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Stress-testing memcomputing on hard combinatorial
optimization problems

Forrest Sheldon, Pietro Cicotti, Fabio L. Traversa, Massimiliano Di Ventra

Abstract—Memcomputing is a novel paradigm of computation
that utilizes dynamical elements with memory to both store
and process information on the same physical location. Its
building blocks can be fabricated in hardware with standard
electronic circuits, thus offering a path to its practical realization.
In addition, since memcomputing is based on non-quantum
elements, the equations of motion describing these machines
can be simulated efficiently on standard computers. In fact, it
was recently realized that memcomputing, and in particular its
digital (hence scalable) version, when simulated on a classical
machine provides a significant speed-up over state-of-the-art
algorithms on a variety of non-convex problems. Here, we stress-
test the capabilities of this approach on finding approximate
solutions to hard combinatorial optimization problems. These
fall into a class which is known to require exponentially growing
resources in the worst cases, even to generate approximations.
We recently showed that in a region where state of the art
algorithms demonstrate this exponential growth, simulations of
digital memcomputing machines performed using the Falcon©

simulator of MemComputing, Inc. only require time and memory
resources that scale linearly. These results are extended in a
stress-test up to 64 × 106 variables (corresponding to about 1
billion literals), namely the largest case that we could fit on a
single node with 128 GB of DRAM. Since memcomputing can be
applied to a wide variety of optimization problems, this stress test
shows the considerable advantage of non-combinatorial, physics-
inspired approaches over standard combinatorial ones.

Index Terms—Memcomputing, Dynamical Systems, Optimiza-
tion Problems

I. INTRODUCTION

The increasing demand for computational power and ef-
ficiency is driving the scientific community and industry to
explore new and unconventional ways to compute. In this
respect, new ideas and radically different paradigms may be
the key to solve or mitigate the computational bottlenecks that
affect present computing technology.

A new computing paradigm has been recently proposed
called memcomputing (which stands for computing in and
with memory) [1], [2], with the potential to increase the
computational efficiency in the solution of hard combinato-
rial/optimization problems. The formal description of mem-
computing rests on the concept of Universal Memcomputing
Machines (UMMs) [2]. UMMs are a collection of inter-
connected memprocessors (processors with memory) able to
process and store information on the same physical location.
UMMs are a class of non-Turing machines with specific
properties as described in [2], [3]. In particular, they support
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intrinsic parallelism, i.e., interconnected (mem-)processors act
collectively on data using their collective state to perform
computation [2], [4], [5]. Moreover, memprocessors are able
to exploit the information available through the topology of
their connections. Indeed, specific network topologies may be
designed to embed problems in a one-to-one mapping. This
last property has been named information overhead [2].

We have recently shown that the digital (hence scalable)
subclass of UMMs we call digital memcomputing machines
(DMMs) can deliver substantial benefits in the solution of hard
combinatorial/optimization problems compared to traditional
algorithmic approaches. For instance, in Ref. [6] we have
shown that the simulation of DMMs on a classical computer
solves the search version of the subset-sum problem in poly-
nomial time for the worst cases. In Ref. [7] we have shown
how to accelerate the pre-training of restricted Boltzmann
machines using simulations of DMMs, and demonstrated
their advantage over quantum-based machines (implemented
in hardware), such as D-wave machines [8], as well as state-of-
the-art supervised learning [9], [10]. Finally, in Ref. [11], we
have employed simulations of DMMs and shown substantial
advantages over traditional algorithms for a wide variety of
optimization problems such as the Random 2 Max-SAT, the
Max-Cut, the Forced Random Binary problem, and the Max-
Clique [12]. In some cases, the memcomputing approach
obtains the solution to problems on which the winners of the
2016 Max-SAT competition failed [11].

