
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Query-based debugging of distributed systems

Permalink
https://escholarship.org/uc/item/2p06d5sv

Author
Braud, Ryan Evans

Publication Date
2010

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2p06d5sv
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Query-based Debugging of Distributed Systems

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Ryan Evans Braud

Committee in charge:

Professor Amin Vahdat, Chair
Professor Alin Deutsch
Professor George Papen
Professor Ramesh R. Rao
Professor Alex C. Snoeren

2010

Copyright

Ryan Evans Braud, 2010

All rights reserved.

The dissertation of Ryan Evans Braud is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2010

iii

DEDICATION

To my parents, who have always been there for me.

iv

EPIGRAPH

Debugging is twice as hard as writing the code in the first place. Therefore, if you write

the code as cleverly as possible, you are, by definition, not smart enough to debug it.

—Brian W. Kernighan

v

TABLE OF CONTENTS

Signature Page .iii

Dedication .iv

Epigraph . v

Table of Contents .vi

List of Figures .ix

List of Tables .xi

Acknowledgements .xii

Vita .xiv

Abstract of the Dissertation .xv

Chapter 1 Introduction . 1
1.1 Debugging Challenges .3

1.1.1 Common Approaches5
1.1.2 Scripting Limitations 7
1.1.3 Summary . 8

1.2 Our Approach . 8
1.3 Contributions . 9
1.4 Organization .10

Chapter 2 Background .12
2.1 The Debugging Process .12
2.2 Logging for Debugging .13

2.2.1 Important Log Types14
2.2.2 Usability Issues .17

2.3 Related Work .19

Chapter 3 A New Debugging Model .27
3.1 The State Matrix .27

3.1.1 The Object Model28
3.1.2 Container Types29
3.1.3 Composite Objects29

3.2 NYQL: A New Query Language31
3.2.1 Why Not SQL? .31
3.2.2 NYQL Fundamentals32

vi

3.2.3 NYQL Grammar and Examples32
3.3 Implementing NYQL . 39

3.3.1 Rationale .40
3.3.2 Table Schemas .41
3.3.3 Database Population44
3.3.4 Basic Query Translation45
3.3.5 Object Reconstruction49
3.3.6 Advanced Translation50

Chapter 4 A Logging Case Study: MACE 56
4.1 MACE Overview . 56
4.2 Compiler-generated Logging57

4.2.1 Logging Function Calls58
4.2.2 Logging Events .59
4.2.3 Logging Program State60
4.2.4 Message Tracing61
4.2.5 Causal Path Reconstruction61

4.3 General-purpose Object Logging61
4.3.1 Structured Logging62
4.3.2 Logging Arbitrary Objects63

4.4 Log Customization .63
4.4.1 Eliminating Uninteresting Objects64
4.4.2 Eliminating Uninteresting Sub-objects64
4.4.3 Conditional Logging65
4.4.4 Dynamic Binary Rewriting66
4.4.5 Probabilistic Path Logging68

4.5 System Performance .69
4.5.1 Baseline Performance69
4.5.2 Logging Optimizations72

4.6 Summary .73

Chapter 5 Debugging Experiences .75
5.1 An Interface for Queries75
5.2 Debugging with NYQL . 77

5.2.1 RandTree .77
5.2.2 Paxos .80
5.2.3 Discussion .82

5.3 Nebula and the Visual Event Graph82
5.3.1 Event Graph .84
5.3.2 Debug Window .85
5.3.3 State-view Window86
5.3.4 Navigating the Event Graph86

5.4 Implementing Nebula .88

vii

5.4.1 Building the Event Graph88
5.4.2 Displaying Message Contents89
5.4.3 The Debug and State-view Windows90

5.5 Debugging with Nebula .91
5.5.1 UNRP Bug 1 .92
5.5.2 UNRP Bug 2 .93

5.6 Summary .94

Chapter 6 Moving Away From A Compiler96
6.1 Logging inC++ . 97

6.1.1 Structured Logging97
6.1.2 Function Call Parameters100
6.1.3 Return Values .101
6.1.4 Events .101
6.1.5 Program State .102
6.1.6 Controlling What Gets Logged102

6.2 Logging inJava .104
6.2.1 Structured Logging105
6.2.2 Logging Objects106
6.2.3 Events .108
6.2.4 Automatic Logging108
6.2.5 Extensions .109

6.3 Summary .110

Chapter 7 Summary and Future Work .113
7.1 Summary .113
7.2 Future Work .116

7.2.1 Issues of Scale .116
7.2.2 Language Features117
7.2.3 Logging Customization118

7.3 Final Thoughts .118

Bibliography .119

viii

LIST OF FIGURES

Figure 1.1: Possible Bug Scenarios .4

Figure 2.1: Flat vs. Nested Function Call Logging14
Figure 2.2: Example Event Demarcation .15
Figure 2.3: Example Log Files That Support Message Tracing16

Figure 3.1: The State Matrix Abstraction .28
Figure 3.2: State Matrix Data Representations29
Figure 3.3: Example NYQL Query 1 . 36
Figure 3.4: Example State Matrix Objects and Supporting Types37
Figure 3.5: Example NYQL Query 2 . 37
Figure 3.6: Example NYQL Query 3 . 38
Figure 3.7: Example NYQL Query 4 . 38
Figure 3.8: Example NYQL Query 5 . 39
Figure 3.9: Example NYQL Query 6 . 39
Figure 3.10: Table Relationship for a Subset of the Objects in Figure 3.441
Figure 3.11: NYQL Translation Example .46
Figure 3.12: Example “@” Query .51

Figure 4.1: Simple MACE Service . 58
Figure 4.2: Logging Function Call Parameters and Return Values59
Figure 4.3: Event Logging .60
Figure 4.4: MACE Structured Logging Example62
Figure 4.5: Eliminating Entire Objects with Queries64
Figure 4.6: Eliminating Sub-objects with Queries65
Figure 4.7: Conditional Logging with Queries66
Figure 4.8: Generated Code Supporting Dynamic Binary Rewriting67
Figure 4.9: Query-based Dynamic Binary Instrumentation68
Figure 4.10: RANDTREE and PAXOS Queries Used in Table 4.171

Figure 5.1: NYQL User Interface .76
Figure 5.2: Message/State Extraction Query for RANDTREE 78
Figure 5.3: All-node State Extraction Query for RANDTREE 79
Figure 5.4: Setup for RANDTREE Bug Three 80
Figure 5.5: Nebula User Interface .83
Figure 5.6: Nebula State View .85
Figure 5.7: Nebula Path View and Context Menu87
Figure 5.8: Sample UNRP Topology .92
Figure 5.9: UNRP Pod Coordinate Query .93

Figure 6.1: Structured Logging in MACE andC++ 97
Figure 6.2: Generated Code for Structured Log “logMsg1” Shown in Figure 6.1(a)99

ix

Figure 6.3: Function Call Logging Example100
Figure 6.4: Structured Logging inJava .105
Figure 6.5: C++ Templates vs.Java Generics Example107

Figure 7.1: Query with “where” Clause Aggregate Functions117
Figure 7.2: Query With a Loop Over Nodes118

x

LIST OF TABLES

Table 3.1: Sample Data Extraction Query Results49

Table 4.1: RANDTREE and PAXOS Query Overhead70
Table 4.2: PAXOS Throughput with Various Logging Enabled72
Table 4.3: PAXOS Throughput and Log Size with Probabilistic Path Logging . .73

Table 6.1: MACE, C++, andJava Logging Comparison111

xi

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Dr. Amin Vahdat, for taking me on as

his student. I have learned a lot from him over the years I have been here, including how

to look at the glass as half full and not half empty. I appreciate his willingness to stick

with me and see me through.

Second, I want to thank all of the friends I have made here. I am not going to

name names, but you should know who you are. They have definitely made graduate

school a more enjoyable experience. Without them, I don’t think I would have been able

to stick with it.

Also, I’ve had the great opportunity to work with some of the brightest people

I’ve ever known while here. Thanks to my co-authors of papers both published and

unpublished. I have learned much from each of you as well.

Finally, I’d like to thank the wonderful members of CSE help, the sysnet admins,

and the rest of the staff. They have made dealing with building issues, hardware issues,

and bureaucratic issues much less painful. I hope over the years UCSD keeps its high

standards for its members of all three of these areas.

Chapter 1, in part, is currently being prepared for submission for publication

of the material. Braud, Ryan; Killian, Charles; Deutsch, Alin; Vahdat, Amin. The

dissertation author was the primary investigator and author of this material.

Chapter 2, in part, is currently being prepared for submission for publication

of the material. Braud, Ryan; Killian, Charles; Deutsch, Alin; Vahdat, Amin. The

dissertation author was the primary investigator and author of this material.

Chapter 3, in part, is currently being prepared for submission for publication

of the material. Braud, Ryan; Killian, Charles; Deutsch, Alin; Vahdat, Amin. The

dissertation author was the primary investigator and author of this material.

Chapter 4, in part, is currently being prepared for submission for publication

of the material. Braud, Ryan; Killian, Charles; Deutsch, Alin; Vahdat, Amin. The

dissertation author was the primary investigator and author of this material.

Chapter 5, in part, is currently being prepared for submission for publication

of the material. Braud, Ryan; Killian, Charles; Deutsch, Alin; Vahdat, Amin. The

dissertation author was the primary investigator and author of this material.

xii

Chapter 6, in part, is currently being prepared for submission for publication

of the material. Braud, Ryan; Killian, Charles; Deutsch, Alin; Vahdat, Amin. The

dissertation author was the primary investigator and author of this material.

Chapter 7, in part, is currently being prepared for submission for publication

of the material. Braud, Ryan; Killian, Charles; Deutsch, Alin; Vahdat, Amin. The

dissertation author was the primary investigator and author of this material.

xiii

VITA

2004 B. S. in Computer Sciencecum laude,
University of Maryland, College Park

2004 B. S. in Mathematics,
University of Maryland, College Park

2007 M. S. in Computer Science,
University of California, San Diego

2010 Ph. D. in Computer Science,
University of California, San Diego

PUBLICATIONS

Charles Killian, Karthik Nagaraj, Salman Pervez, Ryan Braud, James W. Anderson, and
Ranjit Jhala, “Finding Latent Performance Bugs in Systems Implementations,”
Foundations of Software Engineering (FSE), 2010.

Dejan Kostíc Alex C. Snoeren, Amin Vahdat, Ryan Braud, Charles Killian, Jeannie Al-
brecht, James W. Anderson, Adolfo Rodriguez, and Erik Vandekieft, “High Bandwidth
Data Dissemination for Large-scale Distributed Systems,”ACM Transactions on Com-
puter Systems (TOCS), 2008.

Jeannie Albrecht, Ryan Braud, Darren Dao, Nikolay Topilski, Christopher Tuttle, Alex
C. Snoeren, and Amin Vahdat, “Remote Control: Distributed Application Configuration,
Management, and Visualization with Plush,”Large Installation System Administration
Conference (LISA), 2007.

Charles Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and Amin Vahdat,
“Mace: Language Support for Building Distributed Systems,”Programming Languages
Design and Implementation (PLDI), 2007.

Rob Sherwood, Bobby Bhattacharjee, and Ryan Braud, “Misbehaving TCP Receivers
Can Cause Internet-Wide Congestion Collapse,”Computer and Communications
Security (CCS), 2005.

Dejan Kostíc, Ryan Braud, Charles Killian, Erik Vandekieft, James W. Anderson, Alex
C. Snoeren, and Amin Vahdat, “Maintaining High Bandwidth under Dynamic Network
Conditions,”USENIX Annual Technical Conference, 2005.

Suman Banerjee, Seungjoon Lee, Ryan Braud, Bobby Bhattacharjee, and Aravind Srini-
vasan, “Scalable Resilient Media Streaming,”International Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV), 2004.

Rob Sherwood, Ryan Braud, and Bobby Bhattacharjee, “Slurpie: A Cooperative Bulk
Data Transfer Protocol,”INFOCOM, 2004.

xiv

ABSTRACT OF THE DISSERTATION

Query-based Debugging of Distributed Systems

by

Ryan Evans Braud

Doctor of Philosophy in Computer Science

University of California, San Diego, 2010

Professor Amin Vahdat, Chair

One of the most challenging aspects of debugging distributed systems is under-

standing system behavior in the period leading up to a bug. Since traditional debuggers

such asgdb are not well suited to distributed system debugging, developers often resort

to annotating their code with log statements and then writing one-off scripts that perform

ad-hoc searches through the logged data.

To improve this cumbersome process, we propose that the state of a distributed

system execution should be programmatically and interactively available for postmortem

analysis. We observe that the three defining properties of entries in a distributed system’s

log are “time,” “node identifier,” and “event type,” and treat the log as a logical cube

with these dimensions. By exploiting the structure of thisstate matrix, developers can

xv

use a high-level query language to efficiently extract information instead of manually

inspecting log files or writing log processing scripts.

In this dissertation, we describe the debugging process based on a query-oriented

approach. We begin with an introduction of the state matrix abstraction and show how

it can capture useful properties of distributed systems’ executions. We then present

NYQL, an object-oriented query language operating over the contents of the state matrix

and describe one possible implementation as a translation to SQL queries executed over

a relational database.

Next, we present an implementation of a logging system that generates queryable

logs in MACE, a source-to-source translator and library for building distributed systems.

We present techniques for mitigating the logging overhead by giving NYQL queries

to the MACE translator and show that in many cases queries can be resolved in a few

seconds. We then demonstrate how using NYQL simplified debugging a handful of

bugs in two different distributed systems.

Finally, we extend our logging techniques to systems without source-to-source

translators by developing two general-purpose libraries — one in C++ and one in Java.

We describe the differences between all three systems in terms of functionality and ease

of use and then conclude with some future directions for distributed systems debugging.

xvi

Chapter 1

Introduction

Since its birth in the late 1960’s, the Internet has seen exponential growth. It

has evolved from a simple network of a few computers to one approaching a billion

hosts [17]. The Internet, and more specifically, the World Wide Web, has become so

ingrained in our daily lives that it is hard to imagine life without it. We now depend on

sites like Google, Facebook, Amazon, and many others to inform us, entertain us, and

let us share information with each other.

Large sites like these can do business only as often as they are available to their

customers. Any downtime is potentially lost revenue, and often additionally results in

public outcry from thousands of customers. For example, when Facebook went down in

September of 2010, the phrase “Facebook down” was searched more than seven times

more frequently than average on Google [7]. Many people who use Facebook as part of

their business strategy were affected, including all of the companies who advertise on

Facebook. However, Facebook is not the only company who experiences problems with

site reliability. Gmail experienced six outages in just eight months, which was dubbed

“the great Gmail outage of 2009” [11]. In addition, Amazon experienced three hours of

downtime in June of 2010, which may have cost the company upwards of $9 million in

revenue [1].

Although availability is incredibly important, it is not sufficient for success. User

perception of any online service is also greatly affected by the service’s reliability. In

other words, the service must not only be available, but also behave as expected. If a

user attempts to buy a product on Amazon and is greeted with an error message when

1

2

they try to add it to their cart, they may eventually take their shopping dollars elsewhere.

Similarly, if messages sent from Gmail bounced frequently, or searches for popular

terms on Google returned irrelevant results, Google’s reputation would suffer.

Unfortunately, building a website with even four nines of availability that can

handle hundreds of thousands of clients a day — or more —correctly is no simple task.

To handle the incredible demand, large sites rely ondistributed systems. Instead of host-

ing a site’s functionality on a single computer, it is instead broken up into many smaller

services and split across potentially thousands of machines. These services provide a

diverse set of features, including lock services [32], distributed filesystems [46], scal-

able computation platforms [40, 21], and distributed storage systems [34, 41, 28]. Since

functionality at any site is broken up into many such smaller services, it is often imper-

ative thatall systems be running correctly for the site to perform as expected. A failure

of any one of the component systems leads to a degraded or broken user experience.

There are two types of failures that affect these systems: hardware failures and

software failures. Hardware failures cannot be avoided, as any mechanical system will

eventually stop working. Failover, replication, and quorum-based consistency protocols

are just a few of the techniques these systems may employ to handle these types of fail-

ures. Unfortunately, failure handling and recovery add complexity to already-complex

systems, making them more difficult to reason about and test.

On the other hand, software failures occur as a direct result of human error, mis-

understanding, or unexpected operating conditions, and are typically known as “bugs.”

These bugs fall into two categories: correctness bugs and performance bugs.

As the name implies, programs with correctness bugs fail to complete their de-

sired tasks correctly. These kinds of bugs can manifest themselves in many ways, from

causing a program to crash, to more subtle effects like computing an incorrect interme-

diate value, ultimately leading to unexpected behavior.

On the other hand, programs with performance bugs do not crash or compute

incorrect results. Instead, they often take longer than expected to complete a desired

task. For example, a node in a distributed system may spend more time on the critical

path than intended, perhaps due to unexpected lock contention or filesystem access. As

a result, the processing of each request may complete correctly, but take longer than

3

expected, reducing the throughput of the system overall. Performance bugs may also

arise as the result of inefficient protocol design. For instance, if a protocol uses all-

to-all communication, it will often end up much slower than a protocol with a more

conservative communication strategy, due to the overhead required to send and process

all of the extra messages.

Since distributed systems used by large websites perform mission-critical func-

tionality, it is important that they be free of correctnessandperformance bugs. However,

it is impossible to write a completely bug-free system. These systems are incredibly

complex, consisting of tens to hundreds of thousands of lines of code, and since they

are written by humans, errors are inevitable. In fact, according toCodeComplete, the

industry average for bugs is 15 to 50 per 1000 lines of code [60]. As a result, developers

often go through extensive testing procedures such as unit testing [23, 18] to try and

detect as many bugs as possible.

1.1 Debugging Challenges

Bugs would not be such a problem if they were easy to locate and diagnose.

However,debugging, the process of correcting known bugs, is notoriously hard. Al-

though there are many books on the subject [25, 76], debugging is still seen as a black

art. Since so many different kinds of programming errors are possible, it is impossi-

ble to apply a small set of techniques to all situations. In addition, many properties of

distributed systems themselves make them difficult to debug.

Since distributed systems are composed of many interacting nodes, the node a

bug is discovered on is not necessarily the node where the bug occurred. Incorrect values

may be propagated from node to node, until at some point a node behaves correctly

— but with bad input data — which exposes a bug. In other cases, bugs can occur

because developers fail to consider all the different possible message interleavings. The

asynchronous nature of the Internet makes it difficult to reason about when and in what

order messages will be delivered on different nodes. As a result, a node may receive

messageB at a time when the developer thought it should only receive messageA,

leading to incorrect behavior.

4

A B

Join

Join

(a) Join Loop Problem

A

B

C
(slow)

D

50%

50%

< 50/sec

50/sec

100/sec

(b) MapReduce Performance Problem

Figure 1.1: Possible Bug Scenarios

As an example, consider the two nodes depicted in Figure 1.1(a). Suppose these

nodes are part of a system where the goal is to form a tree, which can then be used to

efficiently disseminate data, etc. To join, a node simply needs to know about any other

node in the system. Even in the simplest case with two nodes, implementing the joining

procedure correctly is non-trivial. When two nodes try to join each other with the goal

of forming a tree, one of them must be the parent and one must be the child. If one

node joins the other before the other attempts to join, then everything will be fine. On

the other hand, if both nodes join each other at the same time, they must have some

way of deterministically deciding who will be the parent and who will be the child. As

more nodes are added to the system, the number of possible message orderings increases

exponentially, making the correct behavior difficult to reason about.

In order to debug problems like these, the developer has to trace messages across

potentially many nodes, inspecting the state on each node along the path, trying to dis-

cover the source of the bad data. In our tree example above, the developer would likely

need to trace join messages and their responses, keep track of the parent and children of

each node, and try to discover the point at which a node behaved incorrectly. In essence,

since the developer does not know exactly what to look for, they are stuck with what

amounts to looking for a needle in a haystack.

While correctness bugs can be quite difficult to debug, performance problems

5

can be just as difficult, if not more so, to explain. Developers often need to compare

timing characteristics of various parts of the system to search for bottlenecks. This pro-

cess either requires adding code to measure execution timing at different granularities,

or recording the times functions are called and return, and then computing various tim-

ings offline. In other cases, developers need to inspect communication patterns across

nodes to determine whether the expected messages are being sent. They may also need

to count the number of messages of each type that are sent from each node, or how many

are sent in a specific time interval, etc.

As an example performance problem, consider the distributed system shown in

Figure 1.1(b), which represents a simple instance of MapReduce [40]. Suppose nodeA

is the master, and is able to perfectly split its work onto nodesB andC. If nodesB and

C are similar, they should be able to perform the same number ofmapoperations per

second. However, in this case, nodeC is slow, and is only able to perform half as many

operations per second asB. This situation could occur for a number of reasons, including

B andC having different hardware, extraneous background processes unintentionally

running onC, or some deficiency in the mapping process which makes the keys mapped

to nodeC take longer to process. Since nodeD has to wait until it has received all of the

values fromB andC before it can start, throughput of the entire system is limited byC.

This example illustrates one of the challenges in dealing with performance prob-

lems. Even if the system is flawlessly implemented, other outside factors can still cause

performance degradation. These situations need to be investigated all the same, until the

source of the problem can be pinpointed and corrected.

1.1.1 Common Approaches

Although many standard debuggers such as gdb [8], DDD [4], the Eclipse de-

bugger [6], and the Visual Studio debugger [5] exist, they are ineffective at debugging

correctness bugs in distributed systems since they cannot single-step across machine

boundaries. Even if these debuggerscouldstep across machine boundaries, they would

still be ineffective at debugging performance problems since the performance of the sys-

tem as a whole must be observed. Executing the application one step at a time will not

shed any insight on performance issues.

6

As a result, developers all too frequently resort to adding logging statements

to their code, re-running the system, and then poring over the resulting log files in an

attempt to understand what the system was doing in the period leading up to a bug.

Although tedious when applied to a single process, this approach is especially difficult

when applied to distributed systems.

Debugging typically begins with a simple search for the occurrence of a specific

log message, indicating the presence of a bug. From there, developers search back-

wards, attempting to gain some insight into what went wrong. In order to do this, they

need to trace message propagation across nodes, which involves jumping back and forth

between multiple log files, and inspecting the node’s state at each step.

Tracing messages between nodes is tedious to do by hand, especially when mes-

sage chains are long or branch multiple times. Developers may need to keep notes on

the series of messages they have traced just so they do not get lost. Another approach

is to write a script to extract the messages, but even a filtered list of send and receive

events may be difficult to trace. In addition, developers may need more information

surrounding any of the send and receive events, such as what the node’s state was at the

time, or what other function calls were executed that led up to the event of interest. Any

information not extracted by the initial script must then be fished out separately from

the logs and matched up with the messages.

In addition to tracing messages, developers often come up with a series of ques-

tions they would like to answer in order to discover where their code went wrong. For

example, was functionA called before functionB on nodeX, or after? How many times

was functionA called between timet1 andt2? Was the second parameter to functionA

ever less than 0? Was there an entry in nodeA’s mapM for nodeB when nodeA tries to

send a message to nodeB? An ad-hoc script executed over the system logs is typically

designed to answer each question. Each time the developer wishes to investigate some-

thing new, they will either write a new script, or expand an existing script to be more

flexible.

7

1.1.2 Scripting Limitations

As bugs develop and are fixed, developers end up with a growing toolbox of

debugging scripts, each designed to summarize and extract some subset of information

present in their application’s log files. This approach has a number of limitations.

Inefficiency

Since scripts operate over unstructured collections of log files, they almost al-

ways are required to process each log file in full from the beginning to produce their

output. As a result, the log files may be read through many times in the debugging pro-

cess, potentially causing even simple scripts to take longer than necessary if the logs are

sufficiently large.

Complexity

Often times, developers want to ask questions that cannot be answered by single

lines of the log files. Instead, the answer is split across multiple surrounding lines and

must be pieced together. For example, determining whether a map has a certain key at

the time a particular message is sent to a node first requires locating the places where the

message is sent to the target node, and then checking previous lines containing the node’s

state. To write this script, the developer now has to build a reasonably sophisticated log

processor, keeping track of the current node state when a function is entered, etc.

Unfortunately, many kinds of questions will require similar but ultimately dif-

ferent log processing functionality. Common functionality can be abstracted away into

their own scripts, but the complexity of the log processing framework grows consider-

ably as additional functionality is required. As a result, developers are left with com-

plicated scripts that are difficult to understand and maintain. Passing the scripts off to

another party for debugging will likely require detailed instructions on how the scripts

can be used, indicating what each of them does and what parameters they require.

8

Brittleness

Log processing scripts are also inherently brittle, since they operate directly on

a system’s log files. Since log files are simply lines of text, these scripts often make

assumptions about their format. For example, they may select out certain columns of

text or use regular expressions to match specific patterns. Unfortunately, both of these

techniques will tend towards error over time.

Logging statements may be modified to include more information, or shortened

to be more concise. In either case, column numbers will change and cause any scripts

using them to break. In addition, regular expressions may either fail to match the in-

tended lines, or they may match new logging statements unintentionally. When the

now-broken scripts produce unexpected output, developers must spend time debugging

the debugging scripts themselves, adding another level of complexity to debugging the

original application.

