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ABSTRACT OF THE DISSERTATION

Modern Methods of QCD Tomography for Electron-Ion Collider Phenomenology

by

John Terry

Doctor of Philosophy in Physics

University of California, Los Angeles, 2022

Professor Zhongbo Kang, Chair

Hadrons are the bound states of QCD and are a fundamental building block of nature.

Through dedicated experimental and theoretical endeavors over the past century, the field of

nuclear physics has begun to understand the three-dimensional structure of hadrons in mo-

mentum space, which is encoded in Transverse Momentum Dependent PDFs (TMD PDFs).

To perform full three dimensional imaging within hadrons, one must note that TMD PDFs

contain a mixture of perturbative and non-perturbative contributions. To de-couple these

two contributions, theorists rely on factorization theorems, which allow us to write QCD

cross sections as a convolution of a perturbative and non-perturbative contributions. Fac-

torization theorems have long since been understood at leading power (LP) for Semi-Inclusive

DIS, Drell-Yan, and double inclusive leptonic annihilation. With the use of these formalisms,

in the past decade the imaging of the unpolarized quark TMD PDF has moved into an era

of precision, where the perturbative contributions are close to N4LL accuracy and non-

perturbative extractions have been performed at the accuracy of NNLO+N3LL. Despite this

progress, many questions remain to be addressed in the field of TMDs. How does the intro-

duction of spin affect the transverse dynamics of the quarks? What processes are optimal

perform imaging of the gluons and how do we establish factorization theorems for these

processes? How do we establish factorization theorems beyond LP? The interest in under-

standing the underlying structure of hadrons has led to the development of the Electron-Ion
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Collider (EIC), a future facility which will allow us to measure the internal structure of

protons at never before seen precision. Due to the high-luminosity, high center of mass

energy, and precision beam control, this new facility opens the possibility of measuring spin-

dependent TMDs in a wide range of new processes. Furthermore, the high luminosity open

the possibility of performing high precision measurements of angular correlations which will

allow us to probe the next-to-leading power (NLP) structure of hadrons.

To measure the spin-dependent structure of hadrons, experimental measurements are per-

formed for azimuthal spin asymmetries. In this dissertation, I quantify the extent to which

we understand the quark Sivers function, a spin-dependent TMD PDF, by performing the

first ever global analysis of this function from Semi-Inclusive DIS and Drell-Yan. To allow for

a future global analysis of the gluon Sivers asymmetry, I establish a factorization and resum-

mation formalism for heavy-flavor di-jet production at the future EIC using Soft-Collinear

Effective Theory (SCET). I then establish a factorization and resummation formalism for

the Sivers asymmetry in di-jet production at RHIC and discuss how such a process can be

used to test factorization breaking effects and the extent to which theorist understand the

universality arguments of the Sivers function. Additionally, while spin asymmetries can be

generated by the spin of initial-state particles, they also arise due to hadronization effect.

However, probing the spin-dependent final-state hadrons introduces additional experimental

complications associated with reconstructing the spin of the hadron. In the past several

years, Λ baryons, which undergo self-analyzing decay, have been explored as a method of

probing spin-dependent fragmentation functions. In this dissertation, I perform one of the

first global analyses of the TMD Polarizing Fragmentation Function (TMD PFF) and the

first global analysis of the transversity TMD FF. Using SCET, I establish a factorization

and resummation formalism for the distribution of hadrons in a jet and use this formalism to

make predictions at the EIC. Lastly, I perform direct calculations of the evolution equations

of kinematic and intrinsic sub-leading twist distribution functions for the first time.
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CHAPTER 1

Introduction

1.1 Motivation

Quantum tomography is the study of the dynamics of elementary particles in bound systems,

and seeks to address the question as to how these dynamics give rise to global properties.

This goal is the field theoretical continuation of the millennia old pursuit to address the

nature of matter. It can be argued that quantum tomography began in 1897, when J.J.

Thompson discovered the electron. Within the next decade, the scientists of the early 20th

century began endeavoring to understand how the properties of the electron were tied to the

structure of the Hydrogen atom. To address this question, scientists were forced change their

perception of small scale physics and quantum mechanics was born. Schrodinger, who was

exploring the wave nature of non-relativistic particles, solved this puzzle and changed our

understanding of the world. To this day, technological and scientific advancements related

to these discoveries influence our society. Due to the developments of our understanding

of Quantum Field Theory (QFT) and the standard model in the last century, the scientist

of today continue to address the structure of matter by asking the question as to how

the dynamics of the point-like constituents of hadrons are related to the hadron’s global

properties.

Quantum tomography of hadrons is infinitely more complex than atomic tomography.

Electrons can be isolated from atoms and their properties can be measured by introducing

electromagnetic fields. However, no experiments have been able to measure isolated charges

associated with the strong interaction. This ‘color confinement’ indicated that the size of

the coupling constant associated with the strong interaction was so large that perturbative
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techniques could not be used to address the theory. By the late 1960s however, Bjorken

predicted that structure functions in DIS at sufficiently high energies should depend on the

ratio x = Q2/2P ·q in Ref. [14]. Within the next year, SLAC verified this approximation and

Feynman presented his formulation of the parton model in Ref. [15], in which he illustrated

that Bjorken scaling indicated that hadrons were composed of point-like non-interacting

particles, which he named ‘partons’. However, this theory conflicted with our understanding

that hadrons were strongly coupled. Ultimately in Ref. [16] Gross and Wilczek discovered

that non-Abelian gauge theories give rise to ‘asymptotic freedom’, which states that while the

coupling for non-Abelian gauge theories can be large at small energy scales, at large energy

scales the coupling decreases and perturbative techniques become feasible. This remarkable

work served to bridge Feynman’s parton model with color confinement. While partons exist

as asymptotically free particles, the non-perturbative interactions form the asymptotic color

neutral states of QCD which we call hadrons.

This formulation of the strong interaction indicated that perturbative techniques in QCD

can be used to calculate partonic cross sections. But to perform precision QCD, one is forced

to address the question as to whether or not non-perturbative interactions could drastically

affect purely perturbative contributions to the cross section. After ten years of work, the

authors Collins, Soper, and Sterman carried out the first proof of ‘QCD factorization’ in

Ref. [17], in which the perturbative and non-perturbative contributions are proven to de-

couple from one another. Using their formalism, cross sections could be written as a con-

volution of perturbative and non-perturbative contributions. Since their demonstration of

factorization theorems, the methodology for quantum tomography of hadrons has relied on

their analysis. Modern day theorists calculate perturbative contributions to cross sections

and then either extract the non-perturbative contributions from lattice or fit experimental

data. This procedure allows us being understanding the dynamics of the non-perturbative

contributions to the cross sections.

The ultimate goal of QCD tomography is to address the question as to how the global

quantities of hadrons, such as the hadron’s mass and spin, emerge from the dynamics of
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quarks and gluons. As hadrons account for the vast majority of the mass of the visible

universe, addressing such a question is vital for our greater understanding of the universe.

A fundamental shortcoming of previous theoretical descriptions of hadron structure is that

they only provide information longitudinal to the beam direction. The field of QCD holog-

raphy has been pushing for more differential measurements of the internal structure of the

hadrons. The full information for the distributions of hadrons in momentum space and im-

pact parameter space is encoded in Generalize Transverse Momentum Distribution Functions

(GTMDs), see for instance Refs. [18, 19, 20, 21, 22, 23, 24]. Within the past few years, re-

searchers have been exploring QCD factorization theorems which can be used to probe these

distributions in [25, 26, 27, 28, 29, 30, 31, 32]. Transverse Momentum Dependent Parton

Distribution Functions (TMD PDFs), are GTMDs in which the impact parameter space has

been integrated over. A major strength of TMD PDFs are that factorization theorems for

TMDs have been established in double inclusive hadron production in leptonic annihilation

in [17], Drell-Yan in [33], and Semi-Inclusive DIS in [34]. These TMD PDFs allow us to ad-

dress how the spin of the parent hadron distorts the distribution of momentum in hadrons.

As a result, TMDs are an attractive distribution to understand how the spin properties of

the hadron and the transverse dynamics are correlated with one another.

Following the endorsement by the National Academy of Sciences, the Department of

Energy officially started the Electron-Ion Collider (EIC) project in 2020. This high-energy,

high-luminosity, polarized EIC will allow physicists to perform measure the both polarized

and unpolarized TMDs at unprecedented precision. Due to the high collision energies, this

device will allow physicists to measure the gluon TMD PDFs, while previous colliding fa-

cilities have mainly measured quark TMD PDFs. The high luminosity, high center of mass

energy, and freedom to use polarized beams at the EIC will open new possible avenues for

probing hadron structure. To interpret experimental data, QCD theorists rely on factor-

ization theorems, in which the perturbative and non-perturbative contributions in a cross

section decouple from one another. As such, the methodology of this dissertation has been

to use existing data to extract non-perturbative information associated with the polarized
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hadron structure at the highest precision possible, to establish factorization theorems for

novel processes, to calculate the perturbative contributions to novel processes, and to pro-

vide first predictions for this new facility.

1.2 Organization of this Thesis

In Chapter 2, formal background in QCD is provided. In Chapter 3, I perform the first

global extraction of the quark Sivers function, a spin-dependent TMD PDF. I also perform

this analysis at NLO+NNLL resummation, which had never been done before. Using this

analysis, I provide high precision projections at the future EIC. In Chapter 4, I use SCET

to derive factorization and resummation formalisms which can be used to probe the spin-

dependent structure of the proton using jets. In Chapter 5, I perform one of the first global

extractions of the TMD Polarizing Fragmentation Function (TMD PFF) and the transversity

TMD FF, two spin-dependent fragmentation function, and perform an EIC impact study for

these distributions. In Chapter 6, I derive QCD evolution equations for sub-leading TMDs.

I’ll conclude this dissertation in Chapter 7.
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CHAPTER 2

QCD Background

2.1 Overview of Factorization and Resummation

The major obstacle in QCD tomography is that while perturbation theory can be used to

describe partonic interactions, detectors measure physical quantities of hadrons. To describe

and interpret experimental data, one then needs to understand how to transition between

partons and hadrons. However, this transition involves interactions at the energy scale ΛQCD

where perturbative techniques fail. To address this issue, QCD factorization theorems must

be established. The central idea behind factorization theorems is that if the partonic scale

Q is much larger than ΛQCD, the relevant time scale for hard interactions happen is much

smaller time scale than the time scale for inter-partonic interactions. We could examine

Deep Inelastic Scattering (DIS) as an illustrative example, e (ℓ) + p (P ) → e (ℓ′) + X. In

this process, the two relevant scales are Q, the virtuality of the photon, and ΛQCD which is

associated with the interaction between partons in the hadron. In the laboratory frame, the

proton is stationary and the relevant time scale for the interaction of partons in the target

hadron is therefore 1/ΛQCD. The photon on the other hand has virtuality Q, and thus the

interaction time scale for the photon with the parton is 1/Q. In the rest frame of the virtual

photon, the hadron moves toward the photon with an energy Q. If Q≫ ΛQCD, the lifetime of

the partons, which were of order 1/ΛQCD, undergo time dilation and are therefore extended.

As a result, up to power corrections of order ΛQCD/Q, the partons which are resolved by

the virtual photon are on their mass shell. The central idea behind factorization theorems

is to treat the particles which communicate information between the hard and soft regions

to be on shell and therefore classical. In doing so, the hard and soft regions are insensitive
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to the dynamics driven by the quantum corrections of the other region. As we still need to

integrate over the classical momentum of the particle which communicated the information

between the two regions, the factorization theorem for DIS can be written in the usual way

as

dσDIS

dx dy
=
∑

a

∫
dx̂ fa/p (x̂;Q;µ)

dσ̂DIS

dy

(x
x̂
;µ
)
+O

(
ΛQCD

Q

)
. (2.1)

In this expression x is the usual Bjorken variable associated with the longitudinal momentum

component of the quark, Q is the virtuality of the photon, y is related to the angle of the

final state quark, and µ is the renormalization scale. fa/p is the PDF, which we will find

contains a mixture of interactions at long and short distance interactions. The purely short

time scale interaction is given by dσ̂DIS/dy, which represents the partonic interaction of a

quark and lepton. Within factorization theorems, the short distance interactions can be

computed in perturbative QCD, while the long distance interactions are obtained through

lattice methods or by fitting experimental data.

QCD factorization theorems also introduce the property of ‘universality’. This immensely

powerful property states that for processes which are factorized, the non-perturbative infor-

mation encoded in the PDFs is independent of the underlying process. All the predictive

power and discovery potential of QCD is built upon this property. In the case of DIS, the

simple relation between the DIS cross section and the PDF allows one to extract the non-

perturbative information of the PDFs in a clean way. However, to discover physics at high

energy scales, processes with high energies are required. In the case of DIS, synchrotron

radiation prevents high energy electron beams from reaching high enough energies to probe

the high energy region. For this reason, proton-proton collisions serve as the main mecha-

nism for discovering new physics. For this reason, Drell-Yan, p1(P1) p2(P2) → q(q) represents

the main QCD background for many events. Neglecting power corrections, the factorized

expression for the Drell-Yan cross section can be written as

dσDY

dy dQ2
=
∑

a,b

∫ 1

xA

dx̂A

∫ 1

xA

dx̂B fa/p (x̂A;Q, µ) fb/p (x̂B;Q, µ)
dσ̂DY

dy dQ2

(
xA
x̂A
,
xB
x̂B

;Q, µ

)
, (2.2)

6



X

f (x; µ)

q

X

f (x; µ)

q

X

f (x; µ)

q

X

f (x; µ)

q

X

f (x; µ)

q

Figure 2.1: Top row: Example hard correction to the cross section. Bottom Row: Diagrams

related to the evolution of the PDF.

where y and Q represent the rapidity and invariant mass of the produced vector boson. The

Bjorken variables of the PDFs are related to the Q, and y, and the hadronic COM energy

through the relations

xA =
Q√
S
ey , xB =

Q√
S
e−y . (2.3)

Due to the principle of universality, the PDFs which enter into the cross section for Drell-

Yan are identical to those in DIS. Therefore, global fits from DIS data can be used to obtain

the precise non-perturbative behavior of PDFs. These extracted PDFs can then be used

to describe the QCD background at high energy Drell-Yan collisions. In this way, QCD

factorization theorems and universality drive the predictive power and discovery potential

of QCD.

An important and yet overlooked detail in going from low energy data to high energy

data is the role of effects associated with renormalization. In both the case for Drell-Yan

and DIS, the PDFs and the partonic cross sections will suffer from divergences beyond tree

level. In Fig. 2.1, a subset of the total one loop corrections to the DIS cross section have

been included. There are two possible approaches for dealing with these divergences. In

one case, the divergences of all the diagrams are added. Due to renormalization group
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consistency, the divergences will cancel and the PDF and partonic cross sections can be

defined as subtracted quantities. One could then simply replace the renormalization scale µ

with the hard scale Q. There are many shortcomings of this procedure, however. Firstly if

there are additional scales entering into the cross section, large logarithms that enter into the

perturbative expressions will destroy the convergence of the perturbative series. Secondly, to

describe the cross section in this way, one needs the behavior of the PDF at exactly Q. Thus

for each value of Q, a new global fit would need to be performed. Fortunately the alternative

to this approach is much more powerful. In this case, each loop integral can be written as

a sum of contributions from the collinear and hard regions. The collinear contributions are

used to define the perturbative part of the PDF and the hard contributions are the loop

corrections to the partonic cross section. Each contribution will suffer from divergences and

the PDF and the partonic cross section are then defined as divergent quantities. We can

then perform renormalization group evolution of these divergent quantities and obtain QCD

evolution equations. By using this method, we can resum any large logarithms that enter

from radiative corrections to all orders. This procedure allows us to understand how the

PDF and partonic cross section evolve to arbitrary µ. As a result, a single global analysis

provides substantially more information than in the previous case. In Sec. 2.5, I will outline

this procedure for the TMD case in Drell-Yan.

2.2 Pinch Surfaces and the QCD Mode Analysis

Bound partons within hadrons interact with one another, driving one another off their mass

shell and generating inter-parton correlations. In the previous section, I discussed how time

dilation of boosted hadrons extended the lifetime of these off shell modes. As a result, QCD

factorization theorems are valid up to power corrections of ΛQCD/Q. While this simple pic-

ture provides intuition for QCD factorization theorems, in this section, I will provide a more

rigorous mathematical formalism for this treatment following the work of Collins, Soper, and

Sterman. Within this treatment, the authors treated loop integrals as contour integrals. IR

poles arose in their analysis through the appearance of ‘pinch singular surfaces’, in which

8



contours could not be deformed away from poles entering into the complex plane. By char-

acterizing the kinematic regions where these pinch surfaces arose, the authors were able to

demonstrate that pinch surface singularities were generated by soft and collinear interactions,

which are both on shell. The authors then demonstrated that the asymptotic contribution

of the cross section emerge from the dynamics of these on-shell modes. Thus these authors

provided a mathematical framework verifying the intuition for the factorization theorem. In

this section, I will review the appearance and interpretation of these IR divergences.

For this analysis, I will use the virtual diagram in Fig. 2.1 as an illustrative example.

Furthermore, to simplify the calculations, I will treat the quarks and gluons as scalar fields.

Using Feynman parameters, the expression for the vertex can be written as

Γ(p1, p2) = iπ2

∫ 1

0

dα1 dα2 dα3

∫
d4l

(2π)4
δ (1− α1 − α2 − α3)[

α1l2 + α2 (p1 + l)2 + α3 (p2 − l)2 − iϵ
]3 . (2.4)

The asymptotic behavior of this integral is obtained by finding the kinematic regions in l

where the denominator is minimized. This can be obtained by setting the gradient of the

denominator with respect to lµ to zero, which leads to the Landau equation from Ref. [35]

α1l
µ + α2 (p1 + l)µ − α3 (p2 − l)µ = 0 . (2.5)

Two particular regions which satisfy this condition are the collinear and anti-collinear regions:

where the gluon becomes collinear to the incoming or outgoing quarks. For the case of

the incoming quark, the Landau condition will hold where lµ = ζpµ1 , α3 = 0, and α1ζ =

−α2 (1 + ζ). In this case, the denominator of the vertex is proportional to the mass of the

incoming quark. In general, the incoming quark can have a non-zero virtuality. However,

one would need to integrate over the quark mass to obtain the full QCD amplitude. Thus

the asymptotic contribution of the cross section is obtained in the neighborhood in which

the mass of the quark and virtual gluon vanishes. As the incoming quark is close to its mass

shell and the plus component of the momentum is large, the momentum of the incoming

quark scales as

pµ1 ∼ Q

(
n̄µ

2
+ λ2

nµ

2
+ λx̂µ + λŷµ

)
= Q

(
1+, λ

2
−, λ⊥

)
. (2.6)
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In this expression, I have introduce the light-cone directions nµ = t̂ − ẑ, n̄µ = t̂ + ẑ and

taken the normalization n · n̄ = 2. Furthermore, t̂µ, x̂µ, ŷµ, ẑµ are unit four vectors. In the

expression for the scaling of the momentum pµ1 , I have introduced the parameter λ = M/Q

where M is the mass of the incoming hadron. This scaling can be thought of as follows: the

plus component is fixed to be large while there is some freedom for the transverse momentum

of the incoming quark. In general, the transverse momentum will affect how close the

integration gets to the appearance of the collinear IR divergence. Since singularities occur

for all values 0 < ζ < 1, one would need to integrate over all values of ζ. Furthermore,

while the collinear IR pole emerges as l⊥ → 0, to obtain the asymptotic behavior of the cross

section, one would need to integrate over the region 0 < l⊥ < λQ. For this reason, Collins

frequently refers to these pinch surfaces as ‘skeletons’ of the integrals, see Ref. [36]. They

provide the overall structure by not the full picture.

Another IR divergence occurs where the components of lµ are much smaller than Q such

that pµ1 + lµ ∼ pµ1 and pµ2 + lµ ∼ pµ2 so that the interaction of the soft gluons with the

collinear quarks leaves the quarks on their mass shell up to power corrections. To satisfy

these conditions, the required scaling for the soft gluon is lµ ∼ Q (λ2, λ2, λ2). This scaling

is is known to give rise to the soft eikonal approximation. In this case, the denominator of

the vertex will depend only on l2 and an IR pole will once again be generated for a gluon

which is on its mass shell. Analogous to the collinear case, the asymptotic behavior of the

soft contribution is obtained by integrating a region of lµ, namely l2 < Q2λ4.

In Ref. [37], Coleman and Norton interpreted this analysis to indicated that the dominant

contributions from the cross section enter from on shell partons. As a result, information is

passed from the collinear and soft regions to the hard region only through classical particles.

Therefore, the complicated quantum corrections associated with collinear and soft interac-

tions are then decoupled from the quantum corrections of the hard region. Furthermore, since

the soft particles do not take the collinear particles off their mass shell, the soft and collinear

contributions also decouple from one another. As a result, each region evolves independently.

The breaking of factorization effects occur due to off shell propagators entangle these differ-
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ent kinematic regions. While so far I have discussed how soft and collinear regions generate

IR divergences, there is one additional region which can generate IR divergences, known as

the Glauber region. Glauber gluons have momenta which scale as lµ ∼ Q (λ2, λ2, λ), which

are off shell and therefore can break factorization theorems. The proof of the cancellation of

Glaubers has been performed for TMD factorization in Drell-Yan, Semi-Inclusive DIS and

double inclusive leptonic annihilation (DIA), see for instance Refs. [38, 39, 40]. For many

processes however, Glauber cancellation has not been explicitly verified. Even more dra-

matically, Glauber gluons are known to drive the dynamics involved in parton propagation

through QCD media, such as the Quark-Gluon-Plasma (QGP), cold nuclear matter, and

the Color-Glass Condensate (CGC). In these systems, the media become entangled with the

partonic cross section. Recently the paradigm has been to treat this coupled behavior as

an open quantum system in Refs. [41, 42]. This gives rise to Lindblad equations, or equiv-

alently the BK equation, see for instance Ref. [43]. Due to the interest in understanding

media effects, Glauber gluons remains an active area of research. In fact, several effective

field theories have been developed in this direction, see for instance Refs. [44, 45, 46] For the

remainder of this thesis however, Glauber gluons will not be treated.

So far, I have demonstrated that the vertex graph contains IR divergences, which contains

part of the asymptotic behavior of the vertex integral. However, if the IR divergences

were left uncancelled, the differential cross section would be sensitive to the mass of the

partons, which is not physical as the mass scale of the quarks is much smaller than the

ΛQCD. As a result, there must be additional contributions to this vertex which have so far

not been calculation. We saw however, that these divergences originate from the soft and

collinear regions. As a result, the appearance of IR divergences provide us some insight as to

which QCD modes need to be considered in our formulation of QCD factorization theorems.

Namely to formulate the cross section for DIS, one also needs to consider the contributions

from the soft and collinear regions. In the following section, I will demonstrate this.
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n ⋅ p

Qλ2

Qλ2

Q

Q

p2 ∼ Q2

p2 ∼ λ2Q2

p2 ∼ λ4Q2

Figure 2.2: Organization of modes entering into the example according to their scaling in

n · p, n̄ · p, and their invariant masses.

2.3 The Method of Regions

To calculate the soft, collinear, and hard contributions to the vertex, I will closely follow the

analysis that was performed in Ref. [47] to use the method of regions from Refs. [48, 49],

where the asymptotic behavior of the loop integrals is obtained by expanding the integrand

in each area which gives a large contribution. This method is related to the integration

over the pinch surfaces. Namely by asymptotically expanding the integrand, we capture the

asymptotic behavior around the pinch surfaces. To demonstrate the delicate cancellation

between IR and UV divergences, I will use a simple model which treats the quarks as massive

scalars and treats the gluon as massless.

To obtain the hard contribution to the cross section, we assume that the virtuality of

the gluon goes like Q2 and that the virtuality of the quarks goes like λ2Q2 from the power

counting in the previous section. To obtain the asymptotic behavior of the loop integral in

this region, we retain only the leading power behavior in the denominator. In this region,

the asymptotic behavior of the vertex is therefore given by

Γh(p1, p2) = iπd/2µ4−d
∫

ddl

l2 (l2 + 2p1 · l) (l2 − 2p2 · l)
. (2.7)

The behavior of this integral in the soft and collinear limits is the same as the massless loop
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integral in the previous section and therefore gives rise to IR divergences in those regions.

This loop integral can be easily performed using a Passarino-Veltman reduction, the exact

expression is obtained as

Γh(p1, p2) =
Γ (1 + ϵ)

Q2

(
1

ϵ2
+

1

ϵ
ln

(
µ2

Q2

)
+

1

2
ln2

(
µ2

Q2

)
− π2

6

)
, (2.8)

where the ϵ enter from the IR poles.

To obtain the contribution in the soft region, lµ is taken to scale as Q (λ2, λ2, λ2). Ex-

panding the denominator and retaining only the leading terms, the integrand becomes

Γs(p1, p2) = iπd/2µ4−d
∫

ddl

l2 (p21 + 2p1 · l) (p22 − 2p2 · l)
. (2.9)

This expression is one graph that enters into the ‘soft function’, which contains the soft con-

tribution to the differential cross section. From this expression, several interesting features

can be observed. Note that the invariant mass of the virtual gluon is of order λ4 while the

invariant mass of the external quarks are of order λ2. As a result, as l approaches zero,

the terms associated with the quark masses regulate the IR divergences. In the UV region

however, where the virtuality of the gluon becomes larger, the denominator will scale as l4,

giving rise to a UV divergence. This UV divergence can be regarded as the hard contribu-

tions contaminating the soft contributions. Furthermore, in principle one would also need

to deal with soft contamination into the collinear and anti-collinear regions. I will cover this

later when I discuss ‘rapidity renormalization group evolution’. The expression for the soft

contribution to the vertex integral is given by

Γs(p1, p2) =
Γ (1 + ϵ)

Q2

(
1

ϵ2
+

1

ϵ
ln

(
µ2

Q2λ4

)
+

1

2
ln2

(
µ2

Q2λ4

)
+
π2

6

)
. (2.10)

In this expression, the ϵ are associated with UV divergences. I would like to also note that

in this expression, a large logarithm enters into the finite part. These large logarithms can

in principle become so large that they spoil the convergence of perturbative calculations.

These large logarithms can handled through resummation which I will cover in Sec. 2.5.

The expressions for the collinear and anti-collinear contributions to the vertex interaction
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can be obtained in a similar way. In the collinear sector, the cross section is given by

Γc(p1, p2) = iπd/2µ4−d
∫

ddl

l2 (p1 − l)2 (2p2 · l)
. (2.11)

I note at this point, that this interaction is exactly a Wilson line interaction which enters

into the calculation for the DGLAP evolution equations. By studying this integral, we can

see that there is a UV divergence that appears as the virtuality of the gluon grows large

and there are potentially also IR divergences associated with moving into the region where

the virtuality grows small. These regions represent the two contribution associated with

collinear gluons contaminating the hard and soft regions, respectively. The expression for

the collinear and anti-collinear contributions is given by

Γc(p1, p2) =
Γ (1 + ϵ)

Q2

(
− 1

ϵ2
− 1

ϵ
ln

(
µ2

λ2

)
− 1

2
ln2

(
µ2

λ2

)
+
π2

6

)
. (2.12)

Γc̄(p1, p2) =
Γ (1 + ϵ)

Q2

(
− 1

ϵ2
− 1

ϵ
ln

(
µ2

λ2

)
− 1

2
ln2

(
µ2

λ2

)
+
π2

6

)
, (2.13)

where we once again see the appearance of large logarithms.

Since we have performed these integrals using dimensional regularization, we have in-

troduced the scale µ, which serves as a cutoff between modes of different virtuality, see for

instance Fig. 2.2. For the method of regions to accurately produce the full contribution of

the loop vertex, it must not depend on the scale µ. Furthermore, since we have introduced

masses to regularize the IR divergences of the full vertex, the full vertex must be free of both

UV and IR divergences. After summing the contributions of each region, the total vertex

contribution is given by

Γ(p1, p2) =
1

Q2

(
ln

(
Q2

λ2

)
ln

(
Q2

λ2

)
+
π2

3

)
, (2.14)

which satisfies these two criteria.

I note that in principle the cancellation of the UV and IR divergences in full QCD is

much more delicate than this simple model. In general the IR divergences in the virtual

diagrams must cancel against the UV divergences entering into the virtual emissions. Thus
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the cancellation will not involve just one of the diagrams in Fig. 2.1 but all of them. How-

ever, this model serves to demonstrate the intuition associated with performing calculations

associated with each region and the appearances of divergences. To be precise, in deriving

factorization theorems, we first catalog the different QCD modes. We can then calculate

the contribution of each mode using the method of regions and dimensional regularization

which introduces a scale µ in the virtuality. Overlap between the various regions enters

as divergences which cancel when we have summed over the contributions of the different

modes. While I have demonstrated this procedure works at NLO, so long as the observable

is infrared and collinear safe, the KLN theorem [50, 51, 52] guarantees the cancellation of

the IR divergence to all orders.

2.4 Soft-Collinear Effective Theory

2.4.1 SCET Lagrangian

While the asymptotic behavior of the loop integrals in the previous sections are dominated

by the soft and collinear regions, the QCD Lagrangian takes into consideration all possi-

ble momenta configurations. In this sense, QCD contains more information than what is

required to describe many processes. Effective field theories (EFTs) are a field theoretical

language which formulate the Lagrangian of a system to only contain the asymptotic de-

grees of freedom. Heavy quarks for instance can be neglected when describing collisions with

energies below the quark mass. In a path integral formulation, the fluctuations associated

with the heavy quark field are ‘integrated out’. Soft-Collinear Effective Theory (SCET),

Refs. [53, 54, 55, 56, 57, 58, 59] is an EFT that contains the degrees of freedom associated

with soft and collinear QCD modes and integrates out the contributions from outside re-

gions. Due to this simplification, SCET allows us to organize and calculate perturbative

contributions to high perturbative accuracy. In this section, I will provide an overview of

the key features of SCET.

By integrating out fields with momenta scaling outside of the soft and collinear regions,
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the fields which enter into the Lagrangian reduce to

Aµ (x) = Aµ
c (x) + Aµ

s (x) , ψ (x) = ψc (x) + ψs (x) , (2.15)

where the c subscript denotes fields with momenta that scale as Q (1, λ2, λ) while the sub-

script s denotes fields with momenta that scale as Q (λ2, λ2, λ2). To arrive at this expression,

I have assumed that there is only one collinear mode for simplicity. In processes with en-

ergetic modes in another direction, one would simply need to add additional modes to the

right side of these expressions. A key feature of these replacements are that Glauber modes,

which provide asymptotic behavior for processes with QCD media and which break QCD

factorization theorems, are not considered. In general SCET is useful for processes in which

Glauber contributions have been demonstrated to vanish. After integrating out the modes

beyond the collinear and soft regions, the number of degrees of freedom for the system can be

further reduced through the equations of motion. Namely the quark spinors can be projected

into two subspaces as follows

ψc(x) =

(
/̄n/n

4
+
/n/̄n

4

)
ψc(x) = ξc(x) + φc(x) .

Through the equations of motion of the ξ field, the φ field can be integrated out.

SCET also systematically removes sub-leading field contributions to the Lagrangian. In

the formulation of SCET, it is then necessary to obtain the precise power counting associated

with each field. The power counting of the ξc field for instance can be obtained by examining

the two point correlation functions

〈
0
∣∣T
{
ξc(x) ξ̄c(0)

}∣∣ 0
〉
=

∫
d4p

(2π)4
i

p2 + iϵ
e−ip·x

/̄n/n

4
/p
/n/̄n

4
(2.16)

=

∫
d4p

(2π)4
i

p2 + iϵ
e−ip·xp+

/̄n

2
∼ λ2 .

Performing the same procedure for the soft quark field, we obtain the power counting ψs ∼
λ3. The power counting for the gluons depends on the choice of gauge. The traditional

formulation of SCET is done using covariant gauges and have scaling Aµ
c ∼ pµc ∼ Q (1, λ2, λ)

and Aµ
s ∼ pµs ∼ Q (λ2, λ2, λ2) in which Lorentz invariance manifests naturally. We can see

16



from the scaling of the soft modes that the soft gluons vary in minus and transverse direction

more slowly than the collinear gluons.

After integrating out the fields and using the power counting, the SCET Lagrangian is

given by

LSCET (x) = ψ̄s(x)i /Ds(x)ψs(x)−
1

4

[
F s a
µν (x)

]2
(2.17)

+ ξ̄(x)
/n

2

[
in ·D(x) + i /Dc⊥(x)

1

in ·Dc(x)
i /Dc⊥(x)

]
ξ(x)− 1

4

[
F c a
µν (x)

]2
.

In this expression, we have introduced the various covariant derivatives

iDs
µ = i∂µ + gAs

µ , (2.18)

iDc
µ = i∂µ + gAs

µ ,

in̄ ·D = in̄ · ∂ + gn̄ · Ac(x) + gn̄ · As(n · x) ,

in ·D = in · ∂ + gn · Ac(x) ,

iD⊥µ = i∂⊥µ + gn · Ac⊥
µ (x) ,

and we define the gluon field strength tensor as

igF s
µν =

[
iDs

µ, iD
s
ν

]
igF c

µν = [iDµ, iDν ] (2.19)

An important feature of the SCET Lagrangian at this point, is that the soft and collinear

sectors communicate with one another due to the kinetic term for the collinear gluons and

the in̄ · D term. In the formulation of the SCET Lagrangian, field redefinitions are then

performed to decouple these two contributions.

2.4.2 Gauge Invariance in SCET and the Decoupling Transformation

Within traditional QCD, the gauge invariance of non-local operators manifests from Wilson

lines. In the construction of the SCET Lagrangian, we introduced two types of fields, the

soft and collinear. As a result, this will lead to the introduction of two types of Wilson lines

with distinct behaviors. Namely we can denote two types of gauge transformations

Un(x) = exp (iαa
n(x)t

a) Uus(x) = exp (iαa
us(x)t

a) , (2.20)
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Figure 2.3: Representation of how the Wilson lines enter for the collinear PDF. Left: The

Wilson line W n̄(x−,−∞;0⊥). Right: The Wilson line W n̄(−∞, 0;0⊥)

which must obey different scalings

i∂µUn(x) ∼ Q
(
1, λ2, λ

)
Un(x) i∂µUus(x) ∼ Q

(
λ2, λ2, λ2

)
Uus(x) . (2.21)

The collinear Wilson lines enter into the definition of bi-local operators such as the unpolar-

ized PDF for example

f(x;µ) =

∫
d4x

(2π)4
eik·xδ

(
x+
)〈

P

∣∣∣∣ξ̄(x)W n̄(x−,−∞;0⊥)
/n

2
W n̄(−∞, 0;0⊥) ξ(0)

∣∣∣∣P
〉
,

(2.22)

while the soft functions can be defined as vacuum matrix elements of a soft Wilson loop.

In the case of Drell-Yan, these Wilson lines enter due to the scattering of collinear gluons

with the anti-collinear quark and serve to transport the quark in the n̄ direction. In Fig. 2.3,

we provide a picture of this interaction. The exact mathematical form for the Wilson lines

can be obtained by examining the interaction of the anti-collinear quark with the collinear

gluons, which is given by

ξ̄c̄ (p) (−igγµta)
−i
(
/p+ /l

)

(p+ l)2
Ac

µ(l) = −gtan · Ac(l)

n · l ξ̄c̄ (p) +O (λ) . (2.23)

We can see from this interaction that the interaction of the anti-collinear quark with the

collinear gluons leads to a propagator which is far off its mass shell. This results in an
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effective vertex in SCET. Furthermore, we see from the power counting of the collinear

gluon field, we see that the attachment of a collinear gluon to the anti-collinear quark is

not power suppressed. As a result, there is no difference between attaching one gluon or

attaching an infinite number of gluons. In momentum space, this leads to the all order sum

of the interactions as

W n̄ =
∞∑

k=0

∑

perms

(−g)k
k!

n · Ac(l1)n · Ac(l2) . . . n · Ac(lk)

[n · l1] [n · (l1 + l2)] . . .
[
n ·∑k

i=1 li

] . (2.24)

Fourier transforming into position space results in the simple expression

W n̄(a, b, c⊥) = P exp

(
ig

∫ b

a

ds n̄ · Ac (x+ n̄s)

)
, (2.25)

where P denotes the path ordering and I’ll note that there in an analogous Wilson line in the

n direction. In fact, we could also define a Wilson line in the ⊥ direction as well. However,

these transverse Wilson lines tend to enter at plus or minus infinity, where the field

Analogously, we could consider attaching soft gluons to the anti-collinear quark to obtain

the soft Wilson lines. It’s important to note however that because of the power counting of

the soft gluons, these interactions do not knock the anti-collinear gluons off their mass shell

and thus do note form effective vertices in SCET. The soft Wilson line is given by

Y n̄(a, b, c⊥) = P exp

(
ig

∫ b

a

ds n̄ · As(x+ n̄s)

)
. (2.26)

The decoupling of the soft and collinear modes at the Lagrangian level is obtained by defining

new fields

ξ(x) = Yn(x)ξ
(0)(x) Ac

µ(x) = Yn(x)A
c
(0)µ(x) . (2.27)

After the field redefinitions, we can write

ξ̄c(x)
/n

2
in̄ ·D(x)ξc(x) → ξ̄(0)c (x)

/n

2
in̄ ·D(0)

c (x)ξ(0)c (x) . (2.28)

The kinetic term for the collinear gluons also becomes

F c
µν F

µν c → F (0) c
µν F (0)µν c . (2.29)

As a result, the soft and collinear sectors decouple at the Lagrangian level.
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Figure 2.4: Left: The Drell-Yan cross section in the proton-proton COM frame. Right: the

Drell-Yan cross section in the Gottfried-Jackson frame.

2.5 TMD Factorization and Resummation in Drell-Yan

Having summarized the ingredients of factorization theorems, I will now discuss resummation

by examining Drell-Yan in the TMD region as an example. Within TMD factorization and

resummation, the observable is sensitive to contributions to the two scales q⊥ ≪ Q. This scale

separation introduces large logarithms ln (q⊥/Q) in the perturbative contributions which

need to be resummed. In this section, I will demonstrate the procedure for performing this

resummation. I would like to note at this point, that the formalism that is entering into

this section follows directly from an upcoming paper of ours that considers higher twist

contributions to the Drell-Yan and Semi-Inclusive DIS cross sections. Here is summarize

only the twist-2 contributions however.

2.5.1 Kinematics

The transverse momentum dependent Drell-Yan cross section can be written in terms of its

hadronic and leptonic contributions as [60]

dσ

dQ2 dy d2q⊥ dΩ
=

α2
em

4sQ4
LµνW

µν (2.30)

where dΩ = dcosθ dϕ is the solid angle of the lepton l and Q2, y, and q⊥ are the invariant

mass, rapidity, and transverse momentum of the produced photon in the hadronic COM
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frame. Furthermore, Lµν is the leptonic tensor which has the form

Lµν = ⟨0|Jµ(0)|ℓ, ℓ′⟩⟨ℓ, ℓ′|Jµ †(0)|0⟩ (2.31)

= 4ℓµℓ′
ν
+ 4ℓνℓ′

µ − 2Q2gµν ,

where ℓ and ℓ′ are the momenta of the produced leptons and I have summed over the spin

configurations of the final-state leptons. This cross section contains power corrections which

scale as M/Q and q⊥/Q. To formulate the leading power (LP) cross section, we drop the

masses and kinematic corrections associated with q⊥. After dropping these contributions,

we can define a complete set of spatial coordinates in the leptonic COM frame as

t̂µ =
qµ

Q
, x̂µ =

qµt
q⊥

, ẑµ =
2x1
Q
P µ
1 − t̂µ , ŷµ = ϵµνρσ t̂ν x̂ρẑσ , (2.32)

where P µ
1 = x1Qn̄

µ/2 and P µ
2 = x2Qn

µ/2. Using these coordinates, the leptonic momenta

can be defined as

ℓµ =
Q

2

(
t̂µ + ẑµ + x̂µcosϕ sinθ + ŷµsinϕ sinθ

)
, (2.33)

ℓ′
µ
=
Q

2

(
t̂µ − ẑµ − x̂µcosϕ sinθ − ŷµsinϕ sinθ

)
. (2.34)

In the definition of the leptonic tensor, we have taken the normalization condition to be

such that the sum over the spin configurations of the final-state leptons is absorbed into the

definition of the leptonic tensor. Using the unit vectors defined previously, we can define

projectors of the leptonic tensor as

Vµν
1 = x̂µx̂ν + ŷµŷν , Vµν

2 = t̂µt̂ν , (2.35)

Vµν
3 = x̂µẑν + ẑµx̂ν , Vµν

4 = x̂µx̂ν − ŷµŷν ,

Vµν
5 = x̂µẑν − ẑµx̂ν , Vµν

6 = x̂µŷν − ŷµx̂ν ,

Vµν
7 = ŷµẑν − ẑµŷν , Vµν

8 = ŷµẑν + ẑµŷν ,

Vµν
9 = x̂µŷν + ŷµx̂ν .

We can also define the conjugate operators which are given by Vµν
i V̄αβ

j gµαgνβ = δij. Using

this set of operators, the leptonic tensor can be decomposed as

Lµν =
∑

i

Li (ϕ, θ) V̄µν
i , (2.36)
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where Li(ϕ, θ) = LµνVµν
i are angular coefficients which are given by

L1 (ϕ, θ) = Q2 (1 + cos2θ), L2 (ϕ, θ) = 0, (2.37)

L3 (ϕ, θ) = −Q2 cosϕsin2θ, L4 (ϕ, θ) = −Q2 cos2ϕ sin2θ,

L5 (ϕ, θ) = 0, L6 (ϕ, θ) = 0,

L7 (ϕ, θ) = 0, L8 (ϕ, θ) = −Q2 sinϕ sin2θ,

L9 (ϕ, θ) = −Q2 sin2ϕ sin2θ .

From these coordinates, we can also define the transverse metric

g⊥µν = gµν − t̂µt̂ν + ẑµẑν . (2.38)

W µν represents the hadronic tensor, which is given by the expression

Wµν =
1

(2π)4

∫
d4x e−iqx

〈
P1 , P2

∣∣J†µ(x) Jν(0)
∣∣P1 , P2

〉
, (2.39)

where Jµ(x) =
∑

f ef ψ̄
c
f (x)γµψ

c
f (x) denotes the quark current in QCD. In SCET, the inter-

action of the quark and the photon is given by

Jµ(x) =
∑

f

∫
ds dtCV (s, t) χ̄c(x+ sn̄)γµχc̄(x+ tn)S†n(x)S

†
n̄(x) . (2.40)

ξ(x) = W n̄(x−,−∞,x⊥) , (2.41)

where CV (s, t) represent Wilson coefficient functions which match SCET onto QCD in the

UV region. The non-local interaction is a consequence of the scaling of the momentum

scaling of collinear modes. Namely emissions of collinear gluons in the collinear region are

not power suppressed since pµc ∼ Q(1, λ2, λ).

2.5.2 Factorization in QCD

In full QCD, the hadronic tensor can be simplified as follows. Using the momentum space

representation of the interaction and noting that the hard contribution is generated through
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the interaction of collinear and anti-collinear modes, the hadronic tensor can be written as

Wµν =
∑

q

e2q
Nc

∫

⊥
Tr
[
Φunsub

q

(
x1,k1⊥,S1;µ, ζ1/ν

2
)
V µ (Q;µ) (2.42)

× Φunsub
q̄

(
x2,k2⊥,S2;µ, ζ2/ν

2
)
V ν (Q;µ)

]
S(λ⊥;µ, ν) ,

∫

⊥
=

∫
d2k1⊥ d

2k2⊥ d
2λ⊥ δ

(2) (q⊥ − k1⊥ − k2⊥ − λ⊥) . (2.43)

In these expressions k1⊥, k2⊥, and λ⊥ denote the transverse momenta of the collinear, anti-

collinear, and soft modes. Furthermore µ is the renormalization scale while ν and ζ represent

the rapidity scale and the Collin-Soper parameter. The term V µ (Q;µ) is the photon quark

vertex which contains QCD loop corrections. Φq denotes the quark-quark correlator, which

is explicitly given in momentum space as

Φunsub
jj′ (x,k⊥,S;µ, ζ/ν

2) =

∫
d4ξ

(2π)4
eik·ξ δ

(
ξ+
)

(2.44)

×
〈
P,S

∣∣ψ̄c
j′(ξ)W

n̄(ξ−,−∞; ξ⊥)W
⊥(ξ⊥,0⊥;−∞)W n̄(−∞, ξ−;0⊥)ψ

c
j(0)

∣∣P,S
〉
.

The superscript unsub is used to say that ‘soft subtraction’ of the TMDs has not been

performed yet. I will cover this soft subtraction in Sec. 2.5.7. In this expression ψc are quark

fields with the momentum scaling kµ ∼ Q (1, λ2, λ) where λ = q⊥/Q. The Wilson lines are

the same as those in Fig. 2.3 except that I have introduced a transverse collinear Wilson line

which is defined as

W⊥(a⊥, b⊥, c) = P exp

(
ig

∫ b⊥

a⊥

dsAc
⊥ (x+ sŝ⊥)

)
, (2.45)

where ŝ⊥ is a perpendicular unit vector. Additionally, the function S in Eq. 2.42 contains

the soft contribution to the cross section. We will discuss this contribution in more detail in

Sec. 2.5.5. The trace that enters into this expression contains a mixture of interactions from

the collinear, anti-collinear, and hard regions. To factorize these contributions it is useful to

perform a Fierz decomposition of the hadronic tensor using the identity

δijδkl =
∑

a

Γa
il Γ̄

a
kj , (2.46)
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to decompose the quark lines. Here, Γa are gamma matrices of the set

Γa ∈
{
1, γ5, γ

µ, γµγ5, σµνγ5
}
. (2.47)

A diagrammatic representation of this factorization is given in Fig. 2.5. After performing

the Fierz decomposition, the hadronic tensor can be written as

Wµν =
∑

a,b

∑

q

e2q
Nc

∫

⊥
Tr
[
γµ Γ̄a

1 γ
ν Γ̄b

1

]
(2.48)

× Φ
[Γa]
unsub

(
x1,k1⊥,S1;µ, ζ1/ν

2
)
Φ̄
[Γb]
unsub

(
x2,k2⊥,S2;µ, ζ2/ν

2
)
S (λ⊥;µ, ν) . (2.49)

In this expression, we have defined the trace of the quark-quark correlators as

Φ[Γa]
(
x1,k1⊥,S1;µ, ζ1/ν

2
)
= Tr

[
Φ
(
x1,k1⊥,S1;µ, ζ1/ν

2
)
Γa
]
. (2.50)

The general structure of the quark-quark correlator can be obtained by performing a Fierz

and Lorentz decomposition and retaining terms which are leading in power, and which are

hermitician and satisfy parity transformations. At LP, the decomposition is given by

Φunsub

(
x,k⊥,S;µ, ζ/ν

2
)
=

(
f − ϵρσ⊥ k⊥ρS⊥σ

M
f⊥1T

)
/̄n

4
+

(
λg1L − k⊥ · S⊥

M
g1T

)
γ5 /̄n

4

+

(
Sk
⊥h1 +

λkk⊥
M

h⊥1L − ϵkj⊥ k⊥ j

M
h⊥1 − kk⊥k

j
⊥ − 1

2
k2⊥g

kj
⊥

M2
S⊥ jh

⊥
1T

)
iγ5σ−k

4
. (2.51)

We can see in this expression the Dirac structure associated with the unpolarized TMD

PDF, f . As a result, the unpolarized differential cross section can be obtained by setting

Γ̄a = /̄n/4 and Γ̄b = /n/4. Finally, we note that the convolution in transverse momentum in

the hadronic tensor are simplified when working in b space, which is conjugate to q⊥ space.

The final expression for the hadronic tensor is then

Wµν = −g⊥µν
∑

q

e2q
Nc

∫
d2b

(2π)2
eib·q⊥ (2.52)

× funsub
q/P1

(
x1, b;µ, ζ1/ν

2
)
funsub
q̄/P2

(
x2, b;µ, ζ2/ν

2
)
S (b;µ, ν) ,

Θ(b) =

∫
d2k⊥e

−ik·bΘ(k⊥) , (2.53)
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for Θ = f, S. The leading order contribution from the hard interaction can be obtained

through the contraction

Lµν Tr

[
γµ

/̄n

4
γν

/n

4

]
= NcQ

2
(
1 + cos2θ

)
H

(0)
DIS(Q;µ) , (2.54)

where H
(0)
DIS(Q;µ) = 1 is the tree level hard function. As a result, the final expression for the

differential cross section can be written as

dσ

dQ2 dy d2q⊥ dΩ
=

α2
em

4sQ2

(
1 + cos2θ

)
HDIS(Q;µ)

∑

q

e2q

∫
bdb

(2π)
J0 (bq⊥) (2.55)

× funsub
q/P1

(
x1, b;µ, ζ1/ν

2
)
funsub
q̄/P2

(
x2, b;µ, ζ2/ν

2
)
S (b;µ, ν) . (2.56)

Where the Hankel transform was obtained through the relation
∫
dϕeib·q⊥ = 2πJ0 (bq⊥) . (2.57)

2.5.3 Hard Contribution

The NLO hard contribution will contain all diagrams which contain momentum scaling lµ ∼
Q (1, 1, 1). In principle, one would need to consider both real and virtual emissions. However,

a real hard emission would lead to a final-state vector boson with transverse momentum

q⊥ ∼ Q which would be outside of the TMD region. As a result, we can simply replace the

vertex with the one loop virtual vertex. The expression for the one loop vertex is given by

V (1)
µ (Q;µ) = eqg

2
s

(
µ2eγE

4π

)ϵ ∫
ddl

(2π)d
(γαt

a)
(
/l − /k1

)
γµ
(
/k2 + /l

)
γα

l2 (k1 − l)2 (k2 + l)2
. (2.58)

The expression can be obtained using through a Passarino-Veltman reduction. From this

loop diagram, we obtain the hard contribution

Ĥ(Q;µ) = 1 +
αsCF

2π

[
− 2

ϵ2
− 3

ϵ
− L2

Q − 2LQ

ϵ
− 3LQ +

7π2

6
− 8

]
, (2.59)

where the hat indicates that the hard function is bare and the divergences are once again

IR in origin, see for instance [61] for a discussion on this point. Additionally, note that the

double pole term is associated with contributions which are simultaneously soft and collinear.

In this expression, I have also defined the logarithm LQ = ln (µ2/Q2)
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Φ
(
x2,k2⊥,S2; µ, ζ2/ν

2
)

Φ
(
x1,k1⊥,S1; µ, ζ1/ν

2
)

δkl

δij δi′j′

δk′l′

i i′

j j′

k k′

l l′

=
∑

a,b

Φ
(
x2,k2⊥;S2; µ, ζ2/ν

2
)

Φ
(
x1,k1⊥;S1; µ, ζ1/ν

2
)

Γb

Γ̄b

Γ̄a

Γa

Figure 2.5: Diagrammatic representation of the Fierz decomposition of the hadronic tensor

at tree level. Left: The broken lines are used to separate the hard interaction from the

definition of the quark-quark correlation function. Right: The Fierz decomposition where

Γi represent the operators which give rise to the parton densities while Γ̄i represent the

operators which enter into the hard function.
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Using the definition of the unsubtracted hard function, we can obtained the subtracted

hard function through multiplicative renormalization as

Ĥ(Q;µ) = Z(Q;µ)H(Q;µ) +O(α2
s) , (2.60)

where the divergences are contained in the multiplicative renormalization factor Z(Q;µ).

