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ABSTRACT OF THE DISSERTATION

Modern Methods of QCD Tomography for Electron-Ion Collider Phenomenology

by

John Terry
Doctor of Philosophy in Physics
University of California, Los Angeles, 2022
Professor Zhongbo Kang, Chair

Hadrons are the bound states of QCD and are a fundamental building block of nature.
Through dedicated experimental and theoretical endeavors over the past century, the field of
nuclear physics has begun to understand the three-dimensional structure of hadrons in mo-
mentum space, which is encoded in Transverse Momentum Dependent PDFs (TMD PDFs).
To perform full three dimensional imaging within hadrons, one must note that TMD PDF's
contain a mixture of perturbative and non-perturbative contributions. To de-couple these
two contributions, theorists rely on factorization theorems, which allow us to write QCD
cross sections as a convolution of a perturbative and non-perturbative contributions. Fac-
torization theorems have long since been understood at leading power (LP) for Semi-Inclusive
DIS, Drell-Yan, and double inclusive leptonic annihilation. With the use of these formalisms,
in the past decade the imaging of the unpolarized quark TMD PDF has moved into an era
of precision, where the perturbative contributions are close to N*LL accuracy and non-
perturbative extractions have been performed at the accuracy of NNLO-+N3LL. Despite this
progress, many questions remain to be addressed in the field of TMDs. How does the intro-
duction of spin affect the transverse dynamics of the quarks? What processes are optimal
perform imaging of the gluons and how do we establish factorization theorems for these
processes? How do we establish factorization theorems beyond LP? The interest in under-

standing the underlying structure of hadrons has led to the development of the Electron-Ion
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Collider (EIC), a future facility which will allow us to measure the internal structure of
protons at never before seen precision. Due to the high-luminosity, high center of mass
energy, and precision beam control, this new facility opens the possibility of measuring spin-
dependent TMDs in a wide range of new processes. Furthermore, the high luminosity open
the possibility of performing high precision measurements of angular correlations which will

allow us to probe the next-to-leading power (NLP) structure of hadrons.

To measure the spin-dependent structure of hadrons, experimental measurements are per-
formed for azimuthal spin asymmetries. In this dissertation, I quantify the extent to which
we understand the quark Sivers function, a spin-dependent TMD PDF, by performing the
first ever global analysis of this function from Semi-Inclusive DIS and Drell-Yan. To allow for
a future global analysis of the gluon Sivers asymmetry, I establish a factorization and resum-
mation formalism for heavy-flavor di-jet production at the future EIC using Soft-Collinear
Effective Theory (SCET). I then establish a factorization and resummation formalism for
the Sivers asymmetry in di-jet production at RHIC and discuss how such a process can be
used to test factorization breaking effects and the extent to which theorist understand the
universality arguments of the Sivers function. Additionally, while spin asymmetries can be
generated by the spin of initial-state particles, they also arise due to hadronization effect.
However, probing the spin-dependent final-state hadrons introduces additional experimental
complications associated with reconstructing the spin of the hadron. In the past several
years, A baryons, which undergo self-analyzing decay, have been explored as a method of
probing spin-dependent fragmentation functions. In this dissertation, I perform one of the
first global analyses of the TMD Polarizing Fragmentation Function (TMD PFF) and the
first global analysis of the transversity TMD FF. Using SCET, I establish a factorization
and resummation formalism for the distribution of hadrons in a jet and use this formalism to
make predictions at the EIC. Lastly, I perform direct calculations of the evolution equations

of kinematic and intrinsic sub-leading twist distribution functions for the first time.
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or the kinematic suppressed field . . . . o 0 o o L oL Lo

Example diagram for the collinear Wilson line structure for Drell-Yan. The red
lines represent the Wilson lines for the incoming quark distribution while the blue
Wilson lines represent the Wilson lines for the incoming anti-quark distribution.
The dashed blue line represents the vanishing Wilson line due to the interaction
with the sub-leading field. We note that there is an additional interaction where

the bad field enters on the right side of the cut as @°. . . . . . . . . .. ... ..

Two graphs contributing to the rapidity divergence of the three parton TMDs

in light-cone gauge. The ® represents the Wilson lines while the operators I'¥

represent the NLP operators in the decomposition of the three parton correlator.
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CHAPTER 1

Introduction

1.1 Motivation

Quantum tomography is the study of the dynamics of elementary particles in bound systems,
and seeks to address the question as to how these dynamics give rise to global properties.
This goal is the field theoretical continuation of the millennia old pursuit to address the
nature of matter. It can be argued that quantum tomography began in 1897, when J.J.
Thompson discovered the electron. Within the next decade, the scientists of the early 20th
century began endeavoring to understand how the properties of the electron were tied to the
structure of the Hydrogen atom. To address this question, scientists were forced change their
perception of small scale physics and quantum mechanics was born. Schrodinger, who was
exploring the wave nature of non-relativistic particles, solved this puzzle and changed our
understanding of the world. To this day, technological and scientific advancements related
to these discoveries influence our society. Due to the developments of our understanding
of Quantum Field Theory (QFT) and the standard model in the last century, the scientist
of today continue to address the structure of matter by asking the question as to how
the dynamics of the point-like constituents of hadrons are related to the hadron’s global

properties.

Quantum tomography of hadrons is infinitely more complex than atomic tomography.
Electrons can be isolated from atoms and their properties can be measured by introducing
electromagnetic fields. However, no experiments have been able to measure isolated charges
associated with the strong interaction. This ‘color confinement’ indicated that the size of

the coupling constant associated with the strong interaction was so large that perturbative



techniques could not be used to address the theory. By the late 1960s however, Bjorken
predicted that structure functions in DIS at sufficiently high energies should depend on the
ratio z = Q?/2P-q in Ref. [14]. Within the next year, SLAC verified this approximation and
Feynman presented his formulation of the parton model in Ref. [15], in which he illustrated
that Bjorken scaling indicated that hadrons were composed of point-like non-interacting
particles, which he named ‘partons’. However, this theory conflicted with our understanding
that hadrons were strongly coupled. Ultimately in Ref. [16] Gross and Wilczek discovered
that non-Abelian gauge theories give rise to ‘asymptotic freedom’, which states that while the
coupling for non-Abelian gauge theories can be large at small energy scales, at large energy
scales the coupling decreases and perturbative techniques become feasible. This remarkable
work served to bridge Feynman’s parton model with color confinement. While partons exist
as asymptotically free particles, the non-perturbative interactions form the asymptotic color

neutral states of QCD which we call hadrons.

This formulation of the strong interaction indicated that perturbative techniques in QCD
can be used to calculate partonic cross sections. But to perform precision QCD, one is forced
to address the question as to whether or not non-perturbative interactions could drastically
affect purely perturbative contributions to the cross section. After ten years of work, the
authors Collins, Soper, and Sterman carried out the first proof of ‘QCD factorization’ in
Ref. [17], in which the perturbative and non-perturbative contributions are proven to de-
couple from one another. Using their formalism, cross sections could be written as a con-
volution of perturbative and non-perturbative contributions. Since their demonstration of
factorization theorems, the methodology for quantum tomography of hadrons has relied on
their analysis. Modern day theorists calculate perturbative contributions to cross sections
and then either extract the non-perturbative contributions from lattice or fit experimental
data. This procedure allows us being understanding the dynamics of the non-perturbative

contributions to the cross sections.

The ultimate goal of QCD tomography is to address the question as to how the global

quantities of hadrons, such as the hadron’s mass and spin, emerge from the dynamics of



quarks and gluons. As hadrons account for the vast majority of the mass of the visible
universe, addressing such a question is vital for our greater understanding of the universe.
A fundamental shortcoming of previous theoretical descriptions of hadron structure is that
they only provide information longitudinal to the beam direction. The field of QCD holog-
raphy has been pushing for more differential measurements of the internal structure of the
hadrons. The full information for the distributions of hadrons in momentum space and im-
pact parameter space is encoded in Generalize Transverse Momentum Distribution Functions
(GTMDs), see for instance Refs. [18, 19, 20, 21, 22, 23, 24]. Within the past few years, re-
searchers have been exploring QCD factorization theorems which can be used to probe these
distributions in [25, 26, 27, 28, 29, 30, 31, 32]. Transverse Momentum Dependent Parton
Distribution Functions (TMD PDFs), are GTMDs in which the impact parameter space has
been integrated over. A major strength of TMD PDFs are that factorization theorems for
TMDs have been established in double inclusive hadron production in leptonic annihilation
in [17], Drell-Yan in [33], and Semi-Inclusive DIS in [34]. These TMD PDFs allow us to ad-
dress how the spin of the parent hadron distorts the distribution of momentum in hadrons.
As a result, TMDs are an attractive distribution to understand how the spin properties of

the hadron and the transverse dynamics are correlated with one another.

Following the endorsement by the National Academy of Sciences, the Department of
Energy officially started the Electron-Ion Collider (EIC) project in 2020. This high-energy,
high-luminosity, polarized EIC will allow physicists to perform measure the both polarized
and unpolarized TMDs at unprecedented precision. Due to the high collision energies, this
device will allow physicists to measure the gluon TMD PDF's, while previous colliding fa-
cilities have mainly measured quark TMD PDFs. The high luminosity, high center of mass
energy, and freedom to use polarized beams at the EIC will open new possible avenues for
probing hadron structure. To interpret experimental data, QCD theorists rely on factor-
ization theorems, in which the perturbative and non-perturbative contributions in a cross
section decouple from one another. As such, the methodology of this dissertation has been

to use existing data to extract non-perturbative information associated with the polarized



hadron structure at the highest precision possible, to establish factorization theorems for
novel processes, to calculate the perturbative contributions to novel processes, and to pro-

vide first predictions for this new facility.

1.2 Organization of this Thesis

In Chapter 2, formal background in QCD is provided. In Chapter 3, I perform the first
global extraction of the quark Sivers function, a spin-dependent TMD PDF. T also perform
this analysis at NLO+NNLL resummation, which had never been done before. Using this
analysis, I provide high precision projections at the future EIC. In Chapter 4, I use SCET
to derive factorization and resummation formalisms which can be used to probe the spin-
dependent structure of the proton using jets. In Chapter 5, I perform one of the first global
extractions of the TMD Polarizing Fragmentation Function (TMD PFF) and the transversity
TMD FF, two spin-dependent fragmentation function, and perform an EIC impact study for
these distributions. In Chapter 6, I derive QCD evolution equations for sub-leading TMDs.

I’ll conclude this dissertation in Chapter 7.



CHAPTER 2

QCD Background

2.1 Overview of Factorization and Resummation

The major obstacle in QCD tomography is that while perturbation theory can be used to
describe partonic interactions, detectors measure physical quantities of hadrons. To describe
and interpret experimental data, one then needs to understand how to transition between
partons and hadrons. However, this transition involves interactions at the energy scale Agcp
where perturbative techniques fail. To address this issue, QCD factorization theorems must
be established. The central idea behind factorization theorems is that if the partonic scale
() is much larger than Aqcp, the relevant time scale for hard interactions happen is much
smaller time scale than the time scale for inter-partonic interactions. We could examine
Deep Inelastic Scattering (DIS) as an illustrative example, e (¢) + p(P) — e(¢') + X. In
this process, the two relevant scales are (), the virtuality of the photon, and Agcp which is
associated with the interaction between partons in the hadron. In the laboratory frame, the
proton is stationary and the relevant time scale for the interaction of partons in the target
hadron is therefore 1/Aqcp. The photon on the other hand has virtuality @), and thus the
interaction time scale for the photon with the parton is 1/Q. In the rest frame of the virtual
photon, the hadron moves toward the photon with an energy Q. If Q > Aqcp, the lifetime of
the partons, which were of order 1/Aqcp, undergo time dilation and are therefore extended.
As a result, up to power corrections of order Agcp/@Q, the partons which are resolved by
the virtual photon are on their mass shell. The central idea behind factorization theorems
is to treat the particles which communicate information between the hard and soft regions

to be on shell and therefore classical. In doing so, the hard and soft regions are insensitive



to the dynamics driven by the quantum corrections of the other region. As we still need to
integrate over the classical momentum of the particle which communicated the information
between the two regions, the factorization theorem for DIS can be written in the usual way

as

doprs . .y dopis (T Aqep
dxdy—iaj/dxfa/pm,@m o (j,u)w( 57 (2.)

In this expression x is the usual Bjorken variable associated with the longitudinal momentum
component of the quark, @) is the virtuality of the photon, y is related to the angle of the
final state quark, and p is the renormalization scale. f,/, is the PDF, which we will find
contains a mixture of interactions at long and short distance interactions. The purely short
time scale interaction is given by dops/dy, which represents the partonic interaction of a
quark and lepton. Within factorization theorems, the short distance interactions can be
computed in perturbative QCD, while the long distance interactions are obtained through

lattice methods or by fitting experimental data.

QCD factorization theorems also introduce the property of ‘universality’. This immensely
powerful property states that for processes which are factorized, the non-perturbative infor-
mation encoded in the PDFs is independent of the underlying process. All the predictive
power and discovery potential of QCD is built upon this property. In the case of DIS, the
simple relation between the DIS cross section and the PDF allows one to extract the non-
perturbative information of the PDF's in a clean way. However, to discover physics at high
energy scales, processes with high energies are required. In the case of DIS, synchrotron
radiation prevents high energy electron beams from reaching high enough energies to probe
the high energy region. For this reason, proton-proton collisions serve as the main mecha-
nism for discovering new physics. For this reason, Drell-Yan, pi(P;) po(P2) — q(q) represents
the main QCD background for many events. Neglecting power corrections, the factorized

expression for the Drell-Yan cross section can be written as

dopy
dy dQ)?

v v . . do TA T
= Z/ dDSA/ dZB fajp (Za;Q, 1) forp (28;Q, 1) sz (A—AM—B;Q,M) , (2.2)
7 Jea s y dQ
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Figure 2.1: Top row: Example hard correction to the cross section. Bottom Row: Diagrams

related to the evolution of the PDF.

where y and @) represent the rapidity and invariant mass of the produced vector boson. The
Bjorken variables of the PDFs are related to the (), and y, and the hadronic COM energy

through the relations
e V. (2.3)

Due to the principle of universality, the PDFs which enter into the cross section for Drell-
Yan are identical to those in DIS. Therefore, global fits from DIS data can be used to obtain
the precise non-perturbative behavior of PDFs. These extracted PDFs can then be used
to describe the QCD background at high energy Drell-Yan collisions. In this way, QCD
factorization theorems and universality drive the predictive power and discovery potential

of QCD.

An important and yet overlooked detail in going from low energy data to high energy
data is the role of effects associated with renormalization. In both the case for Drell-Yan
and DIS, the PDFs and the partonic cross sections will suffer from divergences beyond tree
level. In Fig. 2.1, a subset of the total one loop corrections to the DIS cross section have
been included. There are two possible approaches for dealing with these divergences. In

one case, the divergences of all the diagrams are added. Due to renormalization group
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consistency, the divergences will cancel and the PDF and partonic cross sections can be
defined as subtracted quantities. One could then simply replace the renormalization scale u
with the hard scale (). There are many shortcomings of this procedure, however. Firstly if
there are additional scales entering into the cross section, large logarithms that enter into the
perturbative expressions will destroy the convergence of the perturbative series. Secondly, to
describe the cross section in this way, one needs the behavior of the PDF at exactly (). Thus
for each value of (), a new global fit would need to be performed. Fortunately the alternative
to this approach is much more powerful. In this case, each loop integral can be written as
a sum of contributions from the collinear and hard regions. The collinear contributions are
used to define the perturbative part of the PDF and the hard contributions are the loop
corrections to the partonic cross section. Each contribution will suffer from divergences and
the PDF and the partonic cross section are then defined as divergent quantities. We can
then perform renormalization group evolution of these divergent quantities and obtain QCD
evolution equations. By using this method, we can resum any large logarithms that enter
from radiative corrections to all orders. This procedure allows us to understand how the
PDF and partonic cross section evolve to arbitrary p. As a result, a single global analysis
provides substantially more information than in the previous case. In Sec. 2.5, I will outline

this procedure for the TMD case in Drell-Yan.

2.2 Pinch Surfaces and the QCD Mode Analysis

Bound partons within hadrons interact with one another, driving one another off their mass
shell and generating inter-parton correlations. In the previous section, I discussed how time
dilation of boosted hadrons extended the lifetime of these off shell modes. As a result, QCD
factorization theorems are valid up to power corrections of Aqcp/Q. While this simple pic-
ture provides intuition for QCD factorization theorems, in this section, I will provide a more
rigorous mathematical formalism for this treatment following the work of Collins, Soper, and
Sterman. Within this treatment, the authors treated loop integrals as contour integrals. IR

poles arose in their analysis through the appearance of ‘pinch singular surfaces’, in which



contours could not be deformed away from poles entering into the complex plane. By char-
acterizing the kinematic regions where these pinch surfaces arose, the authors were able to
demonstrate that pinch surface singularities were generated by soft and collinear interactions,
which are both on shell. The authors then demonstrated that the asymptotic contribution
of the cross section emerge from the dynamics of these on-shell modes. Thus these authors
provided a mathematical framework verifying the intuition for the factorization theorem. In

this section, I will review the appearance and interpretation of these IR divergences.

For this analysis, I will use the virtual diagram in Fig. 2.1 as an illustrative example.
Furthermore, to simplify the calculations, I will treat the quarks and gluons as scalar fields.
Using Feynman parameters, the expression for the vertex can be written as
d*l §(1—a; —as — az)

24
(27T)4 [O{llz -+ (6) (p1 + l)2 + a3 (pg — l)2 — 2'6}3 ( )

1
C(p1,p2) = i7r2/ da dovy da3/
0

The asymptotic behavior of this integral is obtained by finding the kinematic regions in [
where the denominator is minimized. This can be obtained by setting the gradient of the

denominator with respect to I* to zero, which leads to the Landau equation from Ref. [35]
Oéllu + (o (p1 + l)M — Q3 (pg — l)“ =0. (25)

Two particular regions which satisfy this condition are the collinear and anti-collinear regions:
where the gluon becomes collinear to the incoming or outgoing quarks. For the case of
the incoming quark, the Landau condition will hold where I* = (p{, as = 0, and oy =
—as (1 + (). In this case, the denominator of the vertex is proportional to the mass of the
incoming quark. In general, the incoming quark can have a non-zero virtuality. However,
one would need to integrate over the quark mass to obtain the full QCD amplitude. Thus
the asymptotic contribution of the cross section is obtained in the neighborhood in which
the mass of the quark and virtual gluon vanishes. As the incoming quark is close to its mass
shell and the plus component of the momentum is large, the momentum of the incoming
quark scales as

7 n Qnﬂ S e 2
plNQ 7"‘)\ 74—)\1‘ —i—)\y :Q(1+,>\_,)\L). (26)
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In this expression, I have introduce the light-cone directions n* = ¢ — 2, ai* =t + % and
taken the normalization n - 7 = 2. Furthermore, t#, &, §*, 2" are unit four vectors. In the
expression for the scaling of the momentum p/, I have introduced the parameter A = M/Q
where M is the mass of the incoming hadron. This scaling can be thought of as follows: the
plus component is fixed to be large while there is some freedom for the transverse momentum
of the incoming quark. In general, the transverse momentum will affect how close the
integration gets to the appearance of the collinear IR divergence. Since singularities occur
for all values 0 < ¢ < 1, one would need to integrate over all values of (. Furthermore,
while the collinear IR pole emerges as [, — 0, to obtain the asymptotic behavior of the cross
section, one would need to integrate over the region 0 < [, < AQ. For this reason, Collins
frequently refers to these pinch surfaces as ‘skeletons’ of the integrals, see Ref. [36]. They

provide the overall structure by not the full picture.

Another IR divergence occurs where the components of [* are much smaller than () such
that pi' + 1" ~ pi and ph + I* ~ ph so that the interaction of the soft gluons with the
collinear quarks leaves the quarks on their mass shell up to power corrections. To satisfy
these conditions, the required scaling for the soft gluon is I* ~ Q (A%, A2, \?). This scaling
is is known to give rise to the soft eikonal approximation. In this case, the denominator of
the vertex will depend only on [? and an IR pole will once again be generated for a gluon
which is on its mass shell. Analogous to the collinear case, the asymptotic behavior of the

soft contribution is obtained by integrating a region of I#, namely ? < Q?\%.

In Ref. [37], Coleman and Norton interpreted this analysis to indicated that the dominant
contributions from the cross section enter from on shell partons. As a result, information is
passed from the collinear and soft regions to the hard region only through classical particles.
Therefore, the complicated quantum corrections associated with collinear and soft interac-
tions are then decoupled from the quantum corrections of the hard region. Furthermore, since
the soft particles do not take the collinear particles off their mass shell, the soft and collinear
contributions also decouple from one another. As a result, each region evolves independently.

The breaking of factorization effects occur due to off shell propagators entangle these differ-

10



ent kinematic regions. While so far I have discussed how soft and collinear regions generate
IR divergences, there is one additional region which can generate IR divergences, known as
the Glauber region. Glauber gluons have momenta which scale as I* ~ Q (A%, A\?, \), which
are off shell and therefore can break factorization theorems. The proof of the cancellation of
Glaubers has been performed for TMD factorization in Drell-Yan, Semi-Inclusive DIS and
double inclusive leptonic annihilation (DIA), see for instance Refs. [38, 39, 40]. For many
processes however, Glauber cancellation has not been explicitly verified. Even more dra-
matically, Glauber gluons are known to drive the dynamics involved in parton propagation
through QCD media, such as the Quark-Gluon-Plasma (QGP), cold nuclear matter, and
the Color-Glass Condensate (CGC). In these systems, the media become entangled with the
partonic cross section. Recently the paradigm has been to treat this coupled behavior as
an open quantum system in Refs. [41, 42]. This gives rise to Lindblad equations, or equiv-
alently the BK equation, see for instance Ref. [43]. Due to the interest in understanding
media effects, Glauber gluons remains an active area of research. In fact, several effective
field theories have been developed in this direction, see for instance Refs. [44, 45, 46] For the

remainder of this thesis however, Glauber gluons will not be treated.

So far, I have demonstrated that the vertex graph contains IR divergences, which contains
part of the asymptotic behavior of the vertex integral. However, if the IR divergences
were left uncancelled, the differential cross section would be sensitive to the mass of the
partons, which is not physical as the mass scale of the quarks is much smaller than the
Aqcp. As a result, there must be additional contributions to this vertex which have so far
not been calculation. We saw however, that these divergences originate from the soft and
collinear regions. As a result, the appearance of IR divergences provide us some insight as to
which QCD modes need to be considered in our formulation of QCD factorization theorems.
Namely to formulate the cross section for DIS, one also needs to consider the contributions

from the soft and collinear regions. In the following section, I will demonstrate this.
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Figure 2.2: Organization of modes entering into the example according to their scaling in

n - p, n-p, and their invariant masses.

2.3 The Method of Regions

To calculate the soft, collinear, and hard contributions to the vertex, I will closely follow the
analysis that was performed in Ref. [47] to use the method of regions from Refs. [48, 49],
where the asymptotic behavior of the loop integrals is obtained by expanding the integrand
in each area which gives a large contribution. This method is related to the integration
over the pinch surfaces. Namely by asymptotically expanding the integrand, we capture the
asymptotic behavior around the pinch surfaces. To demonstrate the delicate cancellation
between IR and UV divergences, I will use a simple model which treats the quarks as massive

scalars and treats the gluon as massless.

To obtain the hard contribution to the cross section, we assume that the virtuality of
the gluon goes like Q% and that the virtuality of the quarks goes like A2Q? from the power
counting in the previous section. To obtain the asymptotic behavior of the loop integral in
this region, we retain only the leading power behavior in the denominator. In this region,
the asymptotic behavior of the vertex is therefore given by

dl
2+42p - 1) (12 —2py- 1)

Th(p1,p2) = iwd/2u4_d/ X (2.7)

The behavior of this integral in the soft and collinear limits is the same as the massless loop
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integral in the previous section and therefore gives rise to IR divergences in those regions.
This loop integral can be easily performed using a Passarino-Veltman reduction, the exact
expression is obtained as
Uh(p1,p2) = % (l + %ln ('u—z) + %an <g—22> - %2) : (2.8)

where the € enter from the IR poles.

To obtain the contribution in the soft region, I* is taken to scale as @Q (A%, A%, \?). Ex-
panding the denominator and retaining only the leading terms, the integrand becomes

dil

pi+2p1-1) (p3 —2p2- 1)

Ly(pr, p2) = in®2pt™4 / B (2.9)

This expression is one graph that enters into the ‘soft function’, which contains the soft con-
tribution to the differential cross section. From this expression, several interesting features
can be observed. Note that the invariant mass of the virtual gluon is of order A\* while the
invariant mass of the external quarks are of order \2. As a result, as [ approaches zero,
the terms associated with the quark masses regulate the IR divergences. In the UV region
however, where the virtuality of the gluon becomes larger, the denominator will scale as *,
giving rise to a UV divergence. This UV divergence can be regarded as the hard contribu-
tions contaminating the soft contributions. Furthermore, in principle one would also need
to deal with soft contamination into the collinear and anti-collinear regions. I will cover this
later when I discuss ‘rapidity renormalization group evolution’. The expression for the soft
contribution to the vertex integral is given by
2 2 2
Ls(p1,p2) = % (;2 + éln (Q/;X‘) + %IHQ (Q/;Xl) + %) : (2.10)

In this expression, the € are associated with UV divergences. I would like to also note that

in this expression, a large logarithm enters into the finite part. These large logarithms can
in principle become so large that they spoil the convergence of perturbative calculations.

These large logarithms can handled through resummation which I will cover in Sec. 2.5.

The expressions for the collinear and anti-collinear contributions to the vertex interaction
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can be obtained in a similar way. In the collinear sector, the cross section is given by

dal
=07 2py- 1)

I note at this point, that this interaction is exactly a Wilson line interaction which enters

To(p1,p2) = md/zu‘*d/ 7 (2.11)

into the calculation for the DGLAP evolution equations. By studying this integral, we can
see that there is a UV divergence that appears as the virtuality of the gluon grows large
and there are potentially also IR divergences associated with moving into the region where
the virtuality grows small. These regions represent the two contribution associated with
collinear gluons contaminating the hard and soft regions, respectively. The expression for

the collinear and anti-collinear contributions is given by

I'(1+e¢) I AT 1, o (2
Le(pi,p2) = 0 <—€—2 —ln <§ —o e )t

F'(1+e 1 1 u? 1 > 2
La(p1, p2) = o <—€—2 - glrl (F - 51112 2 + Ak (2.13)

where we once again see the appearance of large logarithms.

%2) . (2.12)

Since we have performed these integrals using dimensional regularization, we have in-
troduced the scale p, which serves as a cutoff between modes of different virtuality, see for
instance Fig. 2.2. For the method of regions to accurately produce the full contribution of
the loop vertex, it must not depend on the scale pu. Furthermore, since we have introduced
masses to regularize the IR divergences of the full vertex, the full vertex must be free of both
UV and IR divergences. After summing the contributions of each region, the total vertex

contribution is given by

C(p1,p2) = % (ln (%2) In (%) + %2> ; (2.14)

which satisfies these two criteria.

I note that in principle the cancellation of the UV and IR divergences in full QCD is
much more delicate than this simple model. In general the IR divergences in the virtual

diagrams must cancel against the UV divergences entering into the virtual emissions. Thus
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the cancellation will not involve just one of the diagrams in Fig. 2.1 but all of them. How-
ever, this model serves to demonstrate the intuition associated with performing calculations
associated with each region and the appearances of divergences. To be precise, in deriving
factorization theorems, we first catalog the different QCD modes. We can then calculate
the contribution of each mode using the method of regions and dimensional regularization
which introduces a scale p in the virtuality. Overlap between the various regions enters
as divergences which cancel when we have summed over the contributions of the different
modes. While I have demonstrated this procedure works at NLO, so long as the observable
is infrared and collinear safe, the KLN theorem [50, 51, 52] guarantees the cancellation of

the IR divergence to all orders.

2.4 Soft-Collinear Effective Theory

2.4.1 SCET Lagrangian

While the asymptotic behavior of the loop integrals in the previous sections are dominated
by the soft and collinear regions, the QCD Lagrangian takes into consideration all possi-
ble momenta configurations. In this sense, QCD contains more information than what is
required to describe many processes. Effective field theories (EFTs) are a field theoretical
language which formulate the Lagrangian of a system to only contain the asymptotic de-
grees of freedom. Heavy quarks for instance can be neglected when describing collisions with
energies below the quark mass. In a path integral formulation, the fluctuations associated
with the heavy quark field are ‘integrated out’. Soft-Collinear Effective Theory (SCET),
Refs. [53, 54, 55, 56, 57, 58, 59| is an EFT that contains the degrees of freedom associated
with soft and collinear QCD modes and integrates out the contributions from outside re-
gions. Due to this simplification, SCET allows us to organize and calculate perturbative
contributions to high perturbative accuracy. In this section, I will provide an overview of

the key features of SCET.

By integrating out fields with momenta scaling outside of the soft and collinear regions,
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the fields which enter into the Lagrangian reduce to
At (z) = AL (2) + A (), (@) = e (@) + 4 (2) (2.15)

where the ¢ subscript denotes fields with momenta that scale as @ (1, A%, \) while the sub-
script s denotes fields with momenta that scale as Q (A%, A%, A2). To arrive at this expression,
I have assumed that there is only one collinear mode for simplicity. In processes with en-
ergetic modes in another direction, one would simply need to add additional modes to the
right side of these expressions. A key feature of these replacements are that Glauber modes,
which provide asymptotic behavior for processes with QCD media and which break QCD
factorization theorems, are not considered. In general SCET is useful for processes in which
Glauber contributions have been demonstrated to vanish. After integrating out the modes
beyond the collinear and soft regions, the number of degrees of freedom for the system can be
further reduced through the equations of motion. Namely the quark spinors can be projected

into two subspaces as follows

4 4

bola) = (M ; Wi) bo() = E(0) + pula).

Through the equations of motion of the £ field, the ¢ field can be integrated out.

SCET also systematically removes sub-leading field contributions to the Lagrangian. In
the formulation of SCET, it is then necessary to obtain the precise power counting associated
with each field. The power counting of the &, field for instance can be obtained by examining

the two point correlation functions

<0|T{§c(:p)§c(0)}|0>:/ dp 1 e—ip'xwpm (2.16)

(2m)% p? + i€ e
_ / dp i cwaptl 2
(2m)4 p? + e 2 '

Performing the same procedure for the soft quark field, we obtain the power counting 1, ~

A3. The power counting for the gluons depends on the choice of gauge. The traditional
formulation of SCET is done using covariant gauges and have scaling A¥ ~ p/* ~ @ (1, A%, \)

and A" ~ p ~ @Q (A% A%, \?) in which Lorentz invariance manifests naturally. We can see
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from the scaling of the soft modes that the soft gluons vary in minus and transverse direction

more slowly than the collinear gluons.

After integrating out the fields and using the power counting, the SCET Lagrangian is

given by
7, : 1 sa
Lscrr (v) = Du(@)iBy(@)vu(x) - 7 [Fr ()] (2.17)
FE@)E [in- D) + i (0) i ()| &) —  [Fi)]”
9 cl in - Dc<w) cl 4 uv .
In this expression, we have introduced the various covariant derivatives
iD;, =10, + gA;,, (2.18)
iD}, =10, + gA;,,
in-D=in-0+gn-Alx)+gn-Asn-z),
in-D=1in-0+gn-Alx),
iD;; =i, +gn- A (x),
and we define the gluon field strength tensor as
igF?s, = [iD;,iD;] igFy, = [iD,,iD,] (2.19)

An important feature of the SCET Lagrangian at this point, is that the soft and collinear
sectors communicate with one another due to the kinetic term for the collinear gluons and
the in - D term. In the formulation of the SCET Lagrangian, field redefinitions are then

performed to decouple these two contributions.

2.4.2 Gauge Invariance in SCET and the Decoupling Transformation

Within traditional QCD, the gauge invariance of non-local operators manifests from Wilson
lines. In the construction of the SCET Lagrangian, we introduced two types of fields, the
soft and collinear. As a result, this will lead to the introduction of two types of Wilson lines

with distinct behaviors. Namely we can denote two types of gauge transformations
Un(z) = exp (iaf (z)t*) Uus(x) = exp (ol (x)t?) | (2.20)
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Figure 2.3: Representation of how the Wilson lines enter for the collinear PDF. Left: The
Wilson line W"(z~, —00;0,). Right: The Wilson line W"(—c0,0;0, )

which must obey different scalings
i0"Up(z) ~ Q (LA, N) Up(z)  i0"Ups(z) ~ Q (N, N, N?) Uys() - (2.21)

The collinear Wilson lines enter into the definition of bi-local operators such as the unpolar-

ized PDF for example

d*r - _
flzyp) = / e :§4eZk'x5 (z*) <P ‘f(m) W™ (z~,—00;0.) = B W”( 00, 0; OL)f(O)‘ P> :
i
(2.22)
while the soft functions can be defined as vacuum matrix elements of a soft Wilson loop.

In the case of Drell-Yan, these Wilson lines enter due to the scattering of collinear gluons
with the anti-collinear quark and serve to transport the quark in the n direction. In Fig. 2.3,
we provide a picture of this interaction. The exact mathematical form for the Wilson lines
can be obtained by examining the interaction of the anti-collinear quark with the collinear

gluons, which is given by

: iy @) e AC<>
e (p) (—igy"t?) WA“(Z) = —gt"——&(p) + O (N) . (2.23)

We can see from this interaction that the interaction of the anti-collinear quark with the

collinear gluons leads to a propagator which is far off its mass shell. This results in an
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effective vertex in SCET. Furthermore, we see from the power counting of the collinear
gluon field, we see that the attachment of a collinear gluon to the anti-collinear quark is
not power suppressed. As a result, there is no difference between attaching one gluon or
attaching an infinite number of gluons. In momentum space, this leads to the all order sum
of the interactions as

I (—g)* n-A(l)n- A(ly)...n- A(ly)
Ww" = . 2.24
,;p; U ] (h+ 1)) [n Sy zz} (2:24)

Fourier transforming into position space results in the simple expression

b
W"(a,b,c1) = Pexp (zg/ dsn - A°(x + ﬁs)) : (2.25)

where P denotes the path ordering and I'll note that there in an analogous Wilson line in the
n direction. In fact, we could also define a Wilson line in the L direction as well. However,

these transverse Wilson lines tend to enter at plus or minus infinity, where the field

Analogously, we could consider attaching soft gluons to the anti-collinear quark to obtain
the soft Wilson lines. It’s important to note however that because of the power counting of
the soft gluons, these interactions do not knock the anti-collinear gluons off their mass shell

and thus do note form effective vertices in SCET. The soft Wilson line is given by

b
Y"™(a,b,c,) = Pexp (zg/ dsn - A*(x + ns)) . (2.26)

The decoupling of the soft and collinear modes at the Lagrangian level is obtained by defining

new fields

(r) = Ya(2)€O(z)  A5(x) = Vo(2)Afy ,(2) .- (2.27)
After the field redefinitions, we can write

E)hin - D@)ea) » E0@) bin - DO ()0 (). (2.28)

The kinetic term for the collinear gluons also becomes
c ve 0)e p(0)pve
Fo, F'™e — FL)C e, (2.29)
As a result, the soft and collinear sectors decouple at the Lagrangian level.
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Figure 2.4: Left: The Drell-Yan cross section in the proton-proton COM frame. Right: the

Drell-Yan cross section in the Gottfried-Jackson frame.

2.5 TMD Factorization and Resummation in Drell-Yan

Having summarized the ingredients of factorization theorems, I will now discuss resummation
by examining Drell-Yan in the TMD region as an example. Within TMD factorization and
resummation, the observable is sensitive to contributions to the two scales ¢, < @). This scale
separation introduces large logarithms In (¢, /@) in the perturbative contributions which
need to be resummed. In this section, I will demonstrate the procedure for performing this
resummation. I would like to note at this point, that the formalism that is entering into
this section follows directly from an upcoming paper of ours that considers higher twist
contributions to the Drell-Yan and Semi-Inclusive DIS cross sections. Here is summarize

only the twist-2 contributions however.

2.5.1 Kinematics

The transverse momentum dependent Drell-Yan cross section can be written in terms of its

hadronic and leptonic contributions as [60]

do o?
= L, W 2.30
dQ? dy d?>q, dQ)  4sQ*" (2.30)

where dQ = dcosf d¢ is the solid angle of the lepton [ and Q?, y, and q, are the invariant

mass, rapidity, and transverse momentum of the produced photon in the hadronic COM
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frame. Furthermore, L*” is the leptonic tensor which has the form
L = (0[J*(0)|¢, (¢, ¢].7"7(0)]0) (2.31)
= 400" + A0 = 2Q%g"

where ¢ and ¢’ are the momenta of the produced leptons and I have summed over the spin
configurations of the final-state leptons. This cross section contains power corrections which
scale as M /@ and ¢, /Q. To formulate the leading power (LP) cross section, we drop the
masses and kinematic corrections associated with ¢,. After dropping these contributions,

we can define a complete set of spatial coordinates in the leptonic COM frame as

; q" . q A 2, - . PPN
=2, ==, H=—P'-t"  P=""li,z, 2.32
Q 0 Q! ’ (2.52)
where P{" = x;Qn*/2 and P}’ = xoQn*/2. Using these coordinates, the leptonic momenta

can be defined as

" — Q (fﬂ + 2" + 2t cos¢ sinf + y*sing sin@) , (2.33)

2
/- % (fﬂ — ZF — 2Fcosp sinf — ¥ sing Sine) . (2-34)

In the definition of the leptonic tensor, we have taken the normalization condition to be
such that the sum over the spin configurations of the final-state leptons is absorbed into the
definition of the leptonic tensor. Using the unit vectors defined previously, we can define

projectors of the leptonic tensor as

VIV = BR3Y gy, VIV = thgv, (2.35)
VIV = G5V 4 sRhEY VIV = Ghiv — g,

VIV = §hEY — HgY VEV = ghgY — i,

Vi =gy — 2y, W = grar + 2y,

VI = ahg 4 ey

We can also define the conjugate operators which are given by V! V7 ® 9agvs = 0ij. Using

this set of operators, the leptonic tensor can be decomposed as

LY = Z L; (¢7 0) ]_)l,ul’ ) (236)
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where L;(¢,0) = L, V! are angular coefficients which are given by

Ly (¢,0) = Q* (1 + cos®0), Ly (¢,0) =0, (2.37)
Ls (¢,0) = —Q? cos¢sin26, Ly (¢,0) = —Q? cos2¢ sin®f,

L5 (¢,0) =0, Lg (¢,0) =0,

L (6,0) =0, Ls (¢,0) = —Q?sing sin26,

Lo (¢,0) = —Q*sin2¢sin?6 .

From these coordinates, we can also define the transverse metric
Gy = Guv — 7 + 2127 (2.38)

W represents the hadronic tensor, which is given by the expression

1
(2m)t

W, = /d4:c e (P, Py |J£(37) JV(O)‘ P, PR), (2.39)

where J,(z) = 37 es105(x)7,05(x) denotes the quark current in QCD. In SCET, the inter-

action of the quark and the photon is given by

Ju(z) = Z / ds dt Oy (s,t) Xe(x + s0)y,xe(w + tn)S] () St(z). (2.40)
f

E(x) =Wz, —o0, 2, ), (2.41)

where CYy/(s,t) represent Wilson coefficient functions which match SCET onto QCD in the
UV region. The non-local interaction is a consequence of the scaling of the momentum
scaling of collinear modes. Namely emissions of collinear gluons in the collinear region are

not power suppressed since p* ~ Q(1, A% \).

2.5.2 Factorization in QCD

In full QCD, the hadronic tensor can be simplified as follows. Using the momentum space

representation of the interaction and noting that the hard contribution is generated through
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the interaction of collinear and anti-collinear modes, the hadronic tensor can be written as
e2 b
Wi = Z ﬁqc /lTl" [‘I’;msu (w1, ki, Su G /v?) VI(Q; 1) (2.42)
q

> q)(ljmsub (.1’2, kﬂ_’ SQ;,U; CQ/VZ) V44 (Q7 Iu) i| S()\J_a 122 V) )

/ - / Py ko) P2 0% (gL — ki — kol — A1) . (2.43)
1

In these expressions ki, ko, and A denote the transverse momenta of the collinear, anti-
collinear, and soft modes. Furthermore p is the renormalization scale while v and ( represent
the rapidity scale and the Collin-Soper parameter. The term V* (Q; i) is the photon quark
vertex which contains QCD loop corrections. ®, denotes the quark-quark correlator, which
is explicitly given in momentum space as

i€
(2m)*
X (P, S |5 (&) W€, —00;£1) WH(€1,0,; —00)W"(—00,£7;01) ¢5(0)| P, S) .

O (w, k1, S5 1, C/1?) = / et (¢") (2.44)

The superscript unsub is used to say that ‘soft subtraction’ of the TMDs has not been
performed yet. I will cover this soft subtraction in Sec. 2.5.7. In this expression ¢ are quark
fields with the momentum scaling k* ~ @Q (1, A2, \) where A\ = ¢, /Q. The Wilson lines are
the same as those in Fig. 2.3 except that I have introduced a transverse collinear Wilson line

which is defined as

by

Wh(ay,by,c) =Pexp <zg/ ds A9 (x+8.§l)> , (2.45)

1
where 8§, is a perpendicular unit vector. Additionally, the function S in Eq. 2.42 contains
the soft contribution to the cross section. We will discuss this contribution in more detail in
Sec. 2.5.5. The trace that enters into this expression contains a mixture of interactions from
the collinear, anti-collinear, and hard regions. To factorize these contributions it is useful to

perform a Fierz decomposition of the hadronic tensor using the identity
8ij0w = Y _T4Tq, (2.46)
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to decompose the quark lines. Here, I'* are gamma matrices of the set
I e {1,75,7",7"7°, a"7°} . (2.47)

A diagrammatic representation of this factorization is given in Fig. 2.5. After performing

the Fierz decomposition, the hadronic tensor can be written as

e2 _ _
W = Z + A Tr [y T4 4 TY] (2.48)
a,b ¢
b
x @Lmb (1 krsy St G /2) B (e ks Soi i, Go/?) S (As o) . (2.49)

In this expression, we have defined the trace of the quark-quark correlators as

O (24, ey 1, Sy, G /v?) = To [@ (21, kit Sis p, G /) T (2.50)

The general structure of the quark-quark correlator can be obtained by performing a Fierz
and Lorentz decomposition and retaining terms which are leading in power, and which are

hermitician and satisfy parity transformations. At LP, the decomposition is given by

k1S 10 k. -S °
@unsub (I’,kL,S;M, g/VQ) = (f - J—P = flT) ﬁ (AglL - J_]\4 J_ng> 74%

Fip kkkj k2 kj 5
+ (sﬁhl + Akihi LR B3N gy ) 0k (2.51)

M M ! M2 4

We can see in this expression the Dirac structure associated with the unpolarized TMD
PDF, f. As a result, the unpolarized differential cross section can be obtained by setting

= ji/4 and T® = 44/4. Finally, we note that the convolution in transverse momentum in
the hadronic tensor are simplified when working in b space, which is conjugate to q, space.

The final expression for the hadronic tensor is then

d2b g
—gn Z / b-a. (2.52)

X ;/n}illb (xlab 22 Cl/y ) ;/H}S);lb ($2ab§M7C2/V2) S(b7:u7 V) )

o(b) = / P’k e”*O(k,), (2.53)
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for © = f,S. The leading order contribution from the hard interaction can be obtained

through the contraction

Ly Tr [v By ﬂ = NoQ? (1+ cos*) HSN(Qip), (2.54)

where H](DOI)S(Q; p) = 11is the tree level hard function. As a result, the final expression for the

differential cross section can be written as

do bdb
dQ? dy d2q, dS) 45Q2 (1 + cos 9 Hpis(Q; 1) Z /—Jo (bq.) (2.55)

X FUEY (o, bs /) SR (e b, Gofv?) S () . (2.56)

Where the Hankel transform was obtained through the relation

/ dpe™®9t = 21.Jy (bqy) . (2.57)

2.5.3 Hard Contribution

The NLO hard contribution will contain all diagrams which contain momentum scaling (#* ~
@ (1,1,1). In principle, one would need to consider both real and virtual emissions. However,
a real hard emission would lead to a final-state vector boson with transverse momentum
q1L ~ @ which would be outside of the TMD region. As a result, we can simply replace the

vertex with the one loop virtual vertex. The expression for the one loop vertex is given by

_ H Zerr dl ('Vata) (l - }{71) m (%2 + l) Y
(Q :U’) €qgs ( A ) / (27T)d [2 (kl - l)2 (k’z +l)2

The expression can be obtained using through a Passarino-Veltman reduction. From this

(2.58)

loop diagram, we obtain the hard contribution

asCr [ 2 3 2Lg T2

H(Q:p) =1+ el b R Ly ———3Lg+— —8], (2.59)

€ 6

where the hat indicates that the hard function is bare and the divergences are once again
IR in origin, see for instance [61] for a discussion on this point. Additionally, note that the
double pole term is associated with contributions which are simultaneously soft and collinear.

In this expression, I have also defined the logarithm Lg = In (u?/Q?)
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Figure 2.5: Diagrammatic representation of the Fierz decomposition of the hadronic tensor
at tree level. Left: The broken lines are used to separate the hard interaction from the
definition of the quark-quark correlation function. Right: The Fierz decomposition where
I'; represent the operators which give rise to the parton densities while I'; represent the

operators which enter into the hard function.

26



Using the definition of the unsubtracted hard function, we can obtained the subtracted

hard function through multiplicative renormalization as

H(Q; 1) = Z(Q; ) H(Q: p) + O(a?), (2.60)

where the divergences are contained in the multiplicative renormalization factor Z(Q;u).

This allows us to obtain the subtracted hard functions

.C 7
HQip) =1+ O‘%F [ L% —3Lo+ % - 8} (2.61)

and the multiplicative renormalization factors

Z(Q;p) =1+

asCF 2 3 2LQ
o {— — - } (2.62)

By exploiting the scale invariance of the hard function, we can obtain the evolution equation

OH (Q; 1)

o LA @ H Qi) (2.63)
(@ 1) = =55 e Qi) (2.6

where this evolution equation holds to all orders. At NLO, the only non-vanishing contribu-
tion enters from taking the Z which is being acted on in the derivative to NLO. The explicit

one loop expression for the hard anomalous dimension is then given by

Tu(Q: p) = —% (QLQ + 3) . (2.65)

This expression is often re-written in terms of the cusp and non-cusp anomalous dimensions,

Leusp and 7Y, as

o @in) = Towp(ain (5 ) 9", (2.66)

where the anomalous dimensions can organized by the number of loops as
Qg - s\ ™
Peusp(c1) Zm{ 2 ) =Y (5 (2.67)
n=1
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where Iy = 4Cp, and 7 = —6CF. In the appendix of this chapter, we include these anoma-
lous dimensions up to three loops. To obtain the expression for the anomalous dimension, I
have related the bare and renormalized strong coupling constants at LO through the relation

a) (L5) = o (268)

A7

Using the definition of the hard anomalous dimension, we can solve for the evolution of the

hard function as
mody
H(Q; 1) = H(Q; pg) exp (/ Ly, (Q;u’)) : (2.69)
po H

Now please note that the logarithms Lg can destroy the convergences of a perturbative
sum. However, by solving the renormalization group equations, we introduce the auxiliary
scale fig, which can be anything. If we take pug = @ then these logarithms in H(Q); 1)
go to zero. The large logarithms with argument p/@Q are then ‘resummed’ in the Sudakov
exponential. I would like to note however at this point, that there is a subtlety associated
with the organization of the anomalous dimension. At one loop, we saw the appearance of
the term a,ln(Q?/p?). If p is taken to be largely different than @, than these logarithms
can grow to be large. As a result, the larger contribution for the anomalous dimension
will come from the term containing I'c,sp. For this reason, it is conventional to take I'cysp
to be one order higher than 7V. Upon using the two loop expression for [, we reach
an accuracy of next-to-leading order (NLO) and next-to-leading-log (NLL). In general the
number of Ns that enter into logarithmic resummation is the same as the order of the non-
cusp anomalous dimension. An interesting thought is how does the perturbative accuracy of
the resummation relate to the perturbative accuracy of the fixed order contributions, such as
the log independent terms in hard contribution. To demonstrate this comparison, consider
that at LL we resum contributions which go like a™In™"!(Q?/u?) > a,, at NLL we resum
contributions which go like a™In™(Q?/u?) ~ a2, and finally at NNLL we resum contributions
which go like a™In™ ' (Q?/u?) ~ a,. Therefore to match the perturbative accuracy of NLO,

it is conventional to work at NLO+NNLL accuracy.
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Figure 2.6: The graphs for the TMD PDFs at NLO. The upper part of the broken line
represents the perturbative contribution to the one loop expression while the lower portion

represents the un-renormalized TMD PDF. The ® represents the Wilson line for the TMD

PDF's while the second term on the contains a hermitian conjugate.

