates which may 
have different effects on the gene expression levels. These covariates will be selected by 
the users depending on the biological questions. They can be discrete or continuous. In 
the context of spatial transcriptomics data, these variables can be cell type indicators, 
cell type abundances in the cells’ neighborhood region, abundance levels of known regu-
latory factors, etc. We assume the conditional density of Yi given (xi, si) follows a Poisson 
distribution fYi|xi ,si(y|x, s) = Poisson(µ(x, s)) , where µ(x, s) = E(Y|x, s) is the expected 
gene expression given (x, s) . In this work, µ(x, s) is modeled via a link function g = log(·) 
as follows:

where β = (β0,β1, . . . ,βp)
⊤ is a vector of unknown constants, which describes the 

intercept and spatially constant effects of the covariates. The coefficient functions 
Ŵ(s) = {γ0(s), γ1(s), . . . , γp(s)} describes the spatially varying effects. More specifically, 
γj(s) describes the spatially varying effect of covariate j (j = 1, . . . , p) , and γ0(s) describe 
the spatial effects that cannot be explained by any known covariates. We refer to γ0(s) as 
the residual spatial effect. For the model’s identifiability, we require that 

∫
�
γj(s)ds = 0 , 

j = 0, 1, . . . , p . We use ℓi to denote the library size factor of the ith cell/spot, and it is 
defined as the cell/spot’s library size divided by the median library size across all cells/
spots. The above model is constructed for each gene independently. It is worth noting 
that the Poisson distribution is widely used to model spatial transcriptomics data [16, 
38]. We introduce how over-dispersion is accounted for in our method in model estima-
tion below.

The proposed spVC model is able to account for cell-level or spot-level covariates 
with potentially various effects on gene expression. We discuss several typical scenarios 
below. (1) If βj = 0 and γj(s) ≡ 0 for j = 1, . . . , p , then none of the covariates has effect 
on gene expression, and any spatial pattern, if exists, is reflected in the residual spatial 
effect γ0(s) . (2) If for any j ∈ {1, . . . , p} , βj  = 0 and γj(s) ≡ 0 , then the jth covariate has 

(1)g{µ(xi, si)} = log ℓi + β0 + γ0(s)+

p

j=1

xijβj +

p

j=1

xijγj(s),
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a constant (i.e., spatially invariant) effect on gene expression. (3) If for any j ∈ {1, . . . , p} , 
γj(s)  ≡ 0 , then the jth covariate has a spatially varying effect on gene expression. It is 
worth noting that, when a covariate only takes binary values, and the spatial spots where 
the covariate takes values of ones are clustered (in contrast to dispersed), then it is not 
feasible to consider the spatially varying effect of the covariate. In this case, the spatially 
varying effect of the covariate, if exists, will not be identifiable from the residual spatial 
effect. For instance, in the application on the human cortex data, the spots were anno-
tated by seven layers (six neocortical layers and the white matter). The covariates were 
binary labels for the six neocortical layers, which had clear spatial boundaries (Fig. 5A). 
Thus, we did not consider the spatially varying effects of covariates in this application.

Model estimation

Since spatial transcriptomics data is often over-dispersed, we utilize the quasi-like-
lihood [39], a standard approach in generalized linear models allowing for overd-
ispersion, to estimate the model (1). To define a quasi-likelihood function, we only 
need to specify a relationship between the mean and variance of the responses. Note 
that the observed count of cell/spot i, Yi , has a mean of µi = µ(xi, si) . We specify 
Var(Y|x, s) = φV{µ(x, s)} , which links the variability in the response variable Y to 
its mean, given the predictors x and spatial location s . In this work, φ is the unknown 
parameter for overdispersion and the variance function follows V {µ(x, s)} = µ(x, s) 
for the Poisson distribution. Then, we define a quasi-likelihood function h(µ, y) which 
satisfies that ∇µh(µ, y) = (y− µ)/{φV (µ)} , where ∇µ denotes the partial deriva-
tive. The quasi-likelihood estimators of β and Ŵ(s) maximize the objective function 
L =

∑n
i=1 h

[
g−1{µ(xi, si)},Yi

]
 , where µ(xi, si) is specified in model (1).

