
UNIVERSITY OF CALIFORNIA,
IRVINE

Control System Design Automation Using Reinforcement Learning

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Hamid Mirzaei Buini

Dissertation Committee:
Professor Tony Givargis, Chair

Professor Eli Bozorgzadeh
Professor Ian Harris

2018

c© 2018 Hamid Mirzaei Buini

DEDICATION

I dedicate this dissertation to my wonderful wife, Mona, who has been incredibly patient and
supportive along my journey. Her love and encouragement have been true blessings for me. I also
dedicate this dissertation to my lovely parents, who quietly and patiently waited for me to achieve

my goals.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE x

ABSTRACT OF THE DISSERTATION xi

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2

1.2.1 Incorporating Physical Variability into CPS Design 2
1.2.2 CPS Design Automation Using Reinforcement Learning 3

1.3 Dissertation Roadmap . 5

2 Literature Survey 6
2.1 CPS Design Automation . 6
2.2 Adaptive Embedded Control . 8
2.3 Autonomous Intersection Management (AIM) . 10
2.4 Optimal Traffic Control . 12

2.4.1 Delta-tolling . 12
2.4.2 Policy gradient RL . 13

2.5 RL Physical Benchmarks . 15

3 Physical Model Variablity in CPS Design 19
3.1 Introduction . 19
3.2 Parametric CPS Design Flow . 21
3.3 Case Study: Rotary Inverted Pendulum . 25

3.3.1 Parametric Physical Modeling . 25
3.3.2 Parametric Control Algorithm Design . 29
3.3.3 Simulation . 30
3.3.4 Design Space Exploration . 31
3.3.5 Practical Evaluation . 32

iii

3.4 Conclusions . 34

4 Overview of Reinforcement Learning 36
4.1 Introduction . 36
4.2 Markov Decision Process . 38
4.3 Q-learning . 40
4.4 Linear Approximation of Continuous Value-Functions 42
4.5 Trust Region Policy Optimization . 43

5 Adaptive Embedded Control of Cyber-physical Systems Using RL 45
5.1 Introduction . 45
5.2 Adaptive ECS based on Reinforcement Learning 47

5.2.1 A-ECS Reinforcement Learning Environment and Actions 48
5.2.2 Cloud-Based Evaluation Framework . 50
5.2.3 A-ECS Development Workflow . 51

5.3 Case Study 1: Cart-Pole Swing up task . 52
5.3.1 Cart-pole dynamics . 55
5.3.2 Processing power modeling . 56
5.3.3 Simulation Results . 57
5.3.4 Comparison to Event-Triggered controller 62

5.4 Case Study 2: Mountain Car Problem . 64
5.4.1 Problem definition . 64
5.4.2 Simulation Results . 65

5.5 Conclusions . 66

6 Autonomous Intersection Management Using RL 68
6.1 Introduction . 68
6.2 Problem Statement . 71

6.2.1 Solving the AIM problem using TRPO 75
6.3 Evaluation . 75

6.3.1 Baseline Method . 75
6.3.2 Simulation results . 80

6.4 Conclusion . 82

7 Link-based Micro-tolling Parameter Tuning Using RL 85
7.1 Introduction . 85
7.2 Problem definition and terminology . 87
7.3 Enhanced Delta-tolling . 88
7.4 Empirical study . 90

7.4.1 Scenario specification . 90
7.4.2 Experiments and results . 90

7.5 Discussion and Future Work . 94
7.6 Conclusion . 95

iv

8 RL Physical Environment Benchmark 97
8.1 Introduction . 97
8.2 Open Physical Environment Benchmark (OPEB) 99

8.2.1 Physical Environment Elements . 100
8.2.2 OPEB Components . 101

8.3 Example implementation: Mountain-Car Example 103
8.3.1 Mechanical Structures . 104
8.3.2 Electromechanical Parts . 106
8.3.3 Electrical Parts . 106
8.3.4 Embedded Processing Unit . 107
8.3.5 Embedded Software . 107
8.3.6 Web Application . 108

8.4 Results . 108
8.4.1 Reference Solution . 109
8.4.2 AI-based solution . 109

8.5 Conclusion . 111

Bibliography 112

v

LIST OF FIGURES

Page

3.1 Proposed CPS design framework . 20
3.2 One degree of freedom inverted pendulum . 23
3.3 Block diagram of the inverted pendulum example 26
3.4 Stability region for different CA gains. 32
3.5 Simulation results for energy and control quality 33
3.6 Pendulum setup using 6cm and 34cm lengths. 34
3.7 Measured and simulated energy consumption for the 34cm pendulum. 35

4.1 Agent-Environment interaction model in RL . 37

5.1 Proposed RL based Adaptive ECS . 48
5.2 Cloud-based evaluation framework . 51
5.3 Cart-pole case study . 53
5.4 Processing power temporal modeling . 57
5.5 Balancing time achievable by the ECS in swing-up and balance task 60
5.6 Time plots of pole angle and probability of selecting longer sampling time 61
5.7 Balancing time achievable by the ECS in balance-only task 62
5.8 Mountain Car example . 66
5.9 Training curves for three different scenarios in Mountain Car example 66

6.1 Intersection Management Problem . 69
6.2 Initial setup of each episode . 77
6.3 Learnt policy by RL agent and the baseline method for the small example 77
6.4 Learnt policy by the AIM agent at different iterations of the training 78
6.5 Neural network used in the simulations. 81
6.6 Learning curve of the AIM agent for large grid example 83
6.7 Number of near collision incidents vs training iteration number. 83
6.8 Total travel time of all the vehicles vs training iteration number. 84

7.1 Maps of traffic networks used in the experiments 91
7.2 Total Travel Time and Total Generalized Cost for different tolling schemes and

scenarios. 93
7.3 System performance w.r.t total latency versus learning iteration step for different

scenarios and E∆-tolling variants . 96

8.1 OPEB framework components . 102

vi

8.2 Mountain Car example . 104
8.3 Car Assembly in the MC-OPEB. 105
8.4 Mountain Rail Assembly in the MC-OPEB. 105
8.5 STL files included for MC-OPEB for all required 3D printed parts. 105
8.6 Exploded-view of car assembly as an example of assembly instruction diagrams in

MC-OPEB. 106
8.7 Actual Implementation of MC-OPEB. 109
8.8 Hand-engineered algorithm plots . 110
8.9 Learning curve of the RL agent . 110
8.10 Car position vs. time plot obtained by RL algorithm after 37 episodes 111

vii

LIST OF TABLES

Page

5.1 Parameter value settings for the experiment . 58
5.2 Comparison of VE-ECS (proposed here) and ETC designed by the concepts pro-

posed in [64]. 64

6.1 Parameter value settings for the experiment . 81
6.2 Total travel time obtained by baseline method and proposed method 81

7.1 Average total latency and total generalized cost when applying no tolls. 92
7.2 Area under the convergence curves from Figure 7.3. 94

8.1 List of Materials of required generic hardware parts 106

viii

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my PhD advisor, Professor Tony Givargis, for
continuous support and encouragement. My sincere thanks also goes to Professor Peter Stone who
provided me an opportunity to collaborate with their team as a visiting student.

I would like to express my gratitude to the member of my committees, Professor Eli Bozorgzadeh
and Professor Ian Harris.

ix

CURRICULUM VITAE

Hamid Mirzaei Buini

EDUCATION

Doctor of Philosophy in Computer Science 2018
University of California, Irvine Irvine, California

Master of Science in Electrical Engineering 2004
Sharif University of Technology Tehran, Iran

Bachelor of Science in Electrical Engineering 2001
Sharif University of Technology Tehran, Iran

x

ABSTRACT OF THE DISSERTATION

Control System Design Automation Using Reinforcement Learning

By

Hamid Mirzaei Buini

Doctor of Philosophy in Computer Science

University of California, Irvine, 2018

Professor Tony Givargis, Chair

Conventional control theory has been used in many application domains with great success in the

past decades. However, novel solutions are required to cope with the challenges arising from com-

plex interaction of fast growing cyber and physical systems. Specifically, integration of classical

control methods with Cyber-Physical System (CPS) design tools is a non-trivial task since those

methods have been developed to be used by human experts and are not intended to be part of an au-

tomatic design tool. On the other hand, the control problems in emerging Cyber-Physical Systems,

such as intelligent transportation and autonomous driving, cannot be addressed by conventional

control methods due to the high level of uncertainty, complex dynamic model requirements and

operational and safety constraints.

In this dissertation, a holistic CPS design approach is proposed in which the control algorithm is

incorporated as a building block in the design tool. The proposed approach facilitates the inclusion

of physical variability into the design process and reduces the parameter space to be explored. This

has been done by adding constraints imposed by the control algorithm.

Furthermore, Reinforcement Learning (RL) as a replacement for convection control solutions are

studied in the emerging domain of intelligent transportation systems. Specifically, dynamic tolling

assignments and autonomous intersection management are tackled by the state-of-the-art RL meth-

ods, namely, Trust Region Policy Optimization and Finite-Difference Gradient Descent. Addi-

xi

tionally, Q-learning is used to improve the performance of an embedded controller using a novel

formulation in which cyber-system actions, such as changing control sampling time, is combined

with the physical action set of the RL agent. Using the proposed approach, it is shown that the

power consumption and computational overhead of the embedded control can be improved.

Finally, to address the current lack of available physical benchmarks, an open physical environment

benchmarking framework is introduced. In the proposed framework, various components of a

physical environment are captured in a unified repository to enable researchers to define and share

standard benchmarks that can be used to evaluate different reinforcement algorithms. They can

also share the realized environments via the cloud to enable other groups perform experiments on

the actual physical environments instead of currently available simulation-based environments.

xii

Chapter 1

Introduction

1.1 Motivation

Conventional digital control methods has been successfully employed in various industrial appli-

cation domains during previous decades. To address the shortcomings of the conventional meth-

ods as a result of increasing complexity of interaction between cyber systems - including hard-

ware/software systems and communication networks - and the physical environments, the new area

of Cyber-Physical Systems (CPS) has been developed in the recent years. The problems addressed

in CPS include but are not limited to hard real-time constraints, effective verification and efficient

design process. However, in most cases, the focus has been on what follows after the control de-

sign step during the whole process. This makes the design space exploration a time-consuming

task since in many cases changing the cyber parameters requires re-tuning of the control parame-

ters and thus, the space of control parameters should be explored too To address this shortcoming,

in the first part of this dissertation, a holistic PCS design approach is proposed in which the con-

trol parameter tuning is incorporated as a building block in the design tool. Additionally, using

the proposed method, physical parameter space can be explored to find the best setting since the

1

control parameters are updated by the design tool in response to physical parameter changes.

On the other hand, emerging CPSs such as autonomous vehicles, intelligent transportation systems

and Artificial Intelligence(AI)-enabled robots, demand a replacement for classical control meth-

ods due to the physical environment complexity, high levels of uncertainty, continuous environ-

ment variations and challenging robustness and reliability requirements. Recently, Reinforcement

Learning (RL) has shown to be a promising alternative for conventional control methods. In this

dissertation, it has been shown that RL can be applied to some of the new CPS application domains.

Furthermore, an open physical environment benchmark framework is introduced to evaluate RL

(or AI in general) methods. Existence of this kind of physical benchmarks becomes more and more

important as the new area of AI-based control systems advances.

1.2 Contributions

In this section, an overview of the contributions of this dissertation is provided. The first subsection

includes the contributions made in the CPS design automation area and in the next subsection the

contributions related to RL applications in CPS are discussed.

1.2.1 Incorporating Physical Variability into CPS Design

Physical variations in a CPS require recalculation of the control algorithm parameters. In most

of the current CPS design solutions this recalculation is not done in the design tool but rather

it is assumed that control algorithms should be revised manually by an expert after changes to

the physical parameters or cyber parameters. To address this issue, in this dissertation, a design

approach is proposed in which the control algorithm is made a building block of the design to

reduce the complexity of design process and shrink the design space which should be explored.

More specifically, the contributions of this part are summarized below:

2

• We ensure rigorous parametric description following the equation derivation approach of the

physical subsystem.

• Settings of the control algorithm are determined as a function of the parameters of the phys-

ical system and the cyber-system for every iteration of the design space exploration, which

eliminates time consuming search for suitable configurations.

• The DSE tool instantiates pre-compiled parameterized executable models of the CPS, which

can be parallelized for the search of superior system configurations.

1.2.2 CPS Design Automation Using Reinforcement Learning

Adaptive Embedded Control

In this dissertation, it has been shown that RL can be leveraged to improve the dynamic perfor-

mance of an embedded controller, while it can be used for the phyiscal control task. In particular,

the sampling time of an embedded controller, which is traditionally assumed to be an invariant

parameter, is tuned in real-time to enhance the efficiency of the CPS in terms of computational

overhead and power-consumption.

Furthermore, a cloud-based co-simulation framework has been introduced to evaluate the perfor-

mance of RL-based adaptive embedded control approach.

Autonomous Intersection Management

Currently, most of intersection management research (AIM) is focused on replacing traffic lights

in the intersections of main roads experiencing high levels of traffics. In this dissertation, an RL

method is proposed to solve the intersection management problem for local roads which are mainly

3

controlled by stop signs. The following are the main contributions of this dissertation for the AIM

problem:

• Definition and formulation of the AIM problem for local road settings where vehicles are

coordinated by fine-grained acceleration commands.

• Employing the TRPO approach proposed in [79] to solve the formulated AIM problem.

• Incorporating collision avoidance constraint in the definition of RL environment as a safety

mechanism.

Tuning Micro-tolling for Traffic Management

Micro-tolling has been shown to be possible solution that might be used in future to optimize traffic

flow in large traffic networks of big cities. The main idea of Micro-tolling is to dynamically assign

and change toll for all the main streets and highways during the day as a function of the traffic

condition. A recent work [81] shows that ∆-tolling, i.e., tolling proportional to the difference

between free-flow travel time and real travel time, yields significant improvement in terms of total

travel time of all vehicles. However, the proportionality factor and the tolling time-constants is

invariant in the proposed scheme. In this dissertation, the following contributions are made to

enhance ∆-tolling:

• Different proportionality factor and time-constants are assigned for each individual link in

the network to account for different properties of the links, such as width, fan-in/fan-out and

number of lanes.

• A finite-difference RL solution is proposed to optimize the link-based parameters of the

network.

4

• Different variations of local and global parameterization, e.g., a single global time-constant

and local proportionality factor per link, are empirically studied on some example networks.

Physical Environment Benchmark

Currently, the benchmarking solutions for RL and AI methods are either simulation environments

or expensive real-world physical environments available to a few organizations. One of the contri-

butions of this dissertation is to propose a low-cost physical environment benchmarking framework

to enable a larger group of researchers to develop AI methods that are applicable to real-world

problems. Using the proposed framework, physical benchmark developers can share the hardware

and software specifications of the physical environment through an open platform. They can also

share their actual implementation via a web-based software on the cloud to be used by others for

research and education purposes.

1.3 Dissertation Roadmap

The rest of the dissertation is organized as following: Chapter 2, includes a summary of prior

research on related work. In Chapter 3, the proposed CPS design on physical variability is outlined.

In Chapter 4 a short overview of RL and the methods that are used in the remaining chapters is

given. Chapter 5 includes the methods to use RL in adaptive embedded control. In Chapter 6, the

RL-based autonomous intersection management framework is explained. Tuning Micro-tolling via

finite-difference RL is described in Chapter 7. Finally, the proposed open physical environment

benchmark is introduced and evaluated with an example implementation in Chapter 8.

5

Chapter 2

Literature Survey

2.1 CPS Design Automation

Recent research has made tremendous advances in the development of frameworks for CPS that

support the allocation and automatic evaluation of physical components in their CPS context [17,

71]. However, those frameworks operate on a high level of granularity by selecting preconfigured

components but do not support parameterization of the physical components.

In this section we describe today’s model-based design flows for cyber-physical systems. Specifi-

cally, we outline the state-of-the-art in automation of key steps of the design. The input to a CPS

design flow is the CPS problem definition, which conventionally consists of the specification of

the physical system, design objectives like the actual CPS task, and nonfunctional requirements

like control quality metrics and power efficiency. In model-based design flows [44], generally, first

the physical system is modeled, a control algorithm is designed, and a cyber system is architected.

The system can finally be implemented after successful validation. The following steps outline the

design flow in greater detail.

6

1) Physical Modeling: Physical modeling concerns the expression of the physical system consist-

ing of plant and actuators in mathematical or logical terms. The physical model can be used for

two main purposes: first to build a simulation model of the CPS, and second to design a control al-

gorithm based on this model. The wide selection of applicable models for this purpose spans from

conventional models like transfer function or state space models to complex probabilistic models

for large-scale systems. Besides system identification methods, equation derivation has been ap-

plied to obtain the model parameter values of the physical system. In particular, the derivation

of equations that govern the system using laws of physics has been applied in CPS development

frameworks in practice [93]. Modeling of physical systems, even using those frameworks, still

requires experienced domain experts and, to date, automation tools are unavailable or provide lim-

ited benefits. However, blueprints of physical models can be reused from a repository as applied

in [17] and [71], but without parameterization.

2) Control Algorithm Design: With the aim to find a correct control algorithm for the CPS, the

complex physical model needs to be simplified so that control design methods can be applied.

Similar to the physical models, control algorithms can be selected from a repository to match the

system properties and design objectives [17]. control algorithms have a range of parameters that

influence the overall control quality. For example, PID controllers have three gain parameters.

While for some specific use cases such as building control, an automatic control selection and

parameterization was proposed [62], in general the selection and parameterization of the control

algorithm still have to be performed manually, which limits the use for automated design.

3) Cyber System Design: The design of a suitable computation system that implements the de-

signed control algorithm is a non-trivial task, since many cyber system design decision may affect

the quality of the control algorithm. For example, the control algorithm has to be discretized, a

sampling time has to be selected, and the delay and jitter of the processing elements have to be

considered. To cope with the gap between control and cyber system, control engineers might spec-

ify the acceptable ranges for some parameters such as delay and jitter in a contract-based approach

7

[26]. Alternatively, the cyber system and the control algorithm can be co-designed with certain

jitter and delay in mind [18, 38]. These approaches are valuable for a good cyber system/control

algorithm co-design but neglect possible variability of the physical system. While verification and

calculus methods [88] exist to validate the correctness of specific systems, typically, designers rely

on the simulation to validate the cyber system design.

4) Simulation: Applying the models of the physical system, the cyber system, and the control

algorithm, simulation-based analysis can be executed to evaluate the system under development.

The main objective of the simulations, which can be performed by capable off-the-shelf tools such

as Simulink and Modelica [34], is to evaluate and validate the performance of the CPS design.

If all the requirements are met, the design can advance to the next step, namely implementation.

Otherwise, reiteration of earlier steps in the design flow are required, which makes faults identified

during simulation very expensive to fix, in particular if domain experts are required to manually

refine the control algorithm or the physical system. Simulations are integral part of several ap-

proaches [17, 69, 71] to systematically analyze CPS design spaces. For instance Muhleis et al.

[69] proposed a design space exploration solution based on co-simulation of control and cyber

system, assessing design objectives such as cost or energy consumption for the whole CPS.

2.2 Adaptive Embedded Control

The impact of design decisions of the (Embedded Control System) ECS to the overall CPS system

performance has been discussed in a range of works [16, 19, 71]. For instance [16] and [71] applied

holistic cyber-physical design-space exploration to show the existence of optimal design points

regarding control quality and power consumption. Specifically [16] showed that long sampling

rates might increase the power consumption of the physical part of the system, while short sampling

rates increase the average power consumption of the ECS. However, the works do not consider

multi-mode system or time-variance yet.

8

Time-varying control has been discussed directly [19, 77] or in form of schedule planning [42,

85]. For instance, the optimal sampling time assignment in feedback controllers was studied in

[19]. The result is that online sampling period assignment can deliver significantly better control

performance than the state-of-the-art static period assignment. However, computing the optimal

rate either requires complex online computations or large look-up tables which in turn reduces

the power efficiency of the system. Sala [77] realized time-varying sampling periods and delayed

actuation by time-varying observers and Kalman-filter based state-feedback controllers. While the

approach demonstrates the feasibility of variable sampling periods, the implementation requires

complex application-specific control knowledge to be feasible.

The works in [42] and [85] extended the idea to develop an optimal scheduling strategy for mul-

tiple control tasks on a shared computation platform that uses feedback from the physical system

to optimize the control quality. While [42] still requires a complex application-specific online

optimization strategy, the work in [85] added a dedicated feed-back scheduler to control the com-

putation resources. On a higher system level, multi-rate control and time-varying sampling was

investigated in [5] and [8]. However, the aim of the work in [5] is not to improve the efficiency

of the ECS, but more generally to cope with variable sampling times as they occur in distributed

and wireless sensor systems. The motivation in these works is to cope with timing uncertainty

of sampled values, while our work aims to add time-variance in order to improve computation

performance without degradation of the control quality of the CPS.

Non-uniform sampling time in digital-only control is studied in [49] and the proposed method is

applied for tracking control of a linear actuator. Khan [49] applies non-uniform sampling time for

a lower average sampling rate to achieve a lower average processing time. The proposed method is

based on an adaptive change of digital controller coefficients as the sampling time changes, while

a number or simplifying assumptions have been made such as linearity and time-invariance of the

physical system dynamics.

In [4], different non-uniform sampling schemes, such as variable sampling period, non-synchronous

9

sampling and multi-rate sampling are discussed for heterogeneous sensor systems. The solution,

however, relies on linear dynamics in the physical system, which is not applicable to many cyber-

physical systems.