2.5.4 Collinear Contributions

To obtain the anomalous dimensions of the TMD PDF, we must obtain the UV divergences
associated with the graphs in Fig. 2.6. We note that while there are additional graphs that
contribute to this function, they all vanish in dimensional regularization. The graph on
the right side has a hermitian conjugate and these two graphs emerge from the Wilson line
associated with the collinear quark scattering against the anti-collinear gluon field from the

other incoming hadron. The explicit expression for these graphs in momentum space are

N E d )
f(x,m;u,cl/w——gsop( pre ) / pL/—f 2o mm/%ew

§((x—a" )PP +17) 6*(pL — ki —1,)Tr { " fQZ‘ (éw + 2%)} (2m)d (1%) .

(2.70)

In this expression, the momentum £ represents the momentum of the quark entering the
hard process and is given by
M

k“:(p—l)+7; (p—1)" g—l“—l“ (2.71)

where [ is the momentum of the radiated gluon while p is the momentum of the incoming

quark and the e subscript on I/, denotes that the momentum is in a d — 4 direction in
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dimensional regularization. Furthermore, 2’ is the momentum fraction of the incoming quark
relative to the parent hadron while x is the momentum fraction of the outgoing quark. I
would like to note that since the observable is sensitive to the scale (), the cross section
is sensitive to the value of z as a result, to calculate this distribution, I have inserted the
0 function in x. Additionally, since the observable is sensitive to ¢, I have inserted a ¢
function which is sensitive to the generated transverse momentum. These 0 functions are
known as ‘measurement functions’ since their appearance occurs due to the sensitivity of
the measurement. Additionally, I would like to point out that besides the ¢ function in the
transverse momentum, these graphs are exactly the ones that enter into the expression for

DGLAP evolution.

If we are interested in matching the TMD onto a collinear PDF, we can take on the right

hand side

FUs (@ oo, G /v?) = flas 1) 6% (po) - (2.72)

Performing the integration over p,, we obtain

. 2,7E \ € dxz’ ddl ;
. o p-e _l‘ 3 il b
f(x7kJ_nu7C1/y) - gSCF ( A ) / ! f(x “u)/ (27T)d€

§((x—a )PP +17) 6* (kL +11)Tr [m’%y“%% (%’y + 2%)} 2m)o (7). (2.73)

These types of calculation provide two valuable information for two separate contributions
to the cross section. The UV divergences provide information for the evolution of the TMDs.
The finite and IR parts of these graphs provide information for how the TMDs are matched
onto collinear PDFs. However, to perform the full matching, I would also need to consider

gluon to quark diagrams.

As in the case for the cross section, the convolution integral on the right-hand side of

this expression is simplified by working in b-space.

X 267E\ ¢ [ do! i .
. B pee Xz /. il | -b
f('rﬂbnuvcl/y) - _QECF ( A7 ) /7f(x,ﬂ)/ (27T)d6

) (ﬁ —(1—4%) @) Tr [x%w%% (%w + 2%)} @3 (12) . (2.74)
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In this expression, we have introduced # = /2’ and the Collins-Soper scale ¢; = («/P*)”.

After performing the integration, we are left with

. C 2,78\
fabip, G /v) = =5 ﬁ“(f_ )6)

csc(ﬁe)/%f(x’;u) (2.75)

<Ja-oa-ar 5] (5)

At this point, we can see that a divergence occurs where 2’ = x, and therefore this divergence

occurs in the infrared limit of [*. Because this divergence is in the plus direction, these are
known as ‘rapidity divergences’. As in the case of the factorization of the cross section, IR
divergences indicates the presence of an unaccounted for mode. Namely, this mode must
have a scaling 1" ~ @ (A, A\, A), which is strikingly similar to the soft contribution but with
a higher invariant mass. In the next section, we will provide a physical interpretation for
this mode. For this section, we will simply acknowledge the presence of this mode and
discuss regularizing the [* integral. While in principle this integration can be performed by
introducing a hard cutoff, this would lead to a Wilsonian RGE for the rapidity. In Ref. [62],
a regularization procedure was introduced which emulates the characteristics of dimensional
regularization. The procedure outlined in that paper originates by noting that the z — 1
issue occurs only from the Wilson line interaction. The authors then replaced the Wilson

lines with

2 -n
gw® |2P,;
W.,, — ————=——n-A,|, 2.76
(x) E exp{ = R— n ( )

perms
where w acts as a coupling strength between the Wilson line and the gluon, v acts as a cutoff
scale similar to p, 7 is a regulator, and FP,;3 and n - P are derivative operators in the z and

plus directions, respectively.
Using this regularization procedure, the integral becomes

R . B a,Cp (PJ%WE)G
F, b G /v) = =5 T(1—e)

se(re) [ L ptetsn) 2.77)
oo g2 (210
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To perform the integration, we use the relation

1 1
1—2) """ =—=6(1—2)+ ———+0(n). 2.78
(=877 = =25 (1= 8) + ey +O 2.73)
The plus distribution can then be related to the splitting kernel and the expression for the
TMD PDF becomes

Funsub . 2\ __ aSCF d_l’/ .
f (x,b”u, gl/y ) - o / 7! f(LU,IU)

_ <L + %) P, (&) (2.79)

+LLC15(1—:)3)+gLé(l—i)+(1—j)] |

The top line of this expression contains the IR divergences, the second line contains the
UV divergences, and the third line contains the finite parts. Notice that in the second
line, we have the appearance of a double pole. This double pole is associated with a mode
at sufficiently small rapidity but with a large invariant mass. In this expression, we have

introduced the logarithms

2 - 2
i 2eE (V)

L=In(-=]), Wy = , Leyy=In|— ). 2.80
(Nz%) ' b ‘ G ( )

We see from the one loop expression that the scale that enters into the L term goes like

Inby in b-space. In momentum space, this will result in logarithms which go like Ingi/q, , which
can be very large and spoil the convergence of the perturbative cross section. Additionally,
we see the appearance of the L¢, logarithms. Analogous to the case for the hard function,
we can perform resummation of these logarithms through a multiplicative renormalization
procedure. This multiplicative procedure can be thought of as performing an all order

resummation of the ladder diagrams. To perform this procedure we write

fU b, G fv?) = (2@ FU (b, G/ v?) (2:81)

[A® B] (z,b; 1, (1)) :/ %A(:@/...) B,...), (2.82)
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where ... refers to additional dependence. From this expression, we can exploit the scale

invariance of the bare TMD PDF to obtain the evolution equations

_ afunsub_ ‘ N r 6Z unsub_ | ,
_Z® Olng | (2,6, /V7) = = Oy ® f | (2,65, G1/1%) (2.83)
- 6funSUb_ ‘ o r aZ unSUb_ | ,

_Z® Olnv | (.61, o /%) = = | Olnw ®f | (2, b; 11, 1 V) (2.84)

We see from these expressions that since the TMDs require a renormalization and rapidity
scale, that this leads to a coupled differential equation for the evolution. The evolution in v
is known as the Collins-Soper equation. Additionally, we note that due to the convolution,
the 0f/0Inu and 0 f /Olnv terms cannot be isolated to all orders in perturbation theory, as we
had done for the hard function. However, at NLO this can easily be inverted by obtaining the
expressions for the renormalized TMD PDF and the multiplicative renormalization factor,

which are given by

- N o, asCp 2w? 202 w_2 3 o
2@ /) =0 -+ 5 P 2y e 2s)
dx’ o,C 1 )
Fs (2, by, G VP = f (33 ) —/7f<x/§ﬂ) 27TF (L+ E) Py (2) (2.86)
a,Crp [ da’ . . 3 . .

The evolution equations become at one loop

aquSUb (.T, b7 s Cl/l/Q)

dlny =T ) f (2,631, G V%) (2.87)
0 unsub b 2
! (gin;u’ a/v) =T7(n) f (l’, b; 14, Cl/l/2) . (2.88)
e ( _ as(w)Cr 3 ey as(p)Cr
W (v, Q) = - L¢, + 5 Iy () = — L. (2.89)

To obtain this contribution, I have written w as a bare quantity that is related to a renor-

malized w as
w? = V1 (V). (2.90)
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By solving these evolution equations, we are performing a resummation at all orders for
a single emission. This is why in the expansion for the Wilson line, we expanded only to
first order. By solving the renormalization group evolution equations, we are summing these
contributions to all orders. The solution to these equations is
. "y y\ Fow)
P (b s G /%) = f (0,05 1, G/ 0E) exp M — Tl V)] (‘) - (29

Ve

We see from the expression for the renormalized f, that logarithms, L = In(p?/pu?) and
L, = In(v2/¢1) enter. Analogous to the case for the hard function, we can evaluate the
distribution on the right hand side at any scales pu., and v, and evolve the distribution up
to the renormalization and rapidity scales ¢ and v. To minimize the contributions of the
logarithms in the perturbative expressions, we could take u. = u, and v? = ;. Furthermore
we can turn our attention to the IR divergence and the finite part. The general procedure

is to write the UV finite TMD PDF in terms of the UV finite PDF through the relation

funsub (ZE, b7 1, C1/V2) _ [O ® funsub} (l’, b, 1, Cl/VQ) ) (292)

We then expand the TMD PDF and PDF to NLO. Upon performing this analysis, one finds
that the IR divergences of the TMD PDF and PDF are the same at NLO. We can then
absorb these IR divergences into the definition of the collinear PDF and obtain a finite and
renormalized TMD PDF. We also recover the one loop coefficient function for quark to quark

splitting

Cosar (25511, C1 /V?) = 84yg6 (1 — )

+ 0g/¢' asiF [L Leo(l—x)+ gLé (1—2)+(1— x)} .
Qg 1
Cyo(,bs 11, G /1) = [x(l — )T — §Pq<_g(x)L] :

In the second line, I have included the one loop matching coefficient for quarks matched onto

gluons for completeness.
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Figure 2.7: The graphs which provide the soft contributions to the cross section. The two

graphs on the left have hermitian conjugates.

2.5.5 Soft Contribution

In the previous section, I demonstrated that an infrared rapidity divergence enters into the
collinear distributions and discussed that this divergence indicated that a new soft mode was
contributing to the cross section. The scaling of this mode was found to be I* ~ Q (A, A\, \)
while the scaling of the traditional soft gluons is I* ~ Q (A%, A2, \?). To differentiate these
two contributions, we will call the gluons which scale as I* ~ @ (A, A\, A) soft and the gluons

which scale as I* ~ Q (A%, A2, \?) ultra soft.

The ultra-soft contribution to the cross section can be obtained by considering ultra-soft
gluon emissions from the incoming quarks. The interaction of a collinear quark with a soft

gluon is given by

% (_ig’)“uta> éc (p) = —gtaﬁn—.uléc (p) + 0 ()\) 7 (293>

which is an eikonal vertex, which is represented graphically by a gluon attaching to a double
line. Similar Feynman rules can be obtained through the interaction with anti-collinear
quarks and anti-quarks. By considering all possible interactions of the soft gluons with the
incoming quarks, you obtain the graphs in Fig. 2.7. In those graphs, the left two diagrams
contain hermitian conjugates. The right two diagrams vanish since n-n = n-n = 0.
Furthermore, the first and second integrals are shown in the appendix to be proportional
to scaleless integrals and therefore vanishes in dimensional regularization. Thus there is no

ultra-soft contribution to the cross section. This behavior is a consequence of the fact that the
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observable is not in any way sensitive to the dynamics of the ultra soft gluon radiation. The
observable is sensitive to y and Q?, and therefore gains access to x1, the collinear component
of the momenta which scales Q \°. The observable also has sensitivity to ¢, which scales as
Q ). However, the dynamics of the ultra soft gluons scale as A2. These soft gluons are then

also integrated out and give a zero contribution above tree level.

In the case of the soft gluons, we can see that the observable will be sensitive to the
transverse momentum of the soft gluons, which scales the same as ¢,. Let’s first begin
by introducing the Wilson lines for these soft gluons. These Wilson lines will enter an an
analogous way to the collinear Wilson lines as effective vertices. Their precise expressions in

position space are

- n- A, (2.94)

Applying the Feynman rules to the graphs in Fig. 2.7, we obtain the explicit expression

for the soft function contribution

A Y ALY d?l 2 ) B ntnY
S(AL)_295< ) /(%)d (2m) 0 (%) (=) 0* (AL = 11) ———. (2.95)

After carefully considering this integral, it can be seen that there are two sources of UV
rapidity divergences associated with [t — oo and [~ — oo. These divergences represent
the contamination of the collinear gluons into the soft region. Replacing the Wilson line

Feynman rules with the regularized ones, we obtain

-n

20,
== (2.96)

v

N 2,7E\ € d4l ntn?
a2 9of K€ 2\ 2 .
S =2 ( I ) /(27r)d (2m) 8 (F) (=0) 8" = L) 75

The exact details for the calculation are in the appendix of this section. After performing

the integration, Fourier transforming into b-space and expanding in 1 and €, we are left with

A aCrp 5 |4 1 2 2 , T
b)) =1+ L2 |2 (-2 — L)+ 2 L, —2LL, - 12— | . 2.
Sty =1+ ke |2 (2o 1)+ 5 -2 g (2.97)

The intuition for the double divegences is the same as for the hard and collinear functions.

The double poles ne are associated with large rapidity modes with high invariant mass while
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the €2 poles are associated with small rapidity modes with a large invariant mass. To obtain
the evolution of the soft function, we perform the same procedure that was done for the

TMD PDF. Namely, we write

S(b; p,v) = Z(b; p,v) S(b; i, v) (2.98)
where S is the renormalized soft function. Exploiting the scale invariance of the bare soft
function. The evolution equations become

S (b; i, v)
Olnp

98 (b; i, v)

=175 p,v) S

=175(b; p,v). (2.99)

The full exponentiation of the Wilson line is obtained by solving these renormalization group

evolution equation. The anomalous dimensions for the soft function are defined as

L Zbipy) au(w)Cr
I (b; =— =2 L 2.1
u(ba:uv V) Z(b,u, I/) @lnu T v ( OO)

1 0Z(bsp,v)  2a4(p)Cr

e, ) =— = L. 2.101
u( ,,LL) Z(b7 L4, ]/) alnu T ( )
Solving the evolution equations, the soft function can be written as
mdy! U T3 (b;p)
S(b; p,v) = S(b; ps, vs) exp U " (T, (b s V))} (V—) : (2.102)
Hs s

To minimize the contributions of the large logarithms, we can take us = vy = py.

2.5.6 Renormalization Group Consistency

In formulating the cross section, we have introduced two scales p and v, which are associated
with factorizing off the IR from the UV physics, and associated with factorizing the collinear
from the soft physics. However, this separation is simply an organization tool and does not
represent the underlying physics of the interactions. If we were to decrease p as an example,
a sample of the contributions which were previously defined as soft and collinear would be

re-labeled as hard. Nevertheless, the contributions to the sum of total diagrams entering into
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the cross section would remain unchanged. The renormalization group consistency condition

is then

do do
- 0. 2.1
dlnp  dlny 0 (2.103)

Since the cross section is related to the functions H, S, f, and f; through a convolution, the

requirement for RG consistency can be written as

y o= Y roi=o0, (2.104)

where 0; = f,, f7, H, and S. Summing twice the contribution of Eq. 2.89 with Eqs. 2.100,
2.101, and 2.66, we one can easily show that the renormalization group consistency conditions

holds since ;& = Q.

2.5.7 Resummed Cross Section

In the literature, it is common to define ‘proper TMDs’ through the relation

F(@, by, G) = U (2, b0, G /) /S (b, v) (2.105)

where one can show that the product of these contributions no longer depends on the rapidity
scale v. The idea behind such a combination is that one hemisphere of the soft radiation is
absorbed into each of the TMD PDFs so that there is no need for a rapidity cutoff scale.
From our expression of the TMD PDF and the soft functions, we can define the proper TMD
PDF as

S (0, G0) = f (2,65 ey G /02) /S (05 s, vs) (2.106)

m dM/ v 'S () W d,u’ 1 y 315 (bi)
< oxp [ / —w,u)] (—) exp [ / —(—mb;u,u))] (—) .
e W Iz v, e H\2 Iz v,

We note that the scales p. and pgs both minimize the logarithms in the perturbative ex-
pansions for g, = pus = pp. It is common in the literature to then take p. = u,. After
introducing the expressions for the anomalous dimensions and the fixed order contributions,

the expression for the proper TMD is given by

fTMD (xubnu’?Cl) = [CTMD ®f} (x,b,,u, Cl) (2107)
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"dy' o (M/> Cr Mlz 3 QS(M)CF Vs
xexp{/c 7—7T [ln(z)—i-ﬂ—l——ﬁ Lln(y—c>}.

where the coefficient function is given by

C;F/;A/D (@, by 11, G1) = 070 (1 — )
asCp > oy 1 B 3 B N 2 _
+ 0q/q 5 [Lln(Q) d(1—x) 2L d(1—2x)+ 2L(5(1 z)+ (1 —x) 125(1 x)| .

Using the properly defined TMDs, the expression for the resummed cross section becomes

do o?

bdb
= — (14 cos’d) Hpmis(Q; p1q) E 62/—J (bqy) (2.108)
dQ? dy d?q, dQY  4sQ - (2)

[CTMD ® f] (.Tl, b; He, Cl) [CTMD ® f] (3:27 b; K, CQ) exXp {_Spert (b, ey HQ5 Vs, Vc)} .
In this expression, we have introduced the perturbative Sudakov for the cross section which
is defined as

1 )
Spert (b pe: 11Q: Gix ) =/ ’ Tlf {Fcusp () In (%) +9" (u’)] + D(b; pto)n <%) ,

(2.109)

c

where D(b; i) is the Collins-Soper kernel, which is also known as the rapidity anomalous
dimension. The expressions along with the organization in powers of ay is given in the

appendix of this chapter.

2.5.8 Non-perturbative contributions

In the previous section, I outlined a procedure for factorizing cross section and calculating the
perturbative contributions. To perform full tomography however, we must also address the
non-perturbative contributions. To study how non-perturbative contributions related to the
cross sections, it is instructive to study Eq. 2.108, where the range b > 0 is integrated over.
We note in that expression that the logarithms are minimized by taking p. = puy = ¢/b. At
small b, the scale u, becomes perturbative. As a result, the non-perturbative Sudakov evolves
the distribution from s, to pug, both of which are perturbative. However, at sufficiently large

b, the scale pu, becomes non-perturbative. The intuitive understanding of factorized cross
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sections in b-space is that the small b physics is dominated by perturbative contributions

while the large b physics is dominated by the non-perturbative contributions.

The non-perturbative contributions to the cross sections enter from three sources. The
first source that I will address are those stemming from the collinear distributions. We saw
in the previous section that TMDs are matched onto collinear distributions. As a result,
these non-perturbative collinear contributions must be accounted for. These PDFs can in
principle be used from previous global analyses within a purely collinear framework. We note
that within this method, the main PDF's which are available are the unpolarized PDF f, the
helicity PDF g, and the transversity PDF h. As I will demonstrate in this thesis however,
there are several TMD PDFs which do not match onto either any of these mentioned PDFs.
In this case, the TMD PDF of interest will be matched onto a collinear PDF in the usual

way

@ (z,b;1,¢) = [C¥ @ @] (x,b;1,C) (2.110)

where ¢ is a TMD PDF and ¢ is a collinear PDF. In this case, we would need to param-
eterize ¢ and obtain its behavior in a global analysis. Typically this is done by taking a

parameterization
p(x) ~ Nyz®r (1— )", (2.111)

and fitting the parameters Ny, ay, and Sy.

The second source of non-perturbative contributions that I will discuss enters due to
the intrinsic transverse momentum of the quarks. We discussed in the previous chapter
that the solutions of the CSS equations account for the transverse momentum which is
generated through perturbative radiation. The so-called ‘intrinsic’ transverse momentum is
the transverse momentum which is generated through non-perturbative radiation and tends
to be around Agcp. While such a transverse momentum seems quite small, I'll note that
in Z boson production in Drell-Yan collisions, the average transverse momentum which is
produced perturbatively tends to be close to 3 GeV, while for collisions with smaller (), the

perturbative transverse momentum is much smaller. This intrinsic transverse momentum
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is accounted for through the ad-hoc introduction of an intrinsic non-perturbative Sudakov
factor into the b dependent integrand for the Drell-Yan collisions. The expression for the

intrinsic non-perturbative Sudakov is given by

€xp [Sll\?é’(xl; T2, b7 Q7 QO)] = exp [_gq(xb b27 Q? QO) - gq(xZa b27 Qv QO)] : (2112)

The function g, serves to smear the transverse momentum of the incoming quark in momen-
tum space and is usually parameterized so that the non-perturbative Sudakov resembles a

Gaussian or exponential distribution.

The final source of non-perturbative contributions to the cross section that I will discuss
originates from the evolution equations. If we study the anomalous dimensions of the soft and
collinear distributions, we see that the rapidity anomalous dimensions scale as L = In (u?/p3).
From this behavior, we see that if b grows large, that the rapidity anomalous dimension
becomes non-perturbative. This behavior is an indication that the rapidity evolution of the
TMDs contains a non-perturbative contribution. To account for effect the non-perturbative
rapidity evolution Sudakov is introduced

1 G162
exp [Syp (%1, T2,b, Q, Qo)] = [—ZgK(b)ln (? . (2.113)
0
This Sudakov provides information for the non-perturbative evolution from the initial rapid-

ity scale )y to the hard rapidity scale Q.

To implement the Sudakov contributions into the cross section, we note that the pertur-
bative Sudakov terms contain contributions associated with generating transverse momenta
through perturbative radiation. Up to power corrections of order ¢, /@, the contributions
of the perturbative and non-perturbative momenta should be additive and the resulting

Sudakov for the system becomes

Spert (b7 Mey 1Q 5 Vs, Vc) — Spert (b; Hey HQ, Vs, Vc) + SNP(xlax% b7 Qa QO) ’ (2114>
SNP(Ilaan b7 Qa QO) = SliIaP}:(xla T2, ba Q7 QO) + Sli\?lg(mlax% b7 Qa QO) ’ (2115)
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Conventionally, we can define the non-perturbative contribution to each TMD as

Sip(r1,b,Qo, Q) = —g, (21,6% Q, Qo) — igK(b)hl (%) , (2.116)
0

Sp (2,0, Q0, Q) = —g, (22,0%,Q, Qo) — igK(b)lIl (%) : (2.117)
0

In this paper, I will always take g, to be independent of x so it’s depenence will be dropped

from this point forward.

2.6 Appendix

2.6.1 TMD evolution ingredients

The following expansions, numbers, etc, can be found in the 2013 PDG [63]. First of all, we

need the expansion of the strong coupling in terms of Agep:

as(p) 1 B Inx _flnzx —Inz—1 p51

el P B - LR (2.118)
where @ = In (1 /Adcp), and the coefficients of the S-function are given as
Bo 2% Ca— Z%Tan, (2.119)
oA =% Ch— ? CuTeny — 4CpTrny (2.120)
Do :%27 Ci+ (20% — % CrCy — % Oi) Trng
+ (% Cr + % (JA) TinG . (2.121)

Since we want the resummation up to NNLL, we take the expansion of a, with Fy, 51 and
B2. Depending on the number of active flavours, the value of Aqcp changes. For ny = 4 we
have Aqep = 0.297 GeV, and for ny = 5 we have Aqcp = 0.214 GeV. The pole-mass for
bottom-quark is my, = 4.7 GeV.

The rapidity anomalous dimension, Collins-Soper kernel, is defined perturbatively as

oo

D(b; 1) = Zidw’@ (Z‘—;)"Lk, (2.122)

n=1 k=0
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where the coefficients up to NNLL are given by

d* =0,  d*Y =Ty/2,

404 112
d®Y =C,Cr (7 - 14(3) - 2_70FTana
d®Y =T,/2, d®? =T By/4. (2.123)

On the other hand, in order to describe the perturbative TMD evolution, we want to ana-
lytically solve the integral
P di 2
/ Tll/ (7‘/ + 1—‘Cusp lnlf_g> ) (2124)
pr M H
where the coefficients of the perturbative expansions of the anomalous dimensions can be

found in the below.

2.6.2 Integration at NLL accuracy

For this order we take vy, I'g, I'1, By and ;. Thus we have:

Modn (i
O%LL _ / TN % (1)
199 ,u 47T

_o0 [T (Lo Ol
_260/3% e (zv B3 x?)
)
26 I653 T .

BU di i
oy = [ By, el (2120
py B AT R

Ty (L B\
_250/3% dx <x 5 x2)<xU x)

TU

(2.125)

Iy ol 51 ry  aylnz  In?z\1|"
=— |- z+oylhzr ——=|———-—— — —
20 v 2 x x 2 .
rU dn =\ 2 2
Ot :/ Sl (%(M)) ln/f—g (2.127)
p P A I

Fl LEU 1 ﬁl Inx 2
-1 de (= - 2L2° _
i), v (-G eon
Iy Ty i (1 zy Inx zylne
= |—— —lnzx - 2—
x  4x? x 212




+

422 2Tx3 222 93 212 33

B
The final result is then
U di 2
/ EN (,yv + Cousp lnMU) _ Cfly\(I)LL i CFNOLL + C«INlLL'
I

L 7

Ik ( 1 20y Inz  2xylnw N In’z xUIDQx)]

U

zr

(2.128)

Be careful with the number of active flavors. The number of flavors for the xy that appears

inside the integrand is fixed and depends on the value of py. However, depending on the

hierarchy between py, uy and my, we might have to split the integral in several pieces, and

in that case, when we substitute the limits of the integral, x; and xy, they would have

different numbers of active flavors (still the z that already appeared in the integrand before

the substitutions just depends on the value of py).

2.6.3 Integration at NNLL accuracy

For this order we take vg, 71, I'o, I'1, I's, Bo, B1 and B5. Thus we have:

i ay(7)
CONNLL _ / ap s
Yo " — o A

fi

L

BT T
260 Ju, x B2 By z? B @®

% 6 (=1 —1Inx 32 1 In%z By [ —1
_T&){lm__g(—x )*%(@‘W)Wa(ﬁ)}

- [ (LAl Gt —lna—1 @;)2
oL r Bga? By z? B @3
M 1 2 2 In*(z) 2In(z)
B P_+_<_Wﬁ_ 3a3 %3)
f( 789 hﬁ@)+6m%@ 43In* () mmm@)
312525  bad 2525 12515 62525

2 1 b1 1 In(x)
5 (‘%) R (‘47:2‘ 27 )

2/ 10 In’ 1 1
iy ~ In"(z) N n(x) +2ﬂ_§ 1
By \ 2723 33 923 Johs 3a3
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128z 44 + 1624 + 32x4

_2/3132 1 _1n(:1:)>
I 16z* 4zt

+261252 28 In*(x) N 3ln(x)
pE \125z°>  bab 2527

CINONLL :/ dpi T, as(f1) ln@
KL

gé < 9  In’(x)  W’(z) 91n($)>
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The final result is then

2% d
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KL Iz H

2.6.4 Evolution of the Hard Matching Coefficient

The evolution of the hard matching coefficient Cy,, which is related to the usual hard function

as H = |Cy|?, is given by

d 2
TGy Q) =0, (a0 ) (2135)
QQ
Yo, = 1—‘cusp( )lnﬂ_ + v ( ) (2136)

where the cusp term is related to the evolution of the Sudakov double logarithms and the
remaining term with the evolution of single logarithms. The exact solution of this equation
is

Hf dla

Oy (Q*/12) =Cy (Q*/1i2) exp [/ﬂ = oy (%(M%ln?—j)]

i

as(uf) gy
=Cv(Q°/1i7) exp [/( _)f %%V (075)] : (2.137)
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where we have used that d/dlny = B(as) d/das, where f(as) = das/dlng is the QCD S-

function.

Below we give the expressions for the anomalous dimensions and the QCD S-function,

in the MS renormalization scheme. We use the following expansions:

s\
Touwp = 3 T <E> , (2.138)
1

v _ - v o[ Qs\"
=Y (E) (2.139)

n=1
B = —2a, ;@Ll (%)n . (2.140)

The coefficients for the cusp anomalous dimension I'¢,g, are

Ty =4C,
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55 16
+CrTrny (—3 + 16§3) — ﬁTEnfc] : (2.141)

The anomalous dimension " can be determined up to three-loop order from the partial

three-loop expression for the on-shell quark form factor in QCD. We have

78/:_6CF7

961 11x2
vy =Ch (=3 +4n* — 48¢;) + CrCy (—7 — 3”

260 4#2)

+ 52<3> + CFTan (2—7 + ?

(2.142)
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CHAPTER 3

Global Analyses of the Spin-Dependent Proton

3.1 Introduction

So far I have established a procedure which can be used to perform quantum tomography in
an unpolarized hadron. In this Chapter, I will describe in details how we perform a global

analysis of the polarized structure of hadrons.

Intuitively you can think about a polarized hadron as containing two seas, one sea con-
sists of particles which are influenced by the introduction of the polarization and the other
sea consists of particles which are uncorrelated with the polarization. In experiments which
measure the spin-dependent structure of the proton, the aim is to remove the background
contributions from the uncorrelated sea. This is accomplished by measuring spin asymme-
tries, which are the difference between two cross sections with opposite spins. For the past
five decades, spin asymmetries have served as the experimental driving force for probing this
structure. In these early days, it was thought that spin asymmetries should be driven by
perturbative contributions, and as a result these spin asymmetries should be small. How-
ever, this contrasted with the experimental measurements which demonstrated large spin
asymmetries. To reconcile the spin asymmetries with QCD, it was demonstrated that the
relatively large spin asymmetries arise due to correlations between multiple partons, which

is naturally addressed in higher twist contributions to the cross section.

By far, the most experimentally and theoretically studied example of such an effect is the
Sivers asymmetry, in which an initial-state hadron is transversely polarized. The expression

for the cross section for a polarized hadron can be obtained by replacing the unpolarized
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TMD with the spin-dependent quark-quark correlation function

€7k ,5 o
(punsub (ZL’, kL7S;,U/7C/V2) — (f _ #fﬁﬂ) %"_ e (3]‘)

In this expression, the ellipsis represents other TMDs do not do not contribute to the Sivers
asymmetry. The second term contains the contribution of the Sivers function [64, 65], which
provides the distribution of unpolarized quarks in a transversely polarized hadron and is the
main topic of this chapter. An important aspect of the second term is that the prefactor

changes sign under time reversal. This can be readily seen by re-writing this term as
Elj_ak’LpSLg = <P X kL> - S (32)

Since QCD is invariant under time reversal, the partonic cross section must also be must
then also be time reversal odd. From this logic, in Ref. [66, 67] it was demonstrated that
time reversal odd partonic cross sections could be obtained by considering poles originating
from three parton correlations functions. For instance in Fig. 3.1, I have provided the par-
tonic processes for the Sivers asymmetry in Drell-Yan and Semi-Inclusive DIS. In a collinear
framework, the introduction of another gluon produces Wilson coefficient functions in the
OPE which are suppressed by Aqcp/@ and thus enter at collinear twist-3. This three parton
correlation function is known as the Qiu-Sterman function. In a collinear limit, one needs
to consider two types of poles. The soft gluon poles occur where the additional gluon has
a Bjorken z, — 0 and the soft gluon attaches to an external parton. The hard gluon poles
occur where an internal propagators go on shell and z, # 0. In a TMD framework, the
tree level hard contribution has no internal lines and as a result, the poles which generate
the spin asymmetry only occur in the limit that x, — 0. Due to this z, — 0 scaling, the
Sivers function can be treated as a two parton correlation function which is related to the
limit of the Qiu-Sterman function. This connection between the Sivers function and the
Qiu-Sterman function has important consequences for universality. It is important to note
that the poles enter into the partonic interaction are simply factors of ig. These factors are
commonly absorbed into the definition of the Sivers function to render the partonic contri-

bution time even while making the Sivers function time odd as a result. This absorption
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has causes the Sivers functions in Semi-Inclusive DIS and Drell-Yan to be opposite from one

another.
electron
anti-quarRk
quark
mn e
Tl [e, 0t 4] A INUR Y
i A
= n_ =
DY I siDIS -
past-pointing future-pointing

Figure 3.1: Top: Diagrams associated with the soft gluon pole contribution in the hard

diagram. Bottom: The Wilson line structure for Drell-Yan and Semi-Inclusive DIS.

A fundamental goal of the future Electron Ion Collider (EIC) [68] will be high precision
determination of of the Sivers function. Within the past several years, the field of TMDs
has been pushing for increased perturbative accuracy. In [69, 70] global extractions of the
unpolarized TMD PDFs and TMD FF's were performed from Semi-Inclusive DIS and Drell-
Yan data at leading order (LO) and next-to-leading logarithmic (NLL) accuracy. In [71]
the unpolarized TMD PDFs were extracted at next-to-next-to leading order (NNLO) and
next-to-next-to leading logarithm (NNLL) accuracy. In [72] the TMD PDFs were extracted
at NNLO+N3LL accuracy from Drell-Yan data. In [73] and [74], the TMD PDFs and
TMD FFs were extracted simultaneously from Semi-Inclusive DIS and Drell-Yan data at
NNLO+N?LL. Progress has also been made in understanding the predictive power of the
TMD factorization formalism in different kinematic regions [75, 76], and in matching with

the collinear factorization [77, 78, 79].

Prior to my analysis, the highest precision ever extraction of the Sivers function has been
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at LO+NLL in [80, 81]. However, I will note that after my analysis an additional work was
performed at LO+N3LL accuracy in Refs. [82, 83]. In this chapter, I will discuss my work
where I performed the first and only extraction of the quark Sivers function at NLO+NNLL.
This analysis took into consideration for the first time the global set of experimental data,
which included Semi-Inclusive DIS at HERMES, COMPASS, and JLab, Drell-Yan lepton
pair at COMPASS, and W/Z production at RHIC. At HERMES, the Sivers function has
been probed by measuring both pion and kaon production in Semi-Inclusive DIS on a proton
target [5]. At COMPASS, the Sivers asymmetries have been measured in [84] for unidentified
charged hadron production from the proton target, with a re-analysis of this data in [6]. The
measurements with a deuteron target are presented in [4]. The Sivers function has also
been probed for a neutron target at JLab for pion production in [7]. To test the modified
universality prediction, Drell-Yan Sivers asymmetries have been measured at COMPASS [§]
for virtual photon (or lepton pair) production at relatively small energy scales of ) ~ a few
GeV, as well as RHIC [9] for W and Z production at much large energy scales, Q) ~ My,.

Finally, after our paper was published multi-dimensional binning was performed in [85].

The rest of this chapter is organized as follows. In Sec. 3.2, I will summarize the relevant
TMD factorization formalism for Semi-Inclusive DIS and Drell-Yan processes. In Sec. 3.3,
I first discuss our non-perturbative parameterizations for the unpolarized TMD PDFs and
TMD FFs, and benchmark them with the Semi-Inclusive DIS hadron multiplicity and Drell-
Yan cross section data. I then present our non-perturbative parametrization for the Sivers
function, and discuss how we performed the DGLAP evolution of the Qiu-Sterman function.
In Sec. 3.4, I'll present our fit results, where I'll explore several different ways for performing
the fit. In Sec. 3.5 I provide predictions for Sivers asymmetry at the EIC. I conclude this

chapter in Sec. 3.6.

3.2 Formalism

In this section, I provide the TMD factorization formalism for the Sivers asymmetry in Semi-

Inclusive DIS, Drell-Yan and vector boson production. I'll begin with Semi-Inclusive DIS in
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Sec. 3.2.1, while in Sec. 3.2.2 and 3.2.3 I'll present the formalism for Drell-Yan lepton pair

and W/Z boson production, respectively.

3.2.1 Sivers Formalism in Semi-Inclusive DIS

The factorized cross section for Semi-Inclusive DIS can be obtained in a similar manner that
I demonstrated for Drell-Yan. In the appendix, I provide finer details of this calculation. In
this section however, I quote that the factorized cross section [86, 34]. To begin, let’s denote
the momenta and the spin vectors as e(¢) +p(P,S,) — e ({') + h (P,) + X, where S| is the
transverse spin vector of the polarized nucleon. As I discussed previously, when introducing
a spin a part of the distribution will be affected while another part will remain unchanged.

Therefore, the factorized cross section can be written as

do . SIN(pn—s
s =" [FUU +sin(gp — ¢ ) Fop@n=o] (3.3)
In this expression o§™ is the leading order (LO) electromagnetic scattering cross section
given by
2ma
= QfM [1+(1-v)7], (3.4)

where agy is the electromagnetic fine structure constant. The function Fyy is the spin-
independent structure function and F, giﬁ(‘f’h*‘i’s) is the spin-dependent one. We can see from
the expression for the spin-dependent structure function that there is a sinusoidal modulation
between the angles ¢, and ¢, the azimuthal angles of P, produced hadron and the spin
of the parent hadron. This modulation originates from the prefactor attached to the Sivers

function in the quark correlation function.

The interaction between the quark and the electron is moderated through the exchange
of a virtual photon with momentum ¢ = ¢ — ¢ with invariant mass —Q? while the electron-
proton center of mass energy is denoted S. Using these kinematic variables, the we can

define the momentum fraction variables

QQ P. Q2 P-Ph
T = = — = zZy = .
"Tapg TP T mST T Py

(3.5)
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Figure 3.2: The SIDIS cross section in the hadronic Breit frame.

In Eq. 3.3, dPS = dap dQ? dz;, d* Py, is the phase space element. In this phase space element

is the transverse momentum of the observed final-state hadron.

In Fig. 3.2, I have included a plot demonstrating the various angles that enter into the
scattering cross section. For the purpose of experiments, it is conventional to take ¢, to be
7/2 so that the spin is oriented in the y direction. Experimental measurements also take ¢y,

to be 0 so that the hadron moves in the x direction.

The Sivers asymmetry is the experimentally measured quantity and is given by
SIN ¢y — s
ol (Pr—0s)

ASIN(@n—6s) _
ur FUU

(3.6)

To obtain the factorized expressions for the structure functions, I'll note that the projection
operators for the unpolarized TMD PDF and the Sivers function are the same. Therefore
the hard contributions are identical in the two processes. Furthermore, I also note that since
unpolarized quarks are produced in both processes, the soft functions must be identical. The

structure functions can then be shown to have the form

FUU(93B7 2n, Ph, Q) = HDIS(Q; MQ) cP® [fD] ) (3-7)

in (g, - h-k
Fglqy(d)h *Nwp, 2n, Por, Q) = HPS(Q; pg) CP [— MLflLTD] : (3.8)
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To obtain the hard function, I have just performed the calculation in the previous section
except that I have taken the virtuality of the photon to be negative. The exact form is given

by

Q

3 Q2 Q2 7-(-2
HYS(Q: o) = 1+ 220, [2m [ ) - L2 a4+ T
(@5 1e) * Tt 1% 2 118 + 12

which matches the result in [61, 87]. In these expressions, I have used the short-hand notation

HPS(Qs 1) = HYS(Q; p1g) exp ( / ' ‘L—’“frH (@ u’)) | (3.9)

(3.10)

CP® [wAB] =Y " e; / d’k | d°py 6% (zpky +pi — Pri)w(ky,p1)

q

X Bh/q<zhapl_;:u7 C?) Aq/p(xBakJ_;lua Cl) ) (311)

for the convolution integrals. In these expressions e, is the fractional electric charge for
the quarks. k, represents the transverse momentum of the quark relative to the nucleon,
while p, is the transverse momentum of the final state hadron relative to the fragmenting
quark. h= P, /Py is the unit vector which points in the direction of the final-state hadron
transverse momentum and M is the mass of the struck nucleon. In this expression, I have
introduced flLT o/p 18 the Sivers function in Semi-Inclusive DIS and Dy, is the unpolarized

TMD FF.

Once again, we simplify the convolution integrals by working in b-space and the structure

functions become

> bdb bP
Fyu(ep, 2, Poi, Q) =HP™(Q; ) Z / —Jo< hL)

X Dhjq(2n, 5 11, C2) fop(@m, b5 1, C1) (3.12)
n(¢y,— < 2dh  [bP
Fngn((z)h ¢S)<$B7 Zhs PhL: Q) :HDIS(Q; /l) Z 63/ I Jl ( ZZJ_)
0
q
X Dyq(2n, b3 11, G2) figqsp(®8, b 11, C1) - (3.13)
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The TMD FF and the b-space Sivers functions are defined in terms of their momentum space

counter parts as

d2pL —ip,-b/z
Diyq(z,b; 11, ¢) :/76 PLE Dy (2,151, €) (3.14)

P i €) =g [ kg e P RS s, )
_ (W L
= (5 ) Hrapletin ). (3.15)
As in the case of the TMD PDF, these TMDs can be expanded in terms of collinear dis-
tributions. The TMD FF can naturally be matched onto the collinear FF. Since the Sivers
function is related to a limit of the Qiu-Sterman function, it naturally matches onto that

function and we have the matching relations

171 a»
Dh/Q(Z7 b; p, C) = ; [Cﬂ—q ® Dh/l} (Z’ b; p, C) ) (316)

i ap (2,0 1, C) = [CqH®Tm/p] (z,b;1,€), (3.17)

In the case of D, the operator ® denotes the convolution that was previously discussed. In
these expressions, the sum over the index ¢ = ¢, g is implicit. The convolution in the case of

the Sivers function is more complicated, since it involves two kinematic variables z; and Z»:

_ Y diy diy - . . A
[Oq<—i®TFi/p] (Iab;:uag):/ S : A20q<—i(x/x17x/x27b;ﬂ:C)TFi/p(xth;:U’)‘ (3-18)

z L1 X2

The C functions in the above equations are the Wilson coefficient functions, and their ex-

pressions at NLO are given in Appendix. 3.7.

For the cross section, it is typical to take u = Q, ¢ = Q?, pe = ps = pp, and ¢; = pi. The

expressions for the cross section become

Fuu(ep, 2n, Pat, Q) = HYS(Q; Q) / iy (bp“) > e (3.19)
0

2m Zh
q

172
X |:Oq<—i ® fi/p:| (x5, b; o, 117) ) [Oﬁ—q ® Dh/j} (21, b; o, 17
h

X exp |:Spert (ba Hb, Qa :ul2;7 QQ) - SI{IP(bv QOa Q) - SIQP(ZIM b7 QOu Q)i| 3
i - > dbb? bP
FO—=0) (00 2 Poy, Q) = HPS(Q: Q) /O N ( “) ST (3.20)
q

4 Zh
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_ 1r1~
X |:Cq<—z ® TFZ/p] (‘/EB7 b7 Hb, l’i); [Ow—q ® Dh/]] (Zh7 b’ b, /J/g)
h

X €Xp |:Spert (b, 2 Qa :u’za Qz) - SliIP(b7 Q07 Q) - Sl%I)P(Zha by QOJ Q>i| .

Note that in principle as b grows large enough, an issue occurs as 1/b ~ Aqep due to the
Landau pole. In Sec. 3.3.1 I will address this issue. In the expression for the structure
functions, I have introduced the non-perturbative Sudakov functions for the TMD FF and

. . D S
Sivers function as Syp, and Sp.

3.2.2 Sivers Formalism in Drell-Yan

Analogous to Semi-Inclusive DIS, the cross section with a transversely polarized initial-state
hadron is given by [88, 89, 90, 91]

do

s = 00" |Wou +sin(é, — 0)Wpp @] (3.21)

In this expression, the point-like scattering cross section for ¢ g — [ is given by

4 052
DY EM
0y = == 3.22

0 3SQ2NC ’ ( )

while S = (P4 + Pg)? is the center of mass energy squared and N = 3 is the number of
colors. Furthermore, Wy and ngTn(d)q*%) are the spin-independent and spin-dependent
structure functions. Once again, the spin-dependent structure function contains a sinusoidal
modulation between the azimuthal angles of S| and q,. Note that I have deviated from the
notation in [89] by writing the Drell-Yan structure functions as W in order to differentiate
them from the Semi-Inclusive DIS structure function. The phase space element is given
by dPS = dQ*dy d?*q,, where y, Q, and y are the rapidity, invariant mass, and transverse

momentum of the virtual photon.

We note that in the case of Drell-Yan, there are two asymmetries which are measured
in the literature. The first asymmetry is analogous to the one in Semi-Inclusive DIS and is
given by
ngTn(%—(ﬁs)

Asin(¢q7¢s) _
uT WUU

(3.23)
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This is the measurement that was performed by COMPASS. However the STAR measure-

Sln(¢q bs

ment is Ay, which differs from A;; ) by a minus sign.

Using the results from Sec. 2.5, we can write the factorized structure function as

Wou(2a, Ty, 1, Q) = HPY(Q; ) CPY [f 1], (3.24)

k

WO ,00,Q) = B (@i & | B i ] (3.25)

For Drell-Yan, the convolutional integrals are given by
C™Y [wAB] =) el / Ak d?kyr 6% (Kar + kyr — q1) w(Kar, Kpr)

X Aq/A(xaa kgT; My Cl) BQ/B(:Cba kl%T7 23 CZ) ; (326>

In this expression, k,r and kyr are the transverse momenta of the parton relative to their

corresponding nucleon.

In the QCD background section, we calculated the hard function to be

I /
HPY(Q;p) = HY(Q; po) exp ( d—FH (@ u)) (3.27)
HY(Q: i) =1+ 2205 [P (L) b2 (L) a0 7T (3.28)
B P V7N AT R 7 12| '

Since the soft pole contributions to the partonic contributions are opposite in Drell-Yan
and Semi-Inclusive DIS,; the Sivers functions are defined to be opposite in Drell-Yan and

Semi-Inclusive DIS so we have in Eq. 3.8:

1Ji"DY<x7 kLa H, C) - - ﬁ“SIDIS(x7 kLa H, C) : (329)

This will lead to slightly different definition for the Sivers function in the b-space:
a 1 o ik,
P (onbign €)= [ s K T R (o b )

_ ( “’a) P aral, b3 10,). (3.30)
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Note the additional minus sign in the second line of the equation, in comparison with the cor-
responding Semi-Inclusive DIS expression in Eq. 3.15. Performing the OPE, the expressions

for the structure functions take the form

Wou (e, 26,1, Q) = HDY(Q;Q)/@JO bqi) Ze (3.31)

X |:Cq(—i ® fi/A] (Iaa b; Mz) [Cfﬂ—j ® fj/B] (Iby b; i, Mg)
X exp |:Spert(b; Hb, QJ :U’g7 QZ) - SI{IP(bu QO; Q) - SIJ\CIP(b7 QOJ Q>i| )

2
WEP ) m00,Q) = HYY(Q:Q) [ L h(ban) 3 (3:32)

q
X [C_(q<—i ® TFz/p] ($aa b; Ho, ,ulg) [le(—j@fj/B} (-Tb; b; b, :ug)

X exp |:Spert(b; b, Qv :ulga QQ) - S&P(ba QOa Q) - SIJ\CIP(ba QOa Q):| .

Note that in the second expression, I have already taken into account the sign change in the

Sivers functions between Drell-Yan and Semi-Inclusive DIS processes in Eq. 3.29.