We have also performed scalability tests on finding ap-
proximate solutions to hard constructed instances of the Max-
SAT problem [11]. Max-SAT possesses an inapproximability
gap [13], meaning that even calculating an approximate so-
lution beyond a certain fraction of the optimum will require
resources which grow exponentially with the input size in the
worst case. We observed this exponential growth on the tested
instances with some of the best solvers from the 2016 Max-
SAT competition. Instead, our simulations done for these hard
cases, and up to a certain problem size succeed in overcoming
that gap in linear time employing memory (of the single
processor used for the simulations) that also scales linearly
with input size [11].

Our goal for the present paper is to understand how far we
can push these simulations with the available resources at our
disposal. We focus again on hard combinatorial optimization
problems since these arise in nearly every industrial and
scientific discipline. These problems involve the minimization
or maximization of a function of many independent variables,
often called the cost function, whose value represents the
quality of a given solution [14], [15]. In industrial settings
this may be the wiring cost of a computer chip layout, or
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the length of a delivery route [16]. In scientific applications
it may be searching for the ground state of a spin system or
proteins [17].

We will show here that the simulations of DMMs on hard
optimization problems can be pushed to tens of millions of
variables, corresponding to about one billion literals, using
a commercial and sequential MATLAB code (the Falcon©

simulator provided by MemComputing, Inc.) running on a
single thread of an Intel Xeon E5-2680 v3 with 128 Gb DRAM
shared on 24 threads. These results show once more the power
of physics-inspired approaches to computation over traditional
algorithmic methods.

II. THE PROBLEM

In this work, we focus on cost functions over a set of
Boolean variables x1, . . . , xN , xi ∈ {0, 1}, into which a large
number of problems may be cast.

A common formulation of these problems is given by a
set of Boolean constraints where the cost function counts
the number of constraints satisfied by an assignment. This is
often expressed in conjunctive normal form (CNF) where each
constraint (also called a clause) is expressed as the disjunction
(logical OR denoted by ∨) of a set of literals (a variable xi
or its negation xi) which are then conjoined (logical AND
denoted by ∧) together, e.g., in expressions of the type:

(x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

∧ (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

The CNF representation may be considered general in the
sense that any Boolean formula may be expressed in this
form [12].

The problem of determining the assignment satisfying the
maximum number of clauses is known as Max-SAT and
is NP-hard, i.e., any problem in the class non-deterministic
polynomial (NP) may be reduced to it in polynomial time [12].
As a result, algorithms for obtaining the solution will, in the
worst cases, require a time that scales exponentially with the
size of the instance, thus creating severe bottlenecks in the
solution of complex industrial and scientific problems. The
ubiquity and importance of this problem is exemplified by the
yearly MAX-SAT competitions, where state-of-the-art solvers
are tested on a variety of benchmarks to stimulate research
and innovation [18].

In applications where the optimal solution is required exact
algorithms must be used [19]. These complete solvers typically
proceed by first obtaining bounds on the quality of the solution
and then using these bounds to prune the search tree in a
backtracking search. This systematic approach guarantees that
the resulting solution will be the optimum, but typically scales
poorly and is impractical for large instances.

In these cases, heuristic or incomplete algorithms must
be used [19]–[21]. Rather than systematically searching the
solution space, these solvers generate an initial assignment
and then iteratively improve upon it, using a variety of
strategies to boost the efficiency of their local search. After
a specified number of steps, the algorithm returns its best
assignment. As randomness is often used to drive the search,
this procedure is referred to as stochastic local search. While

they can no longer guarantee optimatility, these solvers have
proven very effective at approximating, and sometimes solving
difficult Max-SAT instances. For instance, in the 2016 Max-
SAT competition [18], incomplete solvers performed 2 orders
of magnitude faster than complete solvers on random and
crafted benchmarks.