In [50], authors have shown that optimal adaptive control algorithms can be developed using RL.

The authors also have used practical examples that RL based controller can achieve desirable

results in real-time. While our work does not aim to optimize the control quality as shown in [50],

we apply the RL technique to control the properties of the ECS.

Event-triggered control and its variants also can realize non-uniform sampling in control systems

[64]. However, in event-triggered control, a number of restricting assumptions have to be made

such as explicit modeling of the physical system and existence of the Lyapunov control function.

We have used an event-triggered method as the baseline solution in one of the case studies in

Section 5.3.

2.3 Autonomous Intersection Management (AIM)

Advances in autonomous vehicles in recent years have revealed a portrait of a near future in which

all vehicles will be driven by artificially intelligent agents. This emerging technology calls for an

intelligent transportation system by redesigning the current transportation system which is intended

to be used by human drivers. One of the interesting topics that arises in intelligent transportation

systems is AIM. Dresner et al. have proposed a multi-agent AIM system in which vehicles com-

municate with intersection management agents to reserve a dedicated spatio-temporal trajectory at

the intersection [28].

In [66], authors have proposed a self-organizing control framework in which a cooperative multi-

agent control scheme is employed in addition to each vehicle’s autonomy. The authors have pro-

posed a priority-level system to determine the right-of-way through intersections based on vehi-

10

cles’ characteristics or intersection constraints.

Zohdy et al. presented an approach in which the Cooperative Adaptive Cruise Control (CACC)

systems are leveraged to minimize delays and prevent clashes [94]. In this approach, the intersec-

tion controller communicates with the vehicles to recommend the optimal speed profile based on

the vehicle’s characteristics, motion data, weather conditions and intersection properties. Addi-

tionally, an optimization problem is solved to minimize the total difference of actual arrival times

at the intersection and the optimum times subject to conflict-free temporal constraints.

A decentralized optimal control formulation is proposed in [63] in which the acceleration/deceleration

of the vehicles are minimized subject to collision avoidance constraints.

Makarem et al. introduced the notion of fluent coordination where smoother trajectories of the

vehicles are achieved through a navigation function to coordinate the autonomous vehicles along

predefined paths with expected arrival time at intersections to avoid collisions.

In all the aforementioned works, the AIM problem is formulated for only one intersection and no

global minimum travel time objective is considered directly. Hausknecht et al. extended the ap-

proach proposed in [28] to multi-intersection settings via dynamic traffic assignment and dynamic

lane reversal [41]. Their problem formulation is based on intersection arbitration which is well

suited to main roads with a heavy load of traffic.

In Chapter 6, for the first time, we introduce fine-grained acceleration control for AIM. In contrast

to previous works, Our proposed AIM scheme is applicable to local road intersections. We also

propose an RL-based solution using Trust Region Policy Optimization to tackle the defined AIM

problem.

11

2.4 Optimal Traffic Control

The approach suggested in Chapter 7 for solving the micro-tolling assignment problem builds on

two previously presented algorithms: ∆-tolling, and Finite Difference policy Gradient Reinforce-

ment Learning (RL). In the next subsections, the previous works related to these methods will be

described.

2.4.1 Delta-tolling

It is well known that charging each agent an amount equivalent to the cost it inflicts on all other

agents, also known as marginal-cost tolling, results in optimal social welfare [74].

Applying a marginal-cost tolling scheme, when differentiable latency functions are not assumed,

requires knowing in advance the marginal delay that each agent will impose on all others. This, in

turn, requires knowledge of future demand and roadway capacity conditions, as well as counter-

factual knowledge of the network states without each driver.

∆-tolling [81, 82] was recently suggested as a model-free scheme for evaluating marginal cost

tolling. It requires observing only the latency (travel time) on each link and makes no assumption

on the underlying traffic model. ∆-tolling involves charging a toll on each link proportional to its

delay (the difference between observed and free-flow travel times). ∆-tolling requires tuning of

only two parameters: a proportionality constant (β), and a smoothing parameter (R) used to damp

transient spikes in toll values.

Algorithm 1 describes the toll value update process of ∆-tolling. For each link, ∆-tolling first

computes the difference (∆) between its current latency (lie) and its free flow travel time (denoted

by Te). We use i to denote the current time step. Next, the toll for link e at the next time step

(τ i+1
e) is updated to be a weighted average of ∆ times beta and the current toll value. The weight

12

Algorithm 1: Updating tolls according to ∆-tolling.

1 while true do

2 for each link e ∈ E do

3 ∆← lie − Te
4 τ i+1

e ← R(β∆) + (1−R)τ ie

5 i← i+ 1

assigned to each of the two components is governed by the R parameter (0 < R ≤ 1).

TheR parameter determines the rate in which toll values react to observed traffic conditions. When

R = 1 the network’s tolls respond immediately to changes in traffic on the one hand but leave the

system susceptible to oscillation and spikes on the other hand. By contrast, as R→ 0 the tolls are

stable, but are also unresponsive to changes in traffic conditions.

Sharon et al. [81, 82] showed that the performance of ∆-tolling is sensitive to the values of both

the R and β parameters. Their empirical study suggests that values of β = 4 and R = 10−4 result

in the best performance. However, they do not present a procedure for optimizing these parameters

and relay on brute force search for finding the optimal values through trial and error.

2.4.2 Policy gradient RL

Policy gradient RL is a general purpose optimization method that can be used to learn a param-

eterized policy based on online experimental data. While there are several different methods for

estimating the gradient of the policy performance with respect to the parameters [73], one of the

most straightforward, and the one we use in this dissertation, is Finite Difference Policy Gradient

RL (FD-PGRL) [52] which is based on finite differences. In this subsection we review the methods

and formulations presented in [52].

13

FD-PGRL is presented in Algorithm 2. Under this framework, the policy is parameterized using

the parameter vector π = [θ1, . . . , θN]ᵀ. The algorithm starts with the initial parameters π0 =

[θ01, . . . , θ
0
N]ᵀ (line 1). At each step k, the policy gradient is estimated by running a set of randomly

generated policies Πk = {πk1 , ..., πkM} (lines 5- 7) where each policy is defined as:

πkm = [θk−11 + δk1,m, . . . , θ
k−1
N + δkN,m]ᵀ, (2.1)

where δkn,m ∈ {−εn, 0, εn}. The generated policies in (2.1) are obtained by randomly changing

each parameter from the previous policy by a small εn, relative to θn. The cost of each newly

created policy, πkm, is observed and denoted by ckm (lines 8- 9).

To estimate the policy gradient, the policy set in (2.1) is partitioned to three subsets (lines 11- 14)

for each dimension depending on whether the change in the policy in that dimension is negative,

positive or zero, that is the three subsets are:

πkm ∈


Πk
−ε,n = {πkm : δkn,m = −ε}

Πk
0,n = {πkm : δkn,m = 0}

Πk
+ε,n = {πkm : δkn,m = ε}.

(2.2)

The average costs of above policy subsets are denoted by ck−ε,n, ck0,n and ck+ε,n (lines 15- 17).

The adjustment vector Ak = [ak1, . . . , a
k
N]ᵀ can be constructed by the following equation for each

dimension (lines 18- 21):

akn =


0, if ck−ε,n < ck0,nand ck+ε,n < ck0,n

ck+ε,n − ck−ε,n otherwise
(2.3)

The adjustment vector Ak is normalized and multiplied by a constant step size η to update the

parameter vector at the end of each step k (lines 22- 23).

14

Unlike other policy gradient methods that rely on within-episode reward signals to search for an

optimal policy, or those in which the agent must learn the policy with no prior knowledge of a

reasonably-performing starting policy (for example [31] and [56]), in the method employed in

Chapter 7, the policy is parameterized with a finite set of parameters and the overall system per-

formance at each episode is optimized using an empirical estimate of the policy gradient based

on finite differences. This approach is well-suited for the traffic optimization problem for two rea-

sons. First, the agent can leverage an existing policy with reasonable system performance. Second,

the agent is required to proceed towards the optimal policy only by slight changes of the policy

parameters in contrast to approaches in which randomized exploration policies can be executed

more freely. Our empirical study suggests that considering such slight changes results in a total

cost that is within an acceptable bound. Furthermore, using other RL methods to learn actual tolls

in real-time instead of ∆-tolling parameters requires modeling traffic as Markov Decision Process

which is a challenging task (see [10]).

2.5 RL Physical Benchmarks

In this section, we first review existing literature about solving real-world problems using AI algo-

rithms. Next, we review recent simulation-based AI benchmarks that are widely used in academia.

Finally, we review the related research projects to provide real-world benchmarks in robotic appli-

cations.

Using RL as a replacement for conventional control theory is an emerging trend in Cyber-Physical

systems. In [70] an RL algorithm is proposed to autonomously navigate a humanoid Nao robot

into a docking station used for recharging. An RL model is proposed in [57] to learn hand-eye

coordination for grasping objects in an environment of robotic manipulators. In [65], RL methods

have been applied on an actual cart-pole system to balance the pole. Researchers are exploring AI

algorithms as a way to simplify and speed up the programming of industrial robots in factories.

15

Fanuc [48], the world’s largest maker of industrial robots, has used RL methods to train robots

to precisely pick up a box and put it in a container. In the automotive industry, authors in [72]

have proposed an RL-based approach to control robot morphology (flippers) to move over rough

terrains that exist in Urban Search and Rescue missions.

Access to these physical environments (hardwares/robots) is not feasible for a lot of research

groups. This hinders partnerships and cooperation between academia and industry. In Chapter

7, for the first time, we propose the idea of providing low-cost and easy-to-construct physical

environments that allow researchers and students to implement, evaluate and compare their AI

algorithms on standardized benchmarks.

In a dynamic AI problem, the state of the environment depends on the actions that are chosen

by the agent. This makes it almost impossible to store the environment as a fixed dataset similar

to the supervised machine learning paradigm. Therefore, to facilitate reproducible research and

accelerate the pace of education, researchers in this community are trying to design a standard

programming interface for reinforcement-learning experiments.

One of the earliest efforts to design a standard tool is RL-Glue [87] which has been used for RL

courses at several universities to create experiments for scientific papers. A more recent effort,

RLPy [36], is a software framework written in python that has focused on value-function-based

methods with linear function approximation using discrete actions. ALE [12] is another software

framework designed to make it easy to develop agents that play different genres of Atari 2600

games.

OpenAI Gym [13] is the most recent and comprehensive toolkit for developing AI algorithms.

It provides a diverse suite of environments that range from classic control to 2D and 3D robots.

It is designed to let the users evaluate the proposed AI algorithms with little background in AI.

Researchers can compare the performance of their proposed algorithm with other approaches’

scores reported on the scoreboard. These solutions are very effective in advancement of research

16

and education within simulated environments because it is usually expensive and more challenging

to implement AI algorithms in real-world scenarios.

Most similar to our work is [84] that has proposed an open hardware design for academic and

research robots. They have leveraged 3D printing technology to allow users to create all required

components except electronics parts. All basic code and libraries have been released under the

GNU General Public License. Authors in [22] have made their research on aquatic swarm robots

reproducible by providing the 3D printing models, CNC milling files and the developed software

on Raspberry Pi. In Chapter 8, we propose a framework that can be used to produce an arbitrary

number of physical environments, not limited to robots. Contrary to the mentioned works where a

specific physical environment is introduced, a unified benchmark framework is proposed in Chap-

ter 8 to integrate a variety of physical environments. In other words, research groups can contribute

by sharing their physical environment blueprints using the proposed framework.

17

Algorithm 2: Finite Difference Policy Gradient RL

1 π0 ← [θ01, . . . , θ
0
N]ᵀ;

2 k ← 0;

3 while improving do

4 k ← k + 1;

5 generate Πk = {πk1 , ..., πkM},

6 πkm = [θk−11 + δk1,m, . . . , θ
k−1
N + δkN,m]ᵀ,

7 δkn,m ∼ Uniform{−εn, 0, εn};

8 for each m ∈ {1, . . . ,M} do

9 ckm ← run(πkm);

10 for each n ∈ {1, . . . , N} do

11 partition Πk to

12 Πk
−ε,n = {πkm : δkn,m = −ε},

13 Πk
0,n = {πkm : δkn,m = 0},

14 Πk
+ε,n = {πkm : δkn,m = ε};

15 ck−ε,n ← average(ckm : πkm ∈ Πk
−ε,n);

16 ck0,n ← average(ckm : πkm ∈ Πk
0,n);

17 ck+ε,n ← average(ckm : πkm ∈ Πk
+ε,n);

18 if ck−ε,n < ck0,n& ck+ε,n < ck0,n then

19 akn ← 0;

20 else

21 akn ← ck+ε,n − ck−ε,n;

22 πk ← πk−1 − η Ak

|Ak| ,

23 Ak = [ak1, . . . , a
k
N]ᵀ;

18

Chapter 3

Physical Model Variablity in CPS Design 1

3.1 Introduction

Generally, a cyber-physical-system (CPS) is one that combines computational and physical entities

in a unified design effort. The design of CPSs needs good understanding of both subsystems, as

small changes in the physical subsystem (PS) or the cyber subsystem (CS) may have significant

consequences with respect to the overall system performance. For example, it is well known that

the weight and size of physical objects like pendulums [92] directly influence the performance

requirements for the CS but also that scheduling decisions on the CS may affect the timing jitter

of an otherwise correct control application so that the control process fails [6]. Therefore, a good

CPS design methodology must carefully model and account for physical attributes of a system.

Traditional design tools are well suited in addressing design constraints and optimization objectives

of the CS, but often fall short adequately to consider physical and control aspects of a CPS. Param-

eters of physical components include, for instance, setting the diameter of a pipe, the strength of

1This chapter is mainly reprinted from: Buini, Hamid Mirzaei, Steffen Peter, and Tony Givargis. “Including vari-
ability of physical models into the design automation of cyber-physical systems.” In Design Automation Conference
(DAC), 2015 52nd ACM/EDAC/IEEE, pp. 1-6. IEEE, 2015. IEEE, Copyright (2015), with permission from IEEE.

19

Figure 3.1: Proposed CPS design framework: Parametric models are instantiated in a parameteri-
zable simulation. The DSE tool invokes simulations parameterized with properties of the PS and
the CS. Aim is to identify superior design points which can be validated and implemented.

a spring, or the size of mechanical parts. Another important aspect that has not been addressed in

current CPS design automation frameworks is the consideration of the impact of the changes in the

control subsystem. The control algorithm (CA) specifies how measurements from the PS are pro-

cessed and how actuation commands are generated so that the CPS can achieve its objectives. As

such, the CA is the logical bridging element between the CS and the PS, and needs to be designed

and adapted when subsystems, including physical aspects, undergo changes.

The goal of this work is the development of a design space exploration (DSE) framework that

considers the variabilities of the PS and the required adaptations of the CA. Our proposed design

flow is shown in Figure 3.1. The basic idea is to derive parameterizable models of the PS, the

CA and the CS. The parameterizable models then can be instantiated by the DSE tool that, for

each design point, invokes an executable simulation model to evaluate the quality of the CPS

design. After an evaluation of the designs, a system configuration is proposed for implementation,

containing parameters for the physical and the cyber subsystems. Our design flow is facilitated by

the

The encapsulated control knowledge and the efficient simulation enable CPS design analysis, avail-

able for system engineers even without strong control background. We show the steps, necessary

to prepare the models, and the application of the models in a design space exploration including a

20

non-trivial trade-off between control quality and energy consumption. We evaluate our approach

for a rotary inverted pendulum system, for which we explored the design space that included a

selectable length of the pendulum and a flexible sampling time in the CS. The results, which we

validated in a reallife setup, show that our approach can automatically identify superior cyber-

physical configurations which would have been ignored using existing design space exploration

techniques.

3.2 Parametric CPS Design Flow

In this section we introduce our parametric design flow, which is based on the standard MBD

flow discussed in the previous section. As shown in Figure 3.1, our flow relies on parameterizable

models for the PS, the CA, and the CS, which have to be crafted first, before they can be instantiated

in simulation and for the DSE.

1) Parametric Physical Modeling: To craft the parameterizable model of the PS we propose the

Equation-Based Modeling (EBM) [15] method. In contrast to system identification or learning

techniques, EBM is not focused on finding a fixed set of parameters for a single instance of PS, but

facilitates the derivation of the equations symbolically. The result is a parameterized model that

describes the physical system behavior as a set of differential equations, Eps, and their parameters

PPs, so that the model can be expressed as:

Mps = (Pps, Eps) (3.1)

The representation of the PS as Mps is rewarding for two reasons: First, it allows composition of

smaller physical subsystem to larger PSs [93], and second, Mps is reusable and can be directly

instantiated during the simulation step. However, it should be noted that no general guidelines

are available how to craft Mps, and the result becomes complex already for small systems like the

21

example we discuss in Section IV.

2) Parametric Control Algorithm Design: As mentioned in Section II, generally CAs are already

designed in parametric form, so that the CA models Mca can be expressed as:

Mca = (Pca, Eca) (3.2)

where Eca is the set of equations describing the CA, and Pca is the set of CA parameters. Like

the physical models, Mca can be directly applied as parametrizable model in the simulations. A

major issue is that the parameters Pca depend on the PS as well as the CS and therefore must reflect

changes in those subsystems. A complex search for fitting parameters is not feasible for complex

DSEs, because the search is required for each design point. Therefore, we propose to follow a

derivation technique similar to the EBM approach discussed for the PS. The idea is to express Pca

as a mapping from properties of the models from PS and CS, and the design objective parameters,

Pobj . This mapping fca is expressed as:

Pca = fca(Pps, Pcs, Pobj). (3.3)

Since fca computes the actual controller parameters, fca does not need to be symbolic, or in a

closed form, but can also be represented numerically, as demonstrated in the example in Section

II. Crafting of fca requires the application of control theory methods for each type of controllers

manually. The result is a transformation of the general model (3.2) to

Mca = (fca(Pps, Pcs, Pobj), Eca), (3.4)

which can be instantiated in simulations, with all parameters directly based on existing knowledge

in the system.

3) Simulation and Design Space Exploration: The simulation tool we introduce next, instantiates

22

Figure 3.2: One degree of freedom inverted pendulum

the building blocks that were described in the previous steps. Since the idea is to run the simulation

for each parameter setting in the design space, we are interested in a short simulation time. A stan-

dard approach is to obtain the performance values of interest (Q) by instantiating the parametrized

models in a interpreted simulation environment such as Simulink. This approach is technically

possible, but requires significant amount of time for each simulation. To accelerate the process we

considered compiled simulation models, which is supported by Simulink and Modelica. However,

compiling parameterized models still required to recompile the simulation model for each setting.

To avoid unnecessary recompilations, we instead expose the parameters from the parametrizable

models of the PS (3.1) and the CA (3.4), and only compile the unparametrized models, so that the

simulation is expressed as:

Q = SIMMps,Mcs,Mca(Pps, Pcs, Pca) (3.5)

Hence, the simulation model is compiled only once for each model allocation, but recompiling is

not required for changing model parameters in this tool. In Modelica, for instance, we only need to

set the parameter values in an XML file and execute the same binary file for all the parameter set-

tings. The result is a native executable simulation code which can be invoked by design exploration

tools which only have to provide the parameters of the PS, the CS and the design objectives.

23

Algorithm 3: DSE for parametrized physical models
Input: Simulate() . The simulation code called as a procedure

fca . The parametric CA design function

D ⊂ Rm . Design space

Output: J : D 7→ Rn . Evaluated Variables-of-interest

1 Procedure EVALVOI (Pps, Pcs, Pobj)

2 Pca ← fca(Pps, Pcs, Pobj);

3 Q← Simulate(Pps, Pcs, Pca);

4 Put Q in the queue U ;

5 forall the (Pps, Pcs, Pobj) ∈ D {in parrallel} do

6 EvalVOI(Pps, Pcs, Pobj);

7 Sort U to find the mapping J ;

To study the design space, the pre-compiled simulations can be invoked in generic design space ex-

ploration (DSE) algorithms. As one example, Algorithm 3 demonstrates the feasibility of DSE that

supports physical parameters, by systematical evaluation of all physical and cyber configurations

in the search space (line 5, 6). Subfunction EVALVOI computes Pca, invokes the simulation, and

stores Q. The result is a set of evaluated variables-of-interest for each design point in the design

space. From this space, the system configuration is selected evaluating the stored results. A benefit

of the proposed algorithm is that procedure EVALVOI is “embarrassingly parallel”, so that it can

easily utilize parallel multi- and many-core platforms to accelerate the search process. Notably,

Algorithm 3 does not utilize design space pruning techniques like they are required for larger de-

sign spaces. However, the proposed algorithm can be applied for smaller CPSs, such as the rotary

inverted pendulum case study presented next.

24

3.3 Case Study: Rotary Inverted Pendulum

In this section we use the rotary inverted pendulum example [92] as a case study to demonstrate

the steps of framework described in the previous sections. The goal of the system, shown in Figure

3.2, is to produce appropriate actuator angle α to keep the pendulum in upright position, i.e, α ≈ 0.

In following subsections we discuss of the design flow including the crafting of the models (A-C)

and the execution of the DSE, including a trade-off analysis and practical validation (D-E).

3.3.1 Parametric Physical Modeling

As explained in previous section, a parametric model of the PS is fundamental for the subsequent

design steps. The block diagram of the complete CPS is shown in Figure 3.3. The controller should

output the motor voltage in order to balance the pendulum. At the same time, the controller must

track the reference command for the angle α. Here, we assume that the main output of the system

is α and we want to move the weight to the commanded angle αr. For this purpose, we assume

that all the state variables, x, are measured and provided to the controller.