3.2.3 Sivers formalism for W/Z Production

The case for W/Z production very similar to the case for virtual photon production. For

this case, the differential cross section can be written as

dO’V

e =Y [WUUV—l—sm(¢ 6o) W0 ¢s>] , (3.33)

where the phase space dPS = dyd?q, and V = W, Z. Tl note that to arrive at this
expression, I have taken () = My where My is the mass of the vector boson. This is known
as the narrow width approximation. This approximation in general affects the normalization
of q, distributions at () = M at a few percent. However, since we will be interested in a

ratio, these percent corrections are negligible.

For W/Z production, the point-like cross section can be written as

wo_ \/§7TGFM5V O'Z— \/§7TGFM%

UO SNC ) 0o — SNC (334)
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where G is the Fermi weak coupling constant. The expressions for the structure functions
are given by

WUU,V(fEaaxba(JLaQ) = HDY(Q;Q) / @Jo(b QL) Zegq',v (3-35)

2 -
4,9
X [Cq<—i ® fi/A] (za, b5 o, 143 [CqQ—j ®fj/3] (b, b; o, 117)

< exp | Spers (b 15, Qs 15 Q%) = Sk (b, Qo Q) = S (5, Q0. Q)]

i - db v?
WO 0 @) = HY(Q:Q) [ R0 Yy (330

a9’
X |:C_1q%z X TF’L/p] (maa ba b, :ug) [Cq’ej ® fj/B] (wbv b> b, Hg)

x exp | Spere (5 15, Qs 15 Q%) = Sk (b, Qo Q) = S (5, Q0. Q)]

where we have
egq',w = |qu’|2 ) 6Zq',z = <Vq2 + Ag) Ogq’ - (3.37)

Here |V,y|? is the CKM matrix, while V, and A, are the vector and axial couplings of the
Z boson to a quark of flavor ¢q. Just like Eq. 3.23 in the last section, the asymmetry can be

written as a ratio of these structure functions in the exactly same form.

3.3 Numerical Input

To obtain the non-perturbative contributions of the Sivers function, we need to parameterize
all of the non-perturbative physics. In this section, I will discuss the parameterization that
was used in our extraction of the Sivers function. This sub-section is organized as follows. In
Sec. 3.3.1, I will first introduce our parameterization of the unpolarized TMDs. In Sec. 3.3.2,

I will then parameterize the Sivers function.

3.3.1 Unpolarized Non-perturbative Input

To perform a global analysis of the Sivers function, I chose to parameterize the unpolarized

TMDs by taking the results of a previous analysis. Within the literature, there have been
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Figure 3.3: The experimental data for Drell-Yan lepton pair production measured by the
E288 collaboration [1] plotted as a function of ¢, /@) are compared with the normalized
theoretical curve. Different colors represent different invariant mass of the lepton pair from
4<@Q<5,5<Q<6,6<Q<T,7T<<8B8<R<Y1II<Q<12,12<Q <13,
13 < @@ < 14 GeV, respectively. Three panels correspond to different energies for incident
proton beams: 200 GeV (left), 300 GeV (middle), and 400 GeV (right).
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Figure 3.4: Left panel: The HERMES multiplicity data in [2] for pion production from
either a proton (denoted as p — 7) or deuteron (denoted as d — ) target. For better
presentation, the data is offset by 0.0 for (z,) = 0.53, 0.1 for (z;) = 0.42, 0.2 for (z;,) = 0.34,
0.3 for (z5) = 0.28, 0.4 for (z,) = 0.23, and 0.5 for (z,) = 0.15. Right panel: The HERMES

multiplicity data for kaon production. The offsets are half of the offsets from the pions.
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many global analyses of unpolarized TMDs. However, as the goal of this study was to
improve upon the extraction of the Sivers function, we must use a parameterization from
the literature which was performed at NLO+NNLL. Furthermore, as we are attempting to
perform a simultaneous global analysis from data in Semi-Inclusive DIS and Drell-Yan, we
must also select a global analysis which simultaneously fit these data. The global analysis
which most closely matches these requirements is in [92], in which the unpolarized TMDs
were obtained NLO+NLL accuracy from a global analysis. From the analysis in Ref. [92],
the non-perturbative factors for the TMD PDF and TMD FF are given by

94 (b,Q, Qo) =g{V", (3.38)

2
0 (20,0, Q0) =o' (3.39)
gr(b) = goln (bﬂ) : (3.40)

such that the non-perturbative contributions to the unpolarized TMD PDF and TMD FF

are given by
Sp (0, Q, Qo) = —g4(b,Q, Qo) — g (b),  SLu(2,5,Q, Qo) = —gn(b, Q, Qo) — gi (b) -
(3.41)

The factors which contain g{ and g give the Gaussian width of the TMDs at the scale Q.
The factor g, drives the strength of the non-perturbative rapidity evolution. The values of

the parameters that were obtained in this reference are given by
gl =0106, ¢ =0042, g =084, (3.42)

Finally, I also note that the COMPASS Drell-Yan data was obtained through the collision
of a pion with a polarized proton. In [93] the pion TMD PDF was extracted from the
experimental data in [94] and it was found that g{ = (0.082 for pions. In Eq. 3.40, I have

introduced b,, which is defined as

b, =b/\/1+ 0202, (3.43)

where b, = 1.5. This factor acts to regulate the behavior of the rapidity anomalous

dimension in the region where b approaches 1/Aqcp. Following the work in Ref. [36], we can
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replace the scale p, with u,, = 2e772 /b, to obtain a cross section that is insensitive to the
Landau pole. I'll note that various alternatives to this scheme have been presented in the

literature. See for instance Refs. [95, 96, 97].

We will now discuss the parameterization of the collinear physics for the unpolarized
TMDs. For the PDF, we used the HERA_ NLO_as_118 parametrization in [98] for the collinear
parton distribution functions. To parameterize the collinear pion fragmentation function,
we used the DSS14 parameterization [99]. While for the collinear kaon fragmentation
function Dy q(2n; ps,), we used the DSS17 parameterization in [100]. For unidentified
charged hadrons, we followed the work in [73] to use the approximation Dy 4(2; ) =
Drsg(2; piv.) + Dicj(2; v, )-

Having parameterized the non-perturbative physics, I will now check this parameter-
ization against experimental data. We start this comparison by examining a sample of
Drell-Yan data in order to check the validity of the scheme for the TMD PDF. Note that the
Drell-Yan Sivers asymmetry data which enters into our fit from COMPASS and RHIC do
not contain so-called fiducial cuts, or cuts on the final state leptonic momentum. In order
to avoid complications associated with these cuts on Drell-Yan data, we chose to benchmark
our expression for the unpolarized cross section against the E288 data [1], which also does
not contain fiducial cuts, see Tab. 2 of [72]. For E288, the target nucleus is Copper. In order
to describe the Copper TMD PDF, we used nuclear modification prescription in [101]. In
Fig. 3.3, I have plotted the theoretical curve against the experimental data [1], as a function
of ¢, /Q. For each bin, we normalized the theory such that the theory and data are equal
at the first point. Different colors represent different invariant mass of the lepton pair from
4<@Q<55<@Q<6,6<Q<T,7T<<88<PR<1l<cQ<12,12<Q <13,
13 < @ < 14 GeV, respectively. Three panels correspond to different energies for incident
proton beams: 200 GeV (left), 300 GeV (middle), and 400 GeV (right). We find that the

parameterization of [92] is well-suited at describing the shape of the Drell-Yan data.

To check the validity of our scheme for the unpolarized TMD FFs, we now examine the
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HERMES multiplicity defined as

(dO’/dQZBthdQ2dPhJ_)
(dO’Dls/dl'BdQ2) ’

Mii(2p, 2n, Poi, Q%) = (3.44)

where the superscript h denotes the species of the final state observed hadron, and the
subscript “H” represents the HERMES data. We also study the COMPASS multiplicity

data, which has a slightly different convention and is given by
Ml = 2P, M}, (3.45)

where the subscript “C” denotes the COMPASS data and M} is defined in Eq. 3.44. On the

other hand, the denominator in Eq. 3.44 is the inclusive DIS cross section and is given by

DIS 2

doprs ofi 2 Yy 2
= F - F 3.46
dl’BdQQ T5 2(];37@ ) 1 + (1 _ y>2 L<$B>Q ) ) ( )

where Fj is the usual DIS structure function while F7, is the longitudinal structure function.
For their precise definitions see [102]. We compute the denominator at the NLO by using
the APFEL library [103].

In the left panel of Fig. 3.4 we plot the HERMES pion multiplicity data [2] as a function
of q1/Q along with the numerical results for the theory. In the right panel of this figure
we plot kaon multiplicity data and theory. As shown in the figure, different colors represent
different average zj values from (z,) = 0.15, 0.23, 0.28, 0.34, 0.34, 0.42, 0.53, respectively.
In these plots, we have normalized the theory so that data is equal to the theory at the second
point of each data set '. In Fig. 3.5, we plot the COMPASS multiplicity data [3] for charged
hadron production from a deuteron target along with the numerical results of our scheme.
The triangular points represent the A+ data points while the circular data points represent
the h™ data points. Here again, different colors represent different z;, = 0.2, 0.3, 0.4, 0.6,
respectively. From these plots, we find that the presented parameterization work very well
at describing the shape of the multiplicity data for both HERMES and COMPASS data,
indicating that the scheme for the TMD FF's are valid.

'Without normalizing to the second point of the data, we find that the overall normalization factor is
around 2 for each data set, which is consistent with the results of [92].
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3.3.2 Numerical Scheme for Sivers Function

To parameterize the non-perturbative Sudakov for the Sivers function, we take the parame-

terization

b
_ 0, @b e (3.47)

2 QO b*

In the first term, we have used the same non-perturbative contribution for the rapidity

S&P(bu QOa Q)

anomalous dimension. In the second term, we have introduced the Gaussian width of the

Sivers function.
To parameterize the collinear dependence of the Sivers function, we must parameterize the

Qiu-Sterman function. Through trial and error, we found that the optimal parameterization

which provides a stable fit is given by

TFQ/P(xaxwﬂo) :Nq(‘r)fQ/p(xvﬂo)’ (348)

where Tp 4/, is the Qiu-Sterman function and N,(x) is a collinear correction given by

(aq + Bq) (aq+Bq)

agcq Bq*

N, (z) = N, x99 (1 — )P . (3.49)

Here we have introduced the initial collinear scale o = V1.9 GeV. In the parameterization
for the collinear modulation, we introduce non-perturbative parameters «,, and N, are used
to fit the up quarks. oy and N, are the fit parameters for the down quarks and Ny, Nz, N,
N5, o are for sea quarks and 8, = 8 is the same for all flavors. This parameterization
enforces that the form of the sea quarks is the same while the normalization of each sea

quark can vary. Overall we use 11 parameters in total to perform the fit, including g7 .

To describe the cross section, we must evolve the Qiu-Sterman function from its initial
scale to the scale pyp,. The DGLAP evolution of the Sivers function has been studied exten-
sively in the literature, see for instance [104, 105, 106, 107, 108, 109, 110, 111, 112]. However,
performing the full evolution of the Qiu-Sterman function is highly nontrivial due to its de-
pendence on two momentum fractions 1, x5 in general [104, 113]. Thus in the TMD global

analysis, the evolution of the Qiu-Sterman function has been implemented under certain
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approximations. In this paper, we use the approximate evolution which is given by

OTp g/p(, ;5 1) as (1) [
Olnpi? 2

Py ®TFq/p] (w3 p) - (3.50)

a<—q

In the first scheme that we consider, from [108], the authors show that at large z, the
transverse spin dynamics leads to a modification to the quark to quark splitting kernel,

PT  with

q<—q’

P (z) =Py ,(x) — Nocdo(1 — ), (3.51)

q<—q

where P, ,(z) is the standard quark to quark splitting kernel for unpolarized PDF's,

Poylx)=Cp | 7———+0(1—2)| . (3.52)

This scheme has been used for instance in [114].

To solve this evolution equation, it is useful to take the Mellin transform of this expres-
sion; for details on Mellin-space evolution, see Sec. 3 in [115]. After performing the Mellin

transform of this expression, the evolution equation becomes

9 as (17)

% T (N ) =
Olnp? Fafp(N: 1) 2

Y(N) Te 41N ). (3.53)

In this expression, Trq/,(N, 1) is the Mellin transforms of the Qiu-Sterman function, i.e.

1
TFq/p(N7 n) = /0 da 2N TFq/p(Iv T, ). (3.54)

Similarly v(N) is the Mellin transform of P, , () which can be written as

A(N) = 3(N) — No. (3.55)
Here +,(N) is the Mellin transform of the unpolarized splitting function P, , (z) and is
given by

() = Cp (; + m _ 251<N)) | (3.56)

with S7(N) the harmonic sum function.
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In the region where p;,, < m;, the mass of the b quark, the solution of the evolution

equation is given by

TFC]/;D (Nv ;ub*) = TFq/p (N7 ,UO) <— (357)

Here Bo(po) = 11 —2/3ns(puo), where ns(po) is the number of active flavors at the scale po.

In the region where p;,, > my, the solution of the evolution equation is given by

o (,U2) —Y(N)/Bo(ps, )
Trgsp (N, f16,) = Tr gsp (N, m3) (W) : (3.58)
s (1M,
where T4/, (N, my) is given by
a, (m2) —Y(N)/Bo(po)
TFq/p (Na mb) = TFq/p (N, MO) <a (NQb) ) , (3.59)
s (M

and ns(up,) is the number of active flavors at the scale y, .

In order to construct the Sivers function in Eq. 3.17 at NLO, there is an additional
convolution of the coefficient C' function and the Qiu-Sterman function. We find that it is
useful to first take its Mellin transform and thus the convolution over the momentum fraction

becomes a simple product in Mellin space:

where Cye o (N, b; 1, ¢) is the Mellin transform of the Sivers Wilson coefficient function. The
NLO Sivers function can then be obtained by numerically taking the inverse Mellin transform

of this function,

1 > i —c—ze'? 2
#{q/p(x, b; 1, Q) :;/o dzIm [e O flLT'{q/p (c+ ze ¢ b; p, C)] ; (3.61)

where the parameter ¢ must be taken such that all of the singularities in the function
f#’q/p (c+ ze™, by, C) lie to the left of the line # = ¢ in the imaginary plane. In our
code, we use ¢ = 2 which satisfies this criteria. We also take ¢ = /4 to optimize the

numerical integration.
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Figure 3.6: Histogram of the Semi-Inclusive DIS data in ¢; and (). To obtain this plot, we
bin the Semi-Inclusive DIS data sets in ¢; and (). The dark spots indicate a large number of

experimental data while the white spots indicate that there are no experimental data. We

also plot the line ¢, = 0.75 @) in red, 0.5 in green, and 0.25 @) in black.

3.4 Fit Results

This section is organized as follows. In Subsec. 3.4.1, I will present the results of a fit to
Semi-Inclusive DIS and low energy Drell-Yan data. In Subsec. 3.4.2, I present discussion on

the RHIC data.

3.4.1 Simultaneous Fit to Semi-Inclusive DIS and Drell-Yan

The fit to the data from Semi-Inclusive DIS and Drell-Yan took into consideration Semi-
Inclusive DIS data from JLAB in [7], HERMES in [5], COMPASS in [6, 4] and the COMPASS
Drell-Yan data in [8]. T'll note that there are also data points from COMPASS in [84].
However, this data is re-binned from the same events as the in [6]. These two data sets are
then correlated and including both data sets would lead to double counting of the events.
Therefore, we only take into consideration the data from [6]. Furthermore, I'll also note that
the data set in [6] was projected into two sets of data z, > 0.1 and 2z, > 0.2. To avoid fitting

correlated data sets, we choose to fit only the z; > 0.1 data set. Using the extracted Sivers
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function, we then compare with the RHIC data.

Before beginning to fit the Sivers data, we need to remove the experimental data that
are outside the TMD region. Typical kinematic cuts from unpolarized Semi-Inclusive DIS
fits are given for instance in [73] and use the cut ¢, /Q < 0.25. However, we find that this
selection process leaves very few data points for the available Sivers data. In Fig. 3.6 we
plot a histogram of the selected data Semi-Inclusive DIS data as a function of ¢, and Q.
We find that the cut ¢, /Q < 0.25 leaves only 12 Semi-Inclusive DIS data points, while the
cut g, /Q < 0.5 leaves 97 data points. In fact, we find that the majority of the data has
q1/Q > 0.5. In order to retain a large enough data set to perform a meaningful fit we
perform the cut ¢, /Q < 0.75. Furthermore to restrict the selected data set to the TMD
region, we also enforce that the Semi-Inclusive DIS data must have P,; < 1 GeV. At the
same time in order to avoid the threshold resummation region, we also enforce that z, < 0.7.

These cuts are similar to those used in Ref. [81].

The 2 is defined as

N

K ({ah) =3 & “Z’;ZQ_ 28 (3.62)

The fundamental idea behind a global fitting procedure is to first parameterize the non-
perturbative contributions to the cross section. The y? distribution can then be interpreted
as a surface in the parameter space. The properties of the y? surface are then obtained
through a sampling procedure. The sampling of the x? is performed through the MINUIT
package [116, 117]. In the expression for the x?, E; are the central values of the experimental
measurements, AFE; are the total experimental errors, T; ({a}) is the theoretical value at the

experimental kinematics, and {a} is a vector containing the fit parameters.

To generate the uncertainty band, we use the ‘replica method’ in Refs. [70, 12]. In
this method, we generate replicate possible effects due to experimental uncertainties in the
measurements by shifting the central value of each data point by a Gaussian noise. The width
of the Gaussian noise is determined by the experimental errors. We inject this noise to all

data point and copy this data into a ‘replica’. Overall we generate 200 noisy replicas. We
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then fit all of the 200 replicas and the noiseless fit. From the fitting of the replicas, we obtain
201 sets of parameters. We then generate predictions for each experimental data point. We
take the noiseless fit to give the central prediction while we use the remaining predictions to
generate the uncertainty band by examining the middle 68% of the replicas. In Table. 3.1,
we present the results for the parameter values along with the x?/d.o.f and the parameter
uncertainties. In terms of the quality of the fit, we find an excellent agreement between
our fitted theoretical result and the experimental data with a global x?/d.o.f = 1.032. In
Tab. 3.2, we give the value of the x?/d.o.f for each of the sets of data.

x%/d.o.f. = 1.032

N, = 0.077799% Gev oy = 0.96775:9%8
Ny= —0.1521007 GeV g = 1.188+9:9%
No= 01677098 GeV  ape=  0.936700%
No= —0.03310016 Gev - 5.120+0.017
Nj= —0.069T509 Gev g7 = 0.04573992 GeV?
Ny = —0.002+39%" GeV

Table 3.1: Fit parameters. The presented values is the parameter value of the fit with no
Gaussian noise. The uncertainties for the replicas are generated from the parameter values

which lie on the boundary of 68% confidence.

In Fig. 3.12, we plot the extracted first transverse moment of the proton Semi-Inclusive
DIS Sivers function at the initial PDF scale, fllT(l)(x, to) with po = v/1.9 GeV which is
defined in terms of the Qiu-Sterman function as

1

Fizahn(® Q) = =5 Traipl, Q). (3.63)

In this figure, I plotted all 200 replicas for each of the extracted quark flavors. The uncer-
tainty band is generated by consider the middle 68% of the obtained distribution at each

point in x. We find that the size of the first moment of the Sivers function is roughly equal
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Figure 3.7: Left: The COMPASS deuteron target measurement [4] for 7+, 7=, K, K~ and
K? from top to bottom, and as a function of xp (left), z; (middle), and P, (right). Right:
HERMES proton target measurement [5] 7, 7% 7=, K, K~, and (7* — 7~) from top to
bottom, and as a function of xp (left), z;, (middle), and P, (right). The data is plotted in

red along with the total experimental error.
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Figure 3.9: JLab measurement of the Sivers

asymmetry for a neutron target [7] as a func-

tion of zp.
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Figure 3.10: COMPASS Drell-Yan measurement for 7 -p collision [8] as a function of ¢, , @,

Tr, Ty, and x, from left to right.
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y q1(GeV)

Figure 3.11: Top: Prediction for the Sivers asymmetry for p +p — W/Z at v/S = 500 GeV
[9]. We plot only the central curve of the fit here since the size of the uncertainty band is
small for this prediction. Left: The y dependent data integrated in ¢, from 0.5 to 10 GeV.
Right: The ¢, dependent data integrated in y from —1 to 1.
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Figure 3.12: Top: The extracted transverse moment of the Sivers function at po = /1.9
GeV. The black curve is the fit to the experimental data with no Gaussian noise. Bottom
left: The distribution of unpolarized quarks in an unpolarized proton at pg and x = 0.2.
Bottom middle: The extracted Sivers function from the fit with no noise. Bottom right: The

number density which is obtained by the sum of the two contribution.
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Collab Ref Process Qavg | Naata | X2/ Naata
ld = IK°X 2.52 7 0.770
ld—IK~X 2.80 11 1.325
4 | - IKtX | 173 ] 13 | 0.749
ld—Ilrm= X 2.50 11 0.719
COMPASS

ld— lnt X 1.69 12 0.578
. Ip — Ih-X 402 | 31 | 1.055

6
Ilp—1htX 3.93 34 0.898
8] Tp—=vX 5.34 | 15 0.658
lp—IK~X 1.70 14 0.376
Ip— KX | 173 | 14 | 1.339
Ip— Im°X 1.76 13 0.997

HERMES | [5]
Ip—l(rt —7)X | 173 | 15 | 1.252
Ip — In= X 1.67 | 14 | 1.498
Ip—IlntX 1.69 | 14 1.697
IN = IntX 1.41 4 0.508

JLAB | [7]
IN - I~ X 1.69 4 1.048
pp — WTX My, 8 2.189
RHIC [9] pp— WX My 8 1.684
op — 70X M, | 1 | 3270
Total 226 0.989
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Table 3.2: The distribution of experimental after taking the kinematic cuts ¢, /Q < 0.75,
P, <1GeV, and z < 0.7. The column Q. gives the average hard scale for the measured
data set. On the right column, we have included the x?/Ngat. for each set. The RHIC data

was not included into the fit. Here we give the x?/Ngat for the prediction.

and opposite for the u and d quarks while the first moment for the sea quarks is much smaller.

For the u, s and s-quarks, the Sivers moment have been multiplied by a factor of 5 while




for d, we have multiplied by a factor of —5. We find that the Sivers d function is the largest
in magnitude and is positive; while the Sivers u function is nearly as large but is negative.
Furthermore we find that the @ and d-quark functions are nearly equal to one another in
magnitude, both are more than 5 times smaller in magnitude than the valence quarks, and
are both positive. For the s-quark, we find that the magnitude is approximately 5 times
smaller than the valence quarks in magnitude and is negative. Finally for the s-quark, we
find that the magnitude is very small and that the sign is not well determined in this fit. In
the bottom half of that figure on the left, I also plot on the left the unpolarized TMD PDF
at x = 0.2 and Q) = pp as a function of -k, and ¢ -k, . In the middle, I plot the extracted
Sivers function at the same x and () and on the right, I plot the number density which is

obtained by combining these two contributions.

In Figs. 3.7, 3.8, and 3.9, we plot our theoretical curves against the Semi-Inclusive DIS
data. Fig. 3.7 is for COMPASS deuteron target (left panel) and for HERMES proton target
(right panel), and for both pions and kaons. Fig. 3.8 is for charged hadrons from COMPASS
proton target. Fig. 3.9 is for pion production on a neutron target from JLab. Finally in
Fig. 3.10 we plot theoretical curves against the COMPASS Drell-Yan lepton pair data in
7~ + p collisions. We plot the asymmetry ASUlél (¢a=%2) 45 a function of transverse momentum
q., invariant mass (), Feynman xr = x, — ), momentum fraction xy in the proton target,
and momentum fraction z, in the pion target, respectively. The experimental data along
with the total experimental uncertainties are plotted in red. The blue curves are the theory
curves from the fit with no noise. The uncertainty band in grey is generated from the stored
values of the asymmetry for each of the replicas. For each data point, the maximum and
minimum value of the asymmetry within the middles 68% are used to generate these error
bars. As it is indicated already in Tab. 3.2 and as it is evident from the figures, the agreement
between our theory and Semi-Inclusive DIS and Drell-Yan data is very good, although to a
less degree with the Drell-Yan data because of the much larger experimental uncertainty. I

would like to note at this point that very shortly after finishing our paper, the HERMES

collaboration posted additional data in Ref. [118]. We found in an analysis of this data after
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publication that there was great agreement between our fit results and this data.

In Fig. 3.11, we plot the prediction for the RHIC data in p + p collisions at /S =
500 GeV using the extracted Sivers function from this fit. In the left panel, we plot the
Sivers asymmetry Ay as a function of rapidity for W~ (left), W (middle), and Z° (right),
respectively. We integrate vector boson transverse momentum over 0.5 < ¢; < 10 GeV. On
the right panel, we plot Ay as a function of ¢, while we integrate over the rapidity |y| < 1.
We find that the asymmetry for W/Z for the central fit is at most 2%, which is more than
an order of magnitude smaller than the central values recorded at RHIC. This leads to a
X%/ Ngata of 2.015 for the prediction for RHIC, as shown in Tab. 3.2. Even if one considers
the very large error bars in the RHIC data, this comparison seems to indicate some tension

between our theory and the RHIC data.

3.4.2 Discussion on the RHIC data

In this section, I will discuss the implications of the RHIC data and the developments in this

direction since our paper was published.

In order to access which one of our theoretical assumptions is responsible for the large
x? of the RHIC data, we performed several tests. Firstly, we have checked whether the
quality of the description of the RHIC data was due to the cut on ¢, /@. In order to check
if quality of the fit is due to the value of this cut, we have performed an additional fit with
the cut ¢, /Q < 0.5. We find that this change leads to a x?/Ngata is 1.885 for the RHIC
data. While it would be preferable to perform an fit with ¢, /Q < 0.25, we note that there
is not enough data in this region to constrain the parameters of the fit. Because there is no
strong improvement in the description of the RHIC data after applying the ¢, /Q < 0.5, we

conclude that this cut is not responsible for the disagreement between the data sets.

Another possible assumption that could be causing the large x? of the RHIC data is
the assumption that the sea quarks have the same a and ( parameter. To check this, we
have performed a 13 parameter fit with the chosen parameter with the parameters «,, N,,

Bvala A, Nd7 NTM NJ7 N87 N§7 Oy O, and ﬁsea- Here g = Q5 = Gy and Os = Qg = 0.
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The introduction of the o, and «_ parameterization decouples the positive and negative sea
quarks from one another while the introduction of the parameters S,. and [ decouples
the valance and sea quarks. However, we find that the addition of these parameters lead to

a x> /Ndata is 1.885. This implies that this assumption on the function form is not the issue.

To discuss the origin of the disagreement with the RHIC data, it is useful to examine
Fig. 3.13, where I have plotted profiles in the x?/Ngat. distributions. In each plot, we set
all but one of the parameters equal to the values which are determined by the fit and we
vary the remaining parameter about its best value. The best value determined by the fit is
given by a vertical gray line. In this plot, we see that the curves for the RHIC y? do not
change much as the «, 8, and g parameters are varied. This indicates that the RHIC data
is insensitive to these parameters. On the other hand, we see that when N, parameters are
varied that there are large modifications to the RHIC 2. Thus, the RHIC data is sensitive
to these parameters. We see that the RHIC data in general demands a much larger value
for the Sivers function N parameters, which control the magnitude. Nevertheless, these
parameters are well-constrained by the data from Semi-Inclusive DIS and the COMPASS
Drell-Yan measurement. Since the Semi-Inclusive DIS and COMPASS Drell-Yan data were
gathered at much lower energy scales that the RHIC data, this tension between the sets
indicates that the size of the Sivers asymmetry grows as a function of the hard energy scale.
At the time that we had published this paper, we interpreted this result to indicate that
either the RHIC data was flawed or that there were missing evolution effects entering into
the DGLAP evolution of the Qiu-Sterman function. However, since this time, a re-analysis
of this measurement has been made. In Fig. 3.14 I have plotted our theoretical prediction for
the RHIC asymmetry. We see that the updated RHIC measurement is now consistent with
our extraction. This likely indicates that there is no inconsistency in our analysis. Rather,
it appears to indicate that the limited statistics for the RHIC measurement were to blame

for this disagreement.
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Figure 3.13: The distribution of x?/Ngat. for each parameter. In each subplot, we vary each
parameter about the central value while keeping all other parameters fixed to the optimal

values determined by the fit. The gray line is the central value determined from the fit.
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Figure 3.14: Comparison with theoretical uncertainties for the re-analysis of the RHIC mea-

surement.

3.5 Predictions for the EIC

In the previous section, I have performed the first global extraction of the Sivers function and
clarified the inconsistency with the RHIC data. In this section, we provide predictions for

the Sivers asymmetry at the future EIC. On the left side of Fig. 3.15, we plot our prediction

Q*=5 Q? =50 Q2 = 500 Q=5 Q% =50 Q? = 500
+ +
s ST 3 3
0.05; ) o —
e | —
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Figure 3.15: The prediction for the EIC at v/S = 105 GeV. Left: The xp dependent pre-
diction at z, = 0.5 and ¢, /@ = 0.2. Right: The P,, dependent prediction at zp = 0.2 and
zp, = 0.25. The blue band represents the prediction from the low energy extraction while the

grey band represents the prediction when one includes the RHIC data into the analysis.
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for the Sivers asymmetry in Semi-Inclusive DIS on a proton target as a function of xp at
V'S =105 GeV, z, = 0.25, ¢, /Q = 0.2 at Q% = 5, 50, 500 GeV? for 7+, 7=, KT, and K~
production. In this figure, we have plotted our prediction for the fit in blue. In gray, we
have plotted our prediction which is obtained through heavily weighting the RHIC data, not
discussed in this dissertation. While this prediction demonstrates the x-dependence of our
fits, in order to demonstrate the k -dependence of our fitted Sivers function, we also make
a prediction as a function of P, on the right side of Fig. 3.15. In this figure, we have used
the same kinematics as the left side except that we take x5 = 0.2. We see from these curves
that the predicted asymmetry for 7= and K~ production is small. This behavior is expected
because of the suppression by the fractional charge e? for the d-quark Sivers function, as well
as the cancellation that occurs between the u and d-quarks. On the other hand, we predict

an asymmetry of a few percent for 7 and K™ production in this kinematic region.

3.6 Conclusions

In this chapter, I have outlined our extraction of the Sivers function for the first time at
the NLO+NNLL order. We first perform an extraction from the Sivers asymmetry data
measured in Semi-Inclusive DIS at HERMES, COMPASS and JLab, and in Drell-Yan lepton
pair production at COMPASS. Using this first extraction, we generate a prediction for the
Sivers asymmetry of W/Z boson at RHIC kinematics and compare with the experimental
data. We find that while the Semi-Inclusive DIS and COMPASS Drell-Yan lepton pair
production data is very well described by our extraction, that our theoretical curve is much
smaller than the RHIC data. We studied in great detail the impact of the RHIC data
and their implications. We found that the RHIC data was inconsistent with our extraction.
However, the preliminary re-analysis of the RHIC measurement is consistent with our current

extraction. Finally, we have provided projections at the future EIC.
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3.7 Appendix I: Wilson Coefficient Functions

The scale dependent TMD PDF quark to quark and gluon to quark Wilson coefficient func-

tion is given by [119, 120, 121]

Qs
Coar(,:11,€) =009 8(1 = &) + 0y 7= |20p(1 = 2) = 2Py )L
2
— L(=3+4Cp(L+2L))6(1 — ) — Cp%é(l — )|,
as

1
Cyeyg(,b; 11, ) = [x(l —x)Tp — §P¢I<—9<‘T>Li| :

The quark to quark coefficient function for the TMD FF is given by the relation

A

Cq<—q’(za b; C) = Cq<—q/<z> b; C)’L_”;_ln(zz) )

while the quark to gluon Wilson coefficient function for the TMD FF is given by

~

Cog(2,b;11,C) = ;Y—; [C’Fz + 2P, ,(2) (ln(z) - %L)} :

In these expressions, we have introduced the standard collinear splitting kernels

Py o(@) = Cr {ﬁ 2601 - x)}
Pgeq(x> = CF#_Z)Q
Preg(z)=Tp [2°+ (1 —2)7] .

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

Finally, the coefficient function for the quark-Sivers function is given by [122, 114, 112, 123,

124]

quq’(xh T2, b; 1, C) =0qq 6(1 —x1)6(1 — 229)

g 1+ 22
— géqq/ { — L[5(1 —ZL‘Q/.CEl) (CF(l —3;‘1)+

1
a1 - x1)> + % (5(1 — )7 i 61— o) Lt

1
— mé(l — fL’Q/[El)(l — IL‘l)
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3 1,

which for p? = ¢ = p7. reduces to

e Qg 6 ’
Cqu/(I‘l? T2, b7 Mo, Mli) :611!1'6(1 - I‘l)(S(l — l’g) — %ﬁ(s(l — xz/xl)(l _ .731)
2
Qg m
- %5@/0}7@5(1 —11)0(1 — x3). (3.71)

3.8 Appendix II: Factorization for Semi-Inclusive DIS

3.8.1 Kinematics

The differential cross section for Semi-Inclusive DIS is given by

do a2 1
E\E = em W 72
i en, = 0 opagimV (3:72)

see for instance Ref. [86]. In this expression, W* and L, are the hadronic and leptonic
tensors. It’s conventional to write the phase space element in terms of the parton fraction z

by making the change of variables

B3P, dz
= —d°P, . .
om, — 5 (3.73)

After which, the cross section can be written in the form

do B agm Y

dedydidzd®P,,  4Q4 2

LW (3.74)

where 1) is the azimuthal angle of the final-state lepton.

The leptonic tensor which is defined in terms of the leptonic momenta as

L = ((].7*(0)|¢') (¢’ 77 (0)1€) (3.75)
=200 0"+ 070" — 00" N ) (3.76)
where the factor of 2 in the leptonic tensor enters from the final state spin configurations.

Analogous to the work that we performed for Drell-Yan, in the Breit frame, it is useful to
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define a complete set of coordinates as

fr=""pr g L GH = hT P

g =2,
Using this coordinate system, the the leptonic momenta can be parameterized as

o — % [cosh 0 t* + sinh wcosh 2" + sinh psinf " — 2“} ,

- % [cosh © t* + sinh pcosf T + sinh psinf g* + é“} ,

2
cosh p = (— — 1) ,
Y

where we define the parameter

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

To obtain the azimuthal asymmetries for the cross section originating from the leptonic

tensor, we once again define the operators

VI = e+ ghy, 2

VI = he + 21, VY =t — g,
Vi = thgr — i, Ve© =ty — g,
Vi =g — gt Vi =g+ g,

~

v ~ T
V§' = atgt + gra,

(3.82)

where we note that the role of ¢ and 2 are opposite of those in the case for Drell-Yan. We

once again perform the decomposition of the leptonic tensor as
L =" Li(¢,0) VI,

where L;(¢,0) are angular coefficients.

2 2
L (6,0) = LU yfy”)w“t Ly (6,6) = 0,

2Q*/1T —y(y — 2)cos(v)) 20Q%(y — 1)cos(2¢)
Y Y

L3 (¢7 0) = - V§LV7 L4 (¢7 0) -
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(3.83)

(3.84)

N
Vi,



Ly (9,0 = POy g, - DL
L (6,6) _Qi/\QZ /1y— ycos(i/})véw’ Ls (6.0) = _2@2, /T— y:(yz — 2)sin(y)) e
Loy — 2= Do)

Y2
In this expression W#" is the hadronic tensor which is given by the expression

- L 4 o4 T
Wi = (3 2 [tz (P @ [h X)X LOIR) . 38)

where Ju(x) once again represents the current operator.

3.8.2 Factorization

The hadronic terms can be written in terms of the quark correlation functions for the TMD

PDF and TMD FF as
1
W :Fc ; 62 /d2ku d’ko 5> (g +ki+pi/2)

x Tr [<I>q (1’, k.,S;u, Cl/yz) A, (z,pL, Sh; 1, CQ/VQ) 7"] ) (3.86)

(3.87)

In this expression, I have introduced the quark correlation function for the TMD FF. The

explicit expression for this function is

4
Ajy (291, Shi s Go?) = — Z/% et (€7) (3.88)
X

z

X (0| W™ (400, &4 €1) U5 (E)| by Sp, X ) (h, Sp, X |95(0) W™(0, +00,0.) W (0,€1;+00) | 0) .

Retaining only leading power distributions in m/Q and p, /@, this correlation function can

be written as

PO S o . S 5
A(z,pL,8S)y) = (D— M—P“DfT> ﬁ + (Ath _ uGlT) VO

M 4 M 4
Aph ekjpi' Pyl — ip? gkj Y0 4k
k 1ol 1Pl 1P —3P19y¢ 1 +
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Figure 3.16: Diagrammatic representation of the Fierz decomposition of the hadronic tensor.
Left: The broken lines are used to separate the hard interaction from the definition of the
quark-quark correlation function. Right: The Fierz decomposition where I'; represent the
operators which give rise to the parton densities while I'; represent the operators which enter

into the hard function.
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Making this replacement, the hadronic tensor can be simplified as
1
W,uu = F Z Z 62 / delj_ d2k2j_ 5(2) (qJ_ + kJ_ + pJ_/Z) (390)
¢ ab ¢

X Tr [y T4 T4 ) (2, ke, 850 G /v?) A (20p, S, o)

Where in this expression

Al (z1,P1, Shi pt, (/) = Tr [A (2,p1, Ship, G/v°) T?] (3.91)

Therefore hadronic tensor for the unpolarized cross section is given by

dbb
ZZ /—JD bqr) Dnsg(2,0; 1, C2) forp(x,b; 1, C1) (3.92)

Upon contracting with the leptonic tensor, we arrive at the expression for the differential

cross section

do Q*(y*—2y+2) 1 )
= — 3.93
drp dQ?dz, d* Py Y2 N, Ea b: §q : €q (3.93)
dbb
< [ S ba0) Dagale b ) fyrebipn ). (390

which matches the expression in the previous section upon a change of variables from Q? to

y.
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CHAPTER 4

Jets for Tomography

4.1 Introduction

Since the asymptotic contributions of QCD amplitudes originates from the soft and collinear
regions, sufficiently high energy partons generate jets [125]. These objects are defined by
three relevant parameters, the jet axis, the jet radius, and the jet p$*, which provide in-
formation for the direction of the jet, its width, and the required energy which is used to
define the jet. Because of the enhancement of radiation in the collinear and soft directions,
jets axes are a powerful tool for estimating the direction of the parent parton. This prop-
erty is particularly useful for QCD tomography, where the direction of the parton provides
information about the momentum of the parton that originated in the beam hadrons. In
the case of Semi-Inclusive DIS as an example, we saw that the transverse momentum of the
initial quark is convoluted with the transverse momentum generated through hadronization
in the TMD FF. Furthermore, jets are predominantly perturbative objects and therefore
offer limited non-perturbative input as opposed to fragmentation function. Over the past
few years, many studies have featured using jets to measure TMD PDFs, see for instance
Refs. [126, 127, 128, 129, 130, 131, 132, 133, 134, 135]. Furthermore, as radiative emission
and hadronization occurs within the jet, the final-state hadrons of the jet pick up transverse
momentum with respect to the jet axis. Thus by measuring the distribution of hadrons
within the jet, we gain sensitivity to the non-perturbative contributions associated with
fragmentation. In principle since these measurements are sensitive to both perturbative and
non-perturbative contributions, a detailed proof of factorization is required. In Ref. [136] this

separation was performed in an effective field theory approach. Since this time, a large num-
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ber of measurements have been presented in which the distribution of hadrons within the jets

can be used to measure the TMD FFs, see for instance Refs. [137, 138, 139, 140, 141, 142].

In this chapter, I will focus on the work that I have performed in which we used jets
to probe TMDs. In Sec. 4.2, T will discuss the use of heavy-flavor di-jets at the EIC to
probe the gluon Sivers function. In Sec. 4.3, I will discuss the use of back-to-back di-jets to
probe quark Sivers function in hadron-hadron collisions. In Sec. 4.4, I will discuss the use of

Z-tagged jets to probe fragmentation functions in hadron-hadron collisions.

4.2 QCD evolution of the gluon Sivers function in heavy flavor

dijet production at the Electron-Ion Collider

4.2.1 Introduction

To explore quark TMDs, Semi-Inclusive DIS, Drell-Yan and DIA have served as the primary
processes. The shortcoming of these processes are that the virtual bosons in each process
probe only the non-perturbative quark TMDs. While the high center of mass energies and the
electro-magnetic background at the EIC offers the possibility of isolating gluon distributions.
As the fundamental goals of the EIC are to understand the gluon and spin content of the
hadrons, the gluon Sivers function is regarded as one of the “golden measurements” at the
future EIC [68]. Within the literature, several processes have been presented as a possible
probe of these distributions at the future EIC such as heavy quark pair production [143],
heavy quarkonium production [144, 145, 146, 147, 148], and quarkonium-jet production [149],
as well as back-to-back dihadron and dijet production [150]. In [151], the authors used
a PYTHIA event generator [152] and the reweighting method of [153] to investigate the
experimental uncertainties associated with these processes. The authors concluded that
because jets can be used as a reliable proxy for the parton-level asymmetry, the optimal
process for probing the gluon Sivers function at the future EIC is dijet production. In their
analysis however, the contribution of the quark Sivers function contaminated their analysis.

In our analysis in this section, we discuss the Sivers spin asymmetry for heavy flavor (HF)
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dijet production, where the contribution of the quark Sivers function is further suppressed

compared to that of the light flavor dijet case.

As we demonstrated in the previous section, the Sivers function is related to the limit
of the Qiu-Sterman function and thus exhibits modified universality between Semi-Inclusive
DIS and Drell-Yan [154, 155, 156]. Similarly, it has been demonstrated that the gluon Sivers
function for the process of back-to-back diphoton production in p + p collisions, p'p —
vvX, carries a sign opposite to that of dijet production in e + p collisions, ep! — ¢€/jjX:
flLT[ZpTHe/ij] (x,kr) = — fllT[ZTp%WX] (x, kr) [143]. In [157], it was demonstrated that the
gluon Sivers function in any process can be expressed in terms of two “universal” functions
with calculable color coefficients for each partonic subprocess. We briefly discuss such a

process-dependence for HF dijet production below. For a comprehensive review on gluon

TMD PDFs, see [158, 159].

So far, studies of the gluon Sivers function at the EIC are mostly performed within the
leading-order (LO) parton model, without considering the impact of QCD evolution. The
effects of resummation for back-to-back light flavor dijet production in the unpolarized DIS
process have been investigated in [160], where the authors apply the pr-weighted recombi-
nation scheme [161] in defining the jet axis to avoid the theoretical complexity arising from
non-global logarithm (NGL) resummation [162]. A similar idea is used to study single in-
clusive jet production in the Breit frame at the EIC in [128; 129]. Recently, following the
same Soft-Collinear Effective Theory (SCET) framework utilized in [135, 130, 163, 164, 165],
the TMD factorization formula for light flavor dijet production at the EIC has been derived
[166], where the azimuthal-angle-dependent soft function, describing the interaction between
two final-state jets through the exchange of low-energy gluons, is analytically calculated at
one-loop order. For HF jet production in the kinematic region of comparable jet and heavy
quark masses, a new effective theory framework is needed. In this work, we provide such a

framework and derive the TMD factorization formula.

The remainder of this section is organized as follows. In Sec. 4.2.2, I provide details the

factorization framework required to carry out resummation in the back-to-back region where
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the transverse momentum imbalance of the HF dijet is small. In Sec. 4.2.3, 1 present nu-
merical results for charm and bottom dijet production in both unpolarized and transversely-
polarized-proton-electron scattering. I summarize our findings and give an outlook for future

investigations in Sec. 4.2.4.

4.2.2 Factorization and resummation formula

In this section, I start with the kinematics for HF dijet production in e 4 p collisions. We
then provide the TMD factorization formalism with explicit expressions for all the relevant

factorized ingredients.

e~ (")
Ja(oyp)
e~ (f)

Y (@)

Figure 4.1: HF dijet production in electron-proton collisions, as stated in Eq. (4.1).

4.2.2.1 Kinematics

As shown in Fig. 4.1, we consider HF dijet production in the polarized-proton-electron

scattering process

e(l)+ N(P,Sr) — e(l') + Jolps) + Jo(p7) + X, (4.1)
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where S ! is the transverse spin of the polarized proton with momentum P and £ (¢) is
the momentum of the incoming (outgoing) electron. At LO, HF dijets are produced via the
v*g — QOQ process. The HF quark Q and antiquark Q initiate the observed HF jets Jo and
Jo with momentum p; and p7, respectively. In this section, we choose to work in the Breit
frame so that both the virtual photon (with momentum ¢ = ¢ — ¢') and the beam proton
scatter along the z-axis. For convenience, we define the following variables commonly used
in DIS,

Q? )= P-q
2P -q’ Pl

Q2 — _q2 . Tp= (42)

We may further note that Q* = xpy Sep, where Sgp = (£ + P)? denotes the electron-proton
center-of-mass energy. In a fashion analogous to SIDIS, we also define the kinematic variable
z = P-py/P-q, which gives the momentum fraction of the photon carried by the jet Jo. At

LO, the four-momenta of the incoming and outgoing particles are expressed as

A
qﬂzg(n#_ﬁ#), puzgn_7
2 B 2
" 1-—- 1 —ynt A
= Qn +Q—~2 yn _,_g = _yn_+9n_+€fj
Y 2 2 y 2 y 2
n pa ot
1— — ! 4.3
where we have defined p} such that p) Pty = —p% with pr = pr(cos¢y,singy). Here, we

assume p7. > mp and take p3 = p% = 0. This allows us to derive the factorized cross section

in the following section. Lastly, the parton-level Mandelstam variables can be defined as

_ 2 p%

= (pg+4)* = (ps+p7)° = -2 (4.4)
t=(py—ps)°=(¢g—py° = —Qxiz : (4.5)
W= (py—p7)?=(¢-ps)°= —%B_Z) : (4.6)

where x is the momentum fraction of the proton carried by the gluon, and is given by

D
z= QQ“T(Bl — it D= Q%2(1 — 2) + p2. (4.7)

'In this chapter, I use T to denote transverse to the proton-photon while I use L to mean transverse to
the jet
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4.2.2.2 Factorization formula

As we saw for Semi-Inclusive DIS and Drell-Yan, the TMD region is valid where we have two
scales with the hierarchy ¢, < @), where ¢, is some transverse momentum scale and @, is
some hard scale. In the case of back-to-back jet production, we can define the small scale as
the imbalance of the jets gr = p;r + p7, where ¢r < p7p ~ psjr = pr. When considering
HF dijet production, we also need to consider the additional scale which is associated with

the mass of the HF quark.

Furthermore, we work in the kinematic regime where mg < prR < pr, with R denoting
the jet radius. Overall, in the region with the scale hierarchy as ¢rR < qr S mg S prR <

pr. Using SCET, we can decompose the fields entering into the cross sections as

Al(z) = Alj(z) + Al(z) + Al (z) + A () + AL (z) + AL (2) (4.8)
(@) = Ps(2) + 5(2) + () + () + Yes (2) + (). (4.9)

In this expression, v, /7 and A, /F are the quark and gluon fields associated with collinear
emissions within the jet while 1., and A.; are known as collinear-soft modes which provide
information on soft radiation leaving the jet. The momentum of the collinear jet modes scales

as pyr (1, R?, R) while the momentum of the collinear-soft modes scale as ¢, (1, R?, R).

