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RESEARCH

Spatio-temporal impacts of aerial adulticide 
applications on populations of West Nile virus 
vector mosquitoes
Karen M. Holcomb1 , Robert C. Reiner2 and Christopher M. Barker1* 

Abstract 

Background: Aerial applications of insecticides that target adult mosquitoes are widely used to reduce transmis-
sion of West Nile virus to humans during periods of epidemic risk. However, estimates of the reduction in abundance 
following these treatments typically focus on single events, rely on pre-defined, untreated control sites and can vary 
widely due to stochastic variation in population dynamics and trapping success unrelated to the treatment.

Methods: To overcome these limitations, we developed generalized additive models fitted to mosquito surveillance 
data collected from  CO2-baited traps in Sacramento and Yolo counties, California from 2006 to 2017. The models 
accounted for the expected spatial and temporal trends in the abundance of adult female Culex  (Cx.) tarsalis and Cx. 
pipiens in the absence of aerial spraying. Estimates for the magnitude of deviation from baseline abundance following 
aerial spray events were obtained from the models.

Results: At 1-week post-treatment with full spatial coverage of the trapping area by pyrethroid or pyrethrin products, 
Cx. pipiens abundance was reduced by a mean of 52.4% (95% confidence intrval [CI] − 65.6, − 36.5%) while the use 
of at least one organophosphate pesticide resulted in a mean reduction of 76.2% (95% CI − 82.8, − 67.9%). For Cx. 
tarsalis, at 1-week post-treatment with full coverage there was a reduction in abundance of 30.7% (95% CI − 54.5, 
2.5%). Pesticide class was not a significant factor contributing to the reduction. In comparison, repetition of spraying 
over three to four consecutive weeks resulted in similar estimates for Cx. pipiens and estimates of somewhat smaller 
magnitude for Cx. tarsalis.

Conclusions: Aerial adulticides are effective for achieving a rapid short-term reduction of the abundance of the pri-
mary West Nile virus vectors, Cx. tarsalis and Cx. pipiens. A larger magnitude of reduction was estimated in Cx. pipiens, 
possibly due to the species’ focal distribution. Effects of aerial sprays on Cx. tarsalis populations are likely modulated 
by the species’ large dispersal ability, population sizes and vast productive larval habitat present in the study area. Our 
modeling approach provides a new way to estimate effects of public health pesticides on vector populations using 
routinely collected observational data and accounting for spatio-temporal trends and contextual factors like weather 
and habitat. This approach does not require pre-selected control sites and expands upon past studies that have 
focused on the effects of individual aerial treatment events.

Keywords: Adulticide, Aerial spraying, Culex tarsalis, Culex pipiens, GAM, Generalized additive models, Spatial-
temporal model, Mosquitoes, Mosquito-borne disease, West Nile virus
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Background
West Nile virus (WNV; genus Flavivirus, family Flavivir-
idae) causes a potentially fatal, neuroinvasive mosquito-
borne disease [1]. It is maintained in an enzootic cycle 
between birds and mosquitoes [2, 3], predominantly in 
the genus Culex [4], and can spill over to infect horses 
and humans, both of which are dead-end hosts vulner-
able to disease [5]. Culex (Cx.) tarsalis and Cx. pipiens 
complex mosquitoes are the primary enzootic and epi-
zootic vectors in California [6, 7]. While 80% of human 
infections are asymptomatic, clinical manifestations can 
include acute febrile illness, encephalitis, flaccid paralysis 
and death [8]. Often the severe form results in long-term 
physical and mental disabilities [9]. WNV invaded Cali-
fornia in 2003 and has become endemic [7]. An average 
of 238 neuroinvasive cases occur statewide annually, with 
approximately one-third occurring in the Central Valley, 
where the landscape is dominated by large-scale agricul-
ture punctuated by cities and small towns [10].

As no human vaccine exists against WNV, prevention 
of human diseases relies primarily on personal protective 
measures (i.e. wearing long sleeves, using insect repellent 
and avoiding the dawn/dust periods when mosquitoes 
bite) and vector control by local vector control districts 
or health departments [11, 12]. In periods of epidemic 
risk when large numbers of WNV-infected Culex mos-
quitoes are detected near human population centers, 
large-scale aerial applications of insecticides are utilized 
to rapidly reduce the abundance of adult mosquitoes 
and disrupt virus transmission cycles, thereby reducing 
zoonotic transmission risk [13].

Three main classes of pesticide products have been 
licensed for use in aerial spray applications in Cali-
fornia: pyrethrins, pyrethroids and organophosphates 
[12, 14, 15]. Pyrethrins are naturally derived insecti-
cides from chrysanthemum flowers (Chrysanthemum 
cineriaefolium) that inactivate sodium channels in the 
insect nervous system, resulting in paralysis and death 
[15]. Pyrethroids are synthetically derived pyrethrins 
with a similar mode of action  and longer half-life. 
Organophosphates inhibit acetylcholinesterase, affect-
ing neurotransmission and causing uncontrolled nerve 
activation and death in insects [14].

A standard method for evaluating the efficacy of an 
aerial spray event compares pre- to post-treatment 
mosquito trap counts inside the treatment zone versus 
changes for the same period in an adjacent unsprayed 
control area [16]. This method, first proposed by 
Mulla et al. [17], has been adapted to and widely used 
in evaluating the efficacy of aerial spraying for reduc-
ing the abundance of female mosquitoes and has been 
extended to assess changes in other indicators of risk, 
namely infection prevalence in mosquitoes, human 

cases and reported dead birds, with WNV infection 
[16]. However, reported estimates vary widely, with 
some studies even indicating occasional increases in 
trap counts following spray events [18–21].

Despite its wide use, the assumptions behind Mulla’s 
formula are often violated, resulting in confounded 
estimates. First, treatment and control sites are often 
not independent due to the spatial connectivity of 
populations with mosquito dispersal and immigration 
[22]. With the connectivity and potential drift of pes-
ticides via wind, there is the potential that insecticide 
sprays have wider population impacts than just the 
targeted spray zone [20]. Second, the difference in pre- 
to post-trap count ratios in and between areas are not 
solely due to control measures, but rather are impacted 
by weather, seasonality in mosquito populations, dif-
ferential presence of larval breeding sources or simply 
stochastic variation in trapping success [18, 20, 21]. 
Overall, Mulla’s formula neglects both the spatio-tem-
poral structure of mosquito populations and the exter-
nal factors impacting the random volatility of mosquito 
trapping success.