1.1.3 Summary

In sum, the iterative loop of forming a hypothesis about system behavior, asking

a question, gathering the necessary subset of system state to answer the question, and

analyzing the resulting data is too long and labor-intensive. All but the simplest of

questions require either painstaking manual inspection, or complicated scripts to extract

the necessary information. These scripts can be difficult to understand, difficult to share,

and difficult to maintain as the system evolves.

1.2 Our Approach

Our key observation is that the entire state of a distributed system should be

available for interactive analysis through a simple, high-level language. We propose that

both the high-level query language and the program compiler cooperatively understand

a sharedmodelof system state such that the vast majority of necessary log information

may be automatically generated by the compiler. Our model and query language abstract

away the details of log file formatting, allowing developers to focus on interacting with

9

the model of the data, rather than with the raw data itself. The query language provides

developers with a powerful tool to gain a greater understanding of how their systems are

behaving.

This dissertation attempts to prove that developers can find bugs in distributed

systems more quickly than with traditional techniques by treating a system’s output and

state as a logical database and then using a domain-specific query language to extract

information.

1.3 Contributions

This dissertation makes four main contributions. First, to support our goals of

interactive log analysis, we present a new abstraction for interfacing with distributed

system state. Rather than a collection of text strings, the contents of logs will be a

collection ofobjects, which can then be manipulated by a high-level query language.

This abstraction allows developers to log objects directly without having to worry about

how the logs are physically formatted or stored on disk. The debugging process may

then proceed around a query language based on objects, rather than through unformatted

text processing.

Second, we introduce a mechanism for controlling the inherent tradeoff between

logging and system performance. By using a set of target queries, we show how we can

reduce logging overhead and improve system performance by limiting the set of logged

objects.

Third, we present an implementation of a system that realizes the above sup-

port. The vast majority of necessary log information can be generated automatically by

a source-to-source translator, and a simple structured logging primitive allows develop-

ers to add additional necessary annotations. We also compare the functionality of our

translator-based system to two stand-alone logging libraries implemented inC++ and

Java. We then present a new query language centered around our object-based abstrac-

tion of log file data and show how it can be used to extract objects from our log model.

We validate its utility by describing the techniques we used in finding four latent bugs

in two different, complex distributed systems.

10

Finally, we present a comprehensive debugging environment that combines a

query-based interface with a visual event graph of system events. This interface allows

users to trace messages, view communication patterns, and inspect any event in the

system in a simple, intuitive manner. We describe one user’s experiences using this

debugging tool to debug two bugs in her own research project.

1.4 Organization

In Chapter 2, we give some additional background about the debugging process,

its relation to software testing, and its close ties with logging systems. We also compare

our work to related work in the areas of program testing, tracing libraries, debugging,

and query languages.

We introduce our object model for log file data, called thestate matrix, in Chap-

ter 3. We also present the design and implementation of our object-oriented query lan-

guage, NYQL, as a translation to SQL queries that are then executed over a traditional

relational database.

In Chapter 4, we describe the implementation of our logging subsystem in the

context of MACE [49], a source-to-source translator and set of libraries for building

distributed systems. We also present a number of query-based log configuration tech-

niques, a binary rewriting technique, and a probabilistic path logging technique for

controlling the tradeoff between execution speed and amount of program information

captured. Finally, we evaluate the performance of our query-based approach, including

log file preparation time, database population time, and query execution time. We also

show how our log customization techniques are able to increase the performance of a

CPU-bound application by eliminating subsets of objects from appearing in the log.

Chapter 5 is dedicated to our debugging experiences. We describe the process

of using queries to help locate and fix a handful of bugs in two distributed systems. We

also introduce our comprehensive debugging environment and describe its use in fixing

bugs in another student’s research.

In Chapter 6, we describe two new stand-alone logging libraries aimed at repli-

cating as much of the functionality as possible of our MACE logging subsystem. We

11

show that aC++ library falls short in a number of areas without a source-to-source trans-

lator, but a library implemented inJava is able to retain almost all of the benefits of

MACE logging.

Finally, we conclude and present directions for future research in Chapter 7.

Chapter 1, in part, is currently being prepared for submission for publication

of the material. Braud, Ryan; Killian, Charles; Deutsch, Alin; Vahdat, Amin. The

dissertation author was the primary investigator and author of this material.

Chapter 2

Background

In this chapter, we cover some background on the debugging process, including

its close relationship with logging libraries. We then provide an overview of related

work in the field.

2.1 The Debugging Process

In the last chapter, we introduceddebuggingas the process of fixing bugs in

computer programs. However, debugging is not the only process involved in removing

bugs. Before bugs can be fixed, they must be somehow be discovered.

Software testing, or just testing, is the process of rigorously attempting to dis-

cover bugs in computer systems. Although our focus in this dissertation is on bug fixing

and not bug finding, it is important to understand the distinction between the two and

how debugging fits into the larger picture of making distributed systems more robust

and correct, which is the ultimate goal.

As systems are built, developers test their software in various ways, in an attempt

to gain faith that the systems work as expected. Regression tests, unit tests [23, 18], and

even software design methodologies such as extreme programming (XP) [29] are just a

few tools developers may employ to help catch bugs as early as possible. However, the

goal of these testing frameworks is only to prove that bugs exist, by getting the program

to a state where an invariant unexpectedly fails to hold.

Unfortunately, like debugging, testing distributed systems is much more difficult

12

13

and complicated than with single-process applications. Developers often start with a

simple setup, using as few nodes as possible. Once simple cases work as expected,

they will start adding nodes and testing more complicated scenarios. When the system

works at a reasonable scale, developers may spend time tuning the system to improve

performance, if necessary. Developers may also start testing failure cases, which, with

traditional techniques, require complicated testing applications to fail and restart nodes

at different times. Alternatively, they may use model checking techniques, which we

discuss in Section 2.3, to explore a wide range of usage scenarios without having to test

them all by hand.

Even with extensive testing, bugs always get past testing phases because as sys-

tems gain complexity, it becomes impossible to test all of the different ways the systems

may be used. As a result, programs may crash, assertions left in the code may fail,

unexpected exceptions may be thrown, or users may notice unexpected behavior, all in-

dicating the presence of a bug. No matter when a bug is discovered, whether it is during

initial testing or after the system is deployed, discovering a bug is only the first step

in eliminating it. This is the boundary between testing and debugging — testing finds

bugs, the debugging process aims to fix them.

2.2 Logging for Debugging

As mentioned in the previous chapter, being able to successfully debug a dis-

tributed system is often critically dependent on the content of log files which detail the

system’s actions. If the logs do not contain enough information to help the developer

diagnose what is going wrong, the developer will not be able to fix the problem. As

a result, it is important that the logging library they use is as powerful and flexible as

possible. In this section, we describe a set of features we believe to be important for de-

bugging distributed systems. Since our approach is also log-based, the goals and criteria

put forth in this section greatly influenced the design of our logging system, which we

introduce in Chapter 4.

14

2.2.1 Important Log Types

Besides basic user-generated log statements, there are four additional types of

logging messages we believe a good logging system should support to enable thorough

distributed systems debugging.

func1(x=5, y="hello")
func2()
func3(param=[3, 4, 6])
func4()

(a) Flat Function Call Logging

func1(x=5, y="hello")
func2()

func3(param=[3, 4, 6])
func4()

(b) Nested Function Call Logging

Figure 2.1: Flat vs. Nested Function Call Logging

Function Call Logging

The first, most basic logging type a library should support is function call and

return logging. This type of logging is important so developers can see how control

flow progresses through their code. Function call logging should also include parameter

contents and return values if possible. It is important that the logging system be able to

handle function return and not just function call, so that the sequence of function calls

is properly nested in the log. Without nesting, a sequence of function calls is much less

useful.

For example, Figure 2.1(a) shows a hypothetical series of flat function calls and

their parameters, while Figure 2.1(b) shows the correctly nested version. The nested

version enables developers to tell which functions call which other functions, as opposed

to the flat version, which simply conveys which functions were called.

Event Boundaries

Second, we believe it is useful for a sequence of function calls to be broken up

into logical units, each corresponding to some specific processing task. These tasks

15

event start
func1()

func2()
func3()

event end
event start
func4()

func5()
func3()

event end

Figure 2.2: Example Event Demarcation

might correspond to handling a network message, executing a timer callback, or dis-

patching a function from a program’s main event loop. In the log, we can demarcate

each task with “start” and “end” messages. Thus, all of the log messages that are gen-

erated between each “start” and “end” pair belong to the same logical task, orevent.

Figure 2.2 shows an example set of log messages enclosed by “start” and “end” mark-

ers.

With these markers, developers can focus on one event at a time, and skip over

events that are of no interest to them. Each log statement should be between exactly one

pair of event markers. No log statements should be “outside” event markers, or log pro-

cessing scripts will have to both consider event and non-event lines, which complicates

their implementation.

Message Tracing

Distributed systems typically send lots of messages over the network. Thus, the

third thing a good logging system should do is make it easy for developers to trace

network messages. That is, for each message, a developer should be able to find when

and where it was sent from, where it was sent to, and when it was delivered. It is

also frequently useful to be able to inspect the contents of each message. In order to

enable message tracing, the logging system should generate unique identifiers that can

be propagated with each message sent. These identifiers, along with “message sent” and

“message received” logging functions, enable developers to track each message in the

16

log.

event start
start()

send(m=HelloMsg(id=1, text="hello"),
dst="10.0.0.2")

event end
event start
receive(m=HelloMsg(id=2, text="hello"),

src="10.0.0.2")
send(m=GoodbyeMsg(id=3),

dst="10.0.0.2")
event end
event start
receive(m=GoodbyeMsg(id=4),

src="10.0.0.2")
event end

(a) Node 1

event start
start()
receive(m=HelloMsg(id=1, text="hello"),

src="10.0.0.1")
send(m=HelloMsg(id=2, text="hello"),

dst="10.0.0.1")
event end
event start
receive(m=GoodbyeMsg(id=3),

src="10.0.0.1")
send(m=GoodbyeMsg(id=4),

dst="10.0.0.1")
event end

(b) Node 2

Figure 2.3: Example Log Files That Support Message Tracing

Figure 2.3 shows an example of log snippets on two different nodes that use

message tracing. Here, we see node 1 sends aHelloMsg to node 2 withid 1, which

arrives on node 2. Node 2 sends back its ownHelloMsgwith id 2. Node 1 responds

with a GoodbyeMsgwith id 3, which node 2 receives before finally sending its own

GoodbyeMsgwith id 4. We note that the actual log format shown for message sending

and receiving is not important, as long as there is enough information to track each

message.

Causal Paths

Building on message tracing, the fourth component of a powerful logging library

for debugging distributed systems iscausal path tracing. Other debugging systems such

as Pip [66] and Project 5 [26] have found path-based analysis to be an important debug-

ging tool. In these systems, a path can be thought of as all of the code that is executed

across multiple machines as a result of a single event. In addition to generating a mes-

sage identifier for each message, the logging system should generate path identifiers

17

which are sent along with every message as well. For a more detailed description of

causal paths, see Section 3.1.3.

Of course, there are many other things developers often wish to log, including

parts of program state, timing information, or control flow information at a sub-function-

call granularity, just as a few examples. A good logging library should also make it easy

for developers to log whatever other information they would like.

2.2.2 Usability Issues

Aside from the set of events that a logging subsystem enables developers to

capture, there are also a number of usability issues that affect how well-suited a logging

subsystem is for debugging. These issues can be broken down into four main areas:

customization, ease of use, log format, and performance. We cover each of these in

turn.

Customization

Log customization refers to the control a developer has in selecting which log-

ging statements execute. Controlling which logging statements appear is important for

a few reasons. First, developers often desire to run their systems with various amounts

of logging enabled. For instance, when the code is thought to be mostly bug-free, they

will want very few logging statements enabled so the code can execute as fast as pos-

sible. On the other hand, when debugging, they will want control over which logging

statements appear in the log, depending on the particular problem they are debugging.

The simplest form of log customization can be thought of as commenting out

code by hand or inserting new logging statements. If a developer does not want certain

log statements in a particular execution of their system, they can comment them out

and recompile the code. Unfortunately, this approach requires manually commenting

or uncommenting each logging statement the developer wishes to change, which can be

quite tedious.

Instead, most logging systems rely on a set oflog levels. Each logging statement

is tagged with a level, indicating the severity of the message. When the code is run, a

18

logging level is chosen. A log message is only actually generated if the log level given

to it is less than or equal to the level picked by the developer at runtime.

In general, the more control a logging system gives to the user over which log-

ging statements to include and which to exclude, the better. Runtime control is also

generally preferred to compile-time control because it is more flexible and does not re-

quire the user to recompile their code when the logging is changed. On the other hand,

this flexibility usually comes with a small performance penalty to check the logging

level of each statement at runtime.

Ease of Use

Another important aspect of logging subsystems is how easy they are to use.

Ease of use is mostly determined by the logging system’s API, and is a measure of how

easy or difficult it is for a developer to log the kinds of information they need. For

example, standardprintf-style logging can both be thought of as easy and difficult

to use, depending on the context. If the developer is only interested in logging string

messages, it is hard to get much simpler than a language’s default print statement. On the

other hand, if a developer wants to log more complicated messages, such as the contents

of an array, or of an associative map,printf-style logging becomes more difficult. In

these cases, the developer has to iterate over the contents of the array or map and print

each element separately, changing a single logging statement into multiple lines.

As a result,printf logging becomes rather difficult to use to log statements of

any real complexity. Since our goal is to develop a logging system that is compatible

with our object-oriented query language, we need to be able to handle data types like

arrays and maps without the need for multi-line logging statements. In addition, we also

need to make it as easy as possible to do event logging, message tracing, and the other

features we described above.

Log Format

The third usability issue that affects a logging subsystem is the formatting of the

log file itself. The log files that we care about exist solely to aid developers in finding and

correcting bugs. These log files are often too long and complicated to be inspected by

19

hand, so they must be amenable to machine processing. A log file’s formatting directly

affects how easy the log processing step can be done.

The most important aspect of a log’s formatting is consistency across all logged

statements. Consistency makes it easier for a log processing script or program to parse

each line, without having unnecessary special cases for each different type of log state-

ment. One important benefit about our approach is that since we are changing what

developers interact with, from log files themselves to an abstract model of a collection

of objects, the log format that we choose becomes unimportant to developers since they

will never see it.

Performance

Finally, performance of a logging system is also of critical importance. Since

each logging statement a developer adds only serves to slow down the execution of the

program, it is critical that the logging overhead be as low as possible. Low overhead

is especially critical when debugging performance problems, since the slowdown added

by logging statements may change the timing characteristics of the original program,

which can mask the symptoms of the problem.

2.3 Related Work

Our work is related to a wide range of research areas, including testing tech-

niques, debugging infrastructures, tools for logging, and data visualization. In this sec-

tion, we outline related work in these areas and compare them to our approach. We

begin with techniques for program testing, since this is a complementary area to our

work.

Query Languages and Translation

In spirit, our data model is most similar to that of OQL, the Object Query Lan-

guage [36]. Queries in OQL operate on an object-oriented database, similar in structure

to ours. However, objects in OQL are closer to objects in a high-level programming lan-

guage in that they support methods and inheritance, while ours are closer tostructs in

20

C. In addition, there are no publicly available implementations of databases that support

OQL, so we could not rely on it as a query language without providing an implementa-

tion of it ourself.

Shanmugasundaram et al. [67] present a system for representing XML data as

a series of SQL tables and show how it can be queried with XML-QL [42] through

a translation process to SQL. Our initial implementation of NYQL uses a traditional

relational database as a backend as well. Although their table format is similar to ours,

theirs is more general since it deals with the inherent graph structure of Document Type

Descriptors (DTDs). While our current data model is based on a set of trees and not

general graphs, we may need to use a similar approach to deal with recursive data types.

The LINQ to SQL project [53] bridges the gap between object-oriented code

and a relational query language. It allows users writing .NET applications to manipulate

objects in their source code using a SQL-like query language. This approach is extended

in DryadLINQ [75] to allow users to write queries over objects spread across a cluster

of machines. However, these projects are more general purpose than ours. They target

large-scale data processing rather than debugging and would not be as efficient for the

latter.

In [65], Pike et al. describe a system for analyzing data distributed across hun-

dreds or thousands of computers. A query is expressed in a new interpreted language

called Sawzall which combines C and Pascal syntax and describes how data files should

be processed. Query execution is broken up into two phases – a filtering phase and an

aggregation phase. In the filtering phase, each data file is broken up into records and pro-

cessed according to the user’s query. In the aggregation phase, the values returned from

the filtering phase are combined according to a set number of predefined aggregators,

although the authors mention that adding additional aggregators is possible. Since this

system is essentially a massively parallel computation, it is structured on top of MapRe-

duce [40] and uses the Google File System [46] to store its output. Although Sawzall

allows queries to be run efficiently across huge data sets distributed across thousands

of machines, the queries themselves can not be as expressive as those in NYQL. For

instance, Sawzall queries can only reference a single record in a single data file and

have no memory about records that were previously processed. Although the Sawzall

21

chaining mechanism can be used to do multiple passes over the data, the authors admit

this is a clumsy approach. Also, the authors state that Sawzall is not good at handling

database join operations, while SQL is the opposite. Finally, the data files processed in

a single Sawzall query must be composed of exactly one type of record, while NYQL

queries can be run over an arbitrary number of arbitrary record types.

Pig Latin [63], developed at Yahoo! is similar to Sawzall in that it is designed

for ad-hoc analysis of massive data sets. It runs on top of Hadoop [21], an open-source

implementation of MapReduce and provides an imperative SQL-like language with a

fully-nested data model like ours. Pig Latin provides first-class support for user-defined

functions, which can appear in the filtering, grouping, and per-tuple processing stages.

While NYQL also supports user-defined functions, it currently only supports them in

“output” statements. Like Sawzall, Pig Latin’s focus is more for processing a large set

of similar input records and producing a set of output records, while our language is

strictly intended for debugging.

Replay Debugging

While our system is designed to allow developers to explore the state of each

node and messages sent in distributed systems once a bug is captured, replay debugging

techniques focus on reproducing executions containing a bug. As a result, logging state-

ments can be eliminated since the state of the system can be checked at replay as the

data is re-generated. WiDS checker [57] uses model checking techniques to verify both

simulation and deployment runs built with the WiDS toolkit. Their approach uses “time

travel” debugging and online predicate checking to check for violations as the program

is replayed. However, their predicate language, while powerful, can become quite com-

plicated. For example, they support injecting python code to manipulate state variables,

which complicates their syntax. On the other hand, our query language is very simple

and easy to understand. They also provide a message-based event graph similar to Neb-

ula, although it does not appear to be as feature-rich. In addition, checking complex

predicates during replay can lengthen the execution time from a factor 4 to 20 in the

authors’ experience.

Liblog [45] uses interposition to log side effects of non-deterministic C library

22

calls, allowing applications to be replayed. Although our work is not focused on the

ability to replay a run, by logging the system state over time we gain similar function-

ality, by being able to access global system state through queries. Friday [44] acts as a

“distributed GDB,” allowing the developer to replay multiple communicating processes

concurrently. The developer can step through the distributed system’s execution and set

breakpoints or watchpoints. Replay of multiple processes has the advantage that the de-

veloper can inspect the system state at a finer granularity than what we support. On the

other hand, deterministic replay requires fairly substantial logging overhead and may

not be appropriate for performance-sensitive applications. In addition, single-stepping

through a replay may not be sufficient for debugging all bugs, especially in the case

of performance problems. Communication patterns of an overall system are also very

difficult to visualize in this manner, which is something that Nebula makes easy.

Software-only replay debuggers have also been extended to deal with multi-core

architectures. Altekar et al. [27] note that in many cases, an exact run does not need to

be replayed – it suffices to find an execution that produces the sameoutput conditionsas

the original. PRES [64] is another replay debugger for multi-core systems, although it

is based on probabilistically reproducing the bug. They show that with a relatively low

number of attempts, they can successfully reproduce a bug.

Query-based Debugging and Visualization

Using queries for debugging is not a new concept, although our approach differs

from past work in a number of ways. In [68], the authors describe extensions to P2 [58]

to provide an integrated distributed continuous query processor for execution tracing of

systems written in P2. This query processor executes queries written in OverLog, the

same language that implements P2. P2’s query processor shares a number of similari-

ties with our work. Both aim to remove ad-hoc script-based debugging, and both have a

mechanism for specifying what should be logged using a query-based mechanism. On

the other hand, using OverLog as a query language means that their debugging system

is intimately tied to P2 — they present no story for how their query-based debugging

techniques could apply to other systems. Our work takes care to define anewquery lan-

guage, which is not tied to any particular implementation and does not require a specific

23

distributed system to work. Finally, OverLog is a much more complicated language

than NYQL. As a result, P2 supports can support more interesting queries than what

are possible with NYQL, but the language itself can make them very hard to under-

stand. NYQL is designed to be a very simple query language, giving developers a fairly

powerful interface to logged data while still staying as simple as possible.

Hy+ [38] is a system for network management and distributed debugging based

on GraphLog, a visual query language. Nebula, our graphical debugging environ-

ment incorporating a query interface, which we describe in Section 5.3, shares some

of the same tenets as Hy+, including visualization, abstraction, and filtering. However,

GraphLog is more of a “visual” query language, while ours is based on the structure of

the underlying data. In addition, our user interfaces show results differently. Theirs is a

more general graph structure of simple nodes with a string label, while ours is more tree

oriented containing well-structured data.

Query-based approaches have also been used in the area of network monitor-

ing [69, 37, 73]. However, none of these systems are as general-purpose as ours and can

only query a subset of the necessary events when debugging distributed systems.

In [31], Braun describes a visualization system for debugging. It shares a few

features with our graphical user interface, including a tree-structured view of “tasks,”

similar to our function call stacks, and arrows representing communication patterns.

xDIVA [35] providesvisualization metaphors(VMs), which allow developers to define

mappings from different data structure types to visual representations that can aid in de-

bugging. While we have not pursued this direction of research, integrating data structure

visualization of some type into Nebula could be valuable future work.

Model Checking

Model checking, as it applies to testing programs, is a means of programmati-

cally exploring the state space of an application, in an attempt to find a state where a bug

exists. Spin [48] is one such model checker, able to find bugs based correctness prop-

erties expressed as linear temporal logic statements in models of distributed systems.

These properties can specify bothsafetyconstraints (the specified condition is always

true), as well aslivenessconstraints (the specified condition must eventually be true).

24

Verisoft [47] was one of the first tools developed for model checkingactual

program implementations, as opposed tomodelsof programs, which is where model

checking originally got its name. Although not as flexible as Spin, it is able to find

deadlocks and assertions failures in realC andC++ systems composed of multiple con-

current processes, as opposed to the models that Spin checks.

TheJava PathFinder (JPF) [71] was developed at NASA as an integrated tool

for model checking, program analysis, and testing. This work focused on testingJava

programs and featured a newJava Virtual Machine, able to analyze Java bytecode,

rather than theJava source itself. Like Spin, JPF is able to check for linear temporal

logic property violations, as well as deadlocks and user-defined assertions.

MaceMC [50] combines state-space exploration with random walks to find live-

ness violations in real distributed systems written in MACE [49]. The authors argue that

liveness properties are more natural to test, since they describe how the system should

behave when it iscorrect, as opposed to safety properties, which only specify ways the

system can beincorrect.

Chess [62] is a model checking tool for enumerating all of the possible thread

interleavings in a concurrent program. This enables developers to deterministically re-

produce potentially find rare bugs that are normally difficult to reproduce. Musuvathi et

al. extend this work in [61], which adds a notion offairnessfor scheduling threads in

programs that do not necessarily terminate.

MacePC [51], an extension of MaceMC, embeds a notion of time into the state-

space exploration. This allows MacePC to search for particular executions where the

simulated runtime differs from the runtime of a common execution by some margin.

Executions found in this way are likely to suffer from performance bugs.

While model checking is a very powerful testing tool, often helping developers

discover bugs that are hard to otherwise reproduce, it unfortunately does not fix these

bugs on its own. Instead, developers must still rely on separate techniques to diagnose

the problems they find. As a result, these techniques are entirely complementary to ours,

as they solve orthogonal problems.

25

Live Debugging

Although we currently focus on post-mortem bug analysis, there are a number

of systems based on instrumenting and tracing live runs. D3S [56] uses dynamic in-

strumentation to inject property checking code into running systems, which allows them

to test for faults without modifying the original code. Our approach to modifying the

logging generated by a running system, described in Section 4.4.4, also uses binary

rewriting. While the uses for dynamic binary instrumentation are different in these two

cases, it is a promising technique to help deal with systems that cannot be restarted.

MaceODB [39] is a Mace [49] extension that translates developer-specified prop-

erties into code that tests these properties at runtime. These properties can be either for

applicationsafety— a condition that should always be true, orliveness— a condition

that should eventually be true, and can be specified over the state of the entire system.