The factorized expression for the proton-spin-independent cross section is given by

dOUU
dQ?*dyd*prdy d*qr

x 8O Ar + kr + lor + lar — qr) [i™ (. kr; i, ¢ /v°)

=H(Q,y,pr,ys; 1) / A P ky Plor dPlorS(Ar; p, v) (4.10)

x Jo(prR,mo; i) So(lor, R, mo; 1) Jo(prR, mo; i) S§(lar, R, mo; 1) -

Above, y; is the rapidity of the HF jet Jo and is related to the kinematic variable z through
the relation z = e¥’pr/Q. In the factorization formula Eq. (4.10), S denotes the soft function
while f,/n is the unpolarized gluon TMD PDEF. Their perturbative one-loop expressions can
be found in Sec. 4.2.2.4. In the third line of Eq. (4.10), Jg and S§ are the massive quark
jet and collinear-soft functions, which differ from the corresponding functions utilized in

light jet production [135, 130, 163, 164, 165]. In Secs. 4.2.2.5 and 4.2.2.6, we present their
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explicit calculations at next-to-leading order (NLO). The variables k7, Ar, and lr label the
transverse momenta associated with the collinear, soft, and collinear-soft modes. Finally,
1 and v are the factorization and rapidity scales, respectively, while ( is the Collins-Soper
parameter [36, 167]. In the derivation of the above factorization formula we apply the narrow
jet approximation with R < 1. However, as shown in [168, 169, 170, 171] this approximation
works well even for fat jets with radius R ~ O(1), and the power corrections of O(R*") with

n > 0 can be obtained from the perturbative matching calculation.

Fourier transforming to b-space, the factorized cross section becomes

dO'UU _H(Q . ) / de eib-qTS(b_ I/) unsub (SL’ b C/VQ)
dQ2dyd2pTdde2qT - y Y, 0T, Yg; U (271')2 3 1y g/N , 05 1y
X JQ<pTRa mgo; :u) SCQ(ba R7 mo; :U’) JQ(pTR7 mo; :u) SCQ(bv Rv mo; :u) ) (4'11)

where soft function S and the gluon TMD PDF f,/n both depend on the rapidity scale v.

However, the soft function can be written as

S(b; p,v) = A/ Sna(b; 1, v)S(b; 1) (4.12)

where Sy (b, 1, ) is the soft function for Higgs production in p + p collisions [62, 172], and
the function S(b, ;1) on the right-hand side no longer depends on the rapidity scale v. Upon
making this replacement, the factorized expression for the cross section can be written in

terms of the properly-defined TMD gluon distribution [36] by noting that

SR (b, 1) S 1,0) = fye (b, S (b ) (4.13)

Here, fo/n (2, b; 1, ¢) on the right-hand side is defined as

Sapn (b5 11, C) = foIR™ (2, b5 11, C/V°) A/ S (b 1, v) - (4.14)

This is the properly-defined gluon TMD PDF probed in Higgs production in p + p colli-
sions [172] and is thus the counterpart of the quark TMD PDF as probed in Drell-Yan

lepton pair production. Finally, Eq. (4.11) can be expressed in the following form

2

d“b
ZH(Q,y,pT,yJ;u)/W

dUUU
dQ*dyd?prdy ;d*qr

e S(b; ) foyn (2,0, ,C)  (4.15)

95



X ‘]Q(pTRv mo; ,u) SCQ(b7 Rv mo; :u) JQ(pTRv mo; HJ) SCQ(ba Ra mo; HJ) :

In the following sections we calculate the one-loop expressions for all the above functions.
An important physical requirement is that the factorized cross section must be independent

of the scale p—we verify this factorization-scale-independence in Sec. 4.2.2.7.

Next, if one considers the scattering of an electron with a transversely-polarized proton
with spin S7, Eq. (4.10) can be generalized. In this case, the spin-dependent cross section
once again contains two terms, the spin-independent contribution and the spin-dependent

contribution
do(St) = do"V + do¥" (Sr), (4.16)

where doVT depends on the gluon Sivers function. The full expressions for the leading twist
gluon distributions are given in [173]. Using these results, we can obtain the expression for
the polarized cross section by simply replacing the unpolarized gluon TMD PDF in Eq. (4.10)
with the gluon Sivers function, namely

1 unsu
oN" (@ ks 1, CJV%) = eas Stk figln™ (2 K, C/0%) (4.17)

Here, it is important to note that there exist both f- and d-type gluon Sivers functions, which
are associated with different color configurations in the three-gluon correlator, i.e., involving
the antisymmetric f%¢ and symmetric d**¢ structure constants of SU(3), respectively. For
details, see for instance [157, 174]. In Eq. (4.17), we have denoted the gluon Sivers function
with the superscript f, which is used to indicate that it is f-type. We note that at LO, this
process is only sensitive to the f-type function. Further details on this matter are provided

in Sec. 4.2.2.3. After making this substitution, the factorized cross section then reads

dO'UT(ST) :HSivers<Q Y, D7, Y M) /dQ)\T dzk’T d2lQT dZZQTS<>\T M I/) (418)
dQQddePTdyJ(qu 'y Y ) ) y by
1 unsu
X 5(2) (AT + kT + lQT + lQT - qT) Mﬂlﬁ S% ké{ flJil’J;/N b (Z‘, kT? My C/V2)

x Jo(prR,mg; ) Sg(lar, R, mo; 1) Jo(prR, mo; 1) S5(lar, R, mg; 1) ,
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where H5V*™ denotes the hard function for the polarized process, and this expression can

once again be written as a Fourier transform by defining
Zbﬁ L, funsub 2 2 —ib-kT kiﬁ" 1,f unsub 2
7f1T,g/N (z,b;1,C/v7) = | dkre MflT,g/N (z, kp; pu, C V7). (4.19)

Finally, the factorization formula for the polarized differential cross section becomes
d?b
(2m)?

dO'UT (ST)
dQ?*dyd*prdy;d*qr

2
X 5 (eap ST 0°) fiatlyn (. b 1 )

™97 S (b; ) (4.20)

ZHSiverS(Q,y,pT,yJ;u)/

x Jo(prR, mg; i) Sg(b, R,mo; p) Jo(prR, mo; ) SG(b, R, mg; i) .

Here, we have applied the redefinition Eq. (4.12) to obtain the rapidity-scale-independent

gluon Sivers function

Figh (@, b5 11, ) = Figl i (, b 1, ¢ 1)\ S (05 11, 1) - (4.21)

4.2.2.3 Hard function

In the unpolarized process, the LO hard function is determined by the tree-level cross section

for dijet production in DIS, which is expressed as [175, 176]

a2, sQ3CrCA
4mQ*y*Sep

{ (14 (1= y)?] HUVHE — 2 gUE (4.22)

—(2—y)V1-yH" +2(1 —y)HU’T},

H(Q,y,pr,ysp) =

where e, is the fine structure constant and () denotes the fractional charge of the HF
quark. On the right-hand side, the first superscript U indicates that the incoming gluon
is unpolarized, while the second superscripts {U + L, L, I, T} correspond to the different

helicity states of the off-shell photon. Explicitly, the functions HY* are expressed as

U,I T HU’T
HY = COS(¢J)HCOS(¢J)> HYT = COS(2¢J) COS(2¢,)’
22(1 B 2z)pTQ 2p2 2z p2 pz
o B T U,T o T T
Heoso,) = D? )y Meoseon =5 (17D )

1 1 22p2  zp?
HOUT = & < z) + e~ g (2 +Q(1-22)°),
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4Zp2 p2
HVP = =L (121 ) 4.2
a1 (423)

One immediately sees that the functions HY! and HY? vanish upon integrating out the

azimuthal angle ¢ of the jet. As such, these contributions do not play a role in our numerical

calculations.

The expression for the hard anomalous dimension can be obtained from the calculation
of the 3-jet process v* — ¢qg at lepton collisions [177, 178]. The hard anomalous dimension

can also be read from the general structures in [179, 180] and is given as

, it ‘ 2
i) = Car*(ain (£ ) — 20 (ain () + 4%a) + 2070, (420

Sp s
where ['*P is the cusp anomalous dimension, while v¢ and +¢ represent the single logarithmic
anomalous dimensions for the quark and gluon, respectively. With this anomalous dimension,

one can then perform resummation by solving the following renormalization group (RG)

equation for the hard function

d h
mlnH(u) =T (as), (4.25)

where, for brevity, we maintain only the scale py-dependence in the hard function. We note
that in order to perform the evolution at next-to-leading logarithmic (NLL) accuracy, the
cusp anomalous dimension is needed at two-loop order and the single logarithmic anomalous

dimensions are needed at one-loop order. The values of these expressions are

. e (268 4m2 40
’YOp:4-7 Wlp_(___>CA__CanJ

9 3 9
, , 11, 4
Yo =—=3Cr, v =—Bo, Bo= ?CA —zTrny, (4.26)

where we have organized the perturbative expansion of each anomalous dimension as

2
0+ (£2) 9+ 0(ad). (4.27)

7(%) - 47 47

For the polarized process, we must consider the process-dependence of the corresponding

gluon Sivers functions [157]. Such process-dependence can be computed via the attachment
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of an additional gluon originating from the gauge link in the definition of the Sivers function.
This additional gluon is responsible for the soft pole that generates Sivers asymmetry. This
method is widely used in computing the process-dependence of the quark Sivers function, see
e.g. [133], which gives the same results as shown in [157, 181]. In Fig. 4.2, the soft poles are
represented by red lines. We note that for both the polarized and unpolarized cases, the hard
functions can be expressed as matrices in color space [165]. For more complicated processes,
the relationship between the polarized and unpolarized hard matrices is non-trivial. However,
for the v*¢ — QQ process, the color space is one-dimensional and, therefore, the polarized

hard function can be simply written as

HY™(Q,y, pr,ys; 1) = (C1 + C2) WQ,y, pr, v 1) - (4.28)

Here, C7 and Cy are the color factors for the polarized hard process associated with the
attachment of the additional gluon to the HF quark and anti-quark [144, 182, 183], respec-
tively. The function h(Q,y,pr,ys, ) is the kinematic part of the hard function. For the

unpolarized case, the hard function can be written as

H(Q??JapTayJ;lu) = Ou h(QayypTvyJ;H’) ) (429)

where factor C), is the color factor associated with the unpolarized hard process. We find
that at LO for this process, the attachment of this additional gluon originating from the
gauge link in the definition of the Sivers function produces color configurations which are
proportional to (—if). This analysis indicates that while there are both d- and f-type
gluon Sivers functions [157], this process at LO is only sensitive to the f-type gluon Sivers
function. In addition to this, while the term (—if) in Fig. 4.2 appears in the hard function,
this term should be absorbed into the definition of the gluon Sivers function as it originates
from the Wilson line in the adjoint representation. Similarly, the term 0% in that figure
should be absorbed into the definition of the unpolarized TMD PDF. For this process, we
find that (Cy 4+ Cy) = C,. As a result, the polarized and unpolarized hard functions are

equal and the hard anomalous dimension is unchanged for the polarized case.
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Figure 4.2: Top: Unpolarized hard Feynman diagram for HF dijet production. Bottom:
Polarized hard diagram for HF dijet production. The red lines in the polarized case indicate

the location of a soft pole.

4.2.2.4 TMD PDFs and the global soft function

In order to regulate the rapidity divergences in the TMD PDF's and the global soft function,
we use the n regulator of [62]. The expression for the unsubtracted gluon TMD in this

regularization scheme can be obtained from [136], and is given by

;;I;OUHSUb(.Z', b, i, C/V2) — 5(1 _ .T,') (430)
Qg 4 (1 2 Bo
+EOA |:5 (E+L) —|-E (L<+a>} (5(1—$)
ag |2
T In {_ QL} Pag()
+ 2oL L+& 6(1 — )
4m ¢ Ca ,
NLOunsub(x b,u C/V2) — _% 2 +2L| P (SL’) + %CF (2];) (431)
9/ P A | € 9 4m ’

where b is the magnitude of the two-dimensional vector transverse to the beam direction

b = b (cosgy, singy ), and the splitting kernels are defined as

Py (z) =204 {(1 - > ! - a1 x)} + % (1-u2), (4.32)
Pyq(z) = CF%_;E)Q ) (4.33)
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are the collinear splitting kernels. The term in the third line of Eq. (4.30) and the analogous
term in Eq. (4.31) contain the infrared divergences which are to be matched to the collinear

PDEF. The RG equations for the gluon TMD PDF are then

d unsu

dln/,l/ln g/N b(x7 b? /'1’7 C/UZ) = F;f;g (Oés) ? (434>
d unsu

dlnyln g/N b(x7 b7 H? C/VQ) = FZg (Oés) ‘ (435)

Here the anomalous dimensions are given by
/o () = Car™(as)Le — 2977 (as), Tlr(ay) = 2O4L + O(a?) (4.36)
1t s) = Lay s) (¢ 7u s) v s) — . A s/ .

with fygg = ~3, which is given in Eq. (4.26).

To obtain the soft function, we need to consider all the different configuration in which

soft gluons can scatter in the cross section. The soft function at LO and NLO are given by

SYO(by i) = 1, (4.37)

C C C
SNLO(b; H, l/) = —TA IBJ - 7AIBj+ <7A - OF> IJj, (438)

where the soft integrals Z;; are given by

2€,. € ,€YE . . n
Q=T € d7. s+ 1.2\ —ikb n; - n; v
2 / (k")e (n; - k)(n; - k) |kt —k=|7 ( )

To obtain this expression, I have considered all possible appearances of virtual soft gluon
emissions. In this expression, the measurement function is the usual one for the soft function,

—ikb after performing the

which is given by d(k; — 1)) and gives rise to the phase factor e
Fourier transform. In this expression, i and j are either B, J, or J, where B denotes the
beam direction while J and J denote the directions of the jet initiated by the HF quark and
anti-quark, respectively. Therefore, the 7,7 provides the information for the scattering of a
soft gluon from one jet to another and analogous soft contributions can be defined for the

other Z terms. The expressions for the ¢p-dependent beam-jet soft function integrals are

given in [135] as

s |4 (1 4 2 2
IBJ :Oé_[_ (—+L) —_ = — — <_2yJ+Ly+2ln ZNCbJ)] +Igr}]7 (44())

dm|n \ e e € i
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Qg 4 1 4 2 —2w Cpj f
L= 2 (24n) =2 -2 —2y-+ L, + 2m—H Zhin 4.41
BJ 47T[?7(e+ ) 2 6( Y7+ + 2In i > +BJ ( )
with ¢,y = cos(dp — ¢5) and where the rapidity of jets are
1—
Yy = 1n@, Yy = ln—( 2)¢ : (4.42)
pr pr

Here, the terms marked by “fin” in their superscripts denote the finite contributions of their
respective functions. While the divergent pieces are required for the purposes of resum-
mation, the finite pieces are only needed at NLO. Since we perform our analysis at NLL
accuracy, these terms are not needed for this study. Recently in [166], the authors derive
the following the jet-jet soft function integral which contains no rapidity divergence. This
integral can be written as

I,-= % {—% + % (mpiQT —L-In (4031)” + 70 (4.43)

From Egs. (4.40), (4.41), and (4.43), we obtain the following expressions for the soft anoma-

lous dimensions

T8 (ay) = 205 T (a,) L + Ca TP(a,) Ly + 7*(ay) (4.44)

[i(an) = == Cal +0(a?). (4.45)

with the one-loop single logarithmic anomalous dimension

~ ~

75 = 8CkIn (4¢2)) +4(Cy — QC’F)lnpiQ + 40@% .
T

As expected, we see that the one-loop rapidity anomalous dimensions of the TMD PDF and

(4.46)

the soft function fulfill the condition
Tl +T5,=0. (4.47)

Thus, the product of ;/“]f[“b(x, b; i, ¢/v?) and S(b, u,v) is v-independent, and we can con-

struct the properly-defined gluon TMD PDF as in Eq. (4.13).

Here we find that the soft function depends not only the magnitude but also the direction
of the vector b. As shown in Sec. 4.2.2.6 a similar structure also shows up in the collinear-

soft function, and the ¢, dependence in the anomalous dimensions will cancel out between
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these two functions. However, after taking into account the evolution between the soft and
collinear-soft function, one finds that the ¢, integral is divergent in some phase space region.
In order to avoid such divergences we apply methods in [135, 165] where one first performs
an averaging over the ¢ angle in both soft and collinear-soft function. We note that this
method does not change the RG invariance as shown in Eqgs. (4.75) and (4.76). In addition,
as discussed in [164] no significant numerical effects between different methods are observed

in the NLL resummation calculation.

The ¢p-averaged soft function can be constructed from Eqgs. (4.37) and (4.38) by replacing
the soft integrals with

a2 1 4 2
T == lo(Z-L, +2 Sy 5 A A 4.48
B 4r i (77 * yJ) (e * ) e € * 3} ( )
_ 6% i 2 1 4 2 71'2
I DY - ST A A 4.4

Iy o _2 (77 L +2yJ) (€+L) = €L+ 3} , (4.49)
— Q{S i 1 2 2 2 2
Iyy=5- |4 -+ L) In(2cosh(Ay/2)) — 5 — —L = L* + Ay

i 2

— 4In*(2 cosh(Ay/2)) +%}, (4.50)

where we have placed a bar over these integrals in order to distinguish them from the ¢p-
dependent ones and have defined Ay = y; — y7. These results are the same as the soft

function calculated in [184]. Therefore, the anomalous dimensions for the averaged case are

f‘;(as) = 20p TP (a, )L + C4 TP (ay) L, + 7°(a) (4.51)

_ Qg
I (as) = —?CAL +0(a?), (4.52)

where the one-loop single logarithmic anomalous dimensions is

~

5 = 4(Ca — 2Cp)In— +4C4In-= .
br Q

By comparing Eqs. (4.45) and (4.52), one can see the rapidity anomalous dimension is un-

(4.53)

changed. Therefore in the ¢,-averaged case, we can once again write the factorized expression

in terms of the properly defined TMD PDFs.
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4.2.2.5 Massive quark jet function

In this section, we discuss the calculation of the massive quark jet function at NLO. The
massive quark jet function has been investigated in detail for various observables. For ex-
ample, the factorization formula for the massive event shape distribution involves such a jet
function, as the jet and heavy quark masses are of similar magnitude [185, 186, 187, 188].
The corresponding jet function has been calculated to two-loop order [189]. Furthermore,
the semi-inclusive massive quark jet fragmentation function has been calculated at NLO
and applied to inclusive jet production [190, 191]. Recently, the one-loop expression for the

so-called unmeasured massive quark jet function has been presented in [192].

The global jet anomalous dimension can be obtained from the divergent terms of the
unmeasured massive quark jet function. As shown in Fig. 4.3, the one-loop calculation
involves two types of diagrams: JSLO’V and JSLO’R, where JSLO’V contains only single cut
propagators and is thereby unconstrained by the jet algorithm. Explicitly, it is written as

s 2 1 2 2 2 2
R ¥ A e (S R E) My R (A A P ) B KN
4 e € mg mg mg 6
where the heavy quark mass mg is the only physical scale involved. Since the real contribu-

JgLO’R is constrained by the jet algorithm, it will depend on the jet scale pr R in addition

tion
to mg. In this work, we define the HF quark four-momentum ¢* with ¢* = mQQ, which is
known as the M-scheme [188]. We note that in the hierarchy of scales we are considering,
the constraint of the anti-kr algorithm [193] is independent of the HF quark mass mg and

is in fact identical to that for massless partons [190], namely

o  _pl(T wima)\ (R 2_q2 (4.55)
anti-hr wy 2 coshy; Lo '

where ¢* = (¢", ¢, q.) is the four-momentum of the HF quark and w; is the large component
of the jet four-momentum. The jet scale prR emerges in Eq. (4.55) upon noting w; =
2prcoshy;. In the phase space integral, we expand the integrated momentum ¢ along the

jet direction with ¢* = (m% + q°)/q~ given by the power counting requirement prR ~ mg.
Q 1 Q

104



®g0% ®§@b% ®é€€m}% ®®m®

Figure 4.3: Sample Feynman diagrams contributing to the massive quark jet function Jg at
one-loop order in perturbation theory. The virtual corrections JSLO’V are displayed in the
first two diagrams, where each contain only a single cut propagator. The remaining diagrams

involving two cut propagators represent the real corrections JSLO’R.

Explicitly, we have

CF@WE/JJQG dq— dq2 q 2q2 w4
JNLOR R mo.e) = A / 1 1%
o T primee) = S m 0Ty | wr @ | 4 R T mb s —q )P

wy(wys—q7) -
1— 0 — O anti-
=9 W} + mh(wy — q‘)2] (7= 07) Ok

« m% + p2 R? 2m? 1
= 2Cp |—2In | —=2—T— 9~ < |Z JR’ﬁn, 4.56
ax ¥ { n( m$ ) + m$ + p;R? e+ Q ( )

where only a single divergence is exhibited, as the heavy quark mass mg acts as a regulator
of the overlapping soft and collinear regions of phase space. After combining the real and

virtual contributions, the logarithmic dependence on the quark mass mg cancels out.

The one-loop global jet renormalization constant then reads

o 2 1 T 2m?
Z7e =14+ =2Cp|S+>-(2h—"—— 43— ——2 4.57
T FL?+6( N mQQ_’_p%RQ)} ’ 457

where, again, we observe that the heavy quark mass mg only affects the single pole structure.
We further note that as mg — 0, the massive quark jet renormalization constant reduces to
that of the massless jet, Z/2 — Z7«. This gives us the following expression for the global jet

anomalous dimension

Fﬂg (as) = —CprI™P(a)In + 772 (), (4.58)

with the one-loop single logarithmic anomalous dimension as

- 2m?2
O TOr [ J——D R— 4.59
0 F ( mQQ —’—p%Rz) ) ( )
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where the first term in the brackets is shared by the massless quark jet function and the
second term constitutes the finite quark mass correction. Finally, the renormalized HF jet

function is given by the following

ren Qg 2m? 02
JQ,NLO(pTRa mo; :u) = 47TCF (3 - mQQ +]?Q%R2> lanQ —i—p%RQ (460)
2 2
7 3
In*———— 4 13— 2=+ F(prR
+nm29+p2TR2+ 5 + F(prR,mo) |,

where the function F(prR, mg) can be expressed as

2 2 2 2R2
FlprR,mg) =2 — 4Li, (— Mo ) ) (1—1n Mo )lanerT

P2 R? P2 R? P2 R?
B 2m2Q mQQ B mQQ mQQ + p?pRQ
mg + prR*  piR?  piR? m¥

2
mg mg -1 Mo —1 ( Mo
Y —= 1+ —2 |+ Cot [ —= ) |Cot™' [ =) . (461
[pTR( mé+p2TRQ) 0 (pTR)] ? (pTR> (4.61)

This expression for the HF jet function is equivalent to the semi-analytic form presented in
[192], and one can see that as mg — 0, we have F — 0 and, therefore, Jo — J,. Hence, the

massive quark jet function behaves as expected in the massless limit.

4.2.2.6 Collinear-soft function

We saw in the previous chapters of this dissertation that the soft function is responsible
for enforcing gauge invariance of the cross section under soft gauge transformations. In
our definition of the IR QCD modes, we introduced an additional soft mode, known as the
collinear soft mode, and we discussed how this mode is accounts for soft radiation which
leaves the jet. In this section, we calculate the one-loop perturbative expression for the
collinear-soft function S§(b, R, mg; jt). The corresponding Feynman diagrams are shown in
Fig. 4.4, where the blue and black lines represent Wilson lines along v/, and 7/, directions,
respectively. At this point, I would like to note a rather subtle point. In our calculation of
the global soft function, we took the jet to be light-like. However, in our definition of the jet
function, we took the parton to have some mass. Thus the relevant Wilson lines which enter

into our calculation of the collinear soft function point in the directions n; and vy, where
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the massive quark velocity v/, is defined by

I —
S0 e ith o = 1. (4.62)

vl =
7 mQZ wJQ

Alternatively, we could have treated the jet to point in the v; direction. The introduction of
this direction would add additional mass to both the global soft and collinear-soft function.
In our paper, we did not perform this second calculation but we could consider it in another

work.

Treating the calculation using the v; and n; direction, the explicit expression for the

bare NLO collinear-soft function is given by
Sonro(b, Rymo, €) = 2Ck Wy 0, — Cp Wy 0, (4.63)

where the collinear-soft integrals w,g are defined in b-space as

asuZEﬂ.eee'yE
272

/ddk 5“1’(1{;2)671.7—14]’]{?71‘]‘17/2

a-f ny -k R\’
(a-k)(B-k) ’ [ﬁJ‘k - <2005hyJ> ] ' 464

Notice at this point that the phase factor for the collinear-soft function is different than

Wap =

that for the soft function. This is a result of the fact that the power counting of the soft
function goes as ¢, (1,1,1) while the power counting of the collinear-soft function goes as
q. (1, R*, R). As a result, only the plus component of the collinear-soft function can con-
tribute to the observable. Additionally, note that in this calculation, the 6 function is
associated with enforcing that the collinear-soft radiation leaves the jet and thus produces

transverse momentum in the final-state.

Upon performing the k-integration, we obtain the following expressions for wqg

as [ 11 —2icpy My + pp R fin

Wayvy = [—6_2 - <L +2In n In R +wp (4.65)
Qg 1 QmQQ fin

v =2 [ ()| - o



<<

Figure 4.4: One-loop Feynman diagrams of the collinear-soft function S§. The blue and

black lines indicate the Wilson lines along v, and 7/, directions, respectively.

We see that the finite quark mass corrections only enter into the single pole structure of the
collinear-soft function. This is analogous to the observation made in Sec. 4.2.2.5 in analyzing
the massive quark jet function, and can be understood through the same physical reasoning.

The finite terms are given by

2 2 P2 . .
fin Qg mg +pTR —2 ChJ —21 ChJ
Wy, = 40 [2 (ln 2R In 7 In 7 (4.67)
m2 + paR? —2ic 1 m2 72
Q T bJ . o)
-+ <IHW — 21n R — 5[4) L + L12 (_p%R2> — Z s
2 2 P2 2 .
fin Qg mg + prR 2mpg —2i ¢y
= — |21 — 21 L . 4.68
waUJ A7 |: B pCQZ“R2 mQQ + p%R2 n R + ( )

Here, we note that wy,,, reduces to the massless wy, ,,, function [135, 164] as mg — 0, while
Wy, vanishes. Given the expression for SG, we can calculate the renormalization constant

752, which is given by

75 =1 (4.69)
Qg 2 2 —2ichy m$ m + piR?
—Cp|-=-=(L+2 - —1 .

+47T F{ 2 . ( + 2In R mQQ—f—p%RQ n PR

This renormalization constant leads to the following formula for global collinear-soft anoma-

lous dimension

R
[e(as) = Opy™ (o)== + 77%(as)., (4.70)
where the one-loop single logarithmic anomalous dimension is
m2 m? + pR?
00 = 40 |2In (=2icpy) — ——25 s — In—2 T 4.71
Yo F | 2In (—2icyy) ng + PR n P2R? ( )
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The anomalous dimension for the collinear-soft function associated with the anti-quark is

given by
FZSQ (a8> = F;CLSQ (aS)M’J"d’JJFﬂ' : (4'72)

For phenomenological purposes, we utilize the ¢,-averaged collinear-soft function, which

can be obtained through Eq. (4.65) by making use of the following integrals

2w 2m 2

—In (-2 =0 —In”" (-2 = ——. 4.73

/0 o n (—2icy) ) /0 om (—2icpy) 6 ( )

The resulting anomalous dimension for the ¢,-averaged collinear-soft function is denoted by
['*se with

m2 m? + p2R?
y5° = 4C 2 In—2 T 4.74
o ) (mé R T g )

Upon integrating over ¢y, we find that ['**2(a,) = I'**2(a,) and, therefore, the two averaged

collinear-soft functions S'CQ and S'CQ behave identically under QCD evolution.

4.2.2.7 Renormalization group consistency

Armed with the anomalous dimensions of each component, we are now positioned to demon-

strate the RG consistency of our factorization framework.

Inspection of Egs. (4.58) and (4.70) reveals that all mass corrections cancel exactly in
the sum Ffﬁ + I'7e, making the RG consistency of our formalism identical to the massless
case. A similar observation is made in [192]. This general physical behavior has also been
observed in the context of inclusive HF jet production [190], where the authors offer the
intuitive argument that as the heavy quark mass mg constitutes IR information, it thus
does not affect the UV behavior of the semi-inclusive jet function. In the present context,
we see that the UV evolution behavior of the product of the jet and collinear-soft functions
is insensitive to the IR scale introduced by the heavy quark mass. However, in Sec. 4.2.2.8,
we will see how the heavy quark mass enters non-trivially and crucially into the evaluation

of the differential cross section.
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Therefore, upon combining Eqs. (4.24), (4.36), (4.44), (4.57) and (4.70), the RG consis-

tency of our formalism is established:
T+ T8+ Te 4210 + T + T, = (4.75)
Furthermore, we note that this consistency is preserved under the operation of ¢p-averaging

h s fq j cs nesg
Ih+T% 4+ 4210 + T92 +T,° =0. (4.76)

4.2.2.8 Resummation formula

Utilizing our EFT framework, all-order resummation is achieved through RG evolution. The

resulting all-order expression for the HF dijet production cross section is given at NLL? by

O = H@upr i) [ dogr) i)
dQQdydquddeQPT - Y Yy PT,YT5 HUh . o\odqr)Jjg/N b
Hh d Hj d . Hes d ~ s m
X exp —/ D () - 2/ Wpio () - / e (Fesa (o) + T52 (o))
Hbx K Hbx K by 2
x exp [—Snp(b, Qo, - py)] , (4.77)

where Jy is the zeroth order Bessel function of the first kind. In this expression, s, 4,
and . are the hard, jet, and collinear-soft scales, respectively. We have also performed the
usual operator product expansion (OPE) of the unpolarized gluon TMD PDF f,/ny(z,b; 11, C)
in terms of the collinear gluon PDF f,/n(x;u) at the initial scales (; = p7 = pz,, and have
kept the coefficient at LO to be consistent with NLL accuracy. The matching coefficient
at higher-orders can be found in e.g. [172, 195, 196, 197, 198, 199, 200]. The function Sxp
parameterizes the contribution from non-perturbative power corrections which are enhanced

for gr ~ Aqep. Explicitly, we apply the formula given in [92], which reads

b
92 Oy, 1Py = (4.78)

Sxp (b, Qo, 1 - pg) = gib* + 2Cr 00 b

2In our framework, we ignore contributions from NGL resummation. Such resummation could be included
multiplicatively by using the parton shower algorithm developed recently for massive particles [194]. Note
that the fitting function used in [164, 165] to capture the effects of NGLs is only an approximation for HF
jet production, as finite heavy quark mass corrections are not included.
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We assign the following values to the parameters: g; = 0.106 GeV?, go = 0.84 and Q2 =
2.4 GeV>.

Moreover, the spin-dependent cross section is expressed as

dO'UT(ST) . o b2db 1.f
preT e —— sin(og — ¢s) H(Q,y, pr, Y7; in) /0 i 10 ar) fizign (@ po)
g ody Hes dpy
« exp | — / P (ag) — 2 / i (o) - / e (Fesa (o) + T52 ()
Hbx ’U/ Hbx /'L Hb M
x exp [—Syp(b, Qo, - py)] - (4.79)

Here, we have expected a similar OPE for the gluon Sivers function flLT p /N(x, b; i, ¢) at the
initial scales ¢; = pu? = pi, and simply expressed the corresponding collinear function at
LO as flLT]; /N(x; iy« ) Tor simplicity. In principle, the corresponding collinear functions in the
OPE expansion would be the twist-3 three-gluon correlation functions defined in [201, 202].
To the best of our knowledge, detailed OPE calculations for the corresponding coefficient
functions are not available in the literature. An expansion of the gluon Sivers function in
terms of the collinear twist-3 quark-gluon-quark correlator, or the so-called Qiu-Sterman
function [66, 67|, in transverse momentum space is performed in [144]. On the other hand,
the coefficient functions for the expansion of the quark Sivers function in terms of the three-
gluon correlation functions are provided in [112, 123]. The computation of the coefficient
functions for expanding the gluon Sivers function in terms of the three-gluon correlation
functions is essential for a full understanding of the QCD evolution of the gluon Sivers

function. We leave this to future work.

Our knowledge about gluon Sivers functions, especially in the proper TMD factorization
formalism, is rather limited. At the present moment, the only experimental constraint on the
gluon Sivers function, in the TMD framework, comes from the SIDIS measurement of back-
to-back hadron pairs off transversely-polarized deuterons and protons at COMPASS [203].
However, as of yet, there has been no theoretical extraction of the gluon Sivers function
from such data. On the other hand, an important theoretical constraint on the gluon Sivers

function comes from the Burkardt sum rule [204]. For the phenomenological purposes of
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the next section, we adopt the non-perturbative parameterization utilized by [205, 206] 3

Specifically, for the non-perturbative Sudakov, we take

g Ca, n-pg. b
n ln— 4.80
2Cr Qo b, (480)

SNP (b,Qo,n-pg) = g1p b+ =

where the go-dependent term is spin-independent and is, therefore, the same term occurring
in Eq. (4.78), while the term o g;p can be connected to the Gaussian width in transverse
momentum space [80] for the gluon Sivers function. For the collinear part of the gluon Sivers
function, fng/p(x p) in Eq. (4.79), we take

4p\/2ep(1 — ag+fs
0 = N, 22 ep( p)glxag(l_x)gg (ag + By)

M,

a
proton ag g ﬁg g

fng/N( ) fg/N(I;:U’) ) (481)

with the parameters given by
Ny, =065 o=28, [,=28, p=0.5 Mpyoon=1GeV, (4.82)

and fy/n(z; ;1) denoting the unpolarized collinear gluon PDF. For f,/n(z; it), we use CT14nlo
[208]-specifically, CT14nlo_ NF3 (CT14nlo_NF4) for charm (bottom) jet-pair production with

3 (4) active parton flavors.

At this point, it is important to note that while the mass corrections in sum of the
anomalous dimensions for the collinear-soft and massive jet functions cancel, the mass-
dependence of F{ﬁ contributes to the differential cross section. By examining Eqs. (4.77)
and (4.79), we see that the mass corrections enter into the evolution between the scales
p; and pes. We will see in the following section that this can significantly affect both the

qr-distributions and spin asymmetries for HF dijet production at the EIC.

4.2.3 Numerical results

In this section, we present numerical results for HF dijet production in unpolarized and

transversely-polarized-proton-electron collisions at the future EIC. We set the energies of

3Note that the gluon Sivers function in [205], and its updated version [207], is constrained to their study
of the pTp — 7X process. Technically, this is not subject to a TMD factorization framework, but it serves
as a starting point for our numerical study, following [151].
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Figure 4.5: The normalized ¢p-distribution for the unpolarized cross section of charm (left
plot) and bottom (right plot) dijet production at the EIC. The solid curves are the results
from using the resummation formula Eq. (4.77), while the dashed curves represent the re-
summation prediction using the evolution kernel without finite quark mass corrections. The
red and blue bands indicate theoretical uncertainties from the variation of hard and jet scales

as discussed in the text.

the electron and proton beam to be 20 GeV and 250 GeV, respectively. These beam-energy
values yield a electron-proton center-of-mass energy of v/Syp = 141 GeV. For the all-order

resummation formulae in Eqgs. (4.77) and (4.79), the renormalization scales for each function

pn =/ Q*+ D7, pj =prR,  pes = R (4.83)

Here, note that the Landau singularity associated with the collinear-soft scale is also regu-

are chosen to be

larized by the b,-prescription.

As given in the calculation of the jet function, we consider HF jets constructed using the
anti-kp algorithm with radius R = 0.6. The corresponding kinematic cuts for charm and

bottom jets in the Breit frame are
charm jets : 5GeV < pr < 10GeV, |y | < 4.5,
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EIC 20 GeV x 250 GeV, charm jets

EIC 20 GeV x 250 GeV, bottom jets
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Figure 4.6: The Sivers spin asymmetry for charm (left plot) and bottom (right plot) dijet
production at the EIC is plotted as a function of gr/pr. The solid curves are the results
from using the resummation formula, while the dashed curves represent the resummation
prediction using the evolution kernel without finite quark mass corrections. The red and

blue bands indicate theoretical uncertainties from the variation of hard and jet scales.

bottom jets : 10 GeV < pr < 15GeV, |y;| < 4.5, (4.84)

respectively. The charm and bottom quark masses are chosen as m. = 1.5 GeV and m; =
5 GeV. The spin asymmetry from the gluon Sivers function is defined as

ASin(¢q_¢5) — 2f d¢5d¢qSin<¢q - ¢s) do‘UT<ST)
ur [ dpyde, doVU '

(4.85)

In Fig. 4.5, we display the normalized unpolarized cross section, 1/o do/dqr, as a function
of the imbalance ¢r. In Fig. 4.6, the Sivers spin asymmetry Azljr} (0a=02) jg presented as a
function of ¢r/pr following [142], for both charm (left panel) and bottom (right panel) jets,
respectively. For both plots, the solid curves are the results obtained using the resummation
formula, while the dashed curves represent the resummation prediction using the evolution
kernel without finite quark mass corrections. For both the unpolarized ¢r and Af}? (6a=02)

distributions, we find that the effects of the finite quark masses are modest for charm jets
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and quite sizable for bottom jets. This can be attributed to the sizes of the charm and
bottom masses relative to their associated jet scales prR. As discussed in Secs. 4.2.2.5
and 4.2.2.6, we have that Jo — J;, and S§ — S7 as mg — 0, making them analytic
functions of mg in the neighborhood of zero mass. Since Egs. (4.77) and (4.79) carry their
mass-dependence through the anomalous dimensions for the jet and collinear-soft functions,
Eqgs. (4.58) and (4.70), one sees that the massive versions of these functions are connected to
the massless versions by the ratio mg/ (prR)-it is in fact this dimensionless parameter that
controls the physical size of the mass corrections. With this in mind, one sees that Eq. (4.84)
naturally positions bottom dijets further (in terms of the parameter mg/ (prR)) from light
flavor jet-pairs than it does charm dijets. This relative positioning is then clearly displayed

in Figs. 4.5 and 4.6.

In order to estimate the theoretical uncertainties, in both Figs. 4.5 and 4.6 we also show
the uncertainties from scale variations, which are given by the red and blue bands. Here
we vary the hard and jet scales by a factor of two around their default values as defined in
(4.83), and the total uncertainty bands are obtained by the envelope of all the variations.
Since the non-perturbative Sudakov factor in Eq. (4.80) is fitted at the canonical scale py,,
we do not include theory uncertainties from p;,, and p.s variations. We find that the scale
uncertainty is compatible with the finite quark mass corrections in charm dijet process, while
its impact on the bottom dijet process is smaller than the mass correction. Therefore in order
to identify the finite quark mass effects in the charm dijet process it is essential to reduce the
scale uncertainties. Our factorization and resummation formula provides a clear structure to
improve the perturbative accuracy, which makes scale uncertainty further reduction possible.

We leave the higher-order perturbative calculations in future work.

4.2.4 Conclusion

A major priority of the future EIC is to explore the gluon TMD PDFs. In this section,
we have investigated the use of back-to-back HF dijet production in transversely-polarized

target DIS as a means of probing spin-dependent gluon TMD PDFs. We have calculated
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the expressions for the mass-dependent jet and collinear-soft functions at next-to-leading
order. Using these expressions, as well as Soft-Collinear Effective Theory, we resum the
large logarithms associated with these expressions at next-to-leading logarithmic accuracy.
We then provide a factorization theorem for this process with QCD evolution in the kinematic
region where heavy quark mass mg < prR < pr, with pr and R being the transverse
momentum and the radius of the jet, respectively. Furthermore, we generate a prediction for
the Sivers asymmetry for charm and bottom dijets at the EIC, which can be used to probe
the gluon Sivers function. We carefully study the effects of the HF masses by comparing our
mass-dependent predicted asymmetry against the asymmetry in the massless limit. We find
that, in the kinematic region we consider, the HF masses generate modest corrections to the
predicted asymmetry for charm dijet production but sizable corrections for the bottom dijet
process. Furthermore, we also consider the theoretical uncertainties from the scale variation.
We find that the scale uncertainty can be compatible with the corrections from finite quark
mass effects, especially for charm dijets production. In order to identify the mass effects and
reduce the scale uncertainties one has to include higher-order corrections in the matching
coefficients and the corresponding anomalous dimensions in Eqs. (4.77) and (4.79), and we

leave the detailed perturbative calculations in future work.

4.3 The Sivers Asymmetry in Hadronic Dijet Production

4.3.1 Introduction

We saw in the previous sections that the Sivers function exhibits modified universality due
to the presence of the additional gluon entering into the collinear correlation function. In
the previous section, we had the partonic interaction g — ¢ g but an interesting question
to address which could prove important for EIC physics is: how does the establishment of
QCD factorization theorems change as the number of partons in the hard process increases.
To study the factorization theorems, I now turn our attention to the Sivers asymmetry in

hadronic dijet production.
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The Sivers effect has been continuously studied in proton-proton collisions at the RHIC
see for instance [209, 210, 211, 212, 213, 214] for experimental measurements and [215, 66,
216, 217, 218, 219, 220, 221, 222, 223, 224, 225] for theoretical developments community. A
major difficulty in understanding transverse spin asymmetries with hadronic final-states is
that the fragmentation process can introduce a large number of additional spin asymmetries,
see for instance [217, 219, 226, 221, 222]. To eliminate these contributions from the spin cor-
relations in the fragmentation process, the Sivers asymmetry for jet production processes has
been explored in the experiment [227, 214, 228]. In particular, back-to-back dijet production
in transversely polarized proton-proton collisions was proposed by Boer and Vogelsang in
2003 as a unique opportunity at the RHIC [131]. Active investigation has been performed
both experimentally [228] and theoretically [134, 229, 230]. On the experimental side, the
Sivers asymmetry for dijet production was found to be quite small. This effect can largely be
attributed to the fact that the u- and d-quark have similar size but opposite sign [80, 81, 79].
On the theoretical side, dijet production in proton-proton collisions is also subject to TMD
factorization breaking [223, 224]. These have slowed down the efforts in the detailed study

of the Sivers effect in the dijet production.

Recently, there have been renewed experimental and theoretical interests for jet pro-
duction processes. Experimentally, the STAR collaboration at the RHIC is analyzing the
new data for dijet Sivers asymmetry, and is exploring a novel method based on a charge
weighting method in separating the contributions from individual v and d-quark Sivers func-
tions [231]. The PHENIX collaboration at the RHIC is exploring the TMD factorization
breaking effects via back-to-back dihadron and photon-hadron production in proton-proton
collisions [232, 233]. Theoretically, there have been efforts in performing QCD resummation
in back-to-back dijet [234, 235] and vector boson-jet production [135, 164, 236]. At the same
time, a theoretical framework has been developed to study spin asymmetries in specific jet
charge bin [237], which would facilitate the analysis of the dijet spin asymmetries by the
STAR collaboration. In light of all these activities, we set out to develop a resummation

formalism for studying the Sivers asymmetry in back-to-back dijet production in transversely
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polarized proton-proton collisions. We make predictions for the dijet Sivers asymmetry in the
kinematics relevant to the RHIC energy, to be compared with the experimental measurement

in the near future.

The rest of this section is organized as follows. In Section 4.3.2, we summarized the QCD
formalism for dijet production in both unpolarized and polarized scatterings, and we provide
a few remarks about our formalism. In Section 4.3.3, we provide a procedure and demonstrate
how to compute the process-dependent polarized hard functions in the color matrix form.
In Section 4.3.4, we present the renormalization group evolution of all the relevant functions
in our formalism, and we provide the final resummation formula. Section 4.3.5 is devoted to
the phenomenological studies, where we make predictions for dijet Sivers asymmetry in the
kinematic region relevant to the experiment at the RHIC. Since we are mainly interested in
the Sivers asymmetry in the forward rapidity region where quark contributions dominate,
we consider only the quark Sivers contribution and neglect the gluon Sivers contribution.

We summarize this study in Section 4.3.6.

4.3.2 QCD formalism for dijet production

In this section, we study back-to-back dijet production in transversely polarized proton-

proton collisions in the center-of mass frame,
p(Pa,S1) +p(Pp) = Ji(Ye, Pi1) + Jo(ya, Por) + X, (4.86)

where the polarized proton with the momentum P, and the transverse spin S, is moving
in the +2z-direction, while the unpolarized proton with the momentum Pp is moving in the
—z-direction, and we have the center-of-mass energy s = (P4 + Pg)?% The produced two
jets Ji and J; have rapidities y. 4 and transverse momenta Py, and P, , respectively. These
jets will be reconstructed via a suitable jet algorithm [238] and in the rest of this section, we
consider both of them to be anti-k7 jets with jet radii R. In order to access the transverse
motion of the partons inside the protons, we concentrate in the back-to-back region where

the transverse momentum imbalance ¢, is small. Here we define the average transverse
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J1

Pp

Figure 4.7: Illustration of back-to-back dijet production in transversely polarized proton-pro-
ton collisions: p(Pa, S1) + p(Pg) — J1(Ye, Pi1) + J2(ya, Po1) + X. The polarized proton
with momentum P, and transverse spin S, is moving in +z-direction, while the unpolar-
ized proton with momentum Pp is moving in —z-direction. We have jet rapidities y.4 and
transverse momenta P, and P, respectively. The dijet transverse momentum imbalance
is defined as q, = P, + P, . Sivers asymmetry is generated due to the correlation between

S, and q,.
momentum P, of the two jets and the transverse momentum imbalance g, as follows
Py =[P — Py /2, q. =P+ P, (4.87)

where one has ¢, < P, in the back-to-back region. The production of such back-to-back
dijets is illustrated in Fig. 4.7. In the transversely polarized proton-proton collisions, the
transverse spin vector S| of the incoming proton and the transverse momentum imbalance
g, of the two jets will be correlated, as advocated in [131]. This correlation is accounted
for in the Sivers function, which leads to a sin(¢, — ¢g)-azimuthal modulation in the cross
section between ¢, and ¢g, the azimuthal angles of g, and S, respectively. Below we
summarize the factorized formalisms for dijet production in both unpolarized and polarized
proton-proton collisions, and we provide more details for the relevant ingredients in the next

section.
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4.3.2.1 Dijet unpolarized cross section

In the back-to-back region where q; < P, , within the framework of soft-collinear effective

theory (SCET) [54, 55, 53, 56, 239], we consider the following QCD modes

A(x) = A (2) + A, (z) + Al(2) + AL () + AL (z) + AL (z) + A, (2) (4.88)
(@) = Y () + P, () + he() + Da() + Ps(2) + Yes () + thesy (2) (4.89)

where J./4 denote the jet modes, and cs./q denote the collinear-soft modes. Using this mode

analysis, the factorization theorem becomes

do 11 1 / . ) . )
= - Tafolpe (Tas Kars b, CL/V7) T fo)pn (Toy Kot 4, C2/V
dyedyad P2 dq; ;l T6m28 Ny 14 89, “odalP (o b i GV 205 (o Ko o)

x Tr [Sab—wd(/\b pyv) - Hab—)cd(Pl; FL)] Jo(PLR; 1) S (ke R; )

X Jo(PLR; ) Sg (Kav, R; ) , (4.90)

where § = x,x,s is the partonic center-of-mass energy, Ny, is the corresponding spin- and
color-averaged factor for each channel, while 1/(1+d.4) arises from the symmetry factor due

to identical partons in the final state. We have used the following short-hand notation
/ = /d2kud2kde2kchd2ded2)\ﬂ5(2)(ku +kp + ko ko +AL—q),  (491)
L

and the parton fractions are defined as

P
Ty = _J‘ (eyc + eyd) , Tp = —— (eiyc —+ eiyd) , (492)

NG
where 3., y; are the rapidities of the two leading jets.