To approximate the spatially varying coefficient functions γj(s) , j = 0, . . . , p , we con-
sider the bivariate penalized spline over triangulation (BPST) method (Additional 
file  2: Supplementary methods) [40]. BPST first uses a triangle mesh to approximate 
the irregular spatial domain. For domain � from which the spatial transcriptomics 
data is generated, we consider the triangulation partition △ = {T1, . . . ,TK } of K trian-
gles. For example, the triangulation partitions for the human cortex data and mouse 
cerebellum data discussed in real data applications are presented in Additional file  1: 
Figs. S22 and S23. We use Bm(s) (m ∈ M) to denote the centered spline basis func-
tions with 

∫
�
Bm(s)ds = 0 , and M is the index set of basis functions. For any s ∈ � , 

B(s) = (B1(s), . . . ,BM(s))T denotes the vector of spline basis functions evaluated at s . 
Then, the bivariate function γj(s) can be approximated by a linear combination of the 
spline basis functions γj(s) ≈ B(s)⊤θ j , subject to Hθ j = 0 (∀j ∈ {0, 1, . . . , p}) . The con-
dition on the spline coefficients ( Hθ j = 0 ) guarantees that B(s)⊤θ j is a smooth func-
tion with continuous first-order derivative, where the matrix H embeds the smoothness 
assumptions across all the shared edges of triangles. The dimensions of H are J × |M| , 
where J depends on the triangulation structure (i.e., the number of shared edges) and the 
smoothness assumption. See [41] for the detailed construction of basis functions and 
[42] for the construction of the H matrix.

By incorporating the BPST method, we obtain the quasi-likelihood estimators, 
(β̂j , θ̂ j) (j = 0, . . . , p) , by maximizing
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where xi0 � 1 and Hθ j = 0 . E(·) is a roughness penalty term with 
E(f ) =

∫
�
{(∇2

s1
f )2 + 2(∇s1∇s2 f )

2 + (∇2
s2
f )2}ds1ds2. Therefore, the problem is equivalent 

to maximizing

subject to Hθ j = 0 , and P is a block diagonal penalty matrix satisfying θ⊤j Pθ j = E{B⊤θ j} 
(∀j ∈ {0, 1, . . . , p}) . Details about the construction of matrix P are available in the 
Supplementary Information (Section B.2.2) in [42]. We use iterative reweighted 
least squares to solve the objective function in formula (3) and use the general-
ized cross-validation (GCV) to select the regularization parameters ( �j ) [43]. Once 
the quasi-likelihood estimators are obtained, the bivariate varying coefficient func-
tions can be estimated by γ̂j(s) = B(s)⊤θ̂ j (j = 0, . . . , p) . In addition, the overdis-
persion parameter is estimated by φ̂ = 1

n

∑n
i=1{Yi − g−1(η̂i)}

2/V (g−1(η̂i)) , where 
η̂i = log ℓi +

∑p
j=0 xijβ̂j +

∑p
j=0 xijB(si)

⊤θ̂ j . We have illustrated the main steps of the 
model estimation in Fig. 2B.

Hypothesis testing

As a statistical framework, spVC accommodates two testing procedures based on users’ 
preferences. Below, we introduce a two-step testing procedure (Fig. 2C–D), which is a 
common practice in regression modeling. In addition to this approach, the spVC soft-
ware also facilitates a comprehensive testing procedure, which directly tests all compo-
nents using the full model.

For each gene, in the first step, we test the significance of the spatially invariant effects 
of the covariates β = (β0,β1, . . . ,βp)

⊤ and the residual spatial effect γ0(·) through the 
following reduced model:

In order to detect the spatially invariant effects of the explanatory variables, we con-
sider the following hypothesis test for the jth covariate ( j ∈ {1, . . . , p}):

In order to detect the residual spatial effect, we consider the hypothesis test:

In the second step, we test the significance of the spatially varying effects using model 
(1) (the full model). We only consider the spatially varying effect of a covariate if the 

(2)

LBPST =

n�

i=1

h


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

log ℓi +
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⊤θ j
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�jE{B
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(3)

LP(β , θ) =

n�

i=1

h


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
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log ℓi +
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�jθ
⊤
j Pθ j ,

(4)g{µ(xi, si)} = log ℓi + β0 + γ0(si)+

p∑

j=1

xijβj .