The MaceODB runtime manages shipping the appropriate application state needed for

distributed computation of property evaluation among all nodes necessary. However, us-

ing this approach fordeployedsystems, as they suggest, would mean that the developer

had a known set of predicates they could leave running to be checked. If a bug arose

that was not covered by any of the specified properties, the developer would have to fall

back on other approaches to debug the system. In addition, there is no way to modify the

predicates checked at runtime. A combination of this approach and the binary rewriting

approach of D3S could be promising.

CrystalBall [74] is an interesting approach to live system debugging that inte-

grates model checking techniques with real system execution. Each node continuously

runs a state-space exploration on a recent consistent snapshot of its neighborhood and

uses the results to try and predict and avoid possible future violations of specified safety

properties. Although the authors demonstrated the usefulness of this approach in finding

real bugs, the results are similar to that of program testing — a property violation may

be discovered, but no support is provided for determiningwhy it failed.

Flight Data Recorder [70] uses a clever log compression scheme and a query-

based interface to check for configuration errors in users’ Windows registries. While

not intended to debug distributed systems, log compression schemes could be useful in

reducing the overhead of logging in systems like ours.

26

Tracing Techniques

DTrace [33] uses dynamic instrumentation for tracing low-level operating sys-

tem events in both user and kernel space. It includes a high-level programming language

(D) for specifying which events should be traced and allows users to set predicates on

event conditions. DTrace can instrument applications without restarting them, which is

a benefit over our current implementation. However, predicates defined through NYQL

queries can refer to program state or message contents that DTrace does not have access

to. DTrace could be used in conjunction with NYQL to populate a set of low-level logs

which could then be queried with our language.

Project 5 [26] use statistical techniques to correlate message timings sent be-

tween nodes to reconstruct causal paths of communication in distributed systems. We

employ paths as one of the fundamental objects that can be queried. However, because

Project 5 treats the distributed system as a black box, it cannot leverage additional in-

formation for querying system state nor does it contain a domain-specific language for

manipulating path information.

Pip [66] and X-Trace [43] are two complementary techniques to ours. Both

systems focus on detecting paths of communication in distributed systems, but do not

take black box approaches. With Pip, a developer can annotate their code to map high-

level named paths to particular code segments. Developers can then write expectations

about the quantity or behavior of different paths. X-Trace is similar in spirit but relies

on protocol extension to perform metadata propagation for path reconstruction to work

properly.

Chapter 2, in part, is currently being prepared for submission for publication

of the material. Braud, Ryan; Killian, Charles; Deutsch, Alin; Vahdat, Amin. The

dissertation author was the primary investigator and author of this material.

Chapter 3

A New Debugging Model

So far, we have examined the most common distributed system debugging pro-

cess. We have shown that most log file processing is tedious, error-prone, and fragile.

In this chapter, we introduce a new approach to debugging that addresses these three

main concerns. We present a new abstraction for log file data, thestate matrix. We then

describe a new query language, NYQL, centered around it. Finally, we describe our

implementation of NYQL.

3.1 The State Matrix

Many of the problems with traditional log file analysis stem from the fact that

text log files lack structure. Each log entry is independent of all others, so it becomes

difficult to traverse them in a meaningful fashion. The key to our approach lies in the

way we conceptualize log files. Rather than lines of text, we prefer to think about log

files more generally asobjects. Furthermore, we organize these objects into a logical

three dimensional matrix that developers can interact with.

We call this abstraction thestate matrix. A depiction of the state matrix can be

seen in Figure 3.1. All log messages are entries in this matrix, organized by time, node,

and event type. The “time” dimension contains an entry for every timestamp at which

a logging event occurred on any node. The “node” dimension has an entry for every

node in the system. Here, a node is used to represent each logically distinct entity in the

system, whether they be identified by host names, host names plus ports, or any other

27

28

Object
name: Obj1
 name: Child1 value: 5
 name: Child2
 name: GChild1 value: “hi”
 name: GChild2 value: 3.0
 name: Child3 value: true
 name: node value: “node0”
 name: time value:12345621
 name: event value: “type1”

time

node

event type

Figure 3.1: The State Matrix Abstraction

identifiers. Finally, “event type” organizes all logging messages by type. Each different

log statement in a program’s source code can be thought of as having a different event

type. We note that this dimension is unordered, as different event types have no intrinsic

ordering.

3.1.1 The Object Model

As we mentioned above, we view each element of the state matrix as an object.

Objects in our model can be viewed as tree-structured entities that are defined recur-

sively as follows. Each object contains two or three things: (i) a name, (ii) an arbitrary

number ofchildren, which are also objects, and (iii) a value, if the object has no chil-

dren. Additionally, eachroot objectin the state matrix (e.g., Obj1) has three children

corresponding to the three state matrix dimensions – “node,” “time,” and “event.” These

three children allow us to reference each object’s position within the state matrix from

the object itself. We access sub-objects in the state matrix using the traditional “dot”

operator. For instance, in Figure 3.1, “Obj1.Child2” refers to the entire Child2 object,

while “Obj1.Child2.GChild2” refers to the value 3.0.

29

name: VecObj
 name: values
 name: value value: 2
 name: values
 name: value value: ­3
 name: values
 name: value value: 0
 name: values
 name: value value: ­8

vector<int> VecObj = {2, ­3, 0, 8}

(a) Vector

name: VecObj
 name: keys
 name: value value: 1
 name: values
 name: value value: “test”
 name: keys
 name: value value: 2
 name: values
 name: value value: “map”

map<int, string> MapObj =
 {1=>“test”, 2=>“map”}

(b) Map

Figure 3.2: State Matrix Data Representations

3.1.2 Container Types

In addition to basic tree-structured objects, elements of the state matrix can also

contain a few special container types such as vectors and maps. Figure 3.2(a) shows

the representation for a vector of integers containing the values 2,−3, 0, and 8. Vec-

tor objects contain a child named “values” for each element in the vector. If the vector

contains simple types, then each “values” object has a single child named “value” con-

taining the element’s value. If the vector is composed of objects, then “values” becomes

an object of that type.

Figure 3.2(b) shows an example of a map represented in the state matrix. Maps

are similar to vectors, but instead of containing only “values,” they also have “keys”

corresponding to each value. We note that the vector type is sufficient for representing

arrays, sets, lists, and any other linear container types, and the map type is capable of

storing hash tables or traditional sorted maps. Although these two representations may

seem a bit unusual, we give a sense of their usefulness in Section 3.2.3.

3.1.3 Composite Objects

Although the state matrix as an abstraction can store any types of objects, we

believe it should, at the very least, store objects corresponding to the set of features

30

described in Section 2.2.1 to be useful from a debugging standpoint. That is, the state

matrix should contain function call parameters and possibly return values, function call

nesting, object aggregation into logical events, causal paths, and program state. We

note that some of these components are not objects that are logged in the traditional

sense. For instance, we do not expect programmers to call a “logEvent” function and

pass an entire Event object. Similarly, an object representing a causal path cannot even

be logged in a single place, as it contains events happening on multiple nodes. Instead,

we definecomposite objectsas objects that exist for the purpose of being queried, but

are composed of other objects in the state matrix. The linking of objects into composite

objects is achieved through extra data stored asstate matrix metadata.

The first type of composite object is theEvent. Event objects are used to logically

aggregate logging statements (objects) corresponding to some higher-level functionality,

such as receiving a network message or invoking a member of a class’s public API. In

our current model, events contain a nested sequence of objects corresponding to function

calls. Each object is named in relation to the name of the function, and the children

contain the values of the parameters that were passed when the function was called. We

call these types of objectsfunction call objectsor parameter objectsinterchangeably.

Event objects may also contain any other objects the user chooses to log. Events are

demarcated bystart andend markers stored in the state matrix metadata. The stack

depth of each logged function call is also stored here and is used to compute the correct

nesting.

While Event objects are composed of individual function call objects,Pathob-

jects are composed of Event objects corresponding to a causal path of communication,

similar to the model previously used by Pip [66]. In our model, a Path object repre-

sents a partially-ordered set of Events, using the relationcausesfor ordering. We define

causes(A, B) to be true if and only if a message is sent during EventA which causes

EventB, or causes(A, C) andcauses(C, B) are both true for some EventC. More infor-

mally, a Path object captures events that are executed on multiple nodes of a distributed

system as a consequence of a single event.

31

3.2 NYQL: A New Query Language

In this section, we introduce NYQL, a new query language designed to alleviate

many of the common problems with debugging distributed systems. Although many

query languages currently exist, we felt none of them fit our needs. In spirit, our data

model is most similar to that of OQL [36], the Object Query Language. Queries in OQL

operate on an object-oriented database, similar in structure to ours. However, we chose

not to use OQL as a query language for a few reasons. First, since OQL is designed as a

general-purpose object-oriented query language, it has many features and complexities

that we do not need. Second, and partly because of this complexity, no commercial

databases exist that support OQL.

3.2.1 Why Not SQL?

Although OQL is not readily available, there are many commercial databases

available that support SQL, the Structured Query Language. Since the state matrix

represents a large, virtual database, SQL seems like a natural choice as a front-end query

language. However, the state matrix consists ofobjects, whereas SQL queries work over

flat tables. One way to address this discrepancy is to split objects across multiple tables,

allowing the user to query these tables directly. While this could work in theory, it would

require programmers to reconstruct complete objects themselves. Since users will have

to perform joins for each descendant object, the query complexity grows proportionally

to the queried data structure complexity, which is an undesirable property. In addition,

the table returned by such a SQL query would not maintain any of the desired structure

of the original objects. Finally, changes to table schemas for optimization purposes

or just general restructuring could invalidate many user queries. These are the same

problems that caused us to abandon text logging in the first place. Thus, we set out to

design a simple domain-specific query language specifically targeting exploration of our

proposed state matrix abstraction.

32

3.2.2 NYQL Fundamentals

Recall our goals ofexpressibilityand clarity for a query language. Meeting

these goals means making it easy to extract information from the state matrix while

expressing relationships across event types. Additionally, we desired to support queries

over composite objects such as Events and Paths. With these ideas in mind, we created

a new high-level imperative query language, NYQL, that explicitly centers around the

state matrix abstraction. At a high level, NYQL has five main components:

Loops. Loops allow traversing slices of the state matrix and comprise the body of almost

all NYQL queries.

Conditional Expressions. Filtering is a necessary component of all useful query lan-

guages. These expressions allow users to focus on elements of the state matrix matching

specified criteria.

Variable Assignment. Often, a debugger wishes to find related events that occurred at

similar times. For instance, when iterating over all occurrences of a particular function

call object, a debugger may wish to see the Event object each function call was part of,

or they may wish to see a node’s state at that time. Variable assignment allows users to

find and save references to particular object occurrences.

Aggregation Functions.Aggregating data in various ways is a very common task when

debugging, for example measuring elapsed time between events or counting the number

of times a particular event took place. NYQL supports aggregation through user-defined

functions. We cover how these work in more detail in Section 3.3.6.

Output Statements.Output statements return query results to the user. NYQL has two

different kinds of output statements – one returns objects the user can inspect and the

other produces a graph. Graphing is commonly done as a part of data analysis and so is

supported directly in NYQL.

3.2.3 NYQL Grammar and Examples

We now introduce NYQL syntax through its grammar and a series of examples.

We first define a few basic rules used in the rest of the grammar. Identifiers are a sin-

gle letter followed by zero or more letters or digits. We define any production of the

33

form XList to mean a comma-separated list ofX elements. TheVar production simply

expands to a list of Identifiers separated by dots. Although we do not define it in the

grammar, theExpr production used in various places represents arithmetic or logical

expressions involving variables and constants. Finally, we define theeps production

which matches the empty string.

Identifier ::= [:letter:][:letterdigit:]*
XList ::= X "," XList | X
Var ::= Identifier "." Var | Identifier
eps ::=

Basic Structure

A NYQL query is composed of one or more statements. Each statement is either

a “foreach” statement, a “let” statement, an “output” statement, or a “graph” statement.

Query ::= Statement+
Statement ::= ForEach | Let | Output | Graph

While the grammar allows arbitrary interleaving of these statements, there are

semantic restrictions. Each query must have exactly one “output” or “graph” statement,

but it cannot have both. This statement must occur in the inner-most loop of the query.

ForEach Statements

“foreach” statements are used to iterate over slices of the state matrix. They have

five components: (i) an identifier used to reference each object the loop will iterate over,

(ii) a list of object names to iterate over, (iii) an optionalmatrix expressionused to slice

the state matrix across the “node” and “time” dimensions, iv) an optionalwhere clause,

used to further narrow the scope of the loop, and v) a list of statements to execute for

each object meeting the specified criteria.

ForEach ::= "foreach" Identifier "in" ObjList MatrixExp Where "{"
Statement+

"}"

Obj ::= Identifier | Identifier "*" | FuncObj
FuncObj ::= Identifier "(" NonParen ")"

34

MatrixExp ::= MatrixNotation VarSuffix
MatrixNotation ::= "[" Exprs "]" | eps
Exprs ::= Expr | Expr "," Expr
VarSuffix ::= "." Identifier VarSuffix | eps
Where ::= "where" Expr | eps

There are three ways valid state matrix objects can be named. They can either be

a single identifier, a complete function prototype (for parameter objects), or an identifier

followed by a star. The latter case indicates that the loop should iterate over all objects

starting with the given prefix. We note that multiple object names can be given in a

comma-separated list. In this case, the loop is to execute over all objects listed. However,

any members used in where clauses or output statements must be present inall objects

listed. TheVarSuffix production is used if a loop is to iterate over a vector or a map

child of objects from an outer loop. Thus, we have a uniform way of iterating over

objects in the state matrix as well as container types.

The optional matrix expression, enclosed in brackets, is either one or two ex-

pressions separated by a comma. The first expression is used to put restrictions on the

“node” dimension; the second is for the “time” dimension. If only one expression is

given, it can be for either “node” or “time.” These expressions commonly take the form

“node ==X” or “time < Y,” etc.

The Where production is used as it is in SQL to filter the objects given in

ObjList based on the values of any of their children. For example, a loop “foreach

b in Obj1” (where Obj1 is defined as in Figure 3.1), we could add the clause “where

(b.Child2.GChild2 > 2.5)” Since b is of type Obj1, and Obj1 objects have a child named

Child2 which in turn has a child named GChild2, this where clause is valid.

Let Statements

While “foreach” statements are used to iterate over slices of the state matrix,

“let” statements are used to obtain a reference to a single object or a collection of objects.

Let ::= "let" Identifier "=" ObjType MatrixExp ";"
ObjType ::= Identifier | FuncObj

With “let” statements, we require thatMatrixExp either contains two expres-

sions, one for node and one for time, or does not appear at all. Traditionally, using the

35

“==” operator for both dimensions would give us a reference to a single object, but in

many cases, the equals operator is not sufficient for the time dimension. Since all log-

ging events across nodes are likely to occur at unique timestamps, using a timestamp

from one event to match another is almost never going to work.

Instead, we introduce a new operator in NYQL— “@.” This operator can only

be used on the time dimension ofMatrixExp. Let ObjType beT. Then, the expression

“time @ X” is equivalent to time = max{t.time :t ∈ T andt.time≤ X}. In other words,

the time variable is assigned the greatest value of time that exists for the target object

type that is less than or equal to the given value.

Output Statements

The “output” statement is one of two ways of returning results from a query.

This statement returns the objects named inAsExprList. Expressions returned here can

simply be objects, children of objects, arithmetic expressions, oraggregate functions, if

the parameter given to them is a set of objects or a container type. Each element may

also be renamed using the “as” clause, although arithmetic expressions or aggregate

functions must be given names in this manner.

Output ::= "output" AsExprList OrderBy LabelBy Limit ";"
AsExpr ::= Expr "as" Identifier | Expr
OrderBy ::= "order by" VarList | eps
LabelBy ::= "label by" VarList | eps
Limit ::= "limit" Integer | eps

“output” statements also contain three optional directives. TheOrderBy produc-

tion allows users to control which fields to use when sorting the output, exactly like in

SQL. TheLabelBy production allows users to change how the output objects are la-

belled. Traditionally, an object named “output” is returned for each element of the state

matrix matching the user’s query. Each “output” object has a child for each element in

the user’s output statement. IfLabelBy is present, each output object will be named as

the value of the given object instead. Finally, theLimit production works as it does in

SQL, allowing the user to restrict the number of results returned from a query.

36

Graph Statements

The second method of obtaining results from a query is with a “graph” statement.

While “output” is used to return objects, “graph” is used to generate graphs.

Graph ::= "graph" GraphExprList FileRedirect ";"
GraphExpr ::= Expr "vs" Expr
FileRedirect ::= ">" Identifier | eps

A “graph” statement will plot multiple lines on a single graph, each correspond-

ing to aGraphExpr. EachGraphExpr is of the form X_axis vs Y_axis, where both axis

objects must be integer or floating point values. The optionalFileRedirect production

allows users to name the generated output files. Raw data is written toIdentifier.dat, the

gnuplot [12] code for generating the graph is written toIdentifier.gnuplot, and the graph

is generated asIdentifier.ps. If no file redirection is specified, the default identifier is

“default.”

Examples

We now present a series of example NYQL queries designed to show different

language features. Since NYQL operates over objects, we need a reference set of ob-

jects to work with. Figure 3.4 shows a set ofC++-like class definitions as well as a set

of function prototypes. For the following examples, assume our state matrix contains

objects corresponding to the class and function definitions in the dotted outline. The

State class represents the state of the running application and would be logged period-

ically. The parameters for each of the functions listed would be logged each time the

functions are called. The Addr and Msg classes are simply supporting types used to

make the examples more interesting. For details on how these objects would be logged,

see Chapter 4.

foreach s in State[node== x, time <= 1234567890.25] {
output s order by s.time limit 5;

}

Figure 3.3: Example NYQL Query 1

37

class Addr {
 int addr;
 short port;
}

class Msg1 {
 double t;
 vector<Addr> v;
}

class Msg2 {
 string s;
}

Supporting Types

void deliver(Addr src, Msg1& m);
void deliver(Addr src, Msg2& m);
int send(Addr dst, Msg1& m);
int send(Addr dst, Msg2& m);
int process(vector<Addr>& v);
void update(int val, string s);

Function Prototypes

class State {
 int val1;
 map<int, string> m;
}

Application State

State Matrix Objects

Figure 3.4: Example State Matrix Objects and Supporting Types

Our first example, shown in Figure 3.3, consists of a single loop over all of the

State objects in the state matrix. Here we wish to only see State objects that were logged

on node “x” no later than time 1234567890.25. By outputtings, we output the entire

contents of each State object which includes integer childval1 and mapm, as well as

the time the object was logged and the node identifier, which are automatically added to

all state matrix objects. The “limit” and “order by” keywords work as they do in SQL

— the output will be limited to the first two State objects in ascending time order.

foreach d in deliver(Addr src, Msg1& m) {
let e = Event[node== d.node, time @ d.time];
output e label by e.time;

}

Figure 3.5: Example NYQL Query 2

In the second query, shown in Figure 3.5, we iterate over all of the function

call objects corresponding to delivery of Msg1 messages. We use the entire function

prototype here to disambiguate between functions with the same name but different

prototypes. We use the “@” operator with a “let” statement to get a reference to the

Event object corresponding to each call of the deliver function. Then, we output the

38

entire Event object. We use “label by” to label each returned object by the time the

Event object is logged.

let e = Event;
output max(e.duration) as maxDur, min(e.duration) as minDur;

Figure 3.6: Example NYQL Query 3

Example three, shown in Figure 3.6, is a query without loops. Here we are

assigning a variable to the collection of “Event” objects in the state matrix. The object

Event.duration refers to the length of time, in milliseconds, that it took the event to

execute. Aggregate functions in NYQL operate on a named child of a collection of

objects, and sincee represents all Event objects, we can passe.durationto the max and

min functions. Thus, we are computing the maximum and minimum event durations

across all nodes.

foreach d in deliver*, send* [time < $START + 5] {
let e = Event[node== d.node, time @ d.time];
graph d.time vs (e.duration* 1000) > durplot;

}

Figure 3.7: Example NYQL Query 4

The fourth query, shown in Figure 3.7, uses three more language features. First,

we specify “deliver*”and“send*” as the objects we are looping over, which means any

objects starting with the name “deliver” or “send” will match. Thus, this query iterates

over occurrences of the four deliver/send objects. Second, we use the special variable

$START, which contains the time of the earliest logged object in the run, so we are

looking at all messages sent or received in the first five seconds. Finally, we are using

the “graph” command to generate a graph with the time each message is delivered or

received on the x-axis and the execution time (in microseconds) associated with each of

these events on the y-axis.

Figure 3.8 shows a query with two nested loops. The first loop iterates over

all occurrences of the process() function. The second loop is iterating over all of the

elements of thev parameter. Sinceb is the process object which has a parameterv, b.v

39

foreach b in process(vector<Addr>& v) {
foreach c in b.v.valueswhere (c.value.port == 80) {

output b.node, b.time, c order by c.value.addr;
}

}

Figure 3.8: Example NYQL Query 5

refers to this parameter. As discussed in Section 3.1.2, vector objects have a “values”

child for each element in the vector, sob.v.valuesrefers to the vector’s values. Also

recall that each “values” element has a single child named “value.” In this case, the

element type is Addr, which has two children — “addr” and “port.” Thus, we compare

against the port child of each element in the vector by specifyingc.value.port. Finally,

we output the node, time, and “addr” member of any Addr object passed to a process()

function whose port was 80.

foreach e in Eventwhere (e.duration> 100) {
let p = Path[node== e.node, time @ e.time];
output e.duration, p order by e.duration;

}

Figure 3.9: Example NYQL Query 6

Figure 3.9 shows our final example query. In it, we are iterating over all Event

objects where the execution duration was greater than 100 milliseconds. Then, we are

finding the corresponding Path object this Event was part of. As a result, we end up with

all Path objects in which any individual event took longer than 100 milliseconds.

3.3 Implementing NYQL

One of the main advantages of having a structured, high-level language like

NYQL for debugging distributed systems is that it frees developers from having to

worry about log file formats or manipulating low-level data directly. The side effect

of this advantage is that developers have a stable interface to work with, regardless of

the underlying language implementation.

40

This section describes our prototype of NYQL, which uses a PostgreSQL

database (version 8.1.11) to store log file data. Each NYQL query is translated into a

set of SQL queries that are run against the database. We then post-process the query

results to reconstruct the objects present in the user’s NYQL query. We cover our table

schemas in Section 3.3.2, the database population process in Section 3.3.3, the trans-

lation process from NYQL to SQL in Sections 3.3.4 and 3.3.6, and finally the object

reconstruction process in Section 3.3.5. However, we first give some rationale behind

our implementation choice next in Section 3.3.1.

3.3.1 Rationale

Although we are using a SQL database in our implementation, this is not the

only possible choice. In fact, using SQL might seem counterintuitive since we spent

Section 3.2.1 describing why SQL wasnot a good query language for debugging. How-

ever, there is an important distinction between a query language the user sees and what

goes on behind the scenes. The SQL queries we generate are quite complex and could

not easily be generated by humans. However, they are all automatically generated and

executed by our NYQL to SQL translator so this complexity is hidden from users. On

the other hand, the relational database community is well established, with many avail-

able, optimized database implementations to choose from. We were confident we would

not have to spend any time debugging the back end — SQL queries would all work

as expected. In addition, we expected reasonable performance, even though relational

databases are not inherently designed to store object-oriented data.

On the other hand, since the objects we consider are organized as trees, a natural

alternative to our approach would be to serialize objects as XML documents. These

documents could be queried by compiling NYQL expressions into XML-QL [42], or

the more recent standard XML query language XQuery [30], which is strictly more

expressive than both SQL and NYQL. The approach would even support a relational

back-end, given the XML support of commercial relational database management sys-

tems [3, 10, 24]. We chose instead to exploit the limited expressiveness of NYQL and

its narrow focus on the state matrix in order to implement a more targeted translation to

SQL. We cover the performance impact of this choice in Section 4.5.

41

Internal Tables Object Tables

State
_id val1 m
0 12 0
1 14 1

Events
_id time
0 ... 0 SE 0
1 ... 1 SL 0
2 ... 0 send3 0
3 ... 0 0
4 ... 0 SL 0
5 ... 0 State 0
6 ... 1 SE 1
7 ... 2 SE 2
8 ... 1 SL 2
9 ... 0 deliver1 2
10 ... 1 SL 2
11 ... 0 send4 2
12 ... 1 2
13 ... 0 SL 2
14 ... 0 SL 2
15 ... 1 State 2
16 ... 3 SE 3

joinId tname seid

MessageId

MessageId

method prototype
deliver1
deliver2
send3
send4

process5
update6 update(int val, string s)

MethodMap

deliver(Addr src, Msg1& m)
deliver(Addr src, Msg2& m)
send(Addr dst, Msg1& m)
send(Addr dst, Msg2& m)

process(vector<Addr>& v)

_id node begin mid path
0 A ... 1 0 123849
1 A ... 0 0 123849
2 C ... 1 1 123849
3 C ... 0 1 123849

StartEvent
nodetime

_id mid
0 1
1 2

MessageId

State_m_keys
_id value
0 0
1 3
2 0

State_m
_id keys values
0 0 0
0 1 1
1 2 2

send4
_id m
0 0 0

dst

State_m_values
_id value
0 “Bob”
1 “Kathy”
2 “Bob”

_id port
0 1694607552 8000

send4_dst
addr

send4_m
_id s
0 “Kathy”

Figure 3.10: Table Relationship for a Subset of the Objects in Figure 3.4

3.3.2 Table Schemas

One challenge of our approach is deciding how tree-structured objects should

be stored as tables. Our general approach is that each object is stored in a table with

one column per child. If the child is a basic type, like an integer, floating point number,

string, etc., the column contains the actual value of the child. On the other hand, if the

child is an object itself, the column contains integers representing foreign keys to the

table representing the child.