After performing Fourier transform for Eq. (4.90), we obtain the factorized formula in

the coordinate b-space as follows

do 111 b
= iq b unsub b: 2
dycdyad Pt d?q, 2 167252 Nigit 1 4 ea / @nz ¢ Telaa (Za, b5 11, 1 /V7)

abed
Xy [ (2, 0; 1, Co/ V) T [Sapsea(b; 1, ) - Hapsea(PL; 1))

X Je(PLR; 1) S (0, By ) Ja(PLR; 1) Sg (b, Rs ) (4.93)
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In this expression, H g cq(Py; 1) is the hard function, while Sy, cq(b; i, v) is a global soft
function. Note that both the hard function Hy, ,.q and the global soft function S, .4 are
expressed in the matrix form in the color space and the trace Tr[- - -] is over the color. Such
factorization of the hard and soft function into matrix form is essential to capture evolution
effects between the hard scale ~ P, and the imbalance scale ~ ¢, [240]. Here p and v
denotes renormalization and rapidity scales, separately. The rapidity scale v arises because
both the TMD PDFs and the global soft functions have rapidity divergence [241, 62}, which
are canceled between them as demonstrated below. This cancellation allows us to define

rapidity divergence independent S’ab_,cd(b; i) by

Sabsed(D; 11, V) = Sapsea(; 1) San(b; 11, v) (4.94)

where Sg(b; i1, v) is the standard soft function appearing in usual Drell-Yan and Semi-

Inclusive DIS processes. Through this definition, we can perform the soft subtraction [36]

I (0, 5 0, G /%) SRS (b g1, o P) S (b, )

= fa/pa(Za, b5 11, C1) foypy (20, b5 11, () - (4.95)

The jet functions J.(PyR;u) and Jy(PLR; p) in Eq. (4.93) describe the creation of anti-kr
jets from the massless partons c and d, respectively. Finally, S¢(k.,, R; u) and S$¥(kqy, R; 1)
are the collinear-soft functions. If one performs the integration over the azimuthal angle of

the vector b, we obtain the following expression

do 1 1 1 1 [~
= — dbb Jy(q.b
dycdyddPEdQC]J_ Z 167252 Ninit 1+ 5cd 27 /0 O(QL )

abed

X :Cafa/PA (:Caa ba 22 gl) :beb/PB ('xba bu 22 CQ)

x Tr [S’ab—wd(b; 1) - Hopsea(Pr; u)] Je(PLR; p) S (b, By 1) Ja(PLR; )

x ST(b, Ry 1) . (4.96)
It is well-known [223, 224, 242, 243] that the so-called Glauber mode will result in the

TMD factorization breaking contributions to Eq. (4.90). In this section, we write down

a theoretical formalism in Eq. (4.93) using SCET with the factorization breaking effects
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from the Glauber mode ignored. By careful comparison between the predictions from our
theoretical framework with the precision experimental data in the future, we can probe the
size of the factorization breaking effects. In principle, such effects can be systematically
accounted for in SCET by including explicitly the Glauber mode [45]. How exactly this

works for dijet production remains to be investigated.

4.3.2.2 Dijet Sivers asymmetry

In the transversely polarized proton-proton collisions, the Sivers function will lead to a spin
asymmetry in the cross section when one flips the transverse spin of the incoming proton.
We thus define the difference in the cross section as dAc(S,) = [do(SL) —do(—=S1)] /2.
One can write down a similar factorized formula for such a spin-dependent differential cross

section following Eq. (4.90), and it is given by

dAO_(SL) 1 1 1 1 a 1.8 L, unsub . 2
_Ejl&ﬂﬂAmn1+¢dA Mﬁw5L%L%fwme%J%hu£Mv>

dyodydPPdq, e
X Ty el (2, ko ft CofVP)TY [Sapssea(ALs 1y v) - H S(Ps )]
X Jc(PJ_Rv M)Sgs(kcla Ra N)Jd(PJ_Ra H)Sccls(kdla Ra ﬂ) ) (497)

where €,53 is a two-dimensional asymmetric tensor with €;5 = +1.

In writing down this spin-dependent formalism, we start from the unpolarized factorized
formalism in Eq. (4.90) with the replacement of the unpolarized TMD PDF by the Sivers

function following the so-called Trento convention [244],

unsub

1 a, unsu
a/Pa (.Ta, kaJ_; 22 Cl/V2) — M‘Eaﬂ Si kfj_ 1Ji"’7a/PAb(xa7 kaL; 22 Cl/yz) ) (498)

where the subscript ab — cd in the Sivers function on the right-hand side represents the so-
called process-dependence of the Sivers function, as discovered by [245, 246, 134, 133, 229,
230, 36]. In Chapter 3, we saw that one can either absorb the pole contributions into the
Sivers function or in the partonic cross section. Therefore, we are free to use the usual Sivers
function from Semi-Inclusive DIS and derive a novel hard function. Once this is done, we

will have a new hard function H5Y™S,( P, ; 1), which would be different from the unpolarized
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hard function, Hyp scq(Py; 1). We explain in details how we derive the hard functions H>Ve™,
for different partonic processes in the next section, where we show non-trivial structures are
expressed in terms of matrix forms in the color space. To a large degree, our formalism for
the spin-dependent case can be regarded as an extension of the generalized TMD formalism

introduced earlier in [245, 246, 134, 133], but with a matrix form for both hard and soft

functions.

At this point, I would like to note that the soft function can in principle also be different
for di-jets. In general, one needs to consider emissions from each section (jet, collinear, soft,
soft-collinear) and then introduce the additional gluon. In fact, Ref. [225] shows in explicit
calculations at one-loop level that soft functions in the polarized case are different from the
unpolarized counterpart beyond leading logarithmic accuracy, which is an indication of TMD
factorization breaking. However, the change in soft function comes from the Glauber gluon
which we ignore as explained above. In this respect, our starting point Eq. (4.97) will be
the best assumption at hand that takes a factorized form. We show the RG consistency
for this factorized form, and we also demonstrate how we derive the process-dependent
hard functions HZVS, (P, ; i) for the polarized scattering. We leave a detailed study on the

numerical impact of any TMD factorization breaking effects for future investigation.

Performing Fourier transform from the transverse momentum space into the b-space, we

obtain

dAa(S1) 1t 1 / Pb e 1B
= o Sa q1 o @ b’ ,
dyedyad P d*q . % 167282 Noie 1+ 0.0 771 | (27)2 e Taf 110 p,y (Tay b 1, G1)

X 21 i (0, 3 1, o) T [ Sl ) - HSSr(Prs )|

where we have already used Eq. (4.94) to rewrite the unsubtracted unpolarized TMD PDF
and Sivers function in terms of the properly defined versions which are free of rapidity

divergence. Here flLT(f /)PA (24, by 1, (1) is the Fourier transform of the Sivers function,

| .
Fir)p (0, b5 1, 1) :M/dzk’“” “l Ok iy (Ta ki, )
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= 7 flTa/PA(xaab;,u;CI) 5 (4100)

where we have used the fact that the integration in the first line would be proportional to b°,
and we thus factored b° out explicitly in the second line. The remaining part of the Sivers
function is now denoted as flLTa /P (24, b; 11, ¢1). Note that for the same reason as explained
below Eq. (4.95), we do not have the rapidity v-dependence in the above equation. It is
also instructive to emphasize that fliT“a“/S};E (24, b; i1, (1 /v?) follows the same TMD evolution
equations as the unpolarized TMD PDF ;/n]iib(:va, b; i, ¢1/v?), which enables us to evolve the

Sivers function from some initial scale p to the relevant scale p. We now plug Eq. (4.100)

into Eq. (4.99), and integrate over the azimuthal angle of the vector b, we obtain

dAG(S1) , 1 1 1 1 /°° )
_ _ —— dbb® Jy(qub
dycdydded%l sm(qu ¢S)azbc;1 167282 Ny 1 + Oog ( 47T> . 1(qL )
X T S (s 0 1, T Foy (0, b5 1 Go) T | Suosea(bs 1) - S5 (PLs )|
X Jo(PLR; p) S (b, Rs ) Ja(PLR; ) SG (b, R ) (4.101)

where J; is the Bessel function of order one, and we have used the identity

€apST 4] = sin(¢y — o), (4.102)

with ¢, the unit vector along the direction of the imbalance q,. In general, the so-called
single spin asymmetry (the Sivers asymmetry) Ay for dijet production will be then given by

_ dAo(Sy) do
 dyedygdPd?q, [ dyedyadPd?q)

N (4.103)

4.3.2.3 Remarks

We will provide detailed expressions and discuss the evolution of all the relevant functions

in the next section. Here, let us emphasize the following points on our factorized formalism:

e There will be non-global structures from quantum correlations between in-jet and out-

of-jet radiations: exclusive jet production will be sensitive on the correlation effects
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Figure 4.8: Tllustration of first non-global logarithms from quantum correlation of in-jet and

out-of-jet radiation.

between in-jet and out-of-jet radiations, which is first discovered in [162]. There, it
was shown that non-global logarithms first appear at NNLO order through a correlated
emission from a heavy mass hemisphere to a light mass hemisphere. We observe similar
non-global logarithms first at NNLO through a correlated emission from the higher
scaled in-jet to the lower scaled out-of-jet emission as shown in Fig. 4.8, which is given

at NNLO by [130]

CaCy ras\2 72 o (P?
- (-) Sin (— , (4.104)

T 0
where C, = Cr and C4 for the quark and gluon jet, respectively. To generalize the
analysis of these non-global logarithms to general resummation order, the factoriza-
tion and resummation formula need to include multi-Wilson-line structures [247, 248].
The multi-Wilson-line formalism then gives rise to the non-linear evolution equation
[249] for non-global logarithms (NGLs) resummation. The TMD factorization formula
including such effects have been given in [250, 164, 251]. Numerically, the leading-
logarithmic NGLs resummation can be solved using parton shower methods [162, 252,
253, 254] or BMS equations [255, 256]. In our phenomenology, we have included the

contributions from leading-logarithmic NGLs as discussed in Section 4.3.5.
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e Our formalism for unpolarized dijet production in Egs. (4.93) is similar to those in [234,
235]. Here, by taking the small-R limit, we refactorize the TMD R-dependence soft
function [234, 235] as the product of the R-independent global TMD soft function and
the R-dependent collinear-soft function [135, 164]. In addition, the R-dependent hard
function in [234, 235] has been further factorized into a R-independent hard function
as above and the jet functions which naturally capture all the R-dependence. In this
regard, the factorized formula presented here is more transparent and intuitive. Such

refactorizations are essential to resum logarithms of R for small radius jets.

e After performing the refactorization mentioned in the above item, both the single
logarithmic anomalous dimensions of the global and collinear-soft function not only
depend on the magnitude |b| but also the azimuthal angle ¢, of the vector b [135, 164].
Especially, after taking into account QCD evolution effects the ¢, integral is divergent
in some phase space region. In order to regularize such divergences, we can first
take ¢, averaging in both the global and collinear-soft function, and then explicit ¢,
dependence will vanish. Therefore, one can avoid such divergence in the resummation
formula directly. This ¢, averaging method will not change the RG consistency at the
one-loop order. The other methods to avoid such divergence have been discussed in
[164], and no significant numerical differences are found at the NLL accuracy. The
similar ¢, averaging methods have also been used in [257, 258, 259] to simplify the
calculation of the TMD soft function.

4.3.3 Hard Functions in unpolarized and polarized scattering

In this section, we derive the hard functions for both unpolarized and polarized scatterings,

ie. Hypyea(Pr;pu) and HOYS(Py;p) in Egs. (4.96) and (4.101), respectively. They are

ab—cd
matrices in the color space. We first review the results for the hard functions H,j_,.4 in the
unpolarized scattering, which are well-known in the literature, see e.g. Refs. [260, 261]. We
then derive the hard function matrices H>V™ in the polarized scattering case. These hard

ab—cd

functions properly take into account the process-dependence of the Sivers functions [245,
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Figure 4.9: Unpolarized scattering amplitudes for the qqg — gq subprocess. From left the

right, the scattering amplitude is provided for the ¢- and u-channel processes.

246, 134, 133, 229, 230, 36]. To get started, we define the Mandelstam variables for the

partonic scattering process, a(p1) + b(pa) — ¢(ps3) + d(p4), as follows

A
§=(p1+1p2)* = (ps + ps)* = 4PF cosh® (%) = ToTpS, (4.105a)
7 2 2 2 —Ay/2 Ay
t=(p1 —p3)° = (p2 —ps)° = —2P7e =¥ cosh < ) (4.105Db)
- 2 2 2 Ay/2 Ay
U= (p1 —pa)” = (p2 — p3)° = —2P{e~¥* cosh - | (4.105¢)

where Ay = y. —yq is the rapidity difference of the two jets. In the following, the expressions

for the hard functions will be written in terms of these Mandelstam variables.

4.3.3.1 Unpolarized Hard Matrices

Four quark subprocesses

We start with the partonic subprocesses that involve four quarks, such as q¢ — ¢qq. In
Tab. 4.1, we organize each of the four quark subprocesses into a color basis. The color basis
operators acting on particles ¢ and j are denoted as I';, ;; which are used to generate the hard
and soft matrices. For the four quark interactions, two operators, n = 1,2, are required to
span the color space. As seen in the table, this results in 12 total color matrices. Using the
fact that hard function for the unpolarized case is invariant under the charge conjugation,
the bottom row can easily be computed from the top row. Furthermore, once the hard
matrices have been calculated for the first column, crossing symmetry can be applied in

order to obtain the hard color matrices for the second and third column. It is then only
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12 — 34 Color Basis 12 — 34 Color Basis 12 — 34 Color Basis

qq — qd 7 — 47 7 — q'q

qq — q'q I'psil'n a0 qq — qq I'poil'n 34 qq — qq I'pail'y 23

qq' — qq qq — qq qq — qq

q — qq qq — qq ]q —qq

a7 — 7'q L3l 04 a9 — qq’ L2l 43 qq — 47 Lal'n 32

a7 — qq qq — qq qq — qq

Table 4.1: The choice of basis for each of the four quark subprocesses. I, ;; are operators
in color space which join the fermion lines ¢ and j. For the four quark subprocesses, two

operators, I'y ;; and I'y;;, are required to span the color space.

necessary to explicitly calculate the hard matrices for the subprocesses associated with the
color basis I';, 311y, 42. For our calculation, we follow the conventions used in Refs. [261, 260]
to choose I'y ;; = (t*);; and I'y;; = d;;, so that the color basis is spanned by the orthogonal

basis

Oy = ()i (t" ) 0> = 0ij0k , (4.106)

0 = (") (t" )k » 0% = 8,00 - (4.107)

We note that other bases have been used in the literature [262]. We now explicitly perform the

calculation for the q¢' — q¢’, q¢' — ¢'q, and gq — qq subprocesses. For these subprocesses,
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we can write
M = Midn (tb) 31 (tb)42 + Mﬁin (tb)32 (tb)41 (4.108)

where we have suppressed the ab — cd subprocess label. The subscript in the M terms
denotes the relevant Mandelstam variable (¢ or ) for the channel that contributes to the
subprocess as shown in the Fig. 4.9. To arrive at this expressions, we have separated the
color parts from the kinematic parts (denoted with the superscript kin). These kinematic

scattering amplitudes are defined by

( —%?U(PDV“U(% Py)u(Py)y,u(xy Pp) ab— cd = q¢ — q¢
M= { for ab— cd=qq — ¢q (4.109)
LRtz PPl Po) b~ cd = a4 = aq,
)
0 ab — cd = q¢ — qq
MEn = _%?U(Pz)»yuu(xa Pa)a(Py)yu(zy Pg)  for  ab—ed=qq — ¢'q (4.110)
\ %?E(PQ)fy“u(xa Py)u(Py)y,u(xy Pg) ab— cd =qq — qq.

We can now decompose these scattering amplitudes in color space as

M=M, 0, + My, M= MloT 4+ Mi6], (4.111)
where
Tr | M6! Tr | M6} i f
PO VR NV 1750 RPN S RO
Tr [9101] Tr [929;] Tr [910{] Tr [929;}

To obtain the expressions in Eq. (4.112), we have exploited the orthogonality of our chosen

color basis in Egs. (4.106) and (4.107). Then we will have | M|? as
‘M|2 =Tr [Hab%cd : Sabﬁcd] ) (4113)

where the hard matrix is given by

M2 MM
H,yq= ) (4114)

MoMi [ Myf?
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12 — 34|Basis||12 — 34|Basis||12 — 34|Basis||12 — 34|Basis||12 — 34|Basis||12 — 34|Basis

qq = 99| T8 lag — 94| Ty [lag = ag| T, |90 = 99| T4 |90 = 49| by 99 — g | Tel4s

a9 — 49| Ulo1 |39 — 93| Tiln ||@a — 99| Tolar |99 — G@| Tz |97 — G9|Totsa |97 — 97| Tl

Table 4.2: The choice of basis for each of two quark two gluon subprocesses. Three operators

Fab Fab Fab

13055515, are required to span the color space for each subprocess.

and the leading order soft matrix as

Tr [9 9*} Tr [9 9*} INGCr 0
Subsed = o R e . (4.115)
Tr [ezeﬂ Tr [9295} 0 N?
The hard matrices of the four quark processes in I's;['42 color basis in Tab. 4.1 are given by

8 (2442 [1 0
_M , (4.116)
¢ 00

- 8gi (2 +1%) | 1 —Cr
gl =T A 7
aq'—4q'q w2C?

(4.117)
—Cp C%
o 8gt |t + 82 — 2N.8%0t + N2a* + N2§%a®  —Cpt (85 4 %1 — N.§%a)
9999 — 9912 o n . . .
t2urNg —Cpt (2 + 81 — N,5%0) C38? (32 +12)

(4.118)

We find these results to be consistent with the expressions in [260]. The remaining hard

functions can be obtained from crossing symmetries.
Two quarks and two gluon subprocesses

In Tab. 4.2, we provide a list of subprocesses involving two quarks and two gluons with

ab

the color basis operators I'}”;;. For the two quark and two gluon interactions, three operators,
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n = 1,2, 3, are required to span the color space. A convenient choice for the computation is

the set of orthogonal operators (primed),

ab
ab’_(s ab’_labcc ab’_labcc
Fl,ij - 2N65U’ F27z'j - §d tija F37ij = Ef tij , (4.119)
which has the corresponding orthogonal basis,
/ 5ab / 1 abc e / 1 abcyc
0, = o 8ij » 0, = §d 55, 0 = 5f £ (4.120)

At the same time, we find that the final expressions for the hard matrices take a simpler
form when one uses the non-orthogonal basis used in Refs. [261, 260, 262] by defining the

basis operators to be (unprimed)

I = ("), Tgh ="y, T8, =06;0". (4.121)
The corresponding basis is given by
01 = ()i, Oa= (t"t")y;, O3 =6;0". (4.122)

We note that the normalization of 05 in [262] differs from the normalization of Refs. [261, 260]

by a factor of 2. For the choice of basis in Eq. (4.122), the LO soft matrix is given by

Tr [eleﬂ Tr [9195} Tr [eleg} N.CZ S N.Cp
Sabored = | Tr [9291} Tr [929;} Tr [929;,} =|-% NCZ NCp|. @ (4123)
Tr [9391} Tr [930;} Tr [039;,} N.Cr N.Cp 2N2Cp

In order to exploit the orthogonality condition of the primed basis in Eq. (4.120), but still
provide a simple expression for the hard matrices using the unprimed basis in Eq. (4.122), we
first compute the hard matrices in the primed basis then obtain the results in the unprimed

basis using the relation

0o 0 1
H,.,.—RH, ,R, where R= o | Ne Ne -1 (4.124)
~N, N. 0
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We now perform the calculation for the hard matrices for the ¢qg — gg process in the primed

orthogonal basis. The scattering amplitude for this subprocess can be written in color space

as
M = M0, + Myt + M3ty — M= Mo + Mmie,’ + ey (4.125)
where
Tr [M@;T} Tr [M@g*] Tr [M@gj}
Mi=—— "2  My=—t——4  My=— 3 4.126
LT [06)1] C e [0641] A (4.126)
Tr [ M6 Tr [ M6} Tr [ M6,
Mi: r[,/Tl] gz r[,/f}? ;ng T[//f}' (4'127)
Tr [«9181 } Tr [9292 } Tr [936’3 ]
The hard matrix in the primed basis can therefore be computed as
My M} My M} M, M]
Hy o= | My M{ Mo M Mo M| - (4.128)

Ms M Ms M) Ms M)

Finally, we now use Eq. (4.124) to obtain the simplified hard functions in the unprimed basis

as
H@W=%ﬁgﬁl1go. (4.129)
0 0 0

The hard matrices for other subprocesses involving two quarks and two gluons, such as

q9 — qg, can be obtained from this expression using crossing symmetries.
Four gluon subprocesses

For the four gluon subprocesses, gg — gg, we follow the work in Refs. [260, 261] to use

the following over-complete basis

0, = Tr [t™1%2¢%5¢%] | 0, = Tr [t™11%2¢¢%] | 0 = Tr [t™11%¢%5¢%] |
0, = Tr [t"119¢2¢%] | 05 = Tr [t™115¢%¢%2] | O = Tr [t™11%3¢2¢%] |
O; = Tr [t*¢*] Tr [t*2¢%] | Os = Tr [t*1¢*2] Tr [t*t*] | 0o = Tr [t*1¢%] Tr [t*2¢] .

(4.130)
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We note that a six dimensional basis was chosen in [262]. Using this basis in Eq. (4.130),

one can show that the hard matrix takes the following form

1 1 2 2 2 00 0)
PR PR EEO000
1 21 2 2 2000
2g% (8% + ¢ + at) ; t_;: ; t_j t_: t_j vy
Hgygq = 2GNZCE % P E E 5000 (4.131)
0 0 0 0 O 000
0O 00O 0O 0 O0O0O0
0O 00O 0O 0 O0O0O
The LO soft matrix for this channel is given in Appendix C of [261] for this basis as
i ap by co bop by by dy dy —eo-
bp a by by co by —ey do by
co by ay by by by dy dy —ep
bp by by as by co dy —ey do
Sgg—>gg = 80_]\2 bo Co bo bo Qo bo —ey dy do ) (4'132)
bo bo bo Co by a9 dy —eg dy
dy —eo dy dy —ey dy doeg € e?
dy dy dy —ey dy —ey €& doey €}
—eg dy —eg dy do dy e e2  doeg

where ag = N* —3N2 +3, by =3 — N2, co = 3+ N2, dy = 2N2Cp, and ¢y = N..

4.3.3.2 Polarized Hard Matrices

As we have emphasized in the previous section, Sivers function is non-universal. The well-
known example is the sign change between the Sivers function probed in Semi-Inclusive DIS

and that in Drell-Yan (DY) process [263, 155, 156],
Firaron @ ks 1, G) = = fipep (@, ks 1, Gr) - (4.133)
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Such a sign change can be easily taken care of in describing the Drell-Yan Sivers asymmetry,

dAG(S1) o fip'op (@ ks GV H Qi) = frpoip (2, ks, G) [ — H(Qip)], (4.134)

where H(Q; ut) is the hard function in the Drell-Yan process, and we have applied Eq. (4.133)
in the second step. In other words, if we use the Semi-Inclusive DIS Sivers function in a

Drell-Yan process, we shift the minus sign (or the process-dependence) into the hard function.

For the partonic subprocesses in the hadronic dijet production, one has much more com-
plicated process-dependence for the Sivers functions involved. This can be seen from the
highly nontrivial gauge link structure which has been derived in [246] in the definition of
the TMD PDFs. Even in these complicated processes, one can incorporate such process-
dependence of the Sivers functions into modified hard functions as in Eq. (4.134) [245,
134, 133, 229, 230]. We follow a similar procedure in this section to include this process-

dependence of the Sivers functions into the hard functions in the matrix form.

In Fig. 4.10, we demonstrate the factorization between the Sivers function and modified
hard functions. Unlike the unpolarized case, the contributions of the Sivers asymmetry are
given by considering the attachment of an additional collinear (to the incoming hadron)
gluon to three of the external legs. Such a gluon is part of the gauge link in the definition
of the Sivers function, and it is the imaginary part of the Feynman diagram (related to the

so-called soft gluonic pole) that contributes to the process-dependence of the Sivers function.

It is important to note that the additional gluon leads to additional complications so
that naive crossing symmetry cannot be used to relate one hard function to another, as in
the unpolarized case studied above. These complications occur because the contributions
to the Sivers asymmetry are only given by attaching the additional gluon to three of the
four external legs. Furthermore, since the sign of the interaction (imaginary part) with the
external gluon is opposite for quarks and anti-quarks, this sign must also be accounted for

when applying crossing symmetry or charge conjugation.
Four quark subprocesses

As in the unpolarized case, the bases for four quark subprocesses are given in Tab. 4.1.

134



Figure 4.10: A demonstration of the factorization between the Sivers function and the hard
function for ¢’ — qq' subprocess. The red lines indicate the locations of the soft poles while

the blue gluon represents the gauge link which generates the asymmetry.
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Figure 4.11: Polarized scattering amplitudes for the qq¢ — ¢q subprocess. From left the
right, the first three graphs give the scattering amplitude for the t-channel for initial-state,

final-state 1, and final-state 2 interactions. The remaining channels give the contributions

for the u-channel for initial-state, final-state 1, and final-state 2 interactions.

As discussed above, one cannot naively apply crossing symmetry to obtain hard matrices of
a general polarized subprocess. For the polarized four quark subprocesses, however, only the
sign of each color factor changes under charge conjugation. Therefore, the hard matrices for
the bottom row of Tab. 4.1 can be obtained from the results from the top row of this table

with the addition of a minus sign.

To demonstrate how HZVS, are derived, we explicitly perform the calculation for the
q¢ — qq¢, q¢ — ¢'q, and qq — qq subprocesses as we did for the unpolarized case. Af-
terwards, we provide the expressions for the remaining subprocesses. To start, it is im-
portant to remind ourselves that a non-vanishing Sivers asymmetry requires initial/final
state interactions generating a phase. Because all initial and final partonic states relevant
for dijet production are colored, both initial and final state interactions have to be taken
into account. Such interactions would generate non-trivial gauge link structures, see e.g.

Refs. [264, 246, 229]. On the left side of Fig. 4.10, as an example, we show all possible

diagrams with one gluon exchange between the remnant of the polarized proton and the
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qq" — qq¢' hard scattering part, which contribute to the Sivers asymmetry. Now with the
presence of the extra gluon scattering (first order of the gauge link expansion), the diagram
at the left side of the cut will be denoted as Mjsivers’a, while the right side is same as the
unpolarized case denoted as MT. Here a is the color for the attached gluon, j is the color
index for the incoming quark with momentum z,P4 on the left side of cut line, while the
color index for the incoming quark on the right side of the cut line is given by 1 like in the
previous section. In contrast to the unpolarized correlation function, quarks 7 and 1 do not
need to have the same color, because of the presence of the gluon from the gauge link. Now
|2

we perform the following expansion to obtain the hard matrix [MSVes|2 for the polarized

case,

MSIVGI‘S aMT |MSwers|2 1 (4135)

YR

where ¢{; will be included into the quark-quark correlator in the polarized proton to become

~ (PS|d1n - A%S 45| PS), see e.g. Ref. [265, 246, 133]. From Eq. (4.135), we thus derive

Sivers|2 __ Sivers,a t
M I CTr [t“t“] M; M
1 Sivers,a T
. 4.136
N CFM M (4.136)

At the same time, we use the convention that Ny, in the polarized and unpolarized cases
are the same. Therefore, the factor of 1/N. in Eq. (4.136) is absorbed into Ni,;. With that

in mind, to arrive at the correct normalization of the polarized hard function, we thus obtain

|MSivers| _MSwers ,a MT (4137)

which is demonstrated on the right-hand side of Fig. 4.10.

Now we need to project M]S-ivers’a and M into the color basis separately. The polarized

scattering amplitude M]S.ivers’a can be written as

M?ivers,a — Mi{in (tbta>42 (tb)sj + Mi(in (tb) (tatb) Mkln (tatb) (tb)3j (4138)
M (), (), M (1), (), M (), (1),
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where M¥" and MY are the same as the expressions in Eqgs. (4.109) and (4.110). From
left to right on the top line of this expression, these terms give the scattering amplitudes for
the initial-state, final-state 1, and final-state 2 interaction for the ¢t-channel, corresponding
to the first three diagrams of Fig. 4.11 in the same order. Likewise from left to right on the
bottom line, the terms give the scattering amplitude for the initial-state, final-state 1, and
final-state 2 interaction for the u-channel, corresponding to the last three diagrams of Fig.
4.11 in the same order. Using the Feynman rules for the gauge link color factors given in
Fig. 6 of [133], we easily arrive at Eq. (4.138) from these diagrams. From the unpolarized

scattering amplitude given in Eq. (4.108), we write the conjugate amplitude as
MP = M (tb) 24 (tb)m + M (tb) 23 (tb) 14 - (4.139)

Analogous to the unpolarized scattering amplitude, the scattering amplitude can be decom-

posed into the orthogonal basis given in Eq. (4.106) as

-/\/IJSAivers,zJLt?1 :M%versel + Mgiver562 7 (4140)

ME=miol + Mmiol, (4.141)

where we have

Tr [M?ivers,at?l 61{] Tr [M]Sivers,atgl 8;]

M?ivers — ’ Mgivers — ’ (4142>
%hﬂ ﬂ@ﬂ
Tr [MT0 Tr [MT0
Ml :u Mb = u (4.143)
%hﬂ ﬁ@@
After performing this decomposition, we can now write
ME? = T [ Sape] (4144)
where HSIV™S, is given by
. 1 MSivers MT MSivers MT
HEYr, = ' Lo 2 (4.145)

ab—yed = C_F Mgivers M{F Mgivers Mg
and S is the same as the unpolarized case.
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From these expressions, we can obtain the polarized hard matrices for the ¢¢ — q¢/,

qq¢ — ¢'q, and gqq — gq subprocesses as

oMl (52 40 [NE=5 0

HSyers s , 4.146
q9'—qq B2N,Cp °Cr 0 ( )
. 4g% (82 + 12 N2 +3 —(N2+3)C
m, =~ ) e (4.147)
PN [ -B-NY O B-NDC}
. . . 4§294 8 —(5—N2) CF
Sivers __ gySivers Sivers s ¢
qu—ﬂlq —qu/quq/ + qu/*)q/q m (5 N2) C 202 (4148)
c — — IV Ia o

Since qq — qq subprocess receives contributions from both ¢- and u-channels (as well as their
interference), its expression is the most complicated among the three subprocesses computed.
One can show that after performing the trace with the soft color matrix, the expressions are
consistent with the squared amplitude of [133]. The color matrices for the remaining four
quark subprocesses in the top row of Tab. 4.1 can be computed in the same spirit and we

obtain the following expressions

CANZ+ gt (2 +a?) (100

Sivers

aq—q'7 — $2N.Cp 0 0 ’ (4149)
Foves 405 (84 @) |[NE+1 — (N2 4+ 1) Cp (4.150)
94’ —qq t2N3Cr IN,C2 —2N.C3,
. , . 8igt |(N24+1)Cr —1(N2+1)0%
B3, =B Hp - e | T T IO
c~F Lp
4 (a2 4 72 2
s, A0t 7) [N s 0 e
97’ —7'q W2N,Cr 20 0 ’
. A(NZ+1)gs (P +a?) | 1 =C
e _ (N A ) gs (£ + %) F (4.153)
99—q'q §2N3Cp 2
| | ‘ 8f2¢1 2 -3 (3-NZ)C
HSves — gy, 4 Hoves - e ! " s
94—qq 9q'—=7q'q WoTr s N2CR |1 (N2+3)C'F C’%
2 c
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After performing charge conjugation, the hard color matrices for the subprocesses in the

bottom row of Tab. 4.1 can be obtained from these expressions.
Two quarks and two gluon subprocesses

All twelve of the two quark and two gluon subprocesses are given in Tab. 4.2. As we have
mentioned in Sec. 4.3.1, we neglect the gluon Sivers contribution in this section. This means
that all subprocesses with a gluon incoming from the polarized proton will be neglected.
There are then six remaining subprocesses to compute. However, we find that under charge
conjugation, the polarized hard functions once again only change by an overall minus sign.

Thus, we only need to perform the calculation for three of the hard matrices.

In order to further demonstrate our method for calculating the polarized hard matrices,
we now perform the calculation for the gg — gg subprocess. We then provide the expressions
for the remaining hard matrices. For the unpolarized process the scattering amplitude has
three channels. After the addition of the external gluon, there are then nine polarized process
to be considered. At the cross section level, this results in 27 hard interactions which need
to be considered. Despite this complication, we can once again write

|MSivers‘2 _ L

= MEersas ME (4.155)

Just like in the unpolarized case, we begin the calculation by decomposing the amplitudes
into the primed basis first. Then to simplify our result, we rotate into the unprimed basis.

The scattering amplitudes for the process can then be written as

M?iversat?l — '/\/l?verse/1 +M§iversg/2 +M§iverseéj (4156)

M= Mg+ Moy + Moyt (4.157)

where
Tr [M]Sivers,atgl 9/1’[]
Tr [0} 617

Tr [M]Sivers,atﬁl Q/QTi|
Tr [65 647

Ty [M?ivers,at?I 051‘i|
Tr [0} 647
(4.158)

Sivers __ Sivers __ Sivers __
MBivers — | MSivers — | MSivers —

Y
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Tr (M0 Tr [M1 0, Tr (M1,
M = Tr [M10}] Tl] , b= T [M105) f] L M= Tr M0 f’} . (4.159)
Tr [60] ;] Tr [0, 0,] Tr [0} 0,
The hard matrix in the primed basis can then be computed as
1 M%ivers M{F M?ivers M;r M?ivers M?]:
ivers / i i i
Hqs(j—>gg R Mglvcrs M{r Mgwcrs M;r MSIVCI‘S M?]: ) (4160)

Cr
Mgivers M{F Mgivers Mg Mgivers M?J)[

In order to obtain the hard matrix in the unprimed basis we apply the transformation

-1

1 1 -1
Hj 49 = Rf H(;(j—>gg R R=|1 1 1 : (4.161)
2N, 0 0

The final result for all of the two quark and two gluon interactions hard matrices are given

by

252N, Cp 25uN.Cp 0
. 4g4 (§2 + 7:62)
Sivers __ S ~~ N
H gy =~ aN.c. |0 (N2+1) —a*(N?2+1) 0f, (4.162)
§*N. 30N, 0
A 2382N.Cp 25tN.Cr 0
Sivers 49;1 (‘§2 + tQ) o~ 9 ~ 9
Hoy o =wncy |~ WNE+D) B (N2+1) 0] (4.163)
§2N.. §tN, 0

a2 (N2+1) ta(N2+1) 0
ti (N> 4+1) #2(N?2+1) 0] , (4.164)
30N, 5tN, 0

4 (12 ~2
HSivers :498 (t +u )
W99 $244N,Cp

(4.165)
After performing charge conjugation, the hard color matrices for the remaining subprocesses
can be obtained from these expressions.
Simplification in the one-dimensional color space

We note that for processes in which the color space is one dimensional, i.e. single color

basis in the decomposition, such as Drell-Yan, Semi-Inclusive DIS, and color singlet boson-jet
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processes, the decomposition of scattering amplitude is trivial. We have
M = MK, (4.166)

where MM = MEn - Akin 1 AfKID iy general receives contribution from different channels

as above. The kinematic parts can be trivially extracted by

Tr | M6} f
Mkin — [ 1:| ’ MkinT — Tr [M 01} (4167)
Tr [9191} Tr [eleﬂ
Therefore the unpolarized hard matrices can be constructed simply by
H=|M 1], s=|m[o]] . (4.168)

In these expressions, we have suppressed the subprocess subscript since these expressions are
true for all subprocesses with a one-dimensional color space. The differential cross section is

then given by

M[* = Tr[H - S] = C" | M

k (4.169)
where in the second line we have defined C* = Tr [6191] Similarly, for the polarized hard
matrix, we can write

Tr [MSivers,at?leﬂ CSivers

o 01| =TS =

2

2
)

‘ M Sivers

‘Mkln

(4.170)

where CSVers pkin = Ty [MSiVQrS@t?lGﬂ. Therefore, the hard functions of the polarized and
unpolarized scatterings are related by an overall color constant,

CSivers

Sivers __
H = cu

(4.171)

Here, C5Vers can further be decomposed into color factors arising from gauge link gluons

interacting with different external colored partons, as seen in [266, 133, 267, 207].
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4.3.3.3 Evolution equations

Hard functions can be related to the Wilson coefficients C} in the color basis {6;} of section
4.3.3 by Hry = > C}CY*. Here I represents different helicity states of the incoming and
outgoing particles. Explicit expressions of the Wilson coefficients at next-to-leading order
can be found in [260, 261], but we do not present them as we are only using the tree-level
hard functions for our study. We do, however, include the renormalization group (RG)
evolution of the hard functions coming from the 1-loop anomalous dimensions. Then the

Wilson coefficients satisfy the RG evolution equations [260, 261, 268, 269]
d T (625 _tA T
,U/@CI = Fcu5p7lnﬁ + YH 51J + FcuSpM[J CJ . (4172)

Here, ['cysp = <2 + - -+ is the cusp anomalous dimensions and cg = Cy + Cy + Ce. + Cy. The

non-cusp anomalous dimension is defined as

1
v = =5 (g les(w)] + Vo las ()] + 5 las ()] + s [ (w)]) (4.173)
where v/ [ ()] = %=; 4 - -+, with v, = 3Cp and v, = 52—0 Lastly, the matrix M takes the
form
M =-> T T [L(s;j) — L(})] , (4.174)
i<j

where s19 = 5314 = 5, S13 = Soq = f, and s14 = S93 = U and
A —t ) — ) E :
L(t) =In F ) L(u) = In ? ) L(s)=In E — T . (4.175)
From the RG evolution of the Wilson coefficients given in Eq. (4.172), we can arrive at the

RG evolution equations for hard matrix H as

d
ud—H:I‘H-H+H-I‘HT, (4.176)
il

where ' is given by

c —t
TH — (Fcuspgln + 7H> I+ Ty M . (4.177)

pa
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4.3.4 QCD resummation and evolution formalism

In this section, we present the renormalization group (RG) equations for the rest of the key
ingredients in the factorized formalism. These include the TMD PDFs, global soft functions,
jet functions, and collinear-soft functions. After presenting their NLO perturbative results
and RG evolution equations, we check the RG consistency. In the end, we present our

resummation formula for dijet production.

4.3.4.1 TMDs and global soft functions

The unsubtracted TMD PDFs in the factorized formula in Eq. (4.93) describe the radiation

along the incoming beams. They satisfy the RG evolution equations

d

uﬁlnfi“““b(x, b, G /V?) = Th () (4.178)
d

L b 1, o) = T ), (1.179)
1%

where its p- and r-anomalous dimensions are given by

F{; (/4L7 v, CZ) = FCuSpOi LCZ + ’Y/Z [OZS(,M)] ) (4180)
sCi
T, v) = 220 (4.181)
s

As we will see in this subsection, the rapidity divergences of the unsubtracted TMDs will be
exactly canceled by the rapidity divergences of the global soft functions, which will allow us

to identify the standard TMDs with subtracted rapidity divergence as in Eq. (4.95) above.

Suppressing the label ab — cd for convenience, the global soft functions up to 1-loop are

given by
S(O)(b) _ I, (4.182)
Sbare,(l) (b) — Z 1"1 . ’I‘jIZ(Jl)(b) , (4183)
1<J
where [184]
2 1 2 m

I(l)b :% 2(2-1, Sy S AT A 4.184
B0 =5 ; —+ St ( )
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J[/2 | 2 1. 72
W) =2 K; —L,,—ch) <E+L> _ —L+7T—] , (4.185)

27 e € 6
(1) Qs 1 2 2 2 2
7, (b) = o 4 - + L ) In(2 cosh(Ay/2)) — 2 EL — L7+ Ay
2
— 4In*(2 cosh(Ay/2)) + %} : (4.186)

THO) =T O — va) . T (0) = T O)we = —w) . T (0) = T () — —a) -
(4.187)
The explicit matrix forms of tree-level soft functions in Eq. (4.182) for some color basis {6;}

can be computed as
(I)1s = 6,05, (4.188)

which is equivalent to the matrix forms of the LO soft functions found in section 4.3.3. The
matrix T; - T; of the eq. (4.183) was also computed in the color bases used in section 4.3.3 and

can be found in [261, 260]. The renormalized global soft functions satisfy the RG evolution

equations
M%S(b; pov) =T3-S+ 8-T7, (4.189)
I/%S(b; pwv)=T51.81+8.7% (4.190)
(4.191)

From Egs. (4.182) - (4.187) and using ), T; = 0, we then find

P 5 o (mg - S i
= o |:Ca (lnxzs Lu) + Cy (lnfo Ly) +(C.+ Cy) (lnp2 L)] I

a 1
Qg Qg .
—?M+?(T1'TQ+T3'T4)Z7T

~

Fcus _tA —2? —t
- F o (k) s (1) s o 1)

— LewspM + Deysp (T1 - Ty + T3 - Ty) i (4.192)
TS = —O‘S<C; + Cb>LI, (4.193)
m

where M was given in Eq. (4.174) and we promoted % — T'cygp, which is consistent with
the factorization consistency relation below. Note that Eq. (4.192) is strictly real and the

imaginary term ~ i7 cancels exactly with the imaginary term found in M.
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We note that I'S ~ I and that this is expected as the hard functions do not have any

rapidity divergence. Thus, we can write

Vis(b;u,V)ZFfT-SJrS-rf:_M

LS(b; 4.194
" VLS (), (4194)

which has the same rapidity anomalous dimensions as the back-to-back soft functions Sqp(b; 1, )
found in standard Drell-Yan and Semi-Inclusive DIS process [62]. As expected, the rapidity
divergence of the global soft function S(b; u, ) in Eq. (4.194) exactly cancels the rapidity
anomalous dimensions for the unsubtracted TMDs f,/p, (b; 1, v) and fy/p, (b; g, v) given in
Eq. (4.181). Therefore, as discussed in the introduction, we can define S(b; ;1) absent of the

rapidity divergence such that
S(b; p,v) = S(bs 1) San (b 1, v) (4.195)

Then as in Eq. (4.95), Sup(b; i, v) is combined with the unsubtracted TMDs to identify

standard TMDs free of the rapidity divergences.

4.3.4.2 Jet and collinear-soft functions

Both jet and collinear-soft functions describe the radiation which resolves the produced jets.
The jet functions [270, 271] encode the collinear radiations inside anti-kr jet with radius R.
The NLO expressions are given by

2

as [C; 1 Y [
J(PLR;p) =1+ = | =In? ] d;| , 4.196
(PLR; ) +7r[4n(PfR2)+2n(PfR2 * (4.196)

where the algorithmic dependent terms d; for anti-kr algorithm are

13 3rx?
67 3n? 23
dy=|——— — —ny. 4.1
g (18 8 )C"‘ 36/ (4.198)
The jet functions satisfy the RG evolution equations
d 7
M@Ji(PLR; p) =T (W) Ji(PLR; ) (4.199)
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where the anomalous dimension is given by

e R ] (4.200)

The collinear-soft functions [135, 164] describe the soft radiation along the jet direction

and resolves the jet cone R. The NLO expressions are given by

2 2
SO Ry =1 - G 2 () T 4.201
S0 b, Rep) = 1 - 4 )T (4.201)

The collinear-soft functions satisfy the RG evolution equations

d ; cs

where its anomalous dimension takes the form

2
cs; K
r (1) = TeuspCi ln( 2R2) . (4.203)

4.3.4.3 RG consistency at 1loop

With the anomalous dimensions presented for all the ingredients, we now show that our
factorized formula given in Eq. (4.93) satisfy the consistency relations for the RG evolutions.
The cancellation of the rapidity divergences was already checked around Eq. (4.194). We also

expect p-divergence of the various functions to cancel and satisfy the consistency equation
d fa f cSs CS
(T[S (b ) - H(PL]) 4 T 4+ T T+ T 4 T 4T = 0. (200
From Egs. (4.176), (4.177), (4.189), (4.192), we immediately find at 1-loop,

u%ln(Tr [S(b; w,v) - H(Py; H)D

Tt [rst-S-H+S Iy - H+S-T" - H+S-H-TH
Tr[S(b; p,v) - H(Py; )]

- _% [C m( ”2) +C’bln< ”;) (C. + C)ln <];:)1 42y, (4.205)

One can then easily check from the py-anomalous dimensions of the other functions given in

Egs. (4.180), (4.200), (4.203) that Eq. (4.204) is explicitly satisfied at 1-loop.
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4.3.4.4 Resummation formula

Based on the above discussions and RG renormalization group methods in SCET, we can
now derive the expression for the all-order resummed result. Explicitly, we calculate the
cross section at the NLL accuracy, where we will use the two-loop cusp and one-loop single
logarithmic anomalous dimension and the matching coefficients are kept at leading order.
On the other hand, the color structures inside the hard and soft function will mix with each
other under the RG evolution, which was first studied in [240]. In this section, we will apply
the same methods in [260] to solve the RG equations. For the unpolarized cross section, the

resummation formula has the form as follows:

do 11 1 1 [
= - dbbJ b a.)a a; ;
dy.dyadP?d2q, ;l 167282 Noge 1+ 00a 270 J, 0(9.10) Tafaspa(Ta; 1o.) Tofosps (05 1iv.)

Bh (] f
X exp —/ o {FCUSP(QS)CH ln|—2| + QFH(OCS):|
w, M %

Hh d ~
X Z exp [_/ Flurcusp(as)<>\K + /\;(/) HKK’(PL;Mh)SK’K(b*;,U/b*)
b

*

" dp s c cs
coxp = [P a) [ )| U Gt ) T PR 1) S R
Moy H Hb K

" du e dp cs
coxp | = [ o) = [T )| Ul (e 1) o(PLR )7 b B
Moy Moy

X exp :—Sf&p(b, V5,Qo) — Skp(b, V3, @oﬂ : (4.200)

where Ak is the eigenvalue of the matrix M, in the hard anomalous dimension (4.172) and
Hywr and Sk are the hard and soft function in the diagonal basis as defined in [260]. In
our numerical calculation, we use the LAPACK library [272] to obtain their value at different
phase-space points. We have applied the b,-prescription to prevent the Landau pole from

being reached in the b-integral. Here, we define b, as

b, = b/\/1+ 0202, (4.207)

where by, is chosen [120] to be 1.5 GeV~!. Our perturbative Sudakov factor come from solv-

ing the renormalization group evolution equations for different functions from their intrinsic
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scales, which are chosen for the hard, jet and collinear-soft function as
pn=V3%, p;=PLR  jics = iy, R. (4.208)

Note that v/§ ~ P, is completely fixed by the measured quantities y., y; and P, as seen

from Eq. (4.92). Another choice of u; ~ P, leads to similar numerical results.

The nonperturbative Sudakov factor in Eq. (4.206) was fitted to experimental data in

[92]. The extracted functions are given by

Cut b
SEE (b, 11, Qo) = gl b? + L2 =2y iln— with g/ = 0.106, go = 0.84, Q2 = 2.4 GeV?.

2 Cr Qo b
(4.209)

We also incorporate NGLs resummation effects included by the function Ulffé. In order
to include NGLs resummation effects at NLL accuracy, we also need to consider the extra
one-loop single logarithmic anomalous dimension I' from the non-linear evolution parts.
However, in [247, 248] this anomalous dimension was shown to cancel between the jet and
collinear-soft function up to two-loop order. The explicit operator-based derivation of RG
consistency including T can be found in [273, 164, 251]. In the large N, limit, the non-linear
evolution equation can be solved using the parton shower algorithm [274]. Especially, at
the NLL accuracy the evolution is totally determined by the one-loop anomalous dimension
f‘, which is equivalent to the one appearing in the light jet mass distribution at the ete™
collider. Therefore, we can use the same fitting function form given in [162] to capture NGLs
resummation contributions after setting proper initial and final evolution scales. In our case,
these two scales are the jet scale p1; and the collinear-soft scale ji.s. Explicitly, the function
is

2 o1+ (au)?

£ (ftess f17) = exp | —CaCh =y 22UV 4.21
Une (Hes; 1) = exp CACk3U T+ (bu)e | (4.210)

where the superscript k& = ¢ and g denote the (anti-)quark and gluon jet, respectively, and

with C; = Cp and C; = C4. The parameters a, b and c are fitting parameters which

are given as a = 0.85C4, b = 0.86 C4 and ¢ = 1.33. The variable u = + logas((”“)) is the
M
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evolution scale measuring the separation of the scales ji.s and p;. As shown in eq. (4.208),

b, prescription for p.s keeps u from reaching a nonperturbative scale.