The PS is shown using a dashed box in Figure 3.3. The PS consists of the actuator and the pen-

dulum dynamics subsystems. First, the model of each subsystem is obtained and next they are

combined to build the PS model. In the following paragraphs the EBM of these two subsystems is

explained. We use the following symbols throughout this chapter for the physical parameters and

variables:

αm Motor angle (before gearbox)

Bm Motor viscous friction coefficient

ia Motor winding current

J Motor, Gearbox and actuator arm moment of inertia

Kb Motor back-emf constant

25

Figure 3.3: Block diagram of the inverted pendulum example: A closed loop control system con-
sisting of Controller, Actuator, and Pendulum Dynamics.

Kt Motor torque constant

l Actuator arm length

L Pendulum length

La Motor winding self inductance

m Mass of the pendulum weight

µm Actuator viscous friction coefficient

µp Pendulum joint friction coefficient

n Gearbox ratio

Ra Motor winding resistance

τ Torque applied by the actuator

τm Torque applied by the motor (before gearbox)

vm Voltage applied to the motor terminal

a) Pendulum Dynamic Equations: Dynamics modeling is required because we want to know how

the pendulum angle changes when a torque is applied by the actuator. Assuming the mass of

pendulum rod is negligible, we write the Newton-Euler equations for the rigid body consisting of

26

pendulum weight and rod in the {xyz} coordinate frame as follows [37]:

∑
F = maG (3.6)∑

MA = rG/A ×maG +
d

dt
HA, (3.7)

Expanding these equations we obtain following equation that relates the angular variables and their

time derivatives:

−µpθ̇ +mgL sin θ = mL2θ̈ −mL2α̇2 sin θ cos θ −mLlα̈ cos θ (3.8)

To involve the torque applied by the actuator in a new equation, torque equation around the motor

axis can be used. The torque equation results in:

Jα̈ = τ − lFy cos θ + lFx sin θ − µmα̇. (3.9)

where Fx = −lα̇2 +L sin θα̈ and Fy = l cos θα̈−Lθ̈+L sin θ cos θα̇2. If we solve equations (3.8)

and (3.9) for α̈ and θ̈ we will get:

α̈ = fα(α, α̇, θ, θ̇, τ) (3.10)

θ̈ = fθ(α, α̇, θ, θ̇, τ) (3.11)

These equations are used to define a nonlinear state space (SS) model for the pendulum as with the

state variables xp = (α α̇ θ θ̇)T and input variable up = τ as

ẋp = f(xp, up) (3.12)

This SS model is used inside the bigger simulation model of the whole system in the next step of

our design flow.

27

The next step concerns the linearization of (3.12) with the aim to design the LQR Control method.

For this purpose, we find the Jacobean of vector function f with respect to xp and up and evaluate it

in a reference solution of the (3.12), (xp0, up0). One reference solution is xp0(t) = 0, up0(t) = 0,

which means the system is at rest with all the variables set to zero. So, the linearized system can

be written as:

ẋp = Apxp +Bpup, (3.13)

Ap =
∂f

∂xp

∣∣∣∣
xp=xp0=0

=



0 1 0 0

0 −µm
J

glm
J

− lµp
JL

0 0 0 1

0 − lµm
JL

g(ml2+J)
JL

−µp(ml2+J)

JL2m


(3.14)

Bp =
∂f

∂up

∣∣∣∣
up=up0=0

=

(
0 1

J
0 l

JL

)T
(3.15)

These matrices are the first part of the linearized PS model of our example. The model will be

concluded with the actuator SS matrices which are explained next.

b) Actuator Modeling: The actuator in our case study is assumed to be a geared DC motor. The

linear equation based model is:

Lai̇a +Raia = vm −Kbα̇m (3.16)

τm = Ktia −Bmα̇m (3.17)

Defining the actuator state and input as xa = ia and ua = (vm α̇m)T , the resulting SS model

28

of the actuator is:

ẋa = Aaxa +Baua = −Ra

La
xa + (1

L
−Ka

La
)ua (3.18)

y = Caxa +Daua = Ktxa + (0 −Bm)ua (3.19)

Also, assuming the gearbox attached to the DC motor is ideal we will have τ = τmn and α =

αm/n.

3.3.2 Parametric Control Algorithm Design

In LQR, the design objective is expressed by a quadratic cost function. In our case study this cost

function is:

J =

∫ ∞
0

(
xTQx +Rv2m

)
dt =

∫ ∞
0

(
q||α− αr||2 + v2m

)
dt (3.20)

where x = (α−αr α̇ θ θ̇ ia)
T and we have chosenQ = qvvT where v = (1 0 0 0 0)T

and R = 1.

The above cost function tries to balance the energy consumption and control performance. The first

component in (3.20) ,
∫∞
0
||α − αr||2dt, defines control performance metric as the mean-squared

error (MSE) of angular command tracking. The parameter q in (3.20) is the relative weight of

control performance to power consumption which is described by the second component
∫∞
0
v2mdt.

In LQR, the control law is the state feedback which can be described using the following equation:

vm = −Kx, (3.21)

The State vector x is the combination of the pendulum dynamics and actuator SS model state

vectors, with one modification, to subtract the reference command αr from α.

29

Algorithm 4: The Control Algorithm
Input: K,αr . LQR gain and angular command

1 forall the sampling times do

2 Measure α, α̇, θ, θ̇ and ia;

3 vm ← −K(α− αr α̇ θ θ̇quadia)
T ;

4 Apply voltage vm to motor;

By solving the algebraic Ricatti equation [51], the optimal gain K in (3.21) is calculated. This

gain optimizes the cost function (3.20) guaranteeing that the closed loop system will be stable.

Solving Ricatti equation to obtain optimal gain, K, corresponds to (3.3) in the proposed design

flow. Therefore, the concrete form of (3.3) is:

K = flqr(L, q) (3.22)

For the control we only have to choose a sampling time, h, compute and apply the control signal

in successive sampling periods. The CA is shown in Algorithm 4.

3.3.3 Simulation

We built the executable specification model of Figure 3.3 in Modelica, instantiating the pendulum

equation (3.12), actuator equations (3.18) and (3.19) and the discrete-time state feedback (3.21).

By compiling the Modelica model we have the simulation executable code. The inputs to this code

are pendulum length L, sampling time h and controller gainK. The output is the objective variable

which is MSE of tracking error ||α − αr||. At the end of this step, the general form of simulation

procedure explained in Section 3.2 is:

MSE = SIMInv Pendulum(L, h,K), (3.23)

30

while K is the result of (3.21) and can be computed externally using the control Python package.

3.3.4 Design Space Exploration

1) Setup and Execution: The DSE in our case is an implementation of Algorithm 3 in Python,

instantiating the simulation executable code of (3.23). The design objective parameter q is fixed

to 10 (1/rad2) in this case study. We studied pendulum lengths from 0.01 (cm) to 60 (cm) and

sampling times from 0.01 (s) to 0.14 (s). The parallelism of the DSE and the pre-compiled sim-

ulation allowed us to finish the exploration within is 87(sec) on a 48-core Intel Xeon @ 2.7GHz

platform. The naive approach without parallelization and using Simulink in normal mode results

in 2360 (sec). Using existing DSE flows with no parametric CA design, the running time would be

approximately 86 days if we want to try only 5 values for each element of gain parameter K.

2) Control Quality: Figure 3.4 shows the stability region of the DSE. This plot is generated by

comparing the computed MSE with a fixed threshold of 0.035 (rad2). A system with MSE below

the threshold is considered stable. Figure 3.4 also compares our parametric control approach to

static reusable controllers. The stability regions for fixed-controllers designed for 6 (cm) and 34

(cm) pendulums are shown on top of the region for our approach. Evidently, the static controllers

only cover small range of the design space, while our approach provides good design points for all

physical settings.

3) Power Consumption: The second important metric is power consumption. The total power

of the system is the sum of the power for the PS and the CS: PCPS = PPS + PCS . PPS is

the required power of the actuator (PPS = vmim), which is part of the actuator model (3.16).

PCS can be computed from the processing time (tprc) and the average power consumption of the

microcontroller for sleep (Pslp) and run (Prun):

P̄CS =
tprc
T
Prun +

(
1− tprc

T

)
Pslp (3.24)

31

Figure 3.4: Stability region for different CA gains.

The power consumption for a fixed pendulum length is shown in Figure 3.7. It is visible that

smaller h reduces energy due to better control performance, but for very small h the required

processing power outweighs the savings. The result is an interesting trade-off between the control

and power performance of the whole system, which we study next.

4) Control-to-Energy Trade-Off: Figure 3.5 (a) shows the scatter graph for power consumption

and control quality for the discussed design space. An ideal system would be located in the bottom

left. The Pareto front (in blue) shows all potentially beneficial design points. For each system,

that is not part of the Pareto front, at least one system exists with better power consumption and

better control quality. Figure 3.5 (b) shows the highlighted points in the design space of sampling

rate and length. The results deliver a set of superior design points, and confirm that the design

space does not contain a superior pendulum length, sampling rate, or controller setting that would

dominate the entire design space, which confirms the importance of the holistic DSE in order to

identify superior design points.

3.3.5 Practical Evaluation

To validate the results for the modeling and the controller design, we implemented a pendulum

system that supports a range of physical configurations. As examples, Figure 3.6 shows two pen-

32

Figure 3.5: Simulation results for energy and control quality (a), and the highlighted Pareto set in
the design space (b).

dulums with a length of 6(cm) and 34(cm). For each experiment, we could use different pendulum

lengths, LQR gains, and sampling rates. The control program was implemented on an Cortex-M3

ARM development board. Like the DSE in the previous subsection, all the experiments could

be performed by a system engineer without manually revisiting the control algorithm. We used

our framework to return the energy-optimal system and parametrization for a given set of invari-

ant system parameters (either size or sampling rate). After applying the computed configuration

values to the experiment, we expected that each pendulum length has the expected stability. The

experiments confirmed the assumption to be correct, since each system ran stable for at least one

minute. As cross-validation we applied the controller setting of the small pendulum (6cm) for the

long pendulum (34cm) and vice versa. As a result the short and long pendulums tilted after four

and one seconds, respectively, which confirmed the simulations results shown in Figure 3.4.

A comparison of the measured energy values and the simulation results is shown in Figure 3.7. No-

tably, the actual power consumption is about 10(mW) above the values obtained in the simulation.

We suspect the higher power consumption is caused higher friction in reality than considered in our

PS model. However, more important is that the practical measurements validate our assumption of

a cyber-physical power consumption minimum. The measurements can identify this minimum as

27(ms), which is well in range of the estimated optimum point of 30(ms) for the system.

33

Figure 3.6: Pendulum setup using 6cm (left), and 34cm (right) lengths.

3.4 Conclusions

The results of the experiments presented in the previous section underline the importance of tai-

lored control design in a holistic design process of CPSs. Variabilities of the physical subsystem

have to be reflected in the control algorithm in order to find superior design points. We presented

a DSE framework that instantiates parameterized models of the physical system, the control algo-

rithm and the cyber system to find those design points. The applied EBM approach for the physical

models opened the design space for the physical subsystems, and the derived configuration of the

control algorithm parameters helped to reduce the design space to superior designs only. The actual

DSE then is based on parameterized executable simulations, generated in Modelica, which facili-

tate a highly parallel DSE. The DSE in the pendulum use case enabled toolsupported managemant

of the trade-off between control quality and energy consumption - even for non control experts.

Evidently, the modeling steps in our design flow are still complex and require knowledgeable con-

trol engineers and physical domain experts. However, following our design methodology, resulting

models can be packaged as reusable parameterizable components which in turn enable systematic

DSE of CPSs as part of design automation tools.

34

Figure 3.7: Measured and simulated energy consumption for the 34cm pendulum.

35

Chapter 4

Overview of Reinforcement Learning

4.1 Introduction

In this Chapter we briefly review RL and introduce the notions used in the remainder of this dis-

sertation. In Figure 4.1 the agent-environment model of RL is shown. The “agent” interacts with

the “environment” by applying “actions” that influence the environment state at the future time

steps and observes the state and “reward” in the next time step resulting from the action taken. The

“return” is defined as sum of all the rewards from the next steps to the end of current “episode”:

Gt =
T∑

i=t+1

ri (4.1)

where Gt is the return at time t, ri are future rewards and T is total number of steps in the episode.

An “episode” is defined as a sequence of agent-environment interactions. In the last step of an

episode the control task is “finished.” Episode termination is defined specifically for the control

task of the application.

For example, in the cart-pole balancing task, that we discuss in more detail in Section 5.3, the agent

36

Environment

Agent

Action

State
Reward

Figure 4.1: Agent-Environment interaction model in RL

is the controller, the environment is the cart-pole physical system, the action is the force command

applied on the cart, and the reward can be defined as r = 1 as long as the pole is nearly in upright

position and a large negative number when the pols falls. The system states are cart position, cart

speed, pole angle and pole angular speed. The agent task is to maximize the expected return Gt,

which is equivalent to preventing pole from falling for the longest possible time duration.

In RL, a control policy is defined as a mapping of the system state to the actions:

a = π(s) (4.2)

where a is the action, s is the state and π is the policy. The expected return function which is the

expected value of ‘return’ defined in (4.1) can be written as:

vπ(st) = E
aτ∼π,τ≥t

[
∞∑
i=0

γirt+i

]
(4.3)

This equation is defined for infinite episodes and the constant 0 < γ < 1 is introduced to ensure

that the defined expected return is always a finite value, assuming the returns are bounded.

An optimal policy is one that maximizes the expected return for all the states, i. e.:

vπ∗(s) >= vπ(s), for all s, π (4.4)

37

where v is the expected return (value) function. (4.4) means that the expected return under optimal

policy π∗ is equal or greater than any other policy for all the system states.

Another important concept in RL is the action-value function, Qπ(s, a) defined as the expected

return (value) if action at is taken at time t under policy π:

Qπ(st, at) = E
aτ∼π,τ>t

[
∞∑
i=0

γirt+i

]
(4.5)

This function is related to the optimal value function introduced in (4.4) by the following equation:

vπ∗(s) = max
a
Qπ∗(s, a) (4.6)

To develop algorithms to find the optimal policy, π∗, the environment dynamics need to be mod-

eled. Contrary to most of the control design methods, many RL algorithms do not require the

models to be known beforehand. The elimination of the need of modeling the system under con-

trol is a major strength of RL.

4.2 Markov Decision Process

The main assumption about the environment is that it has the Markov Property. A system has the

Markov property if at a certain time instant, t, the system history can be captured in a set of state

variables. Therefore, the next state of the system has a distribution which is only conditioned on

the current state and the taken action at the current time, i.e.:

st+1 ∼ P (st+1|st, at) (4.7)

38

The Markov property holds for many cyber-physical system application domains and therefore

MDP and RL can be applied as the control algorithm. We can also define the stochastic policy

which is a generalized version of (4.2) as a probability distribution of actions conditioned on the

current state, i.e.:

at ∼ π(at|st) (4.8)

By the Markov property assumption, the RL problem can be expressed as Markov Decision Process

(MDP). The MDP problem can be modeled with the following conditional property:

p{s(t+ 1), r(t+ 1)| system history up to time t}

= p{s(t+ 1), r(t+ 1)|s(t), a(t)}, (4.9)

which means that the reward and the next state only depend on the current state and action. Markov

property holds for many of CPS application domains and therefore MDP and RL can be applied as

the control algorithm.

The MDP problem for the optimal policy, π∗, can be solved by [86]:

• Dynamic Programming

• Monte-Carlo Methods

• Temporal-Difference (TD) Learning

The key idea in Dynamic Programming is to back up value function in a state to the previous state

using Bellman equation and (4.9). In contrast to Dynamic Programming methods where the MDP

model described by (4.9) should be known, in Monte-Carlo and TD methods the prior knowledge

of model is not required. Monte-Carlo Method is based on running a large number of episodes

from some starting state s and use the averaged total expected return obtained for all the episodes

39

as an estimate of v(s).

One important disadvantage of Monte-Carlo methods is that we have to wait until the end of an

episode to update value function of the initial state. In applications with long episodes it could be

impractical to implement the Monte-Carlo control algorithm. Temporal-Difference (TD) learning

methods addresses this issue by an on-line, incremental approach.

In TD method, as the agent interacts with the environment it bootstraps current knowledge of the

value function at a visited state to evaluate or build a policy and then after observing the actual

reward from the environment, the value function of that visited state is updated. It has been shown

that under certain assumptions the value function obtained by TD methods converge to one can be

obtained by Monte-Carlo methods.

4.3 Q-learning

Q-learning [90] is an important example of RL solution methods and it is used in this dissertation.

The Q-learning control algorithm is shown in Algorithm 5. In Q-learning, to find the optimal

policy, we start from an arbitrary initial action-value function Q0 and update it at each step of

MDP by observing the reward gained by the taken action. Therefore, the optimal policy can be

learned by the agent just by interacting with the environment. At each learning algorithm step, the

greedy policy π∗Q corresponding to learned action-value Q function can be defined as

π∗Q(s) = arg max
a
Q(s, a) (4.10)

As the learning algorithm proceeds, the learned Q(s, a) function converges to the optimal Q∗(s, a)

and therefore the greedy policy converges to optimal policy π∗ defined in (4.4). However, to

explore the action-state space for the optimal solution, an exploratory policy should be used. One

example of such policies is ε-greedy policy defined as

40

Algorithm 5: Q-Learning control

Data: Q0(s, a) . Initial action value function

s0 . Initial State

Result: Q∗(s, a) . Optimal Action-Value function

1 Q← Q0;

2 repeat

3 s← s0;

4 while s is non-terminal do

5 a← πε,Q(s);

6 Take action a observe new state s′ and reward r;

7 Q(s, a)← Q(s, a)+

α (r + maxa′ Q(s′, a′)−Q(s, a));

8 s← s′;

9 until convergence;

πε,Q(s) =


fai, i ∈ {1, . . . , Na} with probability ε/Na

π∗Q(s), with probability 1− ε
(4.11)

where Na is the number of available actions. (4.11) means that a random action is picked instead

of the greedy action with small probability ε in ε-greedy policy. In CPS applications, we choose

ε depending on the uncertainty level in the application domain. For example, in our case-study a

very small value is chosen for ε since the system is deterministic.

In Q-learning (Algorithm 5), the agent starts from the initial state, takes action using ε-policy and

observes the reward. The incremental optimal policy learning is done in line 7. α is the step

size parameter used to update current action-value function towards greedy target value at each

iteration.

41

4.4 Linear Approximation of Continuous Value-Functions

The Q-learning algorithm described in Algorithm 5 is applicable to a discrete state space where

the Action-Value function can be defined in a tabular representation. However, in most CPS appli-

cations the state space is continuous and cannot be expressed by a finite number of states. To be

able to use methods mentioned in previous subsection, one approach is to approximate the contin-

uous space with a linear combination of feature functions of the state variable. Coefficients of the

mentioned linear combination can be expressed as the parameter vector:

θ = (θ1 . . . θNf)ᵀ. (4.12)

In this case, the Action-Value function can be expressed as:

Q(s, a) = θᵀaf(s) = θᵀa

(
f1(s) . . . fNf (s)

)ᵀ

a ∈ A (4.13)

where fi(s) are the feature functions of the continuous state space, Nf is the number of functions

and A is the finite action set. Here we assume that only the state variables are continuous and the

action space is still discrete and finite.

The objective of the learning algorithm is to estimate the parameter vector θ. The Gradient-Descent

method can be used for this purpose. Assuming that fi are binary functions, the Q-learning for

linear approximate value function can be described as shown in Algorithm 6.

An example of binary features is Tile Coding [86] where each dimension of the continuous state

space is divided into a number of disjoint intervals. For example, if the state space has d dimensions

and each dimension is divided into k intervals, the whole space is divided into dk hyper-cubes

(tiles). Each tile i defines a feature as:

42

fi(s) =


1 s resides in tile i

0 otherwise
(4.14)

Algorithm 6 with Tile Coding function approximation require low computational overhead and can

be readily implemented in an embedded controller because we update the parameters towards the

greedy value only for the activated features (lines 8 and 10 of Algorithm 6).

4.5 Trust Region Policy Optimization

There are two main categories of methods to find the optimal policy. In the first category, Qπ(s, a)

is parameterized as Qθ
π(s, a) and the optimal action-value parameter vector θ is estimated in an

Algorithm 6: Q-Learning control for Linear approximated Value function and binary features.
Data: θ0 . Initial parameter vector

s0 . Initial State

Result: Q∗(s, a) . Optimal Action-Value function

1 θa ← θa0 ∀a ∈ A;

2 repeat

3 s← s0;

4 while s is non-terminal do

5 a← πε,Q(s);

6 Take action a observe new state s′ and reward r;

7 if s′ is terminal then

8 θai ← θai + α(r −Q(s, a)) ∀i ∈ {i|fi(s) = 1};

9 else

10 θai ← θai + α(r + maxa′ Q(s′, a′)−Q(s, a))

∀i ∈ {i|fi(s) = 1};

11 s← s′;

12 until convergence;

43

Algorithm 7: High-Level description of Trust Region Optimization

Data: S . Actual system or Simulation model

πθ . Parameterized Policy

Result: θ∗ . Optimal parameters

1 repeat

2 Use S to generate trajectories of the system using current πθ;

3 Perform one iteration of policy optimization using Monte Carlo method to get θnew ;

4 θ ← θnew

5 until no more improvements;

6 return θ

iterative process. The optimal policy can be defined implicitly from Qπ(s, a). For example, the

greedy policy is the one that maximizes Qπ(s, a) in each step:

at = arg max
a

{Qπ(st, a)} (4.15)

Q-learning which is discussed in Section 4.3 is one of example of this category of methods.