Figure 3.10 shows a subset of the tables that are generated for the hypothetical

state matrix objects presented in Figure 3.4. Arrows between tables and colored cells

represent foreign key relationships. There are two types of tables in our implementation

– object tablesand internal tables. Object tables directly correspond to state matrix

objects and can be queried in NYQL. On the other hand, the contents of internal tables

are not available directly through queries, but serve to help with the translation pro-

cess. They can be thought of as implementing thestate matrix metadatamentioned in

Section 3.1.3, including support for constructing Event and Path objects.

Object Tables

Object tables directly correspond to non-composite objects in the state matrix.

Although Figure 3.4 shows seven objects — six function call objects plus the State

42

object — we only show how two are stored due to space limitations. Every table has

an id column, used as the table’s primary key. In general, we have one row (and one

uniqueid value) for each time an object is logged. Here we see the State object has

three columns, one forid and one for each of its childrenval1 andm. Sinceval1 is an

integer, the actual values are stored in the State table. On the other hand,m is an object,

so themcolumn is used as a foreign key into the State_m table, which is responsible for

storing the map. We note that for any tableT containing a columnchild that is a foreign

key into another table, the table for the child is namedT_child.

The State_m table has three columns,id, keys, andvalues, corresponding to

its state matrix representation as described in Section 3.1.2. Both thekeysandvalues

columns are foreign keys into the corresponding keys and values tables. In this case,

since both the key and value types are basic types, the keys and values tables have a

single column namedvaluethat stores the actual keys and values in the map. Note that

in this case, theid value of 0 is repeated twice in the State_m table. This indicates that

when the map was logged withid value 0, it had two keys and two values.

The send4 table corresponds to the send() function call that takes a Msg2 object

as a parameter. This correspondence can be seen in the MethodMap table, which we

describe in the “Internal Tables” section below. The send4 table has two non-id columns

— dst andm — one for each of the function’s parameters. Since both parameters are

objects, both columns are foreign keys to their respective tables. send4_m simply has

a single non-id column, representing thes field of the Msg2 object. send4_dst has two

non-id columns, just like the Addr object it represents.

Although not shown, object tables also exist for deliver1, deliver2, send3, pro-

cess5, and update6. These tables are constructed in the same fashion as State and send4,

so we omit their descriptions.

Internal Tables

A collection of object tables alone is not enough to resolve queries. For instance,

they do not contain timing information or node identifiers. In addition, the tables for

function call objects, such as send4, do not include any notion of nesting, and we have

no indication where logical events begin or end, so we cannot construct Event objects.

43

Finally, none of the object tables include any sort of path information, so we cannot

construct Path objects either.

The internal tables exist to remedy these issues, and act as the “glue” keep-

ing the system together. The first table we describe is MethodMap. Although we use

full function prototypes as object names in queries, prototypes contain a number of

characters that are invalid for table names, including spaces. Instead, we assign table

names to function call objects by taking the function name and appending an integer

counter. We maintain the mapping between table name and object name (prototype) in

the MethodMap table.

The most important internal table is the Events table, which acts as an index to

all other tables in the system and stores some necessary information for constructing

Event objects. Figure 3.10 shows the entries that would be logged for two complete

hypothetical events. The Events table has anid column used as its primary key. The

time column records a timestamp for each logged entry. ThejoinId column is used

as a foreign key into all other tables in the system, as specified by thetnamecolumn.

Finally, theseidcolumn is the event number each entry belongs to and also functions as

a foreign key into the StartEvent table. Although not shown for simplicity, the Events

table also contains atid column which stores the thread identifier of each log statement.

We now walk through the entries in the Events table to give an idea of how

everything fits together, and to describe the other internal tables in context. The first

entry is an “SE” entry, which corresponds to the StartEvent table. Since thejoinId is

0, this means the data for this object can be found atid value 0 in the StartEvent table.

We see that this entry marks the start of an event on nodeA on path 123849. Themid

column is similar to a Lamport clock [54] and is used to establish the partial ordering

of events with the samepathvalue, as well as to match individual message sends and

receives. Finally,nodetimeallows a different recording of time other than the wallclock

time, which is what is recorded in the Events table. For instance, a simulator could log

its own value of time in this field.

Returning to the Events table, we see the second entry is “SL.” These entries are

used to establish the nesting relationship of each object in an Event. For “SL” entries,

we use thejoinId column to indicate whether the “stack depth” should be incremented

44

or decremented, since there is no separate SL table that requires this field. The value of

1 means the stack depth should be incremented. Next, we see a “send3” entry. From

consulting the MethodMap, we see that this entry corresponds to the execution of the

send() function that takes a Msg1 object as a parameter. The next entry is “MessageId,”

which gets logged whenever a message gets sent. The MessageId table simply records

themid value — which must be sent in the message — and is logged on the receiving

end in the StartEvent table. Our last three entries in this event are another “SL,” this

time indicating the stack depth should be decremented (marking the end of the send()

function), followed by a “State” entry corresponding to an entry in the State table, and

finally an “SE,” indicating an event has ended.

The second event shown indicates that the deliver1 method was called, which

calls send4, as indicated by the “SL” withjoinId 1 at Eventid 10. Since another message

was sent, we have another “MessageId” entry, followed by two “SL” entries withjoinId

0, indicating the end of the send() function followed by the end of the deliver() function.

Finally, we have another occurrence of a State object being logged followed by the

closing “SE” entry.

3.3.3 Database Population

Before we can end up with tables as described in the previous section, we must

first populate the database. There are two primary ways of doing this — have each

logging statement directly insert the logged values into the appropriate tables on the fly,

or log to files and copy all of the values into a database after the program terminates.

We chose the latter method to avoid slowing down the program being debugged due to

the cost of accessing a database, or having to buffer a potentially large amount of data

to be written asynchronously.

However, the approach we chose is not without its own drawbacks. Instead of

slowing down the program, we must now wait for logs to be copied into a database once

a run is complete. In fact, we cannot even directly copy the logs after a run. Since we

will end up withn log files, one for each node in the system, we first have to merge the

log files together. This is necessary since each node assigns its own local values for all

of theid columns it generates, but we must end up with a global set ofid values covering

45

all nodes in the system for a correct database.

The basic logic merging process works as follows. We first read an Event’s worth

of data from each of then log files and choose the one with the earliest start time. We

then assign new values for allid values present by keeping track of a globalid value for

each object name. However, we make sure to maintain the localid relationships within

an Event, so that objects like vectors with multiple items get renumbered correctly. Once

we have renumbered the Event, we write the output to a series of files, one per table.

We do this to take advantage of PostgreSQL’s bulk copying mechanism, which should

make populating the database as efficient as possible. We then read a new Event from

the node’s log file we just finished, find the next smallest timestamp, and repeat the

process until all log files have been read, renumbered, and written out. Finally, we use

PostgreSQL’scopycommand to copy each table’s data into the database.

3.3.4 Basic Query Translation

In this section, we describe the basic translation process from NYQL to SQL.

There are a number of features that complicate this process, but we defer their discussion

until Section 3.3.6. Query translation has four main steps, although a startup process

must also be completed before any queries can be executed. We present each step in the

context of translating the query shown in Figure 3.11 to SQL. We note that in many of

our SQL queries, we return multiple columns with the same name, which does not work

in practice. To handle this issue, our implementation assigns every column returned

from a SQL query a unique name using “SELECTX AS Y,” but we omit this renaming

process for clarity.

Pre-query Startup

Before any queries are translated, there are two startup tasks that must be done.

We note that these tasks are not done for every query, but only once each time a user

invokes our debugging environment.

First, we connect to the database and retrieve the contents of the MethodMap

table. This allows us to translate between function call object names as specified by

the user (MethodMap.prototype) and actual table names (MethodMap.method). See

46

Figure 3.10 for an example MethodMap table. Second, we query the database for the

schema of all tables. Using the knowledge of our table naming scheme for child objects,

along with the data returned from our schema queries, we build a mapping of all of

the available objects in the system. We refer to this mapping as theTypeMapand use

it to validate all user queries. We take special note of tables starting with a double

underscore (“__”), as these are tables we have created. We describe the function and

creation of these tables in the “Table Creation” section below.

foreach s in State[time <= 1234567890.25] {
output s.node, s.time, 2 * s.val1 as v, s.m order by s.time limit 2;

}

Figure 3.11: NYQL Translation Example

Parsing and Validating

The first step in the translation process is parsing and semantic checking. When

we parse a query, we validate all object references against the TypeMap. In our example

query, besides parsing for syntax, we check that “State” is a valid object type and that

it has children namedtime, val1, andm, which it does. We also keep track of the

each individual object the user wishes to output, which includeState.node, State.time,

State.val1, State.m.keys.value, State.m.values.value. We refer to this list as theoutput

object list.

Table Creation

After parsing a query, we check whether any table beginning with “__” contains

all of the objects in the output object list. If such a table does not exist, we create a table

named “__table1,” for instance, that will store all of the values specified by the output

object list. We do this as an optimization technique, since objects are frequently split up

into many tables. As we can see in Figure 3.3.2, the data for the State object is spread

across four tables. A naïve approach would require at least three SQL joins per query

to extract this information, in addition to joins with the Events and StartEvent tables to

associate a node identifier and a timestamp with each object. As a result, we join all

47

of the data in an output object list into a single table, along with the associated node

identifiers and timestamps, so that repeated queries over the same data can avoid these

extra joins.

The table creation query can be broken down into three nested SELECT state-

ments. The inner-most part of the query, which we designate theNodeTimeQuery, per-

forms a join between the Events table and the SE table and extracts the object name as

text (“State”), thejoinId andtid of each State object along with thenodeandnodetime

fields. In essence, this query matches each occurrence of a State object with the node

identifier and timestamp from the SE table.

CREATE VIEW NodeTimeQuery AS
SELECT 'State'::text AS event, joinId, tid, node, nodetime AS time,
FROM Events, SE
WHERE (tname = 'State' AND seid = SE.id)

The next step in the table creation process is to join the results of the NodeTime-

Query with the State table itself to extract the necessary objects. In this case, the query

includesval1 andm, so we include both of these columns in this query. We refer to this

query as theObjectQuery, shown below.

CREATE VIEW ObjectQuery AS
SELECT event, State.id, State.val1, State.m, tid, node, time
FROM NodeTimeQuery, State
WHERE (State.id = joinId)

If the object we are creating a table for only has children that are basic types,

then at this point we are done. However, in this case,State.m is a map and contains

data in three other tables, which we still need to extract. The final piece of the process

performs left joins with each of the other tables containing data for the State object. We

return all of theid values as well, since we use these in the object reconstruction process

described in Section 3.3.5.

CREATE TABLE __table1 AS
SELECT event, ObjectQuery.id, State_m.id, State_m_keys.id,

State_m_values.id, val1, State_m_keys.value,
State_m_values.value, tid, node, time

FROM ObjectQuery LEFT JOIN State_m ON m = State_m.id
LEFT JOIN State_m_keys ON State_m.keys = State_m_keys.id
LEFT JOIN State_m_values ON State_m.values = State_m_values.id

48

We note that we repeat this process for eachroot object type in the output object

list — we do not create a single table that joins multiple state matrix objects together.

In addition, sinceState.val1 andState.mboth belong to theStateobject, we only create

one table.

Index Query Generation

When the previous step completes, we have the names of a set of tables that store

the objects, timestamps, and node identifiers of all of the objects in the output object list.

The next step is to produce anindex query, which extracts the appropriateid values for

the object types that appear in each loop. The index query also computes the values

of any expressions in the output object list, and handles any “order by,” “limit,” and

“where” clauses as well. The index query we generate for the NYQL query shown in

Figure 3.11 is shown below. Once again, we omit parameter renaming for clarity.

CREATE VIEW IndexQuery AS
SELECT id, 2 * val1 AS e0 FROM __table1
WHERE (time <= 1234567890.25) ORDER BY time LIMIT 2

Since we only have one loop, and one output object type, the index query is

straightforward. We selectid, which refers toState.id, and the desired expression ase0

from __table1, the table we created in the previous step. We add our “order by,” “limit,”

and “where” clauses, so this query returns the correct twoid values and expressions

corresponding to the objects that should be returned from the user’s query.

To handle nested loops, we simply add a table to the “FROM” list for each

loop in the query and extract anid column corresponding to each object being iterated

over. SQL’s natural interpretation of multiple “FROM” tables gives us the exact same

behavior as multiple nested loops. The only complication arises when a user uses a “let”

statement with the @ operator. We defer the description of the translation of these types

of queries to Section 3.3.6.

Data Extraction

The final step in the basic translation process is to extract the elements in the

user’s output object list corresponding to theid values in the index query. We do this

49

with one query per root object type in the object output list. In this case, we only have

one loop over one type so we end up with one query.

SELECT node, time, e0 AS v, id, m_id, m_keys_id, m_values_id,
m_keys_value, m_values_value

FROM __table1, IndexQuery
WHERE (__table1.id = IndexQuery.id)
ORDER BY id, m_id, m_keys_id, m_values_id

As in the table creation process, we select all of theid values for each object

as they are used in the object reconstruction process. Here we name each column rep-

resentatively, although the actual column names would have been chosen uniquely in

the table creation and index query generation step. Also, we order the results by allid

columns, starting fromState.id down toState.m.values.id. This makes reconstructing

objects easier, since consecutive rows in the output with the same value of any of theid

columns belong to the same object.

3.3.5 Object Reconstruction

After executing all of the data extraction queries as described above, we have

enough information to satisfy the user’s NYQL query. However, the final step is to turn

the output from multiple SQL queries back into the objects NYQL returns. Table 3.1

shows the results of our data extraction query above against the database depicted in

Figure 3.10.

Table 3.1: Sample Data Extraction Query Results

id node time v m_id
m_keys m_keys m_values m_values

_id _value _id _value

0 A 1234567890.1 24 0 0 0 0 “Bob”
0 A 1234567890.1 24 0 1 3 1 “Kathy”
1 C 1234567890.2 28 1 2 0 2 “Bob”

We parse these results one row at a time, using theid columns as indicators

where objects begin and end. We start with the highest-levelid column first and work

our way down. Since we do not have a current State object, we make a new one with no

50

children when we findid of 0. Next, we look at the columns corresponding to the chil-

dren of State objects —nodeandtime— and add children for “time = 1234567890.1”

and “node = A” to our State object. Next we seem_id is 0, and we create an empty child

for m. Next up ism_keys_id, so we create an empty child of ourm object namedkeys.

We find m_keys_valuewith value 0, so we addvalueas a child tokeyswith value 0.

Finally, we similarly add a child forvaluesand a grandchildvaluecontaining “Bob.”

On the second line, we seeid is still 0, so we know we have not finished con-

structing our State object, and we skip thetimeandnodefields. Next we see thatm_id

is also still 0, so we have not finished constructing it yet either. However, this time the

value ofm_keys_id has changed to 1, so we make a newkeyschild underm, and add a

child for “value = 3.” Similarly, we see thatm_values_id has changed to 1 as well, so

we add anothervalueschild to m and add its child for “value = Kathy.” We have now

finished parsing the second line, and when we see thatid has changed to 1 on the third

line, we put our completed State object in a map forid 0 and begin constructing a new

State object forid 1.

This process repeats until we have built a map of objects for everyid value in

the data extraction query. Since there will be one data extraction query per type in the

output, we will end up with one object map per type as well. The final step traverses

the results of the index query, looking up the appropriate objects in the object map as

specified by the output statement. Note that in this step, we may need to return sub-

objects of the objects in the object map. For example, we have State objects, but the

object statement containsState.node, State.time, etc. We simply traverse each object

to extract the appropriate children. Our NYQL query is now complete, and we display

the results to the user in a graphical user interface. We discuss this interface and other

functionality it provides in Chapter 5.

3.3.6 Advanced Translation

There are a number of circumstances that require more involved query transla-

tion than the basic process we just described. These include “let” statements with the

“@” operator, loops over multiple objects (e.g., “foreach b int1, t2” or “foreach b in

pre f ix∗”), queries returning Event or Path objects, and aggregate functions. We cover

51

each of these cases in turn.

“Let” Statements and the “@” Operator

Under normal circumstances, we translate each loop and “let” statement in a

NYQL query independently. However, when a user uses the “@” operator, it creates a

dependence between the “let” statement and the loop whose variable appears on the right

hand side of the “@” operator. For example, consider the query shown in Figure 3.12.

foreach s in send(Addr src, Msg1& m) {
let s2 = State[node== s.node, time @ s.time];
output s2;

}

Figure 3.12: Example “@” Query

Instead of two nested loops that would produce all pairs of State and send ob-

jects, we now only want a single State object for each element in the outer loop. Thus,

our output should contain one State object for every send object. In order to capture

this relationship, we add an extra step to the translation process and generate arelation

querythat mapsid values of objects in the outer loop to the correctid for the inner loop.

The relation query is a nested SELECT statement, shown below. Here the table Outer

refers to the table we would create for the send objects, and Inner refers to the table we

would create for the State objects as described in Section 3.3.4.

CREATE TABLE RQ1 AS
SELECT t1.id AS oid, Inner.id AS iid
FROM (SELECT Outer.id, (SELECT max(Inner.time) FROM Inner
WHERE(Inner.time <= Outer.time AND Inner.node = Outer.node)) AS T
FROM Outer) t1 LEFT JOIN Inner ON t1.T = Inner.time

We materialize this query as a table so that any other queries that need this re-

lationship can skip this step. Finally, when generating the index query, we make sure

that theids we select match both the inner and outerids of the relation query, as shown

below.

CREATE VIEW IndexQuery AS
SELECT Outer.id, Inner.id FROM Outer, Inner, RQ1
WHERE (RQ1.iid = Inner.id AND RQ1.oid = Outer.id)

52

Multiple Loop Targets

When there are multiple object names specified as the target of a loop, as in

Example NYQL Query 4, shown in Figure 3.7, we can no longer execute a single set

of SQL queries. However, this case is equivalent to executing multiple NYQL queries,

each with a single loop object specified. However, if we have multiple loops, each with

multiple loop objects, we need a new query for each unique combination of objects. In

the general case, we will end up with a number of NYQL queries equal to the product

of the sizes of the lists in each loop. In Example NYQL Query 4, there are two “send”

object types and two “deliver” object types, so we generate and execute four NYQL

queries.

If there is no “order by” clause, we can simply concatenate the results of each

NYQL query and present them to the user. On the other hand, if an “order by” clause is

specified, we have to combine the results of each of the sub-queries we execute. Luckily,

the results of each query are already correctly sorted, so we must simply merge the result

of sorted lists, which is efficient. This sorting takes place outside of SQL and happens

in a special phase after the object reconstruction phase for each sub-query is completed.

Constructing Event Objects

As we mentioned in Section 3.1.3, Event objects are composite objects and do

not exist in their own tables like other object types. As a result, we need special han-

dling to construct them. At a high level, Event objects occur as defined by entries in

the StartEvent table where thebegincolumn equals 1 (see Figure 3.10). However, the

contents of each Event object are based on the contents of the Events table between each

StartEvent begin/end pair.

When a user writes a query that outputs an Event object, as in Example NYQL

Query 2, shown in Figure 3.5, we translate the query as if they had chosen to output

StartEvent.id. Since each Event object corresponds to an entry in the StartEvent table

wherebegin= 1, we add an extra clause to the relation query (described above) which

ensures we only select the correct entries in the StartEvent table.

The second step occurs during the object reconstruction phase (Section 3.3.5).

Each time we process an output forStartEvent.id, we know we need to build an Event

53

object corresponding to thatid value. Since we know that StartEvent entries are paired,

we execute a SQL query that selects everything in the Events table between the starting

and ending StartEvent entries. We then look at thetnamecolumn of each row we select.

We use “SL” entries to keep track of the current stack depth. For non-“SL” entries,

we translate and execute a NYQL query of the form “foreach b intnamewhere (b.id

= joinId) output b; ” We make sure to translatetnameusing the MethodMap table if

tnameappears in themethodcolumn. The result of executing this query will be the

object that was logged at that point in the Event. When we are done processing all of

the lines from the Events table, we construct our final Event object by composing each

object we reconstructed using the nesting given by the “SL” entries.

Constructing Path Objects

Like Event objects, Path objects are also composite, as they are composed of

Event objects. We begin constructing a Path by translating the user’s query as if they

were outputtingStartEvent.pathwhenever they wish to output Path, as in NYQL Exam-

ple Query 6, shown in Figure 3.9. Each time we come across a value forStartEvent.path

when we are reconstructing objects, we execute a SQL query to select all StartEvents

that fall on the same path, as shown below.

SELECT id FROM StartEvent
WHERE (begin = 1 AND path = $path$) ORDER BY mid

The results of this query include theid values of all Events on the path we are

constructing. We simply execute the Event construction algorithm described above for

each of theseid values and add each Event object constructed as a child of our Path

object.

Computing Event.duration

While Event objects contain all of the objects that were logged between begin-

ning and end event markers,Event.duration is a special child of the Event object that

is not computed unless explicitly requested, as in NYQL Example Queries 3, 4, and 6

(Figures 3.6, 3.7, and 3.9).

54

The query below computes each Event duration as the difference in time between

each odd-numbered StartEvent withbegin= 0 and the corresponding even-numbered

StartEvent withbegin = 1. We store the result as a second table created table over

StartEvent so that queries may use the duration field in “order by” clauses as in Fig-

ure 3.9. This can be very useful in quickly determining which events take the longest to

execute.

CREATE TABLE EventDurations AS
SELECT A.id, A.event, A.tid, A.node, A.time, A.begin, A.mid,

A.path, B.time - A.time AS duration
FROM CreatedStartEvent A, CreatedStartEvent B
WHERE (A.id / 2 = B.id / 2 AND A.id % 2 = 0 AND B.id % 2 = 1)

Computing Aggregate Functions

As mentioned in Section 3.2.2, aggregation functions in NYQL exist solely as

user-defined functions. In our implementation, the user implements a Java class deriving

from UserDefinedFuncand provides four methods:update(), �nalize(), getName(), and

getValue(), described below.

update() takes one parameter of the type the aggregate function is to process.

This method is used for updating any internal state the function needs to maintain for

each value to be aggregated.�nalize() is called when all values are done being processed

and is used to do any final computation, if necessary.getName() simply returns the name

of the method, andgetValue() returns the final aggregated value.

When our tool runs, it checks a specific directory for any class files, all assumed

to derive fromUserDefinedFunc. It then dynamically loads each class file that it finds,

and calls getName() on each to determine the set of valid user-defined functions. When

a query is executed containing one of these user-defined functions in the “output” state-

ment, we generate a query as if the function were not present. Once we generate our

results, we do a post-processing step where we instantiate the appropriate objects for

the user-defined function and pass each value to be aggregated to theupdate() method.

This method updates the current state of the aggregate value. Afterupdate() is called

on each value, we call�nalize() to compute the final value. Finally, we callgetValue()

to obtain the value that is displayed in the user interface.

55

Chapter 3, in part, is currently being prepared for submission for publication

of the material. Braud, Ryan; Killian, Charles; Deutsch, Alin; Vahdat, Amin. The

dissertation author was the primary investigator and author of this material.

Chapter 4

A Logging Case Study: MACE

In the previous chapter, we described a new abstraction for log file data — the

state matrix — and a query langugage for searching and extracting data from this matrix.

However, as we mentioned in Chapter 1, log file post-processing is only one component

of the debugging process. In this chapter, we discuss the process of log file generation

and configuration. In Sections 4.1–4.3, we present a logging framework in the context

of MACE [49], a source-to-source translator and set of libraries for building distributed

systems. We discuss a simple query-based mechanism for customizing what appears

in the log in Section 4.4. Finally, we analyze the performance impact of our logging

scheme, both in the baseline case and also under customization in Section 4.5. We begin

with an overview of MACE.

4.1 MACE Overview

MACE is a meta-language for writing distributed systems. It eliminates much

of the tedium commonly required for distributed systems programming, such as socket

and connection management, timer scheduling, and message serialization and deserial-

ization. Although most large-scale distributed systems are not written with the aid of a

source-to-source translator, let alone with MACE, we chose to use MACE as the basis for

our logging framework for a number of reasons. First, we have significant experience

with MACE and find it considerably easier to use than coding from scratch. Second,

we have found that using a source-to-source translator provides many advantages over

56

57

library-based approaches. In particular, the ability to control the code generation pro-

cess has been very powerful, as we will see below. We will return to the more general

case of logging without a translator in Chapter 6.