As we have done for the unpolarized cross section, we also derive a similar resummation

formula for the spin-dependent cross section

dAU(SJ_) . 1 1 1 1 00 ,
- - - dbb b
dydyad PlPqr " %)%1%232 Ninit1+5cd< 47r> /0 Ni(a.0)

o dp i

" [Fcusp(as)CH IHE + QFH(O‘S)] }

X 1'aTa,F(xa>$a§,ub*>xbfb/PB(be,ub*) eXp {—/
I

d
X Z exp [ / :Fcusp(a5>()\K + A% ’)

b

Hpcrer (P pin) S (b i,

KK’ *

[ rdp, e dp . s

X oxp |- / Yri o) - / (00| U (e ) PR 1) SEX (s e )
L Hb Hby
[ [Mdu N A e cs

X oxp |- / i) / s (00,) | U (tess 1) Ja( PR 13)S5 (b R )
L Hby 'u Hby 'u

X exp | =Sk (b, V5, Qo) = Skp(b, V5, Qo) (4.211)

where at the NLL accuracy we keep the LO matching coefficient in Eq. 3.71. It involves
the parametrization for the Sivers function, which depends on the collinear Qiu-Sterman
function T, p(za, Ta; tw, ) and a different non-perturbative Sudakov factor S¥p. The relevant
parametrization has been determined from a recent global analysis of the Sivers asymmetry
of Semi-Inclusive DIS and Drell-Yan processes [10]. The non-perturbative Sudakov factor is
given by

b
Ssp(b, 11, Qo) = gib* + —an—ln—, with g = 0.18. (4.212)
0 *

4.3.5 Phenomenology

In this section we will present the numerical results using the resummation formula in
Eqgs. (4.206) and (4.211), where intrinsic scales for the hard, jet and collinear-soft function
are defined in Eq. (4.208). In the numerical study, we will focus on the Sivers asymmetry for

the dijet production at the RHIC with /s = 200 GeV, where the jet events are reconstructed
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by using anti-kp algorithm with jet radius R = 0.6. The transverse momentum P, and the

rapidity y.q of jets are
PL>4GeV, —1<y.q<2. (4.213)

For the unpolarized proton, we use the HERAPDF20NLO parton distribution functions [98].
The numerical Bessel transforms in Eqgs. (4.206) and (4.211) are performed using the algo-
rithm in [275]. Furthermore, the Eq. (4.96) is derived after neglecting the power corrections
from O(q? /P?). In other words, in the large ¢, region, the full results should include correc-
tions from the so-called Y-term, which can be obtained from perturbative QCD calculations
[276]. In this section we focus on the contribution from back-to-back dijet production. In
order to select such kinematics, we require the transverse momentum ¢, for the dijet system

lg| < ¢§™. In the numerical calculations, we fix the value of ¢§** = 2 GeV.

As shown in the Fig. 4.7, the transverse-polarized proton moves on -+z-direction and
its spin points to +y-direction with ¢g = 7/2. The transverse momentum vector g, lies
in the x — y plane, and the Sivers asymmetry is defined as the difference of the events
between ¢, , > 0 and ¢, , < 0 hemispheres, that is the same as the measurements by STAR

collaboration [228]. Explicitly, we have

cut

Job dqy 027r dog [ dPSM% [9(cos¢q) — O(—cosp,)
S5 dgy [77 dy [ dPS—mto

dqy dpqdycdyadP,

AN(ysum) = ) (4'214)

with [ dPS = [ dyedysdP | 6(Ysum — Yo —ya) represents the transverse momenta and rapidities
integral for dijets. In the numerator, the ¢,-integral with 6(cos¢,) and (—cos¢,) corresponds

g1, > 0and g, , <0, respectively.

In the Fig. 4.12, we show the numerical results of the Sivers asymmetry for dijet processes,
where we neglect the charm and bottom jet events. The red and blue curves represent the
asymmetry contributed from u- and d-quark Sivers function, respectively. As is expected,
we find that the asymmetry is enhanced in the large ys., region, i.e. the forward scattering
region, due to the larger fractional contribution of Sivers function in the valence region.
Besides, the contributions from u- and d-quark Sivers function are opposite from each other,

which causes a huge cancellation of the asymmetry, as shown by the black curves in Fig. 4.12.
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Figure 4.12: Theoretical predictions of the Sivers asymmetry for dijet production at the
RHIC with /s = 200 GeV. In the left plot red and blue curves are the results from u- and
d- quark Sivers function, and the black curve includes all the contributions. In the right plot
we show the Sivers asymmetry distribution within three different jet charge @, bins. The
red and blue bands indicate the theoretical uncertainties using the 200 replicas of the quark
Sivers function [10]. At each point in calculation of our theoretical prediction, we retain the

middle 68% of the replicas.

In the calculation, most of the asymmetries come from the partonic scattering process
q9 — qg where the initial quark comes from the polarized proton. Especially, the more
forward jet is associated with the parton from the polarized proton moving in the same
direction. Hence, if we can tag parton species initiating the more forward jet, then we can
separate u- and d-quark Sivers functions and avoid the accidental cancellation as shown in

the left plot of Fig. 4.12.

In order to achieve jet flavor separation mentioned above, one possible method is applying
the electric charge information of jets, which has been proposed in [277, 231, 237]. In this

section, we will use the standard jet electric charge definition given in [278, 279]

Qu=Y_ 2Qn, (4.215)

h€jet

where z, is the transverse momentum ratio between hadrons and the jet. x is an input
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parameter, which is fixed by x = 0.3 [237] in our calculations. As shown in [237], after
measuring the jet charge information, the theory formula is slightly modified by replacing
the jet function J;(P, R; ) in Eq. (4.101) by the charge-tagged jet function G;(Q, P, R; )
as

dAo

dQ d2ql = /dPS Ta,F ® fb/PB ® TI‘[H : S] ® Sgs ® Sgs [gc Jd e(yc - yd) + Jc gd e(yd - yc)]?

(4.216)

with the normalization as ffooo dQ. Gi(Qw, PLR; ) = J;(PLR; 1) required by the probability
conservation. Here we only replace the more forward jet function with the charge-tagged jet
function, which corresponds to the insertion of the step function. We define the jet charge

bin fraction as

rbin — fbin dQ“ gi(Q"f’ PJ-R? M)
' Ji(PLR; )

(4.217)

Then the Sivers asymmetry Ay in different jet charge bins is given as, in terms of jet charge

bin fraction

+.,0
- iAoy
450 _ Zizudg, 7 (4.218)
g

where we suppress the phase space integral shown in Eq. (4.214). The index i denotes the
parton species initiating the more forward jet. Here we use the same jet charge bins defined
in [237], where 4+, — and 0 indicate @, > 0.25,Q, < —0.25 and |Q,| < 0.25 bins, separately.
Such jet charge bin fraction can be fitted from the unpolarized cross section for back-to-back
dijet events at the RHIC. In [231], the authors have shown the preliminary results from the
measurements as kK = 0. In the theory calculation, one can use Monte-Carlo event generators
such as Pythia8 [280] to estimate these numbers. In the Tab. 4.3 we give the results of jet
charge bin fractions rf’o for various jet flavors used in our numerical calculations, where the

jet charges are defined using all charged hadrons inside the jet.

In the right plot of Fig. 4.12 we show the result of Ay within the different jet charge bins.
After selecting the charge of the more forward jet Q. > 0.25, the contribution from the u-

quark Sivers function is enhanced compared to the case without the jet charge measurement
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u U d d S S g

ri | 061 016 0.15 0.51 0.15 0.50 0.37
r. | 0.10 0.54 048 0.14 049 0.16 0.37
r? | 029 030 037 035 0.36 0.34 0.26

Table 4.3: The jet charge bin fractions rii Y for various jet flavors from Pythia8 simulation,

where the jet charges are defined using all charged-hadrons inside the jet.

(the black curve in the left plot). A similar size enhancement from the d-quark Sivers
function is also observed in (), < —0.25 charge bin as shown by the blue curve. Besides,
we find the Sivers asymmetries from ), > 0.25 bins are positive and @), < —0.25 bins
are negative, which are consistent with the preliminary STAR measurements [231]. In the
forward region, the Sivers asymmetry can achieve 0(0.01%), and size of our calculation is
also around the same order of the data. Furthermore, we have also plotted the theoretical
uncertainty which is related to the extraction of the Sivers function obtained in [10]. To
generate this uncertainty, we have considered the 200 replicas from this reference. For each
replica, we generate our theoretical prediction. We then retain the middle 68% at each
point. We plot the uncertainty as red and blue bands for the positive and negative jet
charge bins in the Fig. 4.12, respectively. Taken together, our calculation suggests that the
dijet production at the hadron collider is an important process to extract the information
about the Siver function and deserves further studies on the theoretical framework about

the remarks discussed in 4.3.2.3.

4.3.6 Conclusions

We study the single spin asymmetries of dijet production in the back-to-back region in trans-
versely polarized proton-proton collisions. In the back-to-back region, the dijet transverse
momentum imbalance ¢, is much smaller than the transverse momentum P, of the jets.
In this case, the conventional perturbative QCD calculations in the expansion of coupling

constant a, generate large logarithms in the form of o In™ (P? /¢ ) with m < 2n — 1, which
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have to be resummed in order to render the convergence of the perturbative computations.
We propose a QCD formalism in terms of transverse momentum dependent (TMD) parton
distribution functions for dijet production in both unpolarized and polarized proton-proton
collisions. Such a formalism allows us to resum the aforementioned large logarithms, and
further takes into account the non-universality or process-dependence of the Sivers functions
in the case of the transversely polarized scattering. It is well-known that hadronic dijet
production in back-to-back region suffers from TMD factorization breaking effects. Thus,
to write down the QCD “seemingly factorized” formalism for resumming large logarithms
mentioned above, we make a couple of approximations. First of all, we neglect the Glauber
mode in the formalism which are known to be the main reason for the TMD factorization
breaking. Secondly, we have assumed that the soft gluon radiation that is encoded in the
global soft function in our formalism is spin-independent, i.e., they are the same between the
unpolarized and polarized scatterings. Since the precise method for dealing with the TMD
factorization breaking effects is still not known, we feel that the proposed formalism in this

section is a reasonable starting point for further investigation.

With such a formalism at hand, we compute the Sivers asymmetry for the dijet production
in the kinematic region that is relevant to the proton-proton collisions at the Relativistic
Heavy Ion Collider (RHIC), and find that the spin asymmetry is very small due to the
cancellation between u- and d-quark Sivers functions, which are similar in size but opposite
in sign. However, we find that the individual contribution from w- and d-quark Sivers
functions can lead to an asymmetry of size O(40.05%) in the forward rapidity region, which
seems feasible at the RHIC. Motivated by this, we compute the Sivers asymmetry of dijet
production in the positive and negative jet charge bins, i.e., when the jet charge (), for the
jet with the larger rapidity of two is in the bins @), > 0.25 and @), < —0.25, respectively.
By selecting the positive (negative) jet charge bin, we enhance the contribution from u- (d)-
quark Sivers function and thus enhance the size of the asymmetry. Our calculation shows
that Sivers asymmetries in such positive (negative) jet charge bins lead to asymmetries of size

O(+40.01%) (O(—=0.01%)), respectively. The sign of such asymmetries seem to be consistent
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with the preliminary STAR measurements at the RHIC. The size of our calculations is also
around the same order of the experimental data. This give us a great hope to further

investigate the single spin asymmetries for hadronic dijet production at the RHIC.

4.4 Jet fragmentation functions for Z-tagged jets

4.4.1 Introduction

The momentum distribution of hadrons inside a fully reconstructed jet, commonly referred
to as jet fragmentation function (JFF), serves as a novel way of probing fragmentation. Re-
cently, jet fragmentation functions have been measured for single inclusive jet produced in un-
polarized proton-proton collisions at the Large Hadron Collider (LHC) for light hadrons [281,
282], for open heavy flavor mesons [283, 284, 285], and for heavy quarkonium [286, 287]. Such
measurements have already started to constrain the fragmentation functions for open heavy
flavor mesons [288,; 289], and to pin down non-relativistic QCD (NRQCD) long-distance
matrix elements, which characterize the hadronization process for heavy quarkonium pro-

duction [290, 291].

The same measurements in heavy ion collisions show a strong modification of the JFF [292,
293] in the existence of the hot and dense medium, the quark-gluon plasma, and thus serve
as a novel probe for the medium. Jet fragmentation functions can also be measured in trans-
versely polarized proton-proton collisions. For example, the measurements by the STAR col-
laboration at the Relativistic Heavy lon Collider (RHIC) study the azimuthal distribution of
hadrons inside the jet [214] and provide information for the so-called Collins fragmentation

functions [140, 294, 295].

Single inclusive jet production at the LHC involves a large fraction of gluon jets [296]. In
order to further disentangle quark and gluon jets, one can study e.g., photon-tagged jet pro-
duction and the JFF in photon-tagged jets. These processes are more sensitive to the quark
jets, or quark-to-hadron fragmentation functions. See [293] for recent JFF measurement for

photon-tagged jets. More recently the LHCDb collaboration at the LHC has measured both
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longitudinal and transverse momentum distribution of charged hadrons produced inside Z-
tagged jets in the forward rapidity region in proton-proton collisions, p + p — Z + jet + X.
Experimental requirements are placed on the Z-jet pair to better identify events that cor-
respond to a two-to-two partonic hard scattering process, i.e. the Z-jet pair is required to
be nearly back-to-back in azimuth such that |A¢z_jee| > 77/8. In our previous work [135],
we developed a factorized framework for back-to-back photon-jet production within Soft-
Collinear Effective Theory (SCET) [54, 55, 53, 56, 239]. Such a framework can be generalized
to study back-to-back Z-jet production [164], as well as JFF in Z-tagged jets.

In this paper, we use SCET to derive a factorization and resummation formalism for JFF
in which

the longitudinal momentum fraction z;, of the jet carried by the hadron and the transverse
momentum j; with respect to the jet direction. We demonstrate how the z;-dependence
is connected to the standard collinear fragmentation functions, while the j,-dependence
is associated with the transverse momentum dependent (TMD) fragmentation functions.
For the phenomenology, we find good agreement for the intermediate zj, region. For j,-
dependence, we suggest binning in both z, and j,, which would lead to a more direct
probing of TMD fragmentation functions. The rest of the paper is organized as follows. In
Sec. 4.4.2, we generalize our QCD formalism developed for photon-jet production to describe
back-to-back Z-jet cross section, as well as the jet fragmentation functions in Z-tagged jets.
Numerical results are presented in Sec. 4.4.3, where we compare our calculations with the

LHCb experimental data. We conclude our paper in Sec. 4.4.4.

4.4.2 Theoretical framework

We consider hadron distribution inside Z-tagged jets in proton-proton collisions, as illus-

trated in Fig. 4.13,

p(pa) + p(pe) = Z(Nz,Pz7) +jet(ns, pyr, R) h(zn,31) + X, (4.219)
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where s = (p4 + pp)? is the center-of-mass energy squared, the Z-boson is produced with
the rapidity nz and transverse momentum pzp, while the jet is reconstructed in the usual
anti-k7 algorithm [193] with the jet radius parameter R, and the jet has the rapidity 7, and
the transverse momentum p;r. One further observes a hadron inside the jet, which carries a
longitudinal momentum fraction z, of the jet, and a transverse momentum j, with respect

to the jet direction.

Figure 4.13: Illustration for the distribution of hadrons inside jets in Z-tagged jet production

in proton-proton collisions.

One usually defines the imbalance gr between the transverse momenta of the Z-boson

and the jet, and the average of the transverse momenta pr as

- w. (4.220)

qr = pzr + PJT, Pr
To be consistent with the experimental setup [11], we only consider the region where the
Z-boson and the jet are produced back-to-back. In such a region, the imbalance is much
smaller than the average transverse momentum, ¢r << pr, where the perturbative computa-
tions receive contributions of large logarithms of the form a™n*"(py/qr), which have to be
resummed. In the following, we first review the QCD formalism that achieves this purpose.

We then generalize to the case of hadron distribution inside the jets, for both longitudinal

zp-distribution and the transverse momentum j, -distribution.

4.4.2.1 Ztagged jet cross section

A formalism has been developed to resum the logarithms of the form a?In*"(pr/qr) as well

as the logarithms of jet radius InR in our previous work [135] for back-to-back photon-
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tagged jet cross section. This formalism can be generalized to the Z-tagged jet production,

p+p— Z+jet + X.

In such a formalism, the differential cross section can be written as

4 4
i3 oo [ 11 (ar 300
a,b,c =1 )

X t;l?zos;b(ﬂfa, kar; g, Cl/’ﬂ)fél/r;s;b(ﬂ?b, kar; 1, Cz/’/2)

x Seon (st 11, v)SE (Kar, R ) Hapsez (pr, mz; ) Je(porBs 1) | (4.221)

where the phase space dPS = dn;dnzdprd*qr, and ¢; is the azimuthal angle of the jet.
Besides different hard functions H,,_,.z, the above formalism is the same as that for photon-
tagged jet production developed in [135]. See also Ref. [164], where the authors further study
the impact of the so-called non-global logarithms [162].

We include both partonic channels q¢ — ¢Z and qg — qZ at the next-to-leading order
(NLO) for the hard functions Hyy .z [297, 178].

Let us now discuss the jet function J., which encodes collinear radiations inside the jet.
The NLO results for quark and gluon jet functions can be found in e.g. [270, 271]. For

completeness, the quark jet function J, for anti-kr algorithm is given by

Qs 3 13 372
where Ly is the logarithm defined as
Lyr=1In (p”’R> . (4.223)
1
Thus the natural scale of the jet function is given by
g ~ pJTR. (4.224)
At the same time, the jet function satisfies the renormalization group equation
d i
o Ji(prR; ) = 75 (1) Ji(psr R; ), (4.225)
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which leads to the following solution

Edy
Ji(pyrR; 1) = Ji(psrR; py) exp { / Tlf%(u’)} : (4.226)
o

J

with i = ¢, g for quark and gluon jets. The anomalous dimensions 7 are given by

V(1) = =2 () Lar + 7' (a), (4.227)
with T, and 4" the cusp and non-cusp anomalous dimensions. They have the perturbative
expansions I'l . = > T0_ (%) and +' = >, 74 (92)" [298, 299, 300, 301, 302]. For
example,

I4=4Cr, 4% =6Ck, (4.228)

where [y = %CA — %Tan, with Tp = % and ny the number of active quark flavors.

4.4.2.2 Hadron distribution inside Ztagged jets: z,dependence

Now if we measure the longitudinal (along the jet direction) z, distribution of hadrons inside

the Z-tagged jet, the factorized formalism can be written as

dO'h 4 ) 4
- E I | . 85(2) _ E .
APS dz, = / dog / dkiro (QT kir

a,b,c =1 i

XSS (g, Ky o, G JVP) B (wy, hars 1, o/ V)

X S%%’Eil(kw; K, V)szi(kua R; ) Hopsez (P, mz; 1) gf(zh,pJTR; n), (4.230)

where we replace the jet function J, in Eq. (4.221) by the fragmenting jet function G [288,
300]. Here 25, = p; /p}, with p} and p the large light-cone component of the hadron and the
jet, respectively. The fragmenting jet function G" will no longer be purely perturbative since
it involves the hadron in the jet, which is non-perturbative. However, G can be matched
onto the standard collinear fragmentation functions (FFs) Dy, ;,

b Ydz 2,
g (zh,pJTR;u)zz ?Zj(zapJTR§N>Dh/j< ;u>7 (4.231)

- z
j UEh
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where one can find the coefficients 7;; at NLO in [288, 279]. For later convenience, let us

reproduce the expression for 7, here,

Taq(2:porR; p) = 0(1 = 2) (4.232)

2 2
Qs B o T 1+2 11—z o (In(1 — 2)
+7TCF{5(1 z)(LJT 24)+—<1_Z)+(LJT+lnz)+—2 +(1+z)(—1_z -

At the same time, it is important to realize that G follows the same renormalization group

equation as the jet function J; in Eq. (4.227),

d .
M@gih(zh,pJTR; 1) =5(1) GI'(zn, o Ry 1) (4.233)

which would evolve G? from its natural scale, again py ~ py7R, up to the hard scale u as

Bdy
G!'(zh, parR; 1) = G (21, prR; pus) exp {/ —:, 73(#/)} : (4.234)
1y

4.4.2.3 Hadron distribution inside Ztagged jets: j, dependence

Finally if we measure both the longitudinal z;, and transverse momentum j, distribution of

hadrons inside the Z-tagged jet, the factorized formalism can be written as

dO'h 4 4
— = d ko — K
APS dz, del azbc / oy / E T qr Z T

X él/“ifb(:ca, kir; i, Cl/’/2>fz;1/1;;s;b($b> kar; 11, CQ/V2>

X S%i—i’ﬁ?‘(kn; 1, v) Sy (kar, B ) Hap—ez(pr, mz; 1) GMzn, 3o, par R 1, G3) (4.235)

where this time we have a TMD fragmenting jet function G" and j, is the transverse
component of the hadron momentum with respect to the jet direction. We are interested in
the small j, region, j; < pyrR, where G" receives contributions from both collinear, and

collinear-soft modes [303]. It can be further factorized as [303, 136]

GMzn g, por R 1, G3) :/d2de2)\L52 (zp AL+ ki —71)

X D}%;IZ'SUb(Zha kl_; 22 CS/VZ)Si(AJ_; My VR),
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where the collinear mode is described by the usual TMD FFs Dy, /;, and the collinear-soft
mode is captured by the soft function S;. Besides the usual renormalization scale pu, the
scale v is again associated with the rapidity divergence. Here it might be instructive to point
out the difference between the above refactorization and those for TMD hadron distribution
inside a single inclusive jet produced in proton-proton collisions, p+p — jet+h+ X, in [136],
where an additional hard factor arises that captures out-of-jet radiation with characteristic
scale ~ pyrR. Here since we are studying Z+jet production in the back-to-back region, such
out-of-jet radiation is not allowed at leading-power. This is because any out-of-jet radiation
would generate Z-jet imbalance of the order p;rR > qr, which would thus move Z-jet away

from the back-to-back configuration.

Following the usual wisdom in TMD physics, we transform the above expression in the

transverse momentum space into the coordinate b-space as follows

. de ij1-b/z unsu
gz'}l<zh7.7lapJTR; I, <3) = / s et b/ hDh/i b(Zha b7 I, C3/V2)Sz(b7 1y VR)? (4236)

(27)?

where the Fourier transform is defined as follows

1 )
Dy (2, b; 1, G /%) Z;/d2kL€_1kLb/th27§Ub(Zh,’ﬂ;u, GV, (4.237)
h
S;(b; u,vR) = / A e P8 (A, vR) . (4.238)

The perturbative results up to next-to-leading order and the renormalization for both D;;?is“b

and S; have been carefully studied in [136]. Over there we define the “proper” in-jet TMD

fragmentation function Df/i as

,Df?/i(th bu H,y C3> = D;i;l’isu})(zhu b7 2 <3/V2>Sz(b7 Hy VR) ) (4239)

where the rapidity divergence cancels between Dg;lf“b and S;, and thus there is no rapidity

divergence and thus no v-dependence on the left-hand side. We also find that Df/i evolves

as follows

N Bodu! ) .
Dl}zz/i(th ba 22 C3) :Dh/i<zh7 ba K, €3) CXp |:/ T/f (_QFZcusp(as)LJT + ’71(015)) ;
m

J
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A Edu .
:Dh/i(zhab; fy, C3) €xp [/ d—u,’%z](ﬂ/)] . (4.240)
g M

where the equation holds when u; = p;r R, and D, /i are the “properly”-defined TMD FFs,
i.e., those measured in semi-inclusive deep inelastic scattering and/or back-to-back hadron

pair production in ete™ collisions [36]. Plug this result into Eq. (4.236), we obtain

G (2ns 31, ar Rs 1, Gs) = /—de LDy (2 b5 g, G) | oxp /u—d“/v"(u')
i \FhyJ Ly PJTLL, 4y (3 (27’(’)2 h/i\<hy Uy ], (3 . d’u, J )
~ . #d:u/i !
=Dy)i(2n, J 1 17, C3) €XP —— ()| - (4.241)
uy dp

One of the most important observations is that the evolution factor, i.e., the exponential part
on the right-hand side is the same for the jet function J; in Eq. (4.226), the fragmenting jet
function G! in Eq. (4.234), and the TMD fragmenting jet function G" in Eq. (4.241). In other
words, the renormalization group equation is the same for all of them. This is consistent
with the factorized formalism, since the rest of the factors are the same for all three cases
in Eqs. (4.221), (4.230), and (4.235). This factor is different from the hadron distribution
inside jets for single inclusive jet production, as extensively studied in e.g. Refs. [290, 296,
136, 304, 305]. For single inclusive jet production, the renormalization group equations for

the relevant jet functions follow time-like DGLAP equations.

For the proper TMD fragmentation functions D, /i» we use the same parametrization as

in [136],

. , 1 [ bdb
Dyji(2n, 3o g, (3) = ;/ﬁjo(hb/zh)
h

X Cyes ® Dy (ani s, Yo~ Sons v 1) =S @0) - (4.249)

where we have used so-called b,-prescription to avoid Landau pole of strong coupling s [306],
Cjc; are the coefficient functions, S!., is the perturbative Sudakov factor, and Sip is the
non-perturbative Sudakov factor. Their expressions are all given in [136], where TMD FFs
are computed at next-to-leading order for Cj.; and at next-to-leading logarithmic level for
gi

et LThe integration in Eq. (4.242) involves Bessel function Jy which is oscillating and we

thus have used an optimized Ogata quadrature method developed in [275] to handle the

integration for better numerical convergence and reliability.
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4.4.3 Phenomenology at the LHC

In this section, we present numerical results for hadron distribution inside Z-tagged jets
in proton-proton collisions and compare to the experimental measurements by the LHCb

collaboration at the LHC.

The LHCDb collaboration has performed measurements for hadron distribution inside Z-
tagged jets in proton-proton collisions at the center-of-mass energy /s = 8 TeV in the
forward rapidity regions at the LHC. The jet rapidity is integrated over 2.5 < n; < 4.0,
while the Z-boson rapidity is integrated over 2.0 < 1z < 4.5. The jets are reconstructed
using the anti-kp algorithm with a jet size parameter of R = 0.5 [11]. For the longitudinal
distribution of hadrons inside jets, we define the jet fragmentation function as

do" do
F(z) = 4.24
) = Ipsam / dPS’ (4.243)

where the numerator and the denominator are given by Egs. (4.230) and (4.221), respectively,
and we have suppressed the dependence on the rapidity and transverse momentum for both
the Z-boson and the jet in F'(z;). At the same time, for the j,-dependence of the hadrons

inside the jet, we define

do" do
F ) = . 4.244
(#1,01) = 555 dzhdﬂ/ APS (4.244)

Note that the numerator can be easily computed from Eq. (4.235), with the azimuthal
angle of 7, integrated over, and further multiplied by a factor of 7,. In the numerical
computations, we use NLO DSS fragmentation functions for charged hadrons from [307].

Other fragmentation functions such as NNFF1.1 [308] give similar results.

In Fig. 4.14, we plot F(z,) as a function of z,. We make the default scale choices of
W= \/m and puy; = pyrR. We explore the scale uncertainty by varying p and g
independently by a factor of two around their default values and by taking the envelope of
these variations. From left to right, the three panels correspond to different jet transverse
momenta: 20 < pyr < 30 GeV (left), 30 < pyr < 50 GeV (middle), and 50 < py;r < 100
GeV (right). We find that for the intermediate 0.1 < z, < 0.5, our results describe the LHCb
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Figure 4.14: Hadron distributions inside Z-tagged jets F'(z;,) in Eq. (4.230) are plotted as
functions of z,. From left to right, the three panels correspond to different jet transverse
momenta: 20 < pyr < 30 GeV, 30 < pyr < 50 GeV, and 50 < p;r < 100 GeV. The yellow
band is the theoretical uncertainty from the scale variation as explained in the text. The

red solid data points are from LHCb collaboration [11].

data reasonably well. However, when z;, is either very small (z, < 1) or very large (z, — 1),
the description becomes worse. This is easily understood. From Egs. (4.230) and (4.232),
In(

%Z)> , which become important
+

the coefficient functions such as J,, contains Inz and ( 1

for z < 1 and z — 1, respectively. Thus one has to resum such types of logarithms: one
might follow [309] for Inz resummation, while for large-z one could get insights from [310].

We leave such studies for future publication.

For the j,-distribution of hadrons inside Z-tagged jets, LHCb formally integrates over
the entire 0 < z;, < 1 region. * From Eq. (4.242), this would require that we know well
the standard collinear fragmentation function Dy ; for the entire 0 < z, < 1 region. How-
ever, typical global analysis for fragmentation functions only constrains the fragmentation
functions for z;, = 0.05. This fact thus hinders a more direct and transparent comparison be-
tween our theoretical calculations and the LHCb data, as we have observed previously [136]

for hadron distribution in inclusive jet production. To help the situation, in Fig. 4.15 we

4There is a lower cut at a very small zj,, since LHCD only selects hadrons with p > 0.25 GeV.
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Figure 4.15: The comparison between the LHCb data (red solid points) and the Pythia

simulation (blue histogram) for hadron j, distribution. We integrate over the entire z,

range.

make a comparison between the LHCb data and the Pythia 8 simulation [280]. In the Pythia
simulation, we make the same cuts as in the experiments and integrate over the entire zj,
range. As one can see clearly from Fig. 4.15, the Pythia simulation gives a good description

for the hadron 7, -distribution in the small and intermediate region.

Z +jet, v/s=8TeV, R=0.5 Theory [
10 | 2.5 < ny < 4.0 01 <zp <05 | Pythia
2.0<nz <45
30 < pyr < 50 GeV 50 < pyr < 100 GeV
0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5
i1 (GeV) i1 (GeV) i1 (GeV)

Figure 4.16: The comparison between our theoretical computations (yellow bands) and the
Pythia simulation (blue histogram) for hadron j, distribution. We integrate z;, over the

range 0.1 < 2z, < 0.5.

Since Pythia simulations give such good descriptions of the LHCb data on hadron j,-

dependence, we thus could use Pythia 8 to simulate the hadron j,-dependence, integrated
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for an appropriate z, range, which is suitable for comparison with our theoretical results.
With this in mind, we perform such Pythia simulations and integrate over 0.1 < z, < 0.5.
The simulations are presented in blue histograms in Fig. 4.16. At the same time, we present
our theoretical computations as yellow bands, which are generated the same as in Fig. 4.14,
i.e., from the scale variation of 4 and p; from their corresponding natural scales. We find
that our TMD calculations agree well with the Pythia simulations. Note that our factorized
formalism works only for the small j, < p;rR region. For the relatively large j, region, one
expects the so-called Y-term [36] to become important and has to be included to describe

the data. This is why our theoretical curves stop at certain j, values.

4.4.4 Conclusion

We study back-to-back Z-jet production in proton-proton collisions at the LHC. In partic-
ular, we concentrate on the longitudinal z;, and transverse momentum j, distribution of
hadrons inside Z-tagged jets. We find that the z,-dependence is sensitive to the standard
collinear fragmentation functions, while the 7, -dependence probes the transverse momentum
dependent fragmentation functions (TMD FFs). The numerical calculations based on our
theoretical formalism give good descriptions of the LHCb data for intermediate z, region.
For j,-dependence, since the experimental data are integrated over the entire 0 < 2, < 1
region, the direct comparison is nontrivial if not impossible. For integrating over the inter-
mediate 0.1 < z, < 0.5 region, our results agree well with the Pythia simulations for the
relatively small j, region. For future measurements, we suggest to set up the binning in both
zp and j i, as this would lead to a more direct probing of TMD FFs. We expect our work to
have important applications in studying fragmentation functions in vector-boson-tagged jet

production in both proton-proton and nucleus-nucleus collisions.
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CHAPTER 5

Lambda Baryons for Proton Structure

5.1 Introduction

We saw in the case of Semi-Inclusive DIS that in order to perform QCD tomography for
the spin-dependent hadrons, that we needed to understand the hadronization effects. In
principle to access the non-perturbative information for the full spin dependence of the
proton in Semi-Inclusive DIS, one would also need to simultaneously understand the full spin
dependence for hadronization. This is one of the reasons why hadronization has remained
one of the most active and important areas of research in the field of nuclear physics, for
recent reviews, see Refs [311, 312]. However, the primary issue with performing imaging
for spin-dependent hadronization is that experimentalists need to be able to re-construct
the spin of the polarized hadron, which introduces additional experimental uncertainties.
However, it has been known for some time that A and A baryons, which I will collectively
refer to as As, undergo self-analyzing decay. Namely these baryons decay as A — p+ 7
and the momentum of the final-state proton is correlated with the direction of the spin. As
a result, A baryons serve as our primary window into spin-dependent fragmentation. One
of the primary goals of the future EIC [68, 313, 314] is to measure TMD FFs over wide
kinematic regions at unprecedented experimental precision. In this paper, we aim to study
the role that the future EIC can play in constraining TMD FFs which are associated with
transversely polarized A production. While I focus on transverse polarization, in principle
the same techniques can also be used for longitudinal TMD FFs as well, see for instance

Ref. [315].

The BELLE collaboration recently measured the transverse polarization of the A in ete™
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annihilation [316]. They have measured such a polarization of both A and A in single A
production (with respect to the thrust axis), e~ +e* — A/A + X, as well as in DIA. While
the TMD factorization formalism exists for DIA [17, 36], single A production with respect to
the thrust axis could involve a more complicated factorization structure [317], if the thrust
variable is also measured. Nevertheless, there is an attempt at factorization within the
standard TMD formalism [318] for single A production. This experimental data for DIA
allowed for the phenomenological extractions of the TMD PFF in [319, 12, 320]. These
extraction were a major goal of the TMD community, as it represents one of eight leading-
twist TMDs for the TMD FFs, and thus provides three-dimensional imaging of hadrons in

association with the fragmentation process.

The understanding of these spin-transverse momentum correlations gives rise to interest-
ing phenomenological differences between TMD FFs and the TMD parton distribution func-
tions (PDFs). To demonstrate this, let’s examine the number density for a spin-dependent

TMD PDF and TMD FF

€7k ,5 1 o
CI)unSUb(x7kL7S;’u’C/V2):(f_“TpolLT)%—i_'”7 (51)
& P1pSio
A(Z,pL,Sh;M,C/VZ): (D_TZJ‘—]&J‘D%T)%—F (52)

In this expression, I have introduced the TMD PFF as Di;. We can see from these two
expressions that the TMD PFF is the analog of the Sivers function for hadronization, there
is an unpolarized parton and a transversely polarized hadron. We saw previously that there
was a sign change for the Sivers function between the Semi-Inclusive DIS and Drell-Yan
processes [155, 156, 321]. As we previously discussed, this behavior occurred because the
spin asymmetry for Sivers was generated due the soft poles of the three parton correlation
function. The analog of these two processes for hadronization are Semi-Inclusive DIS and
DIA. As a result, naively one would expect that the TMD PFF's should be opposite in Semi-
Inclusive DIS and DIA. However, studies have shown that the TMD PFF is not generated by
the appearance of a soft pole. As a result, the TMD PFF should be universal with respect
to these two processes [322, 323, 324, 325]. The experimental verification of this fact is
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vital for understanding the universality arguments of the TMD FFs. In fact, Ref. [325] has
precisely suggested studies of both back-to-back A + h production and Semi-Inclusive DIS
to test the universality of the TMD PFFs. In this paper, we provide a prediction for the
transverse polarization in Semi-Inclusive DIS, which can be used for the first experimental

confirmation of the universality of the TMD PFFs.

While the Belle data can be used to obtain information for the TMD PFF's, the COM-
PASS collaboration performed recent measurements of the transverse spin transfer in Semi-
Inclusive DIS for A production in Ref. [13]. In the transverse spin-transfer, a transverse
quark leads to a correlation of the transverse spins of the incoming and outgoing hadrons.
As a result, this process opens the possibility of performing the first extraction of the quark
transversity TMD FF for A production. In addition, the STAR experiment also reported
their measurements on transverse spin transfer for single inclusive A/A hyperon production
in proton-proton collisions at /s = 200 GeV [326]. However, while the STAR measurement
can be used as a probe of the collinear transversity PDF and transversity FF, the process is
described by the collinear factorization formalism [327, 33] and not by the TMD factorization

formalism.

While the future EIC offers the possibility of measuring spontaneous A polarization
and the transverse spin transfer in Semi-Inclusive DIS, recently back-to-back electron-jet
production in electron-proton, e + p, collisions has been explored as a probe of the TMD
PDFs in Refs. [130, 163]. Furthermore, in Refs. [136, 328, 137] the authors discuss that by
measuring the distribution of hadrons relative to the jet axis, one de-correlates the TMD FF
in the TMD fragmenting jet function and the other TMDs in the process. As a result, in
Ref. [142, 137], it was proposed to measure the distribution of hadrons in a jet in back-to-back

electron-jet production as a probe of TMD FFs.

To address the role that the future EIC can play in constraining the TMD PFF| in this
paper we perform an EIC impact study for the Semi-Inclusive DIS process in extracting the
TMD PFF. In such a study, we will characterize the required luminosity for constraining

these distributions. Furthermore, we use the recent COMPASS measurement for the trans-
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Py

Figure 5.1: Kinematics of the leptonic center-of-mass frame for back-to-back two-hadron

production in e”e™ annihilation, e~ + et — h(F,) + A(Py) + X.

verse spin transfer to perform the first extraction of the quark-to-A transversity TMD FF.
Using this extraction, we compare our theoretical uncertainties against our projections for
the statistical uncertainties at the future EIC. Finally, we also provide projections at the
future EIC for back-to-back electron-jet production for both spontaneous A polarization in
unpolarized ep collisions, as well as the transverse spin transfer in transversely polarized ep

scattering.

This chapter is organized as follows. In 5.2.1 I provide the relevant formalism and de-
tail the calculation of the A transverse polarization observable P# in DIA. In 5.2.2 T give
the parametrization of our TMD PFFs and discuss the fit procedure, and fit results. In
Sec. 5.3, I provide the formalism for Semi-Inclusive DIS and perform the first extraction of
the transversity TMD FF. In Sec. 5.4.1, I provide the theoretical formalism for back-to-back
electron-jet production. In Sec. 5.4.2, I provide the details for the simulated experimental
setup. In Sec. 5.4.3, I provide the details and results of our EIC impact study for the TMD
PFF. In Sec. 5.4.5 we provide our projections for spontaneous A in jet polarization as well

as the transverse spin transfer. I summarize our findings and conclude in Sec. 5.5.
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5.2 Global Analysis of the TMD PFF

5.2.1 Formalism
Let’s begin by defining the momenta of the DIA process as
() + € (¢) = 1(a) = h(Py) + A(Py, S1) + X. (5.3)

Following [329], we choose a leptonic center-of-mass frame where the light hadron P, has no
transverse momentum. The leptons and the light hadron form the so-called leptonic plane.
The angle between P, and (¢, ¢') is given by 0, as illustrated in Fig. 5.1. On the other hand,
P, and P, span the so-called hadronic plane. In this frame, the A particle has transverse

momentum P,7, at an azimuthal angle ¢, with respect to the leptonic plane. We have

Pyr = —2pq., (5.4)

where q is related to the “transverse” component of the virtual photon momentum, defined

as
Py-q Py-q
=q¢'— ——-P — P! 5.5
4 =4 P, Py AN PP, (5.5)
with ¢ = —q}'qi,. The expression for the QCD factorization formalism for the unpolarized

differential cross is given by section [17, 325]

do

———— =0, C"" [Dy/yDy/q) - 5.6
dPSquJ_ 0 [ A/q h/‘]] ( )
In the expression for the cross section, the point-like scattering cross section is given by

2
_ Nemag

g9 = 2@2

and dPS = dzj dz, d(cosf) is the phase space element. In this expression 6 is the angle

n (14 cos?d) | (5.7)

between P, and ¢’ while the parton fraction variables are defined as

2 = 2Py - q/Q°, 2, = 2P, - q/Q”. (5.8)

172



The CP™ denotes the convolutional integral for DIA and is defined as
CP™ [c AB) = HP™(Q; ) 22 2} Z e / Bhpy ka6 (ko) + ks —q))
q

X ¢ (2, 2n, kni, kar) ¢ (2hs 205 Phis PaL) Anjg (2h, Phis i, C1) Bajg (2, pa15 1, G2) - (5.9)

In this expression HP™ is the hard contribution to the cross section and Q? = ¢2. I'll note
however, that since the partonic cross section for DIA and Drell-Yan are identical that the
hard functions for these processes are also equal. In this expression, I have introduced two
TMD FFs, Dy, and Dy, which are the unpolarized TMD FFs for h and A, respectively.
The k;; with ¢ = h, A are the transverse momenta of the fragmenting quarks in the frame
where the hadron has zero transverse momentum. Similarly, the p;; are the transverse
momenta of the hadrons in the frame where the fragmenting quarks have zero transverse

momentum. These momenta are related to one another by p;;, = —z;k; .

To obtain the cross section for the polarized process, we simply replace the unpolarized
TMD FF for A with the spin-dependent density in Eq. 5.2. With the short-hand notation in

Eq. 5.6, we have the expression for the transverse-spin dependent differential cross section

dO‘(SL)
dPSd?q,

1
ZAMA

:UO{CDIA [DD] + [Sy[sin(¢s — ¢a) ch [PAT : pAJ_Df_TDh} T+ } ;

(5.10)

where PAT = Pyr/|Par| is the unit vector along the transverse momentum of the A particle,

as defined in Fig. 5.1.

In trying to connect the theoretical formalism above with the BELLE collaboration’s
experimental measurement of A polarization, one encounters several subtleties. First is the
direction with respect to which BELLE measures A polarization. Defining m = —Ph, with
P, (P,) the unit vector along the momentum of the hadron % (the A), we see that BELLE
measures A polarization along the direction n x m x PA, perpendicular to the hadronic
plane in Fig. 5.1. On the other hand, the polarization vector S, in the above formalism is
transverse with respect to the leptonic plane in Fig. 5.1. Because of this, we need to perform

an additional projection onto the n-direction.
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Second of all, there are additional terms as denoted by “ --” in Eq. 5.10 [329]. One such
term involves a convolution of transversity FFs H x4(za, pa1; Q, @?) for the A hadron with
the Collins FFs Hih/q(z,phb Q, Q%) for the light hadron h. Such a term has an azimuthal
dependence of sin(¢g + ¢4). In principle, the optimal strategy to isolate, and thus extract
unambiguously, the PFF's DfT’ Ag would be to measure and disentangle all of these different
azimuthal dependencies, just like in the usual Semi-Inclusive DIS spin measurements [36].
This has not yet been done by the BELLE collaboration. Surprisingly, though, if one in-

tegrates over q, in the formalism, all the other terms vanish and we are left with only the

term involving the PFF Dy ), for the spin-dependent cross section .

Since the experimental data are expressed only as a function of z, and z,, and are
inclusive over q, , our analysis of the experimental data to extract the PFFs is thus justified.
Eventually with the transverse momentum integrated, the measured A polarization denoted

as P! will be given by

dAo (S do
PL(zas ) = dP(SL)/dPS’ (5.11)

where Ao (S)) = [0(S1) —o(—S1)] /2, and the denominator is the unpolarized cross section.

5.2.2 Fitting Procedure

In this section, we first provide the parametrization used for the extraction of polarizing
fragmentation functions, and give an expression for the asymmetry P2 (zy, z;,) within our
model. We then describe our fitting procedure and the fitted results. Finally, we make a

prediction for the A polarization in semi-inclusive deep inelastic scattering.

5.2.2.1 Fitting scheme

All available data are measured at the same hard scale Q = 10.58 GeV at the BELLE
experiment; thus, TMD evolution for the relevant TMD FFs is not needed. Because of this,

we can model these TMD FFs using simple Gaussians and extract them at this particular

'We thank D. Boer and H. Matevosyan for very insightful communication concerning this point.
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scale (). We model the unpolarized TMD FFs as Gaussians

e—pil/@iﬂ

Dijg(zn, 913 Qs Q%) = Diyg(21; Q) — (5.12)
7T<phL>
9 9 e*p?\i/<p?\L>
DA/Q(ZAJPAJ_;QuQ ) = DA/q(ZA;Q) Y ACEEE (513)
7T<pAJ_>

where we take (p7 ) = 0.19 GeV? from [330] for the light hadrons h. For A, we assume
(pa,) = (pi,) in this paper. We model the polarizing fragmentation functions DfT’ Mg
according to the equation

e—PiL/(MB)

1 . 2\ 1 .
D]T,A/q(ZA7pAJ_7 Q,Q°) = DlT,A/q(ZA7 Q)W (5.14)

Here we write the polarized collinear function Dy , / q(zA; Q) simply as a modulation of the

unpolarized collinear function Dy /,(2a; Q) by an additional collinear function N (za)

D17 psq(20; Q) = Ny(2a) Dijq(20; Q) (5.15)

and we parametrize N (z5) by the formula

Bq (O‘q + 5q — 1)aq+ﬂq71
(g — 1)aq_1/3q6q

The Gaussian width (M3) differs from the unpolarized width (p3 ) by an auxiliary width

Ny(za) = Ngzy* (1 = 21) (5.16)

M, obeying the equality [331, 220]

1 L\ MR
(Mp) = ( + —) = VAT (5.17)
(i) M7P M2+ (pi 1)
from which it is clear that M, characterizes the scale of spin corrections to (p% ). We choose
to fit (M3) — of course, M; can be easily determined once (M3) is known.
In order to maintain the interpretation of the spin-dependent fragmentation functions

ﬁA/q(z, PaL,S1;Q, Q%) as probability densities, the positivity bound

PAL

’DILT,A/q(Z/bp?\L; Qa QQ)‘ S DA/q(zAapiL; Q; Q2) (518)
ZAMA

given in [332, 311], must be satisfied. We thus implement the fit constraints

2 2 <M%> My
ag>1, B3>0, (MP) < (i), Ny < V2ei520—=, (5.19)
<pAJ_> M,
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which are sufficient conditions for the enforcement of the positivity bound. Moreover, it is

useful to define the pa | -moment of the TMD PFF's

1(1 _ baL
DIT(,A)/q(zA;Q) = /dszJ_Z 2M2D1TA/q(ZA7pAJ_;QaQ2)

_ (Mp)

T 2203 DlTA/q(ZAaQ)- (5.20)

Using our parametrization, all momenta can be integrated out analytically, so that the

cross sections take on the forms

d
d’P_US =00H(Q) g €2DA/q<ZA; Q) Dy yq(2n; Q), (5.21)
dAo(Sy1) Zh/T (M3) | |
dPS _UOH(Q) 2ZA MA\/ZE<M12)$+ 212\<sz> Zq:esz_TA/q(ZA?Q)Dh/q(Zh’Q) (522)

As such, we finally obtain the following expression for the A polarization P{(zy, z;,) from
Eq. 5.11,

Zp/T (M3) >4 € ZD%TA/q(ZA;Q)Dh/q(Zh;Q)
228 Mpv/22(MB) + 22(p2 ) 2y €2Dn/q(203 Q) Dyg(2n; Q)

PMzp, 2n) = (5.23)

To compute P(zy, 21,), we use the AKK08 parametrization [333] of the collinear A frag-
mentation functions. Currently, there are no available collinear fragmentation functions
which separate the A and A contributions. While the work in [318] took Dy, = Dy = 0
with ¢ = u,d, s, this scheme does not adequately describe A + h production. For example,
in the e~ +e* — A+ 7" + X process, one of the dominant contributions to the cross-section
is given by the Dy /z(2a; Q). Since the work in [318] neglected all sea quark contributions,
this would lead to a very small asymmetry, which conflicts with the BELLE data. For this

paper, we assume Dy, = Dj/, = %DA/;\HI for all quark flavors.