In the second category, which is called policy optimization and has been successfully applied to

large-scale and continuous control systems [29], the policy is parameterized directly as πθ(at|st)

and the parameter vector of the optimal policy θ is estimated. The Trust Region Policy Method

(TRPO) [79] is an example of the second category of methods that guarantees monotonic policy

improvement and is designed to be scalable to large-scale settings. In each iteration of TRPO, a

number of MDP trajectories are simulated (or actually experienced by the agent) and θ is updated

to improve the policy. A high level description of TRPO is shown in Algorithm 7.

44

Chapter 5

Adaptive Embedded Control of

Cyber-physical Systems Using RL 1

5.1 Introduction

In a cyber-physical system (CPS), most generally, a physical system is controlled by an embed-

ded control system. The embedded control system (ECS) is the cyber part of the CPS. The ECS

contains the control program that periodically processes sensor inputs and generates actuator out-

puts to achieve the stability, quality and performance goals of the CPS. The performance of the

ECS is determined by hardware decisions, such as the applied computation platform, but also by

software-defined decisions such as sampling rate and resource allocation.

Most of today’s embedded control design approaches assume the ECS parameters to be fixed quan-

tities, which are set at design time. Using classical control theory, the system parameters are set

to work in the most challenging (worst case) scenario, for which the designer validates the stabil-

1This chapter is mainly reprinted from: Buini, Hamid Mirzaei, Steffen Peter, and Tony Givargis. “Adaptive em-
bedded control of cyber-physical systems using reinforcement learning” IET Cyber-Physical Systems: Theory &
Applications 2, no. 3 (2017): 127-135. IET, Copyright (2017), with permission from IET.

45

ity of the system. Such over-engineering results in resource usage inefficiency, for example when

the sampling rate designed for temporary high-bandwidth disturbances or non-linear dynamics

exceeds the required value for the current system state.

In this chapter we investigate the feasibility and the effect of on-line adaptation of ECS parameters

to improve the resource utilization and energy consumption of the ECS and the entire CPS. Adap-

tive parameters have already been applied in isolated cyber systems, for instance to dynamically

tune the voltage and frequency of a system [45]. However, the approaches do not consider the

effect of the changes on the physical part of the CPS. Different sampling rates and computation

settings influence the stability and correctness of the CPS, as well as its overall power consumption,

with non-trivial trade-offs [16].

Therefore one of the main challenges of adaptive ECSs is to model and understand the effects of

parameter tuning of the ECS on the physical system dynamics and control performance. Exist-

ing approaches [19, 77] rely on classical control theory and require complex application-specific

models. To reduce the modeling complexity, this work relies on Reinforcement Learning (RL).

In RL methods, the prior knowledge about the system dynamics is not required because RL can

learn the optimal control policies just by experiencing the environment and observing the reward

signal. Therefore, RL is a promising candidate to control time-varying and non-linear systems

with uncertainties in the model or system states. RL has already been successfully demonstrated

to control real-world physical systems, such as autonomous transportation [32], smart grids [46]

and robotics [59], however, without considering the effects of the ECS parameters.

In our work, we investigate if the benefits of RL are applicable not only to learn properties of the

control part of the system, but to adapt attributes of the ECS at run-time to improve usage of sys-

tem resources. Specifically, we present the Adaptive ECS (A-ECS) framework that utilizes RL to

control the sampling time depending on the system state, i.e. at each sampling time the controller

determines the next sampling time. Using A-ECS we show that processing time and consumed

energy can be reduced by 20% for the classical cart-pole example, compared to an optimal im-

46

plementation with fixed controller settings. At the same time A-ECS improves the control quality

in presence of model uncertainties, compared to fixed controllers and event-triggered controllers

(ETC). Our results are obtained with a novel cloud-based co-simulation framework. Theoretical

and experimental results for two benchmark applications indicate the practical suitability of RL to

control on-line parameters of ECSs as part of CPSs.

The chapter is structured as follows. We review related work in Section 2.2 and introduce RL in

Chapter 4. In Section IV we present our framework for the on-line adaptation of ECS properties.

Section V and VI present experimental setups and our results, before we conclude the chapter.

5.2 Adaptive ECS based on Reinforcement Learning

In this section, first, we explain our proposed Adaptive ECS (A-ECS) framework to extend the

adaptive control concept to change embedded system parameters (e.g. sampling time or voltage)

in real-time based on RL methods. We apply the term adaptive not only for the controller, but

in a broader sense, that is changing ECS system parameters, such as sampling time or memory

allocation, based on the online system state. We also introduce the specific variable sampling

time ECS (VS-ECS) as an example of A-ECSs where the controller sampling time is changed in

real-time to realize more efficient embedded control in CPS applications.

In the second part of this section, we discuss our cloud-based evaluation framework as an extension

to facilitate simulation-based design and evaluation of A-ECS. Further, we explain the steps to

apply our methods on a generic CPS application.

47

Sensor(s)

Embedded Controller

Physical System

Actuator(s)

Reward
Calculation

Q-Learning
Algorithm

Controller
Actions

Physical

Actions

S
ta

te

A
g
e
n
t

E
n
v
ir
o
n
m
e
n
t

System
Parameters

reward

State
Figure 5.1: Proposed RL based Adaptive ECS

5.2.1 A-ECS Reinforcement Learning Environment and Actions

The A-ECS can be realized by following two extensions to the conventional RL based control

algorithm.

• Since, RL does not require prior assumptions about the environment and the available action

set, RL can be used on a broader definition of an environment that includes the physical

system along with elements of the embedded controllers.

• We can extend the action set to include actions that change ECS parameters such as sampling

time and memory allocation in real-time.

Once the extended RL control problem is solved, the optimal policy will include the ECS parameter

real-time adaptation and physical system control commands at the same time. This idea is outlined

in Figure 5.1 where the environment/agent boundary is crossing the ECS so that system parameters

of ECS are included in the environment.

48

To realize the explained A-ECS, we augment the action vector by parameter change actions. For-

mally, we can represent RL action vector as:

a = (aᵀ
p aᵀ

c)
ᵀ (5.1)

where ap is a vector containing the actions that influence the physical system such as force applied

to cart in cart-pole balancing task and ac is the vector of actions that change the ECS parameters,

such as sampling time. The remaining RL elements correspond to conventional RL approaches, as

discussed in Chapter 4. Therefore, we can define a reward so that the agent optimize the objectives

of CPS system using conventional RL algorithms. Hence, the reward calculation based on the

system state and the online learning algorithm can be integrated in the ECS.

Now, we can describe variable sampling time ECS (VS-ECS) as an example of A-ECS described

above. In VS-ECS, the sampling time is changed in a fine grained manner, i.e. in each sample time

the controller decides about the very next sampling time. The controller can choose from a limited

number of available sampling times. Using a variable sampling time scheme, we expect to reduce

processing time and system power by decreasing the sampling rate whenever fast sampling is not

required to stabilize the system. There is a trade-off in selecting number of available sampling

times. If this number increased we have more flexibility and possibly better performance. On the

other hand, larger number of selections degrade the performance of the learning algorithm due to

the optimization problem that needs to be solved in each time step which scales exponentially with

the number of possible actions.

For the VS-ECS the only controller parameter is sampling time h. Therefore, the action vector

defined in (5.1) can be rewritten as:

a = (aᵀ
p h)ᵀ (5.2)

In Algorithm 8, the RL algorithm for VS-ECS based on RL and Q-learning is described.

49

Algorithm 8: Variable Sampling-Time Embedded Control

1 s← s0;

2 while true do

3 (aᵀp h)ᵀ ← π∗Q(s);

4 apply ap to the physical system (actuator);

5 wait for h seconds ;

6 observe new state s′ ;

7 evaluate the reward based on observed s′;

8 Perform one step of Algorithm 6 to learn θ∗ (lines 7 to 10);

9 s← s′;

5.2.2 Cloud-Based Evaluation Framework

While A-ECS can be used to develop algorithms to control the physical system and change ECS

parameters online with no prior modeling of the system, model-based simulations help to learn

preferable parameters and policies, and test identified settings before deployment. Furthermore,

with efficient simulation models we can speed up the learning process.

To improve the performance of those simulations, we propose a parallel cloud-based evaluation

process using a simulation model of the physical system, the ECS and the RL algorithm. The

approach helps to find a superior policy by running multiple instances of the simulation and picking

the learned parameters of the instance with maximum performance. In all discussed cases, the RL

based ECS can apply the learned parameters to change ECS parameters online.

Our simulation approach is shown in Figure 5.2. While the Q-learning algorithm is an iterative

and therefore a sequential algorithm inherently, we still can leverage recent cloud-based parallel

platforms to run multiple instances of the simulation model for statistical evaluation of overall CPS

performance. To realize this requirement, we require the physical model, ECS and Q-learning algo-

rithm expressed as ordinary differential equations (ODE). ODEs can be efficiently solved utilizing

50

Physical System

Modeling (ODE)

ECS Modeling

(Processing

Energy Eq.)

Continuous space

Approximation

(Tile Coding)

RL Algorithm

(Q-Learning)

High

Performance

Simulation

Codes

(C++,

boost.odeint)

Parameter

Settings

(DSE)

Performance

Results
Instance 1

Reduce

Script

Statistical

Evalutaoin

Summary

Performance

Results
Instance n

Parallel Cloud Runs

.

.

.

.

.

.

Figure 5.2: Cloud-based evaluation framework

C++ and the Boost odeint library [3] to create a native executable binary file for the simulation.

We can launch multiple instances to run the simulation with different random seeds. Then we can

run a “reduce” script that aggregates simulation results of multiple instances,i.e. training curves

(RL return vs training step number) and episode trajectories. The reduce script also generates

evaluation statistical results. For example we can pick the learned parameters of the instance that

achieves the maximum performance. Figure 5.2 shows the flow of the evaluation framework. In

this figure, some examples are given for each block inside the parenthesis.

Although the described evaluation framework is not strictly “model free”, for many complex sys-

tems it is a considerably easier tasks to build simulation models instead of explicit models needed

in conventional control design methods. Even if we can develop explicit or the analytical models

of challenging systems (e.g. non-linear, hybrid, time-varying, etc.), control algorithm design is not

trivial using conventional methods.

5.2.3 A-ECS Development Workflow

To summarize this section, we provide a list of required steps to apply our framework for a CPS.

The steps are:

1. Identify the RL elements in the CPS, i.e. environment and actions. Especially, it should be

decided which parts of the ECS can be changed in real-time and what are the actions that

apply these changes.

51

2. Design a reward formulation based on the performance objectives. In contrast to conven-

tional control theory we can address actual design objectives directly, by rewarding the

agent (controller) proportional to the most important performance metrics and penalize it

with large negative rewards in case of failures.

3. Choose an RL algorithm to learn the optimal policy. For example, Q-learning algorithm

explained in section 4.3 can be used.

4. Choose an approximation method for the continuous state space. For example, the Tile cod-

ing described in Section 4.4 is one of the possible approaches. Recent deep neural network

representation method is an alternative for more complex systems [59].

5. Develop the simulation codes for the physical system and ECS. Also, implement the RL

algorithm and reward calculations. Next, integrate all the mentioned components and per-

formance measure output generation codes.

6. Choose system and RL parameters based on available heuristics or by iterative design space

exploration using proposed framework. Some example of these parameters are ε, α, number

of tilings and number of grids for each continuous state space dimension.

7. Build executable of the simulation. launch independent parallel instances to run the simula-

tion models for different random seeds.

8. Use the “reduce” script to extract statistical information such as average or maximum per-

formance.

5.3 Case Study 1: Cart-Pole Swing up task

In this section, we follow the steps listed in A-ECS workflow for the cart-pole swing up task. We

apply the cloud-based evaluation framework described in Section 5.3.3 to show the performance

52

Embedded

Controller

force
command

Figure 5.3: Cart-pole case study

improvement using the variable sampling time.

Consider the cart-pole system depicted in Figure 5.3. The processor, powered by a battery, can

generate force commands applied to the cart. The control task is to swing up the pole from fall

position to upright position and keep the pole upright for the longest time period possible using the

limited energy in the battery. We explain the steps to develop the VS-ECS to balance this system

using a digital controller.

The first step is to define different elements of the RL framework:

Environment: In RL, the environment is defined as the part of system which can be influenced

by the agent. By this definition, the environment is the physical system in the classical cart-pole

example because the applied force is the only action available to the agent. In A-ECS the concept

of environment had to be extended to include properties of the controller itself because the agent

can change the controller parameters dynamically.

Agent: In A-ECS the agent is the embedded controller. More precisely, the “fixed” elements of

the controller is the agent and the “varying ” elements are considered part of the environment as

explained before.

Actions: A-ECS supports two set of actions: physical system actions, and controller parameter

tuning actions. In the cart-pole example, the force command to the cart is the physical action and

the sampling time is the controller parameter action. Both actions are continuous variables, but

for simplicity they are defined as discrete quantities in the case study. The force can be zero, or

53

maximum force in any of two directions (right and left in Figure 5.3). The sampling time can be

chosen from some bounded number of available choices. Therefore, we define the action vector

consisting of force command and sampling time as

a = (f h)ᵀ (5.3)

System State Variables: The system state variables are:

s = (x ẋ θ θ̇ e)ᵀ (5.4)

where x is the cart position, θ is the pole angle and e is the current battery energy.

Policy π: The policy π is defined as mapping of system state to optimal actions, that is the force

applied to cart and the next sampling time as a function of current physical system state and the

battery storage.

Reward: In the classical cart-pole example the reward is defined as positive value, (e.g. one) if the

pendulum is in the upright position with some tolerance (π − δ < θ < π + δ) and a large negative

value if the pole falls. In our example we define the reward as the time period that the controller

can keep the pole in upright position. By this definition, the agent tries to use longer sampling

times to save processing power to be able to balance the pole for a longer time. We also add a term

proportional to the angular distance of pole to the upward position to encourage swinging the pole.

Next, we chose Q-learning and Tile coding approximation function to implement the RL algorithm

as described earlier in this chapter, while other state-of-the art approaches can be used as well.

The next step is to simulate the physical system and processing power consumption. In the next

subsections we describe the details of simulation models that we implemented in C++ to use them

in the cloud-based evaluation process. The final steps apply the simulation code in the cloud

computing platform and summarize the results by the analysis scripts. In Section IV the results of

54

proposed VS-ECS applied on the cart-pole case study are given.

5.3.1 Cart-pole dynamics

Nomenclature

x cart position

θ pole angle

l pole length

mc cart mass

mp pole mass

T kinematic energy

U potential energy

k1 cart viscous friction coefficient

k2 pole angular viscous friction coefficient

f applied force to the cart

Now we explain the modeling of the physical system that is implemented in the simulation model

used in the evaluation framework in Section 5.3.3. The cart-pole system is modeled using dynamics

differential equations. The kinematic and potential of the cart-pole system is derived by:

T =
1

2
mcẋ

2 +
1

2
mp

(
(ẋ+ lθ̇ cos θ)2 + l2θ̇2 sin2 θ

)
(5.5)

U = −mpgl cos θ (5.6)

The Lagrangian using (5.6) can be written as:

L =
1

2
(mc +mp)ẋ

2 +mplθ̇ẋ cos θ +
1

2
mpl

2θ̇2 +mpgl cos θ (5.7)

We can write the differential equations of the pole motion as

55

(mc +mp)ẍ+mplθ̈ cos θ −mplθ̇
2 sin θ = F − k1ẋ (5.8)

mplẍ cos θ +mpl
2θ̈ +mpgl sin θ = −k2θ̇ (5.9)

Finally, solving (5.9) for the linear acceleration of cart and angular acceleration of pole we have:

ẍ =
1

mc +mp sin2 θ
×(

f − k1ẋ+mp sin θ(lθ̇2 + g cos θ) + k2θ̇ cos θ
)
θ̈ (5.10)

θ̈ =
1

l2(mc +mp sin2 θ)
×(

−(mc +mp)k2θ̇/mp − lf cos θ + lk1ẋ cos θ

− (mc +mp)gl sin θ −mpl
2θ̇2 sin θ cos θ

)
(5.11)

The equations (5.10) and (5.11) are highly nonlinear but we can still RL framework to control the

physical system with this nonlinear dynamics.

5.3.2 Processing power modeling

Nomenclature

tr processing time

hi ith sampling time

pr processing power in run mode

ps processing power in idle mode

N total number of sampling times (steps)

before the battery energy ends

T total time before the battery energy ends

Eproc total processing power

56

Figure 5.4: Processing power temporal modeling

Now we explain the simulation modeling of processing power, which is directly applied for the

results provided in Section 5.3.3. We assume that the processor of the ECS is in sleep mode

between each two successive control routine invocations. The mentioned idle time can be used

to do other processing tasks, but as we are focused on the power consumption of the control task

we can simply assume that the controller is in sleep mode in idle time to save energy. The power

consumption scheme with this assumption is shown in Figure 5.4. The total processing energy is

modeled by

Eproc =
N∑
i=1

(prtr + ps(hi − tr))

= N(pr − ps)tr + psT (5.12)

while the total time T is defined as sum of all N sampling times:

T =
N∑
i=1

hi (5.13)

For a fixed total time T , that means that longer sampling times, hi results in lower total steps N ,

and lower N value in (5.12) results in lower Eproc which means higher power efficiency.

5.3.3 Simulation Results

In this subsection we describe the results for two experimental setups to investigate the efficiency

of the proposed VS-ECS approach. The first setup is a swing-up and balance task, the second

57

setup addresses the balance-only of the cart-pole example. We also implement and simulate event-

triggered controller for the first setup as the baseline method. We will compare the results with

our proposed method in the next subsection. For each setup we conducted three experiments with

different sampling schemes:

• Fixed sampling time (with value h1),

• Fixed sampling time (with value h2), and

Table 5.1: Parameter value settings for the experiment

Parameter Value

x range ± 6 (m)

θ range ± 2 π (rad)

θ balance range π± 0.1 (rad)

l 20 (cm)

mc 1 (kg)

mp 0.1 (kg)

k1 0 (N
m/s

)

k2 0 (Nm
1/s

)

ε 0.001

α 0.7

fmax 200 (N)

tr 200(µs)

pr 220 (mW)

ps 16 (µW)

Battery capacity 0.3 (J)

Tiling grids/dimension 7

Tilings 40

58

• Variable sampling time (with values either h1 or h2 decided in real-time and in each control

step).

We use the simulation models and the Q-learning algorithm explained previously to run the exper-

iments. Table 5.1 lists system parameters that are used in the experiments. All experiments are

done for 25 million steps. After every batch of 10,000 steps, the framework evaluates the control

policy learned by the RL agent. This is done by running the greedy policy and calculating the

return which is defined as the time period in which the agent was able to keep the pole almost in

upward position (π − 0.1 ≤ θ ≤ π + 0.1) before the battery energy is completely depleted. An

additional term in the return function encourages the agent to swing up the pole. The overall return

is determined by the following equation:

r = 10−6(π − |π − θ|) +


hi |π − θ| ≤ 0.1

0 otherwise
(5.14)

where hi is selected sampling time at time step i.

For each experiment we study the average balancing time and the identified maximum balancing

time. Due to the invariant energy supply, a longer balancing time indicates a lower average power

consumption, and therefore is desirable.

Swing-up and Balance Task

For the swing-up and balance experiment, each episode starts from the state where cart-pole system

is still with x = 0 and θ = 0 and ends whenever the battery energy is fully depleted or one of x or

θ passes the allowable range listed in Table 5.1. h1 = 10(ms) and h2 = 100(ms) are used for the

experiments. Conventional fixed sampling-time approaches have a desirable performance for the

59

0 5 10 15 20 25
Training Step (x 1e6)

0

1

2

3

4

5

6

7

8

9

B
a
la

n
ci

n
g
 T

im
e
 (

s)

Variable
Sampling-Time

Fixed Sampling
Time (100 ms)

Fixed Sampling
Time (10 ms)

(a)

0 5 10 15 20 25
Training Step (x 1e6)

0

2

4

6

8

10

12

14

16

B
a
la

n
ci

n
g
 T

im
e
 (

s)

Variable Sampling Time

Fixed Sampling Time (10ms)

Fixed Sampling Time (100ms)

(b)

Figure 5.5: (a) Average (b) Maximum balancing time (Return) achievable by the ECS in swing-up
and balance task

h1 and fail in most cases when using h2. We expect that the variable sampling time can achieve a

higher performance by switching between the two sampling times in real-time.

Figure 5.5(a) shows the learning curves for the average balancing time for the swing-up and balance

task. The plots are generated by averaging results of 200 runs on 32 instances launched by the

cloud-based evaluation tool. The total simulation time was around 6 hours on Intel Xeon E5-2600

processors. We see that the larger fixed sampling time results in a short total balancing time. The

reason is the severe instability due to the large sampling time. The VS-ECS performance is lower

at short-term, but starts to outperform the fast fixed sampling time after around 19 × 106 learning

steps, since it can utilize the two modes of operations.

At the beginning, the agent should act fast to move to pole to upright position quickly, but after that

the system dynamics is slow around the balancing point and the agent should do small corrections

with a slower rate that the swing up phase (Figure 5.6). Therefore the probability of selecting

longer sampling time is higher in the balancing state.