(5)H0j : βj = 0 , HAj : βj �= 0 .

(6)Hs
0 : γ0(s) = 0, for all s ∈ � , Hs

A : γ0(s) �= 0, for some s ∈ � .
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constant effect of this variable is significant and the gene demonstrates significant resid-
ual spatial patterns in the reduced model. In other words, a gene will be tested in the sec-
ond step only if Hs

0 and at least one H0j (j = 1, . . . , p) are rejected. In order to detect the 
spatially varying effects, we consider the following hypothesis test for the jth variable:

To conduct the hypothesis tests in (5), we use a likelihood ratio test through the 
ANOVA table generated from the mgcv package [44]. The corresponding test statistic 
is the deviance difference between the full and reduced models. To conduct the hypoth-
esis tests in (6) and (7), we use a Wald-type test, whose general framework was first 
proposed in [45]. Suppose we use 1 to denote a vector of ones, ej to denote a vector of 
length p+ 1 with the (j + 1) th element being one and the other components being zero, 
X = {x1, . . . , xn}

⊤ , B = {B(s1), . . . ,B(sn)}
⊤ , and � = diag(�0, �1, . . . , �p) . The test statis-

tic is given by

where γ̂ j = {γ̂j(si), i = 1, . . . , n} is a vector of estimated γ̂j(s) at points si (i = 1, . . . , n) , 
and Vj is the estimated covariance matrix of γ̂ j . Denote ⊗ as the Kronecker product 
operator. Then, the individual elements in Vj = (Vii′,j)1≤i,i′≤n is given by

where φ̂  is the estimated over-dispersion parameter, D is a n× (p+ 1)(|M| + 1) matrix 
with D = X⊗ [1 B] ( [1 B] denotes a matrix by appending 1 as a column to B ), and W is a 
diagonal matrix such that W−1

ii = µi × g ′(µi)
2 for Poisson distribution. In addition, Vα−

j  
is a rank-α pseudo-inverse of the matrix Vj . To choose the value of α , we adopt the 
method of a well-behaved Wald statistic in Section 2.2 of Wood [45]. The parameter α is 

determined by the matrix D
(
D

⊤
WD+

(
0 0

0 �⊗ P

))−1

D
⊤
W , where the most heavily 

penalized components are dropped to enhance the testing power. Under the null 
hypothesis, the asymptotic distributions of the test statistic are derived in [45]. When α 
is an integer, Tα

j ∼ χ2
α . Otherwise, Tα

j ∼ χ2
k−2 + ν1χ

2
1 + ν2χ

2
1  , where k = ⌊α⌋ , 

ν = α − k + 1 , ν1 = {ν + 1+ (1− ν2)1/2}/2 and ν2 = ν + 1− ν1.

Generation of simulated data

In order to evaluate the performance of the spVC model, we designed a simulation 
study based on the real spatial transcriptomics dataset of mouse cerebellum [18]. Our 
simulation study considered four groups of genes. For genes in Group 1 and Group 2, 
there did not exist any spatial effects on gene expression, and these genes were used 
to evaluate the type I error of the SVG methods. Genes in Group 3 and Group 4 were 
designed to evaluate the power of the methods when the covariates had constant or 
spatially varying effects. In Groups 3 and 4, we considered four covariates correspond-
ing to the cell type proportions of four cell types. These values were calculated based 
on the proportions of Bergmann cells, granule cells, molecular layer interneurons 

(7)Hs
0j : γj(s) = 0, for all s ∈ � , Hs

Aj : γj(s) �= 0, for some s ∈ � .

Tα
j = γ̂

⊤
j V
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j γ̂ j ,

Vii′,j = φ̂
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)(
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0 0
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))−1(
0

ej ⊗ B(si′)

)
,
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(MLIs), and oligodendrocytes from the mouse cerebellum data (Additional file  1: 
Fig. S24). Below we introduce how the simulated data, a read count matrix of I spots 
( I = 500, 1000, 2000, 5000, or 8000 ) and K = 20, 000 genes, was generated.