For the fragmentation functions of pions, we choose the DSS14 parametrization given
in [99], which is an update of the previous DSS07 fragmentation functions [307]. As such an
update is not available for kaons, we choose the DSS07 parametrizations for the fragmenta-

tion functions of kaons.

In order to fit the non-perturbative TMD PFFs Dy, A/q(zA, paL; @, Q?), we use the typical

flavor-dependent parameters IV, oy, and f3,, similar to the parametrization used in [80] for
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the Sivers functions. In this paper, for the polarization of the A, we fit the 11 parameters
Ny, Ng, Ny, Ngea, Qu, Oy Qsy Qsens Bvaly Bseas and (M3). The parameters labeled sea apply
to the remaining considered flavors, namely @, d, and 5. Furthermore, in order to fit the A
polarization, we take DllT,/—\/q(zA,pAL; Q,Q% = DfTA/q(zA,pAL; Q, Q?), by invariance under
charge conjugation. To generate the uncertainty band for the fit, we once again use the

replica method in Ref. [70].

5.2.2.2 Results

To sample the x?, we once again use the MINUIT package [116] from CERNLIB to perform the
fit. The parameters as well as the x?/d.o.f of the fit are presented in 5.1. The x?/d.o.f
of 1.694 suggests that the fit is of reasonably good quality. One must note that we have
restricted ourselves to fit the experimental data with z;, < 0.5, for a total of 96 data points. It
is also important to note that when these parameters are used to describe the data globally,
without removing the z;, > 0.5 data, we have x?/d.o.f = 2.421. This could indicate a sizable
contribution of threshold logarithms [334] and target mass corrections [335, 336, 337] in this

region.

While the advertised x?/d.o.f is 1.694, a large contribution of the x* comes from two
“problematic” points, the point at z;, = 0.243, 25 = 0.35 for the A+ K™ process and the point
at 2, = 0.245, zp = 0.35 for the A + K~ process. If the x? contributions from these points
are removed, the x?/d.o.f becomes 1.499. In fact removing these points from the fitting
procedure altogether leads to a x?/d.o.f of 1.180. In the future, it would be interesting to

investigate these two points in more detail.

In Fig. 5.2, I have included a histograms of the distributions of fit parameters, which are
determined by the fits to the replicated data sets. We find that the modes of the histograms
agree well with the determined values of the central fit. This agreement indicates that the
values of the parameters are well-constrained, and not appreciably sensitive to variations of

the central point within the experimental uncertainties.

In Figs. 5.3 and 5.4 we plot the experimental data, as well as the result of our fit for the
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Figure 5.2: Distributions of MINUIT parameters from 200 replicas. The black lines represent
the parameter values which are determined from the best fit of the actual experimental data.

Each histogram is normalized such that the heights of its bars sum to unity.
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Figure 5.3: The fit to the experimental data for m mesons is shown, with the gray uncertainty

band displayed is generated by the replicas at 68% confidence. The left plots are for the

production of A + 7%, while the right plots are for the production of A + 7.

A polarization P{ in the back-to-back production of A(A)+7* and A(A)+ K=, respectively.
The gray uncertainty bands displayed are generated by the replicas at 68% confidence. For
5.3, the left plots correspond to A+7m* production, while the right plots correspond to A+7+
production. Likewise, the left (right) plots are for the A (A) production associated with K*.
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Figure 5.4: Same as 5.3 but for the production of A + K* (left) and A + K* (right).
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Figure 5.5: The polarizing fragmentation functions zADleglli /q(zA; @), defined in Eq. 5.20, are

plotted as functions of z, for different quark flavors, at 68% confidence.

One should note that the data points with z, > 0.5 are not included in our fit, and thus
we see that the global comparison with our theoretical results is of slightly lower quality.
We further observe that our model seems to describe the A(A) + 7% data better than the
A(A) + K* data; indeed, we find x?/ndata = 1.223 for pions, and 1.802 for kaons.

In 5.5, we plot ZAD#R/(J(ZA; @), defined in Eq. 5.20, as a function of z, for u, d, s and sea

quarks, at 68% confidence. We find that the PFF for the v quark is positive, while those of
the d and s quarks are negative. We also find a sizable negative sea quark contribution. These

signs are consistent with the qualitative analysis in the BELLE experimental paper [316]. In
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X2/d.o.f = 1.694

N, = 0.858+0-108
N, = —0.71610:970
v, = 1.05879:9%

oy = 4.306103%

Ny = —2.144+0156
Nsea = _08611_88%2
g = 2.0047012

_ +0.053
Otgen = 1.64110:058

Byt = 0.86670213 Brea = 632540249

(M3) = 0.11870:097 GeV?
Table 5.1: Listed are the parameter values with uncertainties. The central values are taken
from the fit with the actual BELLE data [316] (no Gaussian noise), while the uncertainties

are calculated from the middle 68% of parameter values generated from 200 replicas (see the

discussion in Sec. 5.2.2.1).

terms of the magnitude of the PFFs, we find that the v and d quarks are comparable, while
the PFF for the s quark is smaller by almost an order of magnitude, and it plays a more
important role in the relatively large zy = 0.4. The PFFs for sea quarks are sizable mostly

in the relatively small z, < 0.3 region.

One can understand these findings qualitatively. For example, the A + 7~ processes are
dominated by the contribution of Dfﬂ A /uDr s/u in Eq. 5.23. As this subset of BELLE data
has large positive A polarization (zy < 0.4), we find that the sign of the u-quark PFF is
positive. Likewise, the A + 7" processes are dominated by the contribution of Dfﬂ A/ aDrtja-
Due to the large negative polarization, we find that the sign of the d-quark PFF is negative.
Finally the A + K process is dominated by the contribution of DlLT7 A /SDK+ /s- We then
determine the sign of the s-quark PFF to be negative, although our best fit gives a very
small PFF for the s-quark. Finally the sea quarks usually play more important roles in the
relatively small z) region. In this set of BELLE data, it starts to become more important

for zy < 0.3. We find negative PFFs for sea quarks, which are smaller in size compared

with those for u and d quarks. It is worth noting at this point that in Ref. [320], feed down
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mechanisms were discussed and the authors found that they could set the u and d TMD
PFFs to be equal to one another and obtain a good quality fit. However, in this analysis,

the authors considered ¢ contributions and found that they were quite large.

5.3 A Baryons in Semi-Inclusive DIS

5.3.1 Factorization Theorems

Let’s define the kinematics for Semi-Inclusive DIS as
e(l) +p(Psi) = el) + APy, 811) + X,

where s, is the transverse spin of the incoming proton, while s, is the transverse spin of
the final produced A baryon. We take the frame choice such that the proton moves in the
positive z direction while the incoming virtual photon moves in the negative z direction, see
Fig. 1 of Ref. [120] for our convention, alternatively see Ref. [244] for the so-called Trento
conventions. In the proton-photon COM frame, the differential cross section can be written
as

d i -
o(sL,sa1) _ oI5| s 4 sin(dg — gp) FEIGs—91)

dPS d?P,, |
+ cos(ps — ps) D(y) Fpao #5790 || (5.24)
2(1 —y)
D(y) = ——~~ 27 5.25

In Eq. 5.24, the terms ¢g and ¢g in the superscript of the FTcgs(SDS_(ﬁS) structure function

denote the azimuthal angles for s, and s, ,, respectively. Furthermore the ¢, term in

SIN(¢s—¢a)

the superscript of the Fj structure function denotes the azimuthal angle of the

transverse momentum of the A baryon, which is denoted P, .

The experimentally measured spontaneous transverse polarization Py and the transverse

spin transfer Sy for A production are given by

FSin(d)S*QbA) FCOS(<PS*¢S)
Py =YL : Sy = D(y) e | (5.26)
Fry Fuyu
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respectively. We note at this point that the COMPASS measurement in Ref. [13] did not

include the depolarization factor D(y) in the definition of the transverse spin transfer.

Within the usual TMD factorization, these new structure functions can be written as

. B 15 )
e < e | P i | 5
F;gs(sosws) _ HEIS(Q; 1) cPIs [hH] . (5.28)

The function HPS(Q) is the hard function for a transversely polarized quark channels, which
is normalized to 1 at Leading Order (LO). In the third expression, I have introduced h,/, and
Hyq, the transversity TMD PDF and TMD FF, respectively. It is worthwhile noting that
there is another term which contributes to the A transverse polarization in unpolarized ep
collisions and results in a sin(¢g + ¢ )-azimuthal modulation. This contribution arises from

the Boer-Mulders function in the proton convoluted with the transversity TMD FF [338].

5.4 TMD PFF for EIC Phenomenology

5.4.1 QCD Factorization

In this section, we first review the TMD factorization formalism for spontaneous A polar-
ization as well as the transverse spin transfer in SIDIS. We then provide the factorization
formalism for A production inside the jet in back-to-back electron-jet production in ep col-
lisions, with which we study two aforementioned spin configurations. We demonstrate that
the spontaneous A polarization allows us to probe TMD PFF, while the transverse spin

transfer is sensitive to A transversity TMD FF.

5.4.1.1 A Baryons inside a jet

We will now discuss the factorization formalism for transverse A production inside a jet for

the back-to-back electron-jet production in ep collisions
6(6) +p(P, Sl) — G(El) + (jet(pj) A(f:)h7 SAL)) + X.
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Figure 5.6: Kinematic configuration for back-to-back lepton-jet production.

In Fig. 5.6, we have included a plot which demonstrates the kinematic configuration of this
process. The jet is constructed via a proper jet algorithm such as anti-kr algorithm [238]
with the jet radius R. For this process, we denote the transverse momentum of the jet
direction as p;; while €| represents the transverse momentum of the final state lepton. In
both cases, the transverse momenta are defined in the center-of-mass frame of the incoming
electron and the incoming nucleon. In this frame g, = €| + py, represents the transverse
momentum imbalance of the outgoing electron and the jet. The back-to-back electron-jet
configuration occurs at a small transverse momentum imbalance, |q,| < /| ~ py [130, 142].
Additionally, for this process it is convenient to measure the transverse momentum of the A
baryon relative to the jet axis, which we denote j,. The TMD region for A production in

the jet occurs in the kinematic region where j, < p;; R [136].

By studying the partonic process for jet production, one can see that the direction of

the jet is directly sensitive to the TMD PDF. By measuring the transverse momenta of A
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baryons within this jet, we also gain sensitivity to the TMD FFs. This process offers the
advantage that since the jet and the A baryons are measured with respect to different axes,
the factorization structure for this process will lead to a deconvolution of the TMD PDF

and TMD FF, thus allowing us to probe these structures more independently.
Following the work of [339, 296, 303, 136, 140, 328, 139], the relevant cross section can

be written as

dO’(SJ_, SAJ_)
dPS d2q, dzsa d?j,

= 0o | Wyusin(gs — ¢a) + ngj“n(¢s_¢l\)
+cos (s — d5) D3, 1,) Wrg™ %)

In this expression dPS = dy.d*f, is the phase space element in rapidity and transverse
momentum of the outgoing electron in the center-of-mass frame of incoming electron and
the nucleon. The variable z;5 represents the fraction of the momentum of the jet which is
carried by the A baryon. The z;, and j, variables can be related to the momenta of the A

baryon and jet through the relations

zin =Py -ps/Ipsl, Ji =Py xp;/lpsl, (5.29)

where P, and p; represent the three momenta of the A baryon and the jet respectively.
On the other hand, in 5.29, we have

ol 2(8% 4+ 4?)

em

= , 5.30
T (>:30)
where the partonic Mandelstam variables are given by
§=1pSep, t=—/Sepl) ¥, (5.31)
U= —xpy\/Sepl €7,
where S, is the center of mass energy of the electron-proton pair while Q? = —. Further-
more, we define
. 250
D(5,t,0) = ————. 5.32
(5.f0) = = (532



For this process, W denote the structure functions and we follow the same labelling con-
vention for the subscripts as outlined in the previous section. The polarization and spin
transfer for back-to-back electron-jet production in ep collisions can be written in terms of

these structure functions as

SIN(¢s—¢n)
Py = Wor = 7 : (5.33)

(5.34)

respectively.

The expression for the unpolarized structure function can be obtained from Ref. [142] as

Wou = H(Q; 1) Y €2 Gasa(zans jis p, i, G2) (5.35)
q
d*b iq. b
X We fQ/p(xB7b;u7 Cl) S(b7 yJaR; M)
In this expression, H and U are the hard function and the b-space soft functions for this
process. Furthermore, xp is the usual Bjorken variable which is related to the variables in

the phase space element through the relation

Q2 _ gl eYe

- = . 5.36
PP Byl (5:36)
For later convenience, we also define the inelasticity y as
g/
y=1— —F=c¥. (5.37)

\/Sep
The rapidity of the jet, y;, can also be defined in terms of the kinematic variables entering

into the phase space through the relation

Yy = —%ln ( ! > : (5.38)

U

Furthermore, p and p; are the renormalization and the jet scales, respectively. For the
remainder of this chapter, we will always choose the renormalization scale to be given by
p = py1 while the jet scale will be given by p; = py1 R. The function G, /, entering into 5.35
is the TMD fragmenting jet function [340, 136, 328, 139], which describes the distribution
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of A particles inside the jet. Following the results of Ref. [142], this distribution function is
related to the usual unpolarized TMD FF through the relation

) a dﬂl / d*b ij1-b/zga
Gajq(zin, Jois pr, i, G2) = exp 7%(#) (2—6 Dyjg(zn, by s, G2), (5.39)
i

; m)?
where v; is the anomalous dimension of the TMD fragmenting jet function, to be given

below in Sec. 5.4.5.

For spontaneous A polarization, we follow the procedure in Ref. [341] to replace the TMD
FF in 5.39 by the relevant density associated with the distribution of transversely polarized

A baryons. Explicitly, we make the replacement

Mae| ,o0°ST
Dijg(2ga, b g, C2) — —%D#R/q (zn, b3 ey, G2)
TA

where DILT(lli /g is the first moment of the TMD PFF in b-space [341]. After making this
replacement, the structure function for spontaneous A polarization is given by

SIN(¢pg— '
Wl (bs—¢n) _ H(Q; 1) Zeg gf‘T’A/q<ZJA,jJ_; 175 11, G2)

q

2b
X /—(27r)2 e forp(wp, i, 1) S(b,ys, Ry ) (5.40)

where

MA # d,u’
L L _ “r /
ng,A/q(ZJAJJ_v NTNG) —ZJA exXp </W o Y (')

0 a?v .. .
. aJ_L/ (27T)26mL bz D#R/q (2ga, b5 117, C2) - (5.41)

Finally, we define the transverse spin transfer structure function as

Wit #5799 = H Qi)Y 2GR g (2an st i, Co)

q

2y
X /WeqLbhq/p(xB7b;,uagl)Sa)vyJaR;u)7 (542)
where
T ;. _ Md/’L/ / d2b ijL‘b/ZJAH b 4
Gasg(Zans J1s frs i1, Go) = exp 7%(#) We Ag(Zaas 05 ey, Ga) 5 (5.43)
125}

provides the distribution of transversely polarized A baryons in a jet which is initiated
by a transversely polarized quark and H (Q;p) is the hard function associated with the

transversely polarized quark hard process.
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5.4.2 Experimental Setup

In this section, we present the details of our simulation for generating the event statistics.
The present study is based on the four baseline energy configurations which are discussed
in EIC Yellow Report [342]. The four configurations are 5 GeV x 41 GeV, 5 GeV x 100
GeV, 10 GeV x 100 GeV, and 18 GeV x 275 GeV, where the first energy is the electron
beam energy while the second energy is the proton beam energy. The ep event simulation
that we present here is based on the PYTHIA eRHIC Monte Carlo program which is a
modified version of PYTHIA-6.4.28 [152] with the PDFs input from the LHAPDF [343]
library. Furthermore, for the back-to-back lepton-jet process, we perform jet reconstruction
using the FASTJET [238] package. The kinematics have been constrained in the following
ranges: @ > 1 GeV, 0.05 < y < 0.95, W > 2 GeV. The constrains on Q? and W are used to
select valid SIDIS events, whereas the y selection avoids phase space where either radiative

corrections become large or the event cannot be reliably reconstructed.

L 18 x 275 ja 10 x 100 ;
[ s , 10°

2 I

(o8

,

10

logy(z)

Figure 5.7: The ranges in the square of the transferred photon momentum (? versus the
parton momentum fraction x accessible for different collision energies. The z-scale (density)

indicates the number of events with at least one A/A in pseudo-rapidity range -3.5< 1 <3.5.

Figure 5.7 shows the x5 vs. @Q? distribution with the y constraint applied for different
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collision energies. The A hyperons are reconstructed from its charged final state decay
products, proton (anti-proton), and negative (positive) pion. The 2-D distributions in pr,
the transverse momentum in the lab frame, and 7, the pseudo-rapidity space for proton and
charged pion, are shown in Fig. 5.8 (left and middle). The assumed EIC detector will cover
the full azimuth in a finite pseudo-rapidity range —3.5 < 1 < 3.5. The lowest transverse
momentum is set to be 0.1 GeV. To ensure the applicability of TMD factorization [36], the
condition, Py, /z < Q/4 is also applied. The distribution of P, /zy versus (/4 is shown in
Fig. 5.9 with the dashed line indicating the selection cut. To reduce the contribution from
the beam remnant, the Feynman-z, xp = 2p? /W, is required to be positive. As shown in
Fig. 5.10, the fraction of the A originating from target fragmentation in the final sample
is only a few percent. This study relies on fast simulations, where the efficiency is not
impacted by the displacement between the decay vertex of the hyperon and the primary
vertex. As shown in Fig. 5.11, the decay vertex can be removed from the primary vertex
by several centimeters which might impact the detection efficiency of a compact tracking
system proposed for the EIC [344]. To account for this effect, we apply a quite conservative
overall efficiency factor of 50% for the projected statistical uncertainties.

T(A=p+mn)

2.0r
i 10°

10*
10°

Figure 5.8: Final state particle distributions in transverse momentum (energy) and pseu-
do-rapidity space for proton (left), pion (middle), and photon from X° decay (right). Here we
display the results at the collision energy 18x275 GeV? and we note that the distributions

for other energy configurations are similar.

For A production at EIC energies, feed-down from heavier particles is not negligible.
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PhL/ZA (GP\’)

Figure 5.9: Tllustration of the impact of the constraint P, /2y < /4. Only events above the
line are accepted. The efficiency of this cut depends on the hard scale Q? and is approximately
7% for Q? > 1 GeV?, 25% for Q? > 10 GeV? and 50% for Q? > 100 GeV?. Here, we provide
the result for the 18x275 GeV? energy configuration while we note that the results for the

other collision energies configurations are similar.

Figure 5.10, shows the origins of the detected A, according to the event list provided by the
PYTHIA generator, for the top energy 18x275 GeV?2. After selection cuts, about 1/3~1/2 of
the A candidates are promptly produced from string fragmentation. Most of the remainder,
about half of the total, originates from the feed-down of Y° hyperons, excited ¥* states and
= hyperons. Additional contributions, less than 10 % come from heavy quark decays, e.g.
A. and diquarks from the target remnant. In principle, the fragmentation formalism used in
this work, does not apply to hyperons produced in the weak decay of heavier states. This
includes most of the feed-down except for feed-down from 3*, which predominantly decays
strongly into A. However, to our knowledge, all previous experimental measurements, except
for Ref. [316], did not separate between weak and strong production. Consequently, previous
phenomenological work integrated over all A; extracting in some sense effective fragmentation
functions. For these reasons, we will also integrate over all A ancestries and will not assign

a systematic uncertainty to the feed-down contributions.

For an eventual feed-down correction, the contributions from the various decays would
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Figure 5.10: Origins of A for 0.1 < z < 0.3 and z > 0.3 according to the event records

provided by the PYTHIA event generator for the 18 x275 GeV? energy configuration.
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Figure 5.11: Correlations between A and A decay length and pseudo-rapidity at different

collision energies.

have to be identified in data. For X°, which decays nearly always to A + v, we investigated
therefore the feasibility of reconstructing this decay. As shown in Fig. 5.8 right panel, the final
state v are emitted predominantly at or near the central pseudo-rapidity range with a relative
low energy, mostly < 0.5 GeV. While the detection of these photons is challenging, with the
detector performance requirements outlined in the Yellow Report, it should be feasible to
reconstruct X° hyperons with sufficient mass resolution. More than half of the feed-down
from = hyperons originate from the decay Z° — A + 7°, which is difficult to reconstruct,
due to combinatorial background in the 7° reconstruction. The decay =* — A + 7* can be
reconstructed with sufficient efficiency, however, this decay makes up less than 10%. We note
that additional systematic uncertainties are expected to come from the uncertainty on the
beam polarization for the spin transfer measurement as well as from wrongly reconstructed
A hyperons as well as detector effects. For the A in jet measurements, the Jet Energy
Resolution (JER) will impact the reconstruction of kinematic variables. Following studies in
the Yellow Report, the relative uncertainty on the beam polarization can be assumed to be

less than 3 %, which makes this systematic negligible compared with the expected statistical
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uncertainties. The JER should be about 10%. Since the extracted quantities are not strongly
dependent on kinematics derived from the jet energy, we also assume that this systematic is
negligible. Finally, based on experience from previous measurements of A polarization, we
also assume that systematics due to detector effects and wrongly reconstructed A hyperons
are negligible compared to our projected statistical uncertainties. These assumptions have

to be revisited for the eventual measurement.

5.4.3 Reweighting Analysis for the TMD PFF and Transversity TMD FF

Having summarized the details of our experimental simulation in the previous section, we
now present our SIDIS re-weighting analysis at the EIC. In Sec. 5.4.3.1, we provide the
numerical input for the re-weighting analysis. In Sec. 5.4.3.2, we provides the results of
our projections for the uncertainties for the TMD PFF from this analysis as well as the
comparison with the experimental data. In Sec. 5.4.4, I provide the parameterization, fit

results, and EIC impact study for the transversity TMD FF in Semi-Inclusive DIS.

5.4.3.1 Numerical Input for the TMD PFF

For this chapter, we will always use LO matching. This is motivated by the fact that the one
loop expression for the TMD PFF has not yet been performed. At this perturbative order,

the hard function can be replaced by
HOS(Q; 1) = 1. (5.44)

To quantify the contribution of the EIC in constraining the TMD PFFs, we perform two
fits in this section. Our baseline fit contains only the experimental data from the Belle
collaboration while the re-weighted fit contains both the experimental data from Belle and
the pseudo-data generated in the previous section. For this section, we take the integrated

luminosity of the EIC pseudo-data to be 40 fb~1.

At this point, I would like to note a major point. In our analysis of the Belle data, all

data points were at a single scale () = 10.58 GeV. As a result, we used a simple Gaussian
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model to perform the extraction. In our analysis for the EIC impact study, we will continue

to ignore contributions from evolution and thus perform this analysis in a Gaussian model.

To parameterize the TMD PDF in the polarization case, I will use the parameterization
, ek
Fap(@p KL 11, G) = fapp(wm: Q) —ra7— (5.45)
m(k1)
where we use (k%) = 0.61 from [330]. Using this expression, the spontaneous A polarization

in Eq. 5.26 can be written as

PA({L‘B,y7ZA7PhL) = (546)
Zq egfq/p(mm Q) wq(2a; Prr) Dajg(2a, Q)
Zq egfq/p(xﬁ Q)DA/q(zA; Q) '

In this expression

Py (Mp)(P7,)
2a M (APE)?

X exp [Pf?l (<pia> - <A]13,3l>)}

Ni(zn) (5.47)

wq(ZA7 PhL) -

are the weighting functions while

(Pr) = (KD)2x + (p1) (5.48)

(AP ) = (k1)2} + (Mp) , (5.49)

are the Gaussian widths associated with the unpolarized and polarized processes, respec-
tively.

In this analysis, we follow the parameterization in Ref. [12] with fit parameters N,
Ny, Ny, Neea, Qu, Qdy Qsy Oseas Boaly Bseas and (M3). To perform the fit of the generated
pseudo-data, we integrate the numerator and denominator of 5.46 in x, y, and P, . Namely
to generate the pseudo-data, events are binned into 1 > zp > 107, 107! > 25 > 1072,
1072 > 25 > 1073, and 1072 > x5 > 10~*. To generate our theoretical predictions, we
integrate over these ranges of x values. pseudo-data are also generated using the constraint
that 0.05 < y < 0.95. Using the relation 25y Se, = Q?, for each data point in our prediction,
we integrate over 0.05 < y < 0.95 under the condition that () > 1 GeV. Finally, to generate
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the pseudo-data, we have also applied the kinematic constraint that P, /zy < 0.25 @, which
is associated with the TMD factorization region. For each point, we integrate over this

kinematic region in our fitting procedure.

To perform both of the fits, we use the Migrad fit in the Minuit package [345] to minimize
the x2. Furthermore, to generate the theoretical results, we use the replica method [346, 347]
with 200 replicas. For each of the replicas, we initialize the fit parameters using a Monte

Carlo sampler.

5.4.3.2 Results for the TMD PFF

0.015 .
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0.010 s
@ sea
= 0.005
X
= 0.000 —
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020 025 030 035 040 045 050 055 0.60
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Figure 5.12: The first moment of the TMD PFF at () = 10.58 GeV. The light bands represent
the uncertainty from the fit to Belle data in Ref. [12], while the dark bands represent the

uncertainty obtained from the simultaneous fit of the Belle data and the EIC pseudo-data.

In Fig. 5.12, we plot the first moment of the TMD PFF which was obtained from the
baseline fit as a light band. In the darker band, we plot the result from the simultaneous fit
to the Belle data as well as the EIC pseudo-data. The theoretical uncertainty for the first
moment, 5D1LT(1) , is obtained from the set of replicas by calculating the standard deviation at
each point. Furthermore, we define the average value of the extracted first moment as DllT(l).

As we can see, from this plot, the uncertainty is significantly reduced in the simultaneous

analysis. In order to further quantify the size of this reduction of the theoretical uncertainties,
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Figure 5.13: The ratio of the uncertainty of the TMD PFF for each flavor at @) = 10.58
GeV. The solid lines represent the results from the fit to Belle data while the dashed line

represents the result from the fit to the Belle data and the EIC pseudo-data.

we also plot the ratio 5D1LT(1)/D1LT(1) in Fig. 5.13. As we see in this figure, the pseudo-
data generated from the EIC kinematics leads to a significant reduction of the theoretical
uncertainty for the u and sea quarks. The large reduction in the theoretical uncertainties
in the sea quark TMD PFF is occurring because the parameterization in Ref. [12] assumes
charge symmetry. Thus Df_T(}X) g = DlLT(i—\) /2 and DILT(? g = DlLT(}—\) Je Since the analysis that we

perform here uses a proton beam, the fit with the pseudo-data allows us to strongly constrain

the DllT(}\) T and DlLT(}\) 1d functions. From the charge symmetry assumption, this leads to a

L(1)

large reduction in the uncertainties for the D ../ Ja and D=

TN/ functions. As a result, the

uncertainties for the sea quark distributions are dramatically reduced. However, because the
strange distribution in the PDF is small, we find that the theoretical uncertainties DfT(}\) /s Are
unchanged with the introduction of pseudo-data. Furthermore, we find that the reduction
in the theoretical uncertainties for the d quark distribution is smaller than those for the u
and sea quarks. However, we note that in principle the theoretical uncertainty for this flavor
can be further reduced by considering experimental data from a 3He nuclear beam. Namely
by using a *He beam and tagging the two protons in the forward region, a neutron can be
isolated in the hadron beam. This procedure would allow future extractions to spontaneous A

production for electron-neutron scattering which is extremely useful for studying the d-quark

TMD PFF.

In Fig. 5.14, we plot the pseudo-data that was obtained in the previous section for A
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Figure 5.14: Theoretical predictions are compared against the pseudo-data generated in the
reweighting method at 40 fb~!. The rows are grouped by the range of x while the columns
are group by the energy configuration of the collision where the first number represents
the energy of the lepton beam in GeV and the second number represents the energy of the
hadron beam in GeV. The light band represents the theoretical uncertainty from the baseline
fit to the Belle data while the dark band represents the theoretical uncertainty from the fit

including the pseudo-data.
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in red and A in blue. Once again, the light band represents the theoretical uncertainty
obtained from the baseline fit. The dark band represents the theoretical uncertainty from
the simultaneous fit. To calculate the theoretical uncertainties, we compute the standard
deviation of replicas at each point. We bin each row (column) of this plot according to its zg
range (energy configuration). The top row contains the pseudo-data generated from events
with 1 > 25 > 107!, As we can see in this region, the size of the projected polarization
is relatively large and positive for A production. Furthermore, the polarization is large
and negative for the A production. The large and positive polarization for A production
is occurring because the contribution from the u quark is dominant for this process and is
also positive. The large and negative polarization for A production is occurring because the
large contribution from the v quark TMD PDF is being weighted with the sea contribution
for the TMD PFF. Since the sea contribution is negative, the resulting asymmetry is large
and negative. As the binned value of zp decreases as we move down the rows in Fig. 5.14,
we can see that the polarization for A tends to decrease in magnitude. This behavior occurs

because there are large cancellations between the u and sea quarks in this kinematic region.

5.4.4 Numerical Input and Results for the Transversity TMD FF

To characterize the theoretical uncertainty which can be obtained by current experimental
data, we first use the current experimental data from COMPASS to constrain the transversity

TMD FF for A baryon production.

In this section, we first begin by providing the numerical recipe used for the extraction of
the transversity TMD FF. To perform this analysis, we work at LLO accuracy for the matching
and Next-to-Leading-Logarithmic (NLL) accuracy for the logarithmic resummation. Beyond
the Gaussian approximation, it is convenient to work in b-space. The expressions for the

unpolarized structure function at LO becomes

dbb bP,
Fyy = Z /— Jo ( “) Dijq(2n,0;Q, Q%) fupp(,b;Q, Q%) .
At the perturbative accuracy that we use in this section, the TMDs can be matched onto
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the collinear distributions using the relations

fq/p(xBa b7 Qa Q2> = fq/p(wB; Mb*) exp (_Spert(b; Hb, Q> ,ug*a QQ) - SI(IP<b7 Q7 QO)) y (550)

1
Dajp(2a,0;Q, Q%) = Z_QDA/q<ZA§,ub*)
A

X €Xp <_Spert(b; Hb., 5 Qu ,U’lin Q2) - SIQP(ZAv b7 Q7 QO)) : (551>

The unpolarized structure function can be written as

dbb bP,
Foy = Ze —/—Jo ( hL) Dasq(zas b)) forp(T B3 1)

X exp [ 2Spert(b ,Ub*,Q :ub* QZ) NP(ZAab Q QO) NP(b7 QaQO) . (552)

Following a similar analysis for the transverse spin transfer process, one can write the

structure function associated with this process as

dbb bP,
COS(<PS #s) Z / ( hL) HA/q(ZMMb*)hq/p(Q?B;/ib*)

X exp [_zspert(b; Ko, Q7 :U’g*a Q2> - SI{I{P<ZA7 b7 Qa QO) - Sl}\LTP(bJ Q? QO):| (553)

where h,/, and Hy, are the collinear transversity PDF and FF while Sff, and S, are the
non-perturbative Sudakov factors for these distributions.

Several extraction in the literature for the transversity TMD PDF. In this work, we follow
the work in Ref. [120] to parameterize the transversity PDF as

oy + By)* P
ah® ﬂhﬁh

hasp(a: o) = Naoh(1 — )% L o) + auplzii)] - (559

h

, are fit parameters which were obtained in this reference for

In this expression, N;, Ozf;,
the u and d quarks while the contributions of the sea quarks were set to zero. Furthermore,

we have defined the initial scale of the parameterization to be py.

The transversity PDF in Eq. 5.54 can in general have a non-trivial x dependence. This
non-trivial dependence enters because, while the collinear PDF f and the helicity PDF ¢ have

simply polynomial dependencies on z at their initial scales, when these initial scales differ
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from g, evolution effects in f and ¢ will complicate this parameterization. The simplest
parameterization the one could take would be to choose the scale py such that it corresponds
to the intrinsic scales of both f and g. This constraint limits the number of parameterizations
that we can use for these distributions. While there are a large number of parameterization
for f available on the market, there are relatively few parameterization for ¢g. In this analysis,
we take the DSSV parameterization from Ref. [348]. The initial scale of this parameterization
is 1 GeV. Of the available PDFs, we find that the MSTW parameterization shares the same
initial scale as the DSSV parameterization. We have therefore chosen to use this set for the
entire paper. As a result of this choice, the x dependence of our parameterization of the

transversity PDF can be shown to be given by a polynomial at p.

In order to evolve hgy, from the initial scale to 1, in Eq. 5.53, we must solve the DGLAP
evolution equation for this distribution. However, as was stated in Ref. [349], there is no
gluon transversity at leading power. As a result, the DGLAP evolution equation of the quark
transversity does not mix with the gluon distribution. Therefore, the evolution equation
does not contain splitting function which mix quarks and gluons and the DGLAP evolution
equation is simply given by

0 a, [di ) .
0 1Inp? a3 1) = %/ ?P;L—m(m) ha/p (ESM) ; (5.55)

where the splitting kernel for the transversity PDF is given by

Py, (x) = Cp {(13—2% + 25(1 - i)} . (5.56)

As in the case for the Sivers we simplify the evolution in Eq. 5.55 by working in Mellin space.
Because our parameterization for the transversity PDF resulted in polynomial dependence
on x at puy = 1 GeV, the Mellin transform for the transversity PDF can be performed
analytically at ug = 1 GeV. As a result, evolving our parameterization for the transversity
PDF from pg to up, can be accomplished by performing a single numerical integral which is

associated with an inverse Mellin transformation.

To parameterize the transverse momentum dependence on the transversity TMD PDF, we

follow the parameterization in Ref. [120]. Explicitly, we parameterize the non-perturbative
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Sudakov for the transversity TMD PDF as

e (b, Q, Qo) = Skp (b, Q, Qo) , (5.57)

which sets the non-perturbative Sudakov to be the same for unpolarized TMD PDF and the
transversity TMD PDF.

Having parameterized the transversity TMD PDF, we now turn our attention to the
transversity TMD FF. As the COMPASS measurement is consistent with zero [13], these
experimental data can provide relatively little input on the size and shape of Hj /,. Therefore,

we choose the relatively simple parameterization

Haso(%Q) = Ny' Dayy(2Q) (5.58)

where NqH represents parameters to be fit which control the overall size of the transversity

FF.

Because the parameterization for the transversity TMD PDF in Eq. 5.54 has only non-
zero contributions from the u and d quarks, only the N and NI parameters can be con-
strained in this analysis. As such, we take all other quark contributions to be zero. Due
to these assumptions, our model will predict zero transverse spin transfer for A production.

Therefore, we do not consider the A production data for this process.

To parameterize the non-perturbative Sudakov term for the transversity TMD FF, we
follow the procedure that was done in in Ref. [120] to set the non-perturbative Sudakov term
to be the same for the unpolarized TMD PDF and the transversity TMD PDF. For the

transversity TMD FF, we explicitly take
SI{TIP(Z/hba Q?QO) = S]iI)P(ZAubaQuQ(D . (559)

In order to fit the N and NI parameters, we use iMinuit [345, 350]. Furthermore,
in order to generate the uncertainty band from the extraction, we use the replica method
(346, 347] with 200 replicas. Using this simple model, we arrive at a x?/d.o.f = 1.108 for
12 points. The fitted values for the parameters are given by N¥ = —0.028 4 0.061 and
NI = —0.089 + 0.210.

200



In Fig. 5.15, we plot our theoretical comparison against the COMPASS experimental
data. The grey band represents our theoretical uncertainty which is obtained by calculating
one standard deviation away from the mean of the replicas at each point. As we see in this
plot, in each kinematic region, our extraction for the transverse spin transfer is consistent
with zero. In Fig. 5.16, we plot the extracted collinear transversity FF as a function of z,
for Q = 2 GeV for the u quark in red and the d quark in blue. The dashed and dotted
lines represent the average over the replicas for the v and the d quark transversity FFs,
respectively. Due to the experimental measurement being consistent with zero, we see that

the transversity FF is also consistent with zero within our theoretical error bars.
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Figure 5.15: The comparison of our fitted transverse spin transfer and the experimental data
at COMPASS [13]. The grey band represents our theoretical uncertainty which is obtained

using the replica method, while the red error bars are the experimental data from COMPASS.

In Fig. 5.17, we plot our theoretical prediction at the future EIC for the transverse spin
transfer for A production in SIDIS in the large x region where the valence quarks should
dominate. The red band represents the theoretical uncertainty from our extraction while
the black line line represents the average of the replicas. The black error bars represent
our projected statistical uncertainties at the future EIC. In order to obtain the statistical
uncertainties for these kinematic ranges, we have divided the statistical uncertainties from the
spontaneous polarization section by a factor of 70% in order to account for the uncertainties
associated with the proton beam polarization. We note that the theoretical uncertainty

which we display in this analysis stems only from the parameters N/ and NI parameters.
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Figure 5.16: The collinear transversity FF extracted from the COMPASS measurement.
The red and blue bands represent the theoretical uncertainties from our extraction which
was obtained using the replica method for the u and d quarks, respectively. The dashed and

solid lines represent the average of the replicas for the v and d quarks.

The full theoretical uncertainties should also contain contributions from the uncertainties
from the transversity TMD PDF as well as the unpolarized TMDs and even the collinear
distributions. As a result, these theoretical uncertainties underestimate the total theoretical
uncertainty. However, as we see in this figure, the theoretical uncertainties are more than
an order of magnitude larger than the projected statistical uncertainties at the EIC. This
indicates that the EIC could potentially be used to perform the first measurement of the
transverse spin transfer which is not consistent with zero and that such data would be

extremely important in constraining the transversity TMD FF.

5.4.5 Projections for Ain Jet

In this section, I first present our parameterization for spontaneous A polarization as well as
the transverse spin transfer for A baryon production within the produced jet. I then present

the results of our projections at the future EIC.

The definition of spontaneous A polarization is given in 5.33. This expression relies on
the unpolarized structure functions Wy ; in 5.35, and the structure function for spontaneous

polarization ngfn(d)s “?0) in 5.40. At this point, we first provide the parameterization for
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Figure 5.17: Prediction for the transverse spin transfer for A production at the future EIC.
The label above each sub plot provides the electron beam energy x the proton beam energy.
The label to the right indicates the kinematic region for xzp. In each subplot, the red
bars represents the theoretical uncertainty from our extraction at one standard deviation.
The black line represents the average over the replicas. The black error bars represent the

projected statistical uncertainties at 40 fb=1.

the unpolarized structure function.

In this section, we once again work at LO+NLL perturbative order. At LO matching,
the hard functions in 5.35 and 5.42 are

H@Qp)=1,  Hi(Qu)=1. (5.60)

For this process, there are two separate soft function which contribute to q,. The first
contribution is the well-known global soft function, which we will denote Sgiona. This function
is associated with wide angle soft gluon emissions. The second contributions is known as
the collinear soft function, which we denote Sy, is associated with soft gluon exiting the
jet, see for instance Ref. [135] for more details. The global soft and collinear-soft functions
for this process are given up to NLO+NLL accuracy in Ref. [137] along with the anomalous
dimensions. At LO+NLL accuracy, these functions are given by

oody! )
Sglobal (b; 1) = exp 77globa1(b; w) |, (5.61)
I

bx
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b

oody! )
Ssc(ba Yy, R; ﬂ) = exp 7750(@ Yy, R; ,u ) ) (562)
“w

where the anomalous dimensions for these functions are given at NLL accuracy by

asC 2
7globa1(b; p,) =2 FyJ + chspCFlnlu_Q ; (563)
T M
12
’YSC(bJ Y, Ra M) = - chspCF In—— (564)

ppR?
with g, = 2e772/b. In the b-space, the soft functions combine as a product so that the total
soft function entering into this process, i.e. S(b,y,, R; p) in Egs. 5.35, 5.40 and 5.42, is given
by

S(b,y.1, R; 1) = Sgiobar (b; 1) Ssc (b, Y1, 5 1) - (5.65)

In our numerical analysis, we will always take the jet radius R = 1 so that the anoma-
lous dimension of U is simply given by the sum of the global and collinear-soft anomalous

dimensions.

In order to obtain the final expression for the unpolarized structure functions in 5.35, we
now use the collinear matching expression in 5.51 to write the unpolarized TMD fragmenting

jet function as

. Hdu dbb by
gA/q(ZJAJL;NJaNa Cz) = exp (/ TM,W(M/)) /g 0 (—l) DA/q(ZJA§Nb*)
"

7 ZJA
x exp (—Spert (03 o, 117, Hb. » 11s) — Skp(2an, b, Qo, 1)) - (5.66)

At NLL, the anomalous dimension for the TMD fragmenting jet function is given by
2

'VJ(IU) - _chsp<as)ln <%) - ”7V<C¥s) . (567)

In addition, we also include contributions from the non-global logarithms, see Refs. [162, 130,
135, 351, 164] for details. Finally, in order to obtain the structure function for unpolarized
A production, we also apply the matching relation for the TMD PDF in 5.50 onto the
expression in 5.35. After performing the matching, the unpolarized structure function is
given by

dbb

@ Jo(bqy) fq/p(mB; to.) S(b, v, R )

WUU = Zez gA/q(ZJ/hji;,anquQ)/

q
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Figure 5.18: The 7, distribution for unpolarized A baryons in a jet for back-to-back lepton-jet
production in ep collisions. The orange line represents our theoretical prediction while the
blue histogram represents the Pythia simulation. The integrated phase space is also displayed

on the right side of this figure.

X exp (_Spert(b; Mo s g, :ul2)*a u.2]) - SI{IP(bv QOa M)) . (568)

To obtain numerical results for this section, we use the same parameterization for the

unpolarized TMDs as in Sec. 5.3.

In order to verify the validity of our formalism so far, we have included a comparison with
Pythia in Fig. 5.18. In this figure, we plot our j, distribution for unpolarized A production
inside the jet. In our Monte Carlo analysis where we generated the pseudo-data for this
process, we have examined events which satisfy the constraints 0.05 < y < 0.95, p;, > 5
GeV, qi/pj1 < 0.3, and 0.2 < z55, < 0.5. Therefore, in order to generate our theoretical
prediction for this data, we integrate the structure functions entering into the polarization
over these kinematic regions. To perform the integration in y, we simply use the relation in
5.37 to relate the lepton rapidity to the inelasticity. To perform the integration in py, , we
note that up to power corrections of ¢, /p;, that ¢, = p;, so that we can simply perform the
integration in the jet transverse momentum. We have also taken R = 1 for the jet radius. In
this figure, the Pythia histogram as well as our theoretical curve have been normalized by
integrating over j; < 1.5 GeV. As we can see in this figure, the shape of the j, distribution

matches the result of the Pythia simulation extremely well.
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Using the collinear matching relation for the TMD PDF, the structure function for spon-

taneous A polarization can be written as

i — . dbb
W @s=on) — 263 Giroasq(Zans L5 110, 1, C2)/% Jo(bq1) fop(@B; pw,) S(b,ys, Bs 1)
q
X exp <_Spert(b; Mo, 5 B, /’Lg* ) /L?]) - SI{TPa)? QO? /’I/J)> . (569)

In order to simplify the TMD polarizing fragmenting jet function, we introduce the collinear

matching relation for the TMD PFF

(Mp)
222 M3

X exp (_Spert<b; Mo,y s /Jll%*nu’?]) - SI{T_P<27 b7 Q(J]_v Q)) ) (57())

1(1
D 1T(,A)/q (2.0:Q,Q%) = Dizaq(2; i0.)

where Qg is the initial scale of the TMD PFF which is given by 10.58. Using this collinear

matching relation, the TMD fragmenting jet function can be written as

I - _ o ME) /”d_ﬂ' / /@ bjv
g1T7A/q(ZJAajl7MJ7MaC2) - 22§AMA81H (¢s (bA) exp ( . N, 7](#) o Jl ZIA

J

X D%T,A/q(ZJA; ,U/b*) exp (_Spert<b; b,y T, Mg* ) :UQQ]) - SI{I_P(ZJAa ba QO? MJ)) : (571>

In Fig. 5.19, we plot our theoretical prediction for spontaneous A polarization for back-to-
back electron-jet production. The red and blue curves represent the theoretical uncertainty
for A and A production in which we obtain from the baseline fit in Sec. 5.4.3.2. The red
and blue error bars represent the statistical uncertainties for A and A production at an
integrated luminosity of 100 fb=!. To generate each curve, we integrate over the kinematic
region j, < 1.5 GeV, q, /ps1 < 0.3, pj. > 5 GeV, and 0.05 < y < 0.95 following the same
procedure as in the unpolarized case. From left to right, we impose the kinematic constraint
that 0.01 < zp < 0.05, 0.05 < xp < 0.10, and 0.10 < xp < 0.80. In each of these plots,
we see that the polarization for A is positive at small z;,, while the polarization becomes
negative at large z;,. Furthermore, we also find that the polarization for A is more positive
at small z;, and large xp. These qualitative behaviors can be seen by studying Fig. 5.12.
At small z;,, the contribution from the u quark will dominate the polarization due to the

electro-magnetic coupling of the u quark as well as the size of the u quark TMD PDEF. As a

206



0.01 <zp <0.05 0.05 <axp <0.10 0.10 < zp < 0.80

>4
.
H——+
1

0.10F jL<lsGev I — ]
r q1/psL <03 mm AT ]
0.05F pr>5GV L I ]
r 0.05<y <095 T T &
& 0.00F + ]
L )
r T T 1ot
—0.05¢ T T ]
0,100 3 1 ]
b :
0.10f 1 1 ]
0.05:— _:_ _:_ _:
b T + =
< 0.00F 1 X
r T T 1 §
—0.05 3 1 ]
010 t + ]
Lo b v ey ey ey
0.2 0.3 0.4 0.5 ‘ ‘ ‘ ‘ 1
2 0.10 + :
0.05F + ]
r + ] ot
< 0.00F : 15
E ] 18
—0.05¢ T 7
—0.10f + ]
[ 1 1 L Loy
0.2 0.3 0.4 0.5 ]
2JA 0.10:— ]
0.05F .
ot
S 0.00f ] %
r 1=
—0.05F B
—0.10F .
oo b
0.2 0.3 0.4 0.5
ZJA

Figure 5.19: Our projections for spontaneous A polarization. The red band and blue bands
represents our theoretical uncertainty using the parameters obtained from the baseline fit
in Sec. 5.4.3.2 for A and A production, respectively. The error bars represent our projected
statistical uncertainties at an integrated luminosity of 100 fb=!. To obtain these results, we
integrate over the kinematic regions listed in the top right of the left plot. Furthermore, we

also impose the conditions that xp is within each of the listed regions.
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result, the polarization is large and positive at small z;,. At large 2, the contributions from
the other quark flavors overcome the u quark and the polarization becomes negative. Since
the contribution from the u quark is largest in the large x g region, the polarization is more
positive at large x5. For A production, the v and d are sea contributions to the TMD PFF.
As a result, the contributions from the u and d quarks give large negative contributions to
the polarization. We see in these plots that the size of the statistical uncertainties is smaller
than the theoretical uncertainties in the region of small xg. This is an indication that
experimental data gathered in that particular region can be useful in further constraining
the TMD PFF. However, the displayed theoretical uncertainties stem only from the the
uncertainties from the fit parameters for the TMD PFF. Other theoretical uncertainties
stemming from the unpolarized TMD PDF as well as the collinear distributions will also

contribute to this prediction.

After performing the collinear matching for the transversity TMD PDF, the structure

function associated with the transverse spin transfer is given by

_ . dbb
W;gs(% ¢s) — Z €2 Gaq(zan doi b, s Go) / o Jo(bqyr) hep(zB; o, )S (b, v, Bs 1)

q

X exp (_Spert(b; Mo, s [T, /’LzN/L?]) - SII\LTP(ba Q(b /JJ)) : (572>

In this expression, the TMD fragmenting jet function is given by

. du 1 dbb by
g/{/q(ZJA,]L;MLM, (2) =exp (/ 7%%(//)) 5 / ——Jo (ﬁ) HA/q(ZJA;Mb*)
w

2
J 250 2w ZJA

X exp (=Spert(b; b, , 117, 11y, - 115) — S¥p (28,0, Qos 1)) - (5.73)

To generate our theoretical prediction for back-to-back lepton-jet production, we use the
extracted transversity FF from Sec. 5.3 while we once again use the parameterization from

Ref. [120] for the transversity TMD PDF.