The benefit of VS-ECS is more obvious when we look at the maximum balancing time, shown in

Figure 5.5(b). VS-ECS identifies better settings already after less than 10× 106 learning steps and

60

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Time (s)

Po
le

 a
n
g
le

 (
ra

d
)

Swing-up
Faster

Dynamics
Balancing

Slower Dynamics

0 2 4 6 8 10 12 14 16

0.27

0.15

p
{

h
 =

1
0

0
 m

s}

Figure 5.6: Two modes in swing-up and balance task shown by the pole angle time plot. Probability
of selecting longer sampling time by A-ECS is shown in the lower time plot.

is able to balance the pole about two seconds longer than with the fast fixed sampling rate.

Balance-only Task

The second setup considers the upright balancing time only. The control problem in this case is

less complex since the pole is already close to upright positions at the start (π − 0.04). In contrast

to the previous example, both applied fixed sampling times (hslow = 10(ms) and hslow = 1(ms))

can be used to control the system. In the new experiment setup, the allowable balance range is

tighter (π − 0.05 ≤ θ ≤ π + 0.05).

Figure 5.7 shows the learning curves for the average and maximum balancing time. It can be seen

that the faster fixed sampling time exhausts the battery earlier, caused by the higher processing

power. However, the results also show that in average the slower fixed sampling time outlasts

VS-ECS, while the maximum balancing time in both cases are equal. The results confirm that a

fixed sampling scheme is more suited in system with unimodal dynamics, since the system does

61

0 5 10 15 20 25
Training Step (x 1e6)

0

2

4

6

8

10

12

14

16

B
a
la

n
ci

n
g

 T
im

e
 (

s)
Fixed Sampling Time (1ms)

Fixed Sampling Time (10 ms)

Variable Sampling Time

(a)

Fixed Sampling Time (1ms)

0.0 0.1

Fixed Sampling Time (10 ms)

Variable Sampling Time

0.2 0.3 0.4 0.5
Training Step (x1e6)

4

6

8

10

12

14

16

B
a
la

n
ci

n
g
 T

im
e
 (

s)

(b)

Figure 5.7: (a) Average (b) Maximum balancing time (Return) achievable by the ECS in balance-
only task

not need to switch between modes. In these cases, VS-ECS requires learning to converge to the

static behavior of the optimum static systems.

5.3.4 Comparison to Event-Triggered controller

In this subsection we compare the performance of proposed RL based VS-ECS controller with

an Event-Triggered Controller (ETC) as the state-of-the-art non-uniform sampling solution for the

cart-pole example. The performance metric is the balancing time as discussed in the previous

subsection. The ETC for cart-pole system designed based on the method described in [64] and

62

[30]. ETC is realized by implementation of two functions, event function and feedback function.

The event function, ε : χ×χ→ R, where χ is the state space indicates if a new control calculation

is needed (ε ≤ 0) or not (ε > 0). The first argument of ε is the memorized state of the system at last

control update and the second argument is the current state. The feedback function, γ : χ → U ,

is the state feedback control law where U is the control input space. Shortcoming of ETC is the

required evaluation of the event function on a regular basis to detect the control update event where

as in VS-ECS the embedded controller can go to sleep between successive control updates.

The controller which is proposed in [30] has two modes: Swing up and Stabilization. The controller

starts at Swing up mode and after it reaches a specific angle (close enough to upright position)

switches to stabilization mode. The controller uses energy control in swing up mode and Linear

Quadratic Regulator (LQR) in the stabilization mode using a linearized model. The event and

feedback functions are derived for both modes in [30]. The ETC controller has a number of tunable

parameters. We selected the optimal settings by exhaustive search of the design space in each case.

The physical parameters of the cart-pole systems are the same as for the previous experiments

(Table 5.1). To study the improvement of control object metric by using ETC the experiment is

also repeated for an invariant sampling time controller with fixed period of 10 ms same as VR-

ECS experiments. The results of the ETC simulations are compared with the VS-ECS maximum

performance (subsection 5.3.3) in Table 5.2. ETC’s extended balancing time is caused by ETCs

continuous control signal, while in RL approach, discrete control is used to limit the state space

dimension, resulting in more variation of the pendulum angle. However, in the RL based approach

adaptive rate results in more balancing time improvement comparing to ETC which is the main

contribution of this chapter.

The robustness of VS-ECS and ETC are also compared by an experiment where the system is

designed for cart weight of 1(kg) but the actual cart weight 0.7(kg). The results are also shown in

Table 5.2. Here we see that ETC cannot stabilize the system, since ETC relies on an exact system

model, while CS-ETC stabilizes the system. It should be noted that the reduced balancing time for

63

Table 5.2: Comparison of VE-ECS (proposed here) and ETC designed by
the concepts proposed in [64].

Balancing time (s)

Accurate Physical Model Inaccurate Physical Model

Single

Sampling

Time

Adaptive

Sampling

Time

Single

Sampling

Time

Adaptive

Sampling

Time

VS-ECS 11.2 14.1 9.6 13.2

ETC 14.1 14.7 unstable 9.25

VS-ECS is not caused by model errors but by the additional weight of the pole.

5.4 Case Study 2: Mountain Car Problem

5.4.1 Problem definition

The Mountain Car example [67], discussed in this section, evaluates VS-ECS for a system with

nonlinear dynamics. In the original Mountain Car example the goal is to control the acceleration

of a car inside a valley in order to move it to the top of the mountain (Figure 5.8). However, the

maximum acceleration of the car is limited and it can not be driven to the top of mountain in a

single pass and the car has to go back and forth a number of times to get enough momentum to

reach to the desired destination.

In the original Mountain Car problem, there is no computational overhead limitation and the car

has not to stop at the destination and the goal is to reach to the destination on top of mountain in

minimum time. Therefore, the RL reward is defined as following:

64

r =


−1 car has not reached to the destination

0 otherwise
(5.15)

In this experiment we define two different goals to the original problem to make it a more difficult

control task: 1- reach the destination with minimum computational overhead. 2- car should almost

be stopped (i.e. its speed should be less than a threshold) at the destination. To realize the minimum

computational objective a computational budget is defined that is decreased by one each sample

time. Hence, once the car nearly stops at the destination the higher remaining computational

budget means less computational overhead and should be rewarded. Using the explained problem

definition, the reward defined in (5.15) is modified to the following reward function:

r =



0 x > 0.5

0 b ≤ 0

b |v| < 0.1 and 0.44 < x < 0.45

−10−4 otherwise

(5.16)

where x is the car position, v is the car speed and b is the computational budget. The small negative

reward in the last case included to encourage faster task completion.

5.4.2 Simulation Results

We run the Q-learning algorithm with tile coding function approximation for three different sam-

pling schemes: 1- fixed 0.1(s), 2- fixed 1(s) and 3-variable 0.1(s) or 1(s) chosen by RL agent.

Figure 5.9 shows the results of simulation for these scenarios. The y-axis shows the return which

is the remaining computational budget in the case of successful task completion and the y-axis

is the training step number. All simulations are performed with starting computational budget of

60. For the fixed 1(s) the agent is unable to command the car to reach and stop at the destination

65

x

y
si
n(
3x
)

Figure 5.8: Mountain Car example

0 50 100 150 200

Training Step

5

0

5

10

15

20

25

30

35

40

R
e
m

a
in

in
g
 C

o
m

p
u
ta

ti
o
n
a
l
b
u
d
g
e
t

Varibale Sampling Time

Fixed Sampling Time (0.1 s)

Fixed Sampling Time (1 s)

Figure 5.9: Training curves for three different scenarios in Mountain Car example

since fixed time step of one second is too coarse for the precise control needed to accomplish the

problem objective. The agent is able to accomplish the task by the finer time precision of 0.1 (s).

However, using a variable sampling time ECS in which sampling time is chosen among the fine

and coarse sampling times, we can get higher efficiency of around 17%.

5.5 Conclusions

In this chapter we demonstrated the suitability of reinforcement learning to adapt software prop-

erties of the embedded control system (ECS) at run-time. The benefit of our adaptable online

approach is a reduced average power consumption of the ECS and the overall CPS, which leads to

an extended life time of battery powered CPSs. Specifically for the cart-pole example we deter-

66

mined an extension of the life-time by up to 20% compared to a system with optimal fixed settings.

While our approach could not improve the power efficiency of a fixed optimal system in every case,

all our experiments could achieve at least an equivalent performance. We further could outperform

all sub-optimal fixed settings in all investigated scenarios, and improve the tolerance of the system

to model uncertainties.

We presented a framework that facilitates the application of our approach to generic CPSs. We

also presented an exploration tool that allows a designer to systematically evaluate the impact of

different system settings and control modes.

While the work at hand is a very promising first step to use RL for the online software configuration

of embedded control systems, the work contains a range of limitations that might be interesting to

address in future work. In our experiments we used a dual-modal system. Adding more modes

might further improve the system properties. Also applying our framework to consider voltage

and frequency settings as well as resource allocations in addition to sampling rates is a promising

next step. Finally, combining our approach with existing RL frameworks that focus on control

properties [50] could further improve the overall design quality and system performance of CPSs,

while reducing the complexity of designing the system.

67

Chapter 6

Autonomous Intersection Management

Using RL 1

6.1 Introduction

Previous works on autonomous intersection management (AIM) in urban areas have mostly fo-

cused on intersection arbitration as a shared resource among a large number of autonomous ve-

hicles. In these works [28, 41], high-level control of the vehicles is implemented such that the

vehicles are self-contained agents that only communicate with the intersection management agent

to reserve space-time slots in the intersection. This means that low-level vehicle navigation which

involves acceleration and speed control is performed by each individual vehicle independent of

other vehicles and intersection agents. This approach is appropriate for minor arterial roads where

a large number of vehicles utilize the main roads at similar speeds while the adjacent intersections

1This chapter is mainly reprinted from:H. Mirzaei and T. Givargis, “Fine-grained acceleration control for au-
tonomous intersection management using deep reinforcement learning,” 2017 IEEE SmartWorld, Ubiquitous Intelli-
gence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI),
San Francisco, CA, 2017. IEEE, Copyright (2017), with permission from IEEE
Permission is included in Appendix A.

68

Figure 6.1: Intersection Management Problem. The goal of the problem is to navigate the vehicles
from the sources to destinations in minimum time with no collisions.

are far away.

In scenarios involving local roads, where the majority of the intersections are managed by stop

signs, the flow of traffic is more efficiently managed using a fine-grained vehicle control method-

ology. For example, when two vehicles are crossing the intersection of two different roads at the

same time, one vehicle can decelerate slightly to avoid collision with the other one or it can take

another path to avoid confronting the other vehicle completely. Therefore, the nature of the AIM

problem is a combination of route planning and real-time acceleration control of the vehicles. In

this chapter, we propose a novel AIM formulation which is the combination of route planning and

fine-grained acceleration control. The main objective of the control task is to minimize travel time

of the vehicles while avoiding collisions between them and other obstacles. In this context, since

the movement of a vehicle is dependent on the other vehicles in the same vicinity, the motion data

of all vehicles is needed in order to solve the AIM problem.

To explain the proposed AIM scheme, let us define a “zone” as a rectangular area consisting of

69

a number of intersections and segments of local roads. An agent for each zone collects the mo-

tion data and generates the acceleration commands for all autonomous vehicles within the zone’s

boundary. All the data collection and control command generation should be done in real-time.

This centralized approach cannot be scaled to a whole city, regardless of the algorithm used, due

to the large number of vehicles moving in a city which requires enormous computational load and

leads to other infeasible requirements such as low-latency communication infrastructure. Fortu-

nately, the spatial independence (i.e., the fact that navigation of the vehicles in one zone is inde-

pendent of the vehicles in another zone that is far enough away) makes AIM an inherently local

problem. Therefore, we can assign an agent for each local zone in a cellular scheme.

The cellular solution nevertheless leads to other difficulties that should be considered for a suc-

cessful design of the AIM system. One issue is the dynamic nature of the transportation problem.

Vehicles can enter or leave a zone controlled by an agent or they might change their planned desti-

nations from time to time. To cope with these issues, the receding horizon control method can be

employed where the agent repeatedly recalculates the acceleration command over a moving time

horizon to take into account the mentioned changes. Additionally, two vehicles that are moving to-

ward the same point on the boundary of two adjacent zones simultaneously might collide because

the presence of each vehicle is not considered by the agent of the adjacent zone. This problem

can be solved by adequate overlap between adjacent zones. Furthermore, any planned trip for a

vehicle typically crosses multiple zones. Hence, a higher level planning problem should be solved

first that determines the entry and exit locations of a vehicle in a zone.

In this chapter we focus on the subproblem of acceleration control of the vehicles moving in a

zone to minimize the total travel time. We use a deep reinforcement learning (RL) approach to

tackle the fine-grained acceleration control problem since conventional control methods are not

applicable because of the non-convex collision avoidance constraints [33]. Furthermore, if we

want to incorporate more elements into the problem, such as obstacles or reward/penalty terms

for gas usage, passenger comfort, etc., the explicit modeling becomes intractable and an optimal

70

control law derivation will be computationally unattainable.

RL methods can address the above mentioned limitations caused by the explicit modeling require-

ment and conventional control method limitations. The main advantage of RL is that most of the

RL algorithms are “model-free” or at most need a simulation model of the physical system which

is easier to develop than an explicit model. Moreover, the agent can learn optimal policies just

by interacting with the environment or executing the simulation model. However, conventional

RL techniques are only applicable in small-scale problem settings and require careful design of

approximation functions. Emerging Deep RL methods [29] that leverage the deep neural networks

to automatically extract features seem like promising solutions to shortcomings of the classical RL

methods.

6.2 Problem Statement

There is a set of vehicles in a grid street plan area consisting of a certain number of intersections.

For simplicity, we assume that all the initial vehicle positions and the desired destinations are

located at the intersections. There is a control agent for the entire area. The agent’s task is to

calculate the acceleration command for the vehicles in real-time (see Fig. 6.1). We assume that

there are no still or moving obstacles other than vehicles’ or street boundaries.

The input to the agent is the real-time state of the vehicles which consists of their positions and

speeds. We are assuming that vehicles are point masses and their angular dynamics are ignored.

However, to take the collision avoidance in the problem formulation, we define a safe radius for

each vehicle and no objects (vehicles or street boundaries) should be closer than the safe radius to

the vehicle.

The objective is to drive all the vehicles to their respective destinations in a way that the total travel

time is minimized. Furthermore, no collision should occur between any two vehicles or a vehicle

71

and the street boundaries.

To minimize the total travel time, a positive reward is assigned to the terminal state in which all the

vehicles approximately reach the destinations within some tolerance. A discount factor γ strictly

less than one is used. Therefore, the agent should try to reach the terminal state as fast as possible

to maximize the discounted return. However, by using only this reward, too many random walk

trajectories are needed to discover the terminal state. Therefore, a negative reward is defined for

each state, proportional to the total distance of the vehicles to their destinations as a hint of how

far the terminal state is. This negative reward is not in contradiction with the main goal which is to

minimize total travel time.

To avoid collisions, two different approaches can be considered: we can add large negative rewards

for the collision states or we can incorporate a collision avoidance mechanism into the environment

model. Our experiments show that the first approach makes the agent too conservative about

moving the vehicles to minimize the probability of collisions. This might lead to extremely slow

learning which makes it computationally infeasible. Furthermore, collisions are inevitable even

with large negative rewards which limits the effectiveness of learned policies in practice.

For the above mentioned reasons, the second approach is employed, i.e. the safety mechanism that

is used in practice is included in the environment definition. The safety mechanism is activated

whenever two vehicles are too close to each other or a vehicle is too close to the street boundary.

In these cases, the vehicle built-in collision avoidance system will control the vehicle’s acceleration

and the acceleration commands from the RL agent are ignored as long as the distance is near the

allowed safe radius of the vehicle. In the agent learning process these cases are simulated in a way

that the vehicles come to a full stop when they are closer than the safe radius to another vehicle

or boundary. By applying this heuristic in the simulation model, the agent should avoid any “near

collision” situations explained above because the deceleration and acceleration cycles take a lot of

time and will decrease the expected return.

72

Based on the problem statement explained above, we can describe the RL formulation in the rest

of the subsection. The state is defined as the following vector:

st =
(
x1t , y

1
t , v

1
xt, v

1
yt
, . . . , xnt , y

n
t , v

n
x t, v

n
y t

)ᵀ
(6.1)

where (xit, y
i
t) and (vixt, v

i
yt

) are the position and speed of vehicle i at time t. The action vector is

defined as:

at =
(
a1xt, a

1
yt
, . . . , anxt, a

n
y t

)ᵀ
(6.2)

where (aixt, a
i
yt

) is the acceleration command of vehicle i at time t. The reward function is defined

as:

r(s) =


1 if ‖(xi − dix, yi − dix)ᵀ‖ < η (1 ≤ i ≤ n)

−α∑n
i=1‖(xi − dix, yi − dix)ᵀ‖ otherwise

(6.3)

where (dix, d
i
y) is the destination coordinates of vehicle i, η is the distance tolerance and α is a

positive constant.

Assuming no collision occurs, the state transition equations for the environment are defined as

follows:

xit+1 = satx,x(xit + hvx
i
t)

yit+1 = saty,y(yit + hvy
i
t)

vx
i
t+1 = satvm,vm(vx

i
t + hax

i
t)

vy
i
t+1 = satvm,vm(vy

i
t + hay

i
t) (6.4)

where h is the sampling time, (x, x, y, y) defines area limits, vm is the maximum speed and satw,w(.)

73

is the saturation function defined as:

satw,w(x) =


w x ≤ w

w x ≥ w

x otherwise.

(6.5)

To model the collisions, we should check certain conditions and set the speed to zero. A more

detailed description of collision modeling is presented in Algorithm 9.

Algorithm 9: State Transition Function

Data: st . State at time t

at . Action at time t

Result: st+1 . State at time t+ 1

1 ax
i
t ← satam,am(ax

i
t);

2 ay
i
t ← satam,am(ay

i
t);

3 st+1 ← updated state using (6.4);

4 vc1 ← find all the vehicles colliding with street boundaries;

5 speed elements of vc1in st+1 ← 0;

6 location elements of vc1in st+1 ← closest point on the street boundary with the margin of ε;

7 vc2 ← find all the vehicles colliding with some other vehicle;

8 speed elements of vc2in st+1 ← 0;

9 location elements of vc2in st+1 ← pushed back location with the distance of 2× safe radius

to the collided vehicle;

10 return st+1;

74

6.2.1 Solving the AIM problem using TRPO

The simulation model can be implemented based on the RL formulation described in Section 6.2.

To use TRPO, we need a parameterized stochastic policy, πθ(at|st), in addition to the simulation

model. The policy should specify the probability distribution for each element of the action vector

defined in (6.2) as a function of the current state st.

We have used the sequential deep neural network (DNN) policy representation as described in

[79]. The input layer receives the state containing the position and speed of the vehicles (defined

in (6.1)). There are a number of hidden layers, each followed by tanh activation functions [47].

Finally, the output layer generates the mean of a gaussian distribution for each element of the action

vector.

To execute the optimal policy learned by TRPO in each sampling time, the agent calculates the

forward-pass of DNN using the current state. Next, assuming that all the action elements have the

same variance, the agent samples from the action gaussian distributions and applies the sampled

actions to the environment as the vehicle acceleration commands.

6.3 Evaluation

6.3.1 Baseline Method

To the best of our knowledge there is no other solution proposed for the fine-grained acceleration

AIM problem introduced in this chapter. Therefore, we use conventional optimization methods to

study how close the proposed solution is to the optimal solution. Furthermore, we will see that the

conventional optimization is able to solve the AIM problem only for very small-sized problems.

This confirms that the proposed RL-based solution is a promising alternative to the conventional

75

methods.

Theoretically, the best solution to the problem defined in Section 6.2 can be obtained if we re-

formulate it as a conventional optimization problem. The following equations and inequalities

describe the AIM optimization problem:

a∗t = arg max
at

T−1∑
t=0

n∑
i=1

‖(xit − dix, yit − dix)ᵀ‖ (6.6)

s. t. x ≤ xit ≤ x (1 ≤ i ≤ n) (6.7)

y ≤ yit ≤ y (1 ≤ i ≤ n) (6.8)

vm ≤ vx
i
t ≤ vm (1 ≤ i ≤ n) (6.9)

vm ≤ vy
i
t ≤ vm (1 ≤ i ≤ n) (6.10)

am ≤ ax
i
t ≤ am (1 ≤ i ≤ n) (6.11)

am ≤ ay
i
t ≤ am (1 ≤ i ≤ n) (6.12)

−bN/2c ≤ rit ≤ bN/2c (1 ≤ i ≤ n, rit ∈ Z) (6.13)

−bM/2c ≤ cit ≤ bM/2c (1 ≤ i ≤ n, cit ∈ Z) (6.14)

xi0 = six, y
i
0 = siy (1 ≤ i ≤ n) (6.15)

xiT−1 = dix, y
i
T−1 = diy (1 ≤ i ≤ n) (6.16)

vx
i
0 = 0, vy

i
0 = 0 (1 ≤ i ≤ n) (6.17)

xit+1 = xit + vx
i
t.h (1 ≤ i ≤ n) (6.18)

yit+1 = yit + vy
i
t.h (1 ≤ i ≤ n) (6.19)

vx
i
t+1 = vx

i
t + ax

i
t.h (1 ≤ i ≤ n) (6.20)

vy
i
t+1 = vy

i
t + ay

i
t.h (1 ≤ i ≤ n) (6.21)

(xit − xjt)2 + (yit − yjt)2 ≥ (2R)2 (1 ≤ i < j ≤ n) (6.22)

|xit − cit.bw| ≤ (
l

2
−R) or

76

(a) (a) (b) (b)

Figure 6.2: Initial setup of each episode. Small circles are the sources and big circles are the
destinations. (a) small example (b) large example

Figure 6.3: Learnt policy by (left)RL agent and (right)the baseline method for the small example

|yit − rit.bh| ≤ (
l

2
−R) (1 ≤ i ≤ n) (6.23)

where rit and cit are the row number and column number of vehicles at time t, respectively, assuming

the zone is a perfect rectangular grid; N and M are the number of rows and columns, respectively;

bw and bh are block width and block height; l is the street width; R is the vehicle clearance radius;

T is number of sampling times; and (six, s
i
y) is the source coordinates of vehicle i.