We first generated the two-dimensional spatial coordinates si of spot i (i = 1, . . . , I) 
by randomly selecting I data points from the observed locations of the mouse cer-
ebellum data. Next, we generated the expected expression levels of the genes in dif-
ferent spots. We use the parameter µik to represent the expected expression of gene 
k in spot i, and it was directly generated using the following procedures for the four 
groups of genes. Each group contained 5000 genes.

Group 1: No covariate effect + No residual spatial effect. For genes in Group 1, we 
assumed that the log-transformed expected expression only depended on an intercept:

where β0k was uniformly sampled from U [−2.5,−2.1] , based on the observed expression 
levels of genes detected in at least 5% cells in the real data. Once β0k ’s were generated, 
µik ’s could be calculated accordingly.

Group 2: Constant covariate effect + No residual spatial effect. For genes in Group 
2, we assumed that the log-transformed expected expression depended on the cell 
type proportions through a linear relationship:

where β0k was uniformly sampled from U [−2.5,−2.1] , and βjk (j = 1, 2, 3, 4) denoted the 
spatially constant effect of cell type j on gene k. For each gene, we assumed there were 
two cell type proportions with non-zero coefficients. First, we randomly selected two cell 
types whose βjk ’s were sampled from U[1.0, 1.4] or U [−1.4,−1.0] with equal probabili-
ties. Then, we set the coefficients of the other two cell types as 0.

Group 3: Constant covariate effect + Residual spatial effect. For genes in Group 3, 
we assumed that the log-transformed expected expression was determined by both 
cell type proportions and a spatial effect independent of cell type proportions:

where β0k was uniformly sampled from U [−2.5,−2.1] . We used the same way 
as in Group 2 to randomly generate βjk . To generate the residual spatial effect, 
we first independently sampled ξ1k and ξ2k from U [−3.5, 4] and randomly sam-
pled δ0k from {−1, 1} with equal probabilities. Then, we defined a spatial function 
γ̃0k(s) = 2δ0k exp{−0.05(s1 − ξ1k)

2 − 0.05(s2 − ξ2k)
2} . Lastly, γ0k(s) was obtained by 

centering the function γ̃0k(s) so its average value across all spots was 0.
Group 4: Spatially varying covariate effect + Residual spatial effect. For genes in 

Group 4, we assumed that the log-transformed expected expression was determined 
by both cell type proportions and a spatial effect independent of cell type proportions; 
in addition, the effects of cell type proportions ( x2 and x4 ) were spatially varying:

log{µik(xi, si)} = β0k ,

log{µik(xi, si)} = β0k +

4∑

j=1

xijβjk ,

log{µik(xi, si)} = β0k + γ0k(si)+

4∑

j=1

xijβjk ,
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In Group 4, we used the same approach as in Group 3 to generate βj0,βj2,βj4 and 
γ0k(s) . βj1 and βj3 were set to 0. In addition, we assumed that γ̃2k(s) = 2δ1k cos(s2 + ξ3k) , 
γ̃4k(s) = 2δ2k cos(s1 + ξ4k) , where ξ3k and ξ4k were uniformly generated from U[1, 5]; δ1k 
and δ2k were randomly sampled from {−1, 1} with equal probabilities. Lastly, γ2k(s) and 
γ4k(s) were obtained by centering the γ̃2k(s) and γ̃4k(s) functions, respectively.

In order to generate the final count data based on the gene expression parameters 
obtained above, we used the multinomial distribution to describe the sequencing pro-
cess. We assumed that, for spot i, the read counts of the genes followed a multinomial 
distribution with a library size of ni and probabilities pi = {pik}

K
k=1 , where 

pik = µik/

(
K∑

k=1

µik

)
 . The sequencing depth ni was randomly sampled from a uniform 

distribution U[6000, 17,000].