This allows us to obtain the subtracted hard functions

H(Q;µ) = 1 +
αsCF

2π

[
−L2

Q − 3LQ +
7π2

6
− 8

]
, (2.61)

and the multiplicative renormalization factors

Z(Q;µ) = 1 +
αsCF

2π

[
− 2

ϵ2
− 3

ϵ
− 2LQ

ϵ

]
. (2.62)

By exploiting the scale invariance of the hard function, we can obtain the evolution equation

∂H (Q;µ)

∂lnµ
= Γµ

H(Q;µ)H (Q;µ) , (2.63)

Γµ
H(Q;µ) = − 1

Z(Q;µ)

∂

∂lnµ
Z(Q;µ) . (2.64)

where this evolution equation holds to all orders. At NLO, the only non-vanishing contribu-

tion enters from taking the Z which is being acted on in the derivative to NLO. The explicit

one loop expression for the hard anomalous dimension is then given by

ΓH(Q;µ) = −αs (µ)CF

π

(
2LQ + 3

)
. (2.65)

This expression is often re-written in terms of the cusp and non-cusp anomalous dimensions,

Γcusp and γV , as

ΓH(Q;µ) = Γcusp(αs)ln

(
Q2

µ2

)
+ γV (αs) , (2.66)

where the anomalous dimensions can organized by the number of loops as

Γcusp(αs) =
∞∑

n=1

Γn−1
(αs

4π

)n
γV (αs) =

∞∑

n=1

γVn−1

(αs

4π

)n
(2.67)
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where Γ0 = 4CF , and γ
V
0 = −6CF . In the appendix of this chapter, we include these anoma-

lous dimensions up to three loops. To obtain the expression for the anomalous dimension, I

have related the bare and renormalized strong coupling constants at LO through the relation

αs(µ)

(
µ2eγE

4π

)ϵ

= αs . (2.68)

Using the definition of the hard anomalous dimension, we can solve for the evolution of the

hard function as

H(Q;µ) = H(Q;µQ) exp

(∫ µ

µQ

dµ′

µ′
Γµ
H (Q;µ′)

)
. (2.69)

Now please note that the logarithms LQ can destroy the convergences of a perturbative

sum. However, by solving the renormalization group equations, we introduce the auxiliary

scale µQ, which can be anything. If we take µQ = Q then these logarithms in H(Q;µQ)

go to zero. The large logarithms with argument µ/Q are then ‘resummed’ in the Sudakov

exponential. I would like to note however at this point, that there is a subtlety associated

with the organization of the anomalous dimension. At one loop, we saw the appearance of

the term αsln(Q
2/µ2). If µ is taken to be largely different than Q, than these logarithms

can grow to be large. As a result, the larger contribution for the anomalous dimension

will come from the term containing Γcusp. For this reason, it is conventional to take Γcusp

to be one order higher than γV . Upon using the two loop expression for Γcusp, we reach

an accuracy of next-to-leading order (NLO) and next-to-leading-log (NLL). In general the

number of Ns that enter into logarithmic resummation is the same as the order of the non-

cusp anomalous dimension. An interesting thought is how does the perturbative accuracy of

the resummation relate to the perturbative accuracy of the fixed order contributions, such as

the log independent terms in hard contribution. To demonstrate this comparison, consider

that at LL we resum contributions which go like αm
s ln

m+1(Q2/µ2) > αs, at NLL we resum

contributions which go like αm
s ln

m(Q2/µ2) ∼ α0
s, and finally at NNLL we resum contributions

which go like αm
s ln

m−1(Q2/µ2) ∼ αs. Therefore to match the perturbative accuracy of NLO,

it is conventional to work at NLO+NNLL accuracy.
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∑
b

Φ
(
x,k⊥,S; µ, ζ/ν2

)

Γa

Γ̄b

Γb

+

Φ
(
x,k⊥,S; µ, ζ/ν2

)

Γa

Γ̄b

Γb

+h.c.

Figure 2.6: The graphs for the TMD PDFs at NLO. The upper part of the broken line

represents the perturbative contribution to the one loop expression while the lower portion

represents the un-renormalized TMD PDF. The ⊗ represents the Wilson line for the TMD

PDFs while the second term on the contains a hermitian conjugate.

2.5.4 Collinear Contributions

To obtain the anomalous dimensions of the TMD PDF, we must obtain the UV divergences

associated with the graphs in Fig. 2.6. We note that while there are additional graphs that

contribute to this function, they all vanish in dimensional regularization. The graph on

the right side has a hermitian conjugate and these two graphs emerge from the Wilson line

associated with the collinear quark scattering against the anti-collinear gluon field from the

other incoming hadron. The explicit expression for these graphs in momentum space are

f̂ (x, k⊥;µ, ζ1/ν) = −g2sCF

(
µ2eγE

4π

)ϵ ∫
d2p⊥

∫
dx′

x′
f (x′, p⊥;µ, ζ1/ν)

∫
ddl

(2π)d
eil⊥·b

δ
(
(x− x′)P+ + l+

)
δ2 (p⊥ − k⊥ − l⊥) Tr

[
x′
/̄n

4
γµ

/k

k2
/n

2

(
/k

k2
γµ + 2

nµ

n · l

)]
(2π)δ

(
l2
)
.

(2.70)

In this expression, the momentum k represents the momentum of the quark entering the

hard process and is given by

kµ = (p− l)+
n̄µ

2
+ (p− l)−

nµ

2
− lµt − lµ⊥ϵ (2.71)

where l is the momentum of the radiated gluon while p is the momentum of the incoming

quark and the ϵ subscript on lµ⊥ϵ denotes that the momentum is in a d − 4 direction in
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dimensional regularization. Furthermore, x′ is the momentum fraction of the incoming quark

relative to the parent hadron while x is the momentum fraction of the outgoing quark. I

would like to note that since the observable is sensitive to the scale Q, the cross section

is sensitive to the value of x as a result, to calculate this distribution, I have inserted the

δ function in x. Additionally, since the observable is sensitive to q⊥, I have inserted a δ

function which is sensitive to the generated transverse momentum. These δ functions are

known as ‘measurement functions’ since their appearance occurs due to the sensitivity of

the measurement. Additionally, I would like to point out that besides the δ function in the

transverse momentum, these graphs are exactly the ones that enter into the expression for

DGLAP evolution.

If we are interested in matching the TMD onto a collinear PDF, we can take on the right

hand side

funsub
(
x′, p⊥;µ, ζ1/ν

2
)
= f(x′;µ) δ2 (p⊥) . (2.72)

Performing the integration over p⊥, we obtain

f̂ (x, k⊥;µ, ζ1/ν) = −g2sCF

(
µ2eγE

4π

)ϵ ∫
dx′

x′
f (x′;µ)

∫
ddl

(2π)d
eil⊥·b

δ
(
(x− x′)P+ + l+

)
δ2 (k⊥ + l⊥) Tr

[
x′
/̄n

4
γµ

/k

k2
/n

2

(
/k

k2
γµ + 2

nµ

n · l

)]
(2π)δ

(
l2
)
. (2.73)

These types of calculation provide two valuable information for two separate contributions

to the cross section. The UV divergences provide information for the evolution of the TMDs.

The finite and IR parts of these graphs provide information for how the TMDs are matched

onto collinear PDFs. However, to perform the full matching, I would also need to consider

gluon to quark diagrams.

As in the case for the cross section, the convolution integral on the right-hand side of

this expression is simplified by working in b-space.

f̂ (x, b;µ, ζ1/ν) = −g2sCF

(
µ2eγE

4π

)ϵ ∫
dx′

x′
f (x′;µ)

∫
ddl

(2π)d
eil⊥·b

× δ
(
l+ − (1− x̂)

√
ζ1

)
Tr

[
x′
/̄n

4
γµ

/k

k2
/n

2

(
/k

k2
γµ + 2

nµ

n · l

)]
(2π)δ

(
l2
)
. (2.74)

30



In this expression, we have introduced x̂ = x/x′ and the Collins-Soper scale ζ1 = (x′P+)
2
.

After performing the integration, we are left with

f̂(x, b;µ, ζ1/ν) =
αsCF

2

(µ2eγE)
ϵ

Γ (1− ϵ)
csc(πϵ)

∫
dx′

x′
f(x′;µ) (2.75)

×
[
(1− ϵ) (1− x̂) +

2x̂

(1− x̂)

](
b2

4

)ϵ

.

At this point, we can see that a divergence occurs where x′ = x, and therefore this divergence

occurs in the infrared limit of l+. Because this divergence is in the plus direction, these are

known as ‘rapidity divergences’. As in the case of the factorization of the cross section, IR

divergences indicates the presence of an unaccounted for mode. Namely, this mode must

have a scaling lµ ∼ Q (λ, λ, λ), which is strikingly similar to the soft contribution but with

a higher invariant mass. In the next section, we will provide a physical interpretation for

this mode. For this section, we will simply acknowledge the presence of this mode and

discuss regularizing the l+ integral. While in principle this integration can be performed by

introducing a hard cutoff, this would lead to a Wilsonian RGE for the rapidity. In Ref. [62],

a regularization procedure was introduced which emulates the characteristics of dimensional

regularization. The procedure outlined in that paper originates by noting that the x̂ → 1

issue occurs only from the Wilson line interaction. The authors then replaced the Wilson

lines with

Wn(x) →
∑

perms

exp

[
− gω2

n · P
|2Pg 3|−η
ν−η

n · An

]
, (2.76)

where ω acts as a coupling strength between the Wilson line and the gluon, ν acts as a cutoff

scale similar to µ, η is a regulator, and Pg 3 and n · P are derivative operators in the z and

plus directions, respectively.

Using this regularization procedure, the integral becomes

f̂(x, b;µ, ζ1/ν) =
αsCF

2

(µ2eγE)
ϵ

Γ (1− ϵ)
csc(πϵ)

∫
dx′

x′
f(x′;µ) (2.77)

×
[
(1− ϵ) (1− x̂) +

2x̂ω2

(1− x̂)1+η

(
ν

ζ1

)η](
b2

4

)ϵ

.
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To perform the integration, we use the relation

(1− x̂)−1−η = −1

η
δ (1− x̂) +

1

(1− x̂)+
+O (η) . (2.78)

The plus distribution can then be related to the splitting kernel and the expression for the

TMD PDF becomes

f̂unsub
(
x, b;µ, ζ1/ν

2
)
=
αsCF

2π

∫
dx′

x′
f (x;µ)

[
−
(
L+

1

ϵ

)
Pqq (x̂) (2.79)

+

[
2ω2

η
L+

2ω2

ηϵ
+
ω2

ϵ
Lζ1 +

3

2ϵ

]
δ (1− x̂)

+ LLζ1 δ (1− x̂) +
3

2
Lδ (1− x̂) + (1− x̂)

]
.

The top line of this expression contains the IR divergences, the second line contains the

UV divergences, and the third line contains the finite parts. Notice that in the second

line, we have the appearance of a double pole. This double pole is associated with a mode

at sufficiently small rapidity but with a large invariant mass. In this expression, we have

introduced the logarithms

L = ln

(
µ2

µ2
b

)
, µb =

2e−γE

b
, Lζ1 = ln

(
ν2

ζ1

)
. (2.80)

We see from the one loop expression that the scale that enters into the L term goes like

lnbµ in b-space. In momentum space, this will result in logarithms which go like lnµ/q⊥, which

can be very large and spoil the convergence of the perturbative cross section. Additionally,

we see the appearance of the Lζ1 logarithms. Analogous to the case for the hard function,

we can perform resummation of these logarithms through a multiplicative renormalization

procedure. This multiplicative procedure can be thought of as performing an all order

resummation of the ladder diagrams. To perform this procedure we write

f̂unsub(x, b;µ, ζ1/ν
2) =

[
Z ⊗ funsub

] (
x, b;µ, ζ1/ν

2
)

(2.81)

[A⊗B]
(
x, b;µ, ζ1/ν

2
)
=

∫ 1

x

dx′

x′
A (x′ . . . ) B (x̂, . . . ) , (2.82)
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where . . . refers to additional dependence. From this expression, we can exploit the scale

invariance of the bare TMD PDF to obtain the evolution equations
[
Z ⊗ ∂funsub

∂lnµ

] (
x, b;µ, ζ1/ν

2
)
= −

[
∂Z

∂lnµ
⊗ funsub

] (
x, b;µ, ζ1/ν

2
)
, (2.83)

[
Z ⊗ ∂funsub

∂lnν

] (
x, b;µ, ζ1/ν

2
)
= −

[
∂Z

∂lnν
⊗ funsub

] (
x, b;µ, ζ1/ν

2
)
. (2.84)

We see from these expressions that since the TMDs require a renormalization and rapidity

scale, that this leads to a coupled differential equation for the evolution. The evolution in ν

is known as the Collins-Soper equation. Additionally, we note that due to the convolution,

the ∂f/∂lnµ and ∂f/∂lnν terms cannot be isolated to all orders in perturbation theory, as we

had done for the hard function. However, at NLO this can easily be inverted by obtaining the

expressions for the renormalized TMD PDF and the multiplicative renormalization factor,

which are given by

Z
(
x′, b;µ, ζ1/ν

2
)
= δ (1− x′) +

αsCF

2π

[
2ω2

η
L+

2ω2

ηϵ
+
ω2

ϵ
Lζ1 +

3

2ϵ

]
δ (1− x′) (2.85)

funsub
(
x, b;µ, ζ1/ν

2
)
= f (x;µ)−

∫
dx′

x′
f (x′;µ)

αsCF

2π

(
L+

1

ϵ

)
Pqq (x̂) (2.86)

+
αsCF

2π

∫
dx′

x′
f (x′;µ)

[
LLζ1 δ (1− x̂) +

3

2
Lδ (1− x̂) + (1− x̂)

]
.

The evolution equations become at one loop

∂funsub (x, b;µ, ζ1/ν
2)

∂lnµ
= Γc

µ(µ, ν)f
(
x, b;µ, ζ1/ν

2
)
, (2.87)

∂funsub (x, b;µ, ζ1/ν
2)

∂lnν
= Γc

ν(µ) f
(
x, b;µ, ζ1/ν

2
)
. (2.88)

Γc
µ(µ, ν, ζ) =

αs(µ)CF

π

(
Lζ1 +

3

2

)
Γc
ν(µ) =

αs(µ)CF

π
L . (2.89)

To obtain this contribution, I have written ω as a bare quantity that is related to a renor-

malized ω as

ω2 = νηω2(ν) . (2.90)
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By solving these evolution equations, we are performing a resummation at all orders for

a single emission. This is why in the expansion for the Wilson line, we expanded only to

first order. By solving the renormalization group evolution equations, we are summing these

contributions to all orders. The solution to these equations is

funsub
(
x, b;µ, ζ1/ν

2
)
= f

(
x, b;µc, ζ1/ν

2
c

)
exp

[∫ µ

µc

dµ′

µ′
Γc
µ(µ, ν)

](
ν

νc

)Γc
ν(µ)

. (2.91)

We see from the expression for the renormalized f , that logarithms, L = ln (µ2
c/µ

2
b) and

Lζ1 = ln (ν2c /ζ1) enter. Analogous to the case for the hard function, we can evaluate the

distribution on the right hand side at any scales µc, and νc and evolve the distribution up

to the renormalization and rapidity scales µ and ν. To minimize the contributions of the

logarithms in the perturbative expressions, we could take µc = µb and ν
2
c = ζ1. Furthermore

we can turn our attention to the IR divergence and the finite part. The general procedure

is to write the UV finite TMD PDF in terms of the UV finite PDF through the relation

funsub
(
x, b;µ, ζ1/ν

2
)
=
[
C ⊗ funsub

] (
x, b;µ, ζ1/ν

2
)
. (2.92)

We then expand the TMD PDF and PDF to NLO. Upon performing this analysis, one finds

that the IR divergences of the TMD PDF and PDF are the same at NLO. We can then

absorb these IR divergences into the definition of the collinear PDF and obtain a finite and

renormalized TMD PDF. We also recover the one loop coefficient function for quark to quark

splitting

Cq/q′
(
x, b;µ, ζ1/ν

2
)
= δq/q′δ (1− x)

+ δq/q′
αsCF

2π

[
LLζ1 δ (1− x) +

3

2
Lδ (1− x) + (1− x)

]
.

Cq/g(x, b;µ, ζ1/ν
2) =

αs

π

[
x(1− x)TF − 1

2
Pq←g(x)L

]
.

In the second line, I have included the one loop matching coefficient for quarks matched onto

gluons for completeness.
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nµ nµ

n̄µn̄µ

Figure 2.7: The graphs which provide the soft contributions to the cross section. The two

graphs on the left have hermitian conjugates.

2.5.5 Soft Contribution

In the previous section, I demonstrated that an infrared rapidity divergence enters into the

collinear distributions and discussed that this divergence indicated that a new soft mode was

contributing to the cross section. The scaling of this mode was found to be lµ ∼ Q (λ, λ, λ)

while the scaling of the traditional soft gluons is lµ ∼ Q (λ2, λ2, λ2). To differentiate these

two contributions, we will call the gluons which scale as lµ ∼ Q (λ, λ, λ) soft and the gluons

which scale as lµ ∼ Q (λ2, λ2, λ2) ultra soft.

The ultra-soft contribution to the cross section can be obtained by considering ultra-soft

gluon emissions from the incoming quarks. The interaction of a collinear quark with a soft

gluon is given by

−i
(
/p+ /l

)

(p+ l)2
(−igγµta) ξc (p) = −gta n̄

µ

n̄ · l ξc (p) +O (λ) , (2.93)

which is an eikonal vertex, which is represented graphically by a gluon attaching to a double

line. Similar Feynman rules can be obtained through the interaction with anti-collinear

quarks and anti-quarks. By considering all possible interactions of the soft gluons with the

incoming quarks, you obtain the graphs in Fig. 2.7. In those graphs, the left two diagrams

contain hermitian conjugates. The right two diagrams vanish since n · n = n̄ · n̄ = 0.

Furthermore, the first and second integrals are shown in the appendix to be proportional

to scaleless integrals and therefore vanishes in dimensional regularization. Thus there is no

ultra-soft contribution to the cross section. This behavior is a consequence of the fact that the
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observable is not in any way sensitive to the dynamics of the ultra soft gluon radiation. The

observable is sensitive to y and Q2, and therefore gains access to x1, the collinear component

of the momenta which scales Qλ0. The observable also has sensitivity to q⊥ which scales as

Qλ. However, the dynamics of the ultra soft gluons scale as λ2. These soft gluons are then

also integrated out and give a zero contribution above tree level.

In the case of the soft gluons, we can see that the observable will be sensitive to the

transverse momentum of the soft gluons, which scales the same as q⊥. Let’s first begin

by introducing the Wilson lines for these soft gluons. These Wilson lines will enter an an

analogous way to the collinear Wilson lines as effective vertices. Their precise expressions in

position space are

Sn =
∑

perms

exp

[
− gω

n · P
|2Pg 3|−η/2
ν−η/2

n · An

]
(2.94)

Applying the Feynman rules to the graphs in Fig. 2.7, we obtain the explicit expression

for the soft function contribution

Ŝ(λ⊥) = 2g2s

(
µ2eγE

4π

)ϵ ∫
ddl

(2π)d
(2π) δ

(
l2
)
(−gµν) δ2 (λ⊥ − l⊥)

nµn̄ν

n · l n̄ · l . (2.95)

After carefully considering this integral, it can be seen that there are two sources of UV

rapidity divergences associated with l+ → ∞ and l− → ∞. These divergences represent

the contamination of the collinear gluons into the soft region. Replacing the Wilson line

Feynman rules with the regularized ones, we obtain

Ŝ(λ⊥) = 2g2s ω
2

(
µ2eγE

4π

)ϵ ∫
ddl

(2π)d
(2π) δ

(
l2
)
(−gµν) δ2 (λ⊥ − l⊥)

nµn̄ν

n · l n̄ · l

∣∣∣∣
2lz
ν

∣∣∣∣
−η

. (2.96)

The exact details for the calculation are in the appendix of this section. After performing

the integration, Fourier transforming into b-space and expanding in η and ϵ, we are left with

Ŝ(b;µ, ν) = 1 +
αsCF

2π
ω2

[
4

η

(
−1

ϵ
− L

)
+

2

ϵ2
− 2

ϵ
Lν − 2LLν − L2 − π2

6

]
. (2.97)

The intuition for the double divegences is the same as for the hard and collinear functions.

The double poles ηϵ are associated with large rapidity modes with high invariant mass while
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the ϵ2 poles are associated with small rapidity modes with a large invariant mass. To obtain

the evolution of the soft function, we perform the same procedure that was done for the

TMD PDF. Namely, we write

Ŝ(b;µ, ν) = Z(b;µ, ν)S(b;µ, ν) , (2.98)

where S is the renormalized soft function. Exploiting the scale invariance of the bare soft

function. The evolution equations become

∂S(b;µ, ν)

∂lnµ
= Γs

µS(b;µ, ν)
∂S(b;µ, ν)

∂lnν
= Γs

νS(b;µ, ν) . (2.99)

The full exponentiation of the Wilson line is obtained by solving these renormalization group

evolution equation. The anomalous dimensions for the soft function are defined as

Γs
µ(b;µ, ν) = − 1

Z(b;µ, ν)

∂Z(b;µ, ν)

∂lnµ
= 2

αs(µ)CF

π
Lν , (2.100)

Γs
ν(b;µ) = − 1

Z(b;µ, ν)

∂Z(b;µ, ν)

∂lnµ
= −2αs(µ)CF

π
L . (2.101)

Solving the evolution equations, the soft function can be written as

S(b;µ, ν) = S(b;µs, νs) exp

[∫ µ

µs

dµ′

µ′
(
Γs
µ(b;µ, ν)

)]( ν
νs

)Γs
ν(b;µ)

. (2.102)

To minimize the contributions of the large logarithms, we can take µs = νs = µb.

2.5.6 Renormalization Group Consistency

In formulating the cross section, we have introduced two scales µ and ν, which are associated

with factorizing off the IR from the UV physics, and associated with factorizing the collinear

from the soft physics. However, this separation is simply an organization tool and does not

represent the underlying physics of the interactions. If we were to decrease µ as an example,

a sample of the contributions which were previously defined as soft and collinear would be

re-labeled as hard. Nevertheless, the contributions to the sum of total diagrams entering into
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the cross section would remain unchanged. The renormalization group consistency condition

is then

dσ

dlnµ
=

dσ

dlnν
= 0 . (2.103)

Since the cross section is related to the functions H, S, fq and fq̄ through a convolution, the

requirement for RG consistency can be written as

∑

i

ΓΘi
µ = 0

∑

i

ΓΘi
ν = 0 , (2.104)

where θi = fq, fq̄, H, and S. Summing twice the contribution of Eq. 2.89 with Eqs. 2.100,

2.101, and 2.66, we one can easily show that the renormalization group consistency conditions

holds since ζ1ζ2 = Q4.

2.5.7 Resummed Cross Section

In the literature, it is common to define ‘proper TMDs’ through the relation

f (x, b;µ, ζ1) = funsub
(
x, b;µ, ζ1/ν

2
)√

S(b;µ, ν) , (2.105)

where one can show that the product of these contributions no longer depends on the rapidity

scale ν. The idea behind such a combination is that one hemisphere of the soft radiation is

absorbed into each of the TMD PDFs so that there is no need for a rapidity cutoff scale.

From our expression of the TMD PDF and the soft functions, we can define the proper TMD

PDF as

fTMD (x, b;µ, ζ1) = f
(
x, b;µc, ζ1/ν

2
c

) √
S(b;µs, νs) (2.106)

× exp

[∫ µ

µc

dµ′

µ′
Γc
µ(µ, ν)

](
ν

νc

)Γc
ν(µ)

exp

[∫ µ

µs

dµ′

µ′

(
1

2
Γs
µ(b;µ, ν)

)](
ν

νs

) 1
2
Γs
ν(b;µ)

.

We note that the scales µc and µs both minimize the logarithms in the perturbative ex-

pansions for µc = µs = µb. It is common in the literature to then take µc = µs. After

introducing the expressions for the anomalous dimensions and the fixed order contributions,

the expression for the proper TMD is given by

fTMD (x, b;µ, ζ1) =
[
CTMD ⊗ f

]
(x, b;µ, ζ1) (2.107)
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× exp

{∫ µ

µc

dµ′

µ′
αs (µ

′) CF

π

[
ln

(
µ′2

ζ1

)
+

3

2

]
+
αs(µ)CF

π
L ln

(
νs
νc

)}
.

where the coefficient function is given by

CTMD
q/q′ (x, b;µ, ζ1) = δq/q′δ (1− x)

+ δq/q′
αsCF

2π

[
L ln

(
µ2

ζ1

)
δ (1− x)− 1

2
L2δ (1− x) +

3

2
Lδ (1− x) + (1− x)− π2

12
δ (1− x)

]
.

Using the properly defined TMDs, the expression for the resummed cross section becomes

dσ

dQ2 dy d2q⊥ dΩ
=

α2
em

4sQ2

(
1 + cos2θ

)
HDIS(Q;µQ)

∑

q

e2q

∫
bdb

(2π)
J0 (b q⊥) (2.108)

[
CTMD ⊗ f

]
(x1, b;µc, ζ1)

[
CTMD ⊗ f

]
(x2, b;µc, ζ2) exp {−Spert (b;µc, µQ, νs, νc)} .

In this expression, we have introduced the perturbative Sudakov for the cross section which

is defined as

Spert (b;µc, µQ, ζi, ζf ) =

∫ µQ

µc

dµ′

µ′

[
Γcusp (µ

′) ln

(
ζ1
µ′2

)
+ γV (µ′)

]
+D(b;µc)ln

(
ζ1
ζi

)
,

(2.109)

where D(b;µc) is the Collins-Soper kernel, which is also known as the rapidity anomalous

dimension. The expressions along with the organization in powers of αs is given in the

appendix of this chapter.

2.5.8 Non-perturbative contributions

In the previous section, I outlined a procedure for factorizing cross section and calculating the

perturbative contributions. To perform full tomography however, we must also address the

non-perturbative contributions. To study how non-perturbative contributions related to the

cross sections, it is instructive to study Eq. 2.108, where the range b ≥ 0 is integrated over.

We note in that expression that the logarithms are minimized by taking µc = µb = c/b. At

small b, the scale µb becomes perturbative. As a result, the non-perturbative Sudakov evolves

the distribution from µb to µQ, both of which are perturbative. However, at sufficiently large

b, the scale µb becomes non-perturbative. The intuitive understanding of factorized cross
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sections in b-space is that the small b physics is dominated by perturbative contributions

while the large b physics is dominated by the non-perturbative contributions.

The non-perturbative contributions to the cross sections enter from three sources. The

first source that I will address are those stemming from the collinear distributions. We saw

in the previous section that TMDs are matched onto collinear distributions. As a result,

these non-perturbative collinear contributions must be accounted for. These PDFs can in

principle be used from previous global analyses within a purely collinear framework. We note

that within this method, the main PDFs which are available are the unpolarized PDF f , the

helicity PDF g, and the transversity PDF h. As I will demonstrate in this thesis however,

there are several TMD PDFs which do not match onto either any of these mentioned PDFs.

In this case, the TMD PDF of interest will be matched onto a collinear PDF in the usual

way

φ (x, b;µ, ζ) = [Cφ ⊗ ϕ] (x, b;µ, ζ) , (2.110)

where φ is a TMD PDF and ϕ is a collinear PDF. In this case, we would need to param-

eterize ϕ and obtain its behavior in a global analysis. Typically this is done by taking a

parameterization

ϕf (x) ∼ Nfx
αf (1− x)βf , (2.111)

and fitting the parameters Nf , αf , and βf .

The second source of non-perturbative contributions that I will discuss enters due to

the intrinsic transverse momentum of the quarks. We discussed in the previous chapter

that the solutions of the CSS equations account for the transverse momentum which is

generated through perturbative radiation. The so-called ‘intrinsic’ transverse momentum is

the transverse momentum which is generated through non-perturbative radiation and tends

to be around ΛQCD. While such a transverse momentum seems quite small, I’ll note that

in Z boson production in Drell-Yan collisions, the average transverse momentum which is

produced perturbatively tends to be close to 3 GeV, while for collisions with smaller Q, the

perturbative transverse momentum is much smaller. This intrinsic transverse momentum
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is accounted for through the ad-hoc introduction of an intrinsic non-perturbative Sudakov

factor into the b dependent integrand for the Drell-Yan collisions. The expression for the

intrinsic non-perturbative Sudakov is given by

exp
[
Sint
NP(x1, x2, b, Q,Q0)

]
= exp

[
−gq(x1, b2, Q,Q0)− gq(x2, b

2, Q,Q0)
]
. (2.112)

The function gq serves to smear the transverse momentum of the incoming quark in momen-

tum space and is usually parameterized so that the non-perturbative Sudakov resembles a

Gaussian or exponential distribution.

The final source of non-perturbative contributions to the cross section that I will discuss

originates from the evolution equations. If we study the anomalous dimensions of the soft and

collinear distributions, we see that the rapidity anomalous dimensions scale as L = ln (µ2/µ2
b).

From this behavior, we see that if b grows large, that the rapidity anomalous dimension

becomes non-perturbative. This behavior is an indication that the rapidity evolution of the

TMDs contains a non-perturbative contribution. To account for effect the non-perturbative

rapidity evolution Sudakov is introduced

exp [Srap
NP(x1, x2, b, Q,Q0)] =

[
−1

4
gK(b)ln

(
ζ1ζ2
Q4

0

)]
. (2.113)

This Sudakov provides information for the non-perturbative evolution from the initial rapid-

ity scale Q0 to the hard rapidity scale Q.

To implement the Sudakov contributions into the cross section, we note that the pertur-

bative Sudakov terms contain contributions associated with generating transverse momenta

through perturbative radiation. Up to power corrections of order q⊥/Q, the contributions

of the perturbative and non-perturbative momenta should be additive and the resulting

Sudakov for the system becomes

Spert (b;µc, µQ, νs, νc) → Spert (b;µc, µQ, νs, νc) + SNP(x1, x2, b, Q,Q0) , (2.114)

SNP(x1, x2, b, Q,Q0) = Srap
NP(x1, x2, b, Q,Q0) + Sint

NP(x1, x2, b, Q,Q0) , (2.115)
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Conventionally, we can define the non-perturbative contribution to each TMD as

Sf
NP(x1, b, Q0, Q) = −gq

(
x1, b

2, Q,Q0

)
− 1

4
gK(b)ln

(
ζ1
Q2

0

)
, (2.116)

Sf
NP(x2, b, Q0, Q) = −gq

(
x2, b

2, Q,Q0

)
− 1

4
gK(b)ln

(
ζ2
Q2

0

)
. (2.117)

In this paper, I will always take gq to be independent of x so it’s depenence will be dropped

from this point forward.

2.6 Appendix

2.6.1 TMD evolution ingredients

The following expansions, numbers, etc, can be found in the 2013 PDG [63]. First of all, we

need the expansion of the strong coupling in terms of ΛQCD:

αs(µ)

4π
=

1

β0x
− β1
β3
0

lnx

x2
+
β2
1

β5
0

ln2x− lnx− 1

x3
+
β2
β4
0

1

x3
+ · · · , (2.118)

where x = ln
(
µ2/Λ2

QCD

)
, and the coefficients of the β-function are given as

β0 =
11

3
CA − 4

3
TFnf , (2.119)

β1 =
34

3
C2

A − 20

3
CATFnf − 4CFTFnf , (2.120)

β2 =
2857

54
C3

A +

(
2C2

F − 205

9
CFCA − 1415

27
C2

A

)
TFnf

+

(
44

9
CF +

158

27
CA

)
T 2
Fn

2
f . (2.121)

Since we want the resummation up to NNLL, we take the expansion of αs with β0, β1 and

β2. Depending on the number of active flavours, the value of ΛQCD changes. For nf = 4 we

have ΛQCD = 0.297 GeV, and for nf = 5 we have ΛQCD = 0.214 GeV. The pole-mass for

bottom-quark is mb = 4.7 GeV.

The rapidity anomalous dimension, Collins-Soper kernel, is defined perturbatively as

D(b;µ) =
∞∑

n=1

n∑

k=0

d(n,k)
(αs

4π

)n
Lk , (2.122)

42



where the coefficients up to NNLL are given by

d(1,0) =0 , d(1,1) = Γ0/2 ,

d(2,0) =CACF

(
404

27
− 14ζ3

)
− 112

27
CFTFnf ,

d(2,1) =Γ1/2 , d(2,2) = Γ0β0/4 . (2.123)

On the other hand, in order to describe the perturbative TMD evolution, we want to ana-

lytically solve the integral

∫ µU

µL

dµ̄

µ̄

(
γV + Γcusp ln

µ2
U

µ̄2

)
, (2.124)

where the coefficients of the perturbative expansions of the anomalous dimensions can be

found in the below.

2.6.2 Integration at NLL accuracy

For this order we take γ0, Γ0, Γ1, β0 and β1. Thus we have:

CNLL
γ0

=

∫ µU

µL

dµ̄

µ̄
γ0
αs(µ̄)

4π

=
γ0
2β0

∫ xU

xL

dx

(
1

x
− β1
β2
0

lnx

x2

)

=
γ0
2β0

[
lnx− β1

β2
0

(−1− lnx

x

)]∣∣∣∣
xU

xL

(2.125)

CNLL
Γ0

=

∫ µU

µL

dµ̄

µ̄
Γ0
αs(µ̄)

4π
ln
µ2
U

µ̄2
(2.126)

=
Γ0

2β0

∫ xU

xL

dx

(
1

x
− β1
β2
0

lnx

x2

)
(xU − x)

=
Γ0

2β0

[
−x+ xU lnx−

β1
β2
0

(
−xU
x

− xU lnx

x
− ln2x

2

)]∣∣∣∣
xU

xL

CNLL
Γ1

=

∫ µU

µL

dµ̄

µ̄
Γ1

(
αs(µ̄)

4π

)2

ln
µ2
U

µ̄2
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=
Γ1

2β2
0

∫ xU
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dx

(
1

x
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β2
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x2

)2

(xU − x)

=
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[
−xU
x

− lnx− 2
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(
1

x
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4x2
+

lnx

x
− xU lnx
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)
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+
β2
1

β4
0

(
1

4x2
− 2xU

27x3
+

lnx

2x2
− 2xU lnx

9x3
+

ln2x

2x2
− xU ln

2x

3x3

)]∣∣∣∣
xU
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The final result is then

∫ µU

µL

dµ̄

µ̄

(
γV + Γcusp ln

µ2
U

µ̄2

)
= CNLL

γ0
+ CNLL

Γ0
+ CNLL

Γ1
. (2.128)

Be careful with the number of active flavors. The number of flavors for the xU that appears

inside the integrand is fixed and depends on the value of µU . However, depending on the

hierarchy between µL, µU and mb we might have to split the integral in several pieces, and

in that case, when we substitute the limits of the integral, xL and xU , they would have

different numbers of active flavors (still the xU that already appeared in the integrand before

the substitutions just depends on the value of µU).

2.6.3 Integration at NNLL accuracy

For this order we take γ0, γ1, Γ0, Γ1, Γ2, β0, β1 and β2. Thus we have:

CNNLL
γ0

=

∫ µU

µL

dµ̄

µ̄
γ0
αs(µ̄)

4π
(2.129)

=
γ0
2β0

∫ xU

xL

dx

(
1

x
− β1
β2
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lnx

x2
+
β2
1

β4
0

ln2x− lnx− 1

x3
+
β2
β3
0

1

x3

)

=
γ0
2β0

[
lnx− β1

β2
0

(−1− lnx

x

)
+
β2
1

β4
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(
1

2x2
− ln2x

2x2

)
+
β2
β3
0

(−1

2x2

)]∣∣∣∣
xU

xL

CNNLL
γ1

=

∫ µU

µL

dµ̄

µ̄
γ1

(
αs(µ̄)

4π

)2
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=
γ1
2β2
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)
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CNNLL
Γ1

=

∫ µU

µL

dµ̄

µ̄
Γ1

(
αs(µ̄)

4π

)2

ln
µ2
U

µ̄2

=
Γ1

2β2
0

∫ xU

xL

dx

(
1

x
− β1
β2
0

lnx

x2
+
β2
1

β4
0

ln2x− lnx− 1

x3
+
β2
β3
0

1

x3

)2

(xU − x)

=
Γ1

2β2
0

[
−xU
x

− lnx+
β2
1

β4
0

(
1

4x2
− 2xU

27x3
+

lnx

2x2
− 2xU lnx

9x3
+

ln2x

2x2
− xU ln

2x

3x3

)

+
β4
1

β8
0

(
20000(5x− 4xU)ln

4(x)− 4000(25x− 24xU)ln
3(x)− 200(875x− 688xU)ln

2(x)

400000x5

+
20(5625x− 5248xU)ln(x) + 128125x− 100992xU

400000x5

)

+
β2
2

β6
0

(
1

4x4
− xU

5x5

)
− 2

β1
β2
0

(
1

x
− xU

4x2
+

lnx

x
− xU lnx

2x2

)

+ 2
β2
1

β4
0

(
9(3x− 2xU)ln

2(x) + 6xU ln(x)− 27x+ 20xU
54x3

)
+ 2

β2
β3
0

(
1

2x2
− xU

3x3

)

− 2
β3
1

β6
0

(
96(4x− 3xU)ln

3(x) + 72xU ln
2(x) + (324xU − 384x)ln(x)− 128x+ 81xU

1152x4

)

− 2
β1β2
β5
0

(
− xU
16x4

− xU ln(x)

4x4
+

1

9x3
+

ln(x)

3x3

)

+2
β2
1β2
β7
0

(
200(5x− 4xU)ln

2(x) + (480xU − 500x)ln(x)− 1125x+ 896xU
4000x5

)]∣∣∣∣
xU

xL

(2.132)
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The final result is then

∫ µU

µL

dµ̄

µ̄
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γV + Γcusp ln

µ2
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µ̄2

)
= CNNLL

γ0
+ CNNLL
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+ CNNLL
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+ CNNLL

Γ2
. (2.134)

2.6.4 Evolution of the Hard Matching Coefficient

The evolution of the hard matching coefficient CV , which is related to the usual hard function

as H = |CV |2, is given by

d

dlnµ
lnCV (Q

2/µ2) = γCV

(
αs(µ), ln

Q2

µ2

)
, (2.135)

γCV
= Γcusp(αs) ln

Q2

µ2
+ γV (αs) , (2.136)

where the cusp term is related to the evolution of the Sudakov double logarithms and the

remaining term with the evolution of single logarithms. The exact solution of this equation

is

CV (Q
2/µ2

f ) =CV (Q
2/µ2

i ) exp
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i ) exp
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(ᾱs)

]
, (2.137)
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where we have used that d/dlnµ = β(αs) d/dαs, where β(αs) = dαs/dlnµ is the QCD β-

function.

Below we give the expressions for the anomalous dimensions and the QCD β-function,

in the MS renormalization scheme. We use the following expansions:

Γcusp =
∞∑

n=1

Γn−1
(αs

4π

)n
, (2.138)

γV =
∞∑

n=1

γVn−1

(αs

4π

)n
, (2.139)

β = −2αs

∞∑

n=1

βn−1
(αs

4π

)n
. (2.140)

The coefficients for the cusp anomalous dimension Γcusp are

Γ0 =4CF ,

Γ1 =4CF

[(
67

9
− π2

3

)
CA − 20
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]
,
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+
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3
ζ3
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(
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3
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T 2
Fn

2
f

]
. (2.141)

The anomalous dimension γV can be determined up to three-loop order from the partial

three-loop expression for the on-shell quark form factor in QCD. We have

γV0 =− 6CF ,

γV1 =C2
F

(
−3 + 4π2 − 48ζ3

)
+ CFCA

(
−961

27
− 11π2

3
+ 52ζ3

)
+ CFTFnf

(
260

27
+

4π2

3

)
.

(2.142)
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CHAPTER 3

Global Analyses of the Spin-Dependent Proton

3.1 Introduction

So far I have established a procedure which can be used to perform quantum tomography in

an unpolarized hadron. In this Chapter, I will describe in details how we perform a global

analysis of the polarized structure of hadrons.

Intuitively you can think about a polarized hadron as containing two seas, one sea con-

sists of particles which are influenced by the introduction of the polarization and the other

sea consists of particles which are uncorrelated with the polarization. In experiments which

measure the spin-dependent structure of the proton, the aim is to remove the background

contributions from the uncorrelated sea. This is accomplished by measuring spin asymme-

tries, which are the difference between two cross sections with opposite spins. For the past

five decades, spin asymmetries have served as the experimental driving force for probing this

structure. In these early days, it was thought that spin asymmetries should be driven by

perturbative contributions, and as a result these spin asymmetries should be small. How-

ever, this contrasted with the experimental measurements which demonstrated large spin

asymmetries. To reconcile the spin asymmetries with QCD, it was demonstrated that the

relatively large spin asymmetries arise due to correlations between multiple partons, which

is naturally addressed in higher twist contributions to the cross section.

By far, the most experimentally and theoretically studied example of such an effect is the

Sivers asymmetry, in which an initial-state hadron is transversely polarized. The expression

for the cross section for a polarized hadron can be obtained by replacing the unpolarized
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TMD with the spin-dependent quark-quark correlation function

Φunsub
(
x,k⊥,S;µ, ζ/ν

2
)
=

(
f − ϵρσ⊥ k⊥ρS⊥σ

M
f⊥1T

)
/̄n

4
+ . . . . (3.1)

In this expression, the ellipsis represents other TMDs do not do not contribute to the Sivers

asymmetry. The second term contains the contribution of the Sivers function [64, 65], which

provides the distribution of unpolarized quarks in a transversely polarized hadron and is the

main topic of this chapter. An important aspect of the second term is that the prefactor

changes sign under time reversal. This can be readily seen by re-writing this term as

ϵρσ⊥ k⊥ρS⊥σ =
(
P̂ × k⊥

)
· S . (3.2)

Since QCD is invariant under time reversal, the partonic cross section must also be must

then also be time reversal odd. From this logic, in Ref. [66, 67] it was demonstrated that

time reversal odd partonic cross sections could be obtained by considering poles originating

from three parton correlations functions. For instance in Fig. 3.1, I have provided the par-

tonic processes for the Sivers asymmetry in Drell-Yan and Semi-Inclusive DIS. In a collinear

framework, the introduction of another gluon produces Wilson coefficient functions in the

OPE which are suppressed by ΛQCD/Q and thus enter at collinear twist-3. This three parton

correlation function is known as the Qiu-Sterman function. In a collinear limit, one needs

to consider two types of poles. The soft gluon poles occur where the additional gluon has

a Bjorken xg → 0 and the soft gluon attaches to an external parton. The hard gluon poles

occur where an internal propagators go on shell and xg ̸= 0. In a TMD framework, the

tree level hard contribution has no internal lines and as a result, the poles which generate

the spin asymmetry only occur in the limit that xg → 0. Due to this xg → 0 scaling, the

Sivers function can be treated as a two parton correlation function which is related to the

limit of the Qiu-Sterman function. This connection between the Sivers function and the

Qiu-Sterman function has important consequences for universality. It is important to note

that the poles enter into the partonic interaction are simply factors of ig. These factors are

commonly absorbed into the definition of the Sivers function to render the partonic contri-

bution time even while making the Sivers function time odd as a result. This absorption
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has causes the Sivers functions in Semi-Inclusive DIS and Drell-Yan to be opposite from one

another.

Figure 3.1: Top: Diagrams associated with the soft gluon pole contribution in the hard

diagram. Bottom: The Wilson line structure for Drell-Yan and Semi-Inclusive DIS.

A fundamental goal of the future Electron Ion Collider (EIC) [68] will be high precision

determination of of the Sivers function. Within the past several years, the field of TMDs

has been pushing for increased perturbative accuracy. In [69, 70] global extractions of the

unpolarized TMD PDFs and TMD FFs were performed from Semi-Inclusive DIS and Drell-

Yan data at leading order (LO) and next-to-leading logarithmic (NLL) accuracy. In [71]

the unpolarized TMD PDFs were extracted at next-to-next-to leading order (NNLO) and

next-to-next-to leading logarithm (NNLL) accuracy. In [72] the TMD PDFs were extracted

at NNLO+N3LL accuracy from Drell-Yan data. In [73] and [74], the TMD PDFs and

TMD FFs were extracted simultaneously from Semi-Inclusive DIS and Drell-Yan data at

NNLO+N3LL. Progress has also been made in understanding the predictive power of the

TMD factorization formalism in different kinematic regions [75, 76], and in matching with

the collinear factorization [77, 78, 79].

Prior to my analysis, the highest precision ever extraction of the Sivers function has been

51



at LO+NLL in [80, 81]. However, I will note that after my analysis an additional work was

performed at LO+N3LL accuracy in Refs. [82, 83]. In this chapter, I will discuss my work

where I performed the first and only extraction of the quark Sivers function at NLO+NNLL.

This analysis took into consideration for the first time the global set of experimental data,

which included Semi-Inclusive DIS at HERMES, COMPASS, and JLab, Drell-Yan lepton

pair at COMPASS, and W/Z production at RHIC. At HERMES, the Sivers function has

been probed by measuring both pion and kaon production in Semi-Inclusive DIS on a proton

target [5]. At COMPASS, the Sivers asymmetries have been measured in [84] for unidentified

charged hadron production from the proton target, with a re-analysis of this data in [6]. The

measurements with a deuteron target are presented in [4]. The Sivers function has also

been probed for a neutron target at JLab for pion production in [7]. To test the modified

universality prediction, Drell-Yan Sivers asymmetries have been measured at COMPASS [8]

for virtual photon (or lepton pair) production at relatively small energy scales of Q ∼ a few

GeV, as well as RHIC [9] for W and Z production at much large energy scales, Q ∼MW/Z .

Finally, after our paper was published multi-dimensional binning was performed in [85].

The rest of this chapter is organized as follows. In Sec. 3.2, I will summarize the relevant

TMD factorization formalism for Semi-Inclusive DIS and Drell-Yan processes. In Sec. 3.3,

I first discuss our non-perturbative parameterizations for the unpolarized TMD PDFs and

TMD FFs, and benchmark them with the Semi-Inclusive DIS hadron multiplicity and Drell-

Yan cross section data. I then present our non-perturbative parametrization for the Sivers

function, and discuss how we performed the DGLAP evolution of the Qiu-Sterman function.

In Sec. 3.4, I’ll present our fit results, where I’ll explore several different ways for performing

the fit. In Sec. 3.5 I provide predictions for Sivers asymmetry at the EIC. I conclude this

chapter in Sec. 3.6.

3.2 Formalism

In this section, I provide the TMD factorization formalism for the Sivers asymmetry in Semi-

Inclusive DIS, Drell-Yan and vector boson production. I’ll begin with Semi-Inclusive DIS in
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Sec. 3.2.1, while in Sec. 3.2.2 and 3.2.3 I’ll present the formalism for Drell-Yan lepton pair

and W/Z boson production, respectively.

3.2.1 Sivers Formalism in Semi-Inclusive DIS

The factorized cross section for Semi-Inclusive DIS can be obtained in a similar manner that

I demonstrated for Drell-Yan. In the appendix, I provide finer details of this calculation. In

this section however, I quote that the factorized cross section [86, 34]. To begin, let’s denote

the momenta and the spin vectors as e(ℓ) + p (P,S⊥) → e (ℓ′) + h (Ph) +X, where S⊥ is the

transverse spin vector of the polarized nucleon. As I discussed previously, when introducing

a spin a part of the distribution will be affected while another part will remain unchanged.

Therefore, the factorized cross section can be written as

dσ

dPS = σDIS
0

[
FUU + sin(ϕh − ϕs)F

sin(ϕh−ϕs)
UT

]
. (3.3)

In this expression σDIS
0 is the leading order (LO) electromagnetic scattering cross section

given by

σDIS
0 =

2πα2
EM

Q4

[
1 + (1− y)2

]
, (3.4)

where αEM is the electromagnetic fine structure constant. The function FUU is the spin-

independent structure function and F
sin(ϕh−ϕs)
UT is the spin-dependent one. We can see from

the expression for the spin-dependent structure function that there is a sinusoidal modulation

between the angles ϕh and ϕs, the azimuthal angles of Ph⊥produced hadron and the spin

of the parent hadron. This modulation originates from the prefactor attached to the Sivers

function in the quark correlation function.

The interaction between the quark and the electron is moderated through the exchange

of a virtual photon with momentum q = ℓ′ − ℓ with invariant mass −Q2 while the electron-

proton center of mass energy is denoted S. Using these kinematic variables, the we can

define the momentum fraction variables

xB =
Q2

2P · q , y =
P · q
P · l =

Q2

xBS
, zh =

P · Ph

P · q . (3.5)
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Figure 3.2: The SIDIS cross section in the hadronic Breit frame.

In Eq. 3.3, dPS = dxB dQ
2 dzh d

2Ph⊥ is the phase space element. In this phase space element

is the transverse momentum of the observed final-state hadron.

In Fig. 3.2, I have included a plot demonstrating the various angles that enter into the

scattering cross section. For the purpose of experiments, it is conventional to take ϕs to be

π/2 so that the spin is oriented in the y direction. Experimental measurements also take ϕh

to be 0 so that the hadron moves in the x direction.

The Sivers asymmetry is the experimentally measured quantity and is given by

A
sin(ϕh−ϕs)
UT =

F
sin(ϕh−ϕs)
UT

FUU

. (3.6)

To obtain the factorized expressions for the structure functions, I’ll note that the projection

operators for the unpolarized TMD PDF and the Sivers function are the same. Therefore

the hard contributions are identical in the two processes. Furthermore, I also note that since

unpolarized quarks are produced in both processes, the soft functions must be identical. The

structure functions can then be shown to have the form

FUU(xB, zh, Ph⊥, Q) = HDIS(Q;µQ) CDIS [fD] , (3.7)

F
sin(ϕh−ϕs)
UT (xB, zh, Ph⊥, Q) = HDIS(Q;µQ) CDIS

[
− ĥ · k⊥

M
f⊥1TD

]
. (3.8)
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To obtain the hard function, I have just performed the calculation in the previous section

except that I have taken the virtuality of the photon to be negative. The exact form is given

by

HDIS(Q;µ) = HDIS(Q;µQ) exp

(∫ µ

µQ

dµ′

µ′
ΓH (Q;µ′)

)
. (3.9)

HDIS(Q;µQ) = 1 +
αs

π
CF

[
3

2
ln

(
Q2

µ2
Q

)
− 1

2
ln2

(
Q2

µ2
Q

)
− 4 +

π2

12

]
, (3.10)

which matches the result in [61, 87]. In these expressions, I have used the short-hand notation

CDIS [wAB] =
∑

q

e2q

∫
d2k⊥ d

2p⊥ δ
2 (zhk⊥ + p⊥ −Ph⊥)w(k⊥,p⊥)

×Bh/q(zh, p⊥;µ, ζ2)Aq/p(xB, k⊥;µ, ζ1) , (3.11)

for the convolution integrals. In these expressions eq is the fractional electric charge for

the quarks. k⊥ represents the transverse momentum of the quark relative to the nucleon,

while p⊥ is the transverse momentum of the final state hadron relative to the fragmenting

quark. ĥ = Ph⊥/Ph⊥ is the unit vector which points in the direction of the final-state hadron

transverse momentum and M is the mass of the struck nucleon. In this expression, I have

introduced f⊥1T,q/p is the Sivers function in Semi-Inclusive DIS and Dh/q is the unpolarized

TMD FF.

Once again, we simplify the convolution integrals by working in b-space and the structure

functions become

FUU(xB, zh, Ph⊥, Q) =H
DIS(Q;µ)

∑

q

e2q

∫ ∞

0

b db

2π
J0

(
bPh⊥
zh

)

×Dh/q(zh, b;µ, ζ2) fq/p(xB, b;µ, ζ1) , (3.12)

F
sin(ϕh−ϕs)
UT (xB, zh, Ph⊥, Q) =H

DIS(Q;µ)
∑

q

e2q

∫ ∞

0

b2 db

4π
J1

(
bPh⊥
zh

)

×Dh/q(zh, b;µ, ζ2) f
⊥
1T,q/p(xB, b;µ, ζ1) . (3.13)
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The TMD FF and the b-space Sivers functions are defined in terms of their momentum space

counter parts as

Dh/q(z, b;µ, ζ) =

∫
d2p⊥
z2

e−ip⊥·b/zDh/q(z, p⊥;µ, ζ) , (3.14)

f⊥αSIDIS
1T,q/p (x, b;µ, ζ) =

1

M

∫
d2k⊥ k

α
⊥ e
−ik⊥·bf⊥ SIDIS

1T,q/p (x, k⊥;µ, ζ)

≡
(
ibα

2

)
f⊥1T,q/p(x, b;µ, ζ) . (3.15)

As in the case of the TMD PDF, these TMDs can be expanded in terms of collinear dis-

tributions. The TMD FF can naturally be matched onto the collinear FF. Since the Sivers

function is related to a limit of the Qiu-Sterman function, it naturally matches onto that

function and we have the matching relations

Dh/q(z, b;µ, ζ) =
1

z2

[
Ĉi←q ⊗Dh/i

]
(z, b;µ, ζ) , (3.16)

f⊥1T,q/p(x, b;µ, ζ) =
[
C̄q←i⊗̄TF i/p

]
(x, b;µ, ζ) , (3.17)

In the case of D, the operator ⊗ denotes the convolution that was previously discussed. In

these expressions, the sum over the index i = q, g is implicit. The convolution in the case of

the Sivers function is more complicated, since it involves two kinematic variables x̂1 and x̂2:

[
C̄q←i⊗̄TF i/p

]
(x, b;µ, ζ) =

∫ 1

x

dx̂1
x̂1

dx̂2
x̂2

C̄q←i(x/x̂1, x/x̂2, b;µ, ζ)TF i/p(x̂1, x̂2;µ) . (3.18)

The C functions in the above equations are the Wilson coefficient functions, and their ex-

pressions at NLO are given in Appendix. 3.7.

For the cross section, it is typical to take µ = Q, ζ = Q2, µc = µs = µb, and ζi = µ2
b . The

expressions for the cross section become

FUU(xB, zh, Ph⊥, Q) = HDIS(Q;Q)

∫ ∞

0

db b

2π
J0

(
bPh⊥
zh

)∑

q

e2q (3.19)

×
[
Cq←i ⊗ fi/p

] (
xB, b;µb, µ

2
b

) 1

z2h

[
Ĉj←q ⊗Dh/j

] (
zh, b;µb, µ

2
b

)

× exp
[
Spert

(
b;µb, Q, µ

2
b , Q

2
)
− Sf

NP(b,Q0, Q)− SD
NP(zh, b, Q0, Q)

]
,

F
sin(ϕh−ϕs)
UT (xB, zh, Ph⊥, Q) = HDIS(Q;Q)

∫ ∞

0

db b2

4π
J1

(
bPh⊥
zh

)∑

q

e2q (3.20)
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×
[
C̄q←i ⊗ TF i/p

]
(xB, b;µb, µ

2
b)

1

z2h

[
Ĉj←q ⊗Dh/j

] (
zh, b;µb, µ

2
b

)

× exp
[
Spert

(
b;µb, Q, µ

2
b , Q

2
)
− Ss

NP(b,Q0, Q)− SD
NP(zh, b, Q0, Q)

]
.