Distributed systems written with MACE are modeled as finite state machines,

where eachtransitionis implemented as a block ofC++ code. Each application is divided

into a layered set ofservices, each with a specified API. Services communicate with each

other by makingupcallsanddowncallsto the layers above and below them. Before

getting into the details of our logging framework, we present a simple MACE service we

will use as an example throughout this section.

Figure 4.1 shows the skeleton of a tree-building service named RANDTREE.

RANDTREE has one service layered below it — a TCPTRANSPORTused for sending

messages. Themessagesblock defines the set of messages this service can send. In

this case, there is a join message and a join response message. Thestate_variables

section defines the set of service variables. Our example has two state variables:parent,

a MaceKey, which is a MACE type that represents an IP address or host name, and

children, a NodeSet, which is a set of MaceKeys. Thetransitionsblock defines the set

of C++ transitions, analogous to event handlers. Here we implement members of the

service’s API, including message handlers and timer handlers.

4.2 Compiler-generated Logging

In Chapter 2, we described a set of features we believe a good logging/debugging

system should support. These features include logging function call parameters and

return values, event markers for aggregating log statements, message tracing, and causal

path identification. In this section, we describe how we modified MACE’s code generator

to add each of these features. Note that we were able to addall of these features without

asingleline of user-generated code, simply because we had a source-to-source translator

at our disposal.

58

service RandTree;

services{
Transport trans= TcpTransport();

}

messages{
Join {

// fields needed for joining
}

JoinReply{
// fields needed for replying

}
}

state variables {
MaceKey parent;
NodeSet children;

}

transitions {
downcall joinOverlay(MaceKey peer) {

// called when application wishes to join the tree
// C++ code here
downcall route(trans, Join(. . .));

}

upcall deliver(MaceKey src, Join msg) {
// process “Join” message
// C++ code here

}

upcall deliver(MaceKey src, JoinReply msg) {
// process “JoinReply” message
// C++ code here

}
}

Figure 4.1: Simple MACE Service

4.2.1 Logging Function Calls

Since each MACE service declares a set of transitions (see Figure 4.1), a natural

point to instrument function calls is at these transition boundaries. Although we cannot

59

upcall deliver(MaceKey src, Join msg) {
// process “Join” message
. . .
return 0;

}

(a) MACE Code

int upcall deliver(MaceKey src, Join msg) {
log upcall deliver(src, msg);
// process “Join” message
// <original function body>
return Log::logRv(0, "upcall_deliver");

}

(b) GeneratedC++ Code

Figure 4.2: Logging Function Call Parameters and Return Values

automatically instrumenteveryfunction call made in this manner, logging at transition

boundaries provides an acceptable balance between logging speed/size of the generated

log and debugging usefulness. Figure 4.2 shows the transformation we perform.

There are two elements the MACE translator generates for each transition — a

call to log the function call parameters, and a call to log the function’s return value. For

a transition namedX, MACE generates a function log_X() with the same prototype as

the original function and a void return value. The body of this function contains code to

log the values of each of the parameters under an object namedX. The logRv() function

is not generated by the MACE translator but is part of MACE’s library. It is a template

function with two arguments — the first argument is a template argument containing the

value that should be logged, and the second is the name of the object being logged. This

function logs the first argument under an object named “rv_name” and then returns it.

In this example, logRv() would log the value 0 under an object named “rv_deliver.” We

defer the description of object encoding until Section 4.3.2.

4.2.2 Logging Events

In order to implement event logging, we once again took advantage of MACE’s

natural event-centric structure. We define an event to consist of all of the code executed

during each MACE transition. Logging event start and end is slightly trickier than in-

serting a logging statement at the beginning and end of each transition though, since

transitions may call other transitions as subroutines. To handle this issue, we developed

60

classEvent {
static int depth= 0;
int myDepth;

Event() {
myDepth= depth++;
if (myDepth== 0) {

// log event start
}

}

~Event() {
if (myDepth== 0) {

// log event end
}
depth−−;

}
}

Figure 4.3: Event Logging

anEventclass and have the MACE translator instantiate an Event object at the beginning

of each transition,beforethe code to log the transition’s parameters.

Figure 4.3 showsC++ pseudocode for the Event class. We use a static integer to

keep track of the current stack depth, which is incremented every time an Event object

is constructed. A single counter is sufficient, since MACE only allows a single event to

take place at a time. If the current depth is 0 when an Event object is constructed, we

log that an event is starting. Similarly, we decrement the stack depth each time an Event

object is destructed, and log that an event is ending if the depth is 0. We generalize this

event-logging mechanism to handle multiple concurrent threads in Section 6.1.4.

4.2.3 Logging Program State

In addition to function call parameters, it is often important to log program state

at various points. In MACE, this is easy since each service has astate_variablesblock.

The MACE translator generates a logging function for each service which logs each

of the state variables as a child of an object of the service’s name. For example, our

61

RANDTREE example from Figure 4.1 would have code generated to log RandTree ob-

jects with children named “parent” and “children,” corresponding to RANDTREE’s two

state variables. By default, the MACE translator inserts calls to this logging function

after every event.

4.2.4 Message Tracing

Message tracing is one of the most important tools for debugging distributed

systems, yet also one of the easiest to implement. Recall that for each message sent,

we would like to know when and where the message was sent, when and where it was

received, and what the contents of the message were. These first two events are already

recorded in MACE due to the function call tracing described above. In order to match

each message sent with its receipt, we have the MACE compiler add a monotonically

increasing integer value to each message. This value is logged both when the message

is sent and when it is received, so given a tuple of(src,dest,messageId), we can match

each message sent with where it is received. For uses of message tracing, see Chapter 5.

4.2.5 Causal Path Reconstruction

At a minimum, we could reconstruct causal paths with only event logging and

message tracing. However, this approach would be inefficient, since we would have to

trace each individual message. Instead, we propagate a path identifier along with the

aforementioned message identifier with each message sent. The path identifier is logged

as part of the event, so it is critical that it is setbeforefor the event begins for message

receive events. If no path identifier is set when an event begins, it is assumed that the

current event is the first in the path, and a new path identifier is chosen.

4.3 General-purpose Object Logging

Although we are able to take advantage of the MACE translator to insert many

logging calls automatically, there will always be cases where users wish to add their

own, more specific log statements. By default, MACE provides a number of logging

62

structured logs {
logMsg1(const vector<int>& choices, int chosen);
logString(const string& msg);

}

// code
vector<int> v = . . .;
int ch = . . .;
// log a vector and an integer as children of an object named logMsg1
logMsg1(v, ch);
// log a string as a child of an object named logString
logString("This log function can do normal string logging");

Figure 4.4: MACE Structured Logging Example

methods similar toC’s printf() andC++ streams. Unfortunately, none of MACE’s logging

methods were suitable for our needs for NYQL. Since NYQL’s state matrix is composed

of objects, any logging API that only supports string logging will not suffice.

4.3.1 Structured Logging

We present a new mechanism calledstructured loggingfor MACE, which allows

users to log collections of objects instead of just strings. To use structured logging, users

define a code block in their MACE service. Inside this block, the user can define a set of

function prototypes, each corresponding to a type of object they wish to log. Then, the

user calls one of their newly-defined functions to log the desired values.

Figure 4.4 shows an example of structured logging in MACE. In this exam-

ple, we define two function prototypes, logMsg1() and logString(). The first function,

logMsg1(), takes a vector of integers and an integer as parameters. When a user calls

logMsg1(), the vector and the integer passed as parameters will be logged as children of

an object named logMsg1. We also show logString() as an example of traditional string

logging.

Implementing structured logging in MACE once again makes use of the source-

to-source translator. We generate a function corresponding to each of the prototypes

located in a structured logging block with the same function signatures. As a result, if

a user makes a mistake calling one of their structured logging functions by passing the

63

wrong number of arguments, or arguments that are of the wrong type, the generatedC++

code will not compile. The type safety provided by this mechanism is very useful in

ensuring that unexpected objects do not show up in the log.

4.3.2 Logging Arbitrary Objects

So far, we have made the assumption that we can log objects of arbitrary type,

both when logging function call parameters (Section 4.2.1) and in structured logging

(Section 4.3.1). In this section, we describe how object logging is handled.

We handle the physical serialization of objects to a log file with a set of spe-

cialized template functions. Objects like basic types and strings are easy to handle, as

there are a fixed set of them and they are well known. In addition, we provide special-

izations for many of the commonC++ STL container classes, such as list, vector, map,

and hash_map, among others. These specializations alone are enough for many logging

purposes, but if a user wishes to log objects of their own types, we provide an interface

that their classes must implement. In this case, the user has to implement the serializa-

tion themselves for the class, but frequently this code will simply consist of calls to log

the first class member, then the second, etc.

4.4 Log Customization

While generating a large state matrix is powerful for developers, the required

logging does come at a cost. Unfortunately, the overhead caused by logging program

state after every event, the contents of every message sent/received, etc., can be high and

may mask performance problems or make it impossible to leave logging “always on.”

As a result, it is imperative that we provide developers with a simple way to control the

amount of logging overhead.

Although many large software projects have methods to selectively control what

gets logged, we developed a simple, query-based approach. Specifically, we allow de-

velopers to write queries in a special query block in their MACE services. If such a block

exists in a service, the MACE compiler will aim to minimize the amount of logging gen-

erated while still being able to satisfiy the given queries. Otherwise, if no queries are

64

queries{
foreach j in joinOverlay(MaceKey peer) {

output j;
}
foreach d in deliver(MaceKey src, Join msg) {

output d;
}

}

(a) Queries Block

joinOverlay(MaceKey peer)
deliver(MaceKey src, Join msg)
deliver(MaceKey src, JoinReply msg)
RandTree
Event

(b) Logged Objects

Figure 4.5: Eliminating Entire Objects with Queries

given, all logging is enabled by default. There are three optimizations our query-based

customization supports. We describe each in turn below.

4.4.1 Eliminating Uninteresting Objects

Our first optimization prevents entire unnecessary objects from appearing in

the log. Suppose our RANDTREE service contained the queries block shown in Fig-

ure 4.5(a). In this case, the user is interested in seeing all occurrences of the joinOver-

lay() method as well as all occasions when a Join message was received, but does not

care about any other function calls or the service’s state itself. As a result, the MACE

compiler needs to only generate logging statements for the joinOverlay() calls as well

as the particular call to deliver() with a Join message. We note that Event objects are

still logged, as they are fundamental to resolving all queries. Figure 4.5(b) shows the set

of all objects normally logged by our RANDTREE service, with those eliminated by the

above queries block crossed out.

4.4.2 Eliminating Uninteresting Sub-objects

We can further optimize what gets logged by looking at the specific members

of each object that are present in theoutput statement of each query. For instance,

consider the queries block in Figure 4.6(a). In this case, the user has expressed interest

65

queries{
foreach r in RandTree{

output r.children;
}
foreach d in deliver* {

output d.src;
}

}

(a) Queries Block

joinOverlay(MaceKey peer)
deliver(MaceKey src, Join msg)

src
msg

deliver(MaceKey src, JoinReply msg)
src
msg

RandTree
parent
children

Event

(b) Logged Objects

Figure 4.6: Eliminating Sub-objects with Queries

only in the children member of the RandTree object, as well as thesrc child of any

delivered message. Figure 4.6(b) shows the set of objects that will be logged as a result

of this queries block. Calls to joinOverlay() will not be logged at all. For deliver()

methods, only thesrc parameter will be logged — the contents of the messages will

not appear. Similarly, when RANDTREE’s state is logged after every event, only the

childrenmember will appear in the log. This particular optimization can greatly reduce

the logging overhead if a user is only interested in small portions of otherwise large

objects, such as program state and network messages.

4.4.3 Conditional Logging

Our first two customizations allow us to control which objects and sub-objects

get logged, but once this decision is made, the objects that appear in the queries block

will alwaysbe logged. We improve on our past two optimizations by allowing the user

to express that an object should only be loggedsometimes, naturally using an expression

in the form of awhereclause.

Figure 4.7(a) shows an example queries block withwhereclauses. In this exam-

ple, the user is only interested in RANDTREE’s state if thechildrenmember has more

than two elements. The user is also interested in seeing all network messages sent from

66

queries{
foreach r in RandTree

where (r.children.size() > 2) {
output r;

}
foreach d in deliver*

where (d.src == "10.0.0.1") {
output d;

}
}

(a) Queries Block

joinOverlay(MaceKey peer)
if (src == "10.0.0.1")

deliver(MaceKey src, Join msg)
if (src == "10.0.0.1")

deliver(MaceKey src, JoinReply msg)
if (children.size() > 2)

RandTree
Event

(b) Logged Objects and Conditions

Figure 4.7: Conditional Logging with Queries

a particular address. Instead of logging RANDTREE state after every event and all net-

work messages as in previous examples, we insert the conditions specified in thewhere

clauses into the generated code before the appropriate objects are logged. We show

how we use these expressions to test whether objects should be logged in Figure 4.7(b).

As before, calls to joinOverlay() are not logged since the joinOverlay object does not

appear in any queries in the queries block.

We note that in this example, we used the clause “r.children.size() > 2” for our

condition on RandTree objects, even though it is not valid NYQL since we currently do

not support function calls inwhereclauses. However, we relax our usual syntax here to

support any validC++ expression since we are simply inserting it directly into the user’s

code. As a result, we gain additional flexibility in specifying when an object should be

logged.

4.4.4 Dynamic Binary Rewriting

Unfortunately, each of the three previous optimizations require users to recom-

pile their applications to obtain the benefits of reduced logging. To eliminate this con-

straint, we developed a solution using Pin [59], a dynamic binary rewriting toolkit.

Recall that we generate a logging function for each of a service’s transitions

(Section 4.2.1). For every function of the form log_ob jName(p1, . . . , pm) we generate,

67

we now also generate a function shouldLog_ob jName(p1, . . . , pm). These “shouldLog”

functions all return true by default, indicating that the corresponding object should al-

ways be logged.

upcall deliver(MaceKey src, Join msg) {
// process “Join” message
. . .
return 0;

}

(a) MACE Code

int upcall deliver(MaceKey src, Join msg) {
if (shouldLogupcall deliver(src, msg)) {

log upcall deliver(src, msg);
}
// process “Join” message
// <original function body>
return logRv(0, "upcall_deliver");

}

(b) GeneratedC++ Code

Figure 4.8: Generated Code Supporting Dynamic Binary Rewriting

Figure 4.8 shows how we use our shouldLog functions to conditionally execute

our generated logging functions. This figure is similar to Figure 4.2, except now we only

call log_upcall_deliver() if shouldLog_upcall_deliver() returnstrue. It is these should-

Log functions that we use Pin to dynamically rewrite, allowing debuggers to change

logging behavior on the fly.

Figure 4.9 shows the general architecture of our approach. In the first step, we

give a set of queries of interest to a parser, much like we gave queries to the MACE

compiler in our previous sections. The parser extracts a set of object names{o1, . . . ,on}
and expressions{e1, . . . ,en} from the queries, assigning an expression oftrue to any

object without awhereclause specified. In the second step, we need to translate from

object names to the mangledC++ names of the shouldLog functions we wish to modify.

To do this, we runnm [16] on the application’s executable that we wish to modify and

search for symbols matching shouldLog_o1, shouldLog_o2, etc. It is important to note

that the applicationmustbe compiled with debug symbols, or this step will not work.

Once we have the mangledC++ symbol names, we give these along with the

expressions from the first step to a code generator, which generates aC++ Pin tool

used to specifyn new shouldLog functions to replace the existing ones — each new

68

Parser
Symbol
Lookup

Code
Generator

C++ Compiler
and Linker Pin

Queries
Object
Names

Expressions

Symbol
Names

Original
Executable

C++
Code

Application
Libraries

Shared
Library

Target
pid

Modified
Executable

Figure 4.9: Query-based Dynamic Binary Instrumentation

shouldLog_oi simply returnsei . We use Pin’s RTN_FindByName() and

RTN_ReplaceSignatureProbed() functions to handle the replacement. Care must be

taken in this step to generate code that includes any source files defining types that are

passed as parameters to the shouldLog functions, or the generated code will not com-

pile. Next, we compile the generatedC++ code to produce a shared library that can be

used with Pin. Similar to the previous step, libraries containing the implementations of

any included header files must be provided for successful linking. Finally, the generated

shared library is given to Pin, along with the process id of the running target application.

At this point, the running application will begin executing the new code specified by the

shared library, thus modifying the behavior of the logging subsystem.

Although this process does allow users to change logging behavior on an already-

running application, it does have its drawbacks. We have already mentioned that the

application must be compiled with debug symbols, but generating the shared library to

reconfigure the logging can take anywhere from a handful of seconds to a minute or

more, depending on the number of functions to rewrite and on the complexity of any

included code needed for type definitions. As a result, binary rewriting cannot be used

as an instantaneous solution, but it can be quite useful nonetheless.

4.4.5 Probabilistic Path Logging

In addition to the query-based logging customizations above, we also present a

probabilistic logging scheme based around causal paths. The idea here is that we might

not need every logging statement to locate a particular bug, but we would still like a

representative sample of paths. In this scheme, the user chooses a probabilityp that

69

each path should be logged. When each path begins, either all logging will be generated

as normal (with probabilityp), or no logging will take place (with probability 1− p).

We use a single boolean variablelogPath to keep track of whether the current

event should be logged, which is sufficient for MACE’s single-threaded event model.

We modify the generated code to only perform a logging statement iflogPath is true.

When the first event in a path begins, we setlogPathto truewith probabilityp andfalse

otherwise. Any time a message is sent, the current value oflogPath is included and a

node receiving a message sets itslogPathvariable to the value that was sent. As a result,

all logging that occurs on each path will be based on the same value oflogPath, chosen

at the start of each path. We extend this approach to a multi-threaded environment in

Section 6.1.6.

4.5 System Performance

In this section, we present a performance evaluation of all aspects of our debug-

ging system, including logging overhead, post-processing, and NYQL query evaluation.

All log files used in these experiments were generated by MACE applications employ-

ing the techniques we described in this chapter. We present results from two systems,

RANDTREE and PAXOS [55]. See Sections 5.2.1 and 5.2.2 for descriptions of these

systems.

4.5.1 Baseline Performance

As discussed in Section 3.3.1, using a SQL database as a back-end is not the only

possible implementation of the state matrix abstraction. In this section, we quantify the

effects of this choice on the performance of query resolution, both in terms of startup

costs and query evaluation itself. All results were generated on a Pentium 4, 2.8Ghz

machine with 1GB of RAM. Table 4.1 presents a summary of our results with details

below.

Our RANDTREE evaluation is based on a dataset collected from a run of 30

nodes. In this experiment, all 30 nodes try to form a single tree. The run completes

when all nodes manage to join. The joining process resulted in 1.1 MB of log files.

70

Table 4.1: RANDTREE and PAXOS Query Overhead
RandTree Paxos

Log size 1.1 MB 921 MB
Database size 9.2 MB 2.49 GB
Log processing 10 s 947 s
Database create 9 s 900 s
Query 1 cold 2 s 21 s
Query 1 repeated 1 s 7 s
Objects returned 30 20,000
Query 2 cold 24 s 27 s
Query 2 repeated 18 s 2.3 s/2.7 s/5.7 s
Objects returned 314 10/100/1000

Preparing the log files for insertion into the database as described in Section 3.3.3 took

10 seconds. We next measured the time to copy the data from all log files into the

database, which took 9 seconds. The resulting database was 9 MB on disk, as reported

by thepg_database_size()method of PostgreSQL. Thus, our one-time setup cost was

around 20 seconds for this run of RANDTREE.

We then ran two different queries, shown in Figure 4.10, and measured their

execution times. Recall that the first time a query returns an object type that has not been

queried before, we create a table for the object that joins all of the child objects together

into a single table (Section 3.3.4). This table is then used in all further queries for that

object type. Thus, we report both the running time of each query’s first execution, in

addition to subsequent executions. The first RANDTREE query extracts the causal paths

for each call tojoinOverlay. This query creates three tables and completes in only two

seconds the first time it runs. Subsequent executions of this query complete in one

second. The query returns a total of 30 objects, one for each node.

The second query we measured for RANDTREE involved outputting the entire

event, including function call parameters, each time any message was delivered. The

first run of the query took 24 seconds, requiring 16 table creations. Repeated executions

of this query require 18 seconds per query on average. This query returns 314 objects to

the user.

The second data set we collect is from PAXOS, a more complicated protocol than

RANDTREE. Our test involved three nodes, where one continuously tried to propose

71

// RandTree Query 1
foreach j in joinOverlay(MaceKey peer) {

let p = Path[node== j.node,
time @ j.time];

output p;
}

// RandTree Query 2
foreach d in deliver* {

let e = Event[node== d.node,
time @ d.time];

output e.params;
}

// Paxos Query 1
foreach d in deliver(MaceKey src,

Accepted msg) {
output d;

}

// Paxos Query 2
foreach d in deliver(MaceKey src,

Chosen msg) {
let e = Event[node== d.node,

time @ d.time];
output e.noparamsorder by d.time limit 10;

}

Figure 4.10: RANDTREE and PAXOS Queries Used in Table 4.1

new values as quickly as possible. We ran the system until 10,000 proposals had been

completed, reulting in 921 MB of log files. The log merging process took approximately

15.75 minutes, followed by another 15 minutes to load the database. While these times

may approach or exceed what developers consider a reasonable time to wait, we argue

that this dataset is on the large end of the scale. With more restrictive logging of program

state coupled with more efficient log pre-processing or more recent hardware, we could

reduce start-up costs considerably. The resulting database was 2.49 GB according to

pg_database_size().

The first PAXOS query extracts all function objects corresponding to delivering

anAcceptedmessage. The query time on cold start was 21 seconds, and necessitated the

creation of two tables. Subsequent runs of the same query completed in seven seconds.

The query returned 20,000 objects — far more than a user typically should retrieve with

a single query.

Our second query extracts the first 10 events (excluding parameters) correspond-

ing to the delivery ofChosenmessages. Each event consisted of a nested sequence of

nine function calls. The first run of this query took 27 seconds and required creating

three tables. Subsequent runs took only 2 seconds, and increasing the number of events

returned to 100 and then 1000 took only 3 seconds and 6 seconds, respectively.

72

Table 4.2: PAXOS Throughput with Various Logging Enabled
Logging Query Tput

None N/A 2700/s
All N/A 122/s
All foreachb in deliver(MaceKey src, Accepted msg) {

789/sAccepted output b;
messages }

Every 3rd foreachb in deliver(MaceKey src, Accepted msg)

855/sAccepted where (msg.applied %3 == 0) {
message output b;

}

All foreachb in Paxos {

156/sPAXOS output b;
state }

Some foreachb in Paxos {

736/sPAXOS output b.acceptedProposals;
state }

4.5.2 Logging Optimizations

In addition to the baseline system, we also evaluate the impact of reducing the

enabled logging via the customizations described in Sections 4.4.1–4.4.3 and 4.4.5. We

focus on PAXOS because the baseline logging overhead for RANDTREE is sufficiently

small that additional optimizations are not necessary to maintain good performance.

For these experiments, we used three dual-core 2.8 GHz Xeons running one instance of

PAXOS each.

To evaluate the customizations in Sections 4.4.1–4.4.3, we ran PAXOS six times

under various conditions: once with all logging disabled, once with full logging enabled,

and then four times with logging selectively enabled by queries given to the MACE com-

piler. Table 4.2 presents our performance results. Full logging signifincantly impacts

performance — dropping throughput from 2700 proposals per second to just over 120.

If we just log PAXOS state after every event, we can make a marginal improvement

in throughput (row 5). However, reducing the logged state to a single map (accepted-

Proposals) gives much better performance (row 6). Logging only one type of message

gives a large performance boost (row 3), and an even larger one when further filtering

messages based on content (row 4).

For probabilistic path logging, we ran the system with all logging enabled for

73

Table 4.3: PAXOS Throughput and Log Size with Probabilistic Path Logging
p Throughput Log Size

1.0 122/s 830 MB
0.5 238/s 409 MB
0.33 355/s 261 MB
0.1 950/s 83 MB
0.05 1430/s 43 MB

0 2700/s 0 MB

various logging probabilitiesp. Once again, we used three nodes and ran the system

until 10,000 proposals had been made. Table 4.3 shows our results. Probabilistic logging

does not affect performance in the base cases ofp = 1 andp = 0 (relative to Table 4.2).

Further, we obtain close to linear speedup down top = 0.1 and nearly linear log savings

throughout.

These four optimizations show that application developers can flexibily control

what to log. The difference in performance seen can be great — enough to unmask

bugs not seen at slower speeds, as well as allowing stable, long-running applications to

potentially maintain critical, always-on logging.

4.6 Summary

In this chapter, we covered many aspects of logging support needed for NYQL

processing. We described how we implemented many NYQL features, including event

aggregation, message tracing, causal path reconstruction, and function call tracing in

MACE, a meta-language and set of libraries for building distributed systems. We have

shown how source-to-source translators can insert the vast majority of logging calls

needed for NYQL queries automatically, although they are not required for a system to

be queried with NYQL.

In addition, we presented a number of query-based techniques for controlling

what gets logged. We showed, through evaluation, that these techniques are effective in

mitigating the logging overhead by reducing the amount of state that gets logged. We

also showed that our implementation of NYQL is fast enough to resolve a number of

74

useful queries. In the next chapter, we describe our experiences using NYQL to debug

some real systems.