To overcome the limitations of assessing the efficacy 
of aerial sprays on the individual spray event basis, we 
paired long-term surveillance and vector control records 
(12 years) from Sacramento-Yolo Mosquito and Vec-
tor Control District (SYMVCD) in California to capture 
baseline spatio-temporal mosquito population dynamics 
and estimate the magnitude and duration of the impacts 
of aerial sprays on the abundance of Cx. pipiens and Cx. 
tarsalis, the predominant WNV vectors in California. We 
chose a generalized additive modeling (GAM) framework 
to capture the nonlinear population dynamics and asso-
ciations inherent to mosquito collections.

Methods
Study area
The study area encompasses Sacramento and Yolo coun-
ties, California (Fig.  1) which have a combined area of 
approximately 5,126  km2 and a population of approxi-
mately 1.73 million people in 2016 [23]. Sacramento 
County is 34.12% urban and 65.88% rural, with the 
majority of urban areas consisting of the concentrated 
Sacramento urban center and surrounding suburbs. In 
comparison, Yolo County is 4.61% urban and 95.39% 
rural, with smaller, more dispersed urban areas [24]. 
These counties, located in the northern part of Califor-
nia’s Central Valley, are characterized by a Mediterranean 
climate, with hot, dry summers (July mean temperature: 
25.8 °C, May-September mean total rainfall: 3.18 cm) 
and mild, rainy winters (January mean temperature: 9.6 
°C, October–April mean total rainfall: 47.30 cm) [25] and 
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extensive irrigated agriculture, especially rice and row 
crops, such as tomatoes. SYMVCD, established in 1946 
to protect the public from nuisance mosquito biting and 
mosquito-borne diseases, manages mosquito populations 
in Sacramento and Yolo counties [26].

Aerial treatments and mosquito collections
SYMVCD provided the spatial polygons (Fig.  1b) and 
associated data detailing the date, area targeted for spray-
ing, number of consecutive nights of spraying in the same 
location and pesticide product used for all aerial sprays 
during the study period (1021 unique nights of spraying 
during 930 spray events).

Mosquito collection records for CDC  CO2-baited EVS 
traps [27] from SYMVCD for the period 2006–2017 
(Fig.  1c) were obtained with permission through the 
CalSurv Gateway [28], an online database hosting data 
from California vector control agencies. Any records that 
indicated trap malfunctions or which ran longer than 1 
night were excluded. Each record (n = 24,344) contained 
latitude, longitude, date, number of traps employed and 
total female Cx. tarsalis and Cx. pipiens captured. The 
distribution of traps and spray events by year (Additional 
file 1: Figure S1) and season (Additional file 2: Figure S2) 
are presented in the Supplementary Information.

Any records that indicated trap malfunctions or traps 
which were operated for > 1 night were excluded. For 
each species separately, we removed the collection 
reports corresponding to those > 2 standard deviations 
above the mean in each week to remove the influence of 
outliers (i.e. large singular deviations from broader abun-
dance trends) on smooth functions subsequently esti-
mated by the models.

Fig. 1 Land cover, aerial sprays and mosquito collections (2006–
2017) in Sacramento and Yolo counties, California. a Distribution of 
cultivated crops (primarily rice), urban, and other natural land cover 
types across the study area. Land cover categories were derived from 
the 2011 National Land Cover database [34]. Inset highlights the 
location of these counties in the state of California. b, c Location of 
zones targeted for aerial treatment applications (b) and of  CO2-baited 
mosquito traps (c) during 2006–2017 in Sacramento and Yolo 
counties. Each polygon (b) and point (c) represents a single spray or 
trapping event, respectively. A random shift of ≤ 1 km was applied 
to trap locations for visualization of repeated trapping at the same 
location across time

◀
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All geographic data were projected from geographic to 
planar coordinates (Albers conic equal-area; EPSG 3310, 
NAD83) using the rgdal package in R statistical soft-
ware (version 3.3.2; [29, 30]) for all data processing and 
analysis.

Covariate development
To isolate the effects of aerial insecticide treatments 
within our final statistical model, we first developed a 
set of spatio-temporal and environmental covariates to 
explain the long- and short-term trends in Cx. tarsalis 
and Cx. pipiens abundance. Inclusion of these covari-
ates established a counterfactual basis in the models for 
the expectation in abundance in the absence of controls, 
leaving the additional terms characterizing aerial insec-
ticide sprays to explain any deviations attributable to the 
treatments.

For each remaining trap collection (n = 23,707 for Cx. 
pipiens; n = 23,678 for Cx. tarsalis), we derived a set of 
temperature variables to capture the effect of weather 
on trap collections. The mean temperature during the 
host-seeking period (dusk to dawn) and 30-year monthly 
average temperature were determined for each collection 
using 4-km resolution data provided by the PRISM Cli-
mate Group [31]. We calculated the deviation in temper-
ature from the monthly average during the host-seeking 
period to capture activity rates on the night of trapping 
(i.e. warmer/colder than ‘normal’ resulting in higher/
lower mosquito activity and resulting trap counts). As 
mosquito developmental rates are highly impacted by 
temperature [32, 33], we also calculated the average tem-
perature during the 2-week period immediately preced-
ing the trap collection to capture the short-term effects 
of weather on mosquito abundance. Rainfall was not 
considered because amounts were negligible in the study 
area during the season when aerial insecticide applica-
tions occurred.

To characterize the larval habitat present around a trap 
location and to incorporate the sharp changes in land 
use across the study area, we used the 30 × 30-m gridded 
land cover data from the 2011 National Land Cover data-
base [34]. We used the classification of all pixels within 
a 5-km radius area surrounding each trap to determine 
the proportion of three non-overlapping land use catego-
ries: urban, cultivated crops and natural (Fig.  1a). Land 
use categories were chosen to represent larval habitat 
and bionomics of Cx. pipiens and Cx. tarsalis [35]. The 
radius was chosen based on known dispersal distances 
for the species [36, 37]. The ‘urban’ category encompasses 
all levels of developed land (i.e. structures, roads and 
constructed materials). The ‘crops’ category represents 
annual irrigated crops, of which rice is the predominant 

type in the study area. The remaining classifications were 
combined to create the ‘natural’ category.