Note that in principle as b grows large enough, an issue occurs as 1/b ∼ ΛQCD due to the

Landau pole. In Sec. 3.3.1 I will address this issue. In the expression for the structure

functions, I have introduced the non-perturbative Sudakov functions for the TMD FF and

Sivers function as SD
NP, and S

s
NP.

3.2.2 Sivers Formalism in Drell-Yan

Analogous to Semi-Inclusive DIS, the cross section with a transversely polarized initial-state

hadron is given by [88, 89, 90, 91]

dσ

dPS = σDY
0

[
WUU + sin(ϕq − ϕs)W

sin(ϕq−ϕs)
UT

]
. (3.21)

In this expression, the point-like scattering cross section for q q̄ → l l̄ is given by

σDY
0 =

4πα2
EM

3SQ2NC

, (3.22)

while S = (PA + PB)
2 is the center of mass energy squared and NC = 3 is the number of

colors. Furthermore, WUU and W
sin(ϕq−ϕs)
UT are the spin-independent and spin-dependent

structure functions. Once again, the spin-dependent structure function contains a sinusoidal

modulation between the azimuthal angles of S⊥ and q⊥. Note that I have deviated from the

notation in [89] by writing the Drell-Yan structure functions as W in order to differentiate

them from the Semi-Inclusive DIS structure function. The phase space element is given

by dPS = dQ2 dy d2q⊥, where y, Q, and y are the rapidity, invariant mass, and transverse

momentum of the virtual photon.

We note that in the case of Drell-Yan, there are two asymmetries which are measured

in the literature. The first asymmetry is analogous to the one in Semi-Inclusive DIS and is

given by

A
sin(ϕq−ϕs)
UT =

W
sin(ϕq−ϕs)
UT

WUU

. (3.23)
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This is the measurement that was performed by COMPASS. However the STAR measure-

ment is AN , which differs from A
sin(ϕq−ϕs)
UT by a minus sign.

Using the results from Sec. 2.5, we can write the factorized structure function as

WUU(xa, xb, q⊥, Q) = HDY(Q;µ) CDY [f f ] , (3.24)

W
sin(ϕq−ϕs)
UT (xa, xb, q⊥, Q) = HDY(Q;µ) CDY

[
q̂⊥ · kaT

M
f⊥1T f

]
. (3.25)

For Drell-Yan, the convolutional integrals are given by

CDY [wAB] =
∑

q

e2q

∫
d2kaT d

2kbT δ
2 (kaT + kbT − q⊥)w(kaT,kbT)

× Aq/A(xa, k
2
aT ;µ, ζ1)Bq̄/B(xb, k

2
bT ;µ, ζ2) , (3.26)

In this expression, kaT and kbT are the transverse momenta of the parton relative to their

corresponding nucleon.

In the QCD background section, we calculated the hard function to be

HDY(Q;µ) = HDY(Q;µQ) exp

(∫ µ

µQ

dµ′

µ′
ΓH (Q;µ′)

)
. (3.27)

HDY(Q;µQ) = 1 +
αs

π
CF

[
3

2
ln

(
Q2

µ2
Q

)
− 1

2
ln2

(
Q2

µ2
Q

)
− 4 +

7π2

12

]
, (3.28)

Since the soft pole contributions to the partonic contributions are opposite in Drell-Yan

and Semi-Inclusive DIS, the Sivers functions are defined to be opposite in Drell-Yan and

Semi-Inclusive DIS so we have in Eq. 3.8:

f⊥DY
1T (x, k⊥;µ, ζ) = −f⊥ SIDIS

1T (x, k⊥;µ, ζ) . (3.29)

This will lead to slightly different definition for the Sivers function in the b-space:

f⊥αDY
1T,q/p (x, b;µ, ζ) =

1

M

∫
d2k⊥ k

α
⊥ e
−ik⊥·bf⊥DY

1T,q/p(x, k⊥;µ, ζ)

≡
(
−ib

α

2

)
f⊥1T,q/p(x, b;µ, ζ) . (3.30)
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Note the additional minus sign in the second line of the equation, in comparison with the cor-

responding Semi-Inclusive DIS expression in Eq. 3.15. Performing the OPE, the expressions

for the structure functions take the form

WUU(xa, xb, q⊥, Q) = HDY(Q;Q)

∫
db b

2π
J0(b q⊥)

∑

q

e2q (3.31)

×
[
Cq←i ⊗ fi/A

] (
xa, b;µb, µ

2
b

) [
Cq̄←j ⊗ fj/B

] (
xb, b;µb, µ

2
b

)

× exp
[
Spert(b;µb, Q, µ

2
b , Q

2)− Sf
NP(b,Q0, Q)− Sf

NP(b,Q0, Q)
]
,

W
sin(ϕq−ϕs)
UT (xa, xb, q⊥, Q) = HDY(Q;Q)

∫
db b2

4π
J1(b q⊥)

∑

q

e2q (3.32)

×
[
C̄q←i ⊗ TF i/p

]
(xa, b;µb, µ

2
b)
[
Cq̄←j⊗̄fj/B

] (
xb, b;µb, µ

2
b

)

× exp
[
Spert(b;µb, Q, µ

2
b , Q

2)− Ss
NP(b,Q0, Q)− Sf

NP(b,Q0, Q)
]
.

Note that in the second expression, I have already taken into account the sign change in the

Sivers functions between Drell-Yan and Semi-Inclusive DIS processes in Eq. 3.29.

3.2.3 Sivers formalism for W/Z ,Production

The case for W/Z production very similar to the case for virtual photon production. For

this case, the differential cross section can be written as

dσV
dPS = σV

0

[
WUU,V + sin(ϕq − ϕs)W

sin(ϕq−ϕs)
UT,V

]
, (3.33)

where the phase space dPS = dy d2q⊥ and V = W, Z. I’ll note that to arrive at this

expression, I have taken Q =MV where MV is the mass of the vector boson. This is known

as the narrow width approximation. This approximation in general affects the normalization

of q⊥ distributions at Q = MZ at a few percent. However, since we will be interested in a

ratio, these percent corrections are negligible.

For W/Z production, the point-like cross section can be written as

σW
0 =

√
2πGFM

2
W

SNC

, σZ
0 =

√
2πGFM

2
Z

SNC

, (3.34)
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where GF is the Fermi weak coupling constant. The expressions for the structure functions

are given by

WUU,V (xa, xb, q⊥, Q) = HDY(Q;Q)

∫
db b

2π
J0(b q⊥)

∑

q,q′

e2qq′,V (3.35)

×
[
Cq←i ⊗ fi/A

] (
xa, b;µb, µ

2
b

) [
Cq′←j ⊗ fj/B

] (
xb, b;µb, µ

2
b

)

× exp
[
Spert(b;µb, Q, µ

2
b , Q

2)− Sf
NP(b,Q0, Q)− Sf

NP(b,Q0, Q)
]
,

W
sin(ϕq−ϕs)
UT,V (xa, xb, q⊥, Q) = HDY(Q;Q)

∫
db b2

4π
J1(b q⊥)

∑

q,q′

e2qq′,V (3.36)

×
[
C̄q←i ⊗ TF i/p

]
(xa, b;µb, µ

2
b)
[
Cq′←j ⊗ fj/B

] (
xb, b;µb, µ

2
b

)

× exp
[
Spert(b;µb, Q, µ

2
b , Q

2)− Ss
NP(b,Q0, Q)− Sf

NP(b,Q0, Q)
]
,

where we have

e2qq′,W = |Vqq′ |2 , e2qq′,Z =
(
V 2
q + A2

q

)
δqq′ . (3.37)

Here |Vqq′ |2 is the CKM matrix, while Vq and Aq are the vector and axial couplings of the

Z boson to a quark of flavor q. Just like Eq. 3.23 in the last section, the asymmetry can be

written as a ratio of these structure functions in the exactly same form.

3.3 Numerical Input

To obtain the non-perturbative contributions of the Sivers function, we need to parameterize

all of the non-perturbative physics. In this section, I will discuss the parameterization that

was used in our extraction of the Sivers function. This sub-section is organized as follows. In

Sec. 3.3.1, I will first introduce our parameterization of the unpolarized TMDs. In Sec. 3.3.2,

I will then parameterize the Sivers function.

3.3.1 Unpolarized Non-perturbative Input

To perform a global analysis of the Sivers function, I chose to parameterize the unpolarized

TMDs by taking the results of a previous analysis. Within the literature, there have been
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Figure 3.3: The experimental data for Drell-Yan lepton pair production measured by the

E288 collaboration [1] plotted as a function of q⊥/Q are compared with the normalized

theoretical curve. Different colors represent different invariant mass of the lepton pair from

4 < Q < 5, 5 < Q < 6, 6 < Q < 7, 7 < Q < 8, 8 < Q < 9, 11 < Q < 12, 12 < Q < 13,

13 < Q < 14 GeV, respectively. Three panels correspond to different energies for incident

proton beams: 200 GeV (left), 300 GeV (middle), and 400 GeV (right).
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Figure 3.4: Left panel: The HERMES multiplicity data in [2] for pion production from

either a proton (denoted as p → π) or deuteron (denoted as d → π) target. For better

presentation, the data is offset by 0.0 for ⟨zh⟩ = 0.53, 0.1 for ⟨zh⟩ = 0.42, 0.2 for ⟨zh⟩ = 0.34,

0.3 for ⟨zh⟩ = 0.28, 0.4 for ⟨zh⟩ = 0.23, and 0.5 for ⟨zh⟩ = 0.15. Right panel: The HERMES

multiplicity data for kaon production. The offsets are half of the offsets from the pions.
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Figure 3.5: The COMPASS multiplicity in [3] for charged hadron production from a deuteron

target is compared with the normalized theory curve. The triangular points represent the

h+ data points while the circular data points represent the h− data points. For better

presentation, the h+ data is offset by a factor of 0.4.
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many global analyses of unpolarized TMDs. However, as the goal of this study was to

improve upon the extraction of the Sivers function, we must use a parameterization from

the literature which was performed at NLO+NNLL. Furthermore, as we are attempting to

perform a simultaneous global analysis from data in Semi-Inclusive DIS and Drell-Yan, we

must also select a global analysis which simultaneously fit these data. The global analysis

which most closely matches these requirements is in [92], in which the unpolarized TMDs

were obtained NLO+NLL accuracy from a global analysis. From the analysis in Ref. [92],

the non-perturbative factors for the TMD PDF and TMD FF are given by

gq (b,Q,Q0) =g
f
1 b

2 , (3.38)

gh (z, b, Q,Q0) =g
D
1

b2

z2
, (3.39)

gK(b) = g2ln

(
b

b∗

)
, (3.40)

such that the non-perturbative contributions to the unpolarized TMD PDF and TMD FF

are given by

Sf
NP(b,Q,Q0) = −gq(b,Q,Q0)− gK(b) , SD

NP(z, b, Q,Q0) = −gh(b,Q,Q0)− gK(b) .

(3.41)

The factors which contain gf1 and gD1 give the Gaussian width of the TMDs at the scale Q0.

The factor g2 drives the strength of the non-perturbative rapidity evolution. The values of

the parameters that were obtained in this reference are given by

gf1 = 0.106 , gD1 = 0.042 , g2 = 0.84 . (3.42)

Finally, I also note that the COMPASS Drell-Yan data was obtained through the collision

of a pion with a polarized proton. In [93] the pion TMD PDF was extracted from the

experimental data in [94] and it was found that gf1 = 0.082 for pions. In Eq. 3.40, I have

introduced b∗, which is defined as

b∗ = b/
√
1 + b2/b2max , (3.43)

where bmax = 1.5. This factor acts to regulate the behavior of the rapidity anomalous

dimension in the region where b approaches 1/ΛQCD. Following the work in Ref. [36], we can
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replace the scale µb with µb∗ = 2e−γE/b∗ to obtain a cross section that is insensitive to the

Landau pole. I’ll note that various alternatives to this scheme have been presented in the

literature. See for instance Refs. [95, 96, 97].

We will now discuss the parameterization of the collinear physics for the unpolarized

TMDs. For the PDF, we used the HERA NLO as 118 parametrization in [98] for the collinear

parton distribution functions. To parameterize the collinear pion fragmentation function,

we used the DSS14 parameterization [99]. While for the collinear kaon fragmentation

function DK/q(zh;µb∗), we used the DSS17 parameterization in [100]. For unidentified

charged hadrons, we followed the work in [73] to use the approximation Dh/q(z;µb∗) =

Dπ/q(z;µb∗) +DK/q(z;µb∗).

Having parameterized the non-perturbative physics, I will now check this parameter-

ization against experimental data. We start this comparison by examining a sample of

Drell-Yan data in order to check the validity of the scheme for the TMD PDF. Note that the

Drell-Yan Sivers asymmetry data which enters into our fit from COMPASS and RHIC do

not contain so-called fiducial cuts, or cuts on the final state leptonic momentum. In order

to avoid complications associated with these cuts on Drell-Yan data, we chose to benchmark

our expression for the unpolarized cross section against the E288 data [1], which also does

not contain fiducial cuts, see Tab. 2 of [72]. For E288, the target nucleus is Copper. In order

to describe the Copper TMD PDF, we used nuclear modification prescription in [101]. In

Fig. 3.3, I have plotted the theoretical curve against the experimental data [1], as a function

of q⊥/Q. For each bin, we normalized the theory such that the theory and data are equal

at the first point. Different colors represent different invariant mass of the lepton pair from

4 < Q < 5, 5 < Q < 6, 6 < Q < 7, 7 < Q < 8, 8 < Q < 9, 11 < Q < 12, 12 < Q < 13,

13 < Q < 14 GeV, respectively. Three panels correspond to different energies for incident

proton beams: 200 GeV (left), 300 GeV (middle), and 400 GeV (right). We find that the

parameterization of [92] is well-suited at describing the shape of the Drell-Yan data.

To check the validity of our scheme for the unpolarized TMD FFs, we now examine the
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HERMES multiplicity defined as

Mh
H(xB, zh, Ph⊥, Q

2) =
(dσ/dxBdzhdQ

2dPh⊥)

(dσDIS/dxBdQ2)
, (3.44)

where the superscript h denotes the species of the final state observed hadron, and the

subscript “H” represents the HERMES data. We also study the COMPASS multiplicity

data, which has a slightly different convention and is given by

Mh
C = 2Ph⊥M

h
H , (3.45)

where the subscript “C” denotes the COMPASS data and Mh
H is defined in Eq. 3.44. On the

other hand, the denominator in Eq. 3.44 is the inclusive DIS cross section and is given by

dσDIS

dxBdQ2
=
σDIS
0

xB

[
F2(xB, Q

2)− y2

1 + (1− y)2
FL(xB, Q

2)

]
, (3.46)

where F2 is the usual DIS structure function while FL is the longitudinal structure function.

For their precise definitions see [102]. We compute the denominator at the NLO by using

the APFEL library [103].

In the left panel of Fig. 3.4 we plot the HERMES pion multiplicity data [2] as a function

of q⊥/Q along with the numerical results for the theory. In the right panel of this figure

we plot kaon multiplicity data and theory. As shown in the figure, different colors represent

different average zh values from ⟨zh⟩ = 0.15, 0.23, 0.28, 0.34, 0.34, 0.42, 0.53, respectively.

In these plots, we have normalized the theory so that data is equal to the theory at the second

point of each data set 1. In Fig. 3.5, we plot the COMPASS multiplicity data [3] for charged

hadron production from a deuteron target along with the numerical results of our scheme.

The triangular points represent the h+ data points while the circular data points represent

the h− data points. Here again, different colors represent different zh = 0.2, 0.3, 0.4, 0.6,

respectively. From these plots, we find that the presented parameterization work very well

at describing the shape of the multiplicity data for both HERMES and COMPASS data,

indicating that the scheme for the TMD FFs are valid.

1Without normalizing to the second point of the data, we find that the overall normalization factor is
around 2 for each data set, which is consistent with the results of [92].
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3.3.2 Numerical Scheme for Sivers Function

To parameterize the non-perturbative Sudakov for the Sivers function, we take the parame-

terization

Ss
NP(b,Q0, Q) =

g2
2
ln
Q

Q0

ln
b

b∗
+ gT1 b

2 . (3.47)

In the first term, we have used the same non-perturbative contribution for the rapidity

anomalous dimension. In the second term, we have introduced the Gaussian width of the

Sivers function.

To parameterize the collinear dependence of the Sivers function, we must parameterize the

Qiu-Sterman function. Through trial and error, we found that the optimal parameterization

which provides a stable fit is given by

TF q/p(x, x, µ0) = Nq(x)fq/p(x, µ0) , (3.48)

where TF q/p is the Qiu-Sterman function and Nq(x) is a collinear correction given by

Nq(x) = Nq
(αq + βq)

(αq+βq)

α
αq
q β

βq
q

xαq(1− x)βq . (3.49)

Here we have introduced the initial collinear scale µ0 =
√
1.9 GeV. In the parameterization

for the collinear modulation, we introduce non-perturbative parameters αu and Nu are used

to fit the up quarks. αd and Nd are the fit parameters for the down quarks and Nū, Nd̄, Ns,

Ns̄, αsea are for sea quarks and βq = β is the same for all flavors. This parameterization

enforces that the form of the sea quarks is the same while the normalization of each sea

quark can vary. Overall we use 11 parameters in total to perform the fit, including gT1 .

To describe the cross section, we must evolve the Qiu-Sterman function from its initial

scale to the scale µb∗ . The DGLAP evolution of the Sivers function has been studied exten-

sively in the literature, see for instance [104, 105, 106, 107, 108, 109, 110, 111, 112]. However,

performing the full evolution of the Qiu-Sterman function is highly nontrivial due to its de-

pendence on two momentum fractions x1, x2 in general [104, 113]. Thus in the TMD global

analysis, the evolution of the Qiu-Sterman function has been implemented under certain
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approximations. In this paper, we use the approximate evolution which is given by

∂TF q/p(x, x;µ)

∂lnµ2
=
αs(µ

2)

2π

[
PT
q←q ⊗ TF q/p

]
(x;µ) . (3.50)

In the first scheme that we consider, from [108], the authors show that at large x, the

transverse spin dynamics leads to a modification to the quark to quark splitting kernel,

PT
q←q, with

PT
q←q (x) = Pq←q (x)−NC δ(1− x) , (3.51)

where Pq←q(x) is the standard quark to quark splitting kernel for unpolarized PDFs,

Pq←q(x) = CF

[
1 + x2

(1− x)+
+

3

2
δ(1− x)

]
. (3.52)

This scheme has been used for instance in [114].

To solve this evolution equation, it is useful to take the Mellin transform of this expres-

sion; for details on Mellin-space evolution, see Sec. 3 in [115]. After performing the Mellin

transform of this expression, the evolution equation becomes

∂

∂lnµ2
TF q/p(N,µ) =

αs (µ
2)

2π
γ(N)TF q/p(N,µ) . (3.53)

In this expression, TF q/p(N,µ) is the Mellin transforms of the Qiu-Sterman function, i.e.

TF q/p(N,µ) =

∫ 1

0

dx xN−1 TF q/p(x, x, µ) . (3.54)

Similarly γ(N) is the Mellin transform of PT
q←q (x) which can be written as

γ(N) = γu(N)−NC . (3.55)

Here γu(N) is the Mellin transform of the unpolarized splitting function Pq←q (x) and is

given by

γu(N) = CF

(
3

2
+

1

N(N + 1)
− 2S1(N)

)
, (3.56)

with S1(N) the harmonic sum function.
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In the region where µb∗ < mb, the mass of the b quark, the solution of the evolution

equation is given by

TF q/p (N,µb∗) = TF q/p (N,µ0)

(
αs

(
µ2
b∗

)

αs (µ2
0)

)−γ(N)/β0(µ0)

. (3.57)

Here β0(µ0) = 11− 2/3nf (µ0), where nf (µ0) is the number of active flavors at the scale µ0.

In the region where µb∗ > mb, the solution of the evolution equation is given by

TF q/p (N,µb∗) = TF q/p (N,mb)

(
αs

(
µ2
b∗

)

αs (m2
b)

)−γ(N)/β0(µb∗ )

, (3.58)

where TF q/p (N,mb) is given by

TF q/p (N,mb) = TF q/p (N,µ0)

(
αs (m

2
b)

αs (µ2
0)

)−γ(N)/β0(µ0)

, (3.59)

and nf (µb∗) is the number of active flavors at the scale µb∗ .

In order to construct the Sivers function in Eq. 3.17 at NLO, there is an additional

convolution of the coefficient C function and the Qiu-Sterman function. We find that it is

useful to first take its Mellin transform and thus the convolution over the momentum fraction

becomes a simple product in Mellin space:

f⊥q1T,q/p (N, b;µ, ζ) = C̄q←i(N ;µ, ζ)TF i/p (N,µ) , (3.60)

where C̄q←q′(N, b;µ, ζ) is the Mellin transform of the Sivers Wilson coefficient function. The

NLO Sivers function can then be obtained by numerically taking the inverse Mellin transform

of this function,

f⊥q1T,q/p(x, b;µ, ζ) =
1

π

∫ ∞

0

dzIm
[
eiϕx−c−ze

iϕ

f⊥q1T,q/p

(
c+ zeiϕ, b;µ, ζ

)]
, (3.61)

where the parameter c must be taken such that all of the singularities in the function

f⊥q1T,q/p

(
c+ zeiϕ, b;µ, ζ

)
lie to the left of the line x = c in the imaginary plane. In our

code, we use c = 2 which satisfies this criteria. We also take ϕ = π/4 to optimize the

numerical integration.

68



2 4 6
Q

1

2

3

q ⊥

q⊥ = 0.75Q

q⊥ = 0.5Q

q⊥ = 0.25Q

100

101

Figure 3.6: Histogram of the Semi-Inclusive DIS data in q⊥ and Q. To obtain this plot, we

bin the Semi-Inclusive DIS data sets in q⊥ and Q. The dark spots indicate a large number of

experimental data while the white spots indicate that there are no experimental data. We

also plot the line q⊥ = 0.75Q in red, 0.5Q in green, and 0.25Q in black.

3.4 Fit Results

This section is organized as follows. In Subsec. 3.4.1, I will present the results of a fit to

Semi-Inclusive DIS and low energy Drell-Yan data. In Subsec. 3.4.2, I present discussion on

the RHIC data.

3.4.1 Simultaneous Fit to Semi-Inclusive DIS and Drell-Yan

The fit to the data from Semi-Inclusive DIS and Drell-Yan took into consideration Semi-

Inclusive DIS data from JLAB in [7], HERMES in [5], COMPASS in [6, 4] and the COMPASS

Drell-Yan data in [8]. I’ll note that there are also data points from COMPASS in [84].

However, this data is re-binned from the same events as the in [6]. These two data sets are

then correlated and including both data sets would lead to double counting of the events.

Therefore, we only take into consideration the data from [6]. Furthermore, I’ll also note that

the data set in [6] was projected into two sets of data zh > 0.1 and zh > 0.2. To avoid fitting

correlated data sets, we choose to fit only the zh > 0.1 data set. Using the extracted Sivers
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function, we then compare with the RHIC data.

Before beginning to fit the Sivers data, we need to remove the experimental data that

are outside the TMD region. Typical kinematic cuts from unpolarized Semi-Inclusive DIS

fits are given for instance in [73] and use the cut q⊥/Q < 0.25. However, we find that this

selection process leaves very few data points for the available Sivers data. In Fig. 3.6 we

plot a histogram of the selected data Semi-Inclusive DIS data as a function of q⊥ and Q.

We find that the cut q⊥/Q < 0.25 leaves only 12 Semi-Inclusive DIS data points, while the

cut q⊥/Q < 0.5 leaves 97 data points. In fact, we find that the majority of the data has

q⊥/Q > 0.5. In order to retain a large enough data set to perform a meaningful fit we

perform the cut q⊥/Q < 0.75. Furthermore to restrict the selected data set to the TMD

region, we also enforce that the Semi-Inclusive DIS data must have Ph⊥ < 1 GeV. At the

same time in order to avoid the threshold resummation region, we also enforce that zh < 0.7.

These cuts are similar to those used in Ref. [81].

The χ2 is defined as

χ2 ({a}) =
N∑

i=1

(Ti ({a})− Ei)

∆E2
i

. (3.62)

The fundamental idea behind a global fitting procedure is to first parameterize the non-

perturbative contributions to the cross section. The χ2 distribution can then be interpreted

as a surface in the parameter space. The properties of the χ2 surface are then obtained

through a sampling procedure. The sampling of the χ2 is performed through the MINUIT

package [116, 117]. In the expression for the χ2, Ei are the central values of the experimental

measurements, ∆Ei are the total experimental errors, Ti ({a}) is the theoretical value at the
experimental kinematics, and {a} is a vector containing the fit parameters.

To generate the uncertainty band, we use the ‘replica method’ in Refs. [70, 12]. In

this method, we generate replicate possible effects due to experimental uncertainties in the

measurements by shifting the central value of each data point by a Gaussian noise. The width

of the Gaussian noise is determined by the experimental errors. We inject this noise to all

data point and copy this data into a ‘replica’. Overall we generate 200 noisy replicas. We
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then fit all of the 200 replicas and the noiseless fit. From the fitting of the replicas, we obtain

201 sets of parameters. We then generate predictions for each experimental data point. We

take the noiseless fit to give the central prediction while we use the remaining predictions to

generate the uncertainty band by examining the middle 68% of the replicas. In Table. 3.1,

we present the results for the parameter values along with the χ2/d.o.f and the parameter

uncertainties. In terms of the quality of the fit, we find an excellent agreement between

our fitted theoretical result and the experimental data with a global χ2/d.o.f = 1.032. In

Tab. 3.2, we give the value of the χ2/d.o.f for each of the sets of data.

χ2/d.o.f. = 1.032

Nu = 0.077+0.004
−0.005 GeV αu = 0.967+0.028

−0.045

Nd = −0.152+0.017
−0.016 GeV αd = 1.188+0.056

−0.023

Ns = 0.167+0.053
−0.051 GeV αsea = 0.936+0.069

−0.026

Nū = −0.033+0.016
−0.017 GeV β = 5.129+0.017

−0.034

Nd̄ = −0.069+0.019
−0.026 GeV gT1 = 0.045+0.009

−0.015 GeV2

Ns̄ = −0.002+0.047
−0.040 GeV

Table 3.1: Fit parameters. The presented values is the parameter value of the fit with no

Gaussian noise. The uncertainties for the replicas are generated from the parameter values

which lie on the boundary of 68% confidence.

In Fig. 3.12, we plot the extracted first transverse moment of the proton Semi-Inclusive

DIS Sivers function at the initial PDF scale, f
⊥ (1)
1T (x, µ0) with µ0 =

√
1.9 GeV which is

defined in terms of the Qiu-Sterman function as

f
⊥ (1)
1T q/p(x;Q) = − 1

2M
TF q/p(x, x;Q) . (3.63)

In this figure, I plotted all 200 replicas for each of the extracted quark flavors. The uncer-

tainty band is generated by consider the middle 68% of the obtained distribution at each

point in x. We find that the size of the first moment of the Sivers function is roughly equal
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Figure 3.7: Left: The COMPASS deuteron target measurement [4] for π+, π−, K+, K−, and

K0 from top to bottom, and as a function of xB (left), zh (middle), and Ph⊥ (right). Right:

HERMES proton target measurement [5] π+, π0, π−, K+, K−, and (π+ − π−) from top to

bottom, and as a function of xB (left), zh (middle), and Ph⊥ (right). The data is plotted in

red along with the total experimental error.
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Figure 3.8: Left: The COMPASS proton target measurement for h− for 1 GeV2 < Q2 < 4

GeV2, 4 GeV2 < Q2 < 6.25 GeV2, 6.25 GeV2 < Q2 < 16 GeV2, 16 GeV2 < Q2 < 81 GeV2

from top to bottom [6]. Right: Same as the left except for h+ production.
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GeV. The black curve is the fit to the experimental data with no Gaussian noise. Bottom

left: The distribution of unpolarized quarks in an unpolarized proton at µ0 and x = 0.2.

Bottom middle: The extracted Sivers function from the fit with no noise. Bottom right: The

number density which is obtained by the sum of the two contribution.
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Collab Ref Process Qavg Ndata χ2/Ndata

COMPASS

[4]

ld→ lK0X 2.52 7 0.770

ld→ lK−X 2.80 11 1.325

ld→ lK+X 1.73 13 0.749

ld→ lπ−X 2.50 11 0.719

ld→ lπ+X 1.69 12 0.578

[6]
lp→ lh−X 4.02 31 1.055

lp→ lh+X 3.93 34 0.898

[8] π−p→ γ∗X 5.34 15 0.658

HERMES [5]

lp→ lK−X 1.70 14 0.376

lp→ lK+X 1.73 14 1.339

lp→ lπ0X 1.76 13 0.997

lp→ l(π+ − π−)X 1.73 15 1.252

lp→ lπ−X 1.67 14 1.498

lp→ lπ+X 1.69 14 1.697

JLAB [7]
lN → lπ+X 1.41 4 0.508

lN → lπ−X 1.69 4 1.048

RHIC [9]

pp→ W+X MW 8 2.189

pp→ W−X MW 8 1.684

pp→ Z0X MZ 1 3.270

Total 226 0.989

Table 3.2: The distribution of experimental after taking the kinematic cuts q⊥/Q < 0.75,

Ph⊥ < 1 GeV, and z < 0.7. The column Qavg gives the average hard scale for the measured

data set. On the right column, we have included the χ2/Ndata for each set. The RHIC data

was not included into the fit. Here we give the χ2/Ndata for the prediction.

and opposite for the u and d quarks while the first moment for the sea quarks is much smaller.

For the ū, s and s̄-quarks, the Sivers moment have been multiplied by a factor of 5 while
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for d̄, we have multiplied by a factor of −5. We find that the Sivers d function is the largest

in magnitude and is positive; while the Sivers u function is nearly as large but is negative.

Furthermore we find that the ū and d̄-quark functions are nearly equal to one another in

magnitude, both are more than 5 times smaller in magnitude than the valence quarks, and

are both positive. For the s-quark, we find that the magnitude is approximately 5 times

smaller than the valence quarks in magnitude and is negative. Finally for the s̄-quark, we

find that the magnitude is very small and that the sign is not well determined in this fit. In

the bottom half of that figure on the left, I also plot on the left the unpolarized TMD PDF

at x = 0.2 and Q = µ0 as a function of x̂ · k⊥ and ŷ · k⊥. In the middle, I plot the extracted

Sivers function at the same x and Q and on the right, I plot the number density which is

obtained by combining these two contributions.

In Figs. 3.7, 3.8, and 3.9, we plot our theoretical curves against the Semi-Inclusive DIS

data. Fig. 3.7 is for COMPASS deuteron target (left panel) and for HERMES proton target

(right panel), and for both pions and kaons. Fig. 3.8 is for charged hadrons from COMPASS

proton target. Fig. 3.9 is for pion production on a neutron target from JLab. Finally in

Fig. 3.10 we plot theoretical curves against the COMPASS Drell-Yan lepton pair data in

π−+ p collisions. We plot the asymmetry A
sin(ϕq−ϕs)
UT as a function of transverse momentum

q⊥, invariant mass Q, Feynman xF = xπ − xN , momentum fraction xN in the proton target,

and momentum fraction xπ in the pion target, respectively. The experimental data along

with the total experimental uncertainties are plotted in red. The blue curves are the theory

curves from the fit with no noise. The uncertainty band in grey is generated from the stored

values of the asymmetry for each of the replicas. For each data point, the maximum and

minimum value of the asymmetry within the middles 68% are used to generate these error

bars. As it is indicated already in Tab. 3.2 and as it is evident from the figures, the agreement

between our theory and Semi-Inclusive DIS and Drell-Yan data is very good, although to a

less degree with the Drell-Yan data because of the much larger experimental uncertainty. I

would like to note at this point that very shortly after finishing our paper, the HERMES

collaboration posted additional data in Ref. [118]. We found in an analysis of this data after

77



publication that there was great agreement between our fit results and this data.

In Fig. 3.11, we plot the prediction for the RHIC data in p + p collisions at
√
S =

500 GeV using the extracted Sivers function from this fit. In the left panel, we plot the

Sivers asymmetry AN as a function of rapidity for W− (left), W+ (middle), and Z0 (right),

respectively. We integrate vector boson transverse momentum over 0.5 < q⊥ < 10 GeV. On

the right panel, we plot AN as a function of q⊥ while we integrate over the rapidity |y| < 1.

We find that the asymmetry for W/Z for the central fit is at most 2%, which is more than

an order of magnitude smaller than the central values recorded at RHIC. This leads to a

χ2/Ndata of 2.015 for the prediction for RHIC, as shown in Tab. 3.2. Even if one considers

the very large error bars in the RHIC data, this comparison seems to indicate some tension

between our theory and the RHIC data.

3.4.2 Discussion on the RHIC data

In this section, I will discuss the implications of the RHIC data and the developments in this

direction since our paper was published.

In order to access which one of our theoretical assumptions is responsible for the large

χ2 of the RHIC data, we performed several tests. Firstly, we have checked whether the

quality of the description of the RHIC data was due to the cut on q⊥/Q. In order to check

if quality of the fit is due to the value of this cut, we have performed an additional fit with

the cut q⊥/Q < 0.5. We find that this change leads to a χ2/Ndata is 1.885 for the RHIC

data. While it would be preferable to perform an fit with q⊥/Q < 0.25, we note that there

is not enough data in this region to constrain the parameters of the fit. Because there is no

strong improvement in the description of the RHIC data after applying the q⊥/Q < 0.5, we

conclude that this cut is not responsible for the disagreement between the data sets.

Another possible assumption that could be causing the large χ2 of the RHIC data is

the assumption that the sea quarks have the same α and β parameter. To check this, we

have performed a 13 parameter fit with the chosen parameter with the parameters αu, Nu,

βval, αd, Nd, Nū, Nd̄, Ns, Ns̄, α+, α−, and βsea. Here αd̄ = αs̄ = α+ and αs = αū = α−.
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The introduction of the α+ and α− parameterization decouples the positive and negative sea

quarks from one another while the introduction of the parameters βval and βsea decouples

the valance and sea quarks. However, we find that the addition of these parameters lead to

a χ2/Ndata is 1.885. This implies that this assumption on the function form is not the issue.

To discuss the origin of the disagreement with the RHIC data, it is useful to examine

Fig. 3.13, where I have plotted profiles in the χ2/Ndata distributions. In each plot, we set

all but one of the parameters equal to the values which are determined by the fit and we

vary the remaining parameter about its best value. The best value determined by the fit is

given by a vertical gray line. In this plot, we see that the curves for the RHIC χ2 do not

change much as the α, β, and gT1 parameters are varied. This indicates that the RHIC data

is insensitive to these parameters. On the other hand, we see that when Nq parameters are

varied that there are large modifications to the RHIC χ2. Thus, the RHIC data is sensitive

to these parameters. We see that the RHIC data in general demands a much larger value

for the Sivers function N parameters, which control the magnitude. Nevertheless, these

parameters are well-constrained by the data from Semi-Inclusive DIS and the COMPASS

Drell-Yan measurement. Since the Semi-Inclusive DIS and COMPASS Drell-Yan data were

gathered at much lower energy scales that the RHIC data, this tension between the sets

indicates that the size of the Sivers asymmetry grows as a function of the hard energy scale.

At the time that we had published this paper, we interpreted this result to indicate that

either the RHIC data was flawed or that there were missing evolution effects entering into

the DGLAP evolution of the Qiu-Sterman function. However, since this time, a re-analysis

of this measurement has been made. In Fig. 3.14 I have plotted our theoretical prediction for

the RHIC asymmetry. We see that the updated RHIC measurement is now consistent with

our extraction. This likely indicates that there is no inconsistency in our analysis. Rather,

it appears to indicate that the limited statistics for the RHIC measurement were to blame

for this disagreement.
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Figure 3.13: The distribution of χ2/Ndata for each parameter. In each subplot, we vary each

parameter about the central value while keeping all other parameters fixed to the optimal

values determined by the fit. The gray line is the central value determined from the fit.
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Figure 3.14: Comparison with theoretical uncertainties for the re-analysis of the RHIC mea-

surement.

3.5 Predictions for the EIC

In the previous section, I have performed the first global extraction of the Sivers function and

clarified the inconsistency with the RHIC data. In this section, we provide predictions for

the Sivers asymmetry at the future EIC. On the left side of Fig. 3.15, we plot our prediction
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Figure 3.15: The prediction for the EIC at
√
S = 105 GeV. Left: The xB dependent pre-

diction at zh = 0.5 and q⊥/Q = 0.2. Right: The Ph⊥ dependent prediction at xB = 0.2 and

zh = 0.25. The blue band represents the prediction from the low energy extraction while the

grey band represents the prediction when one includes the RHIC data into the analysis.
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for the Sivers asymmetry in Semi-Inclusive DIS on a proton target as a function of xB at
√
S = 105 GeV, zh = 0.25, q⊥/Q = 0.2 at Q2 = 5, 50, 500 GeV2 for π+, π−, K+, and K−

production. In this figure, we have plotted our prediction for the fit in blue. In gray, we

have plotted our prediction which is obtained through heavily weighting the RHIC data, not

discussed in this dissertation. While this prediction demonstrates the x-dependence of our

fits, in order to demonstrate the k⊥-dependence of our fitted Sivers function, we also make

a prediction as a function of Ph⊥ on the right side of Fig. 3.15. In this figure, we have used

the same kinematics as the left side except that we take xB = 0.2. We see from these curves

that the predicted asymmetry for π− and K− production is small. This behavior is expected

because of the suppression by the fractional charge e2d for the d-quark Sivers function, as well

as the cancellation that occurs between the u and d-quarks. On the other hand, we predict

an asymmetry of a few percent for π+ and K+ production in this kinematic region.

3.6 Conclusions

In this chapter, I have outlined our extraction of the Sivers function for the first time at

the NLO+NNLL order. We first perform an extraction from the Sivers asymmetry data

measured in Semi-Inclusive DIS at HERMES, COMPASS and JLab, and in Drell-Yan lepton

pair production at COMPASS. Using this first extraction, we generate a prediction for the

Sivers asymmetry of W/Z boson at RHIC kinematics and compare with the experimental

data. We find that while the Semi-Inclusive DIS and COMPASS Drell-Yan lepton pair

production data is very well described by our extraction, that our theoretical curve is much

smaller than the RHIC data. We studied in great detail the impact of the RHIC data

and their implications. We found that the RHIC data was inconsistent with our extraction.

However, the preliminary re-analysis of the RHIC measurement is consistent with our current

extraction. Finally, we have provided projections at the future EIC.
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3.7 Appendix I: Wilson Coefficient Functions

The scale dependent TMD PDF quark to quark and gluon to quark Wilson coefficient func-

tion is given by [119, 120, 121]

Cq←q′(x, b;µ, ζ) =δqq′δ(1− x) + δqq′
αs

4π

[
2CF (1− x)− 2Pq←q(x)L

− L (−3 + CF (L+ 2Lζ)) δ(1− x)− CF
π2

6
δ(1− x)

]
, (3.64)

Cq←g(x, b;µ, ζ) =
αs

π

[
x(1− x)TF − 1

2
Pq←g(x)L

]
.

The quark to quark coefficient function for the TMD FF is given by the relation

Ĉq←q′(z, b;µ, ζ) = Cq←q′(z, b;µ, ζ)|L→L−ln(z2)
, (3.65)

while the quark to gluon Wilson coefficient function for the TMD FF is given by

Ĉg←q′(z, b;µ, ζ) =
αs

2π

[
CF z + 2Pg←q(z)

(
ln(z)− 1

2
L

)]
. (3.66)

In these expressions, we have introduced the standard collinear splitting kernels

Pq←q(x) = CF

[
1 + x2

(1− x)+
+

3

2
δ(1− x)

]
(3.67)

Pg←q(x) = CF
1 + (1− z)2

z
(3.68)

Pq←g(x) = TF
[
z2 + (1− z)2

]
. (3.69)

Finally, the coefficient function for the quark-Sivers function is given by [122, 114, 112, 123,

124]

C̄q←q′(x1, x2, b;µ, ζ) =δqq′ δ(1− x1) δ(1− x2)

− αs

2π
δqq′

{
− L

[
δ(1− x2/x1)

(
CF

(
1 + x21
1− x1

)

+

− CAδ(1− x1)

)
+
CA

2

(
δ(1− x2)

1 + x1
1− x1

− δ(1− x2/x1)
1 + x21
1− x1

)]

− 1

2NC

δ(1− x2/x1)(1− x1)
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+ CF δ(1− x1)δ(1− x2)

[
3

2
L− LζL− 1

2
L2 − π2

12

]}
, (3.70)

which for µ2 = ζ = µ2
b∗

reduces to

C̄q←q′(x1, x2, b;µb∗ , µ
2
b∗) =δqq′δ(1− x1)δ(1− x2)−

αs

2π

δqq′

2NC

δ(1− x2/x1)(1− x1)

− αs

2π
δqq′CF

π2

12
δ(1− x1)δ(1− x2). (3.71)

3.8 Appendix II: Factorization for Semi-Inclusive DIS

3.8.1 Kinematics

The differential cross section for Semi-Inclusive DIS is given by

E ′ℓEh
dσ

d3ℓ′ d3Ph

=
α2
em

ℓ · P
1

4Q4
LµνW

µν , (3.72)

see for instance Ref. [86]. In this expression, W µν and Lµν are the hadronic and leptonic

tensors. It’s conventional to write the phase space element in terms of the parton fraction z

by making the change of variables

d3Ph

2Eh

=
dz

z
d2Ph⊥ . (3.73)

After which, the cross section can be written in the form

dσ

dx dy dψ dz d2Ph⊥
=
α2
em

4Q4

y

z
LµνW

µν , (3.74)

where ψ is the azimuthal angle of the final-state lepton.

The leptonic tensor which is defined in terms of the leptonic momenta as

Lµν = ⟨ℓ|Jµ(0)|ℓ′⟩⟨ℓ′|Jν†(0)|ℓ⟩ (3.75)

= 2
(
ℓµ ℓ′

ν
+ ℓν ℓ′

µ − ℓ · ℓ′gµν + iλlϵ
µνρσℓρℓ

′
σ

)
(3.76)

where the factor of 2 in the leptonic tensor enters from the final state spin configurations.

Analogous to the work that we performed for Drell-Yan, in the Breit frame, it is useful to
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define a complete set of coordinates as

t̂µ =
2x

Q
P µ +

qµ

Q
, x̂µ =

P µ
hT

PhT

, ẑµ = −q
µ

Q
, (3.77)

ŷµ = ϵµνρσ t̂ν x̂ρẑσ . (3.78)

Using this coordinate system, the the leptonic momenta can be parameterized as

ℓµ =
Q

2

[
coshφ t̂µ + sinhφcosθ x̂µ + sinhφsinθ ŷµ − ẑµ

]
, (3.79)

ℓ′µ =
Q

2

[
coshφ t̂µ + sinhφcosθ x̂µ + sinhφsinθ ŷµ + ẑµ

]
, (3.80)

where we define the parameter

coshφ =

(
2

y
− 1

)
, (3.81)

To obtain the azimuthal asymmetries for the cross section originating from the leptonic

tensor, we once again define the operators

Vµν
1 = x̂µx̂ν + ŷµŷν , Vµν

2 = ẑµẑν , (3.82)

Vµν
3 = t̂µx̂ν + x̂µt̂ν , Vµν

4 = x̂µx̂ν − ŷµŷν ,

Vµν
5 = t̂µx̂ν − x̂µt̂ν , Vµν

6 = x̂µŷν − ŷµx̂ν ,

Vµν
7 = t̂µŷν − ŷµt̂ν , Vµν

8 = t̂µŷν + ŷµt̂ν ,

Vµν
9 = x̂µŷν + ŷµx̂ν ,

where we note that the role of t̂ and ẑ are opposite of those in the case for Drell-Yan. We

once again perform the decomposition of the leptonic tensor as

Lµν =
∑

i

Li (ϕ, θ) Vµν
i , (3.83)

where Li(ϕ, θ) are angular coefficients.

L1 (ϕ, θ) =
Q2 (y2 − 2y + 2)

y2
Vµν
1 , L2 (ϕ, θ) = 0, (3.84)

L3 (ϕ, θ) = −2Q2
√
1− y(y − 2)cos(ψ)

y2
Vµν
3 , L4 (ϕ, θ) = −2Q2(y − 1)cos(2ψ)

y2
Vµν
4 ,
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L5 (ϕ, θ) =
2iλQ2

√
1− ysin(ψ)

y
Vµν
5 ), L6 (ϕ, θ) =

iλQ2(y − 2)

y
Vµν
6 ,

L7 (ϕ, θ) = −2iλQ2
√
1− ycos(ψ)

y
Vµν
7 , L8 (ϕ, θ) = −2Q2

√
1− y(y − 2)sin(ψ)

y2
Vµν
8 ,

L9 (ϕ, θ) = −2Q2(y − 1)sin(2ψ)

y2
Vµν
9 ,

In this expression W µν is the hadronic tensor which is given by the expression

Wµν =
1

(2π)4

∑

X

∫
d4x e−iqx

〈
P
∣∣J†µ(x)

∣∣h,X
〉
⟨h,X | Jν(0)|P1⟩ , (3.85)

where Jµ(x) once again represents the current operator.

3.8.2 Factorization

The hadronic terms can be written in terms of the quark correlation functions for the TMD

PDF and TMD FF as

Wµν =
1

Nc

∑

q

e2q

∫
d2k1⊥ d

2k2⊥ δ
(2) (q⊥ + k⊥ + p⊥/z)

× Tr
[
Φq

(
x,k⊥,S;µ, ζ1/ν

2
)
γµ∆q

(
z,p⊥,Sh;µ, ζ2/ν

2
)
γν
]
. (3.86)

(3.87)

In this expression, I have introduced the quark correlation function for the TMD FF. The

explicit expression for this function is

∆jj′
(
z,p⊥,Sh;µ, ζ2/ν

2
)
=

1

2z

∑

X

∫
d4ξ

(2π)4
eip·ξ δ

(
ξ−
)

(3.88)

×
〈
0
∣∣W n(+∞, ξ+; ξ⊥)ψ

c̄
j′(ξ)

∣∣h,Sh, X
〉 〈
h,Sh, X

∣∣ψ̄c̄
j(0)W

n(0,+∞,0⊥)W
T (0, ξ⊥; +∞)

∣∣ 0
〉
.

Retaining only leading power distributions in m/Q and p⊥/Q, this correlation function can

be written as

∆ (z,p⊥,Sh) =

(
D − ϵρσ⊥ p⊥ρSh⊥σ

zM
D⊥1T

)
/n

4
+

(
ΛhG1L − p⊥ · Sh⊥

zM
G1T

)
γ5/n

4

+

(
Sk
h⊥H1T +

λpk⊥
zM

H⊥1 − ϵkj⊥ p⊥ j

zM
H⊥1 − pk⊥p

j
⊥ − 1

2
p2⊥g

kj
⊥

z2M2
Sh⊥ jH

⊥
1T

)
iγ5σ+k

4
. (3.89)
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Figure 3.16: Diagrammatic representation of the Fierz decomposition of the hadronic tensor.

Left: The broken lines are used to separate the hard interaction from the definition of the

quark-quark correlation function. Right: The Fierz decomposition where Γi represent the

operators which give rise to the parton densities while Γ̄i represent the operators which enter

into the hard function.
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Making this replacement, the hadronic tensor can be simplified as

Wµν =
1

Nc

∑

a,b

∑

q

e2q

∫
d2k1⊥ d

2k2⊥ δ
(2) (q⊥ + k⊥ + p⊥/z) (3.90)

× Tr
[
γµ Γ̄a

1 γ
ν Γ̄b

1

]
Φ[Γa]

(
x,k⊥,S;µ, ζ1/ν

2
)
∆[Γb] (z,p⊥,Sh;µ, ζ2/ν

2
)
.

Where in this expression

∆[Γb] (x1,p⊥,Sh;µ, ζ2/ν
2
)
= Tr

[
∆
(
z,p⊥,Sh;µ, ζ2/ν

2
)
Γb
]
. (3.91)

Therefore hadronic tensor for the unpolarized cross section is given by

Wµν = −gµν⊥
1

Nc

∑

a,b

∑

q

e2q

∫
db b

2π
J0 (bq⊥) Dh/q(z, b;µ, ζ2) fq/P (x, b;µ, ζ1) (3.92)

.

Upon contracting with the leptonic tensor, we arrive at the expression for the differential

cross section

dσ

dxB dQ2 dzh d2Ph⊥
=
Q2 (y2 − 2y + 2)

y2
1

Nc

∑

a,b

∑

q

e2q (3.93)

×
∫
db b

2π
J0 (bq⊥) Dh/q(z, b;µ, ζ2) fq/P (x, b;µ, ζ1) , (3.94)

which matches the expression in the previous section upon a change of variables from Q2 to

y.
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CHAPTER 4

Jets for Tomography

4.1 Introduction

Since the asymptotic contributions of QCD amplitudes originates from the soft and collinear

regions, sufficiently high energy partons generate jets [125]. These objects are defined by

three relevant parameters, the jet axis, the jet radius, and the jet pcutT , which provide in-

formation for the direction of the jet, its width, and the required energy which is used to

define the jet. Because of the enhancement of radiation in the collinear and soft directions,

jets axes are a powerful tool for estimating the direction of the parent parton. This prop-

erty is particularly useful for QCD tomography, where the direction of the parton provides

information about the momentum of the parton that originated in the beam hadrons. In

the case of Semi-Inclusive DIS as an example, we saw that the transverse momentum of the

initial quark is convoluted with the transverse momentum generated through hadronization

in the TMD FF. Furthermore, jets are predominantly perturbative objects and therefore

offer limited non-perturbative input as opposed to fragmentation function. Over the past

few years, many studies have featured using jets to measure TMD PDFs, see for instance

Refs. [126, 127, 128, 129, 130, 131, 132, 133, 134, 135]. Furthermore, as radiative emission

and hadronization occurs within the jet, the final-state hadrons of the jet pick up transverse

momentum with respect to the jet axis. Thus by measuring the distribution of hadrons

within the jet, we gain sensitivity to the non-perturbative contributions associated with

fragmentation. In principle since these measurements are sensitive to both perturbative and

non-perturbative contributions, a detailed proof of factorization is required. In Ref. [136] this

separation was performed in an effective field theory approach. Since this time, a large num-
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ber of measurements have been presented in which the distribution of hadrons within the jets

can be used to measure the TMD FFs, see for instance Refs. [137, 138, 139, 140, 141, 142].

In this chapter, I will focus on the work that I have performed in which we used jets

to probe TMDs. In Sec. 4.2, I will discuss the use of heavy-flavor di-jets at the EIC to

probe the gluon Sivers function. In Sec. 4.3, I will discuss the use of back-to-back di-jets to

probe quark Sivers function in hadron-hadron collisions. In Sec. 4.4, I will discuss the use of

Z-tagged jets to probe fragmentation functions in hadron-hadron collisions.

4.2 QCD evolution of the gluon Sivers function in heavy flavor

dijet production at the Electron-Ion Collider

4.2.1 Introduction

To explore quark TMDs, Semi-Inclusive DIS, Drell-Yan and DIA have served as the primary

processes. The shortcoming of these processes are that the virtual bosons in each process

probe only the non-perturbative quark TMDs. While the high center of mass energies and the

electro-magnetic background at the EIC offers the possibility of isolating gluon distributions.

As the fundamental goals of the EIC are to understand the gluon and spin content of the

hadrons, the gluon Sivers function is regarded as one of the “golden measurements” at the

future EIC [68]. Within the literature, several processes have been presented as a possible

probe of these distributions at the future EIC such as heavy quark pair production [143],

heavy quarkonium production [144, 145, 146, 147, 148], and quarkonium-jet production [149],

as well as back-to-back dihadron and dijet production [150]. In [151], the authors used

a PYTHIA event generator [152] and the reweighting method of [153] to investigate the

experimental uncertainties associated with these processes. The authors concluded that

because jets can be used as a reliable proxy for the parton-level asymmetry, the optimal

process for probing the gluon Sivers function at the future EIC is dijet production. In their

analysis however, the contribution of the quark Sivers function contaminated their analysis.

In our analysis in this section, we discuss the Sivers spin asymmetry for heavy flavor (HF)
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dijet production, where the contribution of the quark Sivers function is further suppressed

compared to that of the light flavor dijet case.