Chapter 4, in part, is currently being prepared for submission for publication

of the material. Braud, Ryan; Killian, Charles; Deutsch, Alin; Vahdat, Amin. The

dissertation author was the primary investigator and author of this material.

Chapter 5

Debugging Experiences

Thus far, we have presented NYQL, a new query language for distributed sys-

tems debugging and have shown that it can resolve a number of queries efficiently. How-

ever, languages like NYQL are only useful if they can be used to debug real systems.

There are a number of additional factors besides the language itself that must be consid-

ered in order to construct a useful debugging tool.

In this chapter, we present the design of our NYQL debugging environment and

describe a number of features that we believe make it useful and convenient. We then

describe four bugs in two different distributed systems that we were able to diagnose and

fix using our tool. Finally, we introduce a comprehensive debugging tool — Nebula—

which incorporates query processing along with avisual event graphand describe some

debugging experiences with it.

5.1 An Interface for Queries

The user interface is a critical aspect of a debugging tool. Even if the underly-

ing technology is powerful and robust, all is lost if a user cannot interact with it in an

intuitive manner. Thus, we set out to design an interface that was simple, yet power-

ful. The first decision we faced was whether to make the tool text-based or graphical.

We decided on the latter for two main reasons: (i) it is much easier to navigate and

view hierarchical objects in a graphical environment, and (ii) users will need to manage

the results from potentially many queries simultaneously, which is difficult to do in a

75

76

(a) Main Interface (b) Object Schemas Window

Figure 5.1: NYQL User Interface

console application.

Our interface is implemented in Java and has two components — aninput box,

where the user inputs a query, and anoutput panewhich displays a tree view of the

user’s query results. The main interface can be seen in Figure 5.1(a). To allow users

to keep track of multiple queries and query results simultaneously, we wrap the input

box and output pane inside of a tabbed pane. Each tab maintains a single query and its

results, so even after a query is executed, the user has a record of what generated the

results. Finally, each tab contains a button to execute the query currently in the input

pane. When clicked, the results will replace whatever is currently in the output pane.

The output pane contains a single node named “root,” with the number of objects

returned in parentheses. Each child of the root node contains all of the objects specified

in a user’s “output” statement and is labelled “output” unless a “label by” clause is

present (see Figure 3.5 for an example). In our example screenshot, the query returned

a single result consisting of two objects — one for maceInit (m) and one for paxos (s).

Here we see the node, time, event name, and thread identifier of the maceInit() function

77

call, as well as part of a paxos object.

The second part of our interface, theObject Schemas Window, can be seen in

Figure 5.1(b). The Object Schemas Window can be accessed from the View menu of

the main interface, and serves as a record of all of the available objects in the system,

along with their schemas. Since we use entire function prototypes as object names,

it is critical that users can retrieve these function prototypes easily, without having to

remember them or go look back in their source code. The Object Schemas Window

also keeps track of the schemas for any structured log objects the user has defined (see

Section 4.3.1). This window eases the debugging process since users can see exactly

what data is available to be queried.

Finally, although we believe query-based debugging is a powerful tool, we ac-

knowledge there will always be cases where a concept cannot be expressed in NYQL,

or additional text-based debugging tools would be useful. For these reasons, we have

incorporated support for exporting any query’s results as a text file for additional pro-

cessing.

5.2 Debugging with NYQL

In this section, we describe our experiences using the NYQL Queryer to de-

bug two distributed systems written in MACE— a protocol for building random trees

(RANDTREE), and an implementation of PAXOS [55], a distributed consensus protocol.

We give overviews of both systems below.

Once we identified a run with a bug, we loaded the logs into our database and

used the NYQL Queryer to explore the system. We describe the queries we made and

how they allowed us to quickly determine the cause of each bug. Finally, we describe

the fixes for each bug we found.

5.2.1 RandTree

RANDTREE is a protocol for constructing random trees. The basic protocol is

very simple. A node tries to join by contacting another node in the tree, who forwards

the message to the root. If the root has not reached its maximum allowed number of

78

children, it accepts the new node as a child. Otherwise, it randomly forwards the join

message to a child. The process continues recursively until a suitable parent is found

for the new node. There are two notable implementation details. First, RANDTREE is

implemented such that if nodeA tries to join another node with a lower IP addressB,

B will respond with a JOIN_ROOT_FORCE message, and then immediately try to join

A. This mechanism breaks ties between two nodes potentially trying to join each other.

Secondly, a recovery timer is used as a fail-safe mechanism for recovering from tree

partitions, generally configured to fire every 10 seconds. In each of our error cases, we

saw that it took 10 seconds for the nodes to form a tree, which suggested that they were

not correctly joining until this timer fired.

foreach b in deliver*, route* [node== X] {
let z = RandTree[node== b.node, time @ b.time];
output b, z order by b.time;

}

Figure 5.2: Message/State Extraction Query for RANDTREE

Bugs

We used our tool to help fix three bugs in RANDTREE. Although we suspected

that the recovery timer was “fixing” the broken join process, we first validated this hy-

pothesis by writing a query to output the call stacks across all nodes every time the

recovery timer fired. This result showed that the recovery timer was indeed firing. Next,

to find who was failing to join the tree promptly, we executed a query to extract all

objects corresponding to functions where a message was either sent or received across

all nodes where the time was greater thanstart + 5 seconds. The results of this query

showed us who was sending late “join” messages. From here, we ran a similar query to

extract all of the messages sent/received on the slow node along with the node’s state at

that time. We will refer to this query as themessage/state extraction query, shown in

Figure 5.2.

In the first case, we see that nodeA sends a join message to nodeB, but never

receives a response. Next, we ran the message/state extraction query on nodeB, and

79

saw that it receives the join message fromA, but does nothing in response since it is in

the “init” state and configured to drop all messages until it itself tries to join the tree.

To fix this bug, we have nodes buffer all join messages while they are in the

“init” state. Then, when the node tries to join the tree, we process all of the buffered join

messages and respond to them appropriately.

Our second case involved a particular interleaving of messages between three

nodes, yet we were able to debug this case entirely with the message/state extraction

query. NodeA sends a join message toB, and then receives a join message fromC, who

has a lower IP address thanA. A then tries to join nodeC. Next,A receives the join reply

from B, and sinceB’s IP is higher thanA’s, responds with a JOIN_ROOT_FORCE. At

this point,A knows thatB will try and join it, and changes its state to “joined.” Finally,

the join response fromA comes in, butB does nothing with it since it thinks it is already

joined and the join response did not come from its parent (which does not exist). As a

result,A thinks it is joined, but it has failed to join the rest of the tree and is instead the

root of its own subtree, a condition not corrected until the recovery timer fires.

The fix for this bug was simple — a node does not ignore a join response when

it is already joined if it does not currently have a parent.

foreach b in RandTree[time @ LOOP MSG RCV TIME] {
output b;

}

Figure 5.3: All-node State Extraction Query for RANDTREE

For the third scenario, we once again started with the message/state extraction

query. This time, nodeA failed to join correctly because it received a

JOIN_LOOP_ERROR — a message stating that it tried to join a node that thought node

A was the root, which would lead to a loop in the tree. First, we wrote a query to ex-

tract the state of all nodes at the time the JOIN_LOOP_ERROR was sent, shown in

Figure 5.3. Inspecting the state at each node allowed us to reconstruct the structure of

the tree shown in Figure 5.4, as indicated by the solid arrows. Note that the arrows cor-

respond to the state seen at theparentnode, and not necessarily the child. At this point,

we notice that two nodes seem to think nodeD is a child, so we ran the message/state

80

C

B

D

A

(1) Join

(2) Fwd Join

(3) Fwd Join

(2.5) Remove

(4) JOIN_LOOP_ERROR

Figure 5.4: Setup for RANDTREE Bug Three

extraction query for nodeD and discovered thatD was in the process of sending a “re-

move” message toC when it receivedA’s forwarded join. SinceD thinksA is currently

the root, it sends the JOIN_LOOP_ERROR toA.

We fixed this bug by checking if a forwarded join arrived through a different root

node than what is currently believed to be the root. If it is, we re-route the message back

to the root the message arrived through (nodeC). Then, nodeC will process the remove

message fromD, receive the forwarded join message, and send it to nodeB. Finally,

nodeB will acceptA as a child.

5.2.2 Paxos

PAXOS is the classic meta-algorithm for maintaining a globally consistent view

of distributed state. Our test application consists of three nodes running a leader-based

variant where only a single node proposes values and multiple concurrent proposals are

possible. Each proposal is identified by anindex. Typically, the leader sends aPropose

message indicating the index at which it wishes to propose a value to the other nodes,

who respond with anAcceptedmessage. Once the leader receives at least oneAccepted

message, it sends aChosenmessage to the other two nodes containing the chosen value

and the highest index that has been been agreed upon so far. One important implemen-

tation detail is that the version of PAXOS we test periodically exchanges information

about the highest-seen and highest-applied index with the other nodes in the system for

81

garbage collection and failure recovery purposes.

Bugs

Here, we describe a single, complex bug. When we ran PAXOS, we noticed

that it would generally maintain a steady rate of proposals, except around 10 to 20

seconds into the run it would experience a momentary drop in throughput. Similar to

RANDTREE, we suspected this had something to do with a timer. First, we wrote a

query to extract all occasions where a timer fired. We noticed that a timer did indeed fire

shortly before the performance drop. Next, we retrieved the Event object corresponding

to the timer handler method to see what the node did next. We saw that it sent anIndices

message to the other two nodes. Although we knew that nodes typically respond to

Indicesmessages with one of their own, we checked if this was the case. We ran a query

to extract all timesIndicesmessages were delivered along with the corresponding Event

objects on the other two nodes. In both cases, the nodes responded with anotherIndices

message.

At this point, we more closely examined the processing ofIndicesmessages,

since once a node sends a message of that type and receives one in return, that chain

of events ends. From theIndicesmessage call stacks, we saw only one other function

was called –scavenge(). Next, we looked at the source code for thescavenge()method

and noticed it iterating through a loop, erasing things from a list that matched certain

characteristics. We hypothesized that perhaps the list was getting too large, so we kept

a count of how many elements were being removed from the list and added a structured

log object to log this value.

After we re-ran the system with the new logging, we wrote a query to extract all

occurrences of our new structured log object, sorted by the value that was logged. We

saw that most values were at or near zero, but there were a few outliers over 1000. This

seemed suspicious, but sincescavenge()is called from multiple places in the code, we

needed more detail to be sure these outliers were our culprit. Next, we wrote a query

to extract the Event containing each structured log entry we found where the value was

greater than 1000. Although writing this query was trivial with our system, it would have

taken a considerable amount of time to write a script to extract this information, let alone

82

time to debug the script itself. As suspected, we saw that these calls originated from the

receipt of anIndicesmessage. Looking at the timing information for that function, we

saw that it took an unusually large amount of time relative to other “normal” calls to

scavenge().

Although we had found the cause for our slowdown, we still had not nailed down

the cause of the list’s large size. We then wrote a query to extract the contents of the list

at times prior to the slowdown, and noticed that it got progressively larger. However, this

was not the intended behavior. We searched the source code to find places where the list

was modified before realizing that the function that processedAcceptedmessages was

returning in one particular case before it could process and remove elements from the

list. This caused the list to grow inordinately large. After adding code to process the list

before returning, we found that we no longer experienced slowdown.

5.2.3 Discussion

The above case studies give a sense of the rapid, iterative exploratory process

enabled by our tools. We have found it especially useful and convenient to search for

message send/receive events. Being able to reconstruct Event objects around any other

logged object has also been useful. While we have a tremendous amount of information

available without writinganymanual logging statements, structured logging is another

powerful tool for logging temporary variables or breaking events down on a sub-function

level.

5.3 Nebula and the Visual Event Graph

We have found that debugging with NYQL can significantly reduce a lot of

common burdens associated with debugging distributed systems. However, in our ex-

periences with it, we also found that there were certain patterns that grew increasingly

common. For example, we relied on the message/state extraction query (Figure 5.2) in

many of our debugging sessions. Although NYQL queries were sufficient for us to de-

bug the examples we described in the last section, it would have been useful to be able

to visualize communication patterns between nodes. Instead, we were forced to write

83

a query to see the messages a node sent to others, and then write additional queries to

inspect the receiving nodes’ state.

Figure 5.5: Nebula User Interface

To simplify the process of traversing messages and viewing node state, we devel-

oped Nebula, a graphical user interface which combines the NYQL Queryer interface

with an event graph. Our event graph is visually similar to the one presented in [52]

and is based on the space-time display introduced by Lamport in [54]. However, our

implementation provides a number of additional useful features, such as visualization

84

of all of the logging calls made at each event and the contents of message parameters,

the ability to view a causal path for any event in the system, and the ability to see any

node’s state at any point.

Figure 5.5 shows two of the four main components of the Nebula debugging in-

terface — the event graph representation and thedebug window, used to visualize Event

objects. The other two components are the NYQL Queryer, described in Section 5.1,

and thestate-view window, shown in Figure 5.6. We describe each of these components

below.

5.3.1 Event Graph

The Nebula event graph has six main elements: (i) node markers, (ii & iii) com-

plete and incomplete message arrows, (iv) message content popups, (v) event markers,

and (vi) time markers. Nodes are represented as red spheres and are laid out horizontally

across the screen. Each has a graytime lineemanating from the sphere’s center that ex-

tends towards the bottom of the screen and represents the flow of time. Time increases

with the distance from each node marker, and is marked in periodic intervals along the

left-most time line. These values represent the number of seconds since the start of the

application.

Each event, corresponding to an Event object in the state matrix, is represented

as a magenta square. Complete messages are represented as green arrows pointing to

the destination and always point in a downwards direction since time flows down in

the graph. The short red diagonal lines represent incomplete messages, and simply

indicate that a message was sent during an event but the corresponding receive event is

not currently displayed on the graph.

The toolbar under the menu contains visualization parameters for controlling

what portion of the event graph is displayed. In Figure 5.5, we see that the first event

displayed is event number 118 and there are 50 total events displayed. The scale param-

eter controls the vertical spacing of the time axis of the event graph. This allows users to

tune the spacing of the graph based on the timescale at which their application operates.

Finally, a message content popup is shown as the blue box, and appears whenever

the user hovers the mouse over any complete or incomplete message arrow. The name

85

of the message along with its contents is displayed and disappears when the user moves

their mouse away from a message arrow.

5.3.2 Debug Window

The second part of the Nebula interface shown in Figure 5.5 is the debug window,

used for traversing the event graph as well as displaying the contents of the currently

selected event. The debug window has four components: (i) the event slider, (ii) the

jump box, (iii) the event display pane, and (iv) a “Go” button.

Figure 5.6: Nebula State View

86

Users can jump to any event they wish by either adjusting the slider to the desired

location or typing an event number into the jump box and clicking Go. Event objects

displayed here are slightly different than those returned in NYQL queries. The top-level

object is labelled by the node identifier, timestamp, and thread identifier the event took

place on. Beneath that, we see all objects that were logged as part of the event. However,

unlike Event objects in NYQL, these do not display function call parameters by default.

In addition, each function call is also annotated with the time it took to complete. We

also display return values of each function as children named “rv.”

5.3.3 State-view Window

Nebula’s third interface component is thestate-view windowand is shown in

Figure 5.6. Right-clicking on one of the node markers in the event graph brings up a

context menu with the option to view a node’s state. Here, Nebula extracts the contents

of a user-specified object at the time of the currently selected event on the node that was

clicked on.

In Figure 5.6, we have configured Nebula to treat the “paxos” object as the state

object. When we right-click on the Node 1 identifier and select “View state,” the paxos

object logged by Node 1 most recently to the time of the currently selected event is

extracted and presented. Once a state-view window is open, we can update the displayed

state to the currently highlighted event by clicking the “Update” button. Alternatively,

the user can open multiple state-view windows by right-clicking on a node identifier and

choosing the “View state” option again.

5.3.4 Navigating the Event Graph

The combination of the event graph, the debug window, and the state-view win-

dow provide a powerful interface for navigating the event graph and viewing node state

at various times. Here we describe a few additional methods of navigating the event

graph.

Besides entering event numbers in the jump box or using the event slider, users

can also use the “f” and “b” keys to step forward and back one event at a time. Press-

87

ing “F” or “B” results in similar behavior, except that the events will be restricted to

the currently selected node. Any time a user changes the currently selected event, the

corresponding event is highlighted in the event graph. The node marker as well as the

event marker are highlighted in blue for the currently selected event.

As shown in Figures 5.5 and 5.7, certain event components are displayed in blue

text. These correspond to sending or receiving messages — in our examples,deliver

or route function calls. If the user right-clicks on one of these entries, as shown in

Figure 5.7(b), they are given the option to jump to the other endpoint of the message

transmission. For example, if the user right-clicks on a route function call, they are

given the option to jump to the event where the message is received. On the other hand,

if the user right-clicks on a deliver function call, they have the option to jump to the

event where the message was sent. Users can also fully expand or collapse any element

in the tree or retrieve the parameters for any function call in an event.

(a) Path View (b) Context Menu

Figure 5.7: Nebula Path View and Context Menu

88

The final piece of functionality provided by Nebula is the ability to extract the

Path object around any event. This option is available by right-clicking on the top-

level tree node of any event shown in the debug window. The results are shown in

Figure 5.7(a). The top-level node is named “path” and contains two measures of time.

The first, “compute,” is the sum of all of the compute times of all events on the path. The

second, “elapsed,” is simply the time difference between the greatest ending timestamp

of any event in the path and the timestamp of the beginning of the first event in the path.

As a result, it is possible for the compute time to be larger than the elapsed time if the

path involves significant parallel computation.

5.4 Implementing Nebula

Given our database backend and the implementation of the NYQL Queryer, im-

plementing the event graph in Nebula was fairly straightforward. However, due to the

different access patterns associated with message tracing and extracting a single Event

object at a time, we did not use NYQL internally. Instead, we execute SQL queries

directly to build the event graph, the Event objects displayed in the debug window, and

the objects displayed in the state-view window. This way, we avoid the table creation

process described in Section 3.3.4.

5.4.1 Building the Event Graph

To build the event graph, we must compute a few things. These include the

number of nodes in the system and the number of Event objects that were logged. After

Nebula has connected to a database, we issue the following two queries to count the

number of nodes and Events, respectively:

(1) SELECT COUNT(DISTINCT node) FROM StartEvent
(2) SELECT COUNT(*) FROM StartEvent WHERE begin = 1

Next, we must build the visible portion of the event graph. Recall from Sec-

tion 5.3.1 that this is controlled by two parameters,StartEventand NumEvents. By

default, Nebula starts withStartEvent= 0 andNumEvents= 25 so we will use these

89

values below. First, we select everything from the StartEvent table corresponding to the

first 25 events (Query 3). We use this information to create an event marker for each

visible event. Next, we calculate the starting and endingid values in the Events table

corresponding to the beginning of Event 0 and the end of Event 24 (Queries 4 and 5). We

then select everything from the Events table between these twoid values corresponding

to message sends (Query 6).

(3) SELECT * FROM StartEvent WHERE id >= 0 AND id < 50
AND begin = 1

(4) SELECT id AS startId FROM Events WHERE tname = 'SE'
AND joinId = 0

(5) SELECT id AS endId FROM Events WHERE tname = 'SE'
AND joinId = 49

(6) SELECT * FROM Events WHERE id >= startId AND id <= endId
AND tname = 'MessageId'

For each message send we find, we next execute a query to extract the message

identifier from the MessageId table (Query 7) and then find the Eventid corresponding

to where the message was received (Query 8). Keep in mind that the message identifiers

of received messages are logged in the StartEvent table as themid column.

(7) SELECT mid AS desired FROM MessageId WHERE id = FoundId
(8) SELECT id FROM StartEvent WHERE mid = desired

Once each of these queries returns, we can draw the visible portion of the event

graph. When a user changes theStartEventor NumEventsparameters, we simply re-

construct the graph from scratch. We could optimize this process if any portions of

the graph were to be redrawn, but rebuilding the whole thing has been fast enough that

optimizing this step was not necessary.

5.4.2 Displaying Message Contents

To construct the contents of a message when the user hovers their mouse over a

message arrow (as seen in Figure 5.5), we take advantage of knowledge of our logging

system. That is, there is no specific log entry that only stores message contents. How-

ever, we do know that each deliver function takes a message as an argument, so we can

extract the message contents from there.

90

Each message arrow we store keeps track of the receiving event id as well as the

message id. The first thing we do is to extract everything from the Events table corre-

sponding to the receiving event. This involves a number of queries similar to Queries

4–6 above, but with slight modifications. For Query 4, we setjoinId equal to theid

we store for the message arrow. In Query 5, we set thejoinId to be theid used in

Query 4 plus 1. Finally for Query 6, we omit the condition ontnameso that we extract

everything for the event and not just MessageId entries.

Next, we look for an entry in the returned data whosetnamestarts with “deliver.”

This should be one of the first few entries since the event should start with a deliver func-

tion call. Finally, since all of our deliver functions follow the same prototype pattern,

we know that the message is the second parameter. We use the value of thetnameand

joinId columns to extract a single object from the correct table. This process potentially

involves multiple queries, one for each of the tables the object is split over. However,

each query is simple and is of the form:

(9) SELECT * FROM tableName WHERE id = joinId

We then combine the results from each of these queries to construct the string

representation of the contents of the message that gets displayed on the event graph.

This process contrasts with the NYQL method of reconstructing objects, where all the

data is retrieved from a single table that has already joined each of the constituent ta-

bles together. Since we are only interested in a single object at a time, this method is

sufficiently fast and is much simpler.

5.4.3 The Debug and State-view Windows

Constructing Events to display in the debug window involves a number of similar

queries to the message construction process described above. Instead of extracting the

contents of the Events table for a given StartEventid and looking for a deliver function,

we process every entry. We use entries where thetnameis “SL” to keep track of stack

depth, as we do in the Event object construction portion of Section 3.3.6. For each non-

“SL” entry we encounter, we construct a single object using the above method (Query

9).

91

The contents of state-view window is also built using similar techniques. Since

we know theid of the Event we are interested in, we extract everything from the Events

table as if we were constructing the Event object for the debug window. However, this

time we process the rows looking for atnamematch against an object name the user

has specified, representing the state of their application. We then use the single object

reconstruction mechanism described above to build the instance of this object for the

state-view window.

5.5 Debugging with Nebula

In this section, we report another graduate student’s experiences using Nebula

to debug their research on UNRP, the Unified Naming and Routing Protocol [72]. The

goal of UNRP is to assign topologically meaningful host labels to hosts in a data center

network which can be used in a variety of routing or forwarding contexts. Since UNRP

is designed for data centers, it overlays a logical hierarchy on an input topology, which

it assumes to be layered. Switches at the “bottom” layer are referred to asedgesand

are connected to hosts, while switches at the “top” arecore switches. The rest of the

switches areaggregations.

To assign labels, UNRP groups aggregation switches intopods, wherein the

switches in each pod have the same set of neighboring edge switches. Each switch in a

pod is assigned the same coordinate, which must be different from coordinates assigned

to switches in all other pods. An example topology for this scenario can be seen in

Figure 5.8. Here, we see coresc1 andc2, aggregationsa1 –a4, edgese1 –e4, and hosts

h1 –h4.

In each of the bugs below, the student used the MACE modelchecker

(MACEMC) [50] to produce a buggy run. Buggy runs are typically terminated at the

violation of aproperty, a logical condition over the state of all of the nodes in the system.

The logs generated from each run are then analyzed with Nebula. Although we only

describe two bugs, the student found and fixed around 10 bugs using Nebula during the

development of UNRP.

92

c1

a1

e1 e2

c2

a3 a4

e3 e4

a2

h1 h2 h3 h4

Figure 5.8: Sample UNRP Topology

5.5.1 UNRP Bug 1

The student noticed the first bug when a modelchecker run did not terminate

with a property violation, but instead continued to run forever. After loading the logs

into the database and connecting to it with Nebula, she jumped to the last event to see

what caused it to loop. Referring to Figure 5.8, she noticed that the last event was

e2 processing the delivery of a message containingcoordinate hintsfrom a2. These

messages contain a list of pod coordinates that the edge switch is not allowed to choose

for its neighboring pod. In this case, she inspected the values in this message and saw

that they included the value -1. This value is not a valid pod number and should not have

been included in the message, so the student jumped to the event where the message was

sent.

From having implemented the protocol, the student knew that the contents of the

coordinate hints message sent by aggregation switches are a union of all values sent to

it in coordinate hints messages from their neighboring core switches. As a result,c1

must have senta2 the -1. At this point, she simply looked back at the event graph for

messages sent fromc1 to a2 until she found the coordinate hints message. She could

have written a query to find the event where the -1 was sent, but visual inspection was

93

quicker in this case.

After inspecting the code for the sending of coordinate hints messages from

core switches, the student discovered core switches simply send the contents of their

local coordinate hints maps, which contain -1 entries for pods that are not yet assigned

coordinates. When there are no pod coordinates available for choosing, an edge switch

is supposed to choose -1 as this will indicate an error condition, but in this case -1 could

not be chosen either because it was in the list of coordinates that were already taken.