We quantified the spatio-temporal intersections 
between spray zone polygons and trap locations to 
quantify the degree to which antecedent spray events 
impacted mosquito collections. Spatial coverage of each 
trap was quantified as the average proportion of the area 
from which a trap collects mosquitoes (‘collection area’) 
that was covered by aerial treatment zones during the 
4  weeks preceding the collection. Using a conservative 
estimate on Culex flight distance [36–39] and to account 
for insecticide drift during application, we used a 5-km 
radius collection area for both species. The temporal 
sequence of overlapping sprays during the 4 weeks pre-
ceding a collection (modeled as a factor for each unique 
sequence) was used to capture any lagged effects and 
impacts of repeated spray events. For each week preced-
ing a collection, the total proportion of the collection 
area overlapping with the treatment zone was assessed. 
When multiple treatment zones overlapped with a single 
collection area in a week, we assumed an additive effect, 
summing the proportions of overlap from each unique 
spray up to a maximum of 1.0 that represented com-
plete coverage. We used the average spatial coverage of 
targeted spray zones during all weeks with at least one 
overlapping spray event to quantify the spatial impact of 
sprays for each specified temporal sequence of spraying. 
Traps > 5 km from all treatment zones had a spatial cov-
erage of zero and corresponded to the reference level of 
the temporal sequence factor. These traps were included 
to capture baseline spatio-temporal mosquito dynamics 
in the absence of aerial treatments. Therefore, the impact 
of aerial spray events on collections was quantified with a 
twofold approach, namely with the factor corresponding 
to the sequence of weeks when spraying overlapped dur-
ing the preceding 4 weeks and the average proportion of 
the collection area that overlapped under that sequence.

According to guidelines from the California Depart-
ment of Public Health, periods of high risk for arbovirus 
transmission are characterized in part by abnormally 
high mosquito abundance [12]. In order to capture this 
dramatic deviation from ‘normal’ abundance that our 
smoothed modeling framework could not capture, but 
which precipitated aerial spray events, we also applied a 
prospective assessment to identify spray events closely 
following each collection. To account for the time 
required to respond to a high-risk period, we assessed 
the presence of overlapping treatment zones with a col-
lection in the following 4 weeks on the weekly scale, simi-
lar to the above retrospective assessment of sprays.

To capture potential differences between broad classes 
of pesticides used (organophosphate vs pyrethrin and 
pyrethroids combined), we included a binary indicator 
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variable for whether at least one spray event associated 
with a particular trap collection used an organophos-
phate. Sample sizes were too small to further investi-
gate differences between pyrethrins and pyrethroids or 
between individual insecticide products.

We considered time in a variety of ways to capture 
trends in mosquito abundance in two parts: typical 
annual seasonality and coarser spatio-temporal trend 
over the 12-year study period. Using trap collection 
dates, ‘week’ (number of weeks from the start of the study 
period; range 1–626) and ‘day’ (range 1–365), variables 
were created to capture a continuous yearly effect and 
seasonality, respectively. We interacted the ‘day’ variable 
with each category of land use (i.e. ‘urban,’ ‘crops’ and 
‘natural’) to capture the seasonal trend in these different 
habitats. Each individual seasonality curve was weighted 
by the proportion of land use in that category within 5 
km of the trap collection to produce a single unified sea-
sonal trend that reflected the specific habitat composi-
tion for that collection.

Statistical analysis
We developed GAMs to relate nightly trap counts of 
female mosquitoes, either Cx. tarsalis or Cx. pipiens, to 
aerial adulticide applications, adjusted for variation in 
trap counts due to spatio-temporal mosquito dynamics. 
We chose GAMs because of the flexible parameteriza-
tion of smooth functions of covariates to explain spatial 
and temporal trends [40, 41]. Covariates considered to 
explain baseline mosquito dynamics were day or week 
of the year, year, location, land use, 2-week average tem-
perature and nightly deviations from average tempera-
ture during trapping, the presence of a spray event in the 
following 1 to 4  weeks (high-risk period) and pesticide 
class used in the aerial spray. Either a smooth function or 
a factor was used in fitting the covariates, with the choice 
between these forms, along with the spline and basis 
dimension if a smooth function was chosen, based on 
model fit and biological relevance. Cyclic cubic regres-
sion splines were used to prevent discontinuity between 
the ends of the smooth representing the seasonal pat-
terns (i.e. between 31 December and 1 January). Thin 
plate regression splines were chosen for most covariates 
because they are isotropic and have been shown to be the 
optimal smoother of any given basis dimension [42]. A 
cubic regression spline was used in the spatio-temporal 
surface due to its superior performance over thin plate 
regression splines for the large amount of observations 
[43].

We fit negative binomial GAMs using the gam function 
in R (version 3.3.2; package mgcv) [29, 44] with restricted 
estimation maximum likelihood (REML) as the smooth-
ing parameter estimation method. We chose a negative 

binomial function to account for the over-dispersed 
nature of the trap count data and used backward selec-
tion guided by the Akaike information criterion (AIC) 
[45] to reach our final model. In each model, we included 
an offset term for the number of traps operated per trap-
ping event. All covariates were included in the initial 
model, and choices of interactions between covariates 
entered into the initial model were guided by biological 
relevance. We used concurvity, a measure of collinearity 
for smooth functions (range 0–1; 43), and visually exam-
ined deviance residuals for consistency in space and time 
to assess the final model fit.

Using the other covariates to establish the expected 
abundance of each species in the absence of aerial spray-
ing, we estimated the mean change in predicted abun-
dance across the range of spray regimes observed in the 
data, using the Bayesian posterior covariance matrix for 
the parameters that accounted for smoothing parameter 
uncertainty [43]. We simulated 10,000 random draws 
from the posterior distribution of the fitted model, a 
multivariate normal distribution with mean equal to the 
estimated model coefficients and covariance matrix of 
the parameters, to predict the abundance of each spe-
cies across the spatial and temporal sequences of sprays 
observed in the data. For each draw, we then calculated 
the mean change in abundance from the baseline no-
spray scenario at each point on the spatio-temporal 
surface, along with the corresponding 95% confidence 
interval (CI). Estimates of efficacy from the model were 
compared with those derived from Mulla’s formula [16, 
17].

An R script outlining the workflow of parameter devel-
opment, model fitting and estimating change in abun-
dance across the spatio-temporal surface is presented in 
Additional file 3: Text S1.

Results
Data overview and model selection
The relative abundance (number of females per trap-
night) of Cx. pipiens and Cx. tarsalis varied spatially 
during the peak WNV season from late June to early 
October when aerial sprays occurred (Fig.  2). Typically, 
higher abundance of Cx. pipiens was observed in urban 
areas, whereas higher abundance of Cx. tarsalis was typi-
cally in non-urbanized areas near irrigated agriculture.