As we demonstrated in the previous section, the Sivers function is related to the limit

of the Qiu-Sterman function and thus exhibits modified universality between Semi-Inclusive

DIS and Drell-Yan [154, 155, 156]. Similarly, it has been demonstrated that the gluon Sivers

function for the process of back-to-back diphoton production in p + p collisions, p↑p →
γγX, carries a sign opposite to that of dijet production in e + p collisions, ep↑ → e′jjX:

f
⊥[ep↑→e′jjX]
1T,g (x, kT ) = −f⊥[p

↑p→γγX]
1T,g (x, kT ) [143]. In [157], it was demonstrated that the

gluon Sivers function in any process can be expressed in terms of two “universal” functions

with calculable color coefficients for each partonic subprocess. We briefly discuss such a

process-dependence for HF dijet production below. For a comprehensive review on gluon

TMD PDFs, see [158, 159].

So far, studies of the gluon Sivers function at the EIC are mostly performed within the

leading-order (LO) parton model, without considering the impact of QCD evolution. The

effects of resummation for back-to-back light flavor dijet production in the unpolarized DIS

process have been investigated in [160], where the authors apply the pT -weighted recombi-

nation scheme [161] in defining the jet axis to avoid the theoretical complexity arising from

non-global logarithm (NGL) resummation [162]. A similar idea is used to study single in-

clusive jet production in the Breit frame at the EIC in [128, 129]. Recently, following the

same Soft-Collinear Effective Theory (SCET) framework utilized in [135, 130, 163, 164, 165],

the TMD factorization formula for light flavor dijet production at the EIC has been derived

[166], where the azimuthal-angle-dependent soft function, describing the interaction between

two final-state jets through the exchange of low-energy gluons, is analytically calculated at

one-loop order. For HF jet production in the kinematic region of comparable jet and heavy

quark masses, a new effective theory framework is needed. In this work, we provide such a

framework and derive the TMD factorization formula.

The remainder of this section is organized as follows. In Sec. 4.2.2, I provide details the

factorization framework required to carry out resummation in the back-to-back region where
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the transverse momentum imbalance of the HF dijet is small. In Sec. 4.2.3, I present nu-

merical results for charm and bottom dijet production in both unpolarized and transversely-

polarized-proton-electron scattering. I summarize our findings and give an outlook for future

investigations in Sec. 4.2.4.

4.2.2 Factorization and resummation formula

In this section, I start with the kinematics for HF dijet production in e + p collisions. We

then provide the TMD factorization formalism with explicit expressions for all the relevant

factorized ingredients.

𝑒!(ℓ)

𝑒!(ℓ′)

(𝑞)𝛾*

𝑁(𝑃, 𝑺")

𝑔(𝑝#)

𝐽$(𝑝%)

𝐽 &$(𝑝 ̅%)

Figure 4.1: HF dijet production in electron-proton collisions, as stated in Eq. (4.1).

4.2.2.1 Kinematics

As shown in Fig. 4.1, we consider HF dijet production in the polarized-proton-electron

scattering process

e(ℓ) +N(P,ST ) → e(ℓ′) + JQ(pJ) + JQ̄(pJ) +X , (4.1)
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where ST
1 is the transverse spin of the polarized proton with momentum P and ℓ (ℓ′) is

the momentum of the incoming (outgoing) electron. At LO, HF dijets are produced via the

γ∗g → QQ̄ process. The HF quark Q and antiquark Q̄ initiate the observed HF jets JQ and

JQ̄ with momentum pJ and pJ , respectively. In this section, we choose to work in the Breit

frame so that both the virtual photon (with momentum q = ℓ − ℓ′) and the beam proton

scatter along the z-axis. For convenience, we define the following variables commonly used

in DIS,

Q2 = −q2 , xB =
Q2

2P · q , y =
P · q
P · ℓ . (4.2)

We may further note that Q2 = xB y SℓP , where SℓP = (ℓ+ P )2 denotes the electron-proton

center-of-mass energy. In a fashion analogous to SIDIS, we also define the kinematic variable

z = P · pJ/P · q, which gives the momentum fraction of the photon carried by the jet JQ. At

LO, the four-momenta of the incoming and outgoing particles are expressed as

qµ =
Q

2
(nµ − n̄µ) , P µ =

Q

xB

n̄µ

2
,

ℓµ =
Q

y

nµ

2
+Q

1− y

y

n̄µ

2
+ ℓµt , ℓ′µ = Q

1− y

y

nµ

2
+
Q

y

n̄µ

2
+ ℓµt ,

pµJ = zQ
nµ

2
+
p2T
zQ

n̄µ

2
+ pµt , pµ

J
= (1− z)Q

nµ

2
+

p2T
(1− z)Q

n̄µ

2
− pµt , (4.3)

where we have defined pµt such that pµt ptµ = −p2T with pT = pT (cosϕJ , sinϕJ). Here, we

assume p2T ≫ m2
Q and take p2J = p2

J
= 0. This allows us to derive the factorized cross section

in the following section. Lastly, the parton-level Mandelstam variables can be defined as

ŝ ≡ (pg + q)2 = (pJ + pJ)
2 =

p2T
z(1− z)

, (4.4)

t̂ ≡ (pg − pJ)
2 = (q − pJ)

2 = −Q
2x z

xB
, (4.5)

û ≡ (pg − pJ)
2 = (q − pJ)

2 = −Q
2x (1− z)

xB
, (4.6)

where x is the momentum fraction of the proton carried by the gluon, and is given by

x =
xBD

Q2z(1− z)
, with D = Q2z(1− z) + p2T . (4.7)

1In this chapter, I use T to denote transverse to the proton-photon while I use ⊥ to mean transverse to
the jet
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4.2.2.2 Factorization formula

As we saw for Semi-Inclusive DIS and Drell-Yan, the TMD region is valid where we have two

scales with the hierarchy q⊥ ≪ Qh where q⊥ is some transverse momentum scale and Qh is

some hard scale. In the case of back-to-back jet production, we can define the small scale as

the imbalance of the jets qT = pJT + pJT where qT ≪ pJT ∼ pJT ≡ pT . When considering

HF dijet production, we also need to consider the additional scale which is associated with

the mass of the HF quark.

Furthermore, we work in the kinematic regime where mQ ≲ pTR ≪ pT , with R denoting

the jet radius. Overall, in the region with the scale hierarchy as qTR ≪ qT ≲ mQ ≲ pTR ≪
pT . Using SCET, we can decompose the fields entering into the cross sections as

Aµ(x) = Aµ
J(x) + Aµ

J
(x) + Aµ

c (x) + Aµ
s (x) + Aµ

cs(x) + Aµ
cs(x) (4.8)

ψ(x) = ψJ(x) + ψJ(x) + ψc(x) + ψs(x) + ψcs(x) + ψcs(x) . (4.9)

In this expression, ψJ/J and AJ/J are the quark and gluon fields associated with collinear

emissions within the jet while ψcs and Acs are known as collinear-soft modes which provide

information on soft radiation leaving the jet. The momentum of the collinear jet modes scales

as pJT (1, R2, R) while the momentum of the collinear-soft modes scale as q⊥ (1, R2, R).

The factorized expression for the proton-spin-independent cross section is given by

dσUU

dQ2dyd2pTdyJd2qT

=H(Q, y, pT , yJ ;µ)

∫
d2λT d

2kT d
2lQT d

2lQ̄TS(λT ;µ, ν) (4.10)

× δ(2)(λT + kT + lQT + lQ̄T − qT ) f
unsub
g/N

(
x, kT ;µ, ζ/ν

2
)

× JQ(pTR,mQ;µ)S
c
Q(lQT , R,mQ;µ) JQ̄(pTR,mQ;µ)S

c
Q̄(lQ̄T , R,mQ;µ) .

Above, yJ is the rapidity of the HF jet JQ and is related to the kinematic variable z through

the relation z = eyJpT/Q. In the factorization formula Eq. (4.10), S denotes the soft function

while fg/N is the unpolarized gluon TMD PDF. Their perturbative one-loop expressions can

be found in Sec. 4.2.2.4. In the third line of Eq. (4.10), JQ and Sc
Q are the massive quark

jet and collinear-soft functions, which differ from the corresponding functions utilized in

light jet production [135, 130, 163, 164, 165]. In Secs. 4.2.2.5 and 4.2.2.6, we present their
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explicit calculations at next-to-leading order (NLO). The variables kT , λT , and lT label the

transverse momenta associated with the collinear, soft, and collinear-soft modes. Finally,

µ and ν are the factorization and rapidity scales, respectively, while ζ is the Collins-Soper

parameter [36, 167]. In the derivation of the above factorization formula we apply the narrow

jet approximation with R ≪ 1. However, as shown in [168, 169, 170, 171] this approximation

works well even for fat jets with radius R ∼ O(1), and the power corrections of O(R2n) with

n > 0 can be obtained from the perturbative matching calculation.

Fourier transforming to b-space, the factorized cross section becomes

dσUU

dQ2dyd2pTdyJd2qT

=H(Q, y, pT , yJ ;µ)

∫
d2b

(2π)2
eib·qTS(b;µ, ν) funsub

g/N

(
x, b;µ, ζ/ν2

)

× JQ(pTR,mQ;µ)S
c
Q(b, R,mQ;µ) JQ̄(pTR,mQ;µ)S

c
Q̄(b, R,mQ;µ) , (4.11)

where soft function S and the gluon TMD PDF fg/N both depend on the rapidity scale ν.

However, the soft function can be written as

S(b;µ, ν) =
√
Snn̄(b;µ, ν)S(b;µ) , (4.12)

where Snn̄(b, µ, ν) is the soft function for Higgs production in p + p collisions [62, 172], and

the function S(b, µ) on the right-hand side no longer depends on the rapidity scale ν. Upon

making this replacement, the factorized expression for the cross section can be written in

terms of the properly-defined TMD gluon distribution [36] by noting that

funsub
g/N

(
x, b;µ, ζ/ν2

)
S(b;µ, ν) = fg/N(x, b;µ, ζ)S(b;µ) . (4.13)

Here, fg/N(x, b;µ, ζ) on the right-hand side is defined as

fg/N(x, b;µ, ζ) = funsub
g/N

(
x, b;µ, ζ/ν2

)√
Snn̄(b;µ, ν) . (4.14)

This is the properly-defined gluon TMD PDF probed in Higgs production in p + p colli-

sions [172] and is thus the counterpart of the quark TMD PDF as probed in Drell-Yan

lepton pair production. Finally, Eq. (4.11) can be expressed in the following form

dσUU

dQ2dyd2pTdyJd2qT

=H(Q, y, pT , yJ ;µ)

∫
d2b

(2π)2
eib·qTS(b;µ) fg/N(x, b;µ, ζ) (4.15)
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× JQ(pTR,mQ;µ)S
c
Q(b, R,mQ;µ) JQ̄(pTR,mQ;µ)S

c
Q̄(b, R,mQ;µ) .

In the following sections we calculate the one-loop expressions for all the above functions.

An important physical requirement is that the factorized cross section must be independent

of the scale µ–we verify this factorization-scale-independence in Sec. 4.2.2.7.

Next, if one considers the scattering of an electron with a transversely-polarized proton

with spin ST , Eq. (4.10) can be generalized. In this case, the spin-dependent cross section

once again contains two terms, the spin-independent contribution and the spin-dependent

contribution

dσ(ST ) = dσUU + dσUT (ST ) , (4.16)

where dσUT depends on the gluon Sivers function. The full expressions for the leading twist

gluon distributions are given in [173]. Using these results, we can obtain the expression for

the polarized cross section by simply replacing the unpolarized gluon TMD PDF in Eq. (4.10)

with the gluon Sivers function, namely

funsub
g/N

(
x, kT ;µ, ζ/ν

2
)
→ 1

M
ϵαβ S

α
T k

β
T f
⊥,f unsub
1T,g/N

(
x, kT ;µ, ζ/ν

2
)
. (4.17)

Here, it is important to note that there exist both f - and d-type gluon Sivers functions, which

are associated with different color configurations in the three-gluon correlator, i.e., involving

the antisymmetric fabc and symmetric dabc structure constants of SU(3), respectively. For

details, see for instance [157, 174]. In Eq. (4.17), we have denoted the gluon Sivers function

with the superscript f , which is used to indicate that it is f -type. We note that at LO, this

process is only sensitive to the f -type function. Further details on this matter are provided

in Sec. 4.2.2.3. After making this substitution, the factorized cross section then reads

dσUT (ST )

dQ2dyd2pTdyJd2qT

=HSivers(Q, y, pT , yJ ;µ)

∫
d2λT d

2kT d
2lQT d

2lQ̄TS(λT ;µ, ν) (4.18)

× δ(2)(λT + kT + lQT + lQ̄T − qT )
1

M
ϵαβ S

α
T k

β
T f
⊥,f unsub
1T,g/N

(
x, kT ;µ, ζ/ν

2
)

× JQ(pTR,mQ;µ)S
c
Q(lQT , R,mQ;µ) JQ̄(pTR,mQ;µ)S

c
Q̄(lQ̄T , R,mQ;µ) ,
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where HSivers denotes the hard function for the polarized process, and this expression can

once again be written as a Fourier transform by defining

ibβ

2
f⊥,f unsub
1T,g/N (x, b;µ, ζ/ν2) =

∫
d2kT e

−ib·kT
kβT
M
f⊥,f unsub
1T,g/N (x, kT ;µ, ζ/ν

2) . (4.19)

Finally, the factorization formula for the polarized differential cross section becomes

dσUT (ST )

dQ2dyd2pTdyJd2qT

=HSivers(Q, y, pT , yJ ;µ)

∫
d2b

(2π)2
eib·qTS(b;µ) (4.20)

× i

2
(ϵαβ S

α
T b

β)f⊥,f1T,g/N(x, b;µ, ζ)

× JQ(pTR,mQ;µ)S
c
Q(b, R,mQ;µ) JQ̄(pTR,mQ;µ)S

c
Q̄(b, R,mQ;µ) .

Here, we have applied the redefinition Eq. (4.12) to obtain the rapidity-scale-independent

gluon Sivers function

f⊥,f1T,g/N(x, b;µ, ζ) ≡ f⊥,f unsub
1T,g/N (x, b;µ, ζ/ν2)

√
Snn̄(b;µ, ν) . (4.21)

4.2.2.3 Hard function

In the unpolarized process, the LO hard function is determined by the tree-level cross section

for dijet production in DIS, which is expressed as [175, 176]

H(Q, y, pT , yJ ;µ) =
α2
emαsQ

2
fCFCA

4πQ2y2SℓP

{ [
1 + (1− y)2

]
HU,U+L − y2HU,L (4.22)

− (2− y)
√

1− y HU,I + 2(1− y)HU,T
}
,

where αem is the fine structure constant and Qf denotes the fractional charge of the HF

quark. On the right-hand side, the first superscript U indicates that the incoming gluon

is unpolarized, while the second superscripts {U + L,L, I, T} correspond to the different

helicity states of the off-shell photon. Explicitly, the functions HU,i are expressed as

HU,I = cos(ϕJ)H
U,I
cos(ϕJ )

, HU,T = cos(2ϕJ)H
U,T
cos(2ϕJ )

,

HU,I
cos(ϕJ )

=
2z(1− 2z)pTQ

D2

(
−1 +

2p2T
D

)
, HU,T

cos(2ϕJ )
=

2z p2T
D2

(
1− p2T

D

)
,

HU,U+L =
1

D

(
1

2− 2z
− z

)
+

2zp2T
D2

− zp2T
D3

(
2p2T +Q2(1− 2z)2

)
,
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HU,L =
4zp2T
D2

(
1− p2T

D

)
. (4.23)

One immediately sees that the functions HU,I and HU,T vanish upon integrating out the

azimuthal angle ϕJ of the jet. As such, these contributions do not play a role in our numerical

calculations.

The expression for the hard anomalous dimension can be obtained from the calculation

of the 3-jet process γ∗ → qq̄g at lepton collisions [177, 178]. The hard anomalous dimension

can also be read from the general structures in [179, 180] and is given as

Γh
µ(αs) = CAΓ

cusp(αs)ln

(
û t̂

ŝ µ2

)
− 2CFΓ

cusp(αs)ln

(
µ2

ŝ

)
+ 4γq(αs) + 2γg(αs) , (4.24)

where Γcusp is the cusp anomalous dimension, while γq and γg represent the single logarithmic

anomalous dimensions for the quark and gluon, respectively. With this anomalous dimension,

one can then perform resummation by solving the following renormalization group (RG)

equation for the hard function

d

dlnµ
lnH(µ) = Γh

µ(αs) , (4.25)

where, for brevity, we maintain only the scale µ-dependence in the hard function. We note

that in order to perform the evolution at next-to-leading logarithmic (NLL) accuracy, the

cusp anomalous dimension is needed at two-loop order and the single logarithmic anomalous

dimensions are needed at one-loop order. The values of these expressions are

γcusp0 = 4 , γcusp1 =

(
268

9
− 4π2

3

)
CA − 40

9
CFnf ,

γq0 = −3CF , γg0 = −β0, β0 =
11

3
CA − 4

3
TFnf , (4.26)

where we have organized the perturbative expansion of each anomalous dimension as

γ(αs) =
αs

4π
γ0 +

(αs

4π

)2
γ1 +O(α3

s) . (4.27)

For the polarized process, we must consider the process-dependence of the corresponding

gluon Sivers functions [157]. Such process-dependence can be computed via the attachment
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of an additional gluon originating from the gauge link in the definition of the Sivers function.

This additional gluon is responsible for the soft pole that generates Sivers asymmetry. This

method is widely used in computing the process-dependence of the quark Sivers function, see

e.g. [133], which gives the same results as shown in [157, 181]. In Fig. 4.2, the soft poles are

represented by red lines. We note that for both the polarized and unpolarized cases, the hard

functions can be expressed as matrices in color space [165]. For more complicated processes,

the relationship between the polarized and unpolarized hard matrices is non-trivial. However,

for the γ∗q → QQ̄ process, the color space is one-dimensional and, therefore, the polarized

hard function can be simply written as

HSivers(Q, y, pT , yJ ;µ) = (C1 + C2) h(Q, y, pT , yJ ;µ) . (4.28)

Here, C1 and C2 are the color factors for the polarized hard process associated with the

attachment of the additional gluon to the HF quark and anti-quark [144, 182, 183], respec-

tively. The function h(Q, y, pT , yJ , µ) is the kinematic part of the hard function. For the

unpolarized case, the hard function can be written as

H(Q, y, pT , yJ ;µ) = Cu h(Q, y, pT , yJ ;µ) , (4.29)

where factor Cu is the color factor associated with the unpolarized hard process. We find

that at LO for this process, the attachment of this additional gluon originating from the

gauge link in the definition of the Sivers function produces color configurations which are

proportional to (−ifabc). This analysis indicates that while there are both d- and f -type

gluon Sivers functions [157], this process at LO is only sensitive to the f -type gluon Sivers

function. In addition to this, while the term (−ifabc) in Fig. 4.2 appears in the hard function,

this term should be absorbed into the definition of the gluon Sivers function as it originates

from the Wilson line in the adjoint representation. Similarly, the term δac in that figure

should be absorbed into the definition of the unpolarized TMD PDF. For this process, we

find that (C1 + C2) = Cu. As a result, the polarized and unpolarized hard functions are

equal and the hard anomalous dimension is unchanged for the polarized case.
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a c

= Cu δ
ac h(Q, y, pT , yJ ;µ)

a cb

+

a cb

= (C1 + C2)
(
−ifabc

)
h(Q, y, pT , yJ ;µ)

Figure 4.2: Top: Unpolarized hard Feynman diagram for HF dijet production. Bottom:

Polarized hard diagram for HF dijet production. The red lines in the polarized case indicate

the location of a soft pole.

4.2.2.4 TMD PDFs and the global soft function

In order to regulate the rapidity divergences in the TMD PDFs and the global soft function,

we use the η regulator of [62]. The expression for the unsubtracted gluon TMD in this

regularization scheme can be obtained from [136], and is given by

fNLOunsub
g/g (x, b;µ, ζ/ν2) = δ(1− x) (4.30)

+
αs

4π
CA

[
4

η

(
1

ϵ
+ L

)
+

2

ϵ

(
Lζ +

β0
CA

)]
δ(1− x)

− αs

4π

[
2

ϵ
+ 2L

]
Pgg(x)

+
αs

4π
CA

[
L

(
Lζ +

β0
CA

)
δ(1− x)

]
,

fNLOunsub
g/q (x, b;µ, ζ/ν2) = −αs

4π

[
2

ϵ
+ 2L

]
Pgq(x) +

αs

4π
CF (2x) , (4.31)

where b is the magnitude of the two-dimensional vector transverse to the beam direction

b = b (cosϕb, sinϕb), and the splitting kernels are defined as

Pgg(x) = 2CA

[
x

(1− x)+
+

1− x

x
+ x(1− x)

]
+
β0
2
δ(1− x) , (4.32)

Pgq(x) = CF
1 + (1− x)2

x
, (4.33)
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are the collinear splitting kernels. The term in the third line of Eq. (4.30) and the analogous

term in Eq. (4.31) contain the infrared divergences which are to be matched to the collinear

PDF. The RG equations for the gluon TMD PDF are then

d

dlnµ
lnfunsub

g/N (x, b;µ, ζ/ν2) =Γfg
µ (αs) , (4.34)

d

dlnν
lnfunsub

g/N (x, b;µ, ζ/ν2) =Γfg
ν (αs) . (4.35)

Here the anomalous dimensions are given by

Γfg
µ (αs) = CAγ

cusp(αs)Lζ − 2γfgµ (αs) , Γfg
ν (αs) =

αs

π
CAL+O(α2

s) , (4.36)

with γ
fg
0 = γg0 , which is given in Eq. (4.26).

To obtain the soft function, we need to consider all the different configuration in which

soft gluons can scatter in the cross section. The soft function at LO and NLO are given by

SLO(b;µ, ν) = 1 , (4.37)

SNLO(b;µ, ν) = −CA

2
IBJ − CA

2
IBJ +

(
CA

2
− CF

)
IJJ , (4.38)

where the soft integrals Iij are given by

Iij =
αsµ

2ϵπϵeϵγE

π2

∫
ddk δ+(k2)e−i k·b

ni · nj

(ni · k)(nj · k)
νη

|k+ − k−|η . (4.39)

To obtain this expression, I have considered all possible appearances of virtual soft gluon

emissions. In this expression, the measurement function is the usual one for the soft function,

which is given by δ(k⊥ − l⊥) and gives rise to the phase factor e−ik·b after performing the

Fourier transform. In this expression, i and j are either B, J , or J , where B denotes the

beam direction while J and J denote the directions of the jet initiated by the HF quark and

anti-quark, respectively. Therefore, the IJJ provides the information for the scattering of a

soft gluon from one jet to another and analogous soft contributions can be defined for the

other I terms. The expressions for the ϕb-dependent beam-jet soft function integrals are

given in [135] as

IBJ =
αs

4π

[
4

η

(
1

ϵ
+ L

)
− 4

ϵ2
− 2

ϵ

(
−2yJ + Lν + 2ln

2iµ cbJ
µb

)]
+ Ifin

BJ , (4.40)
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IBJ =
αs

4π

[
4

η

(
1

ϵ
+ L

)
− 4

ϵ2
− 2

ϵ

(
−2yJ + Lν + 2ln

−2iµ cbJ
µb

)]
+ Ifin

BJ
, (4.41)

with cbJ = cos(ϕb − ϕJ) and where the rapidity of jets are

yJ = ln
zQ

pT
, yJ = ln

(1− z)Q

pT
. (4.42)

Here, the terms marked by “fin” in their superscripts denote the finite contributions of their

respective functions. While the divergent pieces are required for the purposes of resum-

mation, the finite pieces are only needed at NLO. Since we perform our analysis at NLL

accuracy, these terms are not needed for this study. Recently in [166], the authors derive

the following the jet-jet soft function integral which contains no rapidity divergence. This

integral can be written as

IJJ =
αs

4π

[
− 4

ϵ2
+

4

ϵ

(
ln
ŝ

p2T
− L− ln

(
4c2bJ

))]
+ Ifin

JJ
. (4.43)

From Eqs. (4.40), (4.41), and (4.43), we obtain the following expressions for the soft anoma-

lous dimensions

Γs
µ(αs) = 2CF Γcusp(αs)L+ CA Γcusp(αs)Lν + γs(αs) , (4.44)

Γs
ν(αs) = −αs

π
CAL+O(α2

s) , (4.45)

with the one-loop single logarithmic anomalous dimension

γs0 = 8CF ln
(
4c2bJ

)
+ 4(CA − 2CF )ln

ŝ

p2T
+ 4CAln

ŝ

Q2
. (4.46)

As expected, we see that the one-loop rapidity anomalous dimensions of the TMD PDF and

the soft function fulfill the condition

Γ
fg
ν,0 + Γs

ν,0 = 0 . (4.47)

Thus, the product of funsub
g/N (x, b;µ, ζ/ν2) and S(b, µ, ν) is ν-independent, and we can con-

struct the properly-defined gluon TMD PDF as in Eq. (4.13).

Here we find that the soft function depends not only the magnitude but also the direction

of the vector b. As shown in Sec. 4.2.2.6 a similar structure also shows up in the collinear-

soft function, and the ϕb dependence in the anomalous dimensions will cancel out between
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these two functions. However, after taking into account the evolution between the soft and

collinear-soft function, one finds that the ϕb integral is divergent in some phase space region.

In order to avoid such divergences we apply methods in [135, 165] where one first performs

an averaging over the ϕb angle in both soft and collinear-soft function. We note that this

method does not change the RG invariance as shown in Eqs. (4.75) and (4.76). In addition,

as discussed in [164] no significant numerical effects between different methods are observed

in the NLL resummation calculation.

The ϕb-averaged soft function can be constructed from Eqs. (4.37) and (4.38) by replacing

the soft integrals with

ĪBJ =
αs

4π

[
2

(
2

η
− Lν + 2yJ

)(
1

ϵ
+ L

)
− 4

ϵ2
− 2

ϵ
L+

π2

3

]
, (4.48)

ĪBJ =
αs

4π

[
2

(
2

η
− Lν + 2yJ

)(
1

ϵ
+ L

)
− 4

ϵ2
− 2

ϵ
L+

π2

3

]
, (4.49)

ĪJJ =
αs

2π

[
4

(
1

ϵ
+ L

)
ln
(
2 cosh(∆y/2)

)
− 2

ϵ2
− 2

ϵ
L− L2 +∆y2

− 4ln2
(
2 cosh(∆y/2)

)
+
π2

6

]
, (4.50)

where we have placed a bar over these integrals in order to distinguish them from the ϕb-

dependent ones and have defined ∆y = yJ − yJ . These results are the same as the soft

function calculated in [184]. Therefore, the anomalous dimensions for the averaged case are

Γ̄s
µ(αs) = 2CF Γcusp(αs)L+ CA Γcusp(αs)Lν + γ̄s(αs) , (4.51)

Γ̄s
µ(αs) = −αs

π
CAL+O(α2

s) , (4.52)

where the one-loop single logarithmic anomalous dimensions is

γ̄s0 = 4(CA − 2CF )ln
ŝ

p2T
+ 4CAln

ŝ

Q2
. (4.53)

By comparing Eqs. (4.45) and (4.52), one can see the rapidity anomalous dimension is un-

changed. Therefore in the ϕb-averaged case, we can once again write the factorized expression

in terms of the properly defined TMD PDFs.
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4.2.2.5 Massive quark jet function

In this section, we discuss the calculation of the massive quark jet function at NLO. The

massive quark jet function has been investigated in detail for various observables. For ex-

ample, the factorization formula for the massive event shape distribution involves such a jet

function, as the jet and heavy quark masses are of similar magnitude [185, 186, 187, 188].

The corresponding jet function has been calculated to two-loop order [189]. Furthermore,

the semi-inclusive massive quark jet fragmentation function has been calculated at NLO

and applied to inclusive jet production [190, 191]. Recently, the one-loop expression for the

so-called unmeasured massive quark jet function has been presented in [192].

The global jet anomalous dimension can be obtained from the divergent terms of the

unmeasured massive quark jet function. As shown in Fig. 4.3, the one-loop calculation

involves two types of diagrams: JNLO,V
Q and JNLO,R

Q , where JNLO,V
Q contains only single cut

propagators and is thereby unconstrained by the jet algorithm. Explicitly, it is written as

JNLO,V
Q =

αs

4π
CF

[
2

ϵ2
+

1

ϵ

(
1 + 2ln

µ2

m2
Q

)
+

(
1 + ln

µ2

m2
Q

)
ln
µ2

m2
Q
+ 4 +

π2

6

]
, (4.54)

where the heavy quark mass mQ is the only physical scale involved. Since the real contribu-

tion JNLO,R
Q is constrained by the jet algorithm, it will depend on the jet scale pTR in addition

to mQ. In this work, we define the HF quark four-momentum qµ with q2 = m2
Q, which is

known as the M-scheme [188]. We note that in the hierarchy of scales we are considering,

the constraint of the anti-kT algorithm [193] is independent of the HF quark mass mQ and

is in fact identical to that for massless partons [190], namely

Θanti-kT = θ

[(
q− (ωJ − q−)

ωJ

)2(
R

2 cosh yJ

)2

− q2
⊥

]
, (4.55)

where qµ = (q+, q−, q⊥) is the four-momentum of the HF quark and ωJ is the large component

of the jet four-momentum. The jet scale pTR emerges in Eq. (4.55) upon noting ωJ =

2 pT cosh yJ . In the phase space integral, we expand the integrated momentum q along the

jet direction with q+ = (m2
Q + q2

⊥)/q
− given by the power counting requirement pTR ∼ mQ.
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q

Figure 4.3: Sample Feynman diagrams contributing to the massive quark jet function JQ at

one-loop order in perturbation theory. The virtual corrections JNLO,V
Q are displayed in the

first two diagrams, where each contain only a single cut propagator. The remaining diagrams

involving two cut propagators represent the real corrections JNLO,R
Q .

Explicitly, we have

JNLO,R
Q (pTR,mQ,ϵ) =

αsCF e
ϵγEµ2ϵ

2πΓ(1− ϵ)

∫
dq−

ωJ

dq2
⊥

q2ϵ
⊥

[
q−

ωJ − q−
2q2
⊥ω

4
J

[q2
⊥ω

2
J +m2

Q(ωJ − q−)2]2

+ (1− ϵ)
ωJ(ωJ − q−)

q2
⊥ω

2
J +m2

Q(ωJ − q−)2

]
θ(ωJ − q−)Θanti-kT

=
αs

4π
CF

[
−2ln

(
m2
Q + p2TR

2

m2
Q

)
+ 2− 2m2

Q
m2
Q + p2TR

2

]
1

ϵ
+ JR,fin

Q , (4.56)

where only a single divergence is exhibited, as the heavy quark mass mQ acts as a regulator

of the overlapping soft and collinear regions of phase space. After combining the real and

virtual contributions, the logarithmic dependence on the quark mass mQ cancels out.

The one-loop global jet renormalization constant then reads

ZJQ = 1 +
αs

4π
CF

[
2

ϵ2
+

1

ϵ

(
2ln

µ2

m2
Q + p2TR

2
+ 3− 2m2

Q
m2
Q + p2TR

2

)]
, (4.57)

where, again, we observe that the heavy quark massmQ only affects the single pole structure.

We further note that as mQ → 0, the massive quark jet renormalization constant reduces to

that of the massless jet, ZJQ → ZJq . This gives us the following expression for the global jet

anomalous dimension

ΓjQ
µ (αs) = −CFΓ

cusp(αs)ln
m2
Q + p2TR

2

µ2
+ γjQ(αs) , (4.58)

with the one-loop single logarithmic anomalous dimension as

γ
jQ
0 = 2CF

(
3− 2m2

Q
m2
Q + p2TR

2

)
, (4.59)
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where the first term in the brackets is shared by the massless quark jet function and the

second term constitutes the finite quark mass correction. Finally, the renormalized HF jet

function is given by the following

J ren.
Q,NLO(pTR,mQ;µ) =

αs

4π
CF

[(
3− 2m2

Q
m2
Q + p2TR

2

)
ln

µ2

m2
Q + p2TR

2
(4.60)

+ ln2 µ2

m2
Q + p2TR

2
+ 13− 3π2

2
+ F(pTR,mQ)

]
,

where the function F(pTR,mQ) can be expressed as

F(pTR,mQ) =π2 − 4 Li2

(
− m2

Q
p2TR

2

)
+ 2

(
1− ln

m2
Q

p2TR
2

)
ln
m2
Q + p2TR

2

p2TR
2

− 2m2
Q

m2
Q + p2TR

2
ln

m2
Q

p2TR
2
− m2

Q
p2TR

2
ln
m2
Q + p2TR

2

m2
Q

− 4

[
mQ
pTR

(
1 +

m2
Q

m2
Q + p2TR

2

)
+ Cot−1

(
mQ
pTR

)]
Cot−1

(
mQ
pTR

)
. (4.61)

This expression for the HF jet function is equivalent to the semi-analytic form presented in

[192], and one can see that as mQ → 0, we have F → 0 and, therefore, JQ → Jq. Hence, the

massive quark jet function behaves as expected in the massless limit.

4.2.2.6 Collinear-soft function

We saw in the previous chapters of this dissertation that the soft function is responsible

for enforcing gauge invariance of the cross section under soft gauge transformations. In

our definition of the IR QCD modes, we introduced an additional soft mode, known as the

collinear soft mode, and we discussed how this mode is accounts for soft radiation which

leaves the jet. In this section, we calculate the one-loop perturbative expression for the

collinear-soft function Sc
Q(b, R,mQ;µ). The corresponding Feynman diagrams are shown in

Fig. 4.4, where the blue and black lines represent Wilson lines along vµJ and n̄µ
J directions,

respectively. At this point, I would like to note a rather subtle point. In our calculation of

the global soft function, we took the jet to be light-like. However, in our definition of the jet

function, we took the parton to have some mass. Thus the relevant Wilson lines which enter

into our calculation of the collinear soft function point in the directions nJ and vJ , where
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the massive quark velocity vµJ is defined by

vµJ =
ωJ

mQ

nµ
J

2
+
mQ
ωJ

n̄µ
J

2
, with v2J = 1 . (4.62)

Alternatively, we could have treated the jet to point in the vJ direction. The introduction of

this direction would add additional mass to both the global soft and collinear-soft function.

In our paper, we did not perform this second calculation but we could consider it in another

work.

Treating the calculation using the vJ and nJ direction, the explicit expression for the

bare NLO collinear-soft function is given by

Sc
Q,NLO(b, R,mQ, ϵ) = 2CF wn̄JvJ − CF wvJvJ , (4.63)

where the collinear-soft integrals wαβ are defined in b-space as

wαβ =
αsµ

2ϵπϵeϵγE

2π2

∫
ddk δ+(k2)e−i n̄J ·k nJ ·b/2

α · β
(α · k) (β · k) θ

[
nJ · k
n̄J · k −

(
R

2 cosh yJ

)2
]
. (4.64)

Notice at this point that the phase factor for the collinear-soft function is different than

that for the soft function. This is a result of the fact that the power counting of the soft

function goes as q⊥ (1, 1, 1) while the power counting of the collinear-soft function goes as

q⊥ (1, R2, R). As a result, only the plus component of the collinear-soft function can con-

tribute to the observable. Additionally, note that in this calculation, the θ function is

associated with enforcing that the collinear-soft radiation leaves the jet and thus produces

transverse momentum in the final-state.

Upon performing the k-integration, we obtain the following expressions for wαβ

wn̄JvJ =
αs

4π

[
− 1

ϵ2
− 1

ϵ

(
L+ 2ln

−2icbJ
R

− ln
m2
Q + p2TR

2

p2TR
2

)]
+ wfin

n̄JvJ
, (4.65)

wvJvJ =
αs

4π

[
−1

ϵ

(
2m2
Q

m2
Q + p2TR

2

)]
+ wfin

vJvJ
. (4.66)
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vµJ

n̄µ
J

Figure 4.4: One-loop Feynman diagrams of the collinear-soft function Sc
Q. The blue and

black lines indicate the Wilson lines along vµJ and n̄µ
J directions, respectively.

We see that the finite quark mass corrections only enter into the single pole structure of the

collinear-soft function. This is analogous to the observation made in Sec. 4.2.2.5 in analyzing

the massive quark jet function, and can be understood through the same physical reasoning.

The finite terms are given by

wfin
n̄JvJ

=
αs

4π

[
2

(
ln
m2
Q + p2TR

2

p2TR
2

− ln
−2i cbJ
R

)
ln
−2i cbJ
R

(4.67)

+

(
ln
m2
Q + p2TR

2

p2TR
2

− 2ln
−2i cbJ
R

− 1

2
L

)
L+ Li2

(
− m2

Q
p2TR

2

)
− π2

4

]
,

wfin
vJvJ

=
αs

4π

[
2ln

m2
Q + p2TR

2

p2TR
2

− 2m2
Q

m2
Q + p2TR

2

(
2ln

−2i cbJ
R

+ L

)]
. (4.68)

Here, we note that wn̄JvJ reduces to the massless wn̄JnJ
function [135, 164] as mQ → 0, while

wvJvJ vanishes. Given the expression for Sc
Q, we can calculate the renormalization constant

ZSc
Q , which is given by

ZSc
Q = 1 (4.69)

+
αs

4π
CF

[
− 2

ϵ2
− 2

ϵ

(
L+ 2ln

−2icbJ
R

− m2
Q

m2
Q + p2TR

2
− ln

m2
Q + p2TR

2

p2TR
2

)]
.

This renormalization constant leads to the following formula for global collinear-soft anoma-

lous dimension

ΓcsQ
µ (αs) = CFγ

cusp(αs)ln
R2µ2

b

µ2
+ γcsQ(αs) , (4.70)

where the one-loop single logarithmic anomalous dimension is

γ
csQ
0 = −4CF

[
2ln (−2icbJ)−

m2
Q

m2
Q + p2TR

2
− ln

m2
Q + p2TR

2

p2TR
2

]
. (4.71)
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The anomalous dimension for the collinear-soft function associated with the anti-quark is

given by

Γ
csQ̄
µ (αs) = ΓcsQ

µ (αs)|ϕJ→ϕJ+π . (4.72)

For phenomenological purposes, we utilize the ϕb-averaged collinear-soft function, which

can be obtained through Eq. (4.65) by making use of the following integrals

∫ 2π

0

dϕb

2π
ln (−2icbJ) = 0 ,

∫ 2π

0

dϕb

2π
ln2 (−2icbJ) = −π

2

6
. (4.73)

The resulting anomalous dimension for the ϕb-averaged collinear-soft function is denoted by

Γ̄csQ with

γ̄
csQ
0 = 4CF

(
m2
Q

m2
Q + p2TR

2
+ ln

m2
Q + p2TR

2

p2TR
2

)
. (4.74)

Upon integrating over ϕb, we find that Γ̄csQ̄(αs) = Γ̄csQ(αs) and, therefore, the two averaged

collinear-soft functions S̄c
Q and S̄c

Q̄ behave identically under QCD evolution.

4.2.2.7 Renormalization group consistency

Armed with the anomalous dimensions of each component, we are now positioned to demon-

strate the RG consistency of our factorization framework.

Inspection of Eqs. (4.58) and (4.70) reveals that all mass corrections cancel exactly in

the sum ΓjQ
µ + ΓcsQ

µ , making the RG consistency of our formalism identical to the massless

case. A similar observation is made in [192]. This general physical behavior has also been

observed in the context of inclusive HF jet production [190], where the authors offer the

intuitive argument that as the heavy quark mass mQ constitutes IR information, it thus

does not affect the UV behavior of the semi-inclusive jet function. In the present context,

we see that the UV evolution behavior of the product of the jet and collinear-soft functions

is insensitive to the IR scale introduced by the heavy quark mass. However, in Sec. 4.2.2.8,

we will see how the heavy quark mass enters non-trivially and crucially into the evaluation

of the differential cross section.
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Therefore, upon combining Eqs. (4.24), (4.36), (4.44), (4.57) and (4.70), the RG consis-

tency of our formalism is established:

Γh
µ + Γs

µ + Γfg
µ + 2ΓjQ

µ + ΓcsQ
µ + Γ

csQ̄
µ = 0 . (4.75)

Furthermore, we note that this consistency is preserved under the operation of ϕb-averaging

Γh
µ + Γ̄s

µ + Γfg
µ + 2ΓjQ

µ + Γ̄csQ
µ + Γ̄

csQ̄
µ = 0 . (4.76)

4.2.2.8 Resummation formula

Utilizing our EFT framework, all-order resummation is achieved through RG evolution. The

resulting all-order expression for the HF dijet production cross section is given at NLL2 by

dσUU

dQ2dyd2qTdyJd2pT

= H(Q, y, pT , yJ ;µh)

∫ ∞

0

bdb

2π
J0(b qT )fg/N(x;µb∗)

× exp

[
−
∫ µh

µb∗

dµ

µ
Γh
µ (αs)− 2

∫ µj

µb∗

dµ

µ
ΓjQ
µ (αs)−

∫ µcs

µb∗

dµ

µ

(
Γ̄csQ
µ (αs) + Γ̄

csQ̄
µ (αs)

)
]

× exp [−SNP(b,Q0, n · pg)] , (4.77)

where J0 is the zeroth order Bessel function of the first kind. In this expression, µh, µj,

and µcs are the hard, jet, and collinear-soft scales, respectively. We have also performed the

usual operator product expansion (OPE) of the unpolarized gluon TMD PDF fg/N(x, b;µ, ζ)

in terms of the collinear gluon PDF fg/N(x;µ) at the initial scales ζi = µ2
i = µ2

b∗, and have

kept the coefficient at LO to be consistent with NLL accuracy. The matching coefficient

at higher-orders can be found in e.g. [172, 195, 196, 197, 198, 199, 200]. The function SNP

parameterizes the contribution from non-perturbative power corrections which are enhanced

for qT ∼ ΛQCD. Explicitly, we apply the formula given in [92], which reads

SNP (b,Q0, n · pg) = g1b
2 +

g2
2

CA

CF

ln
n · pg
Q0

ln
b

b∗
. (4.78)

2In our framework, we ignore contributions from NGL resummation. Such resummation could be included
multiplicatively by using the parton shower algorithm developed recently for massive particles [194]. Note
that the fitting function used in [164, 165] to capture the effects of NGLs is only an approximation for HF
jet production, as finite heavy quark mass corrections are not included.
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We assign the following values to the parameters: g1 = 0.106GeV2, g2 = 0.84 and Q2
0 =

2.4GeV2.

Moreover, the spin-dependent cross section is expressed as

dσUT (ST )

dQ2dyd2qTdyJd2pT

= sin(ϕq − ϕs)H(Q, y, pT , yJ ;µh)

∫ ∞

0

b2db

4π
J1(b qT )f

⊥,f
1T,g/N(x;µb∗)

× exp

[
−
∫ µh

µb∗

dµ

µ
Γh
µ (αs)− 2

∫ µj

µb∗

dµ

µ
ΓjQ
µ (αs)−

∫ µcs

µb∗

dµ

µ

(
Γ̄csQ
µ (αs) + Γ̄

csQ̄
µ (αs)

)
]

× exp
[
−S⊥NP(b,Q0, n · pg)

]
. (4.79)

Here, we have expected a similar OPE for the gluon Sivers function f⊥1T,g/N(x, b;µ, ζ) at the

initial scales ζi = µ2
i = µ2

b∗ and simply expressed the corresponding collinear function at

LO as f⊥,f1T,g/N(x;µb∗) for simplicity. In principle, the corresponding collinear functions in the

OPE expansion would be the twist-3 three-gluon correlation functions defined in [201, 202].

To the best of our knowledge, detailed OPE calculations for the corresponding coefficient

functions are not available in the literature. An expansion of the gluon Sivers function in

terms of the collinear twist-3 quark-gluon-quark correlator, or the so-called Qiu-Sterman

function [66, 67], in transverse momentum space is performed in [144]. On the other hand,

the coefficient functions for the expansion of the quark Sivers function in terms of the three-

gluon correlation functions are provided in [112, 123]. The computation of the coefficient

functions for expanding the gluon Sivers function in terms of the three-gluon correlation

functions is essential for a full understanding of the QCD evolution of the gluon Sivers

function. We leave this to future work.

Our knowledge about gluon Sivers functions, especially in the proper TMD factorization

formalism, is rather limited. At the present moment, the only experimental constraint on the

gluon Sivers function, in the TMD framework, comes from the SIDIS measurement of back-

to-back hadron pairs off transversely-polarized deuterons and protons at COMPASS [203].

However, as of yet, there has been no theoretical extraction of the gluon Sivers function

from such data. On the other hand, an important theoretical constraint on the gluon Sivers

function comes from the Burkardt sum rule [204]. For the phenomenological purposes of
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the next section, we adopt the non-perturbative parameterization utilized by [205, 206] 3.

Specifically, for the non-perturbative Sudakov, we take

S⊥NP (b,Q0, n · pg) = g1ρ b
2 +

g2
2

CA

CF

ln
n · pg
Q0

ln
b

b∗
, (4.80)

where the g2-dependent term is spin-independent and is, therefore, the same term occurring

in Eq. (4.78), while the term ∝ g1ρ can be connected to the Gaussian width in transverse

momentum space [80] for the gluon Sivers function. For the collinear part of the gluon Sivers

function, f⊥,f1T,g/p(x;µ) in Eq. (4.79), we take

f⊥f1T,g/N(x;µ) = Ng

4ρ
√

2eρ(1− ρ)g1
Mproton

xαg(1− x)βg
(αg + βg)

αg+βg

α
αg
g β

βg
g

fg/N(x;µ) , (4.81)

with the parameters given by

Ng = 0.65, αg = 2.8, βg = 2.8, ρ = 0.5, Mproton = 1GeV , (4.82)

and fg/N(x;µ) denoting the unpolarized collinear gluon PDF. For fg/N(x;µ), we use CT14nlo

[208]–specifically, CT14nlo NF3 (CT14nlo NF4) for charm (bottom) jet-pair production with

3 (4) active parton flavors.

At this point, it is important to note that while the mass corrections in sum of the

anomalous dimensions for the collinear-soft and massive jet functions cancel, the mass-

dependence of ΓjQ
µ contributes to the differential cross section. By examining Eqs. (4.77)

and (4.79), we see that the mass corrections enter into the evolution between the scales

µj and µcs. We will see in the following section that this can significantly affect both the

qT -distributions and spin asymmetries for HF dijet production at the EIC.

4.2.3 Numerical results

In this section, we present numerical results for HF dijet production in unpolarized and

transversely-polarized-proton-electron collisions at the future EIC. We set the energies of

3Note that the gluon Sivers function in [205], and its updated version [207], is constrained to their study
of the p↑p → πX process. Technically, this is not subject to a TMD factorization framework, but it serves
as a starting point for our numerical study, following [151].
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Figure 4.5: The normalized qT -distribution for the unpolarized cross section of charm (left

plot) and bottom (right plot) dijet production at the EIC. The solid curves are the results

from using the resummation formula Eq. (4.77), while the dashed curves represent the re-

summation prediction using the evolution kernel without finite quark mass corrections. The

red and blue bands indicate theoretical uncertainties from the variation of hard and jet scales

as discussed in the text.

the electron and proton beam to be 20 GeV and 250 GeV, respectively. These beam-energy

values yield a electron-proton center-of-mass energy of
√
SℓP = 141 GeV. For the all-order

resummation formulae in Eqs. (4.77) and (4.79), the renormalization scales for each function

are chosen to be

µh =
√
Q2 + p2T , µj = pTR, µcs = µb∗R . (4.83)

Here, note that the Landau singularity associated with the collinear-soft scale is also regu-

larized by the b∗-prescription.

As given in the calculation of the jet function, we consider HF jets constructed using the

anti-kT algorithm with radius R = 0.6. The corresponding kinematic cuts for charm and

bottom jets in the Breit frame are

charm jets : 5GeV < pT < 10GeV, |yJ | < 4.5 ,
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Figure 4.6: The Sivers spin asymmetry for charm (left plot) and bottom (right plot) dijet

production at the EIC is plotted as a function of qT/pT . The solid curves are the results

from using the resummation formula, while the dashed curves represent the resummation

prediction using the evolution kernel without finite quark mass corrections. The red and

blue bands indicate theoretical uncertainties from the variation of hard and jet scales.

bottom jets : 10GeV < pT < 15GeV, |yJ | < 4.5 , (4.84)

respectively. The charm and bottom quark masses are chosen as mc = 1.5GeV and mb =

5GeV. The spin asymmetry from the gluon Sivers function is defined as

A
sin(ϕq−ϕs)
UT = 2

∫
dϕsdϕqsin(ϕq − ϕs) dσ

UT (ST )∫
dϕsdϕq dσUU

. (4.85)

In Fig. 4.5, we display the normalized unpolarized cross section, 1/σ dσ/dqT , as a function

of the imbalance qT . In Fig. 4.6, the Sivers spin asymmetry A
sin(ϕq−ϕs)
UT is presented as a

function of qT/pT following [142], for both charm (left panel) and bottom (right panel) jets,

respectively. For both plots, the solid curves are the results obtained using the resummation

formula, while the dashed curves represent the resummation prediction using the evolution

kernel without finite quark mass corrections. For both the unpolarized qT and A
sin(ϕq−ϕs)
UT

distributions, we find that the effects of the finite quark masses are modest for charm jets
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and quite sizable for bottom jets. This can be attributed to the sizes of the charm and

bottom masses relative to their associated jet scales pTR. As discussed in Secs. 4.2.2.5

and 4.2.2.6, we have that JQ → Jq and Sc
Q → Sc

q as mQ → 0, making them analytic

functions of mQ in the neighborhood of zero mass. Since Eqs. (4.77) and (4.79) carry their

mass-dependence through the anomalous dimensions for the jet and collinear-soft functions,

Eqs. (4.58) and (4.70), one sees that the massive versions of these functions are connected to

the massless versions by the ratio mQ/ (pTR)–it is in fact this dimensionless parameter that

controls the physical size of the mass corrections. With this in mind, one sees that Eq. (4.84)

naturally positions bottom dijets further (in terms of the parameter mQ/ (pTR)) from light

flavor jet-pairs than it does charm dijets. This relative positioning is then clearly displayed

in Figs. 4.5 and 4.6.

In order to estimate the theoretical uncertainties, in both Figs. 4.5 and 4.6 we also show

the uncertainties from scale variations, which are given by the red and blue bands. Here

we vary the hard and jet scales by a factor of two around their default values as defined in

(4.83), and the total uncertainty bands are obtained by the envelope of all the variations.

Since the non-perturbative Sudakov factor in Eq. (4.80) is fitted at the canonical scale µb∗ ,

we do not include theory uncertainties from µb∗ and µcs variations. We find that the scale

uncertainty is compatible with the finite quark mass corrections in charm dijet process, while

its impact on the bottom dijet process is smaller than the mass correction. Therefore in order

to identify the finite quark mass effects in the charm dijet process it is essential to reduce the

scale uncertainties. Our factorization and resummation formula provides a clear structure to

improve the perturbative accuracy, which makes scale uncertainty further reduction possible.

We leave the higher-order perturbative calculations in future work.

4.2.4 Conclusion

A major priority of the future EIC is to explore the gluon TMD PDFs. In this section,

we have investigated the use of back-to-back HF dijet production in transversely-polarized

target DIS as a means of probing spin-dependent gluon TMD PDFs. We have calculated
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the expressions for the mass-dependent jet and collinear-soft functions at next-to-leading

order. Using these expressions, as well as Soft-Collinear Effective Theory, we resum the

large logarithms associated with these expressions at next-to-leading logarithmic accuracy.

We then provide a factorization theorem for this process with QCD evolution in the kinematic

region where heavy quark mass mQ ≲ pTR ≪ pT , with pT and R being the transverse

momentum and the radius of the jet, respectively. Furthermore, we generate a prediction for

the Sivers asymmetry for charm and bottom dijets at the EIC, which can be used to probe

the gluon Sivers function. We carefully study the effects of the HF masses by comparing our

mass-dependent predicted asymmetry against the asymmetry in the massless limit. We find

that, in the kinematic region we consider, the HF masses generate modest corrections to the

predicted asymmetry for charm dijet production but sizable corrections for the bottom dijet

process. Furthermore, we also consider the theoretical uncertainties from the scale variation.

We find that the scale uncertainty can be compatible with the corrections from finite quark

mass effects, especially for charm dijets production. In order to identify the mass effects and

reduce the scale uncertainties one has to include higher-order corrections in the matching

coefficients and the corresponding anomalous dimensions in Eqs. (4.77) and (4.79), and we

leave the detailed perturbative calculations in future work.

4.3 The Sivers Asymmetry in Hadronic Dijet Production

4.3.1 Introduction

We saw in the previous sections that the Sivers function exhibits modified universality due

to the presence of the additional gluon entering into the collinear correlation function. In

the previous section, we had the partonic interaction g γ → q q̄ but an interesting question

to address which could prove important for EIC physics is: how does the establishment of

QCD factorization theorems change as the number of partons in the hard process increases.