We might hope that if we seek an approximation, rather
than a solution of a Max-SAT instance, we could avoid the
exponential scaling of the run-time. Unfortunately, it turns
out that even approximating the solution of many difficult
optimization problems is NP-hard. More precisely, for a max-
imization problem with optimum O defined as the sum of
the weights of all satisfied clauses, obtaining an assignment
better than fO for the fraction f greater than some critical
fraction, fc, is an NP-hard problem [13], [22]. For example,
obtaining an assignment for Max-E3SAT (a version of Max-
SAT in which every clause has 3 literals) better than fc = 7/8
of the optimum is NP-hard, meaning that we cannot expect
a polynomial algorithm to obtain the approximation for any
instance of Max-E3SAT unless NP=P. Any known algorithm
thus must show exponential scaling for a threshold past fc
in the worst case. In [11] we showed a region in which
some of the best algorithms based on stochastic local search
show an exponential growth with input size, but where the
memcomputing approach based on deterministic dynamical
systems requires only linearly growing time to achieve the
same threshold.

III. DIGITAL MEMCOMPUTING MACHINES

As mentioned in the Introduction, we present here a rad-
ically novel approach to these problems based on the sim-
ulation of DMMs on a standard classical computer [2], [4].
DMMs can be implemented in practice as specially-designed
dynamical systems whose equilibrium (fixed) points represent
the approximations to the computational problem at hand, and
which can be realized with standard electrical components and
those with memory.

The mathematical definition of DMMs is the eight-tuple [4]

DMM = (Z2,∆,P, S,Σ, p0, s0, F ) , (1)

where (although not strictly necessary) we consider the range
of Z2 = {0, 1}. Generalization to any finite number of states
is trivial. ∆ is a set of functions

δα : Zmα2 \F × P → Zm
′
α

2 × P2 × S , (2)

where mα <∞ is the number of memprocessors used as input
of (read by) the function δα, and m′

α < ∞ is the number
of memprocessors used as output (written by) the function
δα; P is the set of the arrays of pointers pα that select the
memprocessors called by δα and S is the set of indexes α; Σ
is the set of the initial states written by the input device on the
computational memory; p0 ∈ P is the initial array of pointers;
s0 is the initial index α, and F ⊆ Zmf2 for some mf ∈ N is
the set of final states.

The DMM approach to a specific Boolean problem may be
summarized as follows [4], [6]:

1) The Boolean circuit representing the problem is con-
structed.
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Fig. 1. Simulation time comparison between the incomplete solver DeciLS against the Falcon© solver of MemComputing, Inc. for the balanced and constrained
delta-Max-E3SAT. A threshold of 1.5% of unsatisfiable clauses has been set. We have then tested how long DeciLS and our solver Falcon© take to overcome
this limit with increasing number of variables. All calculations have been performed on a single thread of an Intel Xeon E5-2680 v3 with 128 Gb DRAM
shared on 24 threads. The local solver requires an exponentially increasing time to reach that limit. Our memcomputing approach instead scales linearly even
up to 64× 106 variables (corresponding to about 1 billion literals), which required a little over than 105 seconds on a single thread. We could not go beyond
this limit because of memory resources (see text and Fig. 2).

2) Traditional logic gates are replaced with self-organizing
logic gates (SOLGs) [4] which are circuit elements
designed to interact and collectively organize into a
logically-consistent state.

3) The resulting self-organizing logic circuit (SOLC) is fed
voltages along its boundary, and allowed to evolve until
it reaches equilibrium where the results of a computation
may be read out.

A detailed account of SOLGs may be found in [4] (see also
Ref. [6]). In essence, they may be understood as dynamical
components whose equilibrium points encode the truth table
of a logic gate, and can self-organize into a consistent logical
relation of such truth table irrespective of the terminal to
which a given truth value (a literal) is assigned. Each terminal
is equipped with a dynamic error correcting module which
reads the states of its neighbors, and sets the local current
and voltage to enforce logical constraints. These elements are
specially designed so that the resulting dynamical system is
point dissipative [23] (in the context of functional analysis),
avoids periodic orbits [24] and the chaotic behavior [25] that
is typical of other non-linear dynamical systems, and utilizes
components with memory to allow gates to efficiently correlate
and collectively transition between states [26] (see also below).