In the above mentioned problem setting, (6.7) to (6.12) are the physical limit constraints. (6.15) to

(6.17) describe the initial and final conditions. (6.18) to (6.21) are dynamic constraints. (6.22) is

the vehicle-to-vehicle collision avoidance constraint and finally (6.23) is the vehicle-to-boundaries

collision avoidance constraint.

The basic problem with the above formulation is that constraint (6.22) leads to a non-convex func-

tion and convex optimization algorithms cannot solve this problem. Therefore, a Mixed-Integer

77

Figure 6.4: Learnt policy by the AIM agent at different iterations of the training. left: beginning
of the training, middle: just after the fast learning phase in Fig. 6.6. right: end of the training.

Nonlinear Programming (MINLP) algorithm should be used to solve this problem. Our experi-

ments show that even a small-sized problem with two vehicles and 2×2 grid cannot be solved with

an MINLP algorithm, i.e. AOA[43], in a reasonable time. To overcome this issue, we should refor-

mulate the optimization problem using 1-norm and introduce new integer variables for the distance

between vehicles using the ideas proposed in [78].

To achieve the best convergence and execution time by using a Mixed-integer Quadratic Program-

ming (MIQP), the cost function and all constraints should be linear or quadratic. Furthermore, the

“or” logic in (6.23) should be implemented using integer variables. The full MIQP problem can be

written as the following equations and inequalities:

a∗t = arg max
at

T−1∑
t=0

n∑
i=1

(xit − dix)2 + (yit − dix)2 (6.24)

s. t. (6.7) to (6.21)

bx
i
t, by

i
t ∈ {0, 1} (1 ≤ i ≤ n) (6.25)

bx
i
t + by

i
t ≥ 1 (1 ≤ i ≤ n) (6.26)

cx
i,j
t ,cy

i,j
t , dx

i,j
t , dy

i,j
t ∈ {0, 1} (1 ≤ i < j ≤ n) (6.27)

cx
i,j
t +cy

i,j
t + dx

i,j
t + dy

i,j
t ≥ 1 (1 ≤ i < j ≤ n) (6.28)

78

xit − xjt ≥ 2Rcx
i,j
t −M(1− cxi,jt) (1 ≤ i < j ≤ n) (6.29)

xit − xjt ≤ −2Rdx
i,j
t +M(1− dxi,jt) (1 ≤ i < j ≤ n) (6.30)

yit − yjt ≥ 2Rcy
i,j
t −M(1− cyi,jt) (1 ≤ i < j ≤ n) (6.31)

yit − yjt ≤ −2Rdy
i,j
t +M(1− dyi,jt) (1 ≤ i < j ≤ n) (6.32)

xit − citbw ≤ (
l

2
−R)bx

i
t +M(1− bxit) (1 ≤ i ≤ n) (6.33)

xit − citbw ≥ −(
l

2
−R)bx

i
t −M(1− bxit) (1 ≤ i ≤ n) (6.34)

yit − citbw ≤ (
l

2
−R)by

i
t +M(1− byit) (1 ≤ i ≤ n) (6.35)

yit − citbw ≥ −(
l

2
−R)by

i
t −M(1− byit) (1 ≤ i ≤ n) (6.36)

whereM is a large positive number.

(6.29) to (6.32) represent the vehicle-to-vehicle collision avoidance constraint using 1-norm:

‖(xit, yit)ᵀ − (xjt , y
j
t)

ᵀ‖1 ≥ 2R (6.37)

for any two distinct vehicles i and j. This constraint is equivalent to the following:

|xit − xjt | ≥ 2R or |yit − yjt | ≥ 2R ∀t, (1 ≤ i < j ≤ n) (6.38)

The absolute value function displayed in (6.38) should be replaced by logical “or” of two linear

conditions to avoid nonlinearity. Therefore, we obtain the following constraint which is represented

by (6.29) to (6.32):

xit − xjt ≥ 2R or xit − xjt ≤ −2R or

yit − yjt ≥ 2R or yit − yjt ≤ −2R ∀t, (1 ≤ i < j ≤ n) (6.39)

(6.27) implements the “or” logic required in (6.39).

79

(6.33) to (6.36) describe the vehicle-to-boundaries collision avoidance constraint:

|xit − citbw| ≤ (
l

2
−R)bx

i
t or

|yit − ritbw| ≤ (
l

2
−R)by

i
t ∀t, (1 ≤ i ≤ n) (6.40)

which is equivalent to:

(xit − citbw ≤ (
l

2
−R)bx

i
t and xit − citbw ≥ −(

l

2
−R)bx

i
t) or

(yit − ritbw ≤ (
l

2
−R)by

i
t and yit − ritbw ≥ −(

l

2
−R)by

i
t)

∀t, (1 ≤ i ≤ n) (6.41)

The “or” logic in this constraint is realized in (6.26).

We will show in the next subsection that the explained conventional optimization formulation is

not feasible except for very small-sized problems. Another limitation that makes the conventional

method impractical is that this formulation works only for a perfect rectangular grid. However, the

proposed RL method in this chapter can be extended to arbitrary street layouts.

6.3.2 Simulation results

The implementation of the TRPO in rllab library [29] is used to simulate the RL formulation of

the AIM problem described in Section 6.2. For this purpose, the AIM state transition and reward

calculation are implemented as an OpenAI Gym [14] environment.

The neural network used to approximate the policy is an Multilayer Perceptron (MLP) which

consists of three hidden layers. Each hidden layer has 100 nodes (Fig. 6.5). Table 6.1 lists the

parameters for the simulation. To speed up simulation, normalized units are used for the physical

properties of the environment instead of real-world quantities.

80

Input

Layer

Hidden

Layers

Output

Layer Sampling

P
o
si

ti
o
n
 a

n
d
 S

p
e
e
d
 d

a
ta

A
c
c
e
le

ra
ti

o
n
 C

o
m

m
a
n
d
s

4x7 units 100 units 100 units 100 units 2x7 units

Figure 6.5: Neural network used in the simulations.

Fig. 6.2 shows the small and large grid plans used for the simulation. The small and large circles

represent the source and destination locations, respectively. The vehicles are placed at the inter-

sections randomly at the beginning of each episode. The destinations are also chosen randomly.

Table 6.1: Parameter value settings for the experiment

Parameter Value

discount factor(γ) 0.999

distance reward penalty factor(α) 0.1

distance tolerance(η) 0.05

maximum speed(vm) 0.8

maximum acceleration(am) 30

sampling time(h) 10 (ms)

maximum episode length 200

vehicle safe radius 0.02

Table 6.2: Total travel time obtained by baseline method and proposed method

Baseline Method Proposed Method

Small example 1.79 (s) 2.43 (s)

Large Example no solution 11.2 (s)

81

When the simulator is reset, the same set of source and destination locations are used.

The small grid can be solved both by the baseline method and by the proposed RL method. How-

ever, the large grid can only be solved by the RL method because the MIQP algorithm could not

find a feasible solution (which is not optimal necessarily) and was stopped after around 68 hours

and using 21 GB of system memory. On the other hand, the RL method can solve the problem

using 560 MB of system memory and 101 MB of GPU memory.

Table 6.2 and Fig. 6.3 show the comparison of proposed RL and baseline method results. In Table

6.2 the total travel time is provided for both methods and Fig. 6.3 shows the vehicles’ trajectories

by running the navigation policy obtained by both solutions for the small examples.

The learning curve of the RL agent which is the expected return vs the training epoch number is

shown in Fig. 6.6 for the large grid example. This figure shows that the learning rate is higher at the

beginning which corresponds to the stage where in the agent is learning the very basics of driving

and avoiding collisions, but improving the policy towards the optimal policy takes considerably

more time. The increase in learning occurs after two epochs when the agent discovers the policy

that successfully drives all the vehicles to the destination and the positive terminal reward is gained.

Moreover, the trajectories of vehicles are depicted in Fig. 6.4 at three stages of the learning process,

i.e. at the early stage, at epoch 2 where the learning curve slope rapidly decreases, and the end of

the training.

The total number of “near collision” incidents discussed in Section 6.2 is shown in Fig. 6.7. Fig.

6.8 shows the total travel time as a function of training iteration.

6.4 Conclusion

In this chapter, we have shown that Deep RL can be a promising solution for the problem of

intelligent intersection management in local road settings where the number of vehicles is limited

82

0 2 4 6 8 10 12 14 16

Epoch Number

90000

80000

70000

60000

50000

40000

30000

20000

10000

0

D
is

c
o
u
n
te

d
 R

e
tu

rn

Figure 6.6: Learning curve of the AIM agent for large grid example. The discounted return is
always a negative value because the return is the accumulated negative distance rewards and there
is only one positive reward in the terminal state in which all the vehicles are at the destinations.

Figure 6.7: Number of near collision incidents vs training iteration number.

and fine-grained acceleration control and motion planning can lead to a more efficient navigation

of the autonomous vehicles. We proposed an RL environment definition in which collisions are

avoided using a safety mechanism. Using this method instead of large penalties for collision in

the reward function, the agent can learn the optimal policy faster and the learned policy can be

used in practice where the safety mechanism is actually implemented. The experiments show that

the conventional optimization methods are not able to solve the problem with the sizes that are

solvable by the proposed method.

Similar to the learning process of human beings, the main benefit of the RL approach is that an ex-

83

Figure 6.8: Total travel time of all the vehicles vs training iteration number.

plicit mathematical modeling of the system is not required and, more importantly, the challenging

task of control design for a complex system is eliminated. However, since the automotive systems

demand a high safety requirement, training of the RL agent using a simulation model is inevitable

in most cases. However, developing a simulation model for a system is considerably simpler task

compared to explicit modeling especially for systems with uncertainty.

While the work at hand is a promising first step towards using RL in autonomous intersection

management, a number of potential improvements can be mentioned that might be interesting to

address in future work. First, the possibility of developing pre-trained neural networks similar to

the works in other mainstream deep learning domains that reduce learning time can be a studied in

future. Furthermore, a more advanced rewards system that includes gas usage penalties is another

track towards developing a practical intelligent intersection management algorithm.

84

Chapter 7

Link-based Micro-tolling Parameter Tuning

Using RL 1

7.1 Introduction

Advancements in connected and automated vehicle technology present many opportunities for

highly optimized traffic management mechanisms [7]. One such mechanism, micro-tolling, has

been the focus of a line of recently presented studies [20, 81, 82]. In the micro-tolling paradigm,

tolls can be charged on many or all network links, and changed frequently in response to real-time

observations of traffic conditions. Toll values and traffic conditions can then be communicated to

vehicles which might change routes in response, either autonomously, or by updating directions

given to the human driver. A centralized system manager is assumed to set toll values with the

objective of optimizing the traffic flow. Many methods for computing such tolls were presented

over the last century most of which made very specific assumptions regarding the underlying traffic

1This chapter is mainly reprinted from: Buini, Hamid Mirzaei, Guni Sharon, and Stephen Boyles. “Enhanced
Delta-tolling: Traffic Optimization via Policy Gradient Reinforcement Learning” to appear in Proceedings of Work-
shop on Reinforcement learning for Transportation, Intelligent Transportation Systems (ITSC), 2018

85

model. For instance, assuming that demand is known or fixed [60], assuming that links’ capacity

is known or fixed, assuming that the user’s value of time (VOT) is homogeneous [91], assuming

traffic follows specific latency functions [74], or assuming traffic patterns emerge instantaneously

[11].

A recent line of work [81, 82] suggested a new tolling scheme denoted ∆-tolling. Unlike previ-

ous tolling schemes, ∆-tolling makes no assumptions regarding the demand, links’ capacity, users’

VOT, and specific traffic formation models. ∆-tolling sets a toll for each link equal to the difference

(denoted ∆) between its current travel time and free flow travel time multiplied by a proportion-

ality parameter β. The rate of change in toll values between successive time steps is controlled

by another parameter R. Despite being extremely simple to calculate, ∆-tolling was shown to

yield optimal system performance under the stylized assumptions of a macroscopic traffic model

using the Bureau of Public Roads (BPR) type latency functions [83]. Moreover, ∆-tolling pre-

sented significant improvement in total travel time and social welfare across markedly different

traffic models and assumptions. In fact, the simple working principle of ∆-tolling is what allows

it to act as a model-free mechanism. Whereas the original ∆-tolling algorithm required a single

β and R parameter for the entire network, the main contribution in this chapter is a generaliza-

tion of ∆-tolling to accommodate separate parameter settings for each link in the network. While

conceptually straightforward, we demonstrate that doing so enables significant performance im-

provements in realistic traffic networks.

The increased representational power of Enhanced ∆-tolling compared to ∆-tolling does come

at the cost of necessitating that many more parameters be tuned. A secondary contribution is a

demonstration that policy gradient reinforcement learning methods can be leveraged to set tune

these parameters effectively. Our detailed empirical study in Section 7.4 validates our claim that

Enhanced ∆-tolling has the potential to improve upon the already impressive results of ∆-tolling

when it comes to incentivizing self-interested agents to coordinate towards socially optimal traffic

flows.

86

7.2 Problem definition and terminology

We consider a scenario where a set of agents must be routed across a traffic network given as a

directed graph, G(V,E). Each agent a is affiliated with a source node, sa ∈ V , a target node,

ta ∈ V , a departure time, da, and a VOT, ca (the agent’s monetary value for a delay of one unit of

time).

Agents are assumed to be self-interested and, hence, follow the least cost path leading from sa to

ta. The cost of a path, p, for an agent, a, is a function of the path’s latency, lp, and tolls along

it, τp. Formally, cost(p, a) = lp · ca + τp. The value of time, ca, is assumed to be constant per

agent. Although this assumption might not hold in real-world, it follows common practice in the

transportation literature [27, 76, 82].

Since traffic is dynamically evolving, travel times and toll values might change over time, agents

are assumed to continually re-optimize their chosen route. As a result, an agent might change its

planned route at every node along its path. Each link in the network, e ∈ E, is affiliated with a

dynamically changing toll value τe where for any path, p, τp =
∑

e∈p τe. Moreover, each link is

affiliated with a latency le representing the travel time on link e. Similar to τe, le is dynamically

changing as a function of the traffic state.

The objective of the system manager is to assign tolls such that if each agent maximizes its own self

interest, the system behavior will maximize social welfare. Denoting the latency suffered by agent

a as la, social welfare is defined as
∑

a la · ca.2 The system manager addresses the micro-tolling

assignment problem which is defined as follows.

Given: Li - the vector of links’ latencies at time step i.

Output: τ i+1 - the vector of tolls applied to each link at the next time step.

Objective: Optimize social welfare.

2The tolls are not included in the calculation of social welfare, because we assume that toll revenues are transfer
payments which remain internal to society.

87

Assumption: Agents are self interested i.e., they travel the least cost path (arg minp{cost(p, a)})

leading to their assigned destination (ta).

7.3 Enhanced Delta-tolling

We now present the Enhanced ∆-tolling mechanism for solving the micro-tolling assignment prob-

lem. Enhanced ∆-tolling extends the ∆-tolling mechanism that is presented in Section 2.4.1.

∆-tolling uses two global variables that are used to set tolls on every link in the network. Since

different links possess different attributes e.g., capacity, length, speed limit, etc. optimizing the β

and R parameters per link can potentially yield greater benefits (higher social welfare, lower total

travel time). However, doing so would require optimizing a set of 2|E| parameters instead of only

two. Optimizing such a high dimensional function cannot be done efficiently in a brute force way.

Enhanced ∆-tolling extends ∆-tolling by first, considering unique β and R parameters per link

and second, incorporating policy gradient RL for optimizing these parameters.

In order to apply policy gradient RL (specifically FD-PGRL, as described in Section 2.4.2), the

traffic assignment policy that maps the current state of the traffic to the appropriate actions, which

are assigning tolls to each link of the network, should be parameterized. Since the ∆-tolling

scheme, inherently implemented a policy that takes into account the real-time state of the traffic by

assigning tolls proportional to the current links delay, we only use RL policy gradient method to

optimize the performance metric at the end of each traffic cycle. Therefore, we define the cost to

be the total travel time at the end of each day and consider the following three parametrization of

88

∆-tolling:

πR = [β,R1, . . . , Rn]

πβ = [R, β1, . . . , βn]

πR,β = [R1, . . . , Rn, β1, . . . , βn] (7.1)

The experimental results presented by Sharon et al. [82] suggest that there is some correlation

between the optimally performing β and R values. However, no conclusions were presented re-

garding how they correlate and their individual impact on the convergence rate in a parameter

tuning procedure.

As the relation between the β and R parameters remains unclear, we consider three variants of

Enhanced ∆-tollingbased on the parameterized policies listed in (7.1):

E∆-tollingβ: this variant uses a global R parameter and link specific β parameters (|E| + 1 pa-

rameters in total). It should perform well under the assumption that there is a correlation between

the best performing β and R values and when FD-PGRL estimates the gradient over link specific

β parameters more accurately than it does for link specific R parameters.

E∆-tollingR: this variant uses a global β parameter and link specific R parameters (|E| + 1 pa-

rameters in total). It should perform well under the assumption that there is a correlation between

the best performing β and R values and when FD-PGRL estimates the gradient over link specific

R parameters more accurately than it does for link specific β parameters.

E∆-tollingβ,R: this variant uses link specific β and R parameters (2|E| parameters in total). It

should perform best if there is no correlation between the best performing β and R values and

if sufficient computation time is given (converging on 2|E| parameters is usually slower than on

|E|+ 1).

89

7.4 Empirical study

Our experimental evaluation focuses on real-life road networks. Traffic is evaluated using the cell

transmission model (CTM) [23, 24] which is a discrete, explicit solution method for the hydrody-

namic theory of traffic flow proposed in [58] and [75].

CTM is frequently used in dynamic traffic assignment. The time step used in this model is typically

short, on the order of a few seconds. When used with Enhanced ∆-tolling, this allows for a truly

adaptive toll which can be updated based on observed traffic conditions.

7.4.1 Scenario specification

Demand model: demand is given as a trip table, where every entry is affiliated with a single agent

(a) and specifies: a source node (sa), a target node (ta), and a departure time step (ia).

Agent model: let lip be the sum of latency along path p during time step i and let τ ip be the sum of

tolls along p during time step i. When agent a reaches a diverge node n at time step i all paths

(Pnt) leading from n to destination ta are considered. Agent a is assigned the minimal cost path

i.e., arg minp∈Pnt{τ ip + lip · ca}.

7.4.2 Experiments and results

For running CTM we used the DTA simulator [21] implemented in Java. Whenever a vehicle is

loaded onto the network, it is assigned a VOT randomly drawn from a Dagum distribution with

parameters â = 22020.6, b̂ = 2.7926, and ĉ = 0.2977, reflecting the distribution of personal

income in the United States [35, 61].3

3The simulation settings were chosen to be identical to those presented in [82].

90

(a) Sioux Falls (b) Austin (c) San Antonio

Figure 7.1: Maps of traffic networks used in the experiments

The step size in FD-RPGS , η, is 0.4. The policy perturbation parameter, ε (see Line 2.2 in Algo-

rithm 2) is set to 0.01 and the number of policy runs at each step, M , is 60 for all the experiments.

These values presented best performance overall. Our empirical study focuses on three traffic

scenarios:

Sioux Falls: [53] — this scenario is common in the transportation literature [54], and consists of

76 directed links, 24 nodes (intersections) and 28,835 trips spanning 3 hours.

Downtown Austin: [55] — this network consists of 1,247 directed links, 546 nodes and 62,836

trips spanning 2 hours during the morning peak.

Uptown San Antonio: this network consists of 1,259 directed links, 742 nodes and 223,479 trips

spanning 3 hour during the morning peak.

The networks affiliated with each scenario are depicted in Figure 7.1. All of these traffic scenarios

are available online at: https://goo.gl/SyvV5m

91

https://goo.gl/SyvV5m

Sioux Falls Austin San Antonio

Latency (hr) 11,859 21,590 26,362

cost ($) 353,169 637,086 780,739

Table 7.1: Average total latency and total generalized cost when applying no tolls.

System performance

Our first set of results aims to evaluate the performance of the different variants of Enhanced

∆-tolling, by comparing them with each other and basic ∆-tolling. Figure 7.2 presents normalized

values of total latency summed over all trips (top figure) and social welfare that is the summation of

costs, i.e., latency times VOT, over all agents (bottom figure). The values are normalized according

to the system’s performance when no tolls are applied. Table 7.1 presents the total latency and

social welfare performance when applying no-tolls (representing the value of 1.0 in Figure 7.2).

The results present a clear picture in which ∆-tolling improves on applying no tolls in both to-

tal latency and social welfare. E∆-tollingβ further improve the system’s performance and both

E∆-tollingR and E∆-tollingβ,R achieve the best performance.