To study the factorization theorems, I now turn our attention to the Sivers asymmetry in

hadronic dijet production.
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The Sivers effect has been continuously studied in proton-proton collisions at the RHIC

see for instance [209, 210, 211, 212, 213, 214] for experimental measurements and [215, 66,

216, 217, 218, 219, 220, 221, 222, 223, 224, 225] for theoretical developments community. A

major difficulty in understanding transverse spin asymmetries with hadronic final-states is

that the fragmentation process can introduce a large number of additional spin asymmetries,

see for instance [217, 219, 226, 221, 222]. To eliminate these contributions from the spin cor-

relations in the fragmentation process, the Sivers asymmetry for jet production processes has

been explored in the experiment [227, 214, 228]. In particular, back-to-back dijet production

in transversely polarized proton-proton collisions was proposed by Boer and Vogelsang in

2003 as a unique opportunity at the RHIC [131]. Active investigation has been performed

both experimentally [228] and theoretically [134, 229, 230]. On the experimental side, the

Sivers asymmetry for dijet production was found to be quite small. This effect can largely be

attributed to the fact that the u- and d-quark have similar size but opposite sign [80, 81, 79].

On the theoretical side, dijet production in proton-proton collisions is also subject to TMD

factorization breaking [223, 224]. These have slowed down the efforts in the detailed study

of the Sivers effect in the dijet production.

Recently, there have been renewed experimental and theoretical interests for jet pro-

duction processes. Experimentally, the STAR collaboration at the RHIC is analyzing the

new data for dijet Sivers asymmetry, and is exploring a novel method based on a charge

weighting method in separating the contributions from individual u and d-quark Sivers func-

tions [231]. The PHENIX collaboration at the RHIC is exploring the TMD factorization

breaking effects via back-to-back dihadron and photon-hadron production in proton-proton

collisions [232, 233]. Theoretically, there have been efforts in performing QCD resummation

in back-to-back dijet [234, 235] and vector boson-jet production [135, 164, 236]. At the same

time, a theoretical framework has been developed to study spin asymmetries in specific jet

charge bin [237], which would facilitate the analysis of the dijet spin asymmetries by the

STAR collaboration. In light of all these activities, we set out to develop a resummation

formalism for studying the Sivers asymmetry in back-to-back dijet production in transversely
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polarized proton-proton collisions. We make predictions for the dijet Sivers asymmetry in the

kinematics relevant to the RHIC energy, to be compared with the experimental measurement

in the near future.

The rest of this section is organized as follows. In Section 4.3.2, we summarized the QCD

formalism for dijet production in both unpolarized and polarized scatterings, and we provide

a few remarks about our formalism. In Section 4.3.3, we provide a procedure and demonstrate

how to compute the process-dependent polarized hard functions in the color matrix form.

In Section 4.3.4, we present the renormalization group evolution of all the relevant functions

in our formalism, and we provide the final resummation formula. Section 4.3.5 is devoted to

the phenomenological studies, where we make predictions for dijet Sivers asymmetry in the

kinematic region relevant to the experiment at the RHIC. Since we are mainly interested in

the Sivers asymmetry in the forward rapidity region where quark contributions dominate,

we consider only the quark Sivers contribution and neglect the gluon Sivers contribution.

We summarize this study in Section 4.3.6.

4.3.2 QCD formalism for dijet production

In this section, we study back-to-back dijet production in transversely polarized proton-

proton collisions in the center-of mass frame,

p(PA,S⊥) + p(PB) → J1(yc,P1⊥) + J2(yd,P2⊥) +X , (4.86)

where the polarized proton with the momentum PA and the transverse spin S⊥ is moving

in the +z-direction, while the unpolarized proton with the momentum PB is moving in the

−z-direction, and we have the center-of-mass energy s = (PA + PB)
2. The produced two

jets J1 and J2 have rapidities yc,d and transverse momenta P1⊥ and P2⊥, respectively. These

jets will be reconstructed via a suitable jet algorithm [238] and in the rest of this section, we

consider both of them to be anti-kT jets with jet radii R. In order to access the transverse

motion of the partons inside the protons, we concentrate in the back-to-back region where

the transverse momentum imbalance q⊥ is small. Here we define the average transverse
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Figure 4.7: Illustration of back-to-back dijet production in transversely polarized proton-pro-

ton collisions: p(PA,S⊥) + p(PB) → J1(yc,P1⊥) + J2(yd,P2⊥) + X. The polarized proton

with momentum PA and transverse spin S⊥ is moving in +z-direction, while the unpolar-

ized proton with momentum PB is moving in −z-direction. We have jet rapidities yc,d and

transverse momenta P1⊥ and P2⊥, respectively. The dijet transverse momentum imbalance

is defined as q⊥ = P1⊥+P2⊥. Sivers asymmetry is generated due to the correlation between

S⊥ and q⊥.

momentum P⊥ of the two jets and the transverse momentum imbalance q⊥ as follows

P⊥ = |P1⊥ − P2⊥|/2 , q⊥ = P1⊥ + P2⊥ , (4.87)

where one has q⊥ ≪ P⊥ in the back-to-back region. The production of such back-to-back

dijets is illustrated in Fig. 4.7. In the transversely polarized proton-proton collisions, the

transverse spin vector S⊥ of the incoming proton and the transverse momentum imbalance

q⊥ of the two jets will be correlated, as advocated in [131]. This correlation is accounted

for in the Sivers function, which leads to a sin(ϕq − ϕS)-azimuthal modulation in the cross

section between ϕq and ϕS, the azimuthal angles of q⊥ and S⊥, respectively. Below we

summarize the factorized formalisms for dijet production in both unpolarized and polarized

proton-proton collisions, and we provide more details for the relevant ingredients in the next

section.
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4.3.2.1 Dijet unpolarized cross section

In the back-to-back region where q⊥ ≪ P⊥, within the framework of soft-collinear effective

theory (SCET) [54, 55, 53, 56, 239], we consider the following QCD modes

Aµ(x) = Aµ
Jc
(x) + Aµ

Jd
(x) + Aµ

c (x) + Aµ
c̄ (x) + Aµ

s (x) + Aµ
csc(x) + Aµ

csd
(x) (4.88)

ψ(x) = ψJc(x) + ψJd(x) + ψc(x) + ψc̄(x) + ψs(x) + ψcsc(x) + ψcsd(x) , (4.89)

where Jc/d denote the jet modes, and csc/d denote the collinear-soft modes. Using this mode

analysis, the factorization theorem becomes

dσ

dycdyddP 2
⊥d

2q⊥
=
∑

abcd

1

16π2ŝ2
1

Ninit

1

1 + δcd

∫

⊥
xaf

unsub
a/PA

(xa, ka⊥;µ, ζ1/ν
2)xbf

unsub
b/PB

(xb, ka⊥;µ, ζ2/ν
2)

× Tr [Sab→cd(λ⊥;µ, ν) ·Hab→cd(P⊥;µ)] Jc(P⊥R;µ)S
cs
c (kc⊥, R;µ)

× Jd(P⊥R;µ)S
cs
d (kd⊥, R;µ) , (4.90)

where ŝ = xaxbs is the partonic center-of-mass energy, Ninit is the corresponding spin- and

color-averaged factor for each channel, while 1/(1+ δcd) arises from the symmetry factor due

to identical partons in the final state. We have used the following short-hand notation

∫

⊥
=

∫
d2ka⊥d

2kb⊥d
2kc⊥d

2kd⊥d
2λ⊥δ

(2)(ka⊥ + kb⊥ + kc⊥ + kd⊥ + λ⊥ − q⊥) , (4.91)

and the parton fractions are defined as

xa =
P⊥√
s
(eyc + eyd) , xb =

P⊥√
s

(
e−yc + e−yd

)
, (4.92)

where yc, yd are the rapidities of the two leading jets.

After performing Fourier transform for Eq. (4.90), we obtain the factorized formula in

the coordinate b-space as follows

dσ

dycdyddP 2
⊥d

2q⊥
=
∑

abcd

1

16π2ŝ2
1

Ninit

1

1 + δcd

∫
d2b

(2π)2
eiq⊥·b xaf

unsub
a/PA

(xa, b;µ, ζ1/ν
2)

× xbf
unsub
b/PB

(xb, b;µ, ζ2/ν
2) Tr [Sab→cd(b;µ, ν) ·Hab→cd(P⊥;µ)]

× Jc(P⊥R;µ)S
cs
c (b, R;µ)Jd(P⊥R;µ)S

cs
d (b, R;µ) , (4.93)
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In this expression, Hab→cd(P⊥;µ) is the hard function, while Sab→cd(b;µ, ν) is a global soft

function. Note that both the hard function Hab→cd and the global soft function Sab→cd are

expressed in the matrix form in the color space and the trace Tr[· · · ] is over the color. Such
factorization of the hard and soft function into matrix form is essential to capture evolution

effects between the hard scale ∼ P⊥ and the imbalance scale ∼ q⊥ [240]. Here µ and ν

denotes renormalization and rapidity scales, separately. The rapidity scale ν arises because

both the TMD PDFs and the global soft functions have rapidity divergence [241, 62], which

are canceled between them as demonstrated below. This cancellation allows us to define

rapidity divergence independent S̃ab→cd(b;µ) by

Sab→cd(b;µ, ν) = S̃ab→cd(b;µ)Sab(b;µ, ν) , (4.94)

where Sab(b;µ, ν) is the standard soft function appearing in usual Drell-Yan and Semi-

Inclusive DIS processes. Through this definition, we can perform the soft subtraction [36]

funsub
a/PA

(xa, b;µ, ζ1/ν
2) funsub

b/PB
(xb, b;µ, ζ2/ν

2)Sab(b;µ, ν)

= fa/PA
(xa, b;µ, ζ1) fb/PB

(xb, b;µ, ζ2) . (4.95)

The jet functions Jc(P⊥R;µ) and Jd(P⊥R;µ) in Eq. (4.93) describe the creation of anti-kT

jets from the massless partons c and d, respectively. Finally, Scs
c (kc⊥, R;µ) and S

cs
d (kd⊥, R;µ)

are the collinear-soft functions. If one performs the integration over the azimuthal angle of

the vector b, we obtain the following expression

dσ

dycdyddP 2
⊥d

2q⊥
=
∑

abcd

1

16π2ŝ2
1

Ninit

1

1 + δcd

1

2π

∫ ∞

0

db b J0(q⊥b)

× xafa/PA
(xa, b;µ, ζ1)xbfb/PB

(xb, b;µ, ζ2)

× Tr
[
S̃ab→cd(b;µ) ·Hab→cd(P⊥;µ)

]
Jc(P⊥R;µ)S

cs
c (b, R;µ)Jd(P⊥R;µ)

× Scs
d (b, R;µ) . (4.96)

It is well-known [223, 224, 242, 243] that the so-called Glauber mode will result in the

TMD factorization breaking contributions to Eq. (4.90). In this section, we write down

a theoretical formalism in Eq. (4.93) using SCET with the factorization breaking effects
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from the Glauber mode ignored. By careful comparison between the predictions from our

theoretical framework with the precision experimental data in the future, we can probe the

size of the factorization breaking effects. In principle, such effects can be systematically

accounted for in SCET by including explicitly the Glauber mode [45]. How exactly this

works for dijet production remains to be investigated.

4.3.2.2 Dijet Sivers asymmetry

In the transversely polarized proton-proton collisions, the Sivers function will lead to a spin

asymmetry in the cross section when one flips the transverse spin of the incoming proton.

We thus define the difference in the cross section as d∆σ(S⊥) = [dσ(S⊥)− dσ(−S⊥)] /2.
One can write down a similar factorized formula for such a spin-dependent differential cross

section following Eq. (4.90), and it is given by

d∆σ(S⊥)

dycdyddP 2
⊥d

2q⊥
=
∑

abcd

1

16π2ŝ2
1

Ninit

1

1 + δcd

∫

⊥

1

M
ϵαβ S

α
⊥ k

β
a⊥ xaf

⊥, unsub
1T a/PA

(xa, ka⊥;µ, ζ1/ν
2)

× xbf
unsub
b/PB

(xb, ka⊥;µ, ζ2/ν
2)Tr

[
Sab→cd(λ⊥;µ, ν) ·HSivers

ab→cd(P⊥;µ)
]

× Jc(P⊥R;µ)S
cs
c (kc⊥, R;µ)Jd(P⊥R;µ)S

cs
d (kd⊥, R;µ) , (4.97)

where ϵαβ is a two-dimensional asymmetric tensor with ϵ12 = +1.

In writing down this spin-dependent formalism, we start from the unpolarized factorized

formalism in Eq. (4.90) with the replacement of the unpolarized TMD PDF by the Sivers

function following the so-called Trento convention [244],

funsub
a/PA

(xa, ka⊥;µ, ζ1/ν
2) → 1

M
ϵαβ S

α
⊥ k

β
a⊥ f

⊥a, unsub
1T, a/PA

(xa, ka⊥;µ, ζ1/ν
2) , (4.98)

where the subscript ab→ cd in the Sivers function on the right-hand side represents the so-

called process-dependence of the Sivers function, as discovered by [245, 246, 134, 133, 229,

230, 36]. In Chapter 3, we saw that one can either absorb the pole contributions into the

Sivers function or in the partonic cross section. Therefore, we are free to use the usual Sivers

function from Semi-Inclusive DIS and derive a novel hard function. Once this is done, we

will have a new hard function HSivers
ab→cd(P⊥;µ), which would be different from the unpolarized
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hard function, Hab→cd(P⊥;µ). We explain in details how we derive the hard functionsHSivers
ab→cd

for different partonic processes in the next section, where we show non-trivial structures are

expressed in terms of matrix forms in the color space. To a large degree, our formalism for

the spin-dependent case can be regarded as an extension of the generalized TMD formalism

introduced earlier in [245, 246, 134, 133], but with a matrix form for both hard and soft

functions.

At this point, I would like to note that the soft function can in principle also be different

for di-jets. In general, one needs to consider emissions from each section (jet, collinear, soft,

soft-collinear) and then introduce the additional gluon. In fact, Ref. [225] shows in explicit

calculations at one-loop level that soft functions in the polarized case are different from the

unpolarized counterpart beyond leading logarithmic accuracy, which is an indication of TMD

factorization breaking. However, the change in soft function comes from the Glauber gluon

which we ignore as explained above. In this respect, our starting point Eq. (4.97) will be

the best assumption at hand that takes a factorized form. We show the RG consistency

for this factorized form, and we also demonstrate how we derive the process-dependent

hard functions HSivers
ab→cd(P⊥;µ) for the polarized scattering. We leave a detailed study on the

numerical impact of any TMD factorization breaking effects for future investigation.

Performing Fourier transform from the transverse momentum space into the b-space, we

obtain

d∆σ(S⊥)

dycdyddP 2
⊥d

2q⊥
=
∑

abcd

1

16π2ŝ2
1

Ninit

1

1 + δcd
ϵαβ S

α
⊥

∫
d2b

(2π)2
eiq⊥·b xaf

⊥ (β)
1T a/PA

(xa, b;µ, ζ1)

× xbfb/PB
(xb, b;µ, ζ2) Tr

[
S̃ab→cd(b;µ) ·HSivers

ab→cd(P⊥;µ)
]

× Jc(P⊥R;µ)S
cs
c (b, R;µ)Jd(P⊥R;µ)S

cs
d (b, R;µ) , (4.99)

where we have already used Eq. (4.94) to rewrite the unsubtracted unpolarized TMD PDF

and Sivers function in terms of the properly defined versions which are free of rapidity

divergence. Here f
⊥ (β)
1T a/PA

(xa, b;µ, ζ1) is the Fourier transform of the Sivers function,

f
⊥ (β)
1T a/PA

(xa, b;µ, ζ1) =
1

M

∫
d2ka⊥ e

−ika⊥·b kβa⊥f
⊥
1T a/PA

(xa, ka⊥;µ, ζ1) ,
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≡
(
ibβ

2

)
f⊥1T a/PA

(xa, b;µ, ζ1) , (4.100)

where we have used the fact that the integration in the first line would be proportional to bβ,

and we thus factored bβ out explicitly in the second line. The remaining part of the Sivers

function is now denoted as f⊥1T a/PA
(xa, b;µ, ζ1). Note that for the same reason as explained

below Eq. (4.95), we do not have the rapidity ν-dependence in the above equation. It is

also instructive to emphasize that f⊥ unsub
1T a/PA

(xa, b;µ, ζ1/ν
2) follows the same TMD evolution

equations as the unpolarized TMD PDF funsub
a/PA

(xa, b;µ, ζ1/ν
2), which enables us to evolve the

Sivers function from some initial scale µ0 to the relevant scale µ. We now plug Eq. (4.100)

into Eq. (4.99), and integrate over the azimuthal angle of the vector b, we obtain

d∆σ(S⊥)

dycdyddP 2
⊥d

2q⊥
=sin(ϕq − ϕS)

∑

abcd

1

16π2ŝ2
1

Ninit

1

1 + δcd

(
− 1

4π

)∫ ∞

0

db b2 J1(q⊥b)

× xa f
⊥ a
1T (xa, b;µ, ζ1)xb fb/PB

(xb, b;µ, ζ2) Tr
[
S̃ab→cd(b;µ) ·HSivers

ab→cd(P⊥;µ)
]

× Jc(P⊥R;µ)S
cs
c (b, R;µ)Jd(P⊥R;µ)S

cs
d (b, R;µ) , (4.101)

where J1 is the Bessel function of order one, and we have used the identity

ϵαβS
α
⊥ q̂

β
⊥ = sin(ϕq − ϕS) , (4.102)

with q̂⊥ the unit vector along the direction of the imbalance q⊥. In general, the so-called

single spin asymmetry (the Sivers asymmetry) AN for dijet production will be then given by

AN =
d∆σ(S⊥)

dycdyddP 2
⊥d

2q⊥

/
dσ

dycdyddP 2
⊥d

2q⊥
. (4.103)

4.3.2.3 Remarks

We will provide detailed expressions and discuss the evolution of all the relevant functions

in the next section. Here, let us emphasize the following points on our factorized formalism:

• There will be non-global structures from quantum correlations between in-jet and out-

of-jet radiations: exclusive jet production will be sensitive on the correlation effects
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Figure 4.8: Illustration of first non-global logarithms from quantum correlation of in-jet and

out-of-jet radiation.

between in-jet and out-of-jet radiations, which is first discovered in [162]. There, it

was shown that non-global logarithms first appear at NNLO order through a correlated

emission from a heavy mass hemisphere to a light mass hemisphere. We observe similar

non-global logarithms first at NNLO through a correlated emission from the higher

scaled in-jet to the lower scaled out-of-jet emission as shown in Fig. 4.8, which is given

at NNLO by [130]

−CACa

2

(αs

π

)2 π2

24
ln2

(
P 2
⊥
µ2
b

)
, (4.104)

where Ca = CF and CA for the quark and gluon jet, respectively. To generalize the

analysis of these non-global logarithms to general resummation order, the factoriza-

tion and resummation formula need to include multi-Wilson-line structures [247, 248].

The multi-Wilson-line formalism then gives rise to the non-linear evolution equation

[249] for non-global logarithms (NGLs) resummation. The TMD factorization formula

including such effects have been given in [250, 164, 251]. Numerically, the leading-

logarithmic NGLs resummation can be solved using parton shower methods [162, 252,

253, 254] or BMS equations [255, 256]. In our phenomenology, we have included the

contributions from leading-logarithmic NGLs as discussed in Section 4.3.5.
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• Our formalism for unpolarized dijet production in Eqs. (4.93) is similar to those in [234,

235]. Here, by taking the small-R limit, we refactorize the TMD R-dependence soft

function [234, 235] as the product of the R-independent global TMD soft function and

the R-dependent collinear-soft function [135, 164]. In addition, the R-dependent hard

function in [234, 235] has been further factorized into a R-independent hard function

as above and the jet functions which naturally capture all the R-dependence. In this

regard, the factorized formula presented here is more transparent and intuitive. Such

refactorizations are essential to resum logarithms of R for small radius jets.

• After performing the refactorization mentioned in the above item, both the single

logarithmic anomalous dimensions of the global and collinear-soft function not only

depend on the magnitude |b| but also the azimuthal angle ϕb of the vector b [135, 164].

Especially, after taking into account QCD evolution effects the ϕb integral is divergent

in some phase space region. In order to regularize such divergences, we can first

take ϕb averaging in both the global and collinear-soft function, and then explicit ϕb

dependence will vanish. Therefore, one can avoid such divergence in the resummation

formula directly. This ϕb averaging method will not change the RG consistency at the

one-loop order. The other methods to avoid such divergence have been discussed in

[164], and no significant numerical differences are found at the NLL accuracy. The

similar ϕb averaging methods have also been used in [257, 258, 259] to simplify the

calculation of the TMD soft function.

4.3.3 Hard Functions in unpolarized and polarized scattering

In this section, we derive the hard functions for both unpolarized and polarized scatterings,

i.e. Hab→cd(P⊥;µ) and HSivers
ab→cd(P⊥;µ) in Eqs. (4.96) and (4.101), respectively. They are

matrices in the color space. We first review the results for the hard functions Hab→cd in the

unpolarized scattering, which are well-known in the literature, see e.g. Refs. [260, 261]. We

then derive the hard function matrices HSivers
ab→cd in the polarized scattering case. These hard

functions properly take into account the process-dependence of the Sivers functions [245,
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xa PA

xb PB P2

P1
xa PA

xb PB P2

P1

Figure 4.9: Unpolarized scattering amplitudes for the qq → qq subprocess. From left the

right, the scattering amplitude is provided for the t- and u-channel processes.

246, 134, 133, 229, 230, 36]. To get started, we define the Mandelstam variables for the

partonic scattering process, a(p1) + b(p2) → c(p3) + d(p4), as follows

ŝ = (p1 + p2)
2 = (p3 + p4)

2 = 4P 2
⊥ cosh

2

(
∆y

2

)
= xaxbs , (4.105a)

t̂ = (p1 − p3)
2 = (p2 − p4)

2 = −2P 2
⊥e
−∆y/2 cosh

(
∆y

2

)
, (4.105b)

û = (p1 − p4)
2 = (p2 − p3)

2 = −2P 2
⊥e

∆y/2 cosh

(
∆y

2

)
, (4.105c)

where ∆y = yc−yd is the rapidity difference of the two jets. In the following, the expressions

for the hard functions will be written in terms of these Mandelstam variables.

4.3.3.1 Unpolarized Hard Matrices

Four quark subprocesses

We start with the partonic subprocesses that involve four quarks, such as qq → qq. In

Tab. 4.1, we organize each of the four quark subprocesses into a color basis. The color basis

operators acting on particles i and j are denoted as Γn,ij which are used to generate the hard

and soft matrices. For the four quark interactions, two operators, n = 1, 2, are required to

span the color space. As seen in the table, this results in 12 total color matrices. Using the

fact that hard function for the unpolarized case is invariant under the charge conjugation,

the bottom row can easily be computed from the top row. Furthermore, once the hard

matrices have been calculated for the first column, crossing symmetry can be applied in

order to obtain the hard color matrices for the second and third column. It is then only
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12 → 34 Color Basis 12 → 34 Color Basis 12 → 34 Color Basis

qq′ → qq′ qq̄ → q′q̄′ qq̄′ → q̄′q

qq′ → q′q Γn,31Γn,42 qq̄′ → qq̄′ Γn,21Γn,34 qq̄ → q̄′q′ Γn,41Γn,23

qq′ → qq qq̄ → qq̄ qq̄ → q̄q

q̄q̄′ → q̄q̄′ q̄q → q̄′q′ q̄q′ → q′q̄

q̄q̄′ → q̄′q̄ Γn,13Γn,24 q̄q′ → q̄q′ Γn,12Γn,43 q̄q → q′q̄′ Γn,14Γn,32

q̄q̄′ → q̄q̄ q̄q → q̄q q̄q → qq̄

Table 4.1: The choice of basis for each of the four quark subprocesses. Γn,ij are operators

in color space which join the fermion lines i and j. For the four quark subprocesses, two

operators, Γ1,ij and Γ2,ij, are required to span the color space.

necessary to explicitly calculate the hard matrices for the subprocesses associated with the

color basis Γn,31Γn,42. For our calculation, we follow the conventions used in Refs. [261, 260]

to choose Γ1,ij = (ta)ij and Γ2,ij = δij, so that the color basis is spanned by the orthogonal

basis

θ1 = (ta)ij(t
a)kl , θ2 = δijδkl , (4.106)

θ†1 = (ta)ji(t
a)lk , θ†2 = δjiδlk . (4.107)

We note that other bases have been used in the literature [262]. We now explicitly perform the

calculation for the qq′ → qq′, qq′ → q′q, and qq → qq subprocesses. For these subprocesses,
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we can write

M = Mkin
t

(
tb
)
31

(
tb
)
42
+Mkin

u

(
tb
)
32

(
tb
)
41

(4.108)

where we have suppressed the ab → cd subprocess label. The subscript in the M terms

denotes the relevant Mandelstam variable (t̂ or û) for the channel that contributes to the

subprocess as shown in the Fig. 4.9. To arrive at this expressions, we have separated the

color parts from the kinematic parts (denoted with the superscript kin). These kinematic

scattering amplitudes are defined by

Mkin
t =





−g
2
s

t̂
ū(P1)γ

µu(xa PA)ū(P2)γµu(xb PB) ab→ cd = qq′ → qq′

0 for ab→ cd = qq′ → q′q

−g
2
s

t̂
ū(P1)γ

µu(xa PA)ū(P2)γµu(xb PB) ab→ cd = qq → qq ,

(4.109)

Mkin
u =





0 ab→ cd = qq′ → qq′

−g
2
s

û
ū(P2)γ

µu(xa PA)ū(P1)γµu(xb PB) for ab→ cd = qq′ → q′q

g2s
û
ū(P2)γ

µu(xa PA)ū(P1)γµu(xb PB) ab→ cd = qq → qq .

(4.110)

We can now decompose these scattering amplitudes in color space as

M = M1 θ1 +M2 θ2 M† = M†
1 θ
†
1 +M†

2 θ
†
2 , (4.111)

where

M1 =
Tr
[
Mθ†1

]

Tr
[
θ1θ
†
1

] M2 =
Tr
[
Mθ†2

]

Tr
[
θ2θ
†
2

] M†
1 =

Tr
[
M†θ1

]

Tr
[
θ1θ
†
1

] M†
2 =

Tr
[
M†θ2

]

Tr
[
θ2θ
†
2

] . (4.112)

To obtain the expressions in Eq. (4.112), we have exploited the orthogonality of our chosen

color basis in Eqs. (4.106) and (4.107). Then we will have |M|2 as

|M|2 = Tr [Hab→cd · Sab→cd] , (4.113)

where the hard matrix is given by

Hab→cd =


 |M1|2 M1M†

2

M2M†
1 |M2|2


 , (4.114)
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12 → 34 Basis 12 → 34 Basis 12 → 34 Basis 12 → 34 Basis 12 → 34 Basis 12 → 34 Basis

qq̄ → gg Γab
n,21 qg → gq Γab

n,41 qg → qg Γab
n,31 gq → gq Γab

n,42 gq → qg Γab
n,32 gg → qq̄ Γab

n,43

q̄g → q̄g Γab
n,21 q̄g → gq̄ Γab

n,41 q̄q → gg Γab
n,31 gg → q̄q Γab

n,42 gq̄ → q̄g Γab
n,32 gq̄ → gq̄ Γab

n,43

Table 4.2: The choice of basis for each of two quark two gluon subprocesses. Three operators

Γab
1,ij,Γ

ab
2,ij,Γ

ab
3,ij are required to span the color space for each subprocess.

and the leading order soft matrix as

Sab→cd =


Tr

[
θ1θ
†
1

]
Tr
[
θ1θ
†
2

]

Tr
[
θ2θ
†
1

]
Tr
[
θ2θ
†
2

]


 =




1
2
NcCF 0

0 N2
c


 . (4.115)

The hard matrices of the four quark processes in Γ31Γ42 color basis in Tab. 4.1 are given by

Hqq′→qq′ =
8g4s (ŝ

2 + û2)

t̂2


1 0

0 0


 , (4.116)

Hqq′→q′q =
8g4s
(
ŝ2 + t̂2

)

û2C2
A


 1 −CF

−CF C2
F


 , (4.117)

Hqq→qq =
8g4s

t̂2û2N2
c


t̂

4 + ŝ2t̂2 − 2Ncŝ
2ût̂+N2

c û
4 +N2

c ŝ
2û2 −CF t̂

(
t̂3 + ŝ2t̂−Ncŝ

2û
)

−CF t̂
(
t̂3 + ŝ2t̂−Ncŝ

2û
)

C2
F t̂

2
(
ŝ2 + t̂2

)


 .

(4.118)

We find these results to be consistent with the expressions in [260]. The remaining hard

functions can be obtained from crossing symmetries.

Two quarks and two gluon subprocesses

In Tab. 4.2, we provide a list of subprocesses involving two quarks and two gluons with

the color basis operators Γab
n,ij. For the two quark and two gluon interactions, three operators,
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n = 1, 2, 3, are required to span the color space. A convenient choice for the computation is

the set of orthogonal operators (primed),

Γab
1,ij

′
=

δab

2Nc

δij , Γab
2,ij

′
=

1

2
dabctcij , Γab

3,ij

′
=

1

2
fabctcij , (4.119)

which has the corresponding orthogonal basis,

θ′1 =
δab

2Nc

δij , θ′2 =
1

2
dabctcij , θ′3 =

1

2
fabctcij . (4.120)

At the same time, we find that the final expressions for the hard matrices take a simpler

form when one uses the non-orthogonal basis used in Refs. [261, 260, 262] by defining the

basis operators to be (unprimed)

Γab
1,ij = (tatb)ij , Γab

2,ij = (tbta)ij , Γab
3,ij = δijδ

ab . (4.121)

The corresponding basis is given by

θ1 = (tatb)ij , θ2 = (tbta)ij , θ3 = δijδ
ab . (4.122)

We note that the normalization of θ3 in [262] differs from the normalization of Refs. [261, 260]

by a factor of 2. For the choice of basis in Eq. (4.122), the LO soft matrix is given by

Sab→cd =




Tr
[
θ1θ
†
1

]
Tr
[
θ1θ
†
2

]
Tr
[
θ1θ
†
3

]

Tr
[
θ2θ
†
1

]
Tr
[
θ2θ
†
2

]
Tr
[
θ2θ
†
3

]

Tr
[
θ3θ
†
1

]
Tr
[
θ3θ
†
2

]
Tr
[
θ3θ
†
3

]



=




NcC
2
F −CF

2
NcCF

−CF

2
NcC

2
F NcCF

NcCF NcCF 2N2
cCF


 . (4.123)

In order to exploit the orthogonality condition of the primed basis in Eq. (4.120), but still

provide a simple expression for the hard matrices using the unprimed basis in Eq. (4.122), we

first compute the hard matrices in the primed basis then obtain the results in the unprimed

basis using the relation

Hab→cd = R†H ′
ab→cdR , where R =

1

2Nc




0 0 1

Nc Nc −1

−Nc Nc 0


 . (4.124)

131



We now perform the calculation for the hard matrices for the qq̄ → gg process in the primed

orthogonal basis. The scattering amplitude for this subprocess can be written in color space

as

M =M1θ
′
1 +M2θ

′
2 +M3θ

′
3 M† =M †

1θ
′
1
†
+M †

2θ
′
2
†
+M †

3θ
′
3
†

(4.125)

where

M1 =
Tr
[
Mθ′1

†
]

Tr
[
θ′1θ
′
1
†] M2 =

Tr
[
Mθ′2

†
]

Tr
[
θ′2θ
′
2
†] , M3 =

Tr
[
Mθ′3

†
]

Tr
[
θ′3θ
′
3
†] , (4.126)

M†
1 =

Tr
[
M†θ′1

]

Tr
[
θ′1θ
′
1
†] M†

2 =
Tr
[
M†θ′2

]

Tr
[
θ′2θ
′
2
†] , M†

3 =
Tr
[
M†θ′3

]

Tr
[
θ′3θ
′
3
†] . (4.127)

The hard matrix in the primed basis can therefore be computed as

H ′
qq̄→gg =




M1M
†
1 M1M

†
2 M1M

†
3

M2M
†
1 M2M

†
2 M2M

†
3

M3M
†
1 M3M

†
2 M3M

†
3


 . (4.128)

Finally, we now use Eq. (4.124) to obtain the simplified hard functions in the unprimed basis

as

Hqq̄→gg = 8g4s

(
t̂2 + û2

)

ŝ2




û
t̂

1 0

1 t̂
û

0

0 0 0


 . (4.129)

The hard matrices for other subprocesses involving two quarks and two gluons, such as

qg → qg, can be obtained from this expression using crossing symmetries.

Four gluon subprocesses

For the four gluon subprocesses, gg → gg, we follow the work in Refs. [260, 261] to use

the following over-complete basis

θ1 = Tr [ta1ta2ta3ta4 ] , θ2 = Tr [ta1ta2ta4ta3 ] , θ3 = Tr [ta1ta4ta3ta2 ] ,

θ4 = Tr [ta1ta4ta2ta3 ] , θ5 = Tr [ta1ta3ta4ta2 ] , θ6 = Tr [ta1ta3ta2ta4 ] ,

θ7 = Tr [ta1ta4 ] Tr [ta2ta3 ] , θ8 = Tr [ta1ta2 ] Tr [ta3ta4 ] , θ9 = Tr [ta1ta3 ] Tr [ta2ta4 ] .

(4.130)
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We note that a six dimensional basis was chosen in [262]. Using this basis in Eq. (4.130),

one can show that the hard matrix takes the following form

Hgg→gg =
2g4s
(
ŝ4 + t̂4 + û4

)

ŝ2û2N2
cC

2
F




1 û
t̂

1 ŝ
t̂

û
t̂

ŝ
t̂

0 0 0

û
t̂

û2

t̂2
û
t̂

ŝû
t̂2

û2

t̂2
ŝû
t̂2

0 0 0

1 û
t̂

1 ŝ
t̂

û
t̂

ŝ
t̂

0 0 0

ŝ
t̂

ŝû
t̂2

ŝ
t̂

ŝ2

t̂2
ŝû
t̂2

ŝ2

t̂2
0 0 0

û
t̂

û2

t̂2
û
t̂

ŝû
t̂2

û2

t̂2
ŝû
t̂2

0 0 0

ŝ
t̂

ŝû
t̂2

ŝ
t̂

ŝ2

t̂2
ŝû
t̂2

ŝ2

t̂2
0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0




. (4.131)

The LO soft matrix for this channel is given in Appendix C of [261] for this basis as

Sgg→gg =
CF

8Nc




a0 b0 c0 b0 b0 b0 d0 d0 −e0
b0 a0 b0 b0 c0 b0 −e0 d0 b0

c0 b0 a0 b0 b0 b0 d0 d0 −e0
b0 b0 b0 a0 b0 c0 d0 −e0 d0

b0 c0 b0 b0 a0 b0 −e0 d0 d0

b0 b0 b0 c0 b0 a0 d0 −e0 d0

d0 −e0 d0 d0 −e0 d0 d0e0 e20 e20

d0 d0 d0 −e0 d0 −e0 e20 d0e0 e20

−e0 d0 −e0 d0 d0 d0 e20 e20 d0e0




, (4.132)

where a0 = N4
c − 3N2

c + 3, b0 = 3−N2
c , c0 = 3 +N2

c , d0 = 2N2
cCF , and e0 = Nc.

4.3.3.2 Polarized Hard Matrices

As we have emphasized in the previous section, Sivers function is non-universal. The well-

known example is the sign change between the Sivers function probed in Semi-Inclusive DIS

and that in Drell-Yan (DY) process [263, 155, 156],

f
⊥ (DY)
1T q/PA

(x, k⊥;µ, ζ1) = −f⊥ (SIDIS)
1T q/PA

(x, k⊥;µ, ζ1) . (4.133)
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Such a sign change can be easily taken care of in describing the Drell-Yan Sivers asymmetry,

d∆σ(S⊥) ∝ f
⊥ (DY)
1T q/PA

(x, k⊥;µ, ζ1)H(Q;µ) = f
⊥ (SIDIS)
1T q/PA

(x, k⊥;µ, ζ1)
[
−H(Q;µ)

]
, (4.134)

where H(Q;µ) is the hard function in the Drell-Yan process, and we have applied Eq. (4.133)

in the second step. In other words, if we use the Semi-Inclusive DIS Sivers function in a

Drell-Yan process, we shift the minus sign (or the process-dependence) into the hard function.

For the partonic subprocesses in the hadronic dijet production, one has much more com-

plicated process-dependence for the Sivers functions involved. This can be seen from the

highly nontrivial gauge link structure which has been derived in [246] in the definition of

the TMD PDFs. Even in these complicated processes, one can incorporate such process-

dependence of the Sivers functions into modified hard functions as in Eq. (4.134) [245,

134, 133, 229, 230]. We follow a similar procedure in this section to include this process-

dependence of the Sivers functions into the hard functions in the matrix form.

In Fig. 4.10, we demonstrate the factorization between the Sivers function and modified

hard functions. Unlike the unpolarized case, the contributions of the Sivers asymmetry are

given by considering the attachment of an additional collinear (to the incoming hadron)

gluon to three of the external legs. Such a gluon is part of the gauge link in the definition

of the Sivers function, and it is the imaginary part of the Feynman diagram (related to the

so-called soft gluonic pole) that contributes to the process-dependence of the Sivers function.

It is important to note that the additional gluon leads to additional complications so

that naive crossing symmetry cannot be used to relate one hard function to another, as in

the unpolarized case studied above. These complications occur because the contributions

to the Sivers asymmetry are only given by attaching the additional gluon to three of the

four external legs. Furthermore, since the sign of the interaction (imaginary part) with the

external gluon is opposite for quarks and anti-quarks, this sign must also be accounted for

when applying crossing symmetry or charge conjugation.

Four quark subprocesses

As in the unpolarized case, the bases for four quark subprocesses are given in Tab. 4.1.
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PA, ~S⊥

xb PB

P2

P1 =

PA, ~S⊥ xa PA

xb PB

P2

P1

j

× taj1
CF

PA, ~S⊥

xb PB

P2

P1 =

PA, ~S⊥ xa PA

xb PB

P2

P1

j

× taj1
CF

PA, ~S⊥

xb PB

P2

P1 =

PA, ~S⊥ xa PA

xb PB

P2

P1

j

× taj1
CF

Figure 4.10: A demonstration of the factorization between the Sivers function and the hard

function for qq′ → qq′ subprocess. The red lines indicate the locations of the soft poles while

the blue gluon represents the gauge link which generates the asymmetry.
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xa PA

xb PB P2

P1

Figure 4.11: Polarized scattering amplitudes for the qq → qq subprocess. From left the

right, the first three graphs give the scattering amplitude for the t-channel for initial-state,

final-state 1, and final-state 2 interactions. The remaining channels give the contributions

for the u-channel for initial-state, final-state 1, and final-state 2 interactions.

As discussed above, one cannot naively apply crossing symmetry to obtain hard matrices of

a general polarized subprocess. For the polarized four quark subprocesses, however, only the

sign of each color factor changes under charge conjugation. Therefore, the hard matrices for

the bottom row of Tab. 4.1 can be obtained from the results from the top row of this table

with the addition of a minus sign.

To demonstrate how HSivers
ab→cd are derived, we explicitly perform the calculation for the

qq′ → qq′, qq′ → q′q, and qq → qq subprocesses as we did for the unpolarized case. Af-

terwards, we provide the expressions for the remaining subprocesses. To start, it is im-

portant to remind ourselves that a non-vanishing Sivers asymmetry requires initial/final

state interactions generating a phase. Because all initial and final partonic states relevant

for dijet production are colored, both initial and final state interactions have to be taken

into account. Such interactions would generate non-trivial gauge link structures, see e.g.

Refs. [264, 246, 229]. On the left side of Fig. 4.10, as an example, we show all possible

diagrams with one gluon exchange between the remnant of the polarized proton and the

136



qq′ → qq′ hard scattering part, which contribute to the Sivers asymmetry. Now with the

presence of the extra gluon scattering (first order of the gauge link expansion), the diagram

at the left side of the cut will be denoted as MSivers,a
j , while the right side is same as the

unpolarized case denoted as M†. Here a is the color for the attached gluon, j is the color

index for the incoming quark with momentum xaPA on the left side of cut line, while the

color index for the incoming quark on the right side of the cut line is given by 1 like in the

previous section. In contrast to the unpolarized correlation function, quarks j and 1 do not

need to have the same color, because of the presence of the gluon from the gauge link. Now

we perform the following expansion to obtain the hard matrix |MSivers|2 for the polarized

case,

MSivers,a
j M† = |MSivers|2 ta1j , (4.135)

where ta1j will be included into the quark-quark correlator in the polarized proton to become

∼ ⟨PS|ψ̄1 n · Aata1j ψj|PS⟩, see e.g. Ref. [265, 246, 133]. From Eq. (4.135), we thus derive

|MSivers|2 = 1

Tr [tata]
MSivers,a

j taj1M†

=
1

Nc

· 1

CF

MSivers,a
j taj1M† . (4.136)

At the same time, we use the convention that Ninit in the polarized and unpolarized cases

are the same. Therefore, the factor of 1/Nc in Eq. (4.136) is absorbed into Ninit. With that

in mind, to arrive at the correct normalization of the polarized hard function, we thus obtain

|MSivers|2 → 1

CF

MSivers,a
j taj1M† , (4.137)

which is demonstrated on the right-hand side of Fig. 4.10.

Now we need to project MSivers,a
j and M† into the color basis separately. The polarized

scattering amplitude MSivers,a
j can be written as

MSivers,a
j = Mkin

t

(
tbta
)
42

(
tb
)
3j
+Mkin

t

(
tb
)
42

(
tatb
)
3j
+Mkin

t

(
tatb
)
42

(
tb
)
3j

(4.138)

+Mkin
u

(
tbta
)
32

(
tb
)
4j
+Mkin

u

(
tatb
)
32

(
tb
)
4j
+Mkin

u

(
tb
)
32

(
tatb
)
4j
,
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where Mkin
t and Mkin

u are the same as the expressions in Eqs. (4.109) and (4.110). From

left to right on the top line of this expression, these terms give the scattering amplitudes for

the initial-state, final-state 1, and final-state 2 interaction for the t-channel, corresponding

to the first three diagrams of Fig. 4.11 in the same order. Likewise from left to right on the

bottom line, the terms give the scattering amplitude for the initial-state, final-state 1, and

final-state 2 interaction for the u-channel, corresponding to the last three diagrams of Fig.

4.11 in the same order. Using the Feynman rules for the gauge link color factors given in

Fig. 6 of [133], we easily arrive at Eq. (4.138) from these diagrams. From the unpolarized

scattering amplitude given in Eq. (4.108), we write the conjugate amplitude as

M† = Mkin†
t

(
tb
)
24

(
tb
)
13
+Mkin†

u

(
tb
)
23

(
tb
)
14
. (4.139)

Analogous to the unpolarized scattering amplitude, the scattering amplitude can be decom-

posed into the orthogonal basis given in Eq. (4.106) as

MSivers,a
j taj1 =MSivers

1 θ1 +MSivers
2 θ2 , (4.140)

M† =M†
1θ
†
1 +M†

2θ
†
2 , (4.141)

where we have

MSivers
1 =

Tr
[
MSivers,a

j taj1 θ
†
1

]

Tr
[
θ1 θ

†
1

] , MSivers
2 =

Tr
[
MSivers,a

j taj1 θ
†
2

]

Tr
[
θ2 θ

†
2

] , (4.142)

M†
1 =

Tr
[
M† θ1

]

Tr
[
θ1 θ

†
1

] , M†
2 =

Tr
[
M† θ2

]

Tr
[
θ2 θ

†
2

] . (4.143)

After performing this decomposition, we can now write

|MSivers|2 = Tr
[
HSivers

ab→cd · Sab→cd

]
, (4.144)

where HSivers
ab→cd is given by

HSivers
ab→cd =

1

CF


M

Sivers
1 M †

1 MSivers
1 M †

2

MSivers
2 M †

1 MSivers
2 M †

2


 (4.145)

and S is the same as the unpolarized case.
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From these expressions, we can obtain the polarized hard matrices for the qq′ → qq′,

qq′ → q′q, and qq → qq subprocesses as

HSivers
qq′→qq′ =

4g4s (ŝ
2 + û2)

t̂2NcCF


N

2
c − 5 0

2CF 0


 , (4.146)

HSivers
qq′→q′q =− 4g4s

(
ŝ2 + t̂2

)

û2N3
cCF


 N2

c + 3 − (N2
c + 3)CF

− (3−N2
c )CF (3−N2

c )C
2
F


 , (4.147)

HSivers
qq→qq =HSivers

qq′→qq′ +HSivers
qq′→q′q +

4ŝ2g4s
t̂ûN2

cCF


 8 − (5−N2

c )CF

− (5−N2
c )CF 2C2

F


 . (4.148)

Since qq → qq subprocess receives contributions from both t- and u-channels (as well as their

interference), its expression is the most complicated among the three subprocesses computed.

One can show that after performing the trace with the soft color matrix, the expressions are

consistent with the squared amplitude of [133]. The color matrices for the remaining four

quark subprocesses in the top row of Tab. 4.1 can be computed in the same spirit and we

obtain the following expressions

HSivers
qq̄→q′q̄′ =

4 (N2
c + 1) g4s

(
t̂2 + û2

)

ŝ2NcCF


1 0

0 0


 , (4.149)

HSivers
qq̄′→qq̄′ =

4g4s (ŝ
2 + û2)

t̂2N3
cCF


N

2
c + 1 − (N2

c + 1)CF

2NcC
2
F −2NcC

3
F


 , (4.150)

HSivers
qq̄→qq̄ =HSivers

qq̄→q′q̄′ +HSivers
qq̄′→qq̄′ −

8û2g4s
ŝt̂N2

cC
2
F


(N

2
c + 1)CF −1

2
(N2

c + 1)C2
F

NcC
3
F 0


 , (4.151)

HSivers
qq̄′→q̄′q =− 4g4s

(
ŝ2 + t̂2

)

û2NcCF


N

2
c − 3 0

2CF 0


 , (4.152)

HSivers
qq̄→q̄′q′ =

4 (N2
c + 1) g4s

(
t̂2 + û2

)

ŝ2N3
cCF


 1 −CF

−CF C2
F


 , (4.153)

HSivers
qq̄→q̄q =HSivers

qq̄′→q̄′q +HSivers
qq̄→q̄′q′ −

8t̂2g4s
ŝûN2

cCF


 2 −1

2
(3−N2

c )CF

−1
2
(N2

c + 3)CF C2
F


 . (4.154)
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After performing charge conjugation, the hard color matrices for the subprocesses in the

bottom row of Tab. 4.1 can be obtained from these expressions.

Two quarks and two gluon subprocesses

All twelve of the two quark and two gluon subprocesses are given in Tab. 4.2. As we have

mentioned in Sec. 4.3.1, we neglect the gluon Sivers contribution in this section. This means

that all subprocesses with a gluon incoming from the polarized proton will be neglected.

There are then six remaining subprocesses to compute. However, we find that under charge

conjugation, the polarized hard functions once again only change by an overall minus sign.

Thus, we only need to perform the calculation for three of the hard matrices.

In order to further demonstrate our method for calculating the polarized hard matrices,

we now perform the calculation for the qq̄ → gg subprocess. We then provide the expressions

for the remaining hard matrices. For the unpolarized process the scattering amplitude has

three channels. After the addition of the external gluon, there are then nine polarized process

to be considered. At the cross section level, this results in 27 hard interactions which need

to be considered. Despite this complication, we can once again write

|MSivers|2 = 1

CF

MSivers a
j taj1M† . (4.155)

Just like in the unpolarized case, we begin the calculation by decomposing the amplitudes

into the primed basis first. Then to simplify our result, we rotate into the unprimed basis.

The scattering amplitudes for the process can then be written as

MSivers a
j taj1 = MSivers

1 θ′1 +MSivers
2 θ′2 +MSivers

3 θ′3 , (4.156)

M†
i = M†

1θ
′
1
†
+M†

2θ
′
2
†
+M†

3θ
′
3
†
, (4.157)

where

MSivers
1 =

Tr
[
MSivers,a

j taj1 θ
′
1
†
]

Tr
[
θ′1 θ

′
1
†] , MSivers

2 =
Tr
[
MSivers,a

j taj1 θ
′
2
†
]

Tr
[
θ′2 θ

′
2
†] , MSivers

3 =
Tr
[
MSivers,a

j taj1 θ
′
3
†
]

Tr
[
θ′3 θ

′
3
†] ,

(4.158)
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M†
1 =

Tr
[
M† θ′1

]

Tr
[
θ′1 θ

′
1
†] , M†

2 =
Tr
[
M† θ′2

]

Tr
[
θ′2 θ

′
2
†] . M†

3 =
Tr
[
M† θ′3

]

Tr
[
θ′3 θ

′
3
†] . (4.159)

The hard matrix in the primed basis can then be computed as

HSivers
qq̄→gg

′
=

1

CF




MSivers
1 M †

1 MSivers
1 M †

2 MSivers
1 M †

3

MSivers
2 M †

1 MSivers
2 M †

2 MSivers
2 M †

3

MSivers
3 M †

1 MSivers
3 M †

2 MSivers
3 M †

3


 . (4.160)

In order to obtain the hard matrix in the unprimed basis we apply the transformation

Hqq̄→gg = R†H ′
qq̄→gg R R =




1 1 −1

1 1 1

2Nc 0 0




−1

. (4.161)

The final result for all of the two quark and two gluon interactions hard matrices are given

by

HSivers
qq̄→gg =− 4g4s (ŝ

2 + û2)

ŝt̂2ûNcCF




2ŝ2NcCF 2ŝûNcCF 0

−ŝû (N2
c + 1) −û2 (N2

c + 1) 0

ŝ2Nc ŝûNc 0


 , (4.162)

HSivers
qg→gq =

4g4s
(
ŝ2 + t̂2

)

ŝt̂û2NcCF




2ŝ2NcCF 2ŝt̂NcCF 0

−ŝt̂ (N2
c + 1) −t̂2 (N2

c + 1) 0

ŝ2Nc ŝt̂Nc 0


 , (4.163)

HSivers
qq̄→gg =

4g4s
(
t̂2 + û2

)

ŝ2t̂ûNcCF




û2 (N2
c + 1) t̂û (N2

c + 1) 0

t̂û (N2
c + 1) t̂2 (N2

c + 1) 0

ŝûNc ŝt̂Nc 0


 , (4.164)

(4.165)

After performing charge conjugation, the hard color matrices for the remaining subprocesses

can be obtained from these expressions.

Simplification in the one-dimensional color space

We note that for processes in which the color space is one dimensional, i.e. single color

basis in the decomposition, such as Drell-Yan, Semi-Inclusive DIS, and color singlet boson-jet
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processes, the decomposition of scattering amplitude is trivial. We have

M = Mkin θ1 , (4.166)

where Mkin = Mkin
s +Mkin

t +Mkin
u in general receives contribution from different channels

as above. The kinematic parts can be trivially extracted by

Mkin =
Tr
[
Mθ†1

]

Tr
[
θ1θ
†
1

] , Mkin† =
Tr
[
M†θ1

]

Tr
[
θ1θ
†
1

] . (4.167)

Therefore the unpolarized hard matrices can be constructed simply by

H =
∣∣Mkin

∣∣2
[
1
]
, S =

[
Tr
[
θ1θ
†
1

]]
. (4.168)

In these expressions, we have suppressed the subprocess subscript since these expressions are

true for all subprocesses with a one-dimensional color space. The differential cross section is

then given by

|M|2 = Tr [H · S] = Cu
∣∣Mkin

∣∣2 (4.169)

where in the second line we have defined Cu = Tr
[
θ1θ
†
1

]
. Similarly, for the polarized hard

matrix, we can write

∣∣MSivers
∣∣2 =

Tr
[
MSivers,ataj1θ

†
1

]

Tr
[
θ1θ
†
1

] = Tr
[
HSivers · S

]
=
CSivers

Cu

∣∣Mkin
∣∣2 , (4.170)

where CSiversMkin = Tr
[
MSivers,ataj1θ

†
1

]
. Therefore, the hard functions of the polarized and

unpolarized scatterings are related by an overall color constant,

HSivers =
CSivers

Cu
H . (4.171)

Here, CSivers can further be decomposed into color factors arising from gauge link gluons

interacting with different external colored partons, as seen in [266, 133, 267, 207].
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4.3.3.3 Evolution equations

Hard functions can be related to the Wilson coefficients CΓ
I in the color basis {θI} of section

4.3.3 by HIJ =
∑

ΓC
Γ
I C

Γ∗
J . Here Γ represents different helicity states of the incoming and

outgoing particles. Explicit expressions of the Wilson coefficients at next-to-leading order

can be found in [260, 261], but we do not present them as we are only using the tree-level

hard functions for our study. We do, however, include the renormalization group (RG)

evolution of the hard functions coming from the 1-loop anomalous dimensions. Then the

Wilson coefficients satisfy the RG evolution equations [260, 261, 268, 269]

µ
d

dµ
CΓ

I =

[(
Γcusp

cH
2
ln
−t̂
µ2

+ γH

)
δIJ + ΓcuspMIJ

]
CΓ

J . (4.172)

Here, Γcusp = αs

π
+ · · · is the cusp anomalous dimensions and cH = Ca + Cb + Cc + Cd. The

non-cusp anomalous dimension is defined as

γH = −1

2

(
γaµ [αs(µ)] + γbµ [αs(µ)] + γcµ [αs(µ)] + γdµ [αs(µ)]

)
, (4.173)

where γiµ[αs(µ)] =
αs

π
γi + · · · , with γq = 3

2
CF and γg =

β0

2
. Lastly, the matrix M takes the

form

M = −
∑

i<j

Ti · Tj

[
L(sij)− L(t̂)

]
, (4.174)

where s12 = s34 = ŝ, s13 = s24 = t̂, and s14 = s23 = û and

L(t̂) = ln

(−t̂
µ2

)
, L(û) = ln

(−û
µ2

)
, L(ŝ) = ln

(
ŝ

µ2

)
− iπ . (4.175)

From the RG evolution of the Wilson coefficients given in Eq. (4.172), we can arrive at the

RG evolution equations for hard matrix H as

µ
d

dµ
H = ΓH ·H +H · ΓH† , (4.176)

where ΓH is given by

ΓH =

(
Γcusp

cH
2
ln
−t̂
µ2

+ γH

)
I + ΓcuspM . (4.177)
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4.3.4 QCD resummation and evolution formalism

In this section, we present the renormalization group (RG) equations for the rest of the key

ingredients in the factorized formalism. These include the TMD PDFs, global soft functions,

jet functions, and collinear-soft functions. After presenting their NLO perturbative results

and RG evolution equations, we check the RG consistency. In the end, we present our

resummation formula for dijet production.