The dynamics of the system are deterministic and, since they
allow for collective transitions of large numbers of variables,
they are also non-local in the same sense that complete combi-
natorial solvers are. Therefore, our approach contrasts sharply
with those based on a stochastic local search such as simulated
annealing [16], and many incomplete solvers [19], [20]. We

will comment further on the reasons for these differences and
the role of long-range order later.

The procedure above may be followed to construct a hard-
ware solver for a wide variety of combinatorial and optimiza-
tion problems. However, since memcomputing machines are
made of non-quantum elements, the resulting behavior is also
captured by a set of nonlinear ordinary differential equations
describing the circuit (see Ref. [4] for an example of DMMs
equations of motion). These equations can be efficiently
simulated, constituting an algorithm for the same problem.
While this approach may seem indirect, as already noted,
surprisingly the simulation of these circuits using standard
numerical packages [27] is sufficient to outperform the state-
of-the-art combinatorial approaches on many benchmarks [6],
[7], [11].

In subsequent sections we demonstrate this and stress test
these simulations by showing the results of a direct comparison
on the same hardware between the Falcon© solver of Mem-
Computing, Inc. and the solver DeciLS, an improved version
of one of the best solvers of the 2016 Max-SAT competi-
tion [28]. In all cases our simulations considerably outperform
the other method tested, by orders of magnitude. Our solver
indeed scales linearly in time and memory compared to the
expected exponential scaling of the other solver.

IV. MAX-SAT
As outlined above, we formulate our instances as Max-

E3SATs, in which each clause contains exactly 3 literals and
which has an inapproximability gap. A particular instance of
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Fig. 2. Memory requirements of the Falcon© solver as a function of variables for the delta-Max-E3SAT. We provide both the input size memory (open
circles) and the RAM used during computation.

Max-E3SAT may be characterized by the number of variables,
N , and the number of clauses, M , or alternatively the clause
density, ρ = M/N . As ρ increases, the relationships between
the variables become increasingly constrained, and it becomes
less likely that an assignment satisfying all clauses will exists,
i.e., the problem is more likely UNSAT.

In the case of Random-3SAT, in which clauses are uniformly
drawn from the set of possible clauses amongst N variables,
instances undergo a SAT/UNSAT transition at ρ ≈ 4.3, below
which an instance is almost certainly satisfiable, and above
which it is almost certainly unsatisfiable (the transition being
sharply defined as N →∞). Different methods of generating
instances however, will lead to different transitions: Random-
3XORSAT, in which clauses of 3 literals are formed using
the exclusive OR, ⊕, undergoes a SAT/UNSAT transition at
ρ ≈ 0.918 [29].

To stress test the capabilities of simulating DMMs we
utilized a set of Max-E3SAT instances based on a variant of
Random-3XORSAT in which each variable was constrained to
occur the same number of times (or as nearly as possible while
satisfying the specified N and ρ) [11]. This particular set of
instances were chosen for their low inter-instance variability in
difficulty due to the constraint placed on variable occurrences,
and the relevance of MAX-XORSAT to important problems
in decoding [29]–[31] The balanced structure of the resulting
SAT makes them difficult for local solvers since, whenever
a variable assignment is changed, it flips the state of all
XORSAT clauses in which it was included. Thus, in order to
find transitions which satisfy a larger number of clauses, the
system is forced to flip increasingly large numbers of literals
concurrently.

To generate these hard instances, we first generated a

random 3XORSAT instance with ρ = 1.25 in which each
variable was allowed to occur 3 or 4 times. These were then
converted to a SAT instance by replacing each XORSAT clause
with 4 CNF clauses which reproduce the truth table of the
XORSAT clause. The resulting Max-E3SAT instances have a
clause density of ρ = 5. We call this problem delta-Max-
E3SAT [11].

To clearly show the superior performance of our approach
compared to standard algorithms, we have set a threshold of
1.5% of unsatisfiable clauses and tested how long DeciLS and
Falcon© take to overcome this limit with increasing number
of variables. DeciLS is a compiled code that combines a
unit propagation based decimation (Deci) and local search
(LS) with restarts [28]. Past useful assignments are used to
break conflicts in the unit propagation and may be considered
“messages” from the past.