The fact that E∆-tollingR results in system performance which is similar to E∆-tollingβ,R suggests

that there is a correlation between the best performing β and R values. The slight superiority of of

E∆-tollingR comparing to E∆-tollingβ,R is due to faster convergence which will be discussed later

in this section. The fact that E∆-tollingβ performs worse than E∆-tollingR suggests that policy

FD-PGRL estimates the gradient over link specific R parameters more accurately than it does for

link specific β parameters.

Convergence rate

applying E∆-tolling to real-life traffic raises two concerns:

92

Sioux Falls Austin San Antonio
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
ot

al
T

ra
ve

l
T

im
e

No tolls

∆− tolling
E∆− tollingβ
E∆− tollingR

E∆− tollingβ+R

Sioux Falls Austin San Antonio

Scanario

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

G
en

er
al

iz
ed

C
os

t

Figure 7.2: Total Travel Time and Total Generalized Cost for different tolling schemes and scenar-
ios.

1. Convergence rate - the system should converge to a good solution with as few learning

iterations as possible.

2. Worst case performance - during the learning process E∆-tolling should perform at least as

well as ∆-tolling.

Figure 7.3 presents the system performance w.r.t total latency (y-axis) versus learning iteration step

(x-axis) for each of our three scenarios and every E∆-tolling variant. The error regions are obtained

using 10 different runs of the algorithm for each example and E∆-tolling variant and they show

the standard error of the average performance in each iteration. Results for basic ∆-tolling are also

included for comparison. The results are consistent with each other, showing that E∆-tollingR

performs best overall w.r.t convergence rate.

93

Scheme S. Falls Austin S. Antonio Total

∆-tolling 962,000 1,640,900 2,300,700 4,903,600

E∆β 943,076 1,619,928 2,257,830 4,820,834

E∆R 779,990 1,360,861 2,144,502 4,285,353

E∆β+R 777,469 1,415,094 2,162,006 4,354,569

Table 7.2: Area under the convergence curves from Figure 7.3.

Table 7.2 presents the area under the curve for each scenario and E∆-tolling variant. These results

give a quantitative comparison of the convergence rates. We learn that E∆-tollingR has the best

overall performance with a total AUC of 4,285,353. Nonetheless, E∆-tollingβ,R performs better

on the Sioux Falls scenario. All the experiments are initialized with β = 4 and R = 10−4 for all

the links. A set of experiments (not presented) with different starting parameter values show that

the performance is sensitive to the initial settings. However, the mentioned default starting values

(β = 4 and R = 10−4) perform relatively well across all scenarios and E∆-tolling variants.

7.5 Discussion and Future Work

The promising experimental results reported in Section 7.4 suggest that E∆-tolling can have prac-

tical applications where traffic optimization is performed constantly and in real-time through ma-

nipulations to theR and or β parameters. Nonetheless, implementation of E∆-tolling raises several

practical issues that must first be addressed.

Limitations: E∆-tolling is limited in its convergence rate. General traffic patterns might change

frequently, preventing E∆-tolling from advancing in a promising direction. Practitioners must

evaluate the convergence rate of E∆-tolling versus the rate in which traffic patterns change in

order to determine the applicability of E∆-tolling in a specific network.

94

Assumptions: E∆-tollingassumes that all agents traversing the network are self-interested and

responsive to tolls in real time. Real world scenarios might violate these assumptions and the

trends observed in our results cannot be assumed in such cases.

Practical aspects of E∆-tolling present many promising directions for future work. Since the con-

vergence rate of E∆-tolling plays an important role in determining its applicability, one promising

direction for future work is developing heuristics and utilizing advanced RL methods to guide the

gradient exploration towards promising directions in order to facilitate faster learning.

Examining the effects of partial compliance to tolls is another promising direction. Building on

recent study that examines the effects of partial compliance on similar micro-tolling schemes [80],

studying the practical impacts of partial compliance on E∆-tolling is a promising direction to

pursue.

7.6 Conclusion

In this chapter, Enhanced ∆-tolling, a micro-tolling assignment scheme that builds on the pre-

viously suggested ∆-tolling scheme, is introduced. The previously suggested ∆-tolling scheme

makes use of two global parameters, β and R, to tune the system for optimized performance

(minimal total latency or maximal social welfare). Enhanced ∆-tolling generalizes ∆-tolling in

two complementary ways. First, recognizing that different links in the network have different

attributes (length, capacity, speed limit) Enhanced ∆-tolling considers individual β and R parame-

ters per link. Second, given the resulting large parameter set (twice the number of links), Enhanced

∆-tolling suggests a policy gradient RL approach for tuning these parameters. Experimental re-

sults suggest that tuning the R parameter while keeping a global β parameter performs best overall

(w.r.t total latency, social welfare, worst case performance, and convergence rates).

95

(a) Sioux Falls

(b) Austin

(c) San Antonio

Figure 7.3: System performance w.r.t total latency (y-axis) versus learning iteration step (x-axis)
for different scenarios and E∆-tolling variants

96

Chapter 8

RL Physical Environment Benchmark 1

8.1 Introduction

Recent advancements in using Artificial Intelligence (AI) to solve continuous-control tasks have

shown promise as a replacement for conventional control theory to tackle the challenges in emerg-

ing complex Cyber-Physical Systems, such as self-driving control, smart urban transportation and

industrial robots. An example of AI approaches is Reinforcement Learning (RL). RL algorithms

are mostly model-free, meaning that the explicit modeling of the physical system is not required.

Also, RL-based agents can work under uncertainty and adapt to the changing environment or ob-

jectives. These unique characteristics of RL make it a good candidate to solve the control problem

of complex physical systems. However, the RL solutions for continuous control are in their in-

fancy, since there are limitations when applying them in real-world applications. Some examples

are unpredictability of agent actions, lack of formal proofs of closed-loop system stability and not

being able to transfer learning from one task to other tasks with slight modifications. This calls for

1This chapter is mainly reprinted from: H. Mirzaei, M. Fathollahi and T. Givargis, ”OPEB: Open physical envi-
ronment benchmark for artificial intelligence,” 2017 IEEE 3rd International Forum on Research and Technologies for
Society and Industry (RTSI), Modena, 2017. IEEE, Copyright (2017), with permission from IEEE.

97

extensive research to address these limitations and design RL and other AI algorithms that can be

used in real-world applications.

While there are a number of widely-used benchmarks in different computing domains, for example

MiBench [40] for embedded processing and ImageNet [25] for computer vision, the available AI

benchmarks are very limited. This makes conducting research in AI difficult and expensive. More-

over, since there are not many available standard benchmarks, it is hard to evaluate and compare

newly proposed AI algorithms. One of the reasons for the lack of AI benchmarks is the interactive

nature of dynamical systems. In other words, while it is possible for many other domains to record

and label datasets and make them publicly available, AI benchmark developers should provide an

interactive “environment” which the AI agent must be able to interact with by applying actions and

gathering the new system state (or observation) along with reward signals. This makes AI bench-

mark development a challenging task. Nevertheless, significant progress has been made recently

towards building simulation/emulation based AI benchmarks such as OpenAI Gym and OpenAI

Universe [13].

Although the recently developed AI benchmarks enable the researchers to apply their algorithms

on a vast variety of different artificial environments, such as PC games or physical systems sim-

ulations, real-world physical environments such as industrial robots and self-driving cars are only

available to a limited number of groups in big institutes due to the high costs of manufacturing and

maintenance of those environments. The lack of physical benchmarks slows down the research

progress in developing AI algorithms that can address challenges that usually exist in the real-

world such as sensor noise and delay, processing limitations, communicational bandwidth, etc.,

and can be used in emerging Internet-of-things (IoT) and Cyber-Physical systems.

In this chapter, we propose the Open Physical Environment Benchmark (OPEB) framework to

integrate different physical environments. Similar to OpenAI Gym, in our approach a unified in-

terface of the environments is proposed that enables research groups to integrate their physical en-

vironment designs to OPEB regardless of the details involved in the hardware/software design and

98

implementation. To achieve the main goals of universality and affordability, we propose leverag-

ing 3D printing technology to build the customized mechanical parts required in the environments

and using low-cost generic hardware components such as bolts, ball bearings, etc. We also use

popular and affordable embedded processing platforms, such as the Raspberry Pi [89], which is a

promising processing solution for IoT and Industry 4.0.

Furthermore, the users are not only able to replicate physical environments using OPEB, but they

can also share the implemented environment on the cloud enabling other users to evaluate their

algorithms on the actual physical environment. This feature results in higher availability of phys-

ical benchmarks and facilitates collaborative research to design robust AI algorithms that can be

applied on different realizations of an environment with slight variations in the physical properties

of the hardware components. Since OPEB is based on low-cost fabrication solutions, it can be

used for educational purposes for IoT, control, AI and other related courses.

The remainder of this chapter is organized as follows. In Section 2.5, we review the background

and some related works in AI benchmarks. In Section 8.2, the elements of a physical environment

are introduced and it is explained how the required artifacts are provided in OPEB to replicate a

physical environment. In Section 8.3, an example implementation of an OPEB, i.e., the classical

mountain-car problem, is described, and the results of the experiments that are performed on the

physical system using an RL-based method is presented in Section 8.4. Finally, conclusions are

presented in Section 8.5.

8.2 Open Physical Environment Benchmark (OPEB)

In this section, we describe our OPEB framework. First, the elements of a physical environment

(PE) are introduced and the requirements for each element are discussed. Next, we will explain

how the required components to replicate the PE are encapsulated in OPEB and also how the actual

99

implementation can be shared to other users on the cloud.

8.2.1 Physical Environment Elements

The PE consists of the following elements:

• Mechanical parts and structures

• Electromechanical components

• Electrical components

• Embedded processing unit

• Embedded software

To achieve the goal of affordability and universality of PE implementation, the physical parts

should include either generic mechanical hardware such as bolts, ball-bearings, etc., or the parts

that can be easily printed using a 3D printer. The electromechanical parts such as actuators, dc

motors or transducers should be generic parts that can be easily found all over the world. For

example, low cost hobby electromechanical parts can be used to build a PE. To drive and interface

the electromechanical parts, some electrical parts such as motor drives should be included in the

PE. Additionally, to measure the physical quantities, some sensors are required. Examples of such

sensors are digital camera, thermometer and proximity sensor.

The embedded processing unit is needed to perform basic required tasks to run the environment

such as timing, reading the sensors’ outputs and the required signal processing, producing the en-

vironment observation, applying the action calculated by the AI algorithm, sending the monitoring

data over the network to the monitoring node locally or over the cloud and running the AI algo-

rithm. These tasks are implemented by the embedded software developed for the PE. All of the

100

software components are provided by the OPEB except the AI algorithm which is developed by

the PE user.

Emerging single-board embedded computing platforms can be used as the embedded processing

unit in PE. Some examples of these solutions are Raspberry Pi [89], C.H.I.P. computer [1] and Ar-

duino [9] platforms. Using a dedicated embedded processor instead of a general purpose computer

reduces the cost of deployment of multiple instances of the PE on the cloud and simplifies interfac-

ing the electrical and electromechanical elements because most of these platforms have on-board

I/O capabilities.

8.2.2 OPEB Components

In Fig. 8.1, the different components of OPEB for each environment are shown. To realize an

environment consisting of the elements listed in the previous subsection, the following components

are provided in OPEB for that specific environment:

• Parts that should be 3D printed in STL [39] format.

• List of materials of the generic mechanical hardware.

• Diagrams and instructions required for mechanical structure assembly.

• List of electrical and electromechanical components.

• List of embedded processing units and peripherals.

• Wiring diagram of the electrical components.

• PE control and monitoring Embedded software.

• Web application for the cloud-based sharing of the PE.

101

3D Printing

3D arts

Generic Hardware

Components

Electromechanical

Components

Assembly

Assembly

Instructions

STL Files

Physical System

Electrical

Components

Embedded Processor

Embedded

Software
Cloud-Based

Software

Wiring

Diagram

Figure 8.1: OPEB framework components for each environment. Green blocks are provided in
OPEB. All other components listed and specified in OPEB.

The customized mechanical parts required by a PE are included in OPEB as 3D models in STL

format that can be easily fabricated using a 3D printer. The specifications of other parts that are

not printable or can be selected from off-the-shelf products are provided in OPEB. However, these

parts are generic mechanical hardwares that are supplied by many manufacturers around the world.

Besides the information provided to obtain or fabricate the components, OPEB includes the com-

plete instructions and diagrams to assemble the mechanical structures of the PE. The main goal

of OPEB is that the environments can be reproduced with minimum discrepancy across different

implementations. To achieve this goal, the user should be able to build the whole environment

using the provided components in the OPEB without ambiguity. On the other hand, the instruction

assembly should be of low complexity and easy to follow to be usable by users with different lev-

els of expertise. For this purpose, a step-by-step assembly instruction approach proposed in [2] is

employed for the mechanical and electromechanical parts.

Electrical and electromechanical parts, including actuators, sensors, processing units and drivers

are usually selected from off-the-shelf products. The list of needed components and their specifi-

cation are listed in OPEB for each environment. Also, unambiguous wiring diagrams are provided

for electrical interconnections.

102

After building the hardware components, the embedded software should be deployed on the em-

bedded processing unit. The embedded software is included in OPEB and can be deployed using

installation manuals. To enable the OPEB users to evaluate their algorithms using different PEs, a

standard API is defined similar to OpenAI Gym environments. More specifically, the AI agent can

interact with the PE using functions that apply actions and returns the environment observations

and reward signal. Furthermore, the environment can be reset to the initial state using the PE API.

Finally, the back-end and front-end software components are provided that enable the OPEB users

to deploy their implemented PE over the cloud. Using this web-based application, other users

can use the PE to upload and run their AI algorithms on the physical system and see the evalua-

tion reports such as accumulated score over time and record the videos of the PE that runs their

algorithm.

8.3 Example implementation: Mountain-Car Example

In this section, we discuss the process of developing an example OPEB environment, i.e., the

Mountain-Car example, to demonstrate the methods mentioned in Section 8.2.

In the Mountain Car example, which is first introduced in [68], the goal is to control the acceler-

ation of a car inside a valley in order to move it to the top of the mountain (Fig. 8.2). However,

the maximum acceleration of the car is limited and it can not be driven to the top of mountain in

a single pass and the car has to go back and forth a number of times to get enough momentum to

reach to the desired destination. An AI solution based on Q-learning and tile coding approxima-

tion is presented in [86] for this example with a fast convergence in a couple of hundred episodes.

However, several simplifying assumptions are made in the original mountain car example includ-

ing simplified dynamics equations, exact measurements without noise and nonlineariy, no sensor

or processing delays and car motion with no friction and no slipping. The last assumption makes

103

x

y
si
n(
3x
)

Figure 8.2: Mountain Car example

the learning process a fairly easy task since the kinetic energy delivered by the car’s motor is pre-

served in the system. Consequently, the car can endlessly swing in the valley and the AI agent

can make gradual progress towards the goal by increasing the swing range bit-by-bit using suc-

cessive actions. In a real-world situation, none of these assumptions hold and the agent has to

learn a successful policy in a limited time since the car is going to stop after a few swings. The

mentioned limitations justify the importance of physical benchmarks that can evaluate the AI algo-

rithms which are useful in real-world applications, for example industrial robotics or self-driving

vehicles.

8.3.1 Mechanical Structures

The MC-OPEB consists of two mechanical structures: Car and Mountain rail. The car, which is

shown Fig. 8.3, consists of only two large wheels because a car with two pairs of rear and front

wheels might entangle around the positions of the path that have low radius of curvature. Also,

using only two wheels results in less overall car weight which enables us to use a low power motor

and simplifies the design or selection of electrical parts such as motor drive and power supply.

Moreover, to prevent the motor from spinning and to constrain the car to move inside the mountain

rail, 8 pieces of small ball-bearings are embedded in the car structure using short metal bars.

Each side of the mountain rail, which is shown in Fig. 8.4, is divided to two smaller parts to make

them printable using 3D printers with small beds. Additionally, the whole rail surface is not printed

104

Figure 8.3: Car Assembly in the MC-OPEB.

Figure 8.4: Mountain Rail Assembly in the MC-OPEB.

Figure 8.5: STL files included for MC-OPEB for all required 3D printed parts.

to preserve filament. A flexible cardboard should be placed on the support bars attached to the rail

structure. The complete STL set of the 3D printed objects are shown in Fig. 8.5 and the set of

required hardware is listed in Table 8.1.

An example of assembly instruction documents is provided in Fig. 8.6 which shows the exploded-

view diagram of car assembly. The assembly instruction includes the step-by-step action diagrams

as explained in [2].

105

8.3.2 Electromechanical Parts

The only electromechanical part needed for MC-OPEB is the widely-used and low-cost 1.5-3 (V)

hobby motor. To reduce the friction and simplify the mechanical design this motor is directly

coupled to one of the large wheels on the car. Also, no transducers, such as potentiometer or a shaft

encoder is coupled to the motor to reduce the weight of the car and overall cost of MC-OPEB.

8.3.3 Electrical Parts

The required electrical parts are: motor driver, two 5V power supplies for the Raspberry Pi board

and driving the motor, and Raspberry pi camera. We have used low-cost HG7881 motor drive with

Table 8.1: List of Materials of required generic hardware parts

Item Quantity

3mmx10mm bolt and nut 29

32mmx2mm steel bar 7

2x6x2.5mm ball bearing 8

10mmx100mm wooden bar 1

Figure 8.6: Exploded-view of car assembly as an example of assembly instruction diagrams in
MC-OPEB.

106

PWM inputs. Since the Raspberry Pi has two on-board pwm outputs we can directly connect it to

the motor drive without any additional interfacing circuit.

The Raspberry Pi camera is used to measure the motion quantities of the car, i.e., position and

speed. The captured image of the car also can be used to evaluate emerging deep reinforcement

learning algorithms that can control a physical system only by raw visual data.

8.3.4 Embedded Processing Unit

We have used “Raspberry Pi Zero W” platform which is a powerful and affordable processing unit

for different embedded applications.

8.3.5 Embedded Software

The Embedded software used in MC-OPEN is a C++ program that is executed on the Raspbian

Jessie OS. The embedded software is responsible for implementing the 0.01(s) control timing, cap-

turing and processing the camera image, running the AI routine supplied by the environment user,

applying the motor voltage command using PWM outputs, sending monitoring data consisting of

instantaneous speed, position and other status variables, running the learned policy and recording

the performance video upon user’s request.

The camera image is post processed to calculate the position and speed of the car which are the

observations of the MC-OPEB. First, the HSV pixel values are filtered by some fixed thresholds

to extract the pixels of the yellow marker attached to the car. Next, the spatial moments of filtered

pixels are calculated and used to obtain the single (x, y) coordinate of the car. To reduce the noise

and estimate the car’s speed, a linear Kalman filter is implemented in the embedded software.

107

Algorithm 10: Hand-engineered policy for the mountain-car environment
Data: x, v . Instantaneous car position(x) and speed(v)

Result: a . action(a): acceleration direction

1 if |v| < 50 then

2 Choose a← left or a← right randomly with same probability.;

3 else

4 if v > 0 then

5 a← left;

6 else

7 a← right;

8.3.6 Web Application

The web application is an optional component that can be run on a secondary general purpose

computer. Using the web application, the MC-OPEB user can see the monitoring data online and

share the implemented physical environment on the cloud. The cloud user can upload a c++ routine

that implements any custom AI application and evaluate the algorithm performance using the web

application. The cloud user can also pause the learning and run the learned policy and see the

recorded view of the actual AI algorithm performance.

Fig. 8.7 shows a picture of the actual MC-OPEB. In the next section, we show the results of

running a reference algorithm and an RL-based algorithm on the built environment.

8.4 Results

In this section, we present the results of the experiments performed on the MC-OPEB to show the

effectiveness of a low-cost PE to perform real-world experiments using AI methods. The objective

108

Figure 8.7: Actual Implementation of MC-OPEB.

is to move the car to a certain height on the left side of the rail which corresponds to 80 pixel

displacement of the car to the left in the captured image. The reward is defined is as -1 for all

the sampling times that the car has not reached the destination. Each episode starts from the car

being at the bottom of the valley and ends when it reaches the desired height on the left side.

Therefore, the total reward which is the RL “return” is proportional to the negated total episode

time. The action is the car’s acceleration direction assuming that the car moves with the maximum

acceleration and only changes the direction of the acceleration.

8.4.1 Reference Solution

To ensure the possibility of moving the car from the lowest point in the valley to some certain height

by any algorithm, a hand-engineered solution is proposed in Algorithm 10. The performance of

the AI-based solution can be compared with the reference solution to evaluate the AI algorithm.

Fig. 8.8 shows the result of the reference solution.

8.4.2 AI-based solution

The Q-learning algorithm with tile-coding function approximation is used to show that the pro-

posed MC-OPEB can be used to evaluate AI algorithms on a physical environment in real-time.

109

c
a
r

a
c
c
e
le

ra
ti

o
n

d
ir

e
c
ti

o
n

Figure 8.8: The upper plot represents the car position vs. time. The lower plot represents the
car acceleration command computed by the hand-engineered algorithm. After a few swings, the
designed algorithm is able to move the car to desired height on the left side which corresponds to
-80 pixel coordinate of the car in the captured image.

0 10 20 30 40 50 60 70

episode number

140

120

100

80

60

40

20

0

R
L
 r

e
tu

rn
n
e
g
a
te

d
 e

p
is

o
d
e
 t

im
e
 (

s
)

Figure 8.9: Learning curve of the RL agent. x-axis is the episode number and y-axis shows the RL
return translated to the total time of each episode. Less absolute value of return means less episode
time.