Generation of simulated data using SRTsim

Our simulation strategy was inspired by the original SRTsim paper, and we used the ref-
erence-free option of SRTsim in order to strictly define genes with or without spatial 
variation. We used the same human cortex data as used in the SRTsim paper to define 
the spatial locations of 3611 spots. The tissue layer labels (six neocortical layers, L1 to 
L6, and the white matter) of these spots were used as categorical covariates. We used 
SRTsim to generate six simulated datasets, each with 1000 genes. For each dataset, we 
assumed 850 genes with no spatial or covariates effects (“non-SVGs”) and 150 genes 
with constant covariate effects on L1 to L6 (“SVGs”). In the SRTsim model, following 
the SRTsim paper, we set the dispersion parameter for all genes to be 0.3, and the mean 
parameter for the non-SVGs genes to be 0.03. For the SVGs, their mean parameter for 
spots outside the designated layer of focus was 0.03, and their mean parameter for spots 
inside the designated layer was 0.03 multiply by 3 or 1/3. In summary, the six simulated 
datasets represented the cases when the SVGs had higher or lower expression in layer L1 
to L6 compared with other spots.

Real data analysis

For the human cortex dataset, the layer annotations were generated by [21]. Since the 
layer annotations are categorical variables, we coded them as dummy variables to be 
used as the spot-level covariates in spVC and alternative methods. In the permutation 
analysis, we randomly permuted the indices of the observed spots while retaining the 
read counts and layer annotations as available in the real data. For every considered 
method, the P values were corrected by the BH approach, and the type I error was cal-
culated as the number of falsely identified genes divided by the total number of tested 
genes. We performed hierarchical clustering on the 2819 genes that had significant 
residual spatial effects by spVC and were detected in more than 500 spots. For each gene, 
the residual spatial effects, γ̂0(·) , were calculated across the spatial spots, and then trans-
formed using the min-max normalization. The normalized residual spatial effects were 
used to calculate the Euclidean distances between genes, followed by the hierarchical 

log{µik(xi, si)} = β0k + γ0k(si)+

4∑

j=1

xijβjk + γ2k(si)x2 + γ4k(si)x4.
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clustering. The Gene Ontology (GO) enrichment analysis was performed using the Clus-
terProfiler [46] package. Significant GO terms (restricted to biological processes) were 
identified using a threshold of 0.05 on BH-adjusted P values.

For the mouse cerebellum dataset, the cell type weights were estimated by the RCTD 
method as described in Cable et al. [18] and then normalized to obtain cell type propor-
tions. In our analysis, we only used the proportions of the top six major cell types (gran-
ule, oligodendrocytes, astrocytes, MLIs, Bergmann, and Purkinje), which had an overall 
proportion of 80.8% on average. The proportions of these six cell types were treated as 
spot-level covariates in spVC and alternative methods. In the permutation analysis, we 
randomly permuted the indices of the observed spots while retaining the read counts 
and cell type proportions as in the real data. For every considered method, the P values 
were corrected by the BH approach, and the type I error was calculated as the number 
of falsely identified genes divided by the total number of tested genes. For application of 
spVC to the real data, in addition to hypothesis testing, we also calculated the deviance 
measure to quantitatively evaluate the contributions of specific components to explain 
the observed data. To investigate the contribution of the residual spatial effect, the devi-
ance of model [4] was calculated as twice of the difference in the log-likelihood function 
between the saturated model and model [4]. In addition, we also calculated the deviance 
of a reduced model with only constant coefficients:

Then, we compared the two deviance measures for the genes. To investigate the con-
tribution of the spatially varying effects of cell type proportions, we calculated and 
compared the deviance of model [1] and model [4]. The GO enrichment analysis was 
performed as described above.

For the mouse testis dataset, we filtered out genes detected in fewer than 100 spots 
and spots with smaller than 500 counts. The pseudotime values of the retained spots 
were obtained from the original publication [31] and treated as a continuous spot-level 
covariate. The clustering analyses were performed using the Seurat tool [47]. To perform 
clustering of spots based on the estimated spatially varying effects, we first calculated 
the first ten principal components, and then used the FindNeighbors and FindClusters 
functions (resolution = 0.5) in Seurat to obtain the final clusters. To perform clustering 
based on the observed gene expression levels, we directly followed the Seurat pipeline 
starting from the count matrix, also setting resolution = 0.5.
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