The final model for each species included an offset for 
the number of traps run per collection event, and smooth 
functions of space by time (on the weekly timescale 
across the 12 years of the study), day of the year by each 
land use category (‘urban,’ ‘crops’ and ‘natural’), 2-week 
average temperature, nightly deviations in average tem-
perature during trapping and spatio-temporal impacts of 
aerial spraying. Our choice of cutoff for removing outliers 
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during model fitting did not significantly change our 
results. Removing the top 0, 4.5 or 10% of data in each 
week for each species resulted in only minor shifts in 
confidence interval widths and magnitude of some esti-
mates, but no change to inference. The resulting smooth 
functions for each species are illustrated in Fig.  3 (for 
spatio-temporal surfaces for all years for each species, 
see Additional file 4: Figure S3; Additional file 5: Figure 
S4). The construction of smooth functions used in the 
final models is outlined in Additional file 6: Table S1. All 
smooth functions were highly significant (P < 0.0001). 
A random intercept for site location was included to 
account for repeated collections at the same location, fit-
ted using coefficients penalized by a ridge penalty [46]. 
We also retained, based on reductions in AIC, param-
eters for the presence of sprays in the 1 & 4 and 1, 2, & 
3 weeks following the trap collection for Cx. tarsalis and 
Cx. pipiens, respectively (Additional file  7: Table  S2). 
Based on reduction in AIC, only the model for Cx. pipi-
ens retained the term indicating the presence of at least 
one spray event with an organophosphate pesticide 
during the previous 4  weeks, as compared to all sprays 
using combinations of pyrethrin or pyrethroid products 
(− 48.9% change in abundance for ≥ 1 organophosphate;  
P < 0.001).

The largest magnitude of variability in the baseline 
abundance for both species was due primarily to the 
seasonality covariates, followed by the spatio-temporal 
surface. The temperature covariates contributed the 
smallest magnitude to establishing abundance, but all 
smoothed functions were highly significant (P < 0.0001). 
In all smooth functions, positive estimates correspond 

to increases in the population, negative estimates corre-
spond to decreases in the population and 0 indicates no 
modulation in abundance at that covariate value.

The distribution of the final model residuals was right-
skewed for both species, indicating the model under-
estimated extreme trap counts. However, no spatial or 
temporal pattern remained in the deviance residuals 
(Additional file 8: Figure S5; Additional file 9: Figure S6). 
Both models had low estimated concurvity values [43] for 
the aerial spraying smooth function with the rest of the 
model parameters (Cx. pipiens: 0.145; Cx. tarsalis: 0.148), 
indicating that the smooth estimates for the impact of 
aerial spraying were not confounded by other param-
eters. In addition, the relatively high deviance-explained 
value for both models (Cx. pipiens: 44.0%; Cx. tarsa-
lis: 62.3%) indicates good model fit despite the complex 
dynamics inherent in mosquito populations.

Effects of aerial insecticide treatments
A smooth surface of the spatio-temporal impacts on Cx. 
pipiens abundance is presented for treatments with only 
pyrethrin or pyrethroid products (Fig. 4a) or with at least 
one organophosphate product (Fig.  4b). For Cx. tarsa-
lis, the difference in impact by broad pesticide class was 
not retained in the final model, and therefore a single 
smooth is presented (Fig.  4c). Overall, the models esti-
mated a lower magnitude of change in Cx. tarsalis abun-
dance as compared to that in Cx. pipiens abundance. For 
example, following aerial spraying with full spatial cov-
erage (i.e. 100% coverage of the area within 5 km of the 
trap), we estimated a mean 1-week change in Cx. pipiens 

Fig. 2 Collections of Culex pipiens (a) and Cx. tarsalis (b) during peak West Nile virus (WNV) season. Plus signs (+) indicate the location and number 
of female mosquitoes per trap-night for each collection during the period when aerial spraying occurred (late June to early October). Colors 
represent abundance quintiles by species for non-zero collections. A random shift of ≤ 1 km was applied to trap locations to aid visualization of 
repeated collections at the same locations during the study time frame
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abundance of −  52.4% (95% CI −  65.6, −  36.5%) if all 
spray events had used pyrethroid or pyrethrin products. 
If at least one organophosphate product had been used, 
we estimated a mean change in Cx. pipiens abundance of 
− 76.2% (95% CI − 82.8, − 67.9%). In contrast, Cx. tarsa-
lis populations with full spatial coverage by aerial sprays 
showed an estimated mean 1-week post-spraying change 
in abundance of − 30.7% (95% CI − 54.5, 2.5%) regard-
less of the product class.

For both species, larger reductions in abundances were 
estimated in areas with higher spatial coverage of aerial 
sprays (large proportion of spatial overlap) than those 
on the fringes (low proportion of spatial overlap). Sprays 
occurring closer in time to collections were generally 
estimated to result in larger reductions in abundance 
compared to those that occurred further back in the past. 
At longer time lags (i.e. 2–4 weeks post-spraying), higher 
than expected abundance for both species was estimated, 
with the increase only occurring in Cx. pipiens popula-
tions following sprays with pyrethrins and pyrethroids.

The majority of temporal spray sequences lacked data 
across the full range of spatial overlap (0–100%); we did 
not estimate the change in abundance for these areas. 
Data were sparser or lacking for higher spatial coverage 
during multiple weeks of spraying. For regions of the 
spatio-temporal surface with data support, the reduc-
tion at 1-week post-spraying with full spatial coverage 
was the largest reduction predicted for Cx. tarsalis. In 
contrast, results for Cx. pipiens indicated a similar reduc-
tion for populations on the fringes of spray events for the 
preceding 4 weeks and populations with full spatial cov-
erage by aerial sprays 1 week previously (change all pyre-
thrin/pyrethroids: − 54.3%; 95% CI − 81.0, − 6.2%; change 
at least one organophosphate: −  77.2%; 95% CI −  90.4, 
− 53.9%).