Fig. 8.9 shows the learning curve of the AI agent where the accumulated return vs the episode

number is shown. Fig. 8.10 shows the learned policy at episode 37 which is the best performance

obtained using the AI algorithm. The results show that the RL algorithm is able to achieve the

performance of hand-engineered reference solution. The less number of swings made by the RL

agent might be due to slight variations in the physical system and does not necessarily mean the

superiority of the RL algorithm.

110

0.0 0.5 1.0 1.5 2.0

time(s)

100

80

60

40

20

0

20

40

60

c
a
r

p
o
s
it

io
n

(p
ix

e
ls

)

Figure 8.10: Car position vs. time plot obtained by RL algorithm after 37 episodes which its best
performance in the experiment.

8.5 Conclusion

In this chapter, a novel physical environment benchmark is presented for AI algorithms. The en-

vironments can be implemented using low-cost parts and fabrication methods such as 3D printing.

The proposed benchmarks enable researchers to easily replicate physical benchmarks to evaluate

their AI algorithms and also share their implemented physical environments on the cloud with

other users. Such collaborative benchmarking accelerates development of AI algorithms which

can address challenges from real-world physical systems by engaging many researchers that can

replicate the physical environments or access them on the cloud. We also presented an example im-

plementation of the proposed physical environment framework. The results show the effectiveness

of the proposed methods to develop a simple and low-cost physical benchmark.

Some possible future directions are adding more physical benchmarks, addressing the resource

limitations of Raspberry PI for more computationally expensive algorithms and easy deployment

of the whole framework on cloud solutions such as Amazon AWS.

111

Bibliography

[1] C.h.i.p. website. http://getchip.com/.

[2] M. Agrawala, D. Phan, J. Heiser, J. Haymaker, J. Klingner, P. Hanrahan, and B. Tversky.
Designing effective step-by-step assembly instructions. In ACM Transactions on Graphics
(TOG), volume 22, pages 828–837. ACM, 2003.

[3] K. Ahnert and M. Mulansky. Odeint-solving ordinary differential equations in c++. arXiv
preprint arXiv:1110.3397, 2011.

[4] P. Albertos and A. Crespo. Real-time control of non-uniformly sampled systems. Control
Engineering Practice, 7(4):445–458, 1999.

[5] P. Albertos and J. Salt. Non-uniform sampled-data control of mimo systems. Annual Reviews
in Control, 35(1):65–76, 2011.

[6] A. Aminifar, P. Eles, Z. Peng, and A. Cervin. Control-quality driven design of cyber-physical
systems with robustness guarantees. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2013, pages 1093–1098. IEEE, 2013.

[7] M. Amir and T. Givargis. Hybrid state machine model for fast model predictive control: Ap-
plication to path tracking. In Proceedings of the 36th International Conference on Computer-
Aided Design, ICCAD ’17, pages 185–192. IEEE Press, 2017.

[8] A. Balluchi, P. Murrieri, and A. L. Sangiovanni-Vincentelli. Controller synthesis on non-
uniform and uncertain discrete–time domains. In Hybrid Systems: Computation and Control,
pages 118–133. Springer, 2005.

[9] M. Banzi and M. Shiloh. Getting Started with Arduino: The Open Source Electronics Proto-
typing Platform. Maker Media, Inc., 2014.

[10] A. L. Bazzan. Opportunities for multiagent systems and multiagent reinforcement learning
in traffic control. Autonomous Agents and Multi-Agent Systems, 18(3):342, 2009.

[11] M. J. Beckmann, C. B. McGuire, and C. B. Winston. Studies in the Economics of Transporta-
tion. Yale University Press, New Haven, CT, 1956.

[12] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
47:253–279, jun 2013.

112

http://getchip.com/

[13] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[14] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym, 2016.

[15] D. Broman. Meta-Languages and Semantics for Equation-Based Modeling and Simulation.
PhD thesis, Linköping University Electronic Press, 2010.

[16] H. M. Buini, S. Peter, and T. Givargis. Including variability of physical models into the design
automation of cyber-physical systems. In Design Automation Conference (DAC), 2015 52nd
ACM/EDAC/IEEE, pages 1–6, 2015.

[17] A. Canedo, E. Schwarzenbach, and M. A. Al Faruque. Context-sensitive synthesis of exe-
cutable functional models of cyber-physical systems. In Proceedings of the ACM/IEEE 4th
International Conference on Cyber-Physical Systems, pages 99–108. ACM, 2013.

[18] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Arzen. How does control timing
affect performance? analysis and simulation of timing using jitterbug and truetime. IEEE
control systems, 23(3):16–30, 2003.

[19] A. Cervin, M. Velasco, P. Martı́, and A. Camacho. Optimal online sampling period as-
signment: Theory and experiments. Control Systems Technology, IEEE Transactions on,
19(4):902–910, 2011.

[20] H. Chen, B. An, G. Sharon, J. P. Hanna, P. Stone, C. Miao, and Y. C. Soh. Dyetc: Dynamic
electronic toll collection for traffic congestion alleviation. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence (AAAI-18), February 2018.

[21] Y.-C. Chiu, J. Bottom, M. Mahut, A. Paz, R. Balakrishna, T. Waller, and J. Hicks. Dynamic
traffic assignment: A primer. Transportation Research E-Circular, (E-C153), 2011.

[22] V. Costa, M. Duarte, T. Rodrigues, S. M. Oliveira, and A. L. Christensen. Design and de-
velopment of an inexpensive aquatic swarm robotics system. In OCEANS 2016-Shanghai,
pages 1–7. IEEE, 2016.

[23] C. F. Daganzo. The cell transmission model: a dynamic representation of highway traffic
consistent with the hydrodynamic theory. Transportation Research Part B, 28(4):269–287,
1994.

[24] C. F. Daganzo. The cell transmission model, part II: network traffic. Transportation Research
Part B, 29(2):79–93, 1995.

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hier-
archical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 248–255. IEEE, 2009.

[26] P. Derler, E. A. Lee, S. Tripakis, and M. Törngren. Cyber-physical system design contracts.
In Proceedings of the ACM/IEEE 4th International Conference on Cyber-Physical Systems,
pages 109–118. ACM, 2013.

113

[27] R. B. Dial. Minimal-revenue congestion pricing part I: A fast algorithm for the single-origin
case. Transportation Research Part B, 33:189–202, 1999.

[28] K. Dresner and P. Stone. A multiagent approach to autonomous intersection management.
Journal of artificial intelligence research, 31:591–656, 2008.

[29] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforce-
ment learning for continuous control. arXiv preprint arXiv:1604.06778, 2016.

[30] S. Durand, J. F. G. Castellanos, N. Marchand, and W. F. G. Sanchez. Event-based control
of the inverted pendulum: Swing up and stabilization. Journal of Control Engineering and
Applied Informatics, 15(3):96–104, 2013.

[31] S. El Bsat, H. Bou-Ammar, and M. E. Taylor. Scalable multitask policy gradient reinforce-
ment learning. In AAAI, pages 1847–1853, 2017.

[32] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad. Multiagent reinforcement learning for in-
tegrated network of adaptive traffic signal controllers (marlin-atsc): methodology and large-
scale application on downtown toronto. Intelligent Transportation Systems, IEEE Transac-
tions on, 14(3):1140–1150, 2013.

[33] C. Frese and J. Beyerer. A comparison of motion planning algorithms for cooperative col-
lision avoidance of multiple cognitive automobiles. In Intelligent Vehicles Symposium (IV),
2011 IEEE, pages 1156–1162. IEEE, 2011.

[34] P. Fritzson, P. Aronsson, A. Pop, H. Lundvall, K. Nystrom, L. Saldamli, D. Broman, and
A. Sandholm. Openmodelica-a free open-source environment for system modeling, simula-
tion, and teaching. In Computer Aided Control System Design, 2006 IEEE International Con-
ference on Control Applications, 2006 IEEE International Symposium on Intelligent Control,
2006 IEEE, pages 1588–1595. IEEE, 2006.

[35] L. M. Gardner, H. Bar-Gera, and S. D. Boyles. Development and comparison of choice
models and tolling schemes for high-occupancy/toll (hot) facilities. Transportation Research
Part B: Methodological, 55:142–153, 2013.

[36] A. Geramifard, C. Dann, R. H. Klein, W. Dabney, and J. P. How. Rlpy: a value-function-based
reinforcement learning framework for education and research. Journal of Machine Learning
Research, 16:1573–1578, 2015.

[37] J. Ginsberg. Engineering dynamics, volume 10. Cambridge University Press, 2008.

[38] D. Goswami, R. Schneider, and S. Chakraborty. Co-design of cyber-physical systems via
controllers with flexible delay constraints. In Proceedings of the 16th Asia and South Pacific
Design Automation Conference, pages 225–230. IEEE Press, 2011.

[39] T. Grimm. User’s guide to rapid prototyping. Society of Manufacturing Engineers, 2004.

114

[40] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
Mibench: A free, commercially representative embedded benchmark suite. In Workload
Characterization, 2001. WWC-4. 2001 IEEE International Workshop on, pages 3–14. IEEE,
2001.

[41] M. Hausknecht, T.-C. Au, and P. Stone. Autonomous intersection management: Multi-
intersection optimization. In 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 4581–4586. IEEE, 2011.

[42] D. Henriksson and A. Cervin. Optimal on-line sampling period assignment for real-time
control tasks based on plant state information. In Decision and Control, 2005 and 2005
European Control Conference. CDC-ECC’05. 44th IEEE Conference on, pages 4469–4474.
IEEE, 2005.

[43] M. Hunting. The aimms outer approximation algorithm for minlp. Paragon Decision Tech-
nology, Haarlem, 2011.

[44] J. C. Jensen, D. H. Chang, and E. A. Lee. A model-based design methodology for
cyber-physical systems. In Wireless Communications and Mobile Computing Conference
(IWCMC), 2011 7th International, pages 1666–1671. IEEE, 2011.

[45] D.-C. Juan, S. Garg, J. Park, and D. Marculescu. Learning the optimal operating point for
many-core systems with extended range voltage/frequency scaling. In Hardware/Software
Codesign and System Synthesis (CODES+ ISSS), 2013 International Conference on, pages
1–10. IEEE, 2013.

[46] E. C. Kara, M. Berges, B. Krogh, and S. Kar. Using smart devices for system-level man-
agement and control in the smart grid: A reinforcement learning framework. In Smart Grid
Communications (SmartGridComm), 2012 IEEE Third International Conference on, pages
85–90. IEEE, 2012.

[47] B. Karlik and A. V. Olgac. Performance analysis of various activation functions in generalized
mlp architectures of neural networks. International Journal of Artificial Intelligence and
Expert Systems, 1(4):111–122, 2011.

[48] K. Katsuki. Machine learning system and motor control system having function of automat-
ically adjusting parameter, Mar. 30 2017. US Patent 20,170,090,434.

[49] S. Khan, R. M. Goodall, and R. Dixon. Non-uniform sampling strategies for digital control.
International Journal of Systems Science, 44(12):2234–2254, 2013.

[50] S. G. Khan, G. Herrmann, F. L. Lewis, T. Pipe, and C. Melhuish. Reinforcement learning
and optimal adaptive control: An overview and implementation examples. Annual Reviews
in Control, 36(1):42–59, 2012.

[51] D. E. Kirk. Optimal control theory: an introduction. Courier Corporation, 2012.

115

[52] N. Kohl and P. Stone. Policy gradient reinforcement learning for fast quadrupedal locomotion.
In Proceedings of the 2004 IEEE International Conference on Robotics and Automation,
ICRA 2004, April 26 - May 1, 2004, New Orleans, LA, USA, pages 2619–2624, 2004.

[53] L. J. LeBlanc, E. K. Morlok, and W. P. Pierskalla. An efficient approach to solving the road
network equilibrium traffic assignment problem. Transportation Research, 9(5):309–318,
1975.

[54] M. W. Levin and S. D. Boyles. Intersection auctions and reservation-based control in dynamic
traffic assignment. In Transportation Research Board 94th Annual Meeting, number 15-2149,
2015.

[55] M. W. Levin, M. Pool, T. Owens, N. R. Juri, and S. T. Waller. Improving the convergence
of simulation-based dynamic traffic assignment methodologies. Networks and Spatial Eco-
nomics, 15(3):655–676, 2015.

[56] S. Levine and P. Abbeel. Learning neural network policies with guided policy search under
unknown dynamics. In Advances in Neural Information Processing Systems, pages 1071–
1079, 2014.

[57] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen. Learning hand-eye coordination
for robotic grasping with deep learning and large-scale data collection. arXiv preprint
arXiv:1603.02199, 2016.

[58] M. J. Lighthill and G. B. Whitham. On kinematic waves. ii. a theory of traffic flow on long
crowded roads. In Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, volume 229, pages 317–345. The Royal Society, 1955.

[59] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wier-
stra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

[60] S. Lu. Sensitivity of static traffic user equilibria with perturbations in arc cost function and
travel demand. Transportation Science, 42(1):105–123, 2008.

[61] P. Lukasiewicza, K. Karpioa, and A. Orlowskia. The models of personal incomes in USA.
In Proceedings of the 5th Symposium on Physics in Economics and Social Sciences, Warsaw,
Poland, 2012.

[62] M. Maasoumy, Q. Zhu, C. Li, F. Meggers, and A. Sangiovanni-Vincentelli. Co-design of
control algorithm and embedded platform for building hvac systems. In Proceedings of the
ACM/IEEE 4th International Conference on Cyber-Physical Systems, pages 61–70. ACM,
2013.

[63] A. A. Malikopoulos, C. G. Cassandras, and Y. J. Zhang. A decentralized optimal control
framework for connected and automated vehicles at urban intersections. arXiv preprint
arXiv:1602.03786, 2016.

116

[64] N. Marchand, S. Durand, and J. F. G. Castellanos. A general formula for the stabilization of
event-based controlled systems. In 2011 50th IEEE Conference on Decision and Control and
European Control Conference, pages 8199–8204. IEEE, 2011.

[65] J. Mattner, S. Lange, and M. Riedmiller. Learn to swing up and balance a real pole based on
raw visual input data. In International Conference on Neural Information Processing, pages
126–133. Springer, 2012.

[66] M. N. Mladenović and M. M. Abbas. Self-organizing control framework for driverless ve-
hicles. In 16th International IEEE Conference on Intelligent Transportation Systems (ITSC
2013), pages 2076–2081. IEEE, 2013.

[67] A. W. Moore. Efficient memory-based learning for robot control. Technical report, 1990.

[68] A. W. Moore. Efficient memory-based learning for robot control. Technical report, University
of Cambridge, Computer Laboratory, 1990.

[69] N. Mühleis, M. Glaß, L. Zhang, and J. Teich. A co-simulation approach for control perfor-
mance analysis during design space exploration of cyber-physical systems. ACM SIGBED
Review, 8(2):23–26, 2011.

[70] N. Navarro-Guerrero, C. Weber, P. Schroeter, and S. Wermter. Real-world reinforcement
learning for autonomous humanoid robot docking. Robotics and Autonomous Systems,
60(11):1400–1407, 2012.

[71] H. Neema, Z. Lattmann, P. Meijer, J. Klingler, S. Neema, T. Bapty, J. Sztipanovits, and
G. Karsai. Design space exploration and manipulation for cyber physical systems. In Work-
shop on Design Space Exploration of Cyber-Physical Systems (IDEAL), 2014.

[72] M. Pecka, K. Zimmermann, M. Reinstein, and T. Svoboda. Controlling robot morphology
from incomplete measurements. IEEE Transactions on Industrial Electronics, 64(2):1773–
1782, 2017.

[73] J. Peters and S. Schaal. Policy gradient methods for robotics. In IROS, pages 2219–2225.
IEEE, 2006.

[74] A. C. Pigou. The Economics of Welfare. Palgrave Macmillan, 1920.

[75] P. Richards. Shock waves on the highway. Operations Research, 4(1):42–51, 1956.

[76] T. A. Roughgarden. Selfish Routing. PhD thesis, Cornell University, 2002.

[77] A. Sala. Computer control under time-varying sampling period: An lmi gridding approach.
Automatica, 41(12):2077–2082, 2005.

[78] T. Schouwenaars, B. De Moor, E. Feron, and J. How. Mixed integer programming for multi-
vehicle path planning. In Control Conference (ECC), 2001 European, pages 2603–2608.
IEEE, 2001.

117

[79] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. Trust region policy optimiza-
tion. CoRR, abs/1502.05477, 2015.

[80] G. Sharon, M. Albert, S. B. Tarun Rambha, and P. Stone. Traffic optimization for a mixture
of self-interested and compliant agents. In 32th AAAI Conference on Artificial Intelligence
(AAAI-18), 2018.

[81] G. Sharon, J. P. Hanna, T. Rambha, M. W. Levin, M. Albert, S. D. Boyles, and P. Stone.
Real-time adaptive tolling scheme for optimized social welfare in traffic networks. In Pro-
ceedings of the 16th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2017), May 2017.

[82] G. Sharon, M. W. Levin, J. P. Hanna, T. Rambha, S. D. Boyles, and P. Stone. Network-
wide adaptive tolling for connected and automated vehicles. Transportation Research Part
C, 84:142–157, September 2017.

[83] Y. Sheffi. Urban transportation network. Equilibrium analysis with mathematical program-
ming methods, Prentice Hall, 1985.

[84] R. Sheh, H. Komsuoglu, and A. Jacoff. The open academic robot kit: Lowering the barrier
of entry for research into response robotics. In Safety, Security, and Rescue Robotics (SSRR),
2014 IEEE International Symposium on, pages 1–6. IEEE, 2014.

[85] D. Simon, D. Robert, and O. Sename. Robust control/scheduling co-design: application to
robot control. In Real Time and Embedded Technology and Applications Symposium, 2005.
RTAS 2005. 11th IEEE, pages 118–127, 2005.

[86] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1. MIT press
Cambridge, 1998.

[87] B. Tanner and A. White. Rl-glue: Language-independent software for reinforcement-learning
experiments. Journal of Machine Learning Research, 10(Sep):2133–2136, 2009.

[88] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard real-time
systems. In Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE
International Symposium on, volume 4, pages 101–104. IEEE, 2000.

[89] E. Upton and G. Halfacree. Raspberry Pi user guide. John Wiley & Sons, 2014.

[90] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

[91] H. Yang, Q. Meng, and D.-H. Lee. Trial-and-error implementation of marginal-cost pricing
on networks in the absence of demand functions. Transportation Research Part B: Method-
ological, 38(6):477–493, 2004.

[92] F. Zhang, K. Szwaykowska, W. Wolf, and V. Mooney. Task scheduling for control oriented
requirements for cyber-physical systems. In Real-Time Systems Symposium, 2008, pages
47–56. IEEE, 2008.

118

[93] Y. Zhu, E. Westbrook, J. Inoue, A. Chapoutot, C. Salama, M. Peralta, T. Martin, W. Taha,
M. O’Malley, R. Cartwright, et al. Mathematical equations as executable models of me-
chanical systems. In Proceedings of the 1st ACM/IEEE International Conference on Cyber-
Physical Systems, pages 1–11. ACM, 2010.

[94] I. H. Zohdy, R. K. Kamalanathsharma, and H. Rakha. Intersection management for au-
tonomous vehicles using icacc. In 2012 15th International IEEE Conference on Intelligent
Transportation Systems, pages 1109–1114. IEEE, 2012.

119

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE Dissertation
	Introduction
	Motivation
	Contributions
	Incorporating Physical Variability into CPS Design
	CPS Design Automation Using Reinforcement Learning

	Dissertation Roadmap

	Literature Survey
	CPS Design Automation
	Adaptive Embedded Control
	Autonomous Intersection Management (AIM)
	Optimal Traffic Control
	Delta-tolling
	Policy gradient RL

	RL Physical Benchmarks

	Physical Model Variablity in CPS Design
	Introduction
	Parametric CPS Design Flow
	Case Study: Rotary Inverted Pendulum
	Parametric Physical Modeling
	Parametric Control Algorithm Design
	Simulation
	Design Space Exploration
	Practical Evaluation

	Conclusions

	Overview of Reinforcement Learning
	Introduction
	Markov Decision Process
	Q-learning
	Linear Approximation of Continuous Value-Functions
	Trust Region Policy Optimization

	Adaptive Embedded Control of Cyber-physical Systems Using RL
	Introduction
	Adaptive ECS based on Reinforcement Learning
	A-ECS Reinforcement Learning Environment and Actions
	Cloud-Based Evaluation Framework
	A-ECS Development Workflow

	Case Study 1: Cart-Pole Swing up task
	Cart-pole dynamics
	Processing power modeling
	Simulation Results
	Comparison to Event-Triggered controller

	Case Study 2: Mountain Car Problem
	 Problem definition
	Simulation Results

	Conclusions

	Autonomous Intersection Management Using RL
	Introduction
	Problem Statement
	Solving the AIM problem using TRPO

	Evaluation
	Baseline Method
	Simulation results

	Conclusion

	Link-based Micro-tolling Parameter Tuning Using RL
	Introduction
	Problem definition and terminology
	Enhanced Delta-tolling
	Empirical study
	Scenario specification
	Experiments and results

	Discussion and Future Work
	Conclusion

	RL Physical Environment Benchmark
	Introduction
	Open Physical Environment Benchmark (OPEB)
	Physical Environment Elements
	OPEB Components

	Example implementation: Mountain-Car Example
	Mechanical Structures
	Electromechanical Parts
	Electrical Parts
	Embedded Processing Unit
	Embedded Software
	Web Application

	Results
	Reference Solution
	AI-based solution

	Conclusion

	Bibliography