4.3.4.1 TMDs and global soft functions

The unsubtracted TMD PDFs in the factorized formula in Eq. (4.93) describe the radiation

along the incoming beams. They satisfy the RG evolution equations

µ
d

dµ
lnfunsub

i (x, b;µ, ζ1/ν
2) = Γfi

µ (µ, ν) , (4.178)

ν
d

dν
lnfunsub

i (x, b;µ, ζ1/ν
2) = Γfi

ν (µ) , (4.179)

where its µ- and ν-anomalous dimensions are given by

Γfi
µ (µ, ν, ζi) = ΓcuspCi Lζi + γiµ[αs(µ)] , (4.180)

Γfi
ν (µ, ν) =

αsCi

π
L . (4.181)

As we will see in this subsection, the rapidity divergences of the unsubtracted TMDs will be

exactly canceled by the rapidity divergences of the global soft functions, which will allow us

to identify the standard TMDs with subtracted rapidity divergence as in Eq. (4.95) above.

Suppressing the label ab→ cd for convenience, the global soft functions up to 1-loop are

given by

S(0)(b) = I , (4.182)

Sbare,(1)(b) =
∑

i<j

Ti · Tj I(1)
ij (b) , (4.183)

where [184]

I(1)
12 (b) =

αs

2π

[
2

(
2

η
− Lν

)(
1

ϵ
+ L

)
− 2

ϵ2
+ L2 +

π2

6

]
, (4.184)
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I(1)
13 (b) =

αs

2π

[(
2

η
− Lν − 2yc

)(
1

ϵ
+ L

)
− 2

ϵ2
− 1

ϵ
L+

π2

6

]
, (4.185)

I(1)
34 (b) =

αs

2π

[
4

(
1

ϵ
+ L

)
ln
(
2 cosh(∆y/2)

)
− 2

ϵ2
− 2

ϵ
L− L2 +∆y2

− 4ln2
(
2 cosh(∆y/2)

)
+
π2

6

]
, (4.186)

I(1)
14 (b) = I(1)

13 (b)(yc → yd) , I(1)
23 (b) = I(1)

13 (b)(yc → −yc) , I(1)
24 (b) = I(1)

14 (b)(yd → −yd) .
(4.187)

The explicit matrix forms of tree-level soft functions in Eq. (4.182) for some color basis {θI}
can be computed as

(I)IJ = θIθ
†
J , (4.188)

which is equivalent to the matrix forms of the LO soft functions found in section 4.3.3. The

matrix Ti ·Tj of the eq. (4.183) was also computed in the color bases used in section 4.3.3 and

can be found in [261, 260]. The renormalized global soft functions satisfy the RG evolution

equations

µ
d

dµ
S(b;µ, ν) = ΓS†

µ · S + S · ΓS
µ , (4.189)

ν
d

dν
S(b;µ, ν) = ΓS†

ν · S + S · ΓS
ν , (4.190)

(4.191)

From Eqs. (4.182) - (4.187) and using
∑

i Ti = 0, we then find

ΓS
µ =− αs

2π

[
Ca

(
ln

−t̂
x2aS

− Lν

)
+ Cb

(
ln

−t̂
x2bS

− Lν

)
+ (Cc + Cd)

(
ln
−t̂
P 2
⊥
− L

)]
I

− αs

π
M +

αs

π
(T1 · T2 + T3 · T4) iπ

=− Γcusp

2

[
Ca

(
ln

−t̂
x2aS

− Lν

)
+ Cb

(
ln

−t̂
x2bS

− Lν

)
+ (Cc + Cd)

(
ln
−t̂
P 2
⊥
− L

)]
I

− ΓcuspM + Γcusp (T1 · T2 + T3 · T4) iπ , (4.192)

ΓS
ν =− αs(Ca + Cb)

2π
LI , (4.193)

where M was given in Eq. (4.174) and we promoted αs

π
→ Γcusp, which is consistent with

the factorization consistency relation below. Note that Eq. (4.192) is strictly real and the

imaginary term ∼ iπ cancels exactly with the imaginary term found in M .
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We note that ΓS
ν ∼ I and that this is expected as the hard functions do not have any

rapidity divergence. Thus, we can write

ν
d

dν
S(b;µ, ν) = ΓS†

ν · S + S · ΓS
ν = −αs(Ca + Cb)

π
LS(b;µ, ν) , (4.194)

which has the same rapidity anomalous dimensions as the back-to-back soft functions Sab(b;µ, ν)

found in standard Drell-Yan and Semi-Inclusive DIS process [62]. As expected, the rapidity

divergence of the global soft function S(b;µ, ν) in Eq. (4.194) exactly cancels the rapidity

anomalous dimensions for the unsubtracted TMDs fa/PA
(b;µ, ν) and fb/PB

(b;µ, ν) given in

Eq. (4.181). Therefore, as discussed in the introduction, we can define S̃(b;µ) absent of the

rapidity divergence such that

S(b;µ, ν) = S̃(b;µ)Sab(b;µ, ν) . (4.195)

Then as in Eq. (4.95), Sab(b;µ, ν) is combined with the unsubtracted TMDs to identify

standard TMDs free of the rapidity divergences.

4.3.4.2 Jet and collinear-soft functions

Both jet and collinear-soft functions describe the radiation which resolves the produced jets.

The jet functions [270, 271] encode the collinear radiations inside anti-kT jet with radius R.

The NLO expressions are given by

Ji(P⊥R;µ) = 1 +
αs

π

[
Ci

4
ln2

(
µ2

P 2
⊥R

2

)
+
γi
2
ln

(
µ2

P 2
⊥R

2

)
+ di

]
, (4.196)

where the algorithmic dependent terms di for anti-kT algorithm are

dq =

(
13

4
− 3π2

8

)
CF , (4.197)

dg =

(
67

18
− 3π2

8

)
CA − 23

36
nf . (4.198)

The jet functions satisfy the RG evolution equations

µ
d

dµ
Ji(P⊥R;µ) = ΓJi

µ (µ)Ji(P⊥R;µ) , (4.199)
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where the anomalous dimension is given by

ΓJi
µ (µ) = ΓcuspCi ln

(
µ2

P 2
⊥R

2

)
+ γiµ[αs(µ)] . (4.200)

The collinear-soft functions [135, 164] describe the soft radiation along the jet direction

and resolves the jet cone R. The NLO expressions are given by

S
cs,(1)
i (b, R;µ) = 1− αsCi

4π

[
ln2

(
µ2

µ2
bR

2

)
− π2

6

]
. (4.201)

The collinear-soft functions satisfy the RG evolution equations

µ
d

dµ
Scs
i (b, R;µ) = Γcsi

µ (µ)Scs
i (b, R;µ) , (4.202)

where its anomalous dimension takes the form

Γcsi
µ (µ) = ΓcuspCi ln

(
µ2

µ2
bR

2

)
. (4.203)

4.3.4.3 RG consistency at 1loop

With the anomalous dimensions presented for all the ingredients, we now show that our

factorized formula given in Eq. (4.93) satisfy the consistency relations for the RG evolutions.

The cancellation of the rapidity divergences was already checked around Eq. (4.194). We also

expect µ-divergence of the various functions to cancel and satisfy the consistency equation

µ
d

dµ
ln
(
Tr [S(b;µ, ν) ·H(P⊥;µ)]

)
+ Γ

fa/PA
µ + Γ

fb/PB
µ + Γcsc

µ + Γcsd
µ + ΓJc

µ + ΓJd
µ = 0 . (4.204)

From Eqs. (4.176), (4.177), (4.189), (4.192), we immediately find at 1-loop,

µ
d

dµ
ln
(
Tr
[
S(b;µ, ν) ·H(P⊥;µ)

])

=
Tr
[
ΓS†

µ · S ·H + S · ΓS
µ ·H + S · ΓH ·H + S ·H · ΓH†]

Tr [S(b;µ, ν) ·H(P⊥;µ)]

= −αs

π

[
Caln

(
ν2

x2aS

)
+ Cbln

(
ν2

x2bS

)
− (Cc + Cd)ln

(
P 2
⊥
µ2
b

)]
+ 2γH . (4.205)

One can then easily check from the µ-anomalous dimensions of the other functions given in

Eqs. (4.180), (4.200), (4.203) that Eq. (4.204) is explicitly satisfied at 1-loop.
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4.3.4.4 Resummation formula

Based on the above discussions and RG renormalization group methods in SCET, we can

now derive the expression for the all-order resummed result. Explicitly, we calculate the

cross section at the NLL accuracy, where we will use the two-loop cusp and one-loop single

logarithmic anomalous dimension and the matching coefficients are kept at leading order.

On the other hand, the color structures inside the hard and soft function will mix with each

other under the RG evolution, which was first studied in [240]. In this section, we will apply

the same methods in [260] to solve the RG equations. For the unpolarized cross section, the

resummation formula has the form as follows:

dσ

dycdyddP 2
⊥d

2q⊥
=
∑

abcd

1

16π2ŝ2
1

Ninit

1

1 + δcd

1

2π

∫ ∞

0

db b J0(q⊥b)xafa/PA
(xa;µb∗)xbfb/PB

(xb;µb∗)

× exp

{
−
∫ µh

µb∗

dµ

µ

[
Γcusp(αs)cH ln

|t̂|
µ2

+ 2ΓH(αs)

]}

×
∑

KK′

exp

[
−
∫ µh

µb∗

dµ

µ
Γcusp(αs)(λK + λ∗K′)

]
HKK′(P⊥;µh)S̃K′K(b∗;µb∗)

× exp

[
−
∫ µj

µb∗

dµ

µ
ΓJc
µ (αs)−

∫ µcs

µb∗

dµ

µ
Γcsc
µ (αs)

]
U c
NG (µcs;µj) Jc(P⊥R;µj)S

cs
c (b∗, R;µcs)

× exp

[
−
∫ µj

µb∗

dµ

µ
ΓJd
µ (αs)−

∫ µcs

µb∗

dµ

µ
Γcsd
µ (αs)

]
Ud
NG (µcs;µj) Jd(P⊥R;µj)S

cs
d (b∗, R;µcs)

× exp
[
−Sa

NP(b,
√
ŝ, Q0)− Sb

NP(b,
√
ŝ, Q0)

]
, (4.206)

where λK is the eigenvalue of the matrix MIJ in the hard anomalous dimension (4.172) and

HKK′ and S̃K′K are the hard and soft function in the diagonal basis as defined in [260]. In

our numerical calculation, we use the LAPACK library [272] to obtain their value at different

phase-space points. We have applied the b∗-prescription to prevent the Landau pole from

being reached in the b-integral. Here, we define b∗ as

b∗ = b/
√
1 + b2/b2max , (4.207)

where bmax is chosen [120] to be 1.5 GeV−1. Our perturbative Sudakov factor come from solv-

ing the renormalization group evolution equations for different functions from their intrinsic
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scales, which are chosen for the hard, jet and collinear-soft function as

µh =
√
ŝ, µj = P⊥R, µcs = µb∗R. (4.208)

Note that
√
ŝ ∼ P⊥ is completely fixed by the measured quantities yc, yd and P⊥ as seen

from Eq. (4.92). Another choice of µh ∼ P⊥ leads to similar numerical results.

The nonperturbative Sudakov factor in Eq. (4.206) was fitted to experimental data in

[92]. The extracted functions are given by

Sa,b
NP(b, µ,Q0) = gf1 b

2 +
g2
2

Ca,b

CF

ln
µ

Q0

ln
b

b∗
, with gf1 = 0.106, g2 = 0.84, Q2

0 = 2.4GeV2.

(4.209)

We also incorporate NGLs resummation effects included by the function U c,d
NG. In order

to include NGLs resummation effects at NLL accuracy, we also need to consider the extra

one-loop single logarithmic anomalous dimension Γ̂ from the non-linear evolution parts.

However, in [247, 248] this anomalous dimension was shown to cancel between the jet and

collinear-soft function up to two-loop order. The explicit operator-based derivation of RG

consistency including Γ̂ can be found in [273, 164, 251]. In the large Nc limit, the non-linear

evolution equation can be solved using the parton shower algorithm [274]. Especially, at

the NLL accuracy the evolution is totally determined by the one-loop anomalous dimension

Γ̂, which is equivalent to the one appearing in the light jet mass distribution at the e+e−

collider. Therefore, we can use the same fitting function form given in [162] to capture NGLs

resummation contributions after setting proper initial and final evolution scales. In our case,

these two scales are the jet scale µj and the collinear-soft scale µcs. Explicitly, the function

is

Uk
NG (µcs;µj) = exp

[
−CACk

π2

3
u2

1 + (au)2

1 + (bu)c

]
, (4.210)

where the superscript k = q and g denote the (anti-)quark and gluon jet, respectively, and

with Cq = CF and Cg = CA. The parameters a, b and c are fitting parameters which

are given as a = 0.85CA, b = 0.86CA and c = 1.33. The variable u = 1
β0
logαs(µcs)

αs(µj)
is the
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evolution scale measuring the separation of the scales µcs and µj. As shown in eq. (4.208),

b∗ prescription for µcs keeps u from reaching a nonperturbative scale.

As we have done for the unpolarized cross section, we also derive a similar resummation

formula for the spin-dependent cross section

d∆σ(S⊥)

dycdyddP 2
⊥d

2q⊥
=sin(ϕq − ϕS)

∑

abcd

1

16π2ŝ2
1

Ninit

1

1 + δcd

(
− 1

4π

)∫ ∞

0

db b2 J1(q⊥b)

× xaTa,F (xa, xa;µb∗)xbfb/PB
(xb;µb∗) exp

{
−
∫ µh

µb∗

dµ

µ

[
Γcusp(αs)cH ln

|t̂|
µ2

+ 2ΓH(αs)

]}

×
∑

KK′

exp

[
−
∫ µh

µb∗

dµ

µ
Γcusp(αs)(λK + λ∗K′)

]
HKK′(P⊥;µh)S̃K′K(b∗;µb∗)

× exp

[
−
∫ µj

µb∗

dµ

µ
ΓJc
µ (αs)−

∫ µcs

µb∗

dµ

µ
Γcsc
µ (αs)

]
U c
NG (µcs;µj) Jc(P⊥R;µj)S

cs
c (b∗, R;µcs)

× exp

[
−
∫ µj

µb∗

dµ

µ
ΓJd
µ (αs)−

∫ µcs

µb∗

dµ

µ
Γcsd
µ (αs)

]
Ud
NG (µcs;µj) Jd(P⊥R;µj)S

cs
d (b∗, R;µcs)

× exp
[
−Ss

NP(b,
√
ŝ, Q0)− Sb

NP(b,
√
ŝ, Q0)

]
, (4.211)

where at the NLL accuracy we keep the LO matching coefficient in Eq. 3.71. It involves

the parametrization for the Sivers function, which depends on the collinear Qiu-Sterman

function Tq,F (xa, xa;µb∗) and a different non-perturbative Sudakov factor Ss
NP. The relevant

parametrization has been determined from a recent global analysis of the Sivers asymmetry

of Semi-Inclusive DIS and Drell-Yan processes [10]. The non-perturbative Sudakov factor is

given by

Ss
NP(b, µ,Q0) = gs1b

2 +
g2
2
ln
µ

Q0

ln
b

b∗
, with gs1 = 0.18. (4.212)

4.3.5 Phenomenology

In this section we will present the numerical results using the resummation formula in

Eqs. (4.206) and (4.211), where intrinsic scales for the hard, jet and collinear-soft function

are defined in Eq. (4.208). In the numerical study, we will focus on the Sivers asymmetry for

the dijet production at the RHIC with
√
s = 200 GeV, where the jet events are reconstructed
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by using anti-kT algorithm with jet radius R = 0.6. The transverse momentum P⊥ and the

rapidity yc,d of jets are

P⊥ > 4GeV, − 1 < yc,d < 2. (4.213)

For the unpolarized proton, we use the HERAPDF20NLO parton distribution functions [98].

The numerical Bessel transforms in Eqs. (4.206) and (4.211) are performed using the algo-

rithm in [275]. Furthermore, the Eq. (4.96) is derived after neglecting the power corrections

from O(q2⊥/P
2
⊥). In other words, in the large q⊥ region, the full results should include correc-

tions from the so-called Y -term, which can be obtained from perturbative QCD calculations

[276]. In this section we focus on the contribution from back-to-back dijet production. In

order to select such kinematics, we require the transverse momentum q⊥ for the dijet system

|q⊥| < qcut⊥ . In the numerical calculations, we fix the value of qcut⊥ = 2 GeV.

As shown in the Fig. 4.7, the transverse-polarized proton moves on +z-direction and

its spin points to +y-direction with ϕS = π/2. The transverse momentum vector q⊥ lies

in the x − y plane, and the Sivers asymmetry is defined as the difference of the events

between q⊥,x > 0 and q⊥,x < 0 hemispheres, that is the same as the measurements by STAR

collaboration [228]. Explicitly, we have

AN(ysum) =

∫ qcut⊥
0

dq⊥
∫ 2π

0
dϕq

∫
dPS d∆σ

dq⊥dϕqdycdyddP⊥

[
θ(cosϕq)− θ(−cosϕq)

]

∫ qcut⊥
0

dq⊥
∫ 2π

0
dϕq

∫
dPS dσ

dq⊥dϕqdycdyddP⊥

, (4.214)

with
∫
dPS =

∫
dycdyddP⊥δ(ysum−yc−yd) represents the transverse momenta and rapidities

integral for dijets. In the numerator, the ϕq-integral with θ(cosϕq) and θ(−cosϕq) corresponds

q⊥,x > 0 and q⊥,x < 0, respectively.

In the Fig. 4.12, we show the numerical results of the Sivers asymmetry for dijet processes,

where we neglect the charm and bottom jet events. The red and blue curves represent the

asymmetry contributed from u- and d-quark Sivers function, respectively. As is expected,

we find that the asymmetry is enhanced in the large ysum region, i.e. the forward scattering

region, due to the larger fractional contribution of Sivers function in the valence region.

Besides, the contributions from u- and d-quark Sivers function are opposite from each other,

which causes a huge cancellation of the asymmetry, as shown by the black curves in Fig. 4.12.

151



-� -� � � � � �
-����

-����

����

����

����

-� -� � � � � �

-����

-����

����

����

����

Figure 4.12: Theoretical predictions of the Sivers asymmetry for dijet production at the

RHIC with
√
s = 200 GeV. In the left plot red and blue curves are the results from u- and

d- quark Sivers function, and the black curve includes all the contributions. In the right plot

we show the Sivers asymmetry distribution within three different jet charge Qκ bins. The

red and blue bands indicate the theoretical uncertainties using the 200 replicas of the quark

Sivers function [10]. At each point in calculation of our theoretical prediction, we retain the

middle 68% of the replicas.

In the calculation, most of the asymmetries come from the partonic scattering process

qg → qg where the initial quark comes from the polarized proton. Especially, the more

forward jet is associated with the parton from the polarized proton moving in the same

direction. Hence, if we can tag parton species initiating the more forward jet, then we can

separate u- and d-quark Sivers functions and avoid the accidental cancellation as shown in

the left plot of Fig. 4.12.

In order to achieve jet flavor separation mentioned above, one possible method is applying

the electric charge information of jets, which has been proposed in [277, 231, 237]. In this

section, we will use the standard jet electric charge definition given in [278, 279]

Qκ =
∑

h∈jet
zκhQh , (4.215)

where zh is the transverse momentum ratio between hadrons and the jet. κ is an input
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parameter, which is fixed by κ = 0.3 [237] in our calculations. As shown in [237], after

measuring the jet charge information, the theory formula is slightly modified by replacing

the jet function Ji(P⊥R;µ) in Eq. (4.101) by the charge-tagged jet function Gi(Qκ, P⊥R;µ)

as

d∆σ

dQκd2q⊥
=

∫
dPS Ta,F ⊗ fb/PB

⊗ Tr[H · S]⊗ Scs
c ⊗ Scs

d

[
Gc Jd θ(yc − yd) + Jc Gd θ(yd − yc)

]
,

(4.216)

with the normalization as
∫∞
−∞ dQκ Gi(Qκ, P⊥R;µ) = Ji(P⊥R;µ) required by the probability

conservation. Here we only replace the more forward jet function with the charge-tagged jet

function, which corresponds to the insertion of the step function. We define the jet charge

bin fraction as

rbini =

∫
bin
dQκ Gi(Qκ, P⊥R;µ)

Ji(P⊥R;µ)
. (4.217)

Then the Sivers asymmetry AN in different jet charge bins is given as, in terms of jet charge

bin fraction

A±,0N =

∑
i=u,d,g,··· r

±,0
i ∆σi

σ
, (4.218)

where we suppress the phase space integral shown in Eq. (4.214). The index i denotes the

parton species initiating the more forward jet. Here we use the same jet charge bins defined

in [237], where +,− and 0 indicate Qκ > 0.25, Qκ < −0.25 and |Qκ| < 0.25 bins, separately.

Such jet charge bin fraction can be fitted from the unpolarized cross section for back-to-back

dijet events at the RHIC. In [231], the authors have shown the preliminary results from the

measurements as κ = 0. In the theory calculation, one can use Monte-Carlo event generators

such as Pythia8 [280] to estimate these numbers. In the Tab. 4.3 we give the results of jet

charge bin fractions r±,0i for various jet flavors used in our numerical calculations, where the

jet charges are defined using all charged hadrons inside the jet.

In the right plot of Fig. 4.12 we show the result of AN within the different jet charge bins.

After selecting the charge of the more forward jet Qκ > 0.25, the contribution from the u-

quark Sivers function is enhanced compared to the case without the jet charge measurement
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u ū d d̄ s s̄ g

r+i 0.61 0.16 0.15 0.51 0.15 0.50 0.37

r−i 0.10 0.54 0.48 0.14 0.49 0.16 0.37

r0i 0.29 0.30 0.37 0.35 0.36 0.34 0.26

Table 4.3: The jet charge bin fractions r±,0i for various jet flavors from Pythia8 simulation,

where the jet charges are defined using all charged-hadrons inside the jet.

(the black curve in the left plot). A similar size enhancement from the d-quark Sivers

function is also observed in Qκ < −0.25 charge bin as shown by the blue curve. Besides,

we find the Sivers asymmetries from Qκ > 0.25 bins are positive and Qκ < −0.25 bins

are negative, which are consistent with the preliminary STAR measurements [231]. In the

forward region, the Sivers asymmetry can achieve O(0.01%), and size of our calculation is

also around the same order of the data. Furthermore, we have also plotted the theoretical

uncertainty which is related to the extraction of the Sivers function obtained in [10]. To

generate this uncertainty, we have considered the 200 replicas from this reference. For each

replica, we generate our theoretical prediction. We then retain the middle 68% at each

point. We plot the uncertainty as red and blue bands for the positive and negative jet

charge bins in the Fig. 4.12, respectively. Taken together, our calculation suggests that the

dijet production at the hadron collider is an important process to extract the information

about the Siver function and deserves further studies on the theoretical framework about

the remarks discussed in 4.3.2.3.

4.3.6 Conclusions

We study the single spin asymmetries of dijet production in the back-to-back region in trans-

versely polarized proton-proton collisions. In the back-to-back region, the dijet transverse

momentum imbalance q⊥ is much smaller than the transverse momentum P⊥ of the jets.

In this case, the conventional perturbative QCD calculations in the expansion of coupling

constant αs generate large logarithms in the form of αn
s ln

m (P 2
⊥/q

2
⊥) with m ≤ 2n− 1, which
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have to be resummed in order to render the convergence of the perturbative computations.

We propose a QCD formalism in terms of transverse momentum dependent (TMD) parton

distribution functions for dijet production in both unpolarized and polarized proton-proton

collisions. Such a formalism allows us to resum the aforementioned large logarithms, and

further takes into account the non-universality or process-dependence of the Sivers functions

in the case of the transversely polarized scattering. It is well-known that hadronic dijet

production in back-to-back region suffers from TMD factorization breaking effects. Thus,

to write down the QCD “seemingly factorized” formalism for resumming large logarithms

mentioned above, we make a couple of approximations. First of all, we neglect the Glauber

mode in the formalism which are known to be the main reason for the TMD factorization

breaking. Secondly, we have assumed that the soft gluon radiation that is encoded in the

global soft function in our formalism is spin-independent, i.e., they are the same between the

unpolarized and polarized scatterings. Since the precise method for dealing with the TMD

factorization breaking effects is still not known, we feel that the proposed formalism in this

section is a reasonable starting point for further investigation.

With such a formalism at hand, we compute the Sivers asymmetry for the dijet production

in the kinematic region that is relevant to the proton-proton collisions at the Relativistic

Heavy Ion Collider (RHIC), and find that the spin asymmetry is very small due to the

cancellation between u- and d-quark Sivers functions, which are similar in size but opposite

in sign. However, we find that the individual contribution from u- and d-quark Sivers

functions can lead to an asymmetry of size O(±0.05%) in the forward rapidity region, which

seems feasible at the RHIC. Motivated by this, we compute the Sivers asymmetry of dijet

production in the positive and negative jet charge bins, i.e., when the jet charge Qκ for the

jet with the larger rapidity of two is in the bins Qκ > 0.25 and Qκ < −0.25, respectively.

By selecting the positive (negative) jet charge bin, we enhance the contribution from u- (d)-

quark Sivers function and thus enhance the size of the asymmetry. Our calculation shows

that Sivers asymmetries in such positive (negative) jet charge bins lead to asymmetries of size

O(+0.01%) (O(−0.01%)), respectively. The sign of such asymmetries seem to be consistent
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with the preliminary STAR measurements at the RHIC. The size of our calculations is also

around the same order of the experimental data. This give us a great hope to further

investigate the single spin asymmetries for hadronic dijet production at the RHIC.

4.4 Jet fragmentation functions for Z-tagged jets

4.4.1 Introduction

The momentum distribution of hadrons inside a fully reconstructed jet, commonly referred

to as jet fragmentation function (JFF), serves as a novel way of probing fragmentation. Re-

cently, jet fragmentation functions have been measured for single inclusive jet produced in un-

polarized proton-proton collisions at the Large Hadron Collider (LHC) for light hadrons [281,

282], for open heavy flavor mesons [283, 284, 285], and for heavy quarkonium [286, 287]. Such

measurements have already started to constrain the fragmentation functions for open heavy

flavor mesons [288, 289], and to pin down non-relativistic QCD (NRQCD) long-distance

matrix elements, which characterize the hadronization process for heavy quarkonium pro-

duction [290, 291].

The same measurements in heavy ion collisions show a strong modification of the JFF [292,

293] in the existence of the hot and dense medium, the quark-gluon plasma, and thus serve

as a novel probe for the medium. Jet fragmentation functions can also be measured in trans-

versely polarized proton-proton collisions. For example, the measurements by the STAR col-

laboration at the Relativistic Heavy Ion Collider (RHIC) study the azimuthal distribution of

hadrons inside the jet [214] and provide information for the so-called Collins fragmentation

functions [140, 294, 295].

Single inclusive jet production at the LHC involves a large fraction of gluon jets [296]. In

order to further disentangle quark and gluon jets, one can study e.g., photon-tagged jet pro-

duction and the JFF in photon-tagged jets. These processes are more sensitive to the quark

jets, or quark-to-hadron fragmentation functions. See [293] for recent JFF measurement for

photon-tagged jets. More recently the LHCb collaboration at the LHC has measured both
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longitudinal and transverse momentum distribution of charged hadrons produced inside Z-

tagged jets in the forward rapidity region in proton-proton collisions, p+ p→ Z + jet +X.

Experimental requirements are placed on the Z-jet pair to better identify events that cor-

respond to a two-to-two partonic hard scattering process, i.e. the Z-jet pair is required to

be nearly back-to-back in azimuth such that |∆ϕZ−jet| > 7π/8. In our previous work [135],

we developed a factorized framework for back-to-back photon-jet production within Soft-

Collinear Effective Theory (SCET) [54, 55, 53, 56, 239]. Such a framework can be generalized

to study back-to-back Z-jet production [164], as well as JFF in Z-tagged jets.

In this paper, we use SCET to derive a factorization and resummation formalism for JFF

in which

the longitudinal momentum fraction zh of the jet carried by the hadron and the transverse

momentum j⊥ with respect to the jet direction. We demonstrate how the zh-dependence

is connected to the standard collinear fragmentation functions, while the j⊥-dependence

is associated with the transverse momentum dependent (TMD) fragmentation functions.

For the phenomenology, we find good agreement for the intermediate zh region. For j⊥-

dependence, we suggest binning in both zh and j⊥, which would lead to a more direct

probing of TMD fragmentation functions. The rest of the paper is organized as follows. In

Sec. 4.4.2, we generalize our QCD formalism developed for photon-jet production to describe

back-to-back Z-jet cross section, as well as the jet fragmentation functions in Z-tagged jets.

Numerical results are presented in Sec. 4.4.3, where we compare our calculations with the

LHCb experimental data. We conclude our paper in Sec. 4.4.4.

4.4.2 Theoretical framework

We consider hadron distribution inside Z-tagged jets in proton-proton collisions, as illus-

trated in Fig. 4.13,

p(pA) + p(pB) → Z(ηZ ,pZT ) + jet(ηJ , pJT , R) h(zh, j⊥) +X , (4.219)
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where s = (pA + pB)
2 is the center-of-mass energy squared, the Z-boson is produced with

the rapidity ηZ and transverse momentum pZT , while the jet is reconstructed in the usual

anti-kT algorithm [193] with the jet radius parameter R, and the jet has the rapidity ηJ and

the transverse momentum pJT . One further observes a hadron inside the jet, which carries a

longitudinal momentum fraction zh of the jet, and a transverse momentum j⊥ with respect

to the jet direction.

h jet

Z
P P

j⊥

xy

z

Figure 4.13: Illustration for the distribution of hadrons inside jets in Z-tagged jet production

in proton-proton collisions.

One usually defines the imbalance qT between the transverse momenta of the Z-boson

and the jet, and the average of the transverse momenta pT as

qT ≡ pZT + pJT , pT =
pZT − pJT

2
. (4.220)

To be consistent with the experimental setup [11], we only consider the region where the

Z-boson and the jet are produced back-to-back. In such a region, the imbalance is much

smaller than the average transverse momentum, qT ≪ pT , where the perturbative computa-

tions receive contributions of large logarithms of the form αn
s ln

2n(pT/qT ), which have to be

resummed. In the following, we first review the QCD formalism that achieves this purpose.

We then generalize to the case of hadron distribution inside the jets, for both longitudinal

zh-distribution and the transverse momentum j⊥-distribution.

4.4.2.1 Ztagged jet cross section

A formalism has been developed to resum the logarithms of the form αn
s ln

2n(pT/qT ) as well

as the logarithms of jet radius lnR in our previous work [135] for back-to-back photon-
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tagged jet cross section. This formalism can be generalized to the Z-tagged jet production,

p+ p→ Z + jet +X.

In such a formalism, the differential cross section can be written as

dσ

dPS =
∑

a,b,c

∫
dϕJ

∫ 4∏

i=1

d2kiT δ
(2)

(
qT −

4∑

i

kiT

)

× funsub
a/pa (xa, k1T ;µ, ζ1/ν

2)funsub
b/pB

(xb, k2T ;µ, ζ2/ν
2)

× Sglobal
nn̄nJ

(k3T ;µ, ν)S
cs
nJ
(k4T , R;µ)Hab→cZ(pT ,mZ ;µ) Jc(pJTR;µ) , (4.221)

where the phase space dPS = dηJdηZdpTd
2qT , and ϕJ is the azimuthal angle of the jet.

Besides different hard functions Hab→cZ , the above formalism is the same as that for photon-

tagged jet production developed in [135]. See also Ref. [164], where the authors further study

the impact of the so-called non-global logarithms [162].

We include both partonic channels qq̄ → gZ and qg → qZ at the next-to-leading order

(NLO) for the hard functions Hab→cZ [297, 178].

Let us now discuss the jet function Jc, which encodes collinear radiations inside the jet.

The NLO results for quark and gluon jet functions can be found in e.g. [270, 271]. For

completeness, the quark jet function Jq for anti-kT algorithm is given by

Jq(pJTR;µ) = 1 +
αs

π
CF

(
L2
JT − 3

2
LJT +

13

4
− 3π2

8

)
, (4.222)

where LJT is the logarithm defined as

LJT = ln

(
pJTR

µ

)
. (4.223)

Thus the natural scale of the jet function is given by

µJ ∼ pJTR. (4.224)

At the same time, the jet function satisfies the renormalization group equation

µ
d

dµ
Ji(pJTR;µ) = γiJ(µ) Ji(pJTR;µ), (4.225)
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which leads to the following solution

Ji(pJTR;µ) = Ji(pJTR;µJ) exp

[∫ µ

µJ

dµ′

µ′
γiJ(µ

′)

]
, (4.226)

with i = q, g for quark and gluon jets. The anomalous dimensions γiJ are given by

γiJ(µ) = −2 Γi
cusp(αs)LJT + γi(αs), (4.227)

with Γi
cusp and γi the cusp and non-cusp anomalous dimensions. They have the perturbative

expansions Γi
cusp =

∑
n Γ

i
n−1
(
αs

4π

)n
and γi =

∑
n γ

i
n−1
(
αs

4π

)n
[298, 299, 300, 301, 302]. For

example,

Γq
0 = 4CF , γq0 = 6CF , (4.228)

Γg
0 = 4CA, γg0 = 2β0, (4.229)

where β0 =
11
3
CA − 4

3
TFnf , with TF = 1

2
and nf the number of active quark flavors.

4.4.2.2 Hadron distribution inside Ztagged jets: zhdependence

Now if we measure the longitudinal (along the jet direction) zh distribution of hadrons inside

the Z-tagged jet, the factorized formalism can be written as

dσh

dPS dzh
=
∑

a,b,c

∫
dϕJ

∫ 4∏

i=1

d2kiT δ
(2)

(
qT −

4∑

i

kiT

)

× funsub
a/pa (xa, k1T ;µ, ζ1/ν

2)funsub
b/pB

(xb, k2T ;µ, ζ2/ν
2)

× Sglobal
nn̄nJ

(k3T ;µ, ν)S
cs
nJ
(k4T , R;µ)Hab→cZ(pT ,mZ ;µ)Gh

c (zh, pJTR;µ) , (4.230)

where we replace the jet function Jc in Eq. (4.221) by the fragmenting jet function Gh
c [288,

300]. Here zh = p+h /p
+
J , with p

+
h and p+J the large light-cone component of the hadron and the

jet, respectively. The fragmenting jet function Gh
i will no longer be purely perturbative since

it involves the hadron in the jet, which is non-perturbative. However, Gh
i can be matched

onto the standard collinear fragmentation functions (FFs) Dh/i,

Gh
i (zh, pJTR;µ) =

∑

j

∫ 1

zh

dz

z
Jij(z, pJTR;µ)Dh/j

(zh
z
;µ
)
, (4.231)
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where one can find the coefficients Jij at NLO in [288, 279]. For later convenience, let us

reproduce the expression for Jqq here,

Jqq(z, pJTR;µ) = δ(1− z) (4.232)

+
αs

π
CF

[
δ(1− z)

(
L2
JT − π2

24

)
+

1 + z2

(1− z)+
(LJT + lnz) +

1− z

2
+ (1 + z2)

(
ln(1− z)

1− z

)

+

]
.

At the same time, it is important to realize that Gh
i follows the same renormalization group

equation as the jet function Ji in Eq. (4.227),

µ
d

dµ
Gh
i (zh, pJTR;µ) = γiJ(µ)Gh

i (zh, pJTR;µ) , (4.233)

which would evolve Gh
i from its natural scale, again µJ ∼ pJTR, up to the hard scale µ as

Gh
i (zh, pJTR;µ) = Gh

i (zh, pJTR;µJ) exp

[∫ µ

µJ

dµ′

µ′
γiJ(µ

′)

]
. (4.234)

4.4.2.3 Hadron distribution inside Ztagged jets: j⊥dependence

Finally if we measure both the longitudinal zh and transverse momentum j⊥ distribution of

hadrons inside the Z-tagged jet, the factorized formalism can be written as

dσh

dPS dzh d2j⊥
=
∑

a,b,c

∫
dϕJ

∫ 4∏

i=1

d2kiT δ
(2)

(
qT −

4∑

i

kiT

)

× funsub
a/pa (xa, k1T ;µ, ζ1/ν

2)funsub
b/pB

(xb, k2T ;µ, ζ2/ν
2)

× Sglobal
nn̄nJ

(k3T ;µ, ν)S
cs
nJ
(k4T , R;µ)Hab→cZ(pT ,mZ ;µ)Gh

c (zh, j⊥, pJTR;µ, ζ3) , (4.235)

where this time we have a TMD fragmenting jet function Gh
c , and j⊥ is the transverse

component of the hadron momentum with respect to the jet direction. We are interested in

the small j⊥ region, j⊥ ≪ pJTR, where Gh
c receives contributions from both collinear, and

collinear-soft modes [303]. It can be further factorized as [303, 136]

Gh
i (zh, j⊥, pJTR;µ, ζ3) =

∫
d2k⊥d

2λ⊥δ
2 (zhλ⊥ + k⊥ − j⊥)

×Dunsub
h/i (zh,k⊥;µ, ζ3/ν

2)Si(λ⊥;µ, νR),
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where the collinear mode is described by the usual TMD FFs Dh/i, and the collinear-soft

mode is captured by the soft function Si. Besides the usual renormalization scale µ, the

scale ν is again associated with the rapidity divergence. Here it might be instructive to point

out the difference between the above refactorization and those for TMD hadron distribution

inside a single inclusive jet produced in proton-proton collisions, p+p→ jet+h+X, in [136],

where an additional hard factor arises that captures out-of-jet radiation with characteristic

scale ∼ pJTR. Here since we are studying Z+jet production in the back-to-back region, such

out-of-jet radiation is not allowed at leading-power. This is because any out-of-jet radiation

would generate Z-jet imbalance of the order pJTR ≫ qT , which would thus move Z-jet away

from the back-to-back configuration.

Following the usual wisdom in TMD physics, we transform the above expression in the

transverse momentum space into the coordinate b-space as follows

Gh
i (zh, j⊥, pJTR;µ, ζ3) =

∫
d2b

(2π)2
eij⊥·b/zhDunsub

h/i (zh, b;µ, ζ3/ν
2)Si(b;µ, νR), (4.236)

where the Fourier transform is defined as follows

Dunsub
h/i (zh, b;µ, ζ3/ν

2) =
1

z2h

∫
d2k⊥e

−ik⊥·b/zhDunsub
h/i (zh,k⊥;µ, ζ3/ν

2) , (4.237)

Si(b;µ, νR) =

∫
d2λ⊥e

−iλ⊥·bSi(λ⊥;µ, νR) . (4.238)

The perturbative results up to next-to-leading order and the renormalization for both Dunsub
h/i

and Si have been carefully studied in [136]. Over there we define the “proper” in-jet TMD

fragmentation function DR
h/i as

DR
h/i(zh, b;µ, ζ3) = Dunsub

h/i (zh, b;µ, ζ3/ν
2)Si(b;µ, νR) , (4.239)

where the rapidity divergence cancels between Dunsub
h/i and Si, and thus there is no rapidity

divergence and thus no ν-dependence on the left-hand side. We also find that DR
h/i evolves

as follows

DR
h/i(zh, b;µ, ζ3) =D̂h/i(zh, b;µJ , ζ3) exp

[∫ µ

µJ

dµ′

µ′
(
−2Γi

cusp(αs)LJT + γi(αs)
)]

,
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=D̂h/i(zh, b;µJ , ζ3) exp

[∫ µ

µJ

dµ′

dµ′
γiJ(µ

′)

]
. (4.240)

where the equation holds when µJ = pJTR, and D̂h/i are the “properly”-defined TMD FFs,

i.e., those measured in semi-inclusive deep inelastic scattering and/or back-to-back hadron

pair production in e+e− collisions [36]. Plug this result into Eq. (4.236), we obtain

Gh
i (zh, j⊥, pJTR;µ, ζ3) =

[∫
d2b

(2π)2
eij⊥·b/zhD̂h/i(zh, b;µJ , ζ3)

]
exp

[∫ µ

µJ

dµ′

dµ′
γiJ(µ

′)

]
,

≡D̂h/i(zh, j⊥;µJ , ζ3) exp

[∫ µ

µJ

dµ′

dµ′
γiJ(µ

′)

]
. (4.241)

One of the most important observations is that the evolution factor, i.e., the exponential part

on the right-hand side is the same for the jet function Ji in Eq. (4.226), the fragmenting jet

function Gh
i in Eq. (4.234), and the TMD fragmenting jet function Gh

i in Eq. (4.241). In other

words, the renormalization group equation is the same for all of them. This is consistent

with the factorized formalism, since the rest of the factors are the same for all three cases

in Eqs. (4.221), (4.230), and (4.235). This factor is different from the hadron distribution

inside jets for single inclusive jet production, as extensively studied in e.g. Refs. [290, 296,

136, 304, 305]. For single inclusive jet production, the renormalization group equations for

the relevant jet functions follow time-like DGLAP equations.

For the proper TMD fragmentation functions D̂h/i, we use the same parametrization as

in [136],

D̂h/i(zh, j⊥;µJ , ζ3) =
1

z2h

∫
bdb

2π
J0(j⊥b/zh)

× Cj←i ⊗Dh/j(zh;µb∗)e
−Si

pert(b;µb∗ ,µJ ,µ
2
b∗ ,µ

2
J )−Si

NP(zh,b,µJ ,Q0) , (4.242)

where we have used so-called b∗-prescription to avoid Landau pole of strong coupling αs [306],

Cj←i are the coefficient functions, Si
pert is the perturbative Sudakov factor, and Si

NP is the

non-perturbative Sudakov factor. Their expressions are all given in [136], where TMD FFs

are computed at next-to-leading order for Cj←i and at next-to-leading logarithmic level for

Si
pert. The integration in Eq. (4.242) involves Bessel function J0 which is oscillating and we

thus have used an optimized Ogata quadrature method developed in [275] to handle the

integration for better numerical convergence and reliability.
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4.4.3 Phenomenology at the LHC

In this section, we present numerical results for hadron distribution inside Z-tagged jets

in proton-proton collisions and compare to the experimental measurements by the LHCb

collaboration at the LHC.

The LHCb collaboration has performed measurements for hadron distribution inside Z-

tagged jets in proton-proton collisions at the center-of-mass energy
√
s = 8 TeV in the

forward rapidity regions at the LHC. The jet rapidity is integrated over 2.5 < ηJ < 4.0,

while the Z-boson rapidity is integrated over 2.0 < ηZ < 4.5. The jets are reconstructed

using the anti-kT algorithm with a jet size parameter of R = 0.5 [11]. For the longitudinal

distribution of hadrons inside jets, we define the jet fragmentation function as

F (zh) =
dσh

dPS dzh

/
dσ

dPS , (4.243)

where the numerator and the denominator are given by Eqs. (4.230) and (4.221), respectively,

and we have suppressed the dependence on the rapidity and transverse momentum for both

the Z-boson and the jet in F (zh). At the same time, for the j⊥-dependence of the hadrons

inside the jet, we define

F (zh, j⊥) =
dσh

dPS dzhdj⊥

/
dσ

dPS . (4.244)

Note that the numerator can be easily computed from Eq. (4.235), with the azimuthal

angle of j⊥ integrated over, and further multiplied by a factor of j⊥. In the numerical

computations, we use NLO DSS fragmentation functions for charged hadrons from [307].

Other fragmentation functions such as NNFF1.1 [308] give similar results.

In Fig. 4.14, we plot F (zh) as a function of zh. We make the default scale choices of

µ =
√
p2T +m2

Z and µJ = pJTR. We explore the scale uncertainty by varying µ and µJ

independently by a factor of two around their default values and by taking the envelope of

these variations. From left to right, the three panels correspond to different jet transverse

momenta: 20 < pJT < 30 GeV (left), 30 < pJT < 50 GeV (middle), and 50 < pJT < 100

GeV (right). We find that for the intermediate 0.1 ≲ zh ≲ 0.5, our results describe the LHCb
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Figure 4.14: Hadron distributions inside Z-tagged jets F (zh) in Eq. (4.230) are plotted as

functions of zh. From left to right, the three panels correspond to different jet transverse

momenta: 20 < pJT < 30 GeV, 30 < pJT < 50 GeV, and 50 < pJT < 100 GeV. The yellow

band is the theoretical uncertainty from the scale variation as explained in the text. The

red solid data points are from LHCb collaboration [11].

data reasonably well. However, when zh is either very small (zh ≪ 1) or very large (zh → 1),

the description becomes worse. This is easily understood. From Eqs. (4.230) and (4.232),

the coefficient functions such as Jqq contains lnz and
(
ln(1−z)

1−z

)
+
, which become important

for z ≪ 1 and z → 1, respectively. Thus one has to resum such types of logarithms: one

might follow [309] for lnz resummation, while for large-z one could get insights from [310].

We leave such studies for future publication.

For the j⊥-distribution of hadrons inside Z-tagged jets, LHCb formally integrates over

the entire 0 < zh < 1 region. 4 From Eq. (4.242), this would require that we know well

the standard collinear fragmentation function Dh/i for the entire 0 < zh < 1 region. How-

ever, typical global analysis for fragmentation functions only constrains the fragmentation

functions for zh ≳ 0.05. This fact thus hinders a more direct and transparent comparison be-

tween our theoretical calculations and the LHCb data, as we have observed previously [136]

for hadron distribution in inclusive jet production. To help the situation, in Fig. 4.15 we

4There is a lower cut at a very small zh, since LHCb only selects hadrons with phT > 0.25 GeV.
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Figure 4.15: The comparison between the LHCb data (red solid points) and the Pythia

simulation (blue histogram) for hadron j⊥ distribution. We integrate over the entire zh

range.

make a comparison between the LHCb data and the Pythia 8 simulation [280]. In the Pythia

simulation, we make the same cuts as in the experiments and integrate over the entire zh

range. As one can see clearly from Fig. 4.15, the Pythia simulation gives a good description

for the hadron j⊥-distribution in the small and intermediate region.
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Figure 4.16: The comparison between our theoretical computations (yellow bands) and the

Pythia simulation (blue histogram) for hadron j⊥ distribution. We integrate zh over the

range 0.1 < zh < 0.5.

Since Pythia simulations give such good descriptions of the LHCb data on hadron j⊥-

dependence, we thus could use Pythia 8 to simulate the hadron j⊥-dependence, integrated
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for an appropriate zh range, which is suitable for comparison with our theoretical results.

With this in mind, we perform such Pythia simulations and integrate over 0.1 < zh < 0.5.

The simulations are presented in blue histograms in Fig. 4.16. At the same time, we present

our theoretical computations as yellow bands, which are generated the same as in Fig. 4.14,

i.e., from the scale variation of µ and µJ from their corresponding natural scales. We find

that our TMD calculations agree well with the Pythia simulations. Note that our factorized

formalism works only for the small j⊥ ≪ pJTR region. For the relatively large j⊥ region, one

expects the so-called Y -term [36] to become important and has to be included to describe

the data. This is why our theoretical curves stop at certain j⊥ values.

4.4.4 Conclusion

We study back-to-back Z-jet production in proton-proton collisions at the LHC. In partic-

ular, we concentrate on the longitudinal zh and transverse momentum j⊥ distribution of

hadrons inside Z-tagged jets. We find that the zh-dependence is sensitive to the standard

collinear fragmentation functions, while the j⊥-dependence probes the transverse momentum

dependent fragmentation functions (TMD FFs). The numerical calculations based on our

theoretical formalism give good descriptions of the LHCb data for intermediate zh region.

For j⊥-dependence, since the experimental data are integrated over the entire 0 < zh < 1

region, the direct comparison is nontrivial if not impossible. For integrating over the inter-

mediate 0.1 < zh < 0.5 region, our results agree well with the Pythia simulations for the

relatively small j⊥ region. For future measurements, we suggest to set up the binning in both

zh and j⊥, as this would lead to a more direct probing of TMD FFs. We expect our work to

have important applications in studying fragmentation functions in vector-boson-tagged jet

production in both proton-proton and nucleus-nucleus collisions.
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CHAPTER 5

Lambda Baryons for Proton Structure

5.1 Introduction

We saw in the case of Semi-Inclusive DIS that in order to perform QCD tomography for

the spin-dependent hadrons, that we needed to understand the hadronization effects. In

principle to access the non-perturbative information for the full spin dependence of the

proton in Semi-Inclusive DIS, one would also need to simultaneously understand the full spin

dependence for hadronization. This is one of the reasons why hadronization has remained

one of the most active and important areas of research in the field of nuclear physics, for

recent reviews, see Refs [311, 312]. However, the primary issue with performing imaging

for spin-dependent hadronization is that experimentalists need to be able to re-construct

the spin of the polarized hadron, which introduces additional experimental uncertainties.

However, it has been known for some time that Λ and Λ̄ baryons, which I will collectively

refer to as Λs, undergo self-analyzing decay. Namely these baryons decay as Λ → p + π

and the momentum of the final-state proton is correlated with the direction of the spin. As

a result, Λ baryons serve as our primary window into spin-dependent fragmentation. One

of the primary goals of the future EIC [68, 313, 314] is to measure TMD FFs over wide

kinematic regions at unprecedented experimental precision. In this paper, we aim to study

the role that the future EIC can play in constraining TMD FFs which are associated with

transversely polarized Λ production. While I focus on transverse polarization, in principle

the same techniques can also be used for longitudinal TMD FFs as well, see for instance

Ref. [315].

The BELLE collaboration recently measured the transverse polarization of the Λ in e+e−
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annihilation [316]. They have measured such a polarization of both Λ and Λ̄ in single Λ

production (with respect to the thrust axis), e− + e+ → Λ/Λ̄ +X, as well as in DIA. While

the TMD factorization formalism exists for DIA [17, 36], single Λ production with respect to

the thrust axis could involve a more complicated factorization structure [317], if the thrust

variable is also measured. Nevertheless, there is an attempt at factorization within the

standard TMD formalism [318] for single Λ production. This experimental data for DIA

allowed for the phenomenological extractions of the TMD PFF in [319, 12, 320]. These

extraction were a major goal of the TMD community, as it represents one of eight leading-

twist TMDs for the TMD FFs, and thus provides three-dimensional imaging of hadrons in

association with the fragmentation process.

The understanding of these spin-transverse momentum correlations gives rise to interest-

ing phenomenological differences between TMD FFs and the TMD parton distribution func-

tions (PDFs). To demonstrate this, let’s examine the number density for a spin-dependent

TMD PDF and TMD FF

Φunsub
(
x,k⊥,S;µ, ζ/ν

2
)
=

(
f − ϵρσ⊥ k⊥ρS⊥σ

M
f⊥1T

)
/̄n

4
+ . . . , (5.1)

∆
(
z,p⊥,Sh;µ, ζ/ν

2
)
=

(
D − ϵρσT p⊥ρS⊥σ

zM
D⊥1T

)
/n

4
+ . . . . (5.2)

In this expression, I have introduced the TMD PFF as D⊥1T . We can see from these two

expressions that the TMD PFF is the analog of the Sivers function for hadronization, there

is an unpolarized parton and a transversely polarized hadron. We saw previously that there

was a sign change for the Sivers function between the Semi-Inclusive DIS and Drell-Yan

processes [155, 156, 321]. As we previously discussed, this behavior occurred because the

spin asymmetry for Sivers was generated due the soft poles of the three parton correlation

function. The analog of these two processes for hadronization are Semi-Inclusive DIS and

DIA. As a result, naively one would expect that the TMD PFFs should be opposite in Semi-

Inclusive DIS and DIA. However, studies have shown that the TMD PFF is not generated by

the appearance of a soft pole. As a result, the TMD PFF should be universal with respect

to these two processes [322, 323, 324, 325]. The experimental verification of this fact is
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vital for understanding the universality arguments of the TMD FFs. In fact, Ref. [325] has

precisely suggested studies of both back-to-back Λ + h production and Semi-Inclusive DIS

to test the universality of the TMD PFFs. In this paper, we provide a prediction for the

transverse polarization in Semi-Inclusive DIS, which can be used for the first experimental

confirmation of the universality of the TMD PFFs.