Fig. 3 Smooth covariate functions explaining nightly abundance 
of Cx. pipiens (a) and Cx. tarsalis (b). Smooth functions from final 
generalized additive models are shown for the spatio-temporal 
surface (top), seasonality in a fully urban area, seasonality in a fully 
crop area, seasonality in a fully natural area, deviation (°C) from the 
30-year monthly average temperature on the night of trapping and 
the average temperature (°C) during the 2 weeks prior to trapping 
(bottom). The shaded region represents the 95% confidence 
interval for one-dimensional functions. A representative slice of 
the three-dimensional spatio-temporal surface is presented for 
2011 at the midpoint of the typical WNV season (week of 1 August). 
Spatio-temporal surfaces are plotted on individual axes for each 
species to resolve the spatial scale

◀
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Comparison to conventional estimates
As a comparison for our model results, we applied the 
conventional approach of Mulla’s formula [16, 17] to 
the combined trapping and control records from 2006 
to 2017 to estimate the efficacy of sprays. Considering 
trapping 1 week before and 1 week  after a spray event 
and using a 5-km buffer around the targeted spray zone 
as the adjacent comparison area, we were able to calcu-
late the effect for 36 spray events (3.87%) for Cx. pipiens 
and Cx. tarsalis; the majority of spray events lacked traps 
in all of the required spatial and temporal locations for 
the calculation. Most of the estimates for the change in 
abundance indicated a reduction in trap counts, but esti-
mates varied widely, ranging from complete population 
elimination (100% decrease) up to increased of 11,000% 
following a spray event (Additional file  10: Figure S7). 
Most estimates for Cx. pipiens indicated varying degrees 
of reduction while those for Cx. tarsalis spanned reduc-
tions to increases.

Discussion
This study found that aerial insecticide treatments 
achieve strong short-term reductions in both Cx. tar-
salis and Cx. pipiens populations. Previous studies have 
assessed the short-term impact of aerial spraying on 
mosquito abundance and highlighted the volatility of 

Fig. 4 Mean changes in abundance following aerial spraying, as 
compared to no-spray baseline. Estimates are shown for changes 
in abundance of Cx. pipiens (a, b) and Cx. tarsalis (c) with respect 
to antecedent sequence and average spatial coverage of aerial 
treatments. a, b For Cx. pipiens, estimates are shown for sprays 
that used only pyrethrin or pyrethroid products (a) and for sprays 
that utilized an organophosphate product at least once (b). c For 
Cx. tarsalis, estimates are with any product class. Horizontal axes 
represent the average proportion of the 5-km buffer surrounding 
a trap covered by a spray event, and vertical axes represent the 
temporal sequence of aerial sprays during the 4 weeks preceding 
the trapping event. On the left vertical axis, the 4-digit sequence 
indicates presence (1) or absence (0) of sprays in the 1, 2, 3 and 4 
weeks (going from right to left along sequence) prior to trapping. The 
sequences of spray events are ordered from the fewest number and 
temporally most distant spray events (bottom) to the largest number 
and temporally closest spray events (top). Estimates are truncated 
to the range observed with the available data (gray squares indicate 
points present in dataset). Areas enclosed in a black border represent 
the portion of the spatio-temporal surface with significant estimates 
(P < 0.05)

▸
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estimates across space and time. In order to overcome the 
limitations of using single events to estimate the efficacy 
of aerial spraying on reducing the abundance of WNV 
vector mosquitoes, we used a large dataset of surveil-
lance and control records together with GAM models. 
This modeling framework allowed us to establish baseline 
mosquito adult abundance and identify deviations from 
expected nightly abundance attributed to aerial spraying 
(i.e. counterfactual basis) as well as the spatial and tem-
poral impacts of aerial applications. Our results indicate 
that aerial sprays do achieve population reduction for 
both Cx. pipiens and Cx. tarsalis with heterogeneity in 
the magnitude and pattern of reduction between species 
and pesticide product.

The differences in the magnitude and pattern of the 
estimated response between species can be attributed 
partially to the different bionomics of the individual 
mosquito species. In the study area, Cx. pipiens are pre-
dominantly peridomestic with larval habitats limited pri-
marily to backyard sources and stormwater systems in 
urbanized areas [35, 47]. Thus, areas targeted by aerial 
insecticide treatments would span a large fraction of any 
particular population, leaving few adults to repopulate 
the treated area from proximal unsprayed locations. In 
contrast, Cx. tarsalis breed in agricultural areas and may 
disperse into surrounding agricultural and urban areas 
[35, 48, 49]. This species also has a larger typical disper-
sal distance and achieves higher population densities 
than Cx. pipiens [35–37]. Aerial insecticide treatments 
typically target only a small fraction of the total avail-
able habitat for Cx. tarsalis, often habitats near urbanized 
areas, and any effect of aerial sprays could be moderated 
by immigration of adult Cx. tarsalis from surrounding 

unsprayed locations, potentially from distant locations 
[38, 50]. Therefore, the best suppression of Cx. tarsalis 
populations would be achieved in isolated areas, as has 
been reported previously [22]. Additionally, repetition of 
sprays on the weekly scale is less effective at controlling 
Cx. tarsalis than Cx. pipiens because of the rapid immi-
gration and emergence of new adults from large areas of 
productive larval habitat.

While our estimated reduction in the abundance of 
Culex mosquitoes shows some similarity to previous 
published estimates of aerial spray events from Sacra-
mento and Yolo counties (Table 1), our methodology also 
accounts for contextual factors, resulting in more robust 
estimates of the average effect of spraying. Previous 
estimates exhibited spatial heterogeneity [19]. Utilizing 
covariates to capture the spatial structure, temperature 
deviations and varying distribution of larval habitats 
removed the confounding impact of these factors on our 
model results. Similarly, previous estimates have varied, 
in part because Mulla’s formula cannot fully capture spa-
tio-temporal nuances of mosquito population dynamics. 
For example, Lothrop et al. [20] observed 73% increases 
in Cx. tarsalis abundances post-spraying despite observ-
ing mortality in caged sentinel mosquitoes and large 
reductions during previous spray events. The authors 
attributed the estimated increase to the dynamics of Cx. 
tarsalis populations at the time of the study, particularly 
the large emergence of Cx. tarsalis following the annual 
flooding of the nearby wetlands that was not captured 
by the Mulla’s formula framework and the fact that the 
sprays were not impacting mosquitoes in the produc-
tive larval habitats. Previous estimates also used differ-
ing time interval lengths to estimate mosquito abundance 

Table 1 Estimated change in Culex mosquito populations following aerial spray events in California using Mulla’s formula

a Number of consecutive nights sprayed in a spray event
b Length of time before and after an aerial spray event used when comparing with trap counts
c Percentage change in Culex abundance following an aerial spray event, as calculated using Mulla’s formula [16, 17]
d Aerial spraying occurred on 3 alternate nights