The simple solution was to exclude any -1 values from coordinate hints messages, which

fixed the problem.

5.5.2 UNRP Bug 2

The second UNRP bug was discovered by a property that checks that all of the

aggregations in the same pod share the same pod coordinate. Pods are assigned by

UNRP such that nodes that are connected to the same set of edge switches belong to the

same pod. Thus, in Figure 5.8,a2 anda3 should belong to the same pod.

The student first jumped to the last event in the run, since this is where the

property failed. She then used Nebula’s state view feature to view the state ona2 anda3

and noticed that they did have different pod coordinates,X andY, respectively. Next,

she wanted to see wherea2 received its pod coordinate, so she wrote the query shown

in Figure 5.9. This query finds the first Event where nodea2 has itscoordinatestate

variable set toX.

foreach u in UNRP where(u.node== a2 && u.coordinate== X) {
let e = Event[node== u.node, time @ u.time];
output e order by u.time limit 1;

}

Figure 5.9: UNRP Pod Coordinate Query

Upon jumping to this event in the graph, the student noticed the event corre-

sponded toa2 receiving an update message frome3, indicating it should set its coor-

dinate toX. Curious whye3 would sendX to a2, she began looking backwards at the

events one3. Eventually, she discovered thate3 received a message froma2, indicat-

94

ing it had gotten disconnected frome2 ande3 should now be the one responsible for

setting the coordinate. This would explain whye3 sentX to a2. However, sincea3

had a different coordinate thanX, she figured something later on must be causing the

discrepancy.

Next, the student returned to the event returned from the query in Figure 5.9 and

began tracing forwards ona2, noticing thata2 receives a message frome2 (including

a coordinate assignment) and therefore realizes thate2 is no longer disconnected. This

message indicates thatY (the correct value) is the coordinate. However, a few events

later, the student sees thata2 announcesX as its pod coordinate to its neighbors, indi-

cating that the value ofY from e2 was ignored. At this point, she had found the bug.

Once she inspected the code, she found that a cache entry was not cleared whene2 was

disconnected, causinga2 to ignoree2’s request to set its coordinate toY. She fixed the

bug by changing the caching logic when a neighbor gets disconnected.

5.6 Summary

Debugging real systems is often a complicated process, involving tracing mes-

sages, finding events of interest, and looking at patterns. In this chapter, we have ap-

plied NYQL to debugging two systems, RANDTREE and PAXOS, showing that it can

be a powerful tool to quickly focus on relevant areas of a distributed system’s exe-

cution. The bugs we fixed are non-trivial — they involved viewing relevant parts of

multiple nodes’ state at different times, tracing messages, computing durations of dif-

ferent function calls, and finding instances of log messages matching certain criteria.

Although nothing we have done would be impossible with traditional ad-hoc debugging

techniques, a structured logging system combined with a well-defined query interface

reduces the time to implement such queries by orders of magnitude while reducing the

possibility of programmer error.

We also introduced Nebula, a graphical user interface integrating a navigable

event graph, message and state inspection, and NYQL queries. We described its imple-

mentation on top of our database backend, and then described how it was used to debug

a third distributed system, UNRP. Nebula not only makes it easy to visualize commu-

95

nication patterns, but also to traverse the events of the system by following messages

or stepping through the execution of a single node. Both of these things are difficult

and clumsy to do with queries alone, but were invaluable when debugging UNRP. This

functionality would have been useful when debugging RANDTREE and PAXOS as well,

which is what led us to pursue a tool that provides more than just a query interface.

Chapter 5, in part, is currently being prepared for submission for publication

of the material. Braud, Ryan; Killian, Charles; Deutsch, Alin; Vahdat, Amin. The

dissertation author was the primary investigator and author of this material.

Chapter 6

Moving Away From A Compiler

In Chapter 4, we discussed a logging infrastructure for debugging with NYQL

in the context of MACE, a source-to-source translator and set of libraries for building

distributed systems. Although we have found that MACE greatly simplifies and speeds

up the process of building distributed systems, the reality is that most distributed systems

are not built around a source-to-source translator, let alone MACE in particular.

As a result, we wanted to evaluate the differences between compiler-generated

and traditional hand-generated logging infrastructures, which are all that are available

in most distributed systems. To make this comparison, we implemented two logging

libraries, one inC++ and one inJava, with the goal of emulating as much of the func-

tionality of our MACE implementation as possible. We chooseC++ since it is the most

prevalent language for distributed systems implementation, andJava because it is an

interpreted language. Interpreted languages likeJava, Ruby, andPython present a

midpoint between statically-compiled languages without compiler support, and systems

like MACE that provide full control of code generation.

In this chapter, we describe the similarities and differences between the major

MACE logging features as implemented in our stand-aloneC++ andJava libraries. We

show that there are significant advantages in using a translator or code generator in

the toolchain, although theJava Virtual Machine has also been able to provide similar

advantages. However, we begin by describing theC++ logging library.

96

97

6.1 Logging inC++

The most notable difference between logging in MACE and logging with aC++

library is that with the library, users have to insert all logging statements themselves.

Besides the obvious programming burden this introduces, there are a number of other

difficulties involved when using a stand-alone library, which we describe below.

6.1.1 Structured Logging

As described in Section 4.3.1, MACE has mechanism for defining the composi-

tion of arbitrary log messages known as structured logging. In MACE, the user defines

a structured log block in their code containing a set of function prototypes, each corre-

sponding to a generated function that logs objects of the specified types.

Without a code generator, the structured logging functionality cannot be exactly

replicated. Instead, we rely on a set of templatized logging functions, each designed

to handle a different number of arguments. Figure 6.1 shows an example of structured

logging in MACE, and its equivalent in ourC++ library.

structured logs {
logMsg1(const vector<int>& c, int chosen);
logString(const string& msg);

}

// code
vector<int> v = . . .;
int ch = . . .;
logMsg1(v, ch);
logString("String");

(a) MACE

DEFINE LOG(logMsg1, vector<int> c,
int chosen)

DEFINE LOG(logString, string msg)

// code
vector<int> v = . . .;
int ch = . . .;
Log::logObjects("logMsg1", v, ch);
Log::logObjects("logString", "String");

(b) C++

Figure 6.1: Structured Logging in MACE andC++

The first difference we see is that the structured log block itself from MACE is

replaced with a series of calls to the DEFINE_LOG macro. This macro takes the log

name as the first parameter, followed by a variable number of arguments representing

98

types and parameter names as in the MACE version and is responsible for setting up

the table schema for this new object type, as well as logging the CREATE TABLE

statement. As a result, the DEFINE_LOG macro must be called from the body of a

user’s code since it does not expand into its own function definition that must then be

called separately.

Second, we can drop keywords like “const” and “&” since DEFINE_LOG does

not expand into a function definition. In our first attempt with the library, DEFINE_LOG

did expand to a function definition, although we eventually decided against it. We de-

scribe the reasons for this choice below in the Alternative Implementation section.

The third difference is the way objects are logged. In MACE, a function is de-

fined for each prototype in the structured logs block, but inC++ this is not the case.

Instead, we call a generic “logObjects” method, passing the object name we wish to log,

followed by all of the parameters.

Implications

The way structured logging is implemented in ourC++ library results in a few

unfortunate side effects that a translator-supported implementation does not suffer. The

main cause of these issues is the fact that new methods are not generated for each struc-

tured log type defined.

AlthoughC++ supports variadic functions, our implementation of

Log::logObjects() does not use them since there is no way to tell how many arguments

to process without the user specifying the number as a parameter, which we wanted to

avoid. For more information on variable argument list processing, see [20]. Instead, our

library defines seven versions of Log::logObjects(), each handling a number of param-

eters between zero and six. As a result, we can only support structured log definitions

with up to six parameters. More could be supported, but the library would have to be

modified.

The most significant drawback of our implementation is that there is no type

checking of the arguments passed to Log::logObjects(). For instance, if a user wanted

to log an object of type “logMsg1” as seen in Figure 6.1(b), they could pass the wrong

number of arguments or arguments whose types did not match those declared in the

99

corresponding DEFINE_LOG statement and the code would still compile. Since all

of Log::logObjects() parameters are template types, there is no way to check whether

the passed parameters are “correct.” DEFINE_LOG, then, simply becomes a way for

a programmer to express what typesshouldbe passed, although, it is up to them to

make sure they adhere to these rules. If they do not, the error will not be caught until

the programmer tries to populate the database, at which time the log will not match the

schema of the created table.

Alternative Implementation

As mentioned above, the deficiencies of ourC++ structured logging implemen-

tation stem from the fact that the DEFINE_LOG macro does not expand into a func-

tion definition. Let us now consider an alternate scenario where this is not the case.

First, consider a portion of the generated code for the “logMsg1” function used in Fig-

ure 6.1(a), shown in Figure 6.2.

void logMsg1(const vector<int>& c, int chosen) {
. . .
// compute table indices for children objects
uint32 t id = . . .
uint32 t c id = . . .
uint32 t chosenid = . . .

fprintf(sqlEventsLog, "%u\t%u\t%u\n", id, c id, chosenid);

// log each child object
logObj(&c, . . .);
logObj(&chosen, . . .);

}

Figure 6.2: Generated Code for Structured Log “logMsg1” Shown in Figure 6.1(a)

We have omitted some unimportant details, but the relevant pieces are shown.

For each parameter, we need to initialize a local variable with the table index that pa-

rameter will be logged at. Second, we need to print a line for the logMsg1 table, which

contains the object’sid and theids of each child object. Finally, we need to call a

logging function on each of the passed parameters.

100

It is possible to count the number of macro arguments [19], and even iterate over

them using the Boost preprocessor library [2], but the main problem arises when we need

to invoke the logging function on each parameter. Suppose we call DEFINE_TYPE(foo,

map<string, vector<int> > param). Our macro has three arguments, delineated by com-

mas — thus, the parameter we care about is actually “vector<int> > param.” There is no

way to extract just the “param” token in the preprocessor so that we can generate a call to

log it. Furthermore, there is no way to tell that our second macro argument “map<string”

does not contain a parameter name at all. Of course, we could pass the whole set of ar-

guments to aC++ method to parse out the parameters, but obtaining the parameter names

in C++ code does not allow us to refer to the variables with those names. As a result,

there is no way to invoke called to logObj() on the correct arguments.

It may be possible to get the desired functionality with either multiple macros or

a more convoluted syntax for declaring logging types, but this is not an avenue we have

explored. Instead, our implementation has opted for speed and simplicity at the cost of

type safety. However, it should be readily apparent that this tradeoff does not exist in

MACE since we do not have to rely on theC++ preprocessor to generate code.

6.1.2 Function Call Parameters

The MACE compiler adds code to all functions defined in a user’s source code,

including class member functions. In ourC++ implementation, users call a macro we

provide to log a function’s parameters. Its usage can be seen in Figure 6.3.

void someFunction(int x, double y, vector<int> z) {
LOG FUNC CALL(someFunction, x, y, z);

// function body below
. . .

}

Figure 6.3: Function Call Logging Example

The first LOG_FUNC_CALL parameter is the name of the object being logged.

The rest of the parameters are simply the parameters that should be logged for this

function call. In most cases, users should use the name of the function. However, unlike

101

function call objects logged by MACE, this interface does not support naming objects

as complete function prototypes. The object name given is used as both themethod

and prototypecolumns in the MethodMap table for each function. Therefore, if users

have overloaded functions, they will have to manually give them different names. An

alternative interface could allow users to define both themethodandprototypecolumns

separately, but this would complicate the common case which we wanted to avoid.

The LOG_FUNC_CALL macro uses the DEFINE_LOG_TYPE macro inter-

nally to set up metadata for the function call object the first time it is called. It also

uses Log::logObjects() to log the parameters passed. As a result, it is subject to the

same limitations as these methods. Specifically, this limits parameter logging to func-

tions with six or fewer parameters in our current implementation. However, the user has

the flexibility to choose whatever parameters they wish to log, so they can simply skip

any uninteresting parameters. MACE, in contrast, automatically logs all parameters for

each function. Users can control which parameters get logged only through a queries

block as described in Section 4.4.

6.1.3 Return Values

In ourC++ library, return value logging must also be done by hand. It is handled

in exactly the same way as the generated MACE code shown in Figure 4.2(b). Since we

use the same method as the generated MACE code, return value logging inC++ has no

additional drawbacks besides having to be inserted by hand.

6.1.4 Events

Events are an important aspect of the NYQL debugging language. In MACE,

Event objects are inserted into the generated code of all transitions and timer handlers.

Their implementation is described in Section 4.2.2 and pseudocode is shown in Fig-

ure 4.3. Event logging is similar in ourC++ library, although there are a few differences.

In general, we believe events should be defined the same way as they are in

MACE. That is, functions that handle processing network messages, timer handlers,

and any other “top-level” functions that initiate some sort of interesting functionality.

102

However, unlike MACE, we cannot make the assumption that our library is operating

in a single-threaded environment. Our library implementation simply keeps track of the

stack depth using thread-local storage, as opposed to a single static member of the Event

class. This allows events to be recorded properly on multiple threads at the same time.

We provide a macro LOG_EVENT for logging function calls that should also

have event logging. This macro behaves the same as LOG_FUNC_CALL, except it first

instantiates an Event object.

6.1.5 Program State

One benefit of MACE is that the compiler knows what constitutes program state,

since it is defined in the state_variables block in each MACE service. As a result, the

MACE compiler can generate code to log the contents of all state variables every time an

Event ends. In a generalC++ library, this is not possible. However, it would be possible

to register an object of interest with the Event class to be logged every time an event

ended, but we have not implemented this functionality.

6.1.6 Controlling What Gets Logged

There are two classes of log customization MACE supports as described in Sec-

tion 4.4. The first kind of customization is done at compile time based on the contents

of a queries block in the user’s source code. This customization can change the enabled

logging in three ways by: (i) removing objects entirely from the log (Section 4.4.1),

(ii) removing specific sub-objects from the log (Section 4.4.2), and (iii) conditionally

logging objects based on clauses inserted into the generated code (Section 4.4.3). The

second class of customizations, described in Sections 4.4.4 and 4.4.5, is done at run time.

These customizations include dynamic binary rewriting and probabilistic path logging.

Compile-time Customization

Of the three compile-time customizations provided in MACE, none of them can

be done at compile time in aC++ library. However, entire object elimination can be done

at run time with a set of flags, one per object type, that the user can set in a configuration

103

file. Before each object is logged, the code generated by the LOG_FUNC_CALL macro

could check the appropriate flag, and only log the object if it is requested by the user.

However, this approach has two disadvantages to the query-based approach pro-

vided in MACE. First, a check has to be performed before each object is logged, po-

tentially slowing down the logging subsystem. Second, if the library wanted to support

setting flags with wildcards, as in “log all objects corresponding to deliver*,” the testing

code to determine whether an object should be logged would have to be more compli-

cated, both in terms of runtime cost as well as code complexity. MACE’s system avoids

these complexities because it parses the user’s source code and thus knows the entire

set of objects that will exist when the system is run. As a result, it only has to take

the performance hit at compile time to decide whether an object should be logged. The

generated code is as efficient as possible as no checks must be done at run time.

Preventing specific sub-objects from appearing in the log, which MACE also

supports at compile time, cannot fully be done in ourC++ library. However, eliminating

certain function call parameters can be done, since the user is responsible for listing each

of the parameters that will be logged (see Figure 6.3). Unfortunately, this forces the user

to modify the call site of each log statement they wish to change. In addition, the library

cannot support eliminating sub-objects of other kinds of log statements, or sub-objects

of function call parameters themselves. In MACE, the queries block is the single, central

location for all logging modifications. It can also handle arbitrary sub-object removal,

which is something not possible in a stand-aloneC++ library.

The third compile-time customization that MACE supports — conditional log-

ging via clause injection — is also not possible with a library-based approach. To get

such functionality, the user would have to insert the desired conditions directly around

the site of each log statement they wish to modify. As with the previous customization,

this approach is clumsy at best since the library cannot offer any support for kind of

logging control. Again, logging customization code ends up spread throughout a user’s

source code, instead of in one central place like in MACE.

104

Runtime Customization

The first runtime customization MACE provides is dynamic binary instrumen-

tation. This technique allows users to change logging behavior at run time without

requiring an application restart by rewriting functions that decide when each object type

should be logged. This technique can be applied equally well to systems written with

our logging library, so long as the code is structured in a similar fashion.

Recall from Section 4.4.4 that MACE generates a “shouldLog” function for every

object type. These “shouldlLog” functions return true if the corresponding object type

should be logged, and false otherwise. The only trick, then, for using dynamic binary

rewriting with our library implementation is to generate similar “shouldLog” functions.

Unfortunately, our DEFINE_LOG_TYPE macro must be executedwithin a code block,

especially since they are called from the LOG_FUNC_CALL macro, so they cannot be

used to define a “shouldLog” function. The only suitable solution we see is for the user

to define and call the “shouldLog” functions themselves, which is tedious and error-

prone.

The second runtime customization present in MACE is probabilistic path log-

ging. Fortunately, from a usability standpoint this functionality is encapsulated almost

entirely in our library as it is in MACE. The only difference is that before sending a

message on the network, the user needs to query our library for the current value of the

ShouldLogPathvariable, which needs to be propagated in every message. However, this

can be added to whatever network layer the application is using, so it should add almost

no burden to the programmer. Like the Event class, we also had to store all state related

to paths and path logging in thread-local storage to correctly handle multi-threaded ap-

plications.

6.2 Logging inJava

Our second logging library, implemented inJava, is able to overcome many

of the deficiencies present in theC++ library. In fact, due to the interpreted nature of

the language, the compile-time code generation done in MACE can instead be done at

run time. In this section, we give an overview of the features of ourJava library and

105

compare them to MACE logging as well as ourC++ library.

6.2.1 Structured Logging

We start by describing our structured logging facility. UnlikeC++, Java has

no macros, so we could not implement structured logging this way. Fortunately, later

versions ofJava (1.6 and up) fully supportannotationsand customizable annotation

processors. For a brief overview ofJava annotations, see [14]. Figure 6.4 shows an

example of ourJava structured logging mechanism.

public class Foo {
@StructuredLogs({
"logType1(int x, Vector<String> y)",
"logType2(String arg)",
"logType3(HashMap<Integer, Integer> map)"

})
private static classFooLog extends FooLogGen{ }

public void someFunc() {
int x = 12;
Vector<String> v = . . .

// log an int and a Vector<String> as “logType1”
FooLog.logType1(x, v);

}
}

Figure 6.4: Structured Logging inJava

To use structured logging in a class, in this case “Foo,” the user must define a

static inner class that is responsible for structured logging. The class can be public or

private and given any name the user desires, but it must be declared as extending from

nameGen. This inner class must then be annotated with the tag “@StructuredLogs.”

This annotation takes one argument, a list of strings representing function prototypes

the user wishes to call. This annotation is functionally equivalent to the structured_logs

block in MACE. Then, anywhere in the class, the user can call functions with these

prototypes as if they were defined as static methods of the inner class they defined.

106

In order for structured logging to work, the code must be compiled with the “-

processor” flag set to the class file of our annotation processor, which must be compiled

first. The processor gets a chance to inspect any classes annotated with “@Structured-

Logs” and can generate new code that is compiled along with the rest of the user’s code.

In our case, the annotation processor defines the class “FooLogGen,” adding a method

for each of the elements in the @StructuredLogs list. Thus, when the user makes the

call to “FooLog.logType1(x, v),” it has been defined in the base class FooLogGen and

the code compiles correctly. Unfortunately, the annotation processor is not allowed to

modify existing classes, which is why we cannot just add methods to FooLog directly.

However, generating a non-existing base class is a common workaround to this problem.

Although the syntax is slightly messier than in MACE, Java structured logging

shares all of the same advantages. Since we are able to generate functions matching the

user’s declarations, structured logging is type-safe, unlike ourC++ implementation. The

Java version also does not have a limit on the number of parameters that can be passed.

As long as the prototypes given by the user are validJava prototypes, any number of

parameters can be used.

6.2.2 Logging Objects

Logging collections of objects, or different object types in general, is more diffi-

cult in Java thanC++ due to the differences betweenJava generics andC++ templates.

For example, consider theC++ andJava code fragments shown in Figure 6.5.

In C++, templates behave as we expect. When calling an overloaded function

from inside a function with a templatized parameter, the correct function is dispatched.

However, inJava, this is not the case.Java does not generate a copy of a templatized

function for each different template parameter passed to it. As a result, in Figure 6.5(b),

when we call logObj from logObject, the template typeT is “erased.” The parameter

ob j is thus seen as an instance of type “Object,” and the logObj method that takes an

Object as a parameter is always called. Unfortunately, this is not the desired behavior,

so we could not implement our logging mechanism the same way as inC++. For more

information on generics inJava, see [9].

Instead, we created an interface for all loggable objects called “LogObject.” If

107

void logObj(const int* obj) {
// log an integer

}

template<class T>
void logObj(const vector<T>* obj) {

for (int i=0; i<obj−>size(); i++) {
// calls the correct logObj
logObj(&((*obj)[i]));

}
}

void logObj(const void* obj) {
// log unsupported type

}

template<class T>
void logObject(const T& obj) {
. . .
// dispatch to a specialized function
logObj(&obj);

}

int main(int argc, char** argv) {
vector<int> v = . . .;
// calls logObj(int)
logObject(4);
// calls logObj(vector<T>)
logObject(v);
return 0;

}

(a)C++

public class Main {
public static void logObj(int x) {

// log an integer
}

public static <T> void logObj(Vector<T> obj) {
for (T elt : obj) {

// always calls logObj(Object)!
logObj(elt);

}
}

public static void logObj(Object obj) {
// log an unsupported type

}

public static <T> void logObject(T obj) {
. . .
// dispatch to a specialized function
logObj(obj);

}

public static void main(String[] args) {
// calls logObj(Object)!
logObject(5);
// calls logObj(Object)!
logObject(new Vector<String>());

}
}

(b) Java

Figure 6.5: C++ Templates vs.Java Generics Example

a user wishes to log any object that is not a basic type, it must implement the LogOb-

ject interface. This means that all of the commonJava collection types, like Vector,

HashMap, HashSet, etc., are not loggable. However, we have provided simple extension

classes which derive from theirJava counterparts but provide the LogObject interface.

Users must simply import our logging package instead of java.util.* to use these classes.

Unfortunately, these classes must make use of theinstanceofoperator to check whether

their template types are LogObjects to correctly log each of their elements. This adds a

108

bit of overhead to these logging methods, but we believe it cannot be avoided.

6.2.3 Events

Like our C++ library, we keep track of stack depth on a per-thread basis using

thread-local storage. However, sinceJava uses garbage collection for memory recla-

mation, classes do not have destructors. As a result, we cannot rely on the Event object

destructor to decrement the stack count as we do in Figure 4.3. Instead, we define a

method called “destruct” that must be called at the end of each method where an Event

object is instantiated. Fortunately, the user does not have to insert this code themselves

— it is automatically inserted at run time, a process we describe next.

6.2.4 Automatic Logging

With theJava Instrumentation API [13], we are able to modify classes are they

are loaded by theJava Virtual Machine (JVM). Furthermore, we use Javassist [15] to

perform source-level additions to the code. The combination of these two packages

provides a powerful method of inserting logging code into classes of interest. In order

to use our class transformer, users run the java command with the “-javaagent” option

pointing to a jar file containing the compiled transformer class. As an argument, they

pass a set of class names they are interested in instrumenting. Each time a class is loaded

by the JVM, our transformer gets a callback containing the bytecode for the class. We

then use Javassist to construct an in-memory representation of the class. If the class

name matches one of the arguments given by the user, we modify the class to perform

the appropriate logging.

For each method of a target class, we add code to log the parameters, add logging

for the beginning and ending “SL” entries in the Events table, and add an entry for the

MethodMap table. Unfortunately, compiledJava bytecode does not contain method

parameter names by default, which means we have to refer to parameters as “arg1,”

“arg2,” etc. However, if the user compiles their code with the “-g” flag, parameter names

are recorded and we are able to use them as we do in MACE. As a result, function call

objects can be named by their entire function prototype, unlike in ourC++ version, which

109

relies on users giving them unique names.

In addition, since there are no “typedefs” inJava, it is easy to tell if a parameter

is a basic type and can be logged directly in its parent’s table. InC++, this process is

much tricker and ourC++ library does not try to determine if arguments are basic types,

since the checking would have to be done at run time and executed every time an object

is logged. On the other hand, this testing is straightforward inJava and only needs to

be done once when a class is loaded. The generated code will then always do the right

thing with no runtime checking. This optimization allows us to reduce the number of

tables for function call objects with parameters that are basic types.

In addition to function call logging for all methods, we also add Event logging

to all public methods of a target class, since these methods are the ones that could be

called from other classes and represent potential entry points into the logged code.

6.2.5 Extensions

So far, we have been encouraged by the power of ourJava logging library. It

very closely mimics the functionality provided by MACE, but without a stand-alone

compiler. There are a number of features we have not implemented, but should be

possible with our current infrastructure.