While the Belle data can be used to obtain information for the TMD PFFs, the COM-

PASS collaboration performed recent measurements of the transverse spin transfer in Semi-

Inclusive DIS for Λ production in Ref. [13]. In the transverse spin-transfer, a transverse

quark leads to a correlation of the transverse spins of the incoming and outgoing hadrons.

As a result, this process opens the possibility of performing the first extraction of the quark

transversity TMD FF for Λ production. In addition, the STAR experiment also reported

their measurements on transverse spin transfer for single inclusive Λ/Λ̄ hyperon production

in proton-proton collisions at
√
s = 200 GeV [326]. However, while the STAR measurement

can be used as a probe of the collinear transversity PDF and transversity FF, the process is

described by the collinear factorization formalism [327, 33] and not by the TMD factorization

formalism.

While the future EIC offers the possibility of measuring spontaneous Λ polarization

and the transverse spin transfer in Semi-Inclusive DIS, recently back-to-back electron-jet

production in electron-proton, e + p, collisions has been explored as a probe of the TMD

PDFs in Refs. [130, 163]. Furthermore, in Refs. [136, 328, 137] the authors discuss that by

measuring the distribution of hadrons relative to the jet axis, one de-correlates the TMD FF

in the TMD fragmenting jet function and the other TMDs in the process. As a result, in

Ref. [142, 137], it was proposed to measure the distribution of hadrons in a jet in back-to-back

electron-jet production as a probe of TMD FFs.

To address the role that the future EIC can play in constraining the TMD PFF, in this

paper we perform an EIC impact study for the Semi-Inclusive DIS process in extracting the

TMD PFF. In such a study, we will characterize the required luminosity for constraining

these distributions. Furthermore, we use the recent COMPASS measurement for the trans-
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Figure 5.1: Kinematics of the leptonic center-of-mass frame for back-to-back two-hadron

production in e−e+ annihilation, e− + e+ → h(Ph) + Λ(PΛ) +X.

verse spin transfer to perform the first extraction of the quark-to-Λ transversity TMD FF.

Using this extraction, we compare our theoretical uncertainties against our projections for

the statistical uncertainties at the future EIC. Finally, we also provide projections at the

future EIC for back-to-back electron-jet production for both spontaneous Λ polarization in

unpolarized ep collisions, as well as the transverse spin transfer in transversely polarized ep

scattering.

This chapter is organized as follows. In 5.2.1 I provide the relevant formalism and de-

tail the calculation of the Λ transverse polarization observable PΛ
⊥ in DIA. In 5.2.2 I give

the parametrization of our TMD PFFs and discuss the fit procedure, and fit results. In

Sec. 5.3, I provide the formalism for Semi-Inclusive DIS and perform the first extraction of

the transversity TMD FF. In Sec. 5.4.1, I provide the theoretical formalism for back-to-back

electron-jet production. In Sec. 5.4.2, I provide the details for the simulated experimental

setup. In Sec. 5.4.3, I provide the details and results of our EIC impact study for the TMD

PFF. In Sec. 5.4.5 we provide our projections for spontaneous Λ in jet polarization as well

as the transverse spin transfer. I summarize our findings and conclude in Sec. 5.5.
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5.2 Global Analysis of the TMD PFF

5.2.1 Formalism

Let’s begin by defining the momenta of the DIA process as

e−(ℓ) + e+(ℓ′) → γ∗(q) → h(Ph) + Λ(PΛ,S⊥) +X. (5.3)

Following [329], we choose a leptonic center-of-mass frame where the light hadron Ph has no

transverse momentum. The leptons and the light hadron form the so-called leptonic plane.

The angle between Ph and (ℓ, ℓ′) is given by θ, as illustrated in Fig. 5.1. On the other hand,

Ph and PΛ span the so-called hadronic plane. In this frame, the Λ particle has transverse

momentum PΛT , at an azimuthal angle ϕΛ with respect to the leptonic plane. We have

PΛT = −zΛq⊥, (5.4)

where q⊥ is related to the “transverse” component of the virtual photon momentum, defined

as

qµt = qµ − Ph · q
Ph · PΛ

P µ
Λ − PΛ · q

PΛ · Ph

P µ
h , (5.5)

with q2⊥ = −qµt qtµ. The expression for the QCD factorization formalism for the unpolarized

differential cross is given by section [17, 325]

dσ

dPSd2q⊥
=σ0 CDIA

[
DΛ/qDh/q̄

]
. (5.6)

In the expression for the cross section, the point-like scattering cross section is given by

σ0 =
Ncπα

2
em

2Q2

(
1 + cos2θ

)
, (5.7)

and dPS = dzΛ dzh d(cosθ) is the phase space element. In this expression θ is the angle

between Ph and ℓ′ while the parton fraction variables are defined as

zΛ = 2PΛ · q/Q2, zh = 2Ph · q/Q2. (5.8)
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The CDIA denotes the convolutional integral for DIA and is defined as

CDIA [cAB] = HDIA(Q;µ) z2Λ z
2
h

∑

q

e2q

∫
d2kh⊥d

2kΛ⊥δ
(2)(kΛ⊥ + kh⊥ − q⊥)

× c (zh, zΛ,kh⊥,kΛ⊥) c (zh, zΛ, ph⊥, pΛ⊥)Ah/q̄ (zh, ph⊥;µ, ζ1) BΛ/q (zΛ, pΛ⊥;µ, ζ2) . (5.9)

In this expression HDIA is the hard contribution to the cross section and Q2 = q2. I’ll note

however, that since the partonic cross section for DIA and Drell-Yan are identical that the

hard functions for these processes are also equal. In this expression, I have introduced two

TMD FFs, Dh/q and DΛ/q, which are the unpolarized TMD FFs for h and Λ, respectively.

The ki⊥ with i = h,Λ are the transverse momenta of the fragmenting quarks in the frame

where the hadron has zero transverse momentum. Similarly, the pi⊥ are the transverse

momenta of the hadrons in the frame where the fragmenting quarks have zero transverse

momentum. These momenta are related to one another by pi⊥ = −ziki⊥.

To obtain the cross section for the polarized process, we simply replace the unpolarized

TMD FF for Λ with the spin-dependent density in Eq. 5.2. With the short-hand notation in

Eq. 5.6, we have the expression for the transverse-spin dependent differential cross section

dσ(S⊥)

dPSd2q⊥
=σ0

{
CDIA [DD] + |S⊥|sin(ϕS − ϕΛ)

1

zΛMΛ

CDIA
[
P̂ΛT · pΛ⊥D

⊥
1TDh

]
+ · · ·

}
,

(5.10)

where P̂ΛT = PΛT/|PΛT | is the unit vector along the transverse momentum of the Λ particle,

as defined in Fig. 5.1.

In trying to connect the theoretical formalism above with the BELLE collaboration’s

experimental measurement of Λ polarization, one encounters several subtleties. First is the

direction with respect to which BELLE measures Λ polarization. Defining m = −P̂h, with

P̂h (P̂Λ) the unit vector along the momentum of the hadron h (the Λ), we see that BELLE

measures Λ polarization along the direction n̂ ∝ m × P̂Λ, perpendicular to the hadronic

plane in Fig. 5.1. On the other hand, the polarization vector S⊥ in the above formalism is

transverse with respect to the leptonic plane in Fig. 5.1. Because of this, we need to perform

an additional projection onto the n̂-direction.
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Second of all, there are additional terms as denoted by “· · · ” in Eq. 5.10 [329]. One such

term involves a convolution of transversity FFs H1,Λ/q(zΛ, pΛ⊥;Q,Q2) for the Λ hadron with

the Collins FFs H⊥1,h/q̄(z, ph⊥;Q,Q
2) for the light hadron h. Such a term has an azimuthal

dependence of sin(ϕS + ϕΛ). In principle, the optimal strategy to isolate, and thus extract

unambiguously, the PFFs D⊥1T,Λ/q would be to measure and disentangle all of these different

azimuthal dependencies, just like in the usual Semi-Inclusive DIS spin measurements [86].

This has not yet been done by the BELLE collaboration. Surprisingly, though, if one in-

tegrates over q⊥ in the formalism, all the other terms vanish and we are left with only the

term involving the PFF D⊥1T,Λ/q for the spin-dependent cross section 1.

Since the experimental data are expressed only as a function of zΛ and zh, and are

inclusive over q⊥, our analysis of the experimental data to extract the PFFs is thus justified.

Eventually with the transverse momentum integrated, the measured Λ polarization denoted

as PΛ
⊥ will be given by

PΛ
⊥ (zΛ, zh) =

d∆σ(S⊥)

dPS

/
dσ

dPS , (5.11)

where ∆σ(S⊥) = [σ(S⊥)− σ(−S⊥)] /2, and the denominator is the unpolarized cross section.

5.2.2 Fitting Procedure

In this section, we first provide the parametrization used for the extraction of polarizing

fragmentation functions, and give an expression for the asymmetry PΛ
⊥ (zΛ, zh) within our

model. We then describe our fitting procedure and the fitted results. Finally, we make a

prediction for the Λ polarization in semi-inclusive deep inelastic scattering.

5.2.2.1 Fitting scheme

All available data are measured at the same hard scale Q = 10.58 GeV at the BELLE

experiment; thus, TMD evolution for the relevant TMD FFs is not needed. Because of this,

we can model these TMD FFs using simple Gaussians and extract them at this particular

1We thank D. Boer and H. Matevosyan for very insightful communication concerning this point.
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scale Q. We model the unpolarized TMD FFs as Gaussians

Dh/q(zh, p
2
h⊥;Q,Q

2) = Dh/q(zh;Q)
e−p

2
h⊥/⟨p2h⊥⟩

π⟨p2h⊥⟩
, (5.12)

DΛ/q(zΛ, p
2
Λ⊥;Q,Q

2) = DΛ/q(zΛ;Q)
e−p

2
Λ⊥/⟨p2Λ⊥⟩

π⟨p2Λ⊥⟩
, (5.13)

where we take ⟨p2h⊥⟩ = 0.19 GeV2 from [330] for the light hadrons h. For Λ, we assume

⟨p2Λ⊥⟩ = ⟨p2h⊥⟩ in this paper. We model the polarizing fragmentation functions D⊥1T,Λ/q

according to the equation

D⊥1T,Λ/q(zΛ, pΛ⊥;Q,Q
2) = D⊥1T,Λ/q(zΛ;Q)

e−p
2
Λ⊥/⟨M2

D⟩

π⟨M2
D⟩

. (5.14)

Here we write the polarized collinear function D⊥1T,Λ/q(zΛ;Q) simply as a modulation of the

unpolarized collinear function DΛ/q(zΛ;Q) by an additional collinear function Nq(zΛ)

D⊥1T,Λ/q(zΛ;Q) = Nq(zΛ)DΛ/q(zΛ;Q) , (5.15)

and we parametrize Nq(zΛ) by the formula

Nq(zΛ) = Nqz
αq

Λ (1− zΛ)
βq
(αq + βq − 1)αq+βq−1

(αq − 1)αq−1βq
βq

. (5.16)

The Gaussian width ⟨M2
D⟩ differs from the unpolarized width ⟨p2Λ⊥⟩ by an auxiliary width

M1 obeying the equality [331, 220]

⟨M2
D⟩ ≡

(
1

⟨p2Λ⊥⟩
+

1

M2
1

)−1
=

M2
1 ⟨p2Λ⊥⟩

M2
1 + ⟨p2Λ⊥⟩

, (5.17)

from which it is clear thatM1 characterizes the scale of spin corrections to ⟨p2Λ⊥⟩. We choose

to fit ⟨M2
D⟩ – of course, M1 can be easily determined once ⟨M2

D⟩ is known.

In order to maintain the interpretation of the spin-dependent fragmentation functions

D̂Λ/q(z,pΛ⊥,S⊥;Q,Q2) as probability densities, the positivity bound

pΛ⊥
zΛMΛ

∣∣D⊥1T,Λ/q(zΛ, p2Λ⊥;Q,Q2)
∣∣ ≤ DΛ/q(zΛ, p

2
Λ⊥;Q,Q

2) (5.18)

given in [332, 311], must be satisfied. We thus implement the fit constraints

αq > 1 , βq > 0 , ⟨M2
D⟩ < ⟨p2Λ⊥⟩ , |Nq| ≤

√
2e

⟨M2
D⟩

⟨p2Λ⊥⟩
MΛ

M1

, (5.19)
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which are sufficient conditions for the enforcement of the positivity bound. Moreover, it is

useful to define the pΛ⊥-moment of the TMD PFFs

D
⊥(1)
1T,Λ/q(zΛ;Q) ≡

∫
d2pΛ⊥

pΛ⊥
2z2ΛM

2
Λ

D⊥1T,Λ/q(zΛ, pΛ⊥;Q,Q
2)

=
⟨M2

D⟩
2z2ΛM

2
Λ

D⊥1T,Λ/q(zΛ;Q). (5.20)

Using our parametrization, all momenta can be integrated out analytically, so that the

cross sections take on the forms

dσ

dPS =σ0H(Q)
∑

q

e2qDΛ/q(zΛ;Q)Dh/q̄(zh;Q), (5.21)

d∆σ(S⊥)

dPS =σ0H(Q)
zh
√
π

2zΛ

⟨M2
D⟩

MΛ

√
z2h⟨M2

D⟩+ z2Λ⟨p2h⊥⟩
∑

q

e2qD
⊥
1T,Λ/q(zΛ;Q)Dh/q̄(zh;Q). (5.22)

As such, we finally obtain the following expression for the Λ polarization PΛ
⊥ (zΛ, zh) from

Eq. 5.11,

PΛ
⊥ (zΛ, zh) =

zh
√
π

2zΛ

⟨M2
D⟩

MΛ

√
z2h⟨M2

D⟩+ z2Λ⟨p2h⊥⟩

∑
q e

2
qD
⊥
1T,Λ/q(zΛ;Q)Dh/q̄(zh;Q)∑

q e
2
qDΛ/q(zΛ;Q)Dh/q̄(zh;Q)

. (5.23)

To compute PΛ
⊥ (zΛ, zh), we use the AKK08 parametrization [333] of the collinear Λ frag-

mentation functions. Currently, there are no available collinear fragmentation functions

which separate the Λ and Λ̄ contributions. While the work in [318] took DΛ̄/q = DΛ/q̄ = 0

with q = u, d, s, this scheme does not adequately describe Λ + h production. For example,

in the e−+ e+ → Λ+π++X process, one of the dominant contributions to the cross-section

is given by the DΛ/ū(zΛ;Q). Since the work in [318] neglected all sea quark contributions,

this would lead to a very small asymmetry, which conflicts with the BELLE data. For this

paper, we assume DΛ/q = DΛ̄/q =
1
2
DΛ/Λ̄←q for all quark flavors.

For the fragmentation functions of pions, we choose the DSS14 parametrization given

in [99], which is an update of the previous DSS07 fragmentation functions [307]. As such an

update is not available for kaons, we choose the DSS07 parametrizations for the fragmenta-

tion functions of kaons.

In order to fit the non-perturbative TMD PFFsD⊥1T,Λ/q(zΛ, pΛ⊥;Q,Q
2), we use the typical

flavor-dependent parameters Nq, αq, and βq, similar to the parametrization used in [80] for
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the Sivers functions. In this paper, for the polarization of the Λ, we fit the 11 parameters

Nu, Nd, Ns, Nsea, αu, αd, αs, αsea, βval, βsea, and ⟨M2
D⟩. The parameters labeled sea apply

to the remaining considered flavors, namely ū, d̄, and s̄. Furthermore, in order to fit the Λ̄

polarization, we take D⊥
1T,Λ̄/q̄

(zΛ, pΛ⊥;Q,Q2) = D⊥1T,Λ/q(zΛ, pΛ⊥;Q,Q
2), by invariance under

charge conjugation. To generate the uncertainty band for the fit, we once again use the

replica method in Ref. [70].

5.2.2.2 Results

To sample the χ2, we once again use the MINUIT package [116] from CERNLIB to perform the

fit. The parameters as well as the χ2/d.o.f of the fit are presented in 5.1. The χ2/d.o.f

of 1.694 suggests that the fit is of reasonably good quality. One must note that we have

restricted ourselves to fit the experimental data with zh < 0.5, for a total of 96 data points. It

is also important to note that when these parameters are used to describe the data globally,

without removing the zh > 0.5 data, we have χ2/d.o.f = 2.421. This could indicate a sizable

contribution of threshold logarithms [334] and target mass corrections [335, 336, 337] in this

region.

While the advertised χ2/d.o.f is 1.694, a large contribution of the χ2 comes from two

“problematic” points, the point at zh = 0.243, zΛ = 0.35 for the Λ+K+ process and the point

at zh = 0.245, zΛ = 0.35 for the Λ̄ +K− process. If the χ2 contributions from these points

are removed, the χ2/d.o.f becomes 1.499. In fact removing these points from the fitting

procedure altogether leads to a χ2/d.o.f of 1.180. In the future, it would be interesting to

investigate these two points in more detail.

In Fig. 5.2, I have included a histograms of the distributions of fit parameters, which are

determined by the fits to the replicated data sets. We find that the modes of the histograms

agree well with the determined values of the central fit. This agreement indicates that the

values of the parameters are well-constrained, and not appreciably sensitive to variations of

the central point within the experimental uncertainties.

In Figs. 5.3 and 5.4 we plot the experimental data, as well as the result of our fit for the
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Figure 5.2: Distributions of MINUIT parameters from 200 replicas. The black lines represent

the parameter values which are determined from the best fit of the actual experimental data.

Each histogram is normalized such that the heights of its bars sum to unity.
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Figure 5.3: The fit to the experimental data for π mesons is shown, with the gray uncertainty

band displayed is generated by the replicas at 68% confidence. The left plots are for the

production of Λ + π±, while the right plots are for the production of Λ̄ + π±.

Λ polarization PΛ
⊥ in the back-to-back production of Λ(Λ̄)+π± and Λ(Λ̄)+K±, respectively.

The gray uncertainty bands displayed are generated by the replicas at 68% confidence. For

5.3, the left plots correspond to Λ+π± production, while the right plots correspond to Λ̄+π±

production. Likewise, the left (right) plots are for the Λ (Λ̄) production associated with K±.
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Figure 5.4: Same as 5.3 but for the production of Λ +K± (left) and Λ̄ +K± (right).
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Figure 5.5: The polarizing fragmentation functions zΛD
⊥(1)
1T,Λ/q(zΛ;Q), defined in Eq. 5.20, are

plotted as functions of zΛ for different quark flavors, at 68% confidence.

One should note that the data points with zh > 0.5 are not included in our fit, and thus

we see that the global comparison with our theoretical results is of slightly lower quality.

We further observe that our model seems to describe the Λ(Λ̄) + π± data better than the

Λ(Λ̄) +K± data; indeed, we find χ2/ndata = 1.223 for pions, and 1.802 for kaons.

In 5.5, we plot zΛD
⊥(1)
1T,Λ/q(zΛ;Q), defined in Eq. 5.20, as a function of zΛ for u, d, s and sea

quarks, at 68% confidence. We find that the PFF for the u quark is positive, while those of

the d and s quarks are negative. We also find a sizable negative sea quark contribution. These

signs are consistent with the qualitative analysis in the BELLE experimental paper [316]. In
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χ2/d.o.f = 1.694

Nu = 0.858+0.108
−0.011 Nd = −2.144+0.156

−0.088

Ns = −0.716+0.070
−0.068 Nsea = −0.861+0.026

−0.086

αu = 1.058+0.050
−0.044 αd = 2.004+0.123

−0.196

αs = 4.306+0.326
−0.185 αsea = 1.641+0.053

−0.102

βval = 0.866+0.218
−0.046 βsea = 6.325+0.240

−0.522

⟨M2
D⟩ = 0.118+0.007

−0.012 GeV2

Table 5.1: Listed are the parameter values with uncertainties. The central values are taken

from the fit with the actual BELLE data [316] (no Gaussian noise), while the uncertainties

are calculated from the middle 68% of parameter values generated from 200 replicas (see the

discussion in Sec. 5.2.2.1).

terms of the magnitude of the PFFs, we find that the u and d quarks are comparable, while

the PFF for the s quark is smaller by almost an order of magnitude, and it plays a more

important role in the relatively large zΛ ≳ 0.4. The PFFs for sea quarks are sizable mostly

in the relatively small zΛ ≲ 0.3 region.

One can understand these findings qualitatively. For example, the Λ + π− processes are

dominated by the contribution of D⊥1T,Λ/uDπ−/ū in Eq. 5.23. As this subset of BELLE data

has large positive Λ polarization (zΛ ≲ 0.4), we find that the sign of the u-quark PFF is

positive. Likewise, the Λ+π+ processes are dominated by the contribution of D⊥1T,Λ/dDπ+/d̄.

Due to the large negative polarization, we find that the sign of the d-quark PFF is negative.

Finally the Λ + K+ process is dominated by the contribution of D⊥1T,Λ/sDK+/s̄. We then

determine the sign of the s-quark PFF to be negative, although our best fit gives a very

small PFF for the s-quark. Finally the sea quarks usually play more important roles in the

relatively small zΛ region. In this set of BELLE data, it starts to become more important

for zΛ ≲ 0.3. We find negative PFFs for sea quarks, which are smaller in size compared

with those for u and d quarks. It is worth noting at this point that in Ref. [320], feed down
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mechanisms were discussed and the authors found that they could set the u and d TMD

PFFs to be equal to one another and obtain a good quality fit. However, in this analysis,

the authors considered c contributions and found that they were quite large.

5.3 ΛBaryons in Semi-Inclusive DIS

5.3.1 Factorization Theorems

Let’s define the kinematics for Semi-Inclusive DIS as

e(ℓ) + p(P, s⊥) → e(ℓ′) + Λ(Ph, sΛ⊥) +X ,

where s⊥ is the transverse spin of the incoming proton, while sΛ⊥ is the transverse spin of

the final produced Λ baryon. We take the frame choice such that the proton moves in the

positive z direction while the incoming virtual photon moves in the negative z direction, see

Fig. 1 of Ref. [120] for our convention, alternatively see Ref. [244] for the so-called Trento

conventions. In the proton-photon COM frame, the differential cross section can be written

as

dσ(s⊥, sΛ⊥)

dPS d2Ph⊥
= σDIS

0

[
FUU + sin(ϕS − ϕΛ)F

sin(ϕS−ϕΛ)
UT

+ cos(φS − ϕS)D(y)F
cos(φS−ϕS)
TT

]
, (5.24)

D(y) =
2(1− y)

1 + (1− y)2
. (5.25)

In Eq. 5.24, the terms φS and ϕS in the superscript of the F
cos(φS−ϕS)
TT structure function

denote the azimuthal angles for s⊥ and sΛ⊥, respectively. Furthermore the ϕΛ term in

the superscript of the F
sin(ϕS−ϕΛ)
UT structure function denotes the azimuthal angle of the

transverse momentum of the Λ baryon, which is denoted Ph⊥.

The experimentally measured spontaneous transverse polarization PΛ and the transverse

spin transfer SΛ for Λ production are given by

PΛ =
F
sin(ϕS−ϕΛ)
UT

FUU

, SΛ = D(y)
F
cos(φS−ϕS)
TT

FUU

, (5.26)
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respectively. We note at this point that the COMPASS measurement in Ref. [13] did not

include the depolarization factor D(y) in the definition of the transverse spin transfer.

Within the usual TMD factorization, these new structure functions can be written as

F
sin(ϕS−ϕΛ)
UT = HDIS(Q;µ) CDIS

[
P̂h⊥ · p⊥
zΛMΛ

f D⊥1T

]
, (5.27)

F
cos(φS−ϕS)
TT = HDIS

⊥ (Q;µ) CDIS [hH] . (5.28)

The function HDIS
⊥ (Q) is the hard function for a transversely polarized quark channels, which

is normalized to 1 at Leading Order (LO). In the third expression, I have introduced hq/p and

HΛ/q, the transversity TMD PDF and TMD FF, respectively. It is worthwhile noting that

there is another term which contributes to the Λ transverse polarization in unpolarized ep

collisions and results in a sin(ϕS + ϕΛ)-azimuthal modulation. This contribution arises from

the Boer-Mulders function in the proton convoluted with the transversity TMD FF [338].

5.4 TMD PFF for EIC Phenomenology

5.4.1 QCD Factorization

In this section, we first review the TMD factorization formalism for spontaneous Λ polar-

ization as well as the transverse spin transfer in SIDIS. We then provide the factorization

formalism for Λ production inside the jet in back-to-back electron-jet production in ep col-

lisions, with which we study two aforementioned spin configurations. We demonstrate that

the spontaneous Λ polarization allows us to probe TMD PFF, while the transverse spin

transfer is sensitive to Λ transversity TMD FF.

5.4.1.1 ΛBaryons inside a jet

We will now discuss the factorization formalism for transverse Λ production inside a jet for

the back-to-back electron-jet production in ep collisions

e(ℓ) + p(P, s⊥) → e(ℓ′) + (jet(pJ) Λ(Ph, sΛ⊥)) +X .
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Figure 5.6: Kinematic configuration for back-to-back lepton-jet production.

In Fig. 5.6, we have included a plot which demonstrates the kinematic configuration of this

process. The jet is constructed via a proper jet algorithm such as anti-kT algorithm [238]

with the jet radius R. For this process, we denote the transverse momentum of the jet

direction as pJ⊥ while ℓ′⊥ represents the transverse momentum of the final state lepton. In

both cases, the transverse momenta are defined in the center-of-mass frame of the incoming

electron and the incoming nucleon. In this frame q⊥ = ℓ′⊥ + pJ⊥ represents the transverse

momentum imbalance of the outgoing electron and the jet. The back-to-back electron-jet

configuration occurs at a small transverse momentum imbalance, |q⊥| ≪ ℓ′⊥ ∼ pJ⊥ [130, 142].

Additionally, for this process it is convenient to measure the transverse momentum of the Λ

baryon relative to the jet axis, which we denote j⊥. The TMD region for Λ production in

the jet occurs in the kinematic region where j⊥ ≪ pJ⊥R [136].

By studying the partonic process for jet production, one can see that the direction of

the jet is directly sensitive to the TMD PDF. By measuring the transverse momenta of Λ
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baryons within this jet, we also gain sensitivity to the TMD FFs. This process offers the

advantage that since the jet and the Λ baryons are measured with respect to different axes,

the factorization structure for this process will lead to a deconvolution of the TMD PDF

and TMD FF, thus allowing us to probe these structures more independently.

Following the work of [339, 296, 303, 136, 140, 328, 139], the relevant cross section can

be written as

dσ(s⊥, sΛ⊥)

dPS d2q⊥ dzJΛ d2j⊥
= σ0

[
WUUsin(ϕS − ϕΛ) + W

sin(ϕS−ϕΛ)
UT

+ cos (φS − ϕS) D(ŝ, t̂, û)W
cos(φS−ϕS)
TT

]
,

In this expression dPS = dye d
2ℓ′⊥ is the phase space element in rapidity and transverse

momentum of the outgoing electron in the center-of-mass frame of incoming electron and

the nucleon. The variable zJΛ represents the fraction of the momentum of the jet which is

carried by the Λ baryon. The zJΛ and j⊥ variables can be related to the momenta of the Λ

baryon and jet through the relations

zJΛ = Ph · pJ/|pJ |2 , j⊥ = Ph × pJ/|pJ | , (5.29)

where Ph and pJ represent the three momenta of the Λ baryon and the jet respectively.

On the other hand, in 5.29, we have

σ0 =
α2
em

sQ2

2(ŝ2 + û2)

Q4
, (5.30)

where the partonic Mandelstam variables are given by

ŝ = xBSep , t̂ = −
√
Sep ℓ

′
⊥e

ye , (5.31)

û = −xB
√
Sep ℓ

′
⊥e
−ye ,

where Sep is the center of mass energy of the electron-proton pair while Q2 = −t̂. Further-

more, we define

D(ŝ, t̂, û) = − 2ŝû

ŝ2 + û2
. (5.32)
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For this process, W denote the structure functions and we follow the same labelling con-

vention for the subscripts as outlined in the previous section. The polarization and spin

transfer for back-to-back electron-jet production in ep collisions can be written in terms of

these structure functions as

PΛ =
W

sin(ϕS−ϕΛ)
UT

WUU

, (5.33)

SΛ =D(ŝ, t̂, û)
W

cos(φS−ϕS)
TT

WUU

, (5.34)

respectively.

The expression for the unpolarized structure function can be obtained from Ref. [142] as

WUU = H(Q;µ)
∑

q

e2q GΛ/q(zJΛ, j⊥;µJ , µ, ζ2) (5.35)

×
∫

d2b

(2π)2
eiq⊥·b fq/p(xB, b;µ, ζ1)S(b, yJ , R;µ) .

In this expression, H and U are the hard function and the b-space soft functions for this

process. Furthermore, xB is the usual Bjorken variable which is related to the variables in

the phase space element through the relation

xB =
Q2

2P · q =
ℓ′⊥e

ye

√
Sep − ℓ′⊥e

−ye
. (5.36)

For later convenience, we also define the inelasticity y as

y = 1− ℓ′⊥√
Sep

e−ye . (5.37)

The rapidity of the jet, yJ , can also be defined in terms of the kinematic variables entering

into the phase space through the relation

yJ = −1

2
ln

(
t̂

xû

)
. (5.38)

Furthermore, µ and µJ are the renormalization and the jet scales, respectively. For the

remainder of this chapter, we will always choose the renormalization scale to be given by

µ = pJ⊥ while the jet scale will be given by µJ = pJ⊥R. The function GΛ/q entering into 5.35

is the TMD fragmenting jet function [340, 136, 328, 139], which describes the distribution
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of Λ particles inside the jet. Following the results of Ref. [142], this distribution function is

related to the usual unpolarized TMD FF through the relation

GΛ/q(zJΛ, j⊥;µJ , µ, ζ2) = exp

(∫ µ

µJ

dµ′

µ′
γJ(µ

′)

)∫
d2b

(2π)2
eij⊥·b/zJΛDΛ/q(zJΛ, b;µJ , ζ2) , (5.39)

where γJ is the anomalous dimension of the TMD fragmenting jet function, to be given

below in Sec. 5.4.5.

For spontaneous Λ polarization, we follow the procedure in Ref. [341] to replace the TMD

FF in 5.39 by the relevant density associated with the distribution of transversely polarized

Λ baryons. Explicitly, we make the replacement

DΛ/q(zJΛ, b;µJ , ζ2) → −MΛϵ⊥ρσbρSσ
⊥

z2JΛ
D
⊥(1)
1T,Λ/q (zJΛ, b;µJ , ζ2) ,

where D
⊥(1)
1T,Λ/q is the first moment of the TMD PFF in b-space [341]. After making this

replacement, the structure function for spontaneous Λ polarization is given by

W
sin(ϕS−ϕΛ)
UT = H(Q;µ)

∑

q

e2q G⊥1T,Λ/q(zJΛ, j⊥;µJ , µ, ζ2)

×
∫

d2b

(2π)2
eiq⊥·b fq/p(xB, b;µ, ζ1)S(b, yJ , R;µ) , (5.40)

where

G⊥1T,Λ/q(zJΛ, j⊥;µJ , µ, ζ2) =
MΛ

zJΛ
exp

(∫ µ

µJ

dµ′

µ′
γJ(µ

′)

)

× ∂

∂j⊥

∫
d2b

(2π)2
eij⊥·b/zJΛ D

⊥(1)
1T,Λ/q (zJΛ, b;µJ , ζ2) . (5.41)

Finally, we define the transverse spin transfer structure function as

W
cos(φS−ϕS)
TT = H⊥(Q;µ)

∑

q

e2q GT
Λ/q(zJΛ, j⊥;µJ , µ, ζ2)

×
∫

d2b

(2π)2
eiq⊥·b hq/p(xB, b;µ, ζ1)S(b, yJ , R;µ) , (5.42)

where

GT
Λ/q(zJΛ, j⊥;µJ , µ, ζ2) = exp

(∫ µ

µJ

dµ′

µ′
γJ(µ

′)

)∫
d2b

(2π)2
eij⊥·b/zJΛHΛ/q(zJΛ, b;µJ , ζ2) , (5.43)

provides the distribution of transversely polarized Λ baryons in a jet which is initiated

by a transversely polarized quark and H⊥(Q;µ) is the hard function associated with the

transversely polarized quark hard process.

186



5.4.2 Experimental Setup

In this section, we present the details of our simulation for generating the event statistics.

The present study is based on the four baseline energy configurations which are discussed

in EIC Yellow Report [342]. The four configurations are 5 GeV × 41 GeV, 5 GeV × 100

GeV, 10 GeV × 100 GeV, and 18 GeV × 275 GeV, where the first energy is the electron

beam energy while the second energy is the proton beam energy. The ep event simulation

that we present here is based on the PYTHIA eRHIC Monte Carlo program which is a

modified version of PYTHIA-6.4.28 [152] with the PDFs input from the LHAPDF [343]

library. Furthermore, for the back-to-back lepton-jet process, we perform jet reconstruction

using the FASTJET [238] package. The kinematics have been constrained in the following

ranges: Q > 1 GeV, 0.05 < y < 0.95, W > 2 GeV. The constrains on Q2 and W are used to

select valid SIDIS events, whereas the y selection avoids phase space where either radiative

corrections become large or the event cannot be reliably reconstructed.
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Figure 5.7: The ranges in the square of the transferred photon momentum Q2 versus the

parton momentum fraction x accessible for different collision energies. The z-scale (density)

indicates the number of events with at least one Λ/Λ̄ in pseudo-rapidity range -3.5< η <3.5.

Figure 5.7 shows the xB vs. Q2 distribution with the y constraint applied for different
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collision energies. The Λ hyperons are reconstructed from its charged final state decay

products, proton (anti-proton), and negative (positive) pion. The 2-D distributions in pT ,

the transverse momentum in the lab frame, and η, the pseudo-rapidity space for proton and

charged pion, are shown in Fig. 5.8 (left and middle). The assumed EIC detector will cover

the full azimuth in a finite pseudo-rapidity range −3.5 < η < 3.5. The lowest transverse

momentum is set to be 0.1 GeV. To ensure the applicability of TMD factorization [36], the

condition, Ph⊥/z < Q/4 is also applied. The distribution of Ph⊥/zΛ versus Q/4 is shown in

Fig. 5.9 with the dashed line indicating the selection cut. To reduce the contribution from

the beam remnant, the Feynman-x, xF = 2pΛL/W , is required to be positive. As shown in

Fig. 5.10, the fraction of the Λ originating from target fragmentation in the final sample

is only a few percent. This study relies on fast simulations, where the efficiency is not

impacted by the displacement between the decay vertex of the hyperon and the primary

vertex. As shown in Fig. 5.11, the decay vertex can be removed from the primary vertex

by several centimeters which might impact the detection efficiency of a compact tracking

system proposed for the EIC [344]. To account for this effect, we apply a quite conservative

overall efficiency factor of 50% for the projected statistical uncertainties.
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Figure 5.8: Final state particle distributions in transverse momentum (energy) and pseu-

do-rapidity space for proton (left), pion (middle), and photon from Σ0 decay (right). Here we

display the results at the collision energy 18×275 GeV2 and we note that the distributions

for other energy configurations are similar.

For Λ production at EIC energies, feed-down from heavier particles is not negligible.
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Figure 5.9: Illustration of the impact of the constraint Ph⊥/zΛ < Q/4. Only events above the

line are accepted. The efficiency of this cut depends on the hard scaleQ2 and is approximately

7% for Q2 > 1 GeV2, 25% for Q2 > 10 GeV2 and 50% for Q2 > 100 GeV2. Here, we provide

the result for the 18×275 GeV2 energy configuration while we note that the results for the

other collision energies configurations are similar.

Figure 5.10, shows the origins of the detected Λ, according to the event list provided by the

PYTHIA generator, for the top energy 18×275 GeV2. After selection cuts, about 1/3∼1/2 of

the Λ candidates are promptly produced from string fragmentation. Most of the remainder,

about half of the total, originates from the feed-down of Σ0 hyperons, excited Σ∗ states and

Ξ hyperons. Additional contributions, less than 10 % come from heavy quark decays, e.g.

Λc and diquarks from the target remnant. In principle, the fragmentation formalism used in

this work, does not apply to hyperons produced in the weak decay of heavier states. This

includes most of the feed-down except for feed-down from Σ∗, which predominantly decays

strongly into Λ. However, to our knowledge, all previous experimental measurements, except

for Ref. [316], did not separate between weak and strong production. Consequently, previous

phenomenological work integrated over all Λ, extracting in some sense effective fragmentation

functions. For these reasons, we will also integrate over all Λ ancestries and will not assign

a systematic uncertainty to the feed-down contributions.

For an eventual feed-down correction, the contributions from the various decays would
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Figure 5.10: Origins of Λ for 0.1 < z < 0.3 and z > 0.3 according to the event records

provided by the PYTHIA event generator for the 18×275 GeV2 energy configuration.
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Figure 5.11: Correlations between Λ and Λ̄ decay length and pseudo-rapidity at different

collision energies.

have to be identified in data. For Σ0, which decays nearly always to Λ + γ, we investigated

therefore the feasibility of reconstructing this decay. As shown in Fig. 5.8 right panel, the final

state γ are emitted predominantly at or near the central pseudo-rapidity range with a relative

low energy, mostly < 0.5 GeV. While the detection of these photons is challenging, with the

detector performance requirements outlined in the Yellow Report, it should be feasible to

reconstruct Σ0 hyperons with sufficient mass resolution. More than half of the feed-down

from Ξ hyperons originate from the decay Ξ0 → Λ + π0, which is difficult to reconstruct,

due to combinatorial background in the π0 reconstruction. The decay Ξ± → Λ + π± can be

reconstructed with sufficient efficiency, however, this decay makes up less than 10%. We note

that additional systematic uncertainties are expected to come from the uncertainty on the

beam polarization for the spin transfer measurement as well as from wrongly reconstructed

Λ hyperons as well as detector effects. For the Λ in jet measurements, the Jet Energy

Resolution (JER) will impact the reconstruction of kinematic variables. Following studies in

the Yellow Report, the relative uncertainty on the beam polarization can be assumed to be

less than 3 %, which makes this systematic negligible compared with the expected statistical
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uncertainties. The JER should be about 10%. Since the extracted quantities are not strongly

dependent on kinematics derived from the jet energy, we also assume that this systematic is

negligible. Finally, based on experience from previous measurements of Λ polarization, we

also assume that systematics due to detector effects and wrongly reconstructed Λ hyperons

are negligible compared to our projected statistical uncertainties. These assumptions have

to be revisited for the eventual measurement.

5.4.3 Reweighting Analysis for the TMD PFF and Transversity TMD FF

Having summarized the details of our experimental simulation in the previous section, we

now present our SIDIS re-weighting analysis at the EIC. In Sec. 5.4.3.1, we provide the

numerical input for the re-weighting analysis. In Sec. 5.4.3.2, we provides the results of

our projections for the uncertainties for the TMD PFF from this analysis as well as the

comparison with the experimental data. In Sec. 5.4.4, I provide the parameterization, fit

results, and EIC impact study for the transversity TMD FF in Semi-Inclusive DIS.

5.4.3.1 Numerical Input for the TMD PFF

For this chapter, we will always use LO matching. This is motivated by the fact that the one

loop expression for the TMD PFF has not yet been performed. At this perturbative order,

the hard function can be replaced by

HDIS(Q;µ) = 1 . (5.44)

To quantify the contribution of the EIC in constraining the TMD PFFs, we perform two

fits in this section. Our baseline fit contains only the experimental data from the Belle

collaboration while the re-weighted fit contains both the experimental data from Belle and

the pseudo-data generated in the previous section. For this section, we take the integrated

luminosity of the EIC pseudo-data to be 40 fb−1.

At this point, I would like to note a major point. In our analysis of the Belle data, all

data points were at a single scale Q = 10.58 GeV. As a result, we used a simple Gaussian
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model to perform the extraction. In our analysis for the EIC impact study, we will continue

to ignore contributions from evolution and thus perform this analysis in a Gaussian model.

To parameterize the TMD PDF in the polarization case, I will use the parameterization

fq/p(xB, k
2
⊥;µ, ζ1) = fq/p(xB;Q)

e−k
2
⊥/⟨k2⊥⟩

π⟨k2⊥⟩
. (5.45)

where we use ⟨k2⊥⟩ = 0.61 from [330]. Using this expression, the spontaneous Λ polarization

in Eq. 5.26 can be written as

PΛ(xB, y, zΛ, Ph⊥) = (5.46)
∑

q e
2
qfq/p(xB;Q)ωq(zΛ;Ph⊥)DΛ/q(zΛ, Q)∑

q e
2
qfq/p(xB;Q)DΛ/q(zΛ;Q)

.

In this expression

ωq(zΛ, Ph⊥) =
Ph⊥
zΛM

⟨M2
D⟩⟨P 2

h⊥⟩
⟨∆P 2

h⊥⟩2
Nq(zΛ) (5.47)

× exp

[
P 2
h⊥

(
1

⟨P 2
h⊥⟩

− 1

⟨∆P 2
h⊥⟩

)]

are the weighting functions while

⟨P 2
h⊥⟩ = ⟨k2⊥⟩z2Λ + ⟨p2⊥⟩ , (5.48)

⟨∆P 2
h⊥⟩ = ⟨k2⊥⟩z2Λ + ⟨M2

D⟩ , (5.49)

are the Gaussian widths associated with the unpolarized and polarized processes, respec-

tively.

In this analysis, we follow the parameterization in Ref. [12] with fit parameters Nu,

Nd, Ns, Nsea, αu, αd, αs, αsea, βval, βsea, and ⟨M2
D⟩. To perform the fit of the generated

pseudo-data, we integrate the numerator and denominator of 5.46 in x, y, and Ph⊥. Namely

to generate the pseudo-data, events are binned into 1 > xB > 10−1, 10−1 > xB > 10−2,

10−2 > xB > 10−3, and 10−3 > xB > 10−4. To generate our theoretical predictions, we

integrate over these ranges of x values. pseudo-data are also generated using the constraint

that 0.05 < y < 0.95. Using the relation xB y Sep = Q2, for each data point in our prediction,

we integrate over 0.05 < y < 0.95 under the condition that Q > 1 GeV. Finally, to generate
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the pseudo-data, we have also applied the kinematic constraint that Ph⊥/zΛ < 0.25Q, which

is associated with the TMD factorization region. For each point, we integrate over this

kinematic region in our fitting procedure.

To perform both of the fits, we use the Migrad fit in the Minuit package [345] to minimize

the χ2. Furthermore, to generate the theoretical results, we use the replica method [346, 347]

with 200 replicas. For each of the replicas, we initialize the fit parameters using a Monte

Carlo sampler.

5.4.3.2 Results for the TMD PFF

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

zΛ

−0.015

−0.010

−0.005

0.000

0.005

0.010

0.015

z Λ
D
⊥

(1
)

1T
Λ
/q

(z
Λ
,Q

)

u

d

s

sea

Figure 5.12: The first moment of the TMD PFF at Q = 10.58 GeV. The light bands represent

the uncertainty from the fit to Belle data in Ref. [12], while the dark bands represent the

uncertainty obtained from the simultaneous fit of the Belle data and the EIC pseudo-data.

In Fig. 5.12, we plot the first moment of the TMD PFF which was obtained from the

baseline fit as a light band. In the darker band, we plot the result from the simultaneous fit

to the Belle data as well as the EIC pseudo-data. The theoretical uncertainty for the first

moment, δD
⊥ (1)
1T , is obtained from the set of replicas by calculating the standard deviation at

each point. Furthermore, we define the average value of the extracted first moment as D
⊥ (1)
1T .

As we can see, from this plot, the uncertainty is significantly reduced in the simultaneous

analysis. In order to further quantify the size of this reduction of the theoretical uncertainties,
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Figure 5.13: The ratio of the uncertainty of the TMD PFF for each flavor at Q = 10.58

GeV. The solid lines represent the results from the fit to Belle data while the dashed line

represents the result from the fit to the Belle data and the EIC pseudo-data.

we also plot the ratio δD
⊥ (1)
1T /D

⊥ (1)
1T in Fig. 5.13. As we see in this figure, the pseudo-

data generated from the EIC kinematics leads to a significant reduction of the theoretical

uncertainty for the u and sea quarks. The large reduction in the theoretical uncertainties

in the sea quark TMD PFF is occurring because the parameterization in Ref. [12] assumes

charge symmetry. Thus D
⊥ (1)
1T,Λ/q = D

⊥ (1)

1T,Λ̄/q̄
and D

⊥ (1)
1T,Λ/q̄ = D

⊥ (1)

1T,Λ̄/q
. Since the analysis that we

perform here uses a proton beam, the fit with the pseudo-data allows us to strongly constrain

the D
⊥ (1)

1T,Λ̄/u
and D

⊥ (1)

1T,Λ̄/d
functions. From the charge symmetry assumption, this leads to a

large reduction in the uncertainties for the D
⊥ (1)
1T,Λ/ū and D

⊥ (1)

1T,Λ/d̄
functions. As a result, the

uncertainties for the sea quark distributions are dramatically reduced. However, because the

strange distribution in the PDF is small, we find that the theoretical uncertaintiesD
⊥ (1)
1T,Λ/s are

unchanged with the introduction of pseudo-data. Furthermore, we find that the reduction

in the theoretical uncertainties for the d quark distribution is smaller than those for the u

and sea quarks. However, we note that in principle the theoretical uncertainty for this flavor

can be further reduced by considering experimental data from a 3He nuclear beam. Namely

by using a 3He beam and tagging the two protons in the forward region, a neutron can be

isolated in the hadron beam. This procedure would allow future extractions to spontaneous Λ

production for electron-neutron scattering which is extremely useful for studying the d-quark

TMD PFF.

In Fig. 5.14, we plot the pseudo-data that was obtained in the previous section for Λ
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Figure 5.14: Theoretical predictions are compared against the pseudo-data generated in the

reweighting method at 40 fb−1. The rows are grouped by the range of xB while the columns

are group by the energy configuration of the collision where the first number represents

the energy of the lepton beam in GeV and the second number represents the energy of the

hadron beam in GeV. The light band represents the theoretical uncertainty from the baseline

fit to the Belle data while the dark band represents the theoretical uncertainty from the fit

including the pseudo-data.

196



in red and Λ̄ in blue. Once again, the light band represents the theoretical uncertainty

obtained from the baseline fit. The dark band represents the theoretical uncertainty from

the simultaneous fit. To calculate the theoretical uncertainties, we compute the standard

deviation of replicas at each point. We bin each row (column) of this plot according to its xB

range (energy configuration). The top row contains the pseudo-data generated from events

with 1 > xB > 10−1. As we can see in this region, the size of the projected polarization

is relatively large and positive for Λ production. Furthermore, the polarization is large

and negative for the Λ̄ production. The large and positive polarization for Λ production

is occurring because the contribution from the u quark is dominant for this process and is

also positive. The large and negative polarization for Λ̄ production is occurring because the

large contribution from the u quark TMD PDF is being weighted with the sea contribution

for the TMD PFF. Since the sea contribution is negative, the resulting asymmetry is large

and negative. As the binned value of xB decreases as we move down the rows in Fig. 5.14,

we can see that the polarization for Λ tends to decrease in magnitude. This behavior occurs

because there are large cancellations between the u and sea quarks in this kinematic region.

5.4.4 Numerical Input and Results for the Transversity TMD FF

To characterize the theoretical uncertainty which can be obtained by current experimental

data, we first use the current experimental data from COMPASS to constrain the transversity

TMD FF for Λ baryon production.

In this section, we first begin by providing the numerical recipe used for the extraction of

the transversity TMD FF. To perform this analysis, we work at LO accuracy for the matching

and Next-to-Leading-Logarithmic (NLL) accuracy for the logarithmic resummation. Beyond

the Gaussian approximation, it is convenient to work in b-space. The expressions for the

unpolarized structure function at LO becomes

FUU =
∑

q

e2q

∫
db b

2π
J0

(
bPh⊥
zΛ

)
DΛ/q(zΛ, b;Q,Q

2)fq/p(xB, b;Q,Q
2) .

At the perturbative accuracy that we use in this section, the TMDs can be matched onto
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the collinear distributions using the relations

fq/p(xB, b;Q,Q
2) = fq/p(xB;µb∗) exp

(
−Spert(b;µb∗ , Q, µ

2
b∗ , Q

2)− Sf
NP(b,Q,Q0)

)
, (5.50)

DΛ/p(zΛ, b;Q,Q
2) =

1

z2Λ
DΛ/q(zΛ;µb∗)

× exp
(
−Spert(b;µb∗ , Q, µ

2
b∗ , Q

2)− SD
NP(zΛ, b, Q,Q0)

)
. (5.51)

The unpolarized structure function can be written as

FUU =
∑

q

e2q
1

z2Λ

∫
db b

2π
J0

(
bPh⊥
zΛ

)
DΛ/q(zΛ;µb∗) fq/p(xB;µb∗)

× exp
[
−2Spert(b;µb∗ , Q, µ

2
b∗ , Q

2)− SD
NP(zΛ, b, Q,Q0)− Sf

NP(b,Q,Q0)
]
. (5.52)

Following a similar analysis for the transverse spin transfer process, one can write the

structure function associated with this process as

F
cos(φS−ϕS)
TT =

∑

q

e2q
1

z2Λ

∫
db b

2π
J0

(
bPh⊥
zΛ

)
HΛ/q(zΛ;µb∗)hq/p(xB;µb∗)

× exp
[
−2Spert(b;µb∗ , Q, µ

2
b∗ , Q

2)− SH
NP(zΛ, b, Q,Q0)− Sh

NP(b,Q,Q0)
]

(5.53)

where hq/p and HΛ/q are the collinear transversity PDF and FF while SH
NP and Sh

NP are the

non-perturbative Sudakov factors for these distributions.

Several extraction in the literature for the transversity TMD PDF. In this work, we follow

the work in Ref. [120] to parameterize the transversity PDF as

hq/p(x;µ0) = Nh
q x

αh
q (1− x)β

h
q
(αh

q + βh
q )

αh
q+βh

q

αh
q
αh
qβh

q
βh
q

1

2

[
fq/p(x;µ0) + gq/p(x;µ0)

]
. (5.54)

In this expression, Nh
q , α

h
q , β

h
q are fit parameters which were obtained in this reference for

the u and d quarks while the contributions of the sea quarks were set to zero. Furthermore,

we have defined the initial scale of the parameterization to be µ0.

The transversity PDF in Eq. 5.54 can in general have a non-trivial x dependence. This

non-trivial dependence enters because, while the collinear PDF f and the helicity PDF g have

simply polynomial dependencies on x at their initial scales, when these initial scales differ
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from µ0, evolution effects in f and g will complicate this parameterization. The simplest

parameterization the one could take would be to choose the scale µ0 such that it corresponds

to the intrinsic scales of both f and g. This constraint limits the number of parameterizations

that we can use for these distributions. While there are a large number of parameterization

for f available on the market, there are relatively few parameterization for g. In this analysis,

we take the DSSV parameterization from Ref. [348]. The initial scale of this parameterization

is 1 GeV. Of the available PDFs, we find that the MSTW parameterization shares the same

initial scale as the DSSV parameterization. We have therefore chosen to use this set for the

entire paper. As a result of this choice, the x dependence of our parameterization of the

transversity PDF can be shown to be given by a polynomial at µ0.

In order to evolve hq/p from the initial scale to µb∗ in Eq. 5.53, we must solve the DGLAP

evolution equation for this distribution. However, as was stated in Ref. [349], there is no

gluon transversity at leading power. As a result, the DGLAP evolution equation of the quark

transversity does not mix with the gluon distribution. Therefore, the evolution equation

does not contain splitting function which mix quarks and gluons and the DGLAP evolution

equation is simply given by

∂

∂ lnµ2
hq/p(x;µ) =

αs

2π

∫ 1

x

dx̂

x̂
P h
q→q(x̂)hq/p

(x
x̂
;µ
)
, (5.55)

where the splitting kernel for the transversity PDF is given by

P h
q→q(x) = CF

[
2x̂

(1− x̂)+
+

3

2
δ(1− x̂)

]
. (5.56)

As in the case for the Sivers we simplify the evolution in Eq. 5.55 by working in Mellin space.

Because our parameterization for the transversity PDF resulted in polynomial dependence

on x at µ0 = 1 GeV, the Mellin transform for the transversity PDF can be performed

analytically at µ0 = 1 GeV. As a result, evolving our parameterization for the transversity

PDF from µ0 to µb∗ can be accomplished by performing a single numerical integral which is

associated with an inverse Mellin transformation.

To parameterize the transverse momentum dependence on the transversity TMD PDF, we

follow the parameterization in Ref. [120]. Explicitly, we parameterize the non-perturbative
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Sudakov for the transversity TMD PDF as

Sh
NP(b,Q,Q0) = Sf

NP(b,Q,Q0) , (5.57)

which sets the non-perturbative Sudakov to be the same for unpolarized TMD PDF and the

transversity TMD PDF.