Location in California (city, 
county)

Year Nights  sprayeda Product class Comparison length of  timeb Species %  Changec Reference

Davis, Yolo 2006 2 Pyrethrin 2 days before, 2 days after Cx. pipiens − 58.0 [19]

Cx. tarsalis − 25.6

Woodland, Yolo 2006 2 Pyrethrin 2 days before, 2 days after Cx. pipiens − 77.7

Cx. tarsalis − 46.8

Sacramento, Sacramento 2005 3 Pyrethrin 7 days before, 7 days after Cx. pipiens − 75.0 [21]

Cx. tarsalis − 48.7

Sacramento, Sacramento 2006 3 Pyrethrin 3 days before, 3 days after Cx. pipiens − 39.3 [85]

Cx. tarsalis − 57.3

Coachella valley, Riverside 2005 (March) 3  alternated Pyrethroid 5 days before, 1 day after Cx. tarsalis − 93.0 [20]

2005 (June) 3  alternated Pyrethroid 5 days before, 1 day after Cx. tarsalis − 77.0

2005 (September) 3  alternated Pyrethroid 5 days before, 1 day after Cx. tarsalis 73.0
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before and after spray events. The heterogeneity in these 
time intervals combined with the heterogeneity of the 
resulting estimates (Table  1) highlight the need to use 
consistent time intervals to improve generalizability of 
estimates between studies. As standardization of the time 
interval largely depends on the operational capacity of 
vector control districts for trapping and responding to 
epidemic conditions, no single recommendation may be 
feasible across all studies. However, we recommend that 
mosquito control agencies should keep the time frame 
consistent across their evaluations to increase compara-
bility of intra-agency control efforts. A similar range of 
estimates for change in Culex abundance following adul-
ticide treatments has been reported outside California; 
most are in broad agreement with our findings, although 
none used Mulla’s formula. In Chicago (Illinois), a 
reduction of 54% in Cx. pipiens trap counts within the 
spray zone versus the baseline pre-spray abundance 
was reported, in contrast with a 153% increase outside 
the spray zone, following two single-night aerial spray 
events with a pyrethroid 7  days apart [51]. An average 
65.3% reduction in Cx. pipiens/restuans populations was 
observed within 24 h of truck-mounted applications of a 
pyrethroid [52]; in contrast, no significant changes in Cx. 
pipiens abundance were observed following single-night, 
truck-mounted applications of a pyrethroid in three com-
munities near Boston (Massachusetts) [53]. Up to a  75% 
reduction in the 2-day counts of female Cx. quinquefas-
ciatus was reported during a month-long period with 
truck-mounted pyrethroid sprayed 5  days a week in 
Dubai, United Arab Emirates [54]. Without untreated 
comparison locations, it is hard to directly compare these 
results to those of our study.

Our model structure most closely resembles the study 
design used by Elnaiem et al. [21]  where a timescale of 
1 week before and after a spray event with a pyrethroid 
pesticide was chosen when assessing mosquito abun-
dance (Table 1). Our estimates for reduction for Cx. pipi-
ens (− 52.4%) and Cx. tarsalis (− 30.7%) are lower than 
the observed reductions (Cx. pipiens: − 75%; Cx. tarsalis: 
−  48.7%). While qualitatively similar, the differences in 
magnitude may be due to differences in analytical meth-
ods, shifts from pyrethrin to pyrethroids over time or the 
longer 12-year time period of our study that could have 
yielded a more conservative estimate of average spray 
effects.

Our approach to causal inference using observational 
data builds on earlier contributions from the fields 
of environmental science and epidemiology. Mulla’s 
formula can be considered to be an extension of the 
Before–After–Control–Impact (BACI) analysis frame-
work. Originally defined by Green [55] and extended and 
applied by others [56–59], the BACI analysis framework 

originated in environmental science literature to distin-
guish natural variability from the impact of an anthro-
pogenic disturbance, and has been applied to mosquito 
larvicide evaluations [60, 61]. The BACI methodology 
compares an impact and at least one separate control 
location, sampled at various time points before and after 
the impact, to detect changes in the natural history of the 
environment due to the impacts [56–58]. An analysis of 
variance (ANOVA) test is used to detect a significant dif-
ference in the trajectories before versus after the distur-
bance in the impact area as compared to the control area. 
The location and timing of sampling in  each trajectory 
is chosen to ensure each is independent across space and 
time and increase the evidence that a detected change 
was attributable to the disturbance itself [56, 59]. Our 
GAM framework extends BACI using a three-dimen-
sional spatio-temporal function and other covariates to 
capture the entire spatio-temporal context as a strategy 
to estimate the expected mosquito abundance in the 
absence of spraying. The functions also capture trends in 
the impact over spatial and temporal combinations, while 
the BACI framework may miss significant changes due to 
the sampling time frame chosen [62]. Additionally, our 
methods do not depend on the ANOVA assumptions of 
independence and homoscedasticity of samples [63], as 
the spatial and temporal correlation and the non-normal 
distribution of trap collections are accounted for through 
the covariates in the negative binomial GAMs.

Our statistical approach for estimating the effects of 
mosquito control on abundance relies on counterfac-
tual theory that has been applied in the field of epi-
demiology as a conceptual basis for understanding 
measures of effect [64–66]. Counterfactual theory as a 
basis for causal inference is premised on the assump-
tion that for any unit being observed, there are multi-
ple potential exposures but only one actually occurs, 
and outcomes under other alternative exposures exist 
only as potential outcomes that would have occurred if 
an alternative exposure had been applied. Because the 
alternative exposures did not occur, these are contrary 
to fact, or counterfactual. In this study, our units of 
study were trapping locations, and we sought to under-
stand the effect of aerial spraying by statistically relat-
ing the observed mosquito abundance following spray 
events to the mosquito abundance in the same place 
and time that would have been observed in the absence 
of the spraying. BACI and Mulla’s formula approaches 
utilize untreated control sites to establish expectations 
for the unsprayed condition. Our approach instead 
aims to estimate the counterfactual expectation for 
mosquito abundance directly at the same place and 
time using spatio-temporal trends and contextual vari-
ables (i.e. weather and land use). This approach offers 
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two clear advantages for estimating the effects of public 
health pesticide use: (i) it allows for use of rich obser-
vational datasets that already exist and which capture 
pesticide usage in real operational contexts, as opposed 
to experimental settings that are often closer to ideal 
conditions; and (ii) it does not rely on pre-selected, 
untreated control sites, which is helpful because vector 
management programs are rarely willing to withhold 
treatments in experimental control sites if their public 
health action thresholds are met.