Return Values

To log method return values, we would generate a new wrapper method for each

method whose return value we wish to log. The new method’s body would simply

contain “return Log.logRv(existingFunc(. . .)).” This is the same approach MACE takes

for logging return values.

Program State

Like C++, ourJava logging library has no a priori way of knowing what should

be logged as program state. It should be possible to register objects of interest with the

logging subsystem that are logged at the end of every event, but we have not imple-

mented such functionality.

110

Query-based Log Configuration

As described above, our current log configuration method uses a set of class

names provided by the user that define what should be instrumented. However, all three

types of query-based customizations should be possible. Instead of passing class names

as an argument to our class transformer, the user would pass a set of queries. As each

class is loaded, the transformer can generate the appropriate logging code for each class

and method. Although this testing would be prohibitively expensive inC++ since it

would have to be done at run time for every call to a logging method, it only needs to be

done once per class inJava. Furthermore, since we are able to generate new code, we

can even insert conditional clauses which is not possible in ourC++ library.

All of this modification does happen at run time inJava though, so there will be

some performance hit the first time each class is loaded, which the MACE implemen-

tation does not suffer. However, theJava system is more flexible since the code does

not have to be recompiled to change the generated logging like it does in MACE, it only

needs to be re-executed.

6.3 Summary

In this chapter, we presented two new logging libraries, implemented inC++

andJava, as alternatives to our MACE-based approach described in Chapter 4. In both

cases, our goal was to evaluate how features of the MACE logging subsystem translate

to situations where no stand-alone compiler is present. The most notable differences

between the three logging systems are summarized in Table 6.1.

OurC++ library, while powerful in its own right, lacks in almost every area com-

pared to our MACE approach. Structured logging is not type checked by the compiler

and supports at most six arguments in our current implementation. Users must manually

add logging statements to record function call parameters, return values, event bound-

aries, and program state if desired. The library could only barely support query-based

configuration by checking whether each object should be logged at run time based on

the objects specified in a query. Finally, ourC++ library does not attempt to determine

whether arguments passed to structured logging methods or function calls are basic types

111

Table 6.1: MACE, C++, andJava Logging Comparison

MACE C++ Java
Structured Type Checked? Yes No Yes
Logging Unlimited Args? Yes No Yes

Function Call Logging
Generated at

User Added
Generated at

Compile Time Run Time

Event Logging
Generated at

User Added
Generated at

Compile Time Run Time

Program State Logging
Generated at

User Added User Added
Compile Time

Query-based Log Configuration
Full, at Basic Only, at Full, at

Compile Time Run Time Run Time
Basic Types in Parent Table Educated Guess Never Always

and can appear in their parents’ tables, since the testing code would need to be executed

every time a logging statement was made.

On the other hand, ourJava library closely mimics the functionality present in

the MACE logging system; the main difference is when logging statements are gener-

ated. Since the MACE compiler generatesC++ code, all of its code insertions happen at

compile time. Similarly, query-based log configuration methods happen at compile time

since they determine which logging statements should be generated. OurJava library,

in contrast, does all of its logging code generation at run time, which allows it to be a bit

more flexible than MACE. Furthermore, sinceJava has no typedefs, we can always tell

when basic types are passed as arguments to structured logging methods and function

calls. As a result, we generate the minimum number of tables possible, unlike ourC++

library which always generates a new table for each child variable, even if they are basic

types.

Overall, we have found that using a code generator, either as a stand-alone part

of the compile chain or integrated into an interpreted language, has many benefits that

affect the overall flexibility and ease of use of a logging subsystem. Features such as au-

tomatic logging and query-based log customization are only possible in these scenarios.

Chapter 6, in part, is currently being prepared for submission for publication

of the material. Braud, Ryan; Killian, Charles; Deutsch, Alin; Vahdat, Amin. The

112

dissertation author was the primary investigator and author of this material.

Chapter 7

Summary and Future Work

In this chapter, we provide a summary of the dissertation and give some direc-

tions for future research.

7.1 Summary

As websites grow in size, they increasingly rely on distributed systems for scal-

ability. These systems run on potentially thousands of machines and implement various

functionality from storage systems, to distributed computation services, to lock services,

and others. Although distributed systems form the backbone of such websites, and are

vital for their correct functioning, they are incredibly difficult to implement correctly.

In this dissertation, we have explored techniques for debugging distributed sys-

tems, with the goal of making debugging easier, faster, and less error-prone. Our key

observation is based on the fact that debugging with ad-hoc scripts running over plain

text log files has a number of drawbacks: (i) changing the log file format may cause

previously-correct scripts to break, (ii) debugging often requires complex log process-

ing scripts which become difficult to understand and maintain, and (iii) scripts can be

inefficient since they may each need to process all of the log files in their entirety to

complete.

In order to eliminate all three of these problems, we proposed a debugging

methodology in which developers interact with amodelof log file data, rather than

directly with the data itself. We envision this model as a virtual three-dimensional cube,

113

114

called thestate matrix, organized by time, node identifier, and event type. Each ele-

ment of this state matrix corresponds to a single log entry in a traditional log file, except

represented as anobjectrather than a string with no inherent structure.

With this new model for log file data, developers can extract objects of interest

using a high-level object-oriented query language called NYQL, developed with the

express purpose of extracting objects from the state matrix. We showed that NYQL can

be used to construct a wide range of useful queries, including many that would be quite

difficult with traditional scripting languages.

We also described our implementation of NYQL on top of a relational database.

Each object in the state matrix is split up across potentially many tables internally, and

NYQL queries are translated to a set of SQL queries that are run against the database

backend. Query results are then reconstructed into objects and presented to the user as

trees in a graphical user interface.

Next, we covered the logging support needed for queryable objects. We pre-

sented a logging system in the context of MACE [49], a source-to-source translator and

set of libraries for building distributed systems. We showed that with the aid of the

translator, many kinds of logging can be automatically generated, including function

call parameters and return values, event boundary markers, program state, and causal

path information. We also introduced a new logging primitive calledstructured logging,

which lets users define custom object-oriented logging methods.

As opposed to traditional log-level-based logging configuration, we showed how

our logging system can support a new type of configuration based on queries. Users

can control which objects get logged using a set oftarget queriesgiven to the MACE

translator. This type of log configuration supports dynamically generating conditional

expressions into the generated source code, which cannot be done without the aid of a

source-to-source translator.

In order to give some estimates as to how our query language performs, we

benchmarked all aspects of the system. These benchmarks included the time to process

and merge log files, the time to populate the database, and the time to execute a number

of different queries. We also benchmarked an optimization that reduces query runtime

if multiple queries are ever run over the same objects, which increases performance in

115

the common case. Our final benchmarks covered the log customizations we introduced,

and showed that they are indeed effective in controlling the logging overhead in a high-

throughput distributed application.

Next, we evaluated NYQL as an actual debugging tool by applying it to two

distributed systems written in MACE: a random tree-forming protocol and a high-

performance implementation of Paxos, the classic distributed consensus algorithm. We

were able to diagnose a handful of bugs in these two systems with our query interface

alone, in much less time than it would have taken us without NYQL.

However, we found there were a number of situations where queries alone were

clumsy to use, and a more visual representation would have been useful. In light of

these observations, we developed Nebula, a new graphical user interface which inte-

grates our query processor with an event graph representation. The event graph allows

users to visualize communication patterns, which is something queries do not provide.

The combination of the event graphandqueries provides more functionality than either

would alone. We demonstrated Nebula’s use as a bug-fixing tool by having another stu-

dent use it to debug their work-in-progress. We found Nebula was quite successful in

this regard — the student was able to fix around 10 bugs with it.

The last chapter of this dissertation investigated more common distributed sys-

tems building environments — those without source-to-source translators. In these

cases, we were unsure how a number of our logging features would work, since we

explicitly took advantage of the translator to generate log statements for us. We inves-

tigated these scenarios by implementing two new logging libraries, one inC++ and one

in Java.

We found that our stand-aloneC++ library was able to mimic most of the func-

tionality of our MACE implementation, although we were not able to implement query-

based log configuration due to the reliance on the source-to-source translator. In addi-

tion, all of the logging statements that are generated by the MACE compiler have to be

added by the user in theC++ version. This alone makes theC++ version much more

difficult to use.

On the other hand, we were able implement a logging system that is nearly

identical to the MACE logging system inJava due to its interpreted nature. While most

116

features behave the same, the main difference is thatJava does its code generation at

run time, while MACE does all of its code generation at compile time. This difference

has the potential to make theJava version slightly slower, but only when an application

is first run and the classes are loaded. Although we did not implement the query-based

log configuration for ourJava library, we are confident all features of the MACE version

are possible.

7.2 Future Work

Our experiences with query-based debugging have been promising. Our pro-

totype system has proved to be efficient enough to debug many real-world bugs, and

user-friendly enough to be used by others. However, query-based debugging is still in

its infancy. There are a number of issues that need to be addressed before this approach

would be ready for the large distributed systems that back today’s large websites.

7.2.1 Issues of Scale

The most glaring limitation with this work is that our implementation has not

been designed to scale well. Our system has shown that using queries for debugging

is promising, but many real systems contain thousands of nodes. Although many such

systems can be scaled down to manageable levels and still exhibit bugs, there will be

occasions where this is not practical. When bugs can only be found at large scale,

collecting logs in a central location, ordering them, and then inserting them all into a

relational database is not a feasible solution.

We hypothesize that a publicly-available storage system like Hadoop’s

HBase [22], which provides an interface similar to BigTable [34], could replace the re-

lational database of our implementation, allowing the system to scale to more nodes.

However, since HBase does not support a relational query language, NYQL’s entire im-

plementation would need to be reworked, as would the representation of stored objects.

Research in this direction would also need to investigate the tradeoffs between

online and offline logging. Should log statements be written directly to HBase, or should

they still be logged to local disks and inserted into HBase afterwards? The former will

117

incur more runtime overhead, but the latter will have a potentially large startup cost once

a run is complete.

System scale would also affect the way the event graph is visualized. A small

number of nodes are easily visible simultaneously, but thousands of nodes are not. The

event graph would need more options for controlling which nodes are visible at any one

time, perhaps aggregating multiple, similarly-functioning nodes together. Subsystems

could also be treated as black boxes if they were known to function properly, allowing

the event graph to ignore the messages and events executed by them.

7.2.2 Language Features

Although NYQL has been useful for us, it is hardly a mature language. It needs

to be used in larger systems and refined. One possible language extension would be

to support aggregation statements in “where” clauses. Currently, NYQL only supports

them in “output” statements, but supporting them in “where” clauses would open up

new kinds of queries. For example, we could write the query shown in Figure 7.1.

foreach b in ObjectTypewhere (b.val1 < max(ObjectType.val1) / 2) {
output b;

}

Figure 7.1: Query with “where” Clause Aggregate Functions

This query returns all instances ofOb jectTypewhoseval1 child is less than half

the maximum value of anyOb jectType’s val1. Currently, this query is not possible in

NYQL.

Another language features that might prove useful would be an explicit iterator

over the “node” dimension of the state matrix. Although NYQL supports slicing based

on node, it does not provide a way to iterate over nodes directly. For example, we could

write the query shown in Figure 7.2.

This query outputs the first instance ofOb jTypefor each node in the system.

Here, the “>@” would work like “@,” except instead of choosing the first smallest

timestamp, it chooses the first largest. Iterating over the “node” dimension could also

be valuable in computing statistics for each node separately.

118

foreach n in nodes{
let b = ObjType[node== n, time >@ $START];
output b order by n;

}

Figure 7.2: Query With a Loop Over Nodes

7.2.3 Logging Customization

A third area of future work could be in the area of logging customization. One of

the most difficult issues that log-based debugging faces is trying to decide whether each

statement should be logged. Although we have covered a number of different ways to

control what gets logged, there is always room for more advanced systems. For example,

a developer may only want to see log message 2 if log message 1 is logged first, or log

events on an error path once an error has been discovered.

Ideally, a system would log nothing except for the necessary state on the critical

path to a bug. Currently, no one knows how to build a system like this. Of course, there

is always a tradeoff between the power of the logging subsystem and its runtime cost.

The “smarter” the system gets in choosing what to log at runtime, the slower it will run.

Being able to tune this balance to an application’s needs would be an interesting line of

future work, as well as developing adaptive logging systems in general.

7.3 Final Thoughts

Hopefully, this dissertation has made a convincing argument for query-based

debugging. There are a number of challenges left that need to be addressed, but we

believe it can become an invaluable tool. We hope the groundwork laid out in this

dissertation can help move distributed systems debugging away from being a black art,

and get closer to being a principled science.

Chapter 7, in part, is currently being prepared for submission for publication

of the material. Braud, Ryan; Killian, Charles; Deutsch, Alin; Vahdat, Amin. The

dissertation author was the primary investigator and author of this material.

Bibliography

[1] Amazon Gets Downtime, No Explanations Yet. http://www.nwinnovation.com/
amazon_gets_downtime_no_explanations_yet/s-0029570.html.

[2] Boost.Preprocessor. http://www.boost.org/doc/libs/release/libs/preprocessor.

[3] DB2 pureXML - Intelligent XML database management. http://www-01.ibm.com/
software/data/db2/xml.

[4] DDD - Data Display Debugger. http://www.gnu.org/software/ddd.

[5] Debugging in Visual Studio. http://msdn.microsoft.com/en-us/library/sc65sadd.
aspx.

[6] Eclipse - The Eclipse Foundation open source community website. http://www.
eclipse.org.

[7] Facebook Downtime Means Real-Life Repercussions for
Blogosphere. http://blogs.forbes.com/velocity/2010/09/24/
facebook-downtime-means-real-life-repercussions-for-blogosphere.

[8] GDB: The GNU Project Debugger. http://www.gnu.org/software/gdb.

[9] Generics in the Java Programming Language. http://java.sun.com/j2se/1.5/pdf/
generics-tutorial.pdf.

[10] Getting to XML. http://www.oracle.com/technetwork/issue-archive/2005/05-may/
o35xml-094515.html.

[11] Gmail Outage Marks Sixth Downtime in Eight Months. http://www.pcworld.com/
article/160153/gmail_outage_marks_sixth_downtime_in_eight_months.html.

[12] gnuplot homepage. http://www.gnuplot.info.

[13] Instrumentation (Java Platform SE 6). http://download.oracle.com/javase/6/docs/
api/java/lang/instrument/Instrumentation.html.

[14] Java Annotations. http://download.oracle.com/javase/1.5.0/docs/guide/language/
annotations.html.

119

120

[15] Javassist. http://www.javassist.org.

[16] nm(1) - Linux man page. http://linux.die.net/man/1/nm.

[17] The ISC Domain Survey|Internet Systems Consortium. http://www.isc.org/
solutions/survey.

[18] unittest - Unit testing framework - Python v2.7 documentation. http://docs.python.
org/library/unittest.html.

[19] Variadic macro to count number of arguments. http://cplusplus.co.il/2010/07/17/
variadic-macro-to-count-number-of-arguments.

[20] va_start(3) - Linux man page. http://linux.die.net/man/3/va_start.

[21] Welcome to Apache Hadoop! http://hadoop.apache.org.

[22] Welcome to HBase! http://hbase.apache.org.

[23] Welcome to JUnit.org! http://www.junit.org.

[24] White Paper: What’s New for XML in SQL Server 2008. http://www.microsoft.
com/sqlserver/2008/en/us/wp-sql-2008-whats-new-xml.aspx.

[25] AGANS, D. J. Debugging. Amacom, 2006.

[26] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L., REYNOLDS, P., AND

MUTHITACHAROEN, A. Performance Debugging for Distributed Systems of
Black Boxes. InSOSP (2003).

[27] ALTEKAR , G.,AND STOICA, I. ODR: Output-Deterministic Replay for Multicore
Debugging. InSOSP (2009).

[28] BEAVER, D., KUMAR , S., LI , H. C., SOBEL, J., AND VAJGEL, P. Finding a
Needle in Haystack: Facebook’s photo storage. InOSDI (2010).

[29] BECK, K., AND ANDRES, C. Extreme Programming Explained, second ed.
Addison-Wesley Professional, 2004.

[30] BOAG, S., CHAMBERLIN , D., FERNÁNDEZ, M. F., FLORESCU, D., ROBIE, J.,
AND SIMÉON, J. XQuery 1.0: An XML Query Language. http://www.w3.org/
TR/xquery, January 2007.

[31] BRAUN, P. Parallel Program Debugging Using Scalable Visualization.ICAAP 2
(1995), 699–708.

[32] BURROWS, M. The Chubby Lock Service for Loosely-Coupled Distributed Sys-
tems. InOSDI (2006).

121

[33] CANTRILL , B. M., SHAPIRO, M. W., AND LEVENTHAL , A. H. Dynamic Instru-
mentation of Production Systems. InUSENIX (2004).

[34] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WALLACH , D. A., BUR-
ROWS, M., CHANDRA , T., FIKES, A., AND GRUBER, R. E. Bigtable: A Dis-
tributed Storage System for Structured Data. InOSDI (2006).

[35] CHENG, Y.-P., CHEN, J.-F., CHIU , M.-C., LAI , N.-W., AND TSENG, C.-
C. xDIVA: A Debugging Visualization System with Composable Visualization
Metaphors. InOOPSLACompanion (2008).

[36] CLUET, S. Designing OQL: Allowing objects to be queried.InformationSystems
23 (1998), 279–305.

[37] CONRADIE, L., AND MOUNTZIA , M.-A. A Relational Model for Distributed
Systems Monitoring using Flexible Agents. InSDNE (1996).

[38] CONSENS, M. P., HASAN, M. Z., AND MENDELZON, A. O. Using Hy+ for
Network Management and Distributed Debugging.Proceedingsof Centrefor
AdvancedStudieson CollaborativeResearch:SoftwareEngineering1 (1993),
450–471.

[39] DAO, D., ALBRECHT, J., KILLIAN , C., AND VAHDAT, A. Live Debugging of
Distributed Systems. InCC (2009).

[40] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified Data Processing on
Large Clusters. InOSDI (2004).

[41] DECANDIA , G., HASTORUN, D., JAMPANI , M., KAKULAPATI , G., LAKSH-
MAN , A., PILCHIN , A., SIVASUBRAMANIAN , S., VOSSHALL, P.,AND VOGELS,
W. Dynamo: Amazon’s Highly Available Key-Value Store. InSOSP (2007).

[42] DEUTSCH, A., FERNÁNDEZ, M., FLORESCU, D., LEVY, A., AND SUCIU, D.
XML-QL: A Query Language for XML. http://www.w3.org/TR/NOTE-xml-ql,
August 1998.

[43] FONSECA, R., PORTER, G., KATZ , R. H., SHENKER, S., AND STOICA, I. X-
Trace: A Pervasive Network Tracing Framework. InNSDI (2007).

[44] GEELS, D., ALTEKAR , G., MANIATIS , P., ROSCOE, T., AND STOICA, I. Friday:
Global Comprehension for Distributed Replay. InUSENIX (2007).

[45] GEELS, D., ALTEKAR , G., SHENKER, S., AND STOICA, I. Replay Debugging
for Distributed Applications. InUSENIX (2006).

[46] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google file system. In
SOSP (2003).

122

[47] GODEFROID, P. Model Checking for Programming Languages using VeriSoft. In
POPL (1997).

[48] HOLZMANN , G. J. The Model Checker SPIN.IEEE Transactionson Software
Engineering23, 5 (1997), 279–295.

[49] K ILLIAN , C., ANDERSON, J. W., BRAUD, R., JHALA , R., AND VAHDAT, A.
Mace: Language Support for Building Distributed Systems. InPLDI (June 2007).

[50] K ILLIAN , C., ANDERSON, J. W., JHALA , R., AND VAHDAT, A. Life, Death,
and the Critical Transition: Detecting Liveness Bugs in Systems Code. InNSDI
(2007).

[51] K ILLIAN , C., NAGARAJ, K., PERVEZ, S., BRAUD, R., ANDERSON, J. W.,AND

JHALA , R. Finding Latent Performance Bugs in Systems Implementations. In
FSE (2010).

[52] KRANZLMÜLLER , D., GRABNER, S.,AND VOLKERT, J. Message Passing Visu-
alization with ATEMPT. InPARCO (1995).

[53] KULKARNI , D., BOLOGNESE, L., WARREN, M., HEJLSBERG, A., AND

GEORGE, K. LINQ to SQL: .NET Language-Integrated Query for Relational Data.
http://msdn.microsoft.com/en-us/library/bb425822.aspx, March 2007.

[54] LAMPORT, L. Time, Clocks, and the Ordering of Events in a Distributed System.
Communicationsof theACM 21, 7 (1978), 558–565.

[55] LAMPORT, L. The Part-Time Parliament.ACM TOCS16, 2 (1998), 133–169.

[56] L IU , X., GUO, Z., WANG, X., CHEN, F., LIAN , X., TANG, J., WU, M.,
KAASHOEK, M. F., AND ZHANG, Z. D3S: Debugging Deployed Distributed
Systems. InNSDI (2008).

[57] L IU , X., L IN , W., PAN , A., AND ZHANG, Z. WiDS Checker: Combating Bugs
in Distributed Systems. InNSDI (2007).

[58] LOO, B. T., CONDIE, T., HELLERSTEIN, J. M., MANIATIS , P., ROSCOE, T.,
AND STOICA, I. Implementing Declarative Overlays. InSOSP (2005).

[59] LUK , C.-K., COHN, R., MUTH, R., PATIL , H., KLAUSER, A., LOWNEY, G.,
WALLACE , S., REDDI, V. J., AND HAZELWOOD, K. Pin: Building Customized
Program Analysis Tools with Dynamic Binary Instrumentation. InPLDI (2005).

[60] MCCONNELL, S. Code Complete. Microsoft Press, 1993.

[61] MUSUVATHI , M., AND QADEER, S. Fair Stateless Model Checking. InPLDI
(2008).

123

[62] MUSUVATHI , M., QADEER, S., BALL , T., BASLER, G., NAINAR , P. A., AND

NEAMTIU , I. Finding and Reproducing Heisenbugs in Concurrent Programs. In
OSDI (2008).

[63] OLSTON, C., REED, B., SRIVASTAVA , U., KUMAR , R., AND TOMKINS, A.
Pig Latin: A Not-So-Foreign Language for Data Processing. InACM SIGMOD
(2008).

[64] PARK , S., XIONG, W., YIN , Z., KAUSHIK , R., LEE, K. H., LU, S.,AND ZHOU,
Y. PRES: Probabilistic Replay with Execution Sketching on Multiprocessors. In
SOSP (2009).

[65] PIKE , R., DORWARD, S., GRIESEMER, R., AND QUINLAN , S. Interpreting the
Data: Parallel Analysis with Sawzall. InScientificProgrammingJournal (2005),
pp. 227–298.

[66] REYNOLDS, P., KILLIAN , C., WIENER, J. L., MOGUL, J. C., SHAH , M. A.,
AND VAHDAT, A. Pip: Detecting the Unexpected in Distributed Systems. In
NSDI (2006).

[67] SHANMUGASUNDARAM , J., TUFTE, K., HE, G., ZHANG, C., DEWITT, D.,
AND NAUGHTON, J. Relational Databases for Querying XML Documents: Limi-
tations and Opportunities. InVLDB (1999).

[68] SINGH, A., MANIATIS , P., ROSCOE, T., AND DRUSCHEL, P. Using Queries for
Distributed Monitoring and Forensics. InEuroSys (2006).

[69] SNODGRASS, R. A Relational Approach to Monitoring Complex Systems.ACM
TOCS6, 2 (1988), 157–195.

[70] VERBOWSKI, C., KICIMAN , E., KUMAR , A., DANIELS, B., LU, S., LEE, J.,
WANG, Y.-M., AND ROUSSEV, R. Flight Data Recorder: Monitoring Persistent-
State Interactions to Improve Systems Management. InOSDI (2006).

[71] V ISSER, W., HAVELUND , K., BRAT, G., AND PARK , S. Model Checking Pro-
grams. InASE (2000).

[72] WALRAED-SULLIVAN , M., MYSORE, R. N., TEWARI, M., M IRI , P.,
MARZULLO , K., AND VAHDAT, A. Automated, Scalable, Decentralized Nam-
ing for the Data Center. In submission toNSDI, 2010.

[73] WOLFSON, O., SENGUPTA, S., AND YEMINI , Y. Managing Communication
Networks by Monitoring Databases.IEEE Transactionson SoftwareEngineering
17, 9 (1991), 944–953.

[74] YABANDEH , M., KNEŽEVIĆ, N., KOSTIĆ, D., AND KUNCAK , V. CrystalBall:
Predicting and Preventing Inconsistencies in Deployed Distributed Systems. In
NSDI (2009).

124

[75] YU, Y., ISARD, M., FETTERLY, D., BUDIU , M., ÚLFAR ERLINGSSON, GUNDA ,
P. K., AND CURREY, J. DryadLINQ: A System for General-Purpose Distributed
Data-Parallel Computing Using a High-Level Language. InOSDI (2008).

[76] ZELLER, A. Why Programs Fail: A Guide to Systematic Debugging, second ed.
Morgan Kaufmann, 2009.