The solver Falcon© is a sequential MATLAB code that
integrates forward the DMMs equations of motion using an
explicit Euler method. All calculations have been performed
on a single core of an Intel Xeon E5-2680 v3 with 128 GB
DRAM. As expected the local solver requires an exponentially
increasing time to reach that limit already at a few thousand
variables (see squares symbols in Fig. 1). Instead, the simula-
tions of DMMs scale linearly in time up to 64×106 variables,
which at a density of 5, corresponds to 320 × 106 clauses,
or about 1 billion literals. The largest case required a little
over than 105 seconds to complete. In fact the time was not a
limitation, rather the memory of the processor.

In Fig. 2 we present the memory used in the computation
by Falcon© as a function of variables. It is clear that also
the memory scales linearly up to 64 × 106 variables. For
comparison, we also display the memory size of the input
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file, showing that the MATLAB implementation of DMMs
equations of motion has about an order of magnitude overhead
in memory. Since the memory of the Intel Xeon used for these
simulations was only 128 GB DRAM, that limit has set a
hard stop to the actual size we could fit on that processor.
Of course, different implementations (e.g., using a compiled
language rather than an interpreted one), different hardware,
etc. may permit execution of even larger instances.

V. COLLECTIVE DYNAMICS OF DMMS

The simulations surveyed in this paper and those already
performed in relation to other problems [6] indicate that
collective dynamics play an important role in the ability of
DMMs to find good approximations to the optimum in non-
convex landscapes. This contrasts sharply with the dynamics of
stochastic-local-search solvers, and an analogy may be drawn
to the co-tunneling events observed in quantum-annealing
devices such as those manufactured by D-Wave [32], although
DMMs are non-quantum machines.

Of particular interest is the fact that the transient dynamics
of a DMM proceeds via an instantonic phase where the
machine rids itself of logical defects [26], [33]. Instantons are
families of trajectories of the non-linear equations of motion
of DMMs, and connect different critical points in the phase
space that have different indexes, namely different number of
unstable directions.

In mathematical terms, if

ẋ(t) = F (x(t)) (3)

is the equation of motion describing a DMM, with x the set of
elements (e.g., voltages, currents and internal state variables),
and F the flow vector field, then instantons are deterministic
trajectories

ẋcl(t, σ) = F (xcl(t, σ)); xcl(±∞, σ) = xa,b, (4)

that connect two arbitrary critical points of F , say xb and xa.
The parameters σ are the so-called modulii of instantons, and
encode their non-locality.

Indeed, the presence of instantons creates long-range order
in the system, both in time and in space [26]. Spatial long-
range order means that logic gates can correlate at arbitrary
distances from each other. Temporal long-range order implies
that the system can follow different paths to obtain the same
solution.

It is the presence of these instantons that renders these
machines efficient in the solution search of complex prob-
lems. In fact, by transforming a combinatorial or optimization
problem (a Boolean problem) into a physical (dynamical)
one as described above, its simulation is also efficient. The
reason is that the original Boolean problem is no longer
solved combinatorially, as it is usually done. A combinatorial
approach requires a search in a space that grows exponen-
tially for a complex problem. Rather, the solution search
is accomplished, via instantons, by a physical, dynamical
system and the latter can be simulated efficiently by solving
its corresponding differential equations. In addition, since
instantons are topological objects, the solution search is robust
against noise and structural disorder, a fact that was also shown
explicitly in Ref. [33].

VI. CONCLUSIONS

The performance of digital memcomputing machines on
the benchmarks presented in this paper demonstrates the
substantial advantages of our approach, based on the simula-
tion of non-linear dynamical systems, compared to traditional
combinatorial ones. While we have focused on the maximum-
satisfiability problem, the methods we have illustrated readily
generalize to a wide variety of combinatorial optimization
problems. It would then seem that physics-based approaches
offer a lot to the world of computing, and we believe these
ideas may form the basis for the next generation of computa-
tional devices.
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