The smooth functions associated with land use catego-
ries in the final GAMs accurately captured known sea-
sonal and population dynamics. Cultivated crops were 
the primary source of Cx. tarsalis, with smaller contri-
butions from other, non-urban land types during the 
warmest months of the year, accurately representing the 
presence of highly productive larval habitats in clean, 
recently created water sources characteristic of culti-
vated crops [35, 48, 67]. Urbanized areas did not produce 
large numbers of Cx. tarsalis during the WNV season 
as they contain few suitable larval habitats for this spe-
cies. The estimated peak in abundance occurred in late 
July, but remained high through September, capturing 
the variation in timing of the peak across the years of 
the study. Populations of Cx. tarsalis in the Sacramento 
Valley are greatest from July to September [35, 68, 69]. 
The steep slope of the curve up to the peak mimicked 
the rapid increase in Cx. tarsalis observed at the start of 
the planting season [35, 69]. For Cx. pipiens, urbanized 
areas largely contributed to abundance throughout the 
year, with additional contributions in natural areas (i.e. 
non-cultivated croplands) later in the season, reflecting 
the presence of larval habitats in artificial structures like 
storm drains or dairy wastewater lagoons [70, 71]. Crops 
were generally associated with lower Cx. pipiens abun-
dance across the season, reflecting the general lack of 
suitable high-quality larval habits in these areas.

Temperature anomalies during trapping and the 2-week 
average antecedent temperature prior to trapping con-
tributed to the overall abundance of both species, albeit 
relatively weakly in the presence of the other spatio-tem-
poral terms. Their inclusion in the model was required to 
fully account for mosquito dynamics and night-to-night 
fluctuations in trapping success. Concordant with pre-
vious experiments, extremes in the average tempera-
tures reduced abundance for both species, illustrating 
the negative impacts on mosquito developmental rates 
and adult survivorship [32, 33]. The estimated region of 
positive contribution to abundance for both species (Cx. 
pipiens: 19.2–25.4  °C; Cx. tarsalis: 18.9–27.0  °C) was 
narrower than the thermal tolerance of the species, but 
it contains the observed regions of rapid developmental 
and high reproduction rates and the typical temperature 

ranges during the summer. As expected, small anomalies 
in average temperature on the night of trapping made 
relatively small contributions to change in the abundance 
while extreme deviations resulted in much more marked 
change, highlighting the non-linear relationship underly-
ing temperature and trap success.

It is interesting to note the additional marked reduc-
tion in Cx. pipiens abundance when at least one organo-
phosphate product was used, especially as compared to 
the lack of a similar difference in Cx. tarsalis populations. 
As mentioned in the preceding text, the class of prod-
uct used may be more important for Cx. pipiens due to 
their focal distributions and more limited dispersal [35, 
72]. As an aerial spray will likely impact a large propor-
tion of the localized Cx. pipiens population at once, there 
will be limited immigration from unsprayed segments of 
the population in the nearby proximity. Therefore, the 
full effect of an aerial spray is discernable. In contrast, 
the dispersed nature of Cx. tarsalis populations facilitates 
rapid immigration from surrounding unsprayed locations 
[35, 36, 38], thus diluting any difference in effect between 
product classes; any difference is not discernable against 
the background population dynamics accounted for in 
our modeling framework. Another factor contributing 
to the difference by species could be insecticide resist-
ance, as resistance to pyrethroids and organophosphates 
has been reported for both species in California [14, 73]. 
If Cx. pipiens populations in the study area were more 
resistant to pyrethroids than Cx. tarsalis, as has been 
previously reported in the Central Valley [74–76], this 
could explain the increased efficacy of organophosphates 
for Cx. pipiens. However, since we found a stronger effect 
of pyrethroids on Cx. pipiens as compared to Cx. tarsalis, 
resistance does not fully explain the observed difference. 
Alternatively, a single organophosphate spray may be 
insufficient to produce a marked difference in Cx. tarsa-
lis populations; a repetition may be required. The under-
lying shape of the smooth function of spatio-temporal 
impacts of aerial spraying for either species likely dif-
fers between product classes and the specific timing and 
number of different products used, but sparse data pre-
vented us from including an interaction to assess these 
dynamics.

A potential population rebound effect occurred for 
both species at more distant time lags from spraying 
in cases where abundance was estimated to be higher 
than expected at 2–4 (Cx. pipiens under pyrethrin and 
pyrethroid sprays) and 3–4 (Cx. tarsalis) weeks post-
spray. Appropriately spaced treatments in time may be 
required to maintain a long-term reduction in population 
abundance. However, such a rebound does not negate 
the potential value of aerial treatments for achieving 
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short-term reductions in the abundance of WNV-
infected adult mosquitoes during periods of epidemic 
risk.

The increase in abundance at low spatial coverages of 
sprays for both species could reflect excito-repellency 
of pesticides at the fringes of targeted areas. Excito-
repellency, a form of behavioral avoidance, combines 
two forms of sub-lethal exposure that results in mos-
quito movement away from a chemical source, namely 
contact excitation (increased activity upon contact) and 
non-contact spatial repellency [77–79]. These non-toxic 
behavioral impacts of pesticides were first identified in 
Anopheles mosquitoes in response to DDT and later with 
insecticide-treated bednets and indoor residual spraying 
[80–82]. Populations of Cx. quinquefasciatus, another 
species in the Cx. pipiens complex, exhibit strong con-
tact excitation and poor spatial repellency to pyrethroid, 
organophosphate and carbamate pesticides [83, 84]. No 
study has investigated excito-repellency in Cx. tarsalis 
populations. The behavioral avoidance of Culex to pes-
ticides could be pushing mosquitoes out of the spray 
zones, resulting in an increase in abundance around the 
fringes of sprays, consistent with our estimates for spatial 
coverages of < 40% for Cx. pipiens following sprays with 
pyrethrin or pyrethroids only in the previous week.