In Fig. 5.20, we plot our projected transverse spin transfer in the region of large xp
where the contribution from the valence quarks should dominate. The red bar represents

the theoretical uncertainty for our fit to the N2 and NX parameters while the error bar is
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Figure 5.20: Our projection for the transverse spin transfer for A production for back-to-back
lepton-jet production at the future EIC. The red bar represents our theoretical uncertainties
which we obtain from our extraction of the N7 and N parameters. The error bars repre-
sent the projected statistical uncertainties at 100 fb~!. We have obtained these statistical
uncertainties by dividing the uncertainties from Fig. 5.19 by 70% to account for beam po-

larization uncertainty.
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the projected statistical uncertainty. To generate the statistical uncertainties for this mea-
surement, we use the statistical uncertainties used in Fig. 5.19, while dividing by a factor of
70% to account for the uncertainty in the polarization of the proton beam. We once again
emphasize that the advertised theoretical uncertainty stems only from the parameters that
enter into our fit while we expect additional large uncertainties originating from the transver-
sity TMD PDF, the unpolarized TMDs, as well as the unpolarized collinear distributions

also contribute to this measurement.

5.5 Conclusion

In this chapter we have studied A production at the future EIC for spontaneous transverse
A polarization as well as transverse spin transfer in the TMD formalism. Furthermore, we
have studied each of these spin configurations in SIDIS as well as back-to-back lepton-jet
production. For each of these processes, we have discussed the impact of the future EIC in

constraining the TMD PFF as well as the transversity TMD FF.

In order to characterize the size of the contribution that the future EIC data will have
on constraining the TMD PFF, we have performed an EIC impact study. As a baseline we
have performed a fit to the experimental data at Belle. While in order to test the impact of
the EIC data, we have performed a Pythia analysis to generate projections for the statistical
uncertainties at the future EIC. Using these statistical uncertainties, we have performed a
simultaneous fit to the Belle data as well as the pseudo-data. By performing this fit, we have
demonstrated a significant reduction in the theoretical uncertainties for the v and sea TMD
PFF. We have also discussed how potential measurements with a *He beam can be used to

significantly reduce the uncertainty for the d TMD PFF.

In order to study the impact of future EIC data on the transversity TMD FF, we have
performed an extraction of this function from the recent COMPASS measurement [13] in
the SIDIS process. We find that the current statistical precision from the COMPASS mea-

surement is not high enough for an extraction of the transversity TMD FF. By providing
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projections for the statistical uncertainties for A polarization in the SIDIS process at the
future EIC, we demonstrate that the statistical uncertainties for this process at the future
EIC will be roughly an order of magnitude smaller than the current theoretical uncertainties
for this process. Thus, the EIC data presents the possibility of being the first significant

measurement of the transversity TMD FF.

In addition, we have provided projections for A in jet production in back-to-back lepton-
jet production. We have generated projected statistical uncertainties at the future EIC for
spontaneous A production at an integrated luminosity of 100 fb=!. We find that in the region
of low xp that the statistical precision for this process can be used to further constrain the
TMD PFF. Finally, we have also provided projections for the transverse spin transfer for A
in jets in the scattering of an electron and a transversely polarized proton at the future EIC,

and we emphasize its importance in constraining the transversity TMD FF.
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CHAPTER 6

Evolution of Twist-3 TMDs

6.1 Introduction

The formulation of TMD factorization theorems relies heavily on the neglecting power cor-
rections of order ¢, /@ and M/Q. In all of the formalism that I have presented up to this
point, this has been the case. When considering power corrections to the differential cross
section, at twist-3 for instance, the formalism becomes much more complicated and subtle
due to the large number of additional areas at which power correction enter. These power
corrections introduce a wide range of new distributions which can be experimentally probed,
and which provide additional insight into the structure of hadrons. As I will discuss in this
chapter, these sub-leading power distributions are named ‘intrinsic’, ‘kinematic’, and ‘dy-
namical” distributions. Establishing QCD factorization and resummation theorems beyond
leading power allows us to pursue precision in a novel direction and serves to challenge our
current understanding of the IR behavior of QCD. Despite the challenges that sub-leading
power contributions provide, the TMD community over the past decade has been pushing

for an ever greater precision determination of QCD dynamics in hadrons.

To provide some context, currently the perturbative contributions for twist-2 TMDs have
been carried out to four loops, see for instance Refs. [352] and [353] for a calculation of the
four loop rapidity anomalous dimension for instance [354] for a phenomenological application
of these calculations. So far however, NLP corrections to the TMD cross section have only
been carried out in Semi-Inclusive DIS and Drell-Yan at LO in QCD in [355, 86, 356]. Over
the past few years, many interesting developments have emerged in this direction. Recently,

NLP corrections have been studied in a SCET formalism in Ref. [357] at the Lagrangian
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level for Semi-Inclusive DIS. Additionally in Ref. [358], the authors studied the evolution of
the dynamical twist-3 distributions at one loop. Despite this progress, it still remains to be
seen if the standard methods that we use to perform calculations of twist-2 cross sections
can be applied at twist-3. In Semi-Inclusive DIS, an analysis was performed by Bacchetta
et al. in [359] where attention was given to azimuthal and polarization dependence. In
this study the authors found that there were mismatches between the collinear factorization
region where ¢; ~ @ and the TMD region where ¢, < @ for the Cahn effect [360, 361].
More recently in Ref. [362], the authors conjectured that the soft function at NLP should
be the same as the soft function at LP and as a result, one can match between the collinear
and TMD factorization regions at sub-leading twist. The result of this study indicated that
the techniques which are used at twist-2 can be applied to higher twists. Nevertheless, so
far explicit one loop calculations of these results have not been performed to verify this

assumption.

In our ongoing work, we establish a complete factorization for Semi-Inclusive DIS and
Drell-Yan at twist-3 beyond tree level. We explicitly calculate the hard, soft, and collinear
TMDs at one loop to obtain the evolution equations for these processes at NLO-+NLL
accuracy for the intrinsic and kinematic sub-leading TMDs. Furthermore, we explicitly
calculate the Collins-Soper (rapidity) evolution equation for the ‘dynamical’ sub-leading
twist distributions. From this analysis, we clarify subtleties in the assumption that was
made in Ref. [362]. Within this analysis however, we find factorization breaking effects and
we also discover that gauge invariance does not manifest diagram by diagram in perturbation
theory for the intrinsic and kinematic distributions. These results indicate that the current
formulations of the twist-3 factorization theorems are incorrect. In this chapter, I will discuss
the various twist-3 contributions to the cross section and explicitly calculate the evolution

equations for the hard, collinear, and soft contributions to the cross section at NLP.
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6.2 Distributions at Twist-3

6.2.1 Overview

To illustrate how NLP contributions enter into the cross section, it is convenient to begin by

examining the hadronic tensor for inclusive DIS as an illustrative example
e — % / dizei™ (P T (2);°(0)] P) (6.1)
If we were to perform an operator product expansion of this expression, we would obtain
WH = Z Ci(@*)(P16;] P) , (6.2)

where C; are the Wilson coefficients and 6; are local operators. The twist of each operator
can be obtained by a simple power counting procedure. In the previous sections, we saw
that the operators 6 = @Enuv”@b, 0 = @Enuv‘wf’@b, and 0 = in,0o"*75 provide leading twist
contributions to the cross section. By performing a power counting, one can see that the
matrix elements must be proportional to n- P while the Wilson coefficient function will scale
like Q=™ where m is some arbitrary power. Therefore, the leading power terms scale like
n-P/Q™ ~ Q7" since n- P ~ Q. If we were to examine operators of the form 6 = v, we
would find that the matrix elements would be proportional to a scalar. Since the only scalar
with mass dimensions in massless QCD is the hadron mass, the matrix elements would be
proportional to M and the contributions of these terms in the hadronic tensor would scale
as M/Q x Q™! producing a power suppression in comparison with the leading power
contribution. Furthermore, we could examine operators of the form 6 = ¢v* where k is
a transverse index. The matrix elements for this operator would scale as ¢% where q, is a
transverse momentum. While in DIS we would integrate over q, , these contributions would
not enter. However, for TMD observables, these operators then lead to a power suppression
of ¢, /@ in the TMD region where ¢; < @. The insertion of terms which lead to a direct mass
or ¢, suppression from the insertion of the quark field operators in the OPE are known as
the ‘intrinsic’ sub-leading TMDs. Additionally, we could also consider examining operators

of the form 0 = A n, "y where A is a transverse gluon field. Due to the power counting,
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we know that A, ~ ¢,. Through a dimensional analysis argument, the Wilson coefficient
function would then need an additional power of @) in the denominator, leading to a ¢, /@
suppression in the hadronic tensor. The distribution which is generated with the introduction

of this transverse gluon field is known as the dynamical sub-leading distribution.

Lastly, it was discussed in Chapter 2 that the ¢ field can be integrated out of the SCET
Lagrangian through the equations of motion. Specifically, the equation of motion is given

by

P.lew)=n Do), €)LD =g D. (63
As I will demonstrate in the next section, the intrinsic sub-leading distributions are associated
with the ¢ field while the dynamical distributions are associated with the field configuration
A& However, there are still ‘kinematic’ suppressed field configurations that are associated
with @ 91/2¢ field configurations. These fields were considered in Ref. [357], where the

authors considered such terms by introducing transverse derivative to the current in the

OPE and treated the power corrections using SCET.

In this chapter, I will mainly focus on the factorization and evolution associated with
the intrinsic and kinematic suppressed distributions while I'll leave many aspects of the

dynamical suppressed distributions for a later study.

6.2.2 Intrinsic Sub-Leading TMDs

To introduce the intrinsic sub-leading distributions in full QCD, it is useful to re-visit the

definition of the intrinsic sub-leading field

e =Ty, e =Ly, (6.4
such that ¥°(z) = £°(x) + ¢°(z), where £° and ¢° are the so-called good and bad field
components of ¥ and y#76/4 and g /4 are idempotent operators. Performing an OPE in a
similar way that was discussed in the previous section and expressing ¢¢(z) in terms of ¢°

and £¢ we are left with the four field configurations
(P, S|E°0¢°|P, S), (P, S|g°0¢c|P, S) , (6.5)
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Twist 2 Twist 3 Twist 4

0, 1700 7%, 30 TS, 1700k
%O_k+757 ﬁ’750—k i’yka Q,Yk ;O—k_’y5 ) %’Y Otk
Y5, A

j i3
907" 47V Ok

[S)
7717047

Table 6.1: The operators entering into the Fierz decomposition organized by twist for P;.
We note that the operators for P, can be obtained simply by interchanging n and n. The
operators are organized as I, I'. In this chapter k and [ represent transverse indices. The
operators listed in this table with a single transverse Lorentz index represent two distinct

operators in the Fierz decomposition. In total, this results in 16 distinct operators.

(P, S|E0¢°|P, S) , (P, S|g°0¢°| P, S) .

If we were to take 6 to be one of the operators in the ‘Twist 2’ column of Tab. 6.1, using
the idempotence of the projection operators we could easily demonstrate that the matrix
elements will vanish for all field configurations with the exception of the top left one in
Eq. (6.5). Similarly, if we were to insert 6 from the ‘Twist 3’ column, we would find that
only the top right and bottom left field configurations would lead to a non-vanishing matrix
elements. Finally, we could also consider the twist-4 case where the bottom right field

configuration can contribute.

Since we know the exact operators which generate matrix elements of the intrinsic twist-3
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distributions, we can parameterize the twist-3 TMD PDF

YkipSie 1\1 . k s
(I)Emsub(x kJ.?‘S' H, C/V ) ( J_p = 6%) 5 — (AgeL J_ 1 ) %
K ek k,-S o
‘l—(MJ—fL—GLS fL MJJ (/\gfLL_ L J_ >)Ek

ekl k k. -S.
+ (gisﬁ — LM“gl + ﬁ (Aggi - Tgi)) T

k.l 5 k. - 5
+(Sﬂuhi> vy Ulk+(h+/\ghL_ 1 SJ_hL) iy a+_]‘

M 4 M

where the superscript in the expression for ® at the left-hand side denotes the twist. The
functions entering into this decomposition are known as the intrinsic sub-leading distribu-
tions. In this chapter, I will mainly focus on the f* distribution as an illustrative exam-
ple. This distribution is known to generate the Cahn effect in the TMD region, see for
instance [86]. At the cross section level, the Cahn effect in Drell-Yan is generated by terms

of the form
ki
dUCahn ~ P f ® f X Hint & Sint s (67)

where H;, and S;,; are the intrinsic hard and soft functions.

6.2.3 Kinematic Sub-leading Distributions

I will now discuss the kinematic suppressed fields, which are given by

ZaLﬂ ZaLﬁ

s gt @ Gl =55

Sian (@) = = 8(@). (6.8)

In momentum space, it can be directly seen that these fields are suppressed by a factor of A
relative to the £ fields. We can define kinematic suppressed correlators by replacing one good
field in the twist-2 correlator with a kinematic suppressed field. In the case of the collinear

correlation function, we have

d* «
B s Sig1 ¢ 17) = [ ﬁe%’*%(ﬁ) (6.9)
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X <Pa S g;/ (5) u&777m;£L) z/{(:gL,O;—oo) M(ﬁ—oo,O,OL) gliinj (0)) P7 S>

* <P7 S sﬁinj’ (6) u{éi—w;&) u(:gbo;—oo) u(n_oovo")l) fjc(o)‘ P, S>

In a covariant gauge where the transverse Wilson line vanishes, we can integrate in the

transverse direction by parts. In doing so, we can write the correlator as
kin ) 2 Ha d*¢ k€ 5 (ot
O e (. KL, S5, ¢ /17) = ) TS, i 5 (¢%) (6.10)

X <P,S

gc(g) u(’z_7foo;€i_) u(ﬁ_oovovol) F[a]SC(O)‘ P7 S> ’

where T4l = [, k| 1#/2k*] and we have inserted a complete set of operators. In Tab. 6.2, we
have provided 'l and T for each operator entering into the Fierz decomposition. The I'*
operators enter into the hard part of the calculation while the I operators enter into the

trace with the quark correlation function. Analogous to the case for the intrinsic sub-leading

correlation function, the contribution of these functions at the cross section go like
K
docam ~ 51" ® f @ Hign @ Sy, (6.11)

where f¥" is closely analogous to the unpolarized TMD PDF except it is a correlator of a
kinematic suppressed field and a good field and Hy, and Sy, are the kinematic hard and

soft functions.

6.2.4 Dynamical Sub-leading Distributions

At the cross section level, the introduction of an additional transverse gluon alters the current

operators and the hadronic tensor in Drell-Yan for instance can be written as

1 —1iqx
W) — @ / d've " (P, Py \(Jf”(:c) JZEQ)(O)+J/52”(Q:) IO PRy, (6.12)

e (2w
where J,SS) is the current associated with the three parton interactions while J,SZ) is the current
associated with two partons. In Fig. 6.1, we have included the relevant tree level diagrams
for this current. By examining this hadronic tensor in momentum space, we can write this

expression as
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Twist 2 Twist 3 Twist 4
0. 36 0.5 S
0, .77 0, %75 —i—ivf’? iv‘“%
%%75, %75%
%% P :—li% tEy, %75 Uk
_k];i% Hin5 %750+_

Table 6.2: The operators entering into the Fierz decomposition organized by twist for P;.
We note that the operators for P, can be obtained simply by interchanging n and n. The

operators are organized as I'l@ I'*. In this chapter k and [ represent transverse indices.

1
Wy == > el / A’k d®ky ) PN 6P (ki + kot + AL —q1) S (AL pu,v) (6.13)
¢ q

X {/dprr

+...,

_%Z_pl v FRP

7p(]€2+p1>2+l'67 Aunsub

(56’17 513/17 kii;p, Cl/Vz)’Y“q)unsub(SC% koisp, C2/V2)

where the explicit expression listed here is the top left diagram of Fig. 6.1 dots contain the

contributions of the additional diagram. To interpret this expression, it is useful to introduce

the three parton correlation function

a ’ d4§ d47] kg & -
(I)F,jj’unsub (lC,l',k)J_,S;,u,C/V2) = / (271')4 (27‘(‘)45 (£+) 1) (77+) P+€ 16562\[«é ) (614)

gj’ (§>u&7a_m§§L)uéLa0L§*00)u(ﬁ—oo,g‘*;0L)igF+a(<) u&*,o;ol)gy’(o)‘ P, S> .

X <P,S
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Figure 6.1: The four contributions at tree level for the dynamical twist 3 contributions to

the Drell-Yan cross section.

where « is a transverse Lorentz index. It’s important to note that

k refers to the momentum

of the quark which is isolated on one side of the cut away from the gluon. This correlation

function can be related to one containing a transverse A® field trivially in light-cone gauge.

We can then parameterize the ® 4 correlator as

iunsub (177 xla kL, S7 L, g/l/Q)

G0 - () e

- k €1 ok . k,-S, .
Mi == fT) - (A T lg%)
.k k

- (Ahf AL hT) '()‘éf lT‘S’l~l> '71_’75

+

—(B + ié) + (Ei — zei)

M

Elpgki

(6.15)

o ] (65" — i€2"s)

k1,5, .
&} i+ (9] —HEL%)}Z.

Therefore, one can show that these terms lead to contributions of the form

dUCahn ~ _fj_ ® f X den & den )
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where Hgy, and Sgyn are the dynamical hard and soft functions. Recently in [357] it was

demonstrated that Hgy, depends on two collinear variables x and .

6.3 Perturbative Corrections and Collinear Matching

In this section, I will explicitly calculate the anomalous dimensions of each of the different
regions that enter at NLP. Using these contributions, I will discuss implications for renor-

malization group consistency.

6.3.1 Hard Corrections for the Two Parton Sub-Process

To obtain the hard contributions to the differential cross section beyond LO, I'll note that
the hard contribution enters from the contraction between the leptonic tensor with the trace

entering into the hadronic tensor. At tree level for Semi-Inclusive DIS, we can write
LS Tr [y D17 T3] = QF (4, y) HiiS(Qs 1), (6.17)

where H](DOI)S(Q; p) = 1 1is the tree level hard function and f(1),y) represents the angular cor-
relation which depends on the operators. We note at this point that an analogous expression
can also be obtained for Drell-Yan. To account for hard interactions entering into the cross
section, it is necessary to account for the virtual interactions between the quarks. To account

for these graphs, we make the replacement for the photon-quark vertex in Semi-Inclusive DIS

v Qg C'F

v =+ o Bis Qs p) + O (a2) (6.18)

where Ffjq (Q; 1) is the one loop QCD form factor for the quark-photon vertex which is

explicitly given in dimensional regularization by

v v 1 Vo
s (@ p) =~ (1+§—§LQ>+(—+2LQ+3)7L4 (6.19)
11 1 1 w2 iy o 1 fin”
— -y —-Lg—=—Lg+—=-— —Lo—-—1
+< €2 Q9 Q+12 3) 4 i @ e 4
1 2




We also note that the QCD form factor for Drell-Yan can be obtained through the relation
Fiy (Q; 1) = Ffg (1Q; ). Using this expression, the NLO hard contributions to the cross

section is given directly by

1 a0
His (@5 p) = T a%F (6.20)

X (Tr [Ffyg (@ 1) TE7 Y] + Tr [ T Fs (Qi ) TH]) LIES .

Inserting any of the twist-2 operators gives

,C 2 3 2L 2
Qoo _2 2 Lg—TQ—3LQ+1—8 : (6.21)

ﬁl%})s(Q;M) =1+ G

where the hat indicates that the hard function is unsubtracted. We note at this point that

the expression for Drell-Yan can be obtained by replacing Lg, with Lg — 7°.

For the NLP trace, we use the the combination of operators 'y = 7/4 and 'y, = 7*/2 or
I, =+'/2 and T, = jt/4. In this case, the hard function entering into the cross section is

given by

Hli)nItS(Q;M) =1+

______ Ly ——=—2Log+—=—-5|, (6.22)

and we once again note that the hard function for Drell-Yan can be obtained by replacing
Lé with Lé — 72,
Using the definition of the unsubtracted hard function, we can obtain the subtracted

hard function through multiplicative renormalization as

H(Q;p) = Z(Q; W H(Q; 1) + Oa?), (6.23)

where the divergences are contained in the multiplicative renormalization factor Z(Q;p).

This allows us to obtain the subtracted hard functions

sC 2
Hpis(Q; 1) = 1+ O‘%F [—Lg —3Lo + % - 8} , (6.24)
: (0% CF 1 7T2
HE(Qsp) =14+ —— | ==Ly — 2Lg + — — 2
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and the multiplicative renormalization factors

a,C 2 3 2L
Zpis(Q; ) =1+ %F [—6—2 ——- —EQ] : (6.26)
in OéSCF 1 2 L
Zris(Q;p) = 1+ o {_6_2 e TQ} : (6.27)

The hard anomalous dimensions can be obtained from the multiplicative factors through the

relation

0
ry = —mZ(Q;#)- (6.28)

The explicit one loop expression for the hard anomalous dimensions become

aC o aC 1
Qi) = -2 (2 +3) . TEQu = -2 (Lo ). (629
H Q*
r(Qip) = Mgl (%) 420, (6.30)
2
E(Qs ) = Tamy(tn () 4 kit (631
where I define 1Y po = —Cr. We now note a major important point in this chapter. So far

in this chapter, we have derived the hard anomalous dimensions which is associated with the
intrinsic sub-leading distributions. However, we have demonstrated that the hard anomalous
dimension is controlled by the operators I'* and I'®. Since these operators for intrinsic sub-
leading distributions are the same as those for the kinematic sub-leading distributions, the
NLP hard anomalous is left unchanged if we had formulated our cross section using kinematic

or intrinsic sub-leading distributions so that we have

DR (Q; ) = T(Q; ) - (6.32)

6.3.2 Soft Eikonal Approximation for Two Parton Sub-Process

The soft contribution to the differential cross section is obtained at LP by considering soft
gluons interacting with the collinear and anti-collinear quark fields. In Fig. 6.2, we provide

the diagrams associated with the LP soft interactions for the process. At LP, the relevant
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d (002, K1, So; p1, o /v ¢ (3?27k2¢7 So; p, G/ V?

D (1,k11, 815 1, Q1 /V?) O (1,ki1, S5 p, 1 /12

Figure 6.2: The diagrams which give rise to the soft function at NLO+LP in Drell-Yan. We
note that for Semi-Inclusive DIS, that the diagrams are the same except that the upper ® is
replaced by the TMD FF quark-quark correlation function. At NLP, one of the good field

components, £, are replaced by the bad field component ¢ or the kinematic suppressed field

gkin .

fields for the interaction are the good components of the collinear and anti-collinear quarks.
However at NLP, one good component of the quark field is replaced by a sub-leading quark
field, either the bad components ¢ or the kinematic suppressed fields flfl/né . In this section,
we review the interaction of the soft gluons at LP and then demonstrate how soft gluons

interact with the sub-leading fields.

We saw in the anomalous dimensions for the unpolarized cross section are given by

rs— p0Cry ps Wl (6.33)
T T
We also provide the subtracted soft function as
a,Cr 9 w2
b; =1 2LL, — L* — —| . .34
S =14 %50 | - (6.34)

To obtain the soft function for all twist-2 configurations, we note that the soft function is
insensitive to the spin configuration. Therefore, the soft function for all twist-2 processes

are identical. So we can take

sC ?
Sep (b;p,v) =1+ a2 r {ZLLV - L7 - —} . (6.35)

™
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FS o 20550}7 QSCF
n =

L,, s =-2 L. (6.36)

T

To calculate the soft function at twist-3, we simply replace on of the incoming quark fields

with a power suppressed quark field. Studying the eikonalization of the quark field, we find

—ip+D) . g
W(—Zm )" (p) Aul) = =5

= %gpc(p)n A+ O (V) (6.37)
=0\, (6.38)

which contains only contributions of order A since ¢(p) = 1#jt/4¢(p). Since the field ¢°
leads to a suppression of the cross section of order A retaining the additional contributions
from the soft function would be at NNLP and should therefore be neglected. Therefore
the interaction of soft gluons with the bad components of the quark fields vanishes at NLP.
Thus while in Fig. 6.2, there are two diagrams which contribute to the soft function at LP,
there will be only one contribution when one considers sub-processes associated with intrinsic

sub-leading distributions. This result indicates that

- 1 a,C
Sint __ S _ YsVYF
Dy = ors = 2, (6.39)
. 1 C
psint — —ps — QP g (6.40)
2 T

Similarly the finite part of the NLO+NLP soft function is

2
Sing (b; 1, v) = /S (byp,v) =1+ aZgF l2LLl, —L* — %} : (6.41)

If we were to formulate the cross section using kinematic suppressed fields, we would have

the interaction

S D) g

kb . __ g Bk
(p+1)? Tt P A = A +0OM) (6.42)

2kt n-1222kt
0N, (6.43)

which also vanishes in an analogous way to the bad component. We therefore find that

Fi‘kin _ ngnt’ DSkin = TSt and Sy, = Sing.
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6.3.3 Evolution in the Two Parton Correlations Functions

To establish both the collinear matching and the evolution of the TMD PDFs, re-factorize
the TMD PDF using the Fierz decomposition of the quark line, as in Fig. 2.6. To calculate

the anomalous dimensions at one loop, we obtain the divergent part of the integrals
dx’' -y b
/ R R CY NN EDS / — / PR PO (5K S, ()
b
X / d?ly e+ (Lo Tr Doy y°Toy’v,] + o Tr [Typpy°Ta]) - (6.44)

In this expression, the kinematic part of the integrals are contained in the expressions

2 7E \ € + 77— 7d—2 + +
Ly — —g*Cr (&) /Ma (g; L +l_) (2m)5 (22) Foks (645

47 (2m)d P+ Pt I
2e78\ [ dlitdl—d421 + I 2k V"
2 u-e le _ p o
IIa = —g CF < e ) / (27T)d 0 (.CU P P+> (27T)6 (l ) k2 (l+)1+7] )
(6.46)

while the spin dependence and the twist is contained in the trace. The momentum k repre-

sents the momentum of the quark entering the hard process and is given by

+ﬁu nt
B=p-0" 5 -1 7—1“—1“ (6.47)

where [ is the momentum of the radiated gluon while p is the momentum of the incoming
quark and the € subscript on I/ denotes that the momentum is in a d — 4 = —2¢ direction

in dimensional regularization.

Furthermore, we can also obtain the collinear matching for the k -even TMDs by ob-
taining the finite part of this expression. To obtain these matching for the %k, -even TMDs,

we take
ol ), (', K, 8, /) = @ (o, S: ) 8°(K)), (6.48)

such that the incoming parton has zero transverse momentum. We can therefore write in

the case where we are calculating the matching
[ e ol (o i o) -3 [ el
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X /d2lL eilib (Ialg Tr [I_’bv“yafayﬁyu] + 11, Tr [fbywafa]) ) (6.49)

The integrals on the right-hand side of this expression can be obtained as follows. Firstly, we
integrate over [T using the ¢ function in /7. We then perform the integration over [, . using
the §(1%) term. We note that in order to perform the integration in the angular dependence
of the I/ ., we group terms according to the powers of I/ that enter. For instance, integrals

of the form

/ d L (0L, 1) 8(1P) (6.50)

can be computed trivially using the delta function. In this expression f represents an arbi-
trary function and the indices 1 and v are associated with directions in the four space time

directions. Additionally, terms of the form

/ A L 1B 6(17) (6.51)

can be computed trivially by noting that the angular integration in the —2¢ dimensions must
vanish. Once again f represents some arbitrary function. However in this case, the p index
is associated with the —2¢ dimensions while the v index is associated with one of the four

space time directions. Finally we must also perform calculations of the form,
™ = / A U fU L) (). (6.52)

To perform these computations we note that the only Lorentz structure which leads to
non-vanishing angular integration are those which go like IIT* = ¢/”, III such that we can
write

N2
T — —49‘1—‘42 / A" B (L) 8(17). (6.53)

where ¢4”, is the Minkowski metric in d — 4 dimensions. This metric is defined as
Gily =9y —a"a" =gyt (6.54)
To perform the expansion in momentum space, we use the relations
2 (72~ L-¢€ Lo 1 il
1> (1) =—-4 () + Eﬁo i + 0 (e), (6.55)
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1 1 12
= |20 (}) + Lo | = @ 6.56
and
-1 1 N .
(1—2) "=—0(1-2)+Ly(1—12) (6.57)
n
In these expressions, we define
1 n
L,(z)= (—ln (z)) : (6.58)
z
J’_
which is regularized at z = 0. The expressions for the integrals in momentum space are
given by

OésC ~ 1 / 1 ! 12 a 3 1 1
Iaﬁ — ?j{(l - I') [25 (li) - —£0 ( J_>:| lJ_lf_ + (1 - Z’) |:25 (li) - _QLO

(2%
Iz f p? 2
21 1. (2\], . N
+ 1 {25 (3) - Eﬁg (—)} (n*n”® + n’n®)
) _

2 1 l2 a o'
V3E(1 — &)

1, 1, (5 o
R {—5 (2) — =L (M—g)} (10" + 1200) }
and
« OésC 2 A l2 2 o A(UQ o
e = 47;{ — 00— 8) 5L (M—é) +—0(11)0(1 — &) — a—0(I1) Lo (1 — 2)
2
+ 2-Lco() (1 - @) Le !
€

GRS R I R Y
2 2 2
+ Fia(l —HLr, (li) o
n €
2 1 2 1 2
+ CL)3(1 ) + Leb(1 = )5 Lo (%2) L1 i)~ Lo (li) ]

I3

w2\ ) |V
We note that to arrive at these expressions, we have performed an expansion in both n and
€.

The two traces entering into the matching and evolution expressions will also contain
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dependence on €. However, these traces will depend at most linearly on e such that the

expansions for the integrals need to be carried out only to order €.

To obtain the one loop expression for the TMDs in b-space, we need to take the Fourier
transform of the integrals. To perform the Fourier transforms, we note that we must perform
integrals of the form

.0 d

2 il | -b vi12\ __ 2
Furthermore, we also need to perform integrals of the form
, o 0
A2l el (1) = —————g(b?). 6.60
[ Bt () = 5o (6.60)
After performing the integration, the kinematic integrals entering into these expressions are
given by
~ «Q CF 1 _ _
100 = S8 | (24 L) (20 - 2)g3% + & (0P + o) )
o {(e+ ) (1—2)g5", + & (7%n* + n°n”)

(
a;Cr . _ _ 1
+ {(1—9&)\/2 (n*b" + n’b”) (E+L +

"T6n NG
asCr /1 g P
1— S4+L) -
A ( ) (6 i > 2 b2

a,Cr [ (4 4 2 , (1 N
- L +—4+-L 2L L ol —z2)—4 —+ L) Lo(l — “
T6n KU + p” + ; ¢+ g)w ( ) T (e + ) of :1:)1 n

asCp 1 1 . . . o
+ 2a27rF NS [2 (7_] 0(1—2) — Lo(1 — a:)) + Lo(1 — x)} b,

where the tilde means that the kinematic integrals are in b-space. We note that the ex-

e =

pression for 199 is closely analogous to Eq. (3.9) of Ref. [363] except that terms of the form
(ﬁﬁna + ﬁo‘nﬁ) and (ﬁo‘bﬂ + ﬁﬁbo‘) did not enter into their expression. However, we note
that terms of these forms vanish upon contraction with the traces for leading twist opera-
tors. However, these terms need to be considered at NLP. Similarly, for I* operators of the

form b* do not enter at LP but will be vital to our analysis late in this chapter.

/
B (b, Sisc/07) = Y [ S @l (b S ) (6.61)
b
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X <ia5 Tr [fw“varﬂ%b} + I, Tr [f‘bﬁwo‘FGD : (6.62)
To obtain the anomalous dimensions, we once again perform multiplicative renormalization
S (2,6, 811, C/12) = Zrars (.6, 8541, C/1?) k) (.0, 8540, /v?) . (6.63)

Therefore, we have the evolution equations

a a b
S i) (00,82, ¢ /1) = o (i €/) Ry (0.5 (/) L (664)
mi ~00 (2,6, 8: 1, ¢/v) = s (B ¢/r?) @I (@0, 85,07 (6.65)

where the anomalous dimensions are defined in terms of the multiplicative renormalization

terms as

0 ) 0
F?a Fb = —mzl—\u Fb(b; :LLJ </y2) s re Fb = —mZFa Fb(b; ,UJ7 C/VZ) . (666)

From the computed anomalous dimensions, we can obtain the renormalization group equa-

tions for the intrinsic sub-leading TMD PDFs as follows

[ o] [ gl |

o] o°]

ol ol
Pl oytl

% o0’ :a;iFr# o’ | . (6.67)
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Here the matrix I'* have the following form

_rg o 0 0 0 0 0 0 0]
oY 0 0 0 0 0 0 0
0 0 Ihs¥ 0 0 0 0 0 0
O 0 0 IY¥ 0 0 0 0 0
M"=10 o 0 0 T¢y O 0 0 0
0 0 0 0 0 TH¥ 0 0 0
0 0 0 0 0 0 I%¥ 0 0
o 0 0 0 0 0 0 4T (oFef —aLsF) 0

o0 0 0 0 0 0 0 T4

The relevant functions in the above matrix are given by

00) = W pre 3 Eune) = 20 (1o )

Similarly, the rapidity evolution equations are given by

U] O]
Pl+] Pl17]
ol 7] plio™ ]
P P
ol o]
o] o]
ol ] plio"°]
plio™ ] plio™ ]
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The corresponding anomalous dimensions I'” are givebn by

2L 0 0 0 0 0 0 0 0
0 2L 0 0 0 0 0 0 0
0 0 2L0F 0 0 0 0 0 0
0 0 0 L 0 0 0 0 0
=1 o0 0 20 OL 0 L 0 0 0 —L
2oL ) 0 0 0 L&Y 0 0 0
0 oL 0 0 0 0 Lo 0 0
0 0 2L @sy—o¥st) o 0 0 0 L(0FS —dLsr) 0
0 0 2t DL 0 =L 0 0 0 L
(6.71)

From Egs. (6.67) and (6.70) we see the interesting behaviour that the diagonal anomalous
dimensions for the NLP distributions are half those for the LP distributions. This interesting
behaviour can be traced back to how the sub-leading fields interact with the Wilson lines.
The explicit expression for the interaction of the Wilson lines with the intrinsic sub-leading

field is given by

g (5) = O (V) (672

n-
So the result that the anomalous dimension of the intrinsic sub-leading twist TMDs is half
of the leading twist TMDs is a consequence of the fact that the interaction of this field
with the Wilson line vanishes. We note that this behavior is not limited to the intrinsic
NLP distributions but also occurs for the kinematic NLP distributions. This can be seen

by examining the interaction of the Wilson line with this field, explicitly the interaction is

given by

o e =00 (673

For the case of the intrinsic sub-leading distributions, we also find that the Collins-Soper
evolution equation is not diagonal, which is consistent with the calculation which was per-

formed in Ref. [364]. As a result, solving the rapidity evolution equation is highly non-trivial

at twist-3.
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Figure 6.3: Example diagram for the collinear Wilson line structure for Drell-Yan. The red
lines represent the Wilson lines for the incoming quark distribution while the blue Wilson
lines represent the Wilson lines for the incoming anti-quark distribution. The dashed blue
line represents the vanishing Wilson line due to the interaction with the sub-leading field.
We note that there is an additional interaction where the bad field enters on the right side

of the cut as ¢°.

6.3.4 Soft Subtraction, Factorization Breaking, and Renormalization Group

Consistency

In Chapter 2, we saw that the properly defined TMDs are obtained through the relations

F (@, 05, C) f (2,05 1, Go) = funSUb(xla b; 1, Cl/VQ) S(b; p,v) (6.74)
X funsub(l,% b; H, CQ/VQ) S<b7 s V) ) (675)

where I have used the case of unpolarized hadron production in Drell-Yan as an example.
At NLP, we could take the Cahn effect in Drell-Yan as an example process and we would
expect that the soft subtraction should go like

kl kl unsu
Pifl(xlab;u7<1)f(x2ab; 22 C2) ~ P_J_;_fJ_ b('Tlab;,UﬂCl/Vz) Sint(b;lu’a V) (676)

X funSub(x2’ b7 23 CZ/Vz) \% Sint(b; 22 V) : (677)

By studying the appearance of the v dependent term, one can show that for the case of f*

that the soft subtraction is well defined. However, since Si; = VS , the soft subtraction
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for the TMD FF does not cancel all of the appearances of the scale v. As a result, this
naive picture for the soft subtraction fails. This failure can also be seen at the level of the

anomalous dimensions. Namely at LP, we know that we have the relation

LY+ T+ T =0. (6.78)
However, at NLP, we would have
1
St T TF 70 = I+ T+ T =T (6.79)

Thus at NLP, this naive picture does not provide renormalization group consistency. To
address this issue, let us now study the left panel of Fig. 6.3. In this figure, we examine an
example sub-process where the top correlator is a LP one and the bottom correlator is a sub-
leading. We have also included the two anti-collinear gluons in blue which are responsible
for generating the anti-collinear Wilson lines. These anti-collinear Wilson lines represent the
® in diagrams such as Fig. 2.6. In the LP case, there are two non-vanishing interactions in
Fig. 6.3 which give rise to the two Wilson line interactions in Fig. 2.6. However, in the case
of Fig. 6.3, we must re-examine the interaction of a collinear sub-leading quark field and an

anti-collinear gluon. One can easily show that

—i(ptl) o,
W(_W )¢* (0) Aull) = ==

i
n-l2
—0()) . (6.81)

%goc(p)n AL+ O (N) (6.80)

As a result, the field of gluons which is responsible for generating one of the Wilson lines for

f vanishes. There are far reaching implications of this result.

Firstly, when one computes the evolution of the LP distribution in the presence of a
sub-leading field, one should only consider a single Wilson line interaction. As a result, the
UV divergences which are associated with the evolution of the LP distributions should be
exactly half the usual ones. Therefore, the anomalous dimensions for the LP TMDs are
half the usual ones when considering NLP contributions. This can be explicitly verified by

studying the renomalization group consistency equations

v 1 v v
Sint+§rf+rfi =0, (6.82)
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Figure 6.4: Two graphs contributing to the rapidity divergence of the three parton TMDs
in light-cone gauge. The ® represents the Wilson lines while the operators I'# represent the
NLP operators in the decomposition of the three parton correlator.

1
I e + QF;‘ + T+ e = 0. (6.83)

Therefore RG consistency is only achieved once we have taken into consideration that the
evolution for the LP soft function is different when one introduces an intrinsic sub-leading
field. As the idea of factorization theorems is that the distributions should be blind to the
total scattering event, the fact that the evolution equations for the TMD PDF are different
when one considers sub-leading azimuthal asymmetries indicates that the evolution for the
LP distributions is modified. The second issue is much more dramatic. Since the gluons
which generate the Wilson line cannot connect to the sub-leading field, the gauge invariance
of the LP TMD PDF does not manifest diagram by diagram in perturbation theory. Both
of these effects indicate that the naive factorization must be modified at NLP. In the right
side of Fig. 6.3, I have included a figure which provides the collinear Wilson loop for the
Drell-Yan cross section. The red Wilson lines are those which are associated with f* while
the blue Wilson lines are those associated with f in the Cahn effect. The dotted line is the
‘missing” Wilson line at sub-leading twist. Finally, while I have discussed these issues for the
intrinsic sub-leading distributions, I would also like to note that these issues enter for the

kinematic sub-leading distributions as well.
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6.3.5 Evolution for the three parton correlator

A final point of our discussion is to examine the rapidity evolution equation for the dynamical

twist-3 distributions.

Previously we saw that these distributions are generated when one considers the intro-
duction of an additional transverse gluon in the matrix elements. This gluon introduces

additional complications when calculating QCD evolution equation.

/'Lny + )uny
@ (p) = g + BT (6.84)
n-p
which is the metric associated with gluons in this gauge. Closely analogous to the expression
for the two parton correlator, we can express the one loop expression for the three parton

TMDs as

dx dml (6.85)

[ et el (o ki S ()
/deL e iPLb @Ef}nsnb (', x'l,pL, S, 1, ¢/V?) Z Fiy(z, 2,2, 24, b) .

In this expression ¢ is the index associated with each of the graph which contribute at NLO.
In this chapter, we focus on the Collins-Soper equation of the three parton correlator. In
light-cone gauge, the two graphs which are responsible for generating the rapidity divergence

are given in Fig. 6.4.

2 2.7E\ € + 77— gd—4
1 I o g_ - CA u-e 9 il b dlTdl—d lJ_E
Fo(x,zq,2",27,b) = 5 (C’F - ) ( pp ) /d lie /—(27T)d (6.86)

< T (LT 8] dl) e () 2m3(2)

14
1 kt p
o Cu [ 1272\ L ditdi A,
F2 (z, 21,2, 77, b) —92 2? <M47T ) /dQlLedib /TdL (6.88)

x Tr [Capyphs T VOO () P, =1, —ks) dss(ka) dpo(1)
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11, /" 1 ket ot

where
VHP(ky, ko, k3) = 1 [g" (k1 — k2)" + ¢" (k1 — k2)] (6.89)

is the kinematic part associated with the three gluon vertex. These integrals can be explic-

itly performed and the rapidity anomalous dimension can be obtained for @Efjngub and the

evolution equation becomes

0
=Py (.21, kL, 81 ¢/12) = TR (00, ke, 81 (/7)) (6.90)

where we find that the rapidity anomalous dimension of the three parton correlation function

is the same as the anomalous dimension of the leading-power TMDs.

6.4 Conclusion

In this chapter, I have presented the relevant distributions which enter at NLP to the cross
sections for Semi-Inclusive DIS and Drell-Yan. Through explicit calculation, I have for the
first time derived the evolution equations for these distributions as well as for the sub-
leading soft and hard functions. We find in our study that for the case of the intrinsic
and kinematic sub-leading distributions that while renormalization group consistency can
be obtained, that the introduction of the sub-leading fields leads to a modification of the
factorization and gauge invariance of the leading distribution, indicating that the full story
for TMD factorization at sub-leading twist may be much more complicated than what is
currently presented in the literature. Additionally, while in [362], the authors conjectured
for the form of the sub-leading soft function for the intrinsic sub-leading distributions, we
find through explicit calculation that this assumption is not valid. We do however find that
the rapidity anomalous dimension for the dynamical sub-leading twist distribution is the
same as the twist-2 distributions, which could indicate that the soft function associated with

these distributions is the same as those that are obtained at LP.
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CHAPTER 7

Summary and Conclusion

QCD is the fundamental theory of the strong interaction and governs the dynamics of bound
quarks and gluons and their relation to the hadronic properties. The EIC will allow us
to perform QCD tomography at never before achieved precision, and represents the newest
endeavor for humanity to uncover the underlying nature of matter. In this thesis, I have
discussed aspects of studying how hadronic spin affects the partonic degrees of freedom by

discussing TMDs.

Due to the non-perturbative nature of QCD, to perform full tomography and make pre-
dictions at colliders, we rely on factorization theorems. In the language of Collins, Soper, and
Sterman, I have demonstrated that these factorization theorems arise due to the appearance
of IR divergences in the virtual loop diagrams. The kinematic regions in which these IR
divergences occur provide us with a catalog of the QCD modes which provide the asymp-
totic contributions to QCD amplitudes. We found that there were the appearance of two
modes, the soft and collinear modes. Using SCET, we reduce the degrees of freedom of our
theoretical formalism by accounting for these QCD modes and integrate out modes which do
not contribute to the asymptotic behavior of QCD. For Drell-Yan, I provided an overview of
the factorization theorem. We saw in this analysis the appearance of large logarithms in the
perturbative expressions and I presented a procedure for performing resummation of these
large logarithms. In the case of the TMD PDFs, we saw the appearance of a new soft mode
due to the appearance of the infrared rapidity poles. We calculated this new soft function

and used it to perform soft subtraction in the TMDs.

Using these perturbative methods, we then performed the highest precision extraction

238



of the quark Sivers function, which encodes information for how the parent hadron’s spin
alters the transverse momentum of unpolarized quarks. We saw in this section that the
Sivers asymmetry is generated due to multiple parton interactions. Using the global set of
data from HERMES, COMPASS, Jefferson Lab, and RHIC, we performed the first global
extraction of the Sivers function. Our findings were that the experimental data sets from
HERMES, COMPASS, and Jefferson Lab were all consistent with one another. While we
found that the size of the RHIC asymmetry was much larger than what the rest of the data
was indicating. By performing a thorough analysis, we found that this discrepancy did not
occur due to our non-perturbative parameterization. Recently, a re-analysis with additional
statistics at RHIC was released. This re-analysis found that the size of asymmetries are
much smaller than what the previous analysis indicated. These findings indicate that our
original global analysis was not flawed and that the current methods of performing a global
analysis of the Sivers function were all well-founded. We then provided projections at the

EIC in Semi-Inclusive DIS.

We then moved on to discuss how jets can be used to uncover hadronic structure at
the EIC and also in p-p collisions. Since the main interests of the EIC are to uncover the
gluon content of hadrons as well as the spin structure, the gluon Sivers function is regarded
as a golden measurement at the EIC. Using SCET, we established a factorization and re-
summation formalism for the gluon Sivers asymmetry at the EIC. We then provided first
predictions for this asymmetry and also the unpolarized process at this facility. Additionally,
we studied how dijet production in p-p collisions could be used to measure the Sivers func-
tion. Using SCET, we established a factorization and resummation formalism. We found in
this study that since the Sivers function is related to a three-parton correlation function, the
computation even at tree level for the hard contributions was non-trivial. Nevertheless, we
established a formalism for calculating these diagrams and used this to provide predictions
for the Sivers asymmetry at RHIC at /s = 200 GeV. Lastly in this chapter, we studied how
jet fragmentation functions can be used to study the distribution of hadrons within jets in

Z-tagged jets.
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I then moved on to discuss how the transversity TMD FF and the TMD PFF can be
obtained at the future EIC for A baryons. Using the recent measurement at Belle for sponta-
neous A polarization in DIA, I performed one of the first extractions of the TMD PFF. Using
the recent COMPASS measurement of the transverse spin transfer, I performed the first ex-
traction of the transversity TMD FF. We then performed a Pythia re-weighting analysis
in order to obtain statistical uncertainties at the EIC. Using these statistical uncertainties,
we categorized the required luminosity to reduce fit uncertainties for these distributions.
Using the TMD Fragmenting Jet Functions, we provided predictions at the future EIC
for spontaneous A production and the transverse spin transfer in lepton-jet correlations in
lepton-proton collisions. Due to similarities between the Sivers function and the TMD PFF,

these measurements will be vital for testing universality of the TMD FFs.

Lastly, I discussed the TMDs at sub-leading power. While virtually all TMD formalisms
up to this point neglect power corrections of ¢, /Q and M/Q, we discussed how sub-leading
formalism can be used to probe novel distributions. This study tests whether the LP formal-
ism for factorization and resummation can be naively applied to these higher twist computa-
tions. Through explicit computation at the next-to-leading order, we perform the calculation
of the hard, collinear, and soft contributions to the differential cross section at sub-leading
twist. We found that the introduction of an intrinsic or kinematic sub-leading field causes a
modification of both factorization and gauge invariance. We therefore provide evidence that
naively applying LP formalism at NLP leads to major issues in the factorization. Neverthe-

less, we establish renormalization group consistency at one loop for these distributions.

The TMD formalism and simulation tools developed in this thesis will have broad applica-
tions in the experimental program at the future Electron-Ion Collider. From these analyses,
we will be able to probe the spin structure of the proton in novel processes and at higher

precision than what was previously available.
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