A limitation of choosing a GAM framework is that we 
were only able to capture the average effects of covari-
ates on nightly mosquito trap counts and unable to fully 
account for large stochastic fluctuations inherent to mos-
quito populations. However, GAMs easily allowed us to 
incorporate nonlinear relationships between abundance 
and covariates without having to constrain relationships 
with a priori knowledge. In particular, we were able to 
capture the higher-order relationships and correlation 
across space and time with the three-dimensional spa-
tio-temporal function. The form of the smooth relation-
ships in the final model did appear to approximate what 
is observed in nature. Other strengths of our modeling 
approach are that it takes into account regional differ-
ences in mosquito populations, population dynamics 
and seasonality in different land use types, as well as the 
impacts of short-term (night) and longer-term (2  week) 
weather, resulting in robust estimation of the baseline 
expected abundance in the absence of spray effects, 
allowing us to isolate the deviations in abundance due 
to aerial spraying. This counterfactual basis of the model 
enables estimation in the absence of an independent con-
trol. However, even with the large amount of data avail-
able, data were still inadequate to estimate the impact 
of aerial spraying reliably for certain time lags or spa-
tial coverages that were rare or absent in the data. This 
is primarily due to typical SYMVCD spraying and trap-
ping practices due to logistical and financial constraints. 

SYMVCD concentrated their mosquito collection efforts 
near urban areas to maximize the sensitivity for assess-
ing the risk in proximity to human populations while 
minimizing time and costs associated with large-scale 
mosquito surveillance. Additionally, in an effort to con-
trol mosquitoes in known problem areas (highly produc-
tive larval habitats in proximity to the margins of urban 
areas) and reduce aerial applications over urban areas, 
the majority of areas receiving repeated sprays across the 
WNV season are in more rural areas where the mosquito 
trapping is sparser. This limited the data and the statisti-
cal power to quantify the full range of spatial overlap with 
aerial sprays.

We were also unable to account explicitly for drift out-
side the target zones during sprays, as has been previ-
ously described [20]. Our use of a continuous variable to 
measure spray coverage within the 5-km radius collec-
tion areas surrounding each trap partially accounts for 
this effect. As such, however, we are unable to fully parse 
out the effect of aerial spraying on populations outside 
aerial spray zones and limited our analysis to only assess 
spatial coverage of traps within targeted spray zones.

Additionally, we were unable to estimate the relative 
effects of different lengths of multi-night spray events (1 
vs 2 vs 3 consecutive nights) due to data limitations and 
our analytical choice to aggregate all sprays on the weekly 
scale to achieve the balance between robust estimates 
and operationally relevant information for vector control 
districts. These limitations of observational studies such 
as this one could be addressed in future experimental 
field trials.

Conclusions
Aerial adulticides were shown to achieve short-term 
reductions in the abundance of the primary WNV vec-
tors Cx. tarsalis and Cx. pipiens. A greater reduction 
was estimated for Cx. pipiens, likely due to its focal dis-
tribution in urbanized areas and limited dispersal. The 
use of organophosphate products versus a combination 
of pyrethrins and pyrethroids increased the magnitude 
of reduction estimated for Cx. pipiens while the differ-
ence by broad insecticide class was not significant for 
Cx. tarsalis. The effects of aerial sprays on Cx. tarsalis 
populations were likely moderated by the broad dis-
persal ability of this species, its large population sizes 
and the vast expanses of productive larval habitat in the 
study area. Therefore, the best control of Cx. tarsalis 
would appear to be achieved in areas with isolated or 
highly spatially segmented populations. For both spe-
cies, aerial spraying reduced abundance at high spatial 
coverage while reductions were also estimated at lower 
spatial coverage, at albeit greatly reduced magnitudes, 
indicating that aerial sprays had some impacts beyond 
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the target zone. There was also evidence for population 
rebounds at periods of 2–4  weeks post-spraying. Our 
modeling approach allowed us to utilize observational 
data to isolate aerial treatment effects while taking into 
account contextual factors, such as spatio-temporal 
relationships, weather and habitat, that contribute to 
stochastic variation in nightly trap counts. This is an 
important advance that complements experimental 
trials and expands upon conventional observational 
approaches that summarize population changes follow-
ing aerial treatments at individual time points. Further 
work should expand upon these methods to estimate 
the change in WNV transmission potential and result-
ing human infections following aerial spray events.
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jitter of ≤ 1 km was applied to trapping locations for visualization of 
repeated events at the same site. Each spray event polygon represents the 
area targeted during a single aerial spray application.

Additional file 2: Figure S2. Location of  CO2-baited mosquito trapping 
events and aerial spray events stratified by season. Season defined into 
three-month intervals. A random jitter of ≤ 1 km was applied to trapping 
locations for visualization of repeated events at the same site. Each spray 
event polygon represents the area targeted during a single aerial spray 
application.

Additional file 3: Text S1. R script outlining our workflow of covariate 
development, GAM model fitting and estimated change in abundance.

Additional file 4: Figure S3. Spatial surface for Cx. pipiens at midpoint 
of the typical WNV season (week of 1 Aug). Surface presented for each 
year (2006–2017) reflects the relative abundance of the species and is a 
slice from the three-dimensional spatio-temporal smoothed function. 
Contours applied for visualization of estimates.

Additional file 5: Figure S4. Spatial surface for Cx. tarsalis at midpoint 
of the typical WNV season (week of 1 Aug). Surface presented for each 
year (2006–2017) reflects the relative abundance of the species and is a 
slice from the three-dimensional spatio-temporal smoothed function. 
Contours applied for visualization of estimates.

Additional file 6: Table S1. Smooth functions included in the final GAMs 
for both Cx. tarsalis and Cx. pipiens. Table outlining the construction of 
smooth function used in the final models, including spline type and basis 
dimensions chosen.

Additional file 7: Table S2. Change (%) in nightly abundance from 
expected for collections preceding aerial spraying. Table indicating the 
final model estimates for change in expected trap-counts for collections 
in the 1 to 4 weeks preceding an aerial spray event.

Additional file 8: Figure S5. Spatial and temporal distribution of model 
deviance residuals for Cx. pipiens for 2006–2017. Residuals presented 
spatially at the associated trapping location (random jitter of ≤ 1 km was 
applied for visualization of repeated events).

Additional file 9: Figure S6. Spatial and temporal distribution of model 
deviance residuals for Cx. tarsalis for 2006–2017. Residuals presented 
spatially at the associated trapping location (random jitter of ≤ 1 km was 
applied for visualization of repeated events).

Additional file 10: Figure S7. Estimated percentage change in Cx. pipiens 
and Cx. tarsalis populations with Mulla’s formula. Change estimated for the 

36 aerial sprays in Sacramento and Yolo counties, California (2006–2017) 
with associated trap collections within the targeted zone (treated) and an 
adjacent 5-km buffer (control) within 1 week before and 1 week following 
spraying.
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