Having parameterized the transversity TMD PDF, we now turn our attention to the

transversity TMD FF. As the COMPASS measurement is consistent with zero [13], these

experimental data can provide relatively little input on the size and shape ofHΛ/q. Therefore,

we choose the relatively simple parameterization

HΛ/q(z;Q) = NH
q DΛ/q(z;Q) , (5.58)

where NH
q represents parameters to be fit which control the overall size of the transversity

FF.

Because the parameterization for the transversity TMD PDF in Eq. 5.54 has only non-

zero contributions from the u and d quarks, only the NH
u and NH

d parameters can be con-

strained in this analysis. As such, we take all other quark contributions to be zero. Due

to these assumptions, our model will predict zero transverse spin transfer for Λ̄ production.

Therefore, we do not consider the Λ̄ production data for this process.

To parameterize the non-perturbative Sudakov term for the transversity TMD FF, we

follow the procedure that was done in in Ref. [120] to set the non-perturbative Sudakov term

to be the same for the unpolarized TMD PDF and the transversity TMD PDF. For the

transversity TMD FF, we explicitly take

SH
NP(zΛ, b, Q,Q0) = SD

NP(zΛ, b, Q,Q0) . (5.59)

In order to fit the NH
u and NH

d parameters, we use iMinuit [345, 350]. Furthermore,

in order to generate the uncertainty band from the extraction, we use the replica method

[346, 347] with 200 replicas. Using this simple model, we arrive at a χ2/d.o.f = 1.108 for

12 points. The fitted values for the parameters are given by NH
u = −0.028 ± 0.061 and

NH
d = −0.089± 0.210.
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In Fig. 5.15, we plot our theoretical comparison against the COMPASS experimental

data. The grey band represents our theoretical uncertainty which is obtained by calculating

one standard deviation away from the mean of the replicas at each point. As we see in this

plot, in each kinematic region, our extraction for the transverse spin transfer is consistent

with zero. In Fig. 5.16, we plot the extracted collinear transversity FF as a function of zΛ

for Q = 2 GeV for the u quark in red and the d quark in blue. The dashed and dotted

lines represent the average over the replicas for the u and the d quark transversity FFs,

respectively. Due to the experimental measurement being consistent with zero, we see that

the transversity FF is also consistent with zero within our theoretical error bars.
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Figure 5.15: The comparison of our fitted transverse spin transfer and the experimental data

at COMPASS [13]. The grey band represents our theoretical uncertainty which is obtained

using the replica method, while the red error bars are the experimental data from COMPASS.

In Fig. 5.17, we plot our theoretical prediction at the future EIC for the transverse spin

transfer for Λ production in SIDIS in the large x region where the valence quarks should

dominate. The red band represents the theoretical uncertainty from our extraction while

the black line line represents the average of the replicas. The black error bars represent

our projected statistical uncertainties at the future EIC. In order to obtain the statistical

uncertainties for these kinematic ranges, we have divided the statistical uncertainties from the

spontaneous polarization section by a factor of 70% in order to account for the uncertainties

associated with the proton beam polarization. We note that the theoretical uncertainty

which we display in this analysis stems only from the parameters NH
u and NH

d parameters.
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Figure 5.16: The collinear transversity FF extracted from the COMPASS measurement.

The red and blue bands represent the theoretical uncertainties from our extraction which

was obtained using the replica method for the u and d quarks, respectively. The dashed and

solid lines represent the average of the replicas for the u and d quarks.

The full theoretical uncertainties should also contain contributions from the uncertainties

from the transversity TMD PDF as well as the unpolarized TMDs and even the collinear

distributions. As a result, these theoretical uncertainties underestimate the total theoretical

uncertainty. However, as we see in this figure, the theoretical uncertainties are more than

an order of magnitude larger than the projected statistical uncertainties at the EIC. This

indicates that the EIC could potentially be used to perform the first measurement of the

transverse spin transfer which is not consistent with zero and that such data would be

extremely important in constraining the transversity TMD FF.

5.4.5 Projections for Λ in Jet

In this section, I first present our parameterization for spontaneous Λ polarization as well as

the transverse spin transfer for Λ baryon production within the produced jet. I then present

the results of our projections at the future EIC.

The definition of spontaneous Λ polarization is given in 5.33. This expression relies on

the unpolarized structure functionsWUU in 5.35, and the structure function for spontaneous

polarization W
sin(ϕS−ϕΛ)
UT in 5.40. At this point, we first provide the parameterization for
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Figure 5.17: Prediction for the transverse spin transfer for Λ production at the future EIC.

The label above each sub plot provides the electron beam energy × the proton beam energy.

The label to the right indicates the kinematic region for xB. In each subplot, the red

bars represents the theoretical uncertainty from our extraction at one standard deviation.

The black line represents the average over the replicas. The black error bars represent the

projected statistical uncertainties at 40 fb−1.

the unpolarized structure function.

In this section, we once again work at LO+NLL perturbative order. At LO matching,

the hard functions in 5.35 and 5.42 are

H(Q;µ) = 1 , H⊥(Q;µ) = 1 . (5.60)

For this process, there are two separate soft function which contribute to q⊥. The first

contribution is the well-known global soft function, which we will denote Sglobal. This function

is associated with wide angle soft gluon emissions. The second contributions is known as

the collinear soft function, which we denote Ssc, is associated with soft gluon exiting the

jet, see for instance Ref. [135] for more details. The global soft and collinear-soft functions

for this process are given up to NLO+NLL accuracy in Ref. [137] along with the anomalous

dimensions. At LO+NLL accuracy, these functions are given by

Sglobal(b;µ) = exp

(∫ µ

µb∗

dµ′

µ′
γglobal(b;µ

′)

)
, (5.61)
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Ssc(b, yJ , R;µ) = exp

(∫ µ

µb∗

dµ′

µ′
γsc(b, yJ , R;µ

′)

)
, (5.62)

where the anomalous dimensions for these functions are given at NLL accuracy by

γglobal(b;µ) = 2
αsCF

π
yJ + γcuspCF ln

µ2

µ2
b

, (5.63)

γsc(b, yJ , R;µ) = − γcuspCF ln
µ2

µ2
bR

2
. (5.64)

with µb = 2e−γE/b. In the b-space, the soft functions combine as a product so that the total

soft function entering into this process, i.e. S(b, yJ , R;µ) in Eqs. 5.35, 5.40 and 5.42, is given

by

S(b, yJ , R;µ) = Sglobal(b;µ)Ssc(b, yJ , R;µ) . (5.65)

In our numerical analysis, we will always take the jet radius R = 1 so that the anoma-

lous dimension of U is simply given by the sum of the global and collinear-soft anomalous

dimensions.

In order to obtain the final expression for the unpolarized structure functions in 5.35, we

now use the collinear matching expression in 5.51 to write the unpolarized TMD fragmenting

jet function as

GΛ/q(zJΛ, j⊥;µJ , µ, ζ2) = exp

(∫ µ

µJ

dµ′

µ′
γJ(µ

′)

)∫
db b

2π
J0

(
bj⊥
zJΛ

)
DΛ/q(zJΛ;µb∗)

× exp
(
−Spert(b;µb∗ , µJ , µb∗ , µJ)− SD

NP(zJΛ, b, Q0, µJ)
)
. (5.66)

At NLL, the anomalous dimension for the TMD fragmenting jet function is given by

γJ(µ) = −γcusp(αs)ln

(
µ2
J

µ2

)
− γV (αs) . (5.67)

In addition, we also include contributions from the non-global logarithms, see Refs. [162, 130,

135, 351, 164] for details. Finally, in order to obtain the structure function for unpolarized

Λ production, we also apply the matching relation for the TMD PDF in 5.50 onto the

expression in 5.35. After performing the matching, the unpolarized structure function is

given by

WUU =
∑

q

e2q GΛ/q(zJΛ, j⊥;µJ , µ, ζ2)

∫
db b

(2π)
J0(b q⊥) fq/p(xB;µb∗)S(b, yJ , R;µ)
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Figure 5.18: The j⊥ distribution for unpolarized Λ baryons in a jet for back-to-back lepton-jet

production in ep collisions. The orange line represents our theoretical prediction while the

blue histogram represents the Pythia simulation. The integrated phase space is also displayed

on the right side of this figure.

× exp
(
−Spert(b;µb∗ , µJ , µ

2
b∗ , µ

2
J)− Sf

NP(b,Q0, µ)
)
. (5.68)

To obtain numerical results for this section, we use the same parameterization for the

unpolarized TMDs as in Sec. 5.3.

In order to verify the validity of our formalism so far, we have included a comparison with

Pythia in Fig. 5.18. In this figure, we plot our j⊥ distribution for unpolarized Λ production

inside the jet. In our Monte Carlo analysis where we generated the pseudo-data for this

process, we have examined events which satisfy the constraints 0.05 < y < 0.95, pJ⊥ > 5

GeV, q⊥/pJ⊥ < 0.3, and 0.2 < zJΛ < 0.5. Therefore, in order to generate our theoretical

prediction for this data, we integrate the structure functions entering into the polarization

over these kinematic regions. To perform the integration in y, we simply use the relation in

5.37 to relate the lepton rapidity to the inelasticity. To perform the integration in pJ⊥, we

note that up to power corrections of q⊥/pj⊥ that ℓ′⊥ = pj⊥ so that we can simply perform the

integration in the jet transverse momentum. We have also taken R = 1 for the jet radius. In

this figure, the Pythia histogram as well as our theoretical curve have been normalized by

integrating over j⊥ < 1.5 GeV. As we can see in this figure, the shape of the j⊥ distribution

matches the result of the Pythia simulation extremely well.
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Using the collinear matching relation for the TMD PDF, the structure function for spon-

taneous Λ polarization can be written as

W
sin(ϕS−ϕΛ)
UT =

∑

q

e2q G⊥1T,Λ/q(zJΛ, j⊥;µJ , µ, ζ2)

∫
db b

(2π)
J0(b q⊥) fq/p(xB;µb∗)S(b, yJ , R;µ)

× exp
(
−Spert(b;µb∗ , µJ , µ

2
b∗ , µ

2
J)− Sf

NP(b,Q0, µJ)
)
. (5.69)

In order to simplify the TMD polarizing fragmenting jet function, we introduce the collinear

matching relation for the TMD PFF

D
⊥(1)
1T,Λ/q

(
z, b;Q,Q2

)
=

⟨M2
D⟩

2z2M2
Λ

D⊥1T,Λ/q(z;µb∗)

× exp
(
−Spert(b;µb∗ , µJ , µ

2
b∗ , µ

2
J)− S⊥NP(z, b, Q

⊥
0 , Q)

)
, (5.70)

where Q⊥0 is the initial scale of the TMD PFF which is given by 10.58. Using this collinear

matching relation, the TMD fragmenting jet function can be written as

G⊥1T,Λ/q(zJΛ, j⊥;µJ , µ, ζ2) = − ⟨M2
D⟩

2z4JΛMΛ

sin (ϕs − ϕΛ) exp

(∫ µ

µJ

dµ′

µ′
γJ(µ

′)

)∫
db b

2π
J1

(
bj⊥
zJΛ

)

×D⊥1T,Λ/q(zJΛ;µb∗) exp
(
−Spert(b;µb∗ , µJ , µ

2
b∗ , µ

2
J)− S⊥NP(zJΛ, b, Q0, µJ)

)
. (5.71)

In Fig. 5.19, we plot our theoretical prediction for spontaneous Λ polarization for back-to-

back electron-jet production. The red and blue curves represent the theoretical uncertainty

for Λ and Λ̄ production in which we obtain from the baseline fit in Sec. 5.4.3.2. The red

and blue error bars represent the statistical uncertainties for Λ and Λ̄ production at an

integrated luminosity of 100 fb−1. To generate each curve, we integrate over the kinematic

region j⊥ < 1.5 GeV, q⊥/pJ⊥ < 0.3, pJ⊥ > 5 GeV, and 0.05 < y < 0.95 following the same

procedure as in the unpolarized case. From left to right, we impose the kinematic constraint

that 0.01 < xB < 0.05, 0.05 < xB < 0.10, and 0.10 < xB < 0.80. In each of these plots,

we see that the polarization for Λ is positive at small zJΛ, while the polarization becomes

negative at large zJΛ. Furthermore, we also find that the polarization for Λ is more positive

at small zJΛ and large xB. These qualitative behaviors can be seen by studying Fig. 5.12.

At small zJΛ, the contribution from the u quark will dominate the polarization due to the

electro-magnetic coupling of the u quark as well as the size of the u quark TMD PDF. As a
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Figure 5.19: Our projections for spontaneous Λ polarization. The red band and blue bands

represents our theoretical uncertainty using the parameters obtained from the baseline fit

in Sec. 5.4.3.2 for Λ and Λ̄ production, respectively. The error bars represent our projected

statistical uncertainties at an integrated luminosity of 100 fb−1. To obtain these results, we

integrate over the kinematic regions listed in the top right of the left plot. Furthermore, we

also impose the conditions that xB is within each of the listed regions.
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result, the polarization is large and positive at small zJΛ. At large zJΛ the contributions from

the other quark flavors overcome the u quark and the polarization becomes negative. Since

the contribution from the u quark is largest in the large xB region, the polarization is more

positive at large xB. For Λ̄ production, the u and d are sea contributions to the TMD PFF.

As a result, the contributions from the u and d quarks give large negative contributions to

the polarization. We see in these plots that the size of the statistical uncertainties is smaller

than the theoretical uncertainties in the region of small xB. This is an indication that

experimental data gathered in that particular region can be useful in further constraining

the TMD PFF. However, the displayed theoretical uncertainties stem only from the the

uncertainties from the fit parameters for the TMD PFF. Other theoretical uncertainties

stemming from the unpolarized TMD PDF as well as the collinear distributions will also

contribute to this prediction.

After performing the collinear matching for the transversity TMD PDF, the structure

function associated with the transverse spin transfer is given by

W
cos(φS−ϕS)
TT =

∑

q

e2q GT
Λ/q(zJΛ, j⊥;µJ , µ, ζ2)

∫
db b

2π
J0(b q⊥)hq/p(xB;µb∗)S(b, yJ , R;µ)

× exp
(
−Spert(b;µb∗ , µJ , µ

2
b∗ , µ

2
J)− Sh

NP(b,Q0, µ)
)
. (5.72)

In this expression, the TMD fragmenting jet function is given by

GT
Λ/q(zJΛ, j⊥;µJ , µ, ζ2) = exp

(∫ µ

µJ

dµ′

µ′
γJ(µ

′)

)
1

z2JΛ

∫
db b

2π
J0

(
bj⊥
zJΛ

)
HΛ/q(zJΛ;µb∗)

× exp
(
−Spert(b;µb∗ , µJ , µ

2
b∗ , µ

2
J)− SH

NP(zJΛ, b, Q0, µJ)
)
. (5.73)

To generate our theoretical prediction for back-to-back lepton-jet production, we use the

extracted transversity FF from Sec. 5.3 while we once again use the parameterization from

Ref. [120] for the transversity TMD PDF.

In Fig. 5.20, we plot our projected transverse spin transfer in the region of large xB

where the contribution from the valence quarks should dominate. The red bar represents

the theoretical uncertainty for our fit to the NH
u and NH

d parameters while the error bar is
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Figure 5.20: Our projection for the transverse spin transfer for Λ production for back-to-back

lepton-jet production at the future EIC. The red bar represents our theoretical uncertainties

which we obtain from our extraction of the NH
u and NH

d parameters. The error bars repre-

sent the projected statistical uncertainties at 100 fb−1. We have obtained these statistical

uncertainties by dividing the uncertainties from Fig. 5.19 by 70% to account for beam po-

larization uncertainty.
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the projected statistical uncertainty. To generate the statistical uncertainties for this mea-

surement, we use the statistical uncertainties used in Fig. 5.19, while dividing by a factor of

70% to account for the uncertainty in the polarization of the proton beam. We once again

emphasize that the advertised theoretical uncertainty stems only from the parameters that

enter into our fit while we expect additional large uncertainties originating from the transver-

sity TMD PDF, the unpolarized TMDs, as well as the unpolarized collinear distributions

also contribute to this measurement.

5.5 Conclusion

In this chapter we have studied Λ production at the future EIC for spontaneous transverse

Λ polarization as well as transverse spin transfer in the TMD formalism. Furthermore, we

have studied each of these spin configurations in SIDIS as well as back-to-back lepton-jet

production. For each of these processes, we have discussed the impact of the future EIC in

constraining the TMD PFF as well as the transversity TMD FF.

In order to characterize the size of the contribution that the future EIC data will have

on constraining the TMD PFF, we have performed an EIC impact study. As a baseline we

have performed a fit to the experimental data at Belle. While in order to test the impact of

the EIC data, we have performed a Pythia analysis to generate projections for the statistical

uncertainties at the future EIC. Using these statistical uncertainties, we have performed a

simultaneous fit to the Belle data as well as the pseudo-data. By performing this fit, we have

demonstrated a significant reduction in the theoretical uncertainties for the u and sea TMD

PFF. We have also discussed how potential measurements with a 3He beam can be used to

significantly reduce the uncertainty for the d TMD PFF.

In order to study the impact of future EIC data on the transversity TMD FF, we have

performed an extraction of this function from the recent COMPASS measurement [13] in

the SIDIS process. We find that the current statistical precision from the COMPASS mea-

surement is not high enough for an extraction of the transversity TMD FF. By providing
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projections for the statistical uncertainties for Λ polarization in the SIDIS process at the

future EIC, we demonstrate that the statistical uncertainties for this process at the future

EIC will be roughly an order of magnitude smaller than the current theoretical uncertainties

for this process. Thus, the EIC data presents the possibility of being the first significant

measurement of the transversity TMD FF.

In addition, we have provided projections for Λ in jet production in back-to-back lepton-

jet production. We have generated projected statistical uncertainties at the future EIC for

spontaneous Λ production at an integrated luminosity of 100 fb−1. We find that in the region

of low xB that the statistical precision for this process can be used to further constrain the

TMD PFF. Finally, we have also provided projections for the transverse spin transfer for Λ

in jets in the scattering of an electron and a transversely polarized proton at the future EIC,

and we emphasize its importance in constraining the transversity TMD FF.
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CHAPTER 6

Evolution of Twist-3 TMDs

6.1 Introduction

The formulation of TMD factorization theorems relies heavily on the neglecting power cor-

rections of order q⊥/Q and M/Q. In all of the formalism that I have presented up to this

point, this has been the case. When considering power corrections to the differential cross

section, at twist-3 for instance, the formalism becomes much more complicated and subtle

due to the large number of additional areas at which power correction enter. These power

corrections introduce a wide range of new distributions which can be experimentally probed,

and which provide additional insight into the structure of hadrons. As I will discuss in this

chapter, these sub-leading power distributions are named ‘intrinsic’, ‘kinematic’, and ‘dy-

namical’ distributions. Establishing QCD factorization and resummation theorems beyond

leading power allows us to pursue precision in a novel direction and serves to challenge our

current understanding of the IR behavior of QCD. Despite the challenges that sub-leading

power contributions provide, the TMD community over the past decade has been pushing

for an ever greater precision determination of QCD dynamics in hadrons.

To provide some context, currently the perturbative contributions for twist-2 TMDs have

been carried out to four loops, see for instance Refs. [352] and [353] for a calculation of the

four loop rapidity anomalous dimension for instance [354] for a phenomenological application

of these calculations. So far however, NLP corrections to the TMD cross section have only

been carried out in Semi-Inclusive DIS and Drell-Yan at LO in QCD in [355, 86, 356]. Over

the past few years, many interesting developments have emerged in this direction. Recently,

NLP corrections have been studied in a SCET formalism in Ref. [357] at the Lagrangian
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level for Semi-Inclusive DIS. Additionally in Ref. [358], the authors studied the evolution of

the dynamical twist-3 distributions at one loop. Despite this progress, it still remains to be

seen if the standard methods that we use to perform calculations of twist-2 cross sections

can be applied at twist-3. In Semi-Inclusive DIS, an analysis was performed by Bacchetta

et al. in [359] where attention was given to azimuthal and polarization dependence. In

this study the authors found that there were mismatches between the collinear factorization

region where q⊥ ∼ Q and the TMD region where q⊥ ≪ Q for the Cahn effect [360, 361].

More recently in Ref. [362], the authors conjectured that the soft function at NLP should

be the same as the soft function at LP and as a result, one can match between the collinear

and TMD factorization regions at sub-leading twist. The result of this study indicated that

the techniques which are used at twist-2 can be applied to higher twists. Nevertheless, so

far explicit one loop calculations of these results have not been performed to verify this

assumption.

In our ongoing work, we establish a complete factorization for Semi-Inclusive DIS and

Drell-Yan at twist-3 beyond tree level. We explicitly calculate the hard, soft, and collinear

TMDs at one loop to obtain the evolution equations for these processes at NLO+NLL

accuracy for the intrinsic and kinematic sub-leading TMDs. Furthermore, we explicitly

calculate the Collins-Soper (rapidity) evolution equation for the ‘dynamical’ sub-leading

twist distributions. From this analysis, we clarify subtleties in the assumption that was

made in Ref. [362]. Within this analysis however, we find factorization breaking effects and

we also discover that gauge invariance does not manifest diagram by diagram in perturbation

theory for the intrinsic and kinematic distributions. These results indicate that the current

formulations of the twist-3 factorization theorems are incorrect. In this chapter, I will discuss

the various twist-3 contributions to the cross section and explicitly calculate the evolution

equations for the hard, collinear, and soft contributions to the cross section at NLP.
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6.2 Distributions at Twist-3

6.2.1 Overview

To illustrate how NLP contributions enter into the cross section, it is convenient to begin by

examining the hadronic tensor for inclusive DIS as an illustrative example

W µν =
1

2π

∫
d4xeiq·x⟨P |T jµ(x)jν(0)|P ⟩ . (6.1)

If we were to perform an operator product expansion of this expression, we would obtain

W µν =
∑

i

Ci(Q
2)⟨P |θi|P ⟩ , (6.2)

where Ci are the Wilson coefficients and θi are local operators. The twist of each operator

can be obtained by a simple power counting procedure. In the previous sections, we saw

that the operators θ = ψ̄nµγ
µψ, θ = ψ̄nµγ

µγ5ψ, and θ = inµσ
µkγ5 provide leading twist

contributions to the cross section. By performing a power counting, one can see that the

matrix elements must be proportional to n ·P while the Wilson coefficient function will scale

like Q−m where m is some arbitrary power. Therefore, the leading power terms scale like

n ·P/Qm ∼ Q−m+1 since n ·P ∼ Q. If we were to examine operators of the form θ = ψ̄ψ, we

would find that the matrix elements would be proportional to a scalar. Since the only scalar

with mass dimensions in massless QCD is the hadron mass, the matrix elements would be

proportional to M and the contributions of these terms in the hadronic tensor would scale

as M/Q × Q−m+1, producing a power suppression in comparison with the leading power

contribution. Furthermore, we could examine operators of the form θ = ψ̄γkψ where k is

a transverse index. The matrix elements for this operator would scale as qk⊥ where q⊥ is a

transverse momentum. While in DIS we would integrate over q⊥, these contributions would

not enter. However, for TMD observables, these operators then lead to a power suppression

of q⊥/Q in the TMD region where q⊥ ≪ Q. The insertion of terms which lead to a direct mass

or q⊥ suppression from the insertion of the quark field operators in the OPE are known as

the ‘intrinsic’ sub-leading TMDs. Additionally, we could also consider examining operators

of the form θ = ψ̄A⊥nµγ
µψ where A⊥ is a transverse gluon field. Due to the power counting,
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we know that A⊥ ∼ q⊥. Through a dimensional analysis argument, the Wilson coefficient

function would then need an additional power of Q in the denominator, leading to a q⊥/Q

suppression in the hadronic tensor. The distribution which is generated with the introduction

of this transverse gluon field is known as the dynamical sub-leading distribution.

Lastly, it was discussed in Chapter 2 that the φ field can be integrated out of the SCET

Lagrangian through the equations of motion. Specifically, the equation of motion is given

by

/D⊥
/n

2
ξ(x) = n ·Dφ(x) , ξ̄(x)

/n

2
/D⊥ = φ̄(x)n ·D . (6.3)

As I will demonstrate in the next section, the intrinsic sub-leading distributions are associated

with the φ field while the dynamical distributions are associated with the field configuration

A⊥ξ. However, there are still ‘kinematic’ suppressed field configurations that are associated

with /∂⊥/n/2 ξ field configurations. These fields were considered in Ref. [357], where the

authors considered such terms by introducing transverse derivative to the current in the

OPE and treated the power corrections using SCET.

In this chapter, I will mainly focus on the factorization and evolution associated with

the intrinsic and kinematic suppressed distributions while I’ll leave many aspects of the

dynamical suppressed distributions for a later study.

6.2.2 Intrinsic Sub-Leading TMDs

To introduce the intrinsic sub-leading distributions in full QCD, it is useful to re-visit the

definition of the intrinsic sub-leading field

ξc(x) =
/̄n/n

4
ψc(x) , φc(x) =

/n/̄n

4
ψc(x) , (6.4)

such that ψc(x) = ξc(x) + φc(x), where ξc and φc are the so-called good and bad field

components of ψc and /̄n/n/4 and /n/̄n/4 are idempotent operators. Performing an OPE in a

similar way that was discussed in the previous section and expressing ψc(x) in terms of φc

and ξc we are left with the four field configurations

⟨P,S|ξ̄cθξc|P,S⟩ , ⟨P,S|φ̄cθξc|P,S⟩ , (6.5)

215



Twist 2 Twist 3 Twist 4

1
2 /n , 1

4
/̄n 1

2
,1
2

1
2
/̄n , 1

4 /n

1
2 /nγ

5, 1
4
γ5 /̄n 1

2
γ5, 1

2
γ5 1

2
/̄nγ5, 1

4
γ5/n

i
2
σk+γ5, i

4
γ5σ−k

1
2
γk, 1

2
γk

i
2
σk−γ5 , i

4
γ5σ+k

1
2
γkγ5, 1

2
γ5γk

i
2
σklγ5, i

4
γ5σlk

i
4
σ+−γ5, i

4
γ5σ+−

Table 6.1: The operators entering into the Fierz decomposition organized by twist for P1.

We note that the operators for P2 can be obtained simply by interchanging n and n̄. The

operators are organized as Γ, Γ̄. In this chapter k and l represent transverse indices. The

operators listed in this table with a single transverse Lorentz index represent two distinct

operators in the Fierz decomposition. In total, this results in 16 distinct operators.

⟨P,S|ξ̄cθφc|P,S⟩ , ⟨P,S|φ̄cθφc|P,S⟩ .

If we were to take θ to be one of the operators in the ‘Twist 2’ column of Tab. 6.1, using

the idempotence of the projection operators we could easily demonstrate that the matrix

elements will vanish for all field configurations with the exception of the top left one in

Eq. (6.5). Similarly, if we were to insert θ from the ‘Twist 3’ column, we would find that

only the top right and bottom left field configurations would lead to a non-vanishing matrix

elements. Finally, we could also consider the twist-4 case where the bottom right field

configuration can contribute.

Since we know the exact operators which generate matrix elements of the intrinsic twist-3
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distributions, we can parameterize the twist-3 TMD PDF

Φ
(3)
unsub(x,k⊥,S;µ, ζ/ν

2) =
M

P+

[(
e− ϵρσ⊥ k⊥ρS⊥σ

M
e⊥T

)
1

2
− i

(
λgeL − k⊥ · S⊥

M
e⊥

)
γ5

2
(6.6)

+

(
kk⊥
M
f⊥ − ϵkl⊥S⊥lf

′
⊥ − ϵkl⊥k⊥l

M

(
λgf

⊥
L − k⊥ · S⊥

M
f⊥⊥

))
γk
2

+

(
g′⊥S

k
⊥ − ϵkl⊥k⊥l

M
g⊥ +

kk⊥
M

(
λgg

⊥
L − k⊥ · S⊥

M
g⊥⊥

))
γ5γk
2

+

(
Sk
⊥k

l
⊥

M
h⊥⊥

)
iγ5σlk

4
+

(
h+ λghL − k⊥ · S⊥

M
h⊥
)
iγ5σ+−

4

]
.

where the superscript in the expression for Φ at the left-hand side denotes the twist. The

functions entering into this decomposition are known as the intrinsic sub-leading distribu-

tions. In this chapter, I will mainly focus on the f⊥ distribution as an illustrative exam-

ple. This distribution is known to generate the Cahn effect in the TMD region, see for

instance [86]. At the cross section level, the Cahn effect in Drell-Yan is generated by terms

of the form

dσCahn ∼ kk⊥
P+

f⊥ ⊗ f ⊗Hint ⊗ Sint , (6.7)

where Hint and Sint are the intrinsic hard and soft functions.

6.2.3 Kinematic Sub-leading Distributions

I will now discuss the kinematic suppressed fields, which are given by

ξckin(x) =
i/∂⊥/n

2in · ∂ ξ
c(x) , ξ c̄kin(x) =

i/∂⊥ /̄n

2in̄ · ∂ ξ
c̄(x) . (6.8)

In momentum space, it can be directly seen that these fields are suppressed by a factor of λ

relative to the ξ fields. We can define kinematic suppressed correlators by replacing one good

field in the twist-2 correlator with a kinematic suppressed field. In the case of the collinear

correlation function, we have

Φkin
jj′ unsub(x,k⊥,S;µ, ζ/ν

2) =

∫
d4ξ

(2π)4
eik·ξ δ

(
ξ+
)

(6.9)
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×
[〈

P,S
∣∣∣ξ̄cj′(ξ)U n̄

(ξ−,−∞;ξ⊥) UT
(ξ⊥,0;−∞) U n̄

(−∞,0,0⊥) ξ
c
kin j(0)

∣∣∣P,S
〉

+
〈
P,S

∣∣∣ξ̄ckin j′(ξ)U n̄
(ξ−,−∞;ξ⊥) UT

(ξ⊥,0;−∞) U n̄
(−∞,0,0⊥) ξ

c
j(0)

∣∣∣P,S
〉]

.

In a covariant gauge where the transverse Wilson line vanishes, we can integrate in the

transverse direction by parts. In doing so, we can write the correlator as

Φkin
jj′ unsub(x,k⊥,S;µ, ζ/ν

2) =
∑

a

Γ̄a
jj′

∫
d4ξ

(2π)4
eik·ξ δ

(
ξ+
)

(6.10)

×
〈
P,S

∣∣∣ξ̄c(ξ)U n̄
(ξ−,−∞;ξ⊥) U n̄

(−∞,0,0⊥) Γ
[a]ξc(0)

∣∣∣P,S
〉
,

where Γ[a] = [Γa, /k⊥/n/2k
+] and we have inserted a complete set of operators. In Tab. 6.2, we

have provided Γ[a] and Γ̄a for each operator entering into the Fierz decomposition. The Γ̄a

operators enter into the hard part of the calculation while the Γ[a] operators enter into the

trace with the quark correlation function. Analogous to the case for the intrinsic sub-leading

correlation function, the contribution of these functions at the cross section go like

dσCahn ∼ kk⊥
P+

fkin ⊗ f ⊗Hkin ⊗ Skin , (6.11)

where fkin is closely analogous to the unpolarized TMD PDF except it is a correlator of a

kinematic suppressed field and a good field and Hkin and Skin are the kinematic hard and

soft functions.

6.2.4 Dynamical Sub-leading Distributions

At the cross section level, the introduction of an additional transverse gluon alters the current

operators and the hadronic tensor in Drell-Yan for instance can be written as

W (3)
µν =

1

(2π)4

∫
d4x e−iqx

〈
P1 , P2

∣∣(J (3) †
µ (x) J (2)

ν (0) + J (2) †
µ (x) J (3)

ν (0)
)∣∣P1 , P2

〉
, (6.12)

where J
(3)
µ is the current associated with the three parton interactions while J

(2)
µ is the current

associated with two partons. In Fig. 6.1, we have included the relevant tree level diagrams

for this current. By examining this hadronic tensor in momentum space, we can write this

expression as
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Twist 2 Twist 3 Twist 4

0 ,
1

4
/̄n 0,

1

2
−/k⊥
k+

,
1

4
/n

0,
1

4
γ5 /̄n 0,

1

2
γ5 −/k⊥

k+
γ5,

1

4
γ5/n

0,
i

4
γ5σ−k

ki⊥
k+

/n

2
,
1

2
γk

i

2
σk−γ5 ,

i

4
γ5σ+k

ki⊥
k+

/n

2
γ5,

1

2
γ5γk

kk⊥
k+

i

2
σ+lγ5 − kl⊥

k+
i

2
σ+kγ5,

i

4
γ5σlk

−k⊥ i

k+
i

2
σ+iγ5,

i

4
γ5σ+−

Table 6.2: The operators entering into the Fierz decomposition organized by twist for P1.

We note that the operators for P2 can be obtained simply by interchanging n and n̄. The

operators are organized as Γ[a], Γ̄a. In this chapter k and l represent transverse indices.

W µν
3 =

1

Nc

∑

q

e2q

∫
d2k1⊥ d

2k2⊥ d
2λ⊥δ

(2)(k1⊥ + k2⊥ + λ⊥ − q⊥)S (λ⊥;µ, ν) (6.13)

×
{∫

dp+1 Tr

[
γρ

−/k2 − /p1
(k2 + p1)2 + iϵ

γνΦρ
A unsub(x1, x

′
1,k1⊥;µ, ζ1/ν

2)γµΦunsub(x2,k2⊥;µ, ζ2/ν
2)

]

+ . . . ,

where the explicit expression listed here is the top left diagram of Fig. 6.1 dots contain the

contributions of the additional diagram. To interpret this expression, it is useful to introduce

the three parton correlation function

Φα
F,jj′ unsub

(
x, x′,k⊥,S;µ, ζ/ν

2
)
=

∫
d4ξ

(2π)4
d4η

(2π)4
δ
(
ξ+
)
δ
(
η+
)
P+eik·ξe

i
2

√
ζ(ξ−−η−) (6.14)

×
〈
P,S

∣∣∣ξ̄j′(ξ)U n̄
(ξ−,−∞;ξ⊥)UT

(ξ⊥,0⊥;−∞)U n̄
(−∞,ζ−;0⊥)igF

+α(ζ)U n̄
(ζ−,0;0⊥)ξj(0)

∣∣∣P,S
〉
.
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Φ
(
x2,k2⊥; µ, ζ2/ν

2
)

Φµ
A

(
x1, xg,k1⊥; µ, ζ1/ν

2
)

q

Φ
(
x2,k2⊥; µ, ζ2/ν

2
)

Φµ
A

† (
x1, xg,k1⊥; µ, ζ1/ν

2
)

q

Φ
(
x1,k1⊥; µ, ζ2/ν

2
)

Φµ
A

† (
x2, xg,k2⊥; µ, ζ1/ν

2
)

q

Φ
(
x1,k1⊥; µ, ζ1/ν

2
)

Φµ
A

(
x2, xg,k2⊥; µ, ζ2/ν

2
)

q

Figure 6.1: The four contributions at tree level for the dynamical twist 3 contributions to

the Drell-Yan cross section.

where α is a transverse Lorentz index. It’s important to note that k refers to the momentum

of the quark which is isolated on one side of the cut away from the gluon. This correlation

function can be related to one containing a transverse Aα field trivially in light-cone gauge.

We can then parameterize the ΦA correlator as

Φα
Aunsub

(
x, x′,k⊥,S;µ, ζ/ν

2
)
= (6.15)

xM

2

{[(
f̃⊥ − ig̃⊥

) kα⊥
M

−
(
f̃ ′⊥ + ig̃′⊥

)
ϵ⊥ ρσS

σ
⊥

−
(
λf̃⊥L − k⊥ · S⊥

M
f̃⊥T

)
ϵ⊥ ρσk

σ
⊥

M
− i

(
λg̃⊥L − k⊥ · S⊥

M
g̃⊥T

)
ϵ⊥ ρσk

σ
⊥

M

]
(gαρ⊥ − iϵαρ⊥ γ5)

−
[(

λh̃⊥L − k⊥ · S⊥
M

h̃⊥T

)
+ i

(
λẽ⊥L − k⊥ · S⊥

M
ẽ⊥T

)]
γα⊥γ5

+

[(
h̃+ iẽ

)
+
(
h̃⊥⊥ − iẽ⊥⊥

) ϵρσ⊥ k⊥ρS⊥σ
M

]
iγα⊥ + . . . (gαρ⊥ + iϵαρ⊥ γ5)

}
/n

2
.

Therefore, one can show that these terms lead to contributions of the form

dσCahn ∼ kk⊥
P+

f̃⊥ ⊗ f ⊗Hdyn ⊗ Sdyn , (6.16)
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where Hdyn and Sdyn are the dynamical hard and soft functions. Recently in [357] it was

demonstrated that Hdyn depends on two collinear variables x and x′.

6.3 Perturbative Corrections and Collinear Matching

In this section, I will explicitly calculate the anomalous dimensions of each of the different

regions that enter at NLP. Using these contributions, I will discuss implications for renor-

malization group consistency.

6.3.1 Hard Corrections for the Two Parton Sub-Process

To obtain the hard contributions to the differential cross section beyond LO, I’ll note that

the hard contribution enters from the contraction between the leptonic tensor with the trace

entering into the hadronic tensor. At tree level for Semi-Inclusive DIS, we can write

LDIS
µν Tr

[
γµ Γ̄a

1 γ
ν Γ̄b

1

]
= Q2f(ψ, y)H

(0)
DIS(Q;µ) , (6.17)

where H
(0)
DIS(Q;µ) = 1 is the tree level hard function and f(ψ, y) represents the angular cor-

relation which depends on the operators. We note at this point that an analogous expression

can also be obtained for Drell-Yan. To account for hard interactions entering into the cross

section, it is necessary to account for the virtual interactions between the quarks. To account

for these graphs, we make the replacement for the photon-quark vertex in Semi-Inclusive DIS

γν → γν +
αsCF

2π
F ν
DIS (Q;µ) +O

(
α2
s

)
(6.18)

where F ν
DIS (Q;µ) is the one loop QCD form factor for the quark-photon vertex which is

explicitly given in dimensional regularization by

F ν
DIS (Q;µ) = γν

(
1 +

1

2ϵ
− 1

2
LQ

)
+

(
2

ϵ
+ 2LQ + 3

)
/nγν /̄n

4
(6.19)

+

(
− 1

ϵ2
− 1

4
L2
Q − 1

ϵ
LQ − 1

ϵ
− LQ +

π2

12
− 3

)
/̄nγν/n

4
+

(
−LQ − 1

ϵ
− 1

)
/̄nn̄ν

4

+

(
−2LQ − 2

ϵ
− 3

)
/nn̄ν

4
+

(
−LQ − 1

ϵ
− 1

)
/nnν

4
+

(
−2LQ − 2

ϵ
− 3

)
/̄nnν

4
.
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We also note that the QCD form factor for Drell-Yan can be obtained through the relation

F ν
DY (Q;µ) = F ν

DIS (iQ;µ). Using this expression, the NLO hard contributions to the cross

section is given directly by

H
(1)
DIS (Q;µ) =

1

Q2f(ψ, y)

αsCF

2π
(6.20)

×
(
Tr
[
F ρ
DIS (Q;µ) Γ̄

a
1 γ

σ Γ̄b
1

]
+ Tr

[
γρ Γ̄a

1 F
σ
DIS (Q;µ) Γ̄

b
1

])
LDIS
ρσ .

Inserting any of the twist-2 operators gives

ĤLP
DIS(Q;µ) = 1 +

αsCF

2π

[
− 2

ϵ2
− 3

ϵ
− L2

Q − 2LQ

ϵ
− 3LQ +

π2

6
− 8

]
, (6.21)

where the hat indicates that the hard function is unsubtracted. We note at this point that

the expression for Drell-Yan can be obtained by replacing L2
Q with L2

Q − π2.

For the NLP trace, we use the the combination of operators Γa = /̄n/4 and Γb = γi/2 or

Γa = γi/2 and Γb = /n/4. In this case, the hard function entering into the cross section is

given by

Ĥ int
DIS(Q;µ) = 1 +

αsCF

2π

[
− 1

ϵ2
− 2

ϵ
− 1

2
L2
Q − LQ

ϵ
− 2LQ +

π2

12
− 5

]
, (6.22)

and we once again note that the hard function for Drell-Yan can be obtained by replacing

L2
Q with L2

Q − π2.

Using the definition of the unsubtracted hard function, we can obtain the subtracted

hard function through multiplicative renormalization as

Ĥ(Q;µ) = Z(Q;µ)H(Q;µ) +O(α2
s) , (6.23)

where the divergences are contained in the multiplicative renormalization factor Z(Q;µ).

This allows us to obtain the subtracted hard functions

HDIS(Q;µ) = 1 +
αsCF

2π

[
−L2

Q − 3LQ +
π2

6
− 8

]
, (6.24)

H int
DIS(Q;µ) = 1 +

αsCF

2π

[
−1

2
L2
Q − 2LQ +

π2

12
− 5

]
, (6.25)
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and the multiplicative renormalization factors

ZDIS(Q;µ) = 1 +
αsCF

2π

[
− 2

ϵ2
− 3

ϵ
− 2LQ

ϵ

]
, (6.26)

Z int
DIS(Q;µ) = 1 +

αsCF

2π

[
− 1

ϵ2
− 2

ϵ
− LQ

ϵ

]
. (6.27)

The hard anomalous dimensions can be obtained from the multiplicative factors through the

relation

ΓH
µ = − ∂

∂lnµ
Z(Q;µ) . (6.28)

The explicit one loop expression for the hard anomalous dimensions become

ΓH
µ (Q;µ) = −αsCF

π

(
2LQ + 3

)
, ΓH int

µ (Q;µ) = −αsCF

π

(
LQ +

1

2

)
. (6.29)

ΓH
µ (Q;µ) = 2Γcusp(αs)ln

(
Q2

µ2

)
+ 2γV (αs) , (6.30)

ΓH int
µ (Q;µ) = Γcusp(αs)ln

(
Q2

µ2

)
+ 2γVNLP(αs) , (6.31)

where I define γVNLP0 = −CF . We now note a major important point in this chapter. So far

in this chapter, we have derived the hard anomalous dimensions which is associated with the

intrinsic sub-leading distributions. However, we have demonstrated that the hard anomalous

dimension is controlled by the operators Γ̄a and Γ̄b. Since these operators for intrinsic sub-

leading distributions are the same as those for the kinematic sub-leading distributions, the

NLP hard anomalous is left unchanged if we had formulated our cross section using kinematic

or intrinsic sub-leading distributions so that we have

ΓH kin
µ (Q;µ) = ΓH int

µ (Q;µ) . (6.32)

6.3.2 Soft Eikonal Approximation for Two Parton Sub-Process

The soft contribution to the differential cross section is obtained at LP by considering soft

gluons interacting with the collinear and anti-collinear quark fields. In Fig. 6.2, we provide

the diagrams associated with the LP soft interactions for the process. At LP, the relevant
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Φ
(
x2,k2⊥,S2; µ, ζ2/ν

2
)

Φ
(
x1,k1⊥,S1; µ, ζ1/ν

2
)

χc χ̄c

χ̄c̄ χc̄

Φ
(
x2,k2⊥,S2; µ, ζ2/ν

2
)

Φ
(
x1,k1⊥,S1; µ, ζ1/ν

2
)

χc χ̄c

χ̄c̄ χc̄

Figure 6.2: The diagrams which give rise to the soft function at NLO+LP in Drell-Yan. We

note that for Semi-Inclusive DIS, that the diagrams are the same except that the upper Φ is

replaced by the TMD FF quark-quark correlation function. At NLP, one of the good field

components, ξ, are replaced by the bad field component φ or the kinematic suppressed field

ξkin.

fields for the interaction are the good components of the collinear and anti-collinear quarks.

However at NLP, one good component of the quark field is replaced by a sub-leading quark

field, either the bad components φc/c̄ or the kinematic suppressed fields ξ
c/c̄
kin . In this section,

we review the interaction of the soft gluons at LP and then demonstrate how soft gluons

interact with the sub-leading fields.

We saw in the anomalous dimensions for the unpolarized cross section are given by

ΓS
µ = 2

αsCF

π
Lν , ΓS

ν = −2
αsCF

π
L . (6.33)

We also provide the subtracted soft function as

S (b;µ, ν) = 1 +
αsCF

2π

[
2LLν − L2 − π2

6

]
. (6.34)

To obtain the soft function for all twist-2 configurations, we note that the soft function is

insensitive to the spin configuration. Therefore, the soft function for all twist-2 processes

are identical. So we can take

SLP (b;µ, ν) = 1 +
αsCF

2π

[
2LLν − L2 − π2

6

]
. (6.35)
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ΓS
µ = 2

αsCF

π
Lν , ΓS

ν = −2
αsCF

π
L . (6.36)

To calculate the soft function at twist-3, we simply replace on of the incoming quark fields

with a power suppressed quark field. Studying the eikonalization of the quark field, we find

−i
(
/p+ /l

)

(p+ l)2
(−igγµ)φc (p)Aµ(l) = − g

n̄ · l
/̄n

2

/n

2
φc(p)n̄ · A(l) +O (λ) (6.37)

= O (λ) , (6.38)

which contains only contributions of order λ since φc(p) = /n/̄n/4ψc(p). Since the field φc

leads to a suppression of the cross section of order λ retaining the additional contributions

from the soft function would be at NNLP and should therefore be neglected. Therefore

the interaction of soft gluons with the bad components of the quark fields vanishes at NLP.

Thus while in Fig. 6.2, there are two diagrams which contribute to the soft function at LP,

there will be only one contribution when one considers sub-processes associated with intrinsic

sub-leading distributions. This result indicates that

ΓS int
µ =

1

2
ΓS
µ =

αsCF

π
Lν , (6.39)

ΓS int
ν =

1

2
ΓS
ν = −αsCF

π
L . (6.40)

Similarly the finite part of the NLO+NLP soft function is

Sint (b;µ, ν) =
√
S (b;µ, ν) = 1 +

αsCF

4π

[
2LLν − L2 − π2

6

]
. (6.41)

If we were to formulate the cross section using kinematic suppressed fields, we would have

the interaction

−i
(
/p+ /l

)

(p+ l)2
(−igγµ) /k⊥/n

2k+
ξc (p)Aµ(l) = − g

n̄ · l
/̄n

2

/n

2

/k⊥/n

2k+
n̄ · A(l) +O (λ) (6.42)

= O (λ) , (6.43)

which also vanishes in an analogous way to the bad component. We therefore find that

ΓS kin
µ = ΓS int

µ , ΓS kin
ν = ΓS int

ν , and Skin = Sint.
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6.3.3 Evolution in the Two Parton Correlations Functions

To establish both the collinear matching and the evolution of the TMD PDFs, re-factorize

the TMD PDF using the Fierz decomposition of the quark line, as in Fig. 2.6. To calculate

the anomalous dimensions at one loop, we obtain the divergent part of the integrals
∫
d2k⊥ e

−ik⊥·bΦ[Γa] (1)
unsub

(
x,k⊥,S;µ, ζ/ν

2
)
=
∑

b

∫
dx′

x′

∫
d2k′⊥ e

−ik′
⊥·b Φ

[Γb]
unsub

(
x′,k′⊥,S;µ, ζ/ν

2
)

×
∫
d2l⊥ e

il⊥·b (Iαβ Tr
[
Γ̄bγ

µγαΓaγ
βγµ
]
+ IIαTr

[
Γ̄b/nγ

αΓa

])
. (6.44)

In this expression, the kinematic part of the integrals are contained in the expressions

Iαβ = −g2CF

(
µ2eγE

4π

)ϵ ∫
dl+dl−dd−2l⊥ ϵ

(2π)d
δ

(
x− p+

P+
+

l+

P+

)
(2π)δ

(
l2
) kαkβ

k4
, (6.45)

IIα = −g2CF

(
µ2eγE

4π

)ϵ ∫
dl+dl−dd−2l⊥ ϵ

(2π)d
δ

(
x− p+

P+
+

l+

P+

)
(2π)δ

(
l2
) 2kα
k2

νη

(l+)1+η ,

(6.46)

while the spin dependence and the twist is contained in the trace. The momentum k repre-

sents the momentum of the quark entering the hard process and is given by

kµ = (p− l)+
n̄µ

2
+ (p− l)−

nµ

2
− lµt − lµ⊥ϵ (6.47)

where l is the momentum of the radiated gluon while p is the momentum of the incoming

quark and the ϵ subscript on lµ⊥ϵ denotes that the momentum is in a d− 4 = −2ϵ direction

in dimensional regularization.

Furthermore, we can also obtain the collinear matching for the k⊥-even TMDs by ob-

taining the finite part of this expression. To obtain these matching for the k⊥-even TMDs,

we take

Φ
[Γb]
unsub

(
x′,k′⊥,S;µ, ζ/ν

2
)
= Φ[Γ

b] (x′,S;µ) δ2(k′⊥) , (6.48)

such that the incoming parton has zero transverse momentum. We can therefore write in

the case where we are calculating the matching
∫
d2k⊥ e

−ik⊥·bΦ[Γa] (1)
unsub

(
x,k⊥,S;µ, ζ/ν

2
)
=
∑

b

∫
dx′

x′
Φ[Γ

b] (x′,S;µ)
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×
∫
d2l⊥ e

il⊥·b (Iαβ Tr
[
Γ̄bγ

µγαΓaγ
βγµ
]
+ IIαTr

[
Γ̄b/nγ

αΓa

])
. (6.49)

The integrals on the right-hand side of this expression can be obtained as follows. Firstly, we

integrate over l+ using the δ function in l+. We then perform the integration over l⊥ϵ using

the δ(l2) term. We note that in order to perform the integration in the angular dependence

of the lµ⊥ϵ, we group terms according to the powers of lµ⊥ϵ that enter. For instance, integrals

of the form
∫
dd−4l⊥ϵ f

µν(l−, l⊥, l
2
⊥ϵ) δ(l

2) (6.50)

can be computed trivially using the delta function. In this expression f represents an arbi-

trary function and the indices µ and ν are associated with directions in the four space time

directions. Additionally, terms of the form
∫
dd−4l⊥ϵ l

µ
⊥ϵ f

ν(l−, l⊥, l
2
⊥ϵ) δ(l

2) (6.51)

can be computed trivially by noting that the angular integration in the −2ϵ dimensions must

vanish. Once again f represents some arbitrary function. However in this case, the µ index

is associated with the −2ϵ dimensions while the ν index is associated with one of the four

space time directions. Finally we must also perform calculations of the form,

IIIµν ≡
∫
dd−4l⊥ϵ l

µ
⊥ϵ l

ν
⊥ϵ f(l

−, l⊥, l
2
⊥ϵ) δ(l

2) . (6.52)

To perform these computations we note that the only Lorentz structure which leads to

non-vanishing angular integration are those which go like IIIµν = gµνd−4 III such that we can

write

IIIµν = − gµνd−4
4− 2

∫
dd−4 l⊥ϵ l

2
⊥ϵ h(l

2
⊥ϵ) δ(l

2) . (6.53)

where gµνd−4 is the Minkowski metric in d− 4 dimensions. This metric is defined as

gµνd−4 = gµν⊥ − x̂µ x̂µ − ŷµ ŷµ . (6.54)

To perform the expansion in momentum space, we use the relations

µ2ϵ
(
l2⊥
)−1−ϵ

= −1

ϵ
δ
(
l2⊥
)
+

1

µ2
L0

(
l2⊥
µ2

)
+O (ϵ) , (6.55)
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µ2ϵ
(
l2⊥
)−2−ϵ

= − 1

1 + ϵ

∂

∂l2⊥

[
−1

ϵ
δ
(
l2⊥
)
+

1

µ2
L0

(
l2⊥
µ2

)]
+O (ϵ) , (6.56)

and

(1− x̂)−1−η = −1

η
δ (1− x̂) + L0 (1− x̂) . (6.57)

In these expressions, we define

Ln (z) ≡
(
1

z
lnn (z)

)

+

, (6.58)

which is regularized at z = 0. The expressions for the integrals in momentum space are

given by

Iαβ =
αsCF

4π2

{
(1− x̂)

[
1

ϵ
δ′
(
l2⊥
)
− 1

µ4
L′0
(
l2⊥
µ2

)]
lα⊥l

β
⊥ + (1− x̂)

[
1

ϵ
δ
(
l2⊥
)
− 1

µ2
L0

(
l2⊥
µ2

)]
gαβd−4
2

+
x̂

4

[
1

ϵ
δ
(
l2⊥
)
− 1

µ2
L0

(
l2⊥
µ2

)]
(nαn̄β + nβn̄α)

+
ζx̂2(1− x̂)

4

[
1

ϵ
δ′
(
l2⊥
)
− 1

µ4
L′0
(
l2⊥
µ2

)]
n̄αn̄β

− 1

2
√
ζ

[
1

ϵ
δ(l2⊥)−

1

µ2
L0

(
l2⊥
µ2

)](
lα⊥n

β + lβ⊥n
α
)

−
√
ζx̂(1− x̂)

2

[
1

ϵ
δ′
(
l2⊥
)
− 1

µ4
L′0
(
l2⊥
µ2

)](
lα⊥n̄

β + lβ⊥n̄
α
)}

and

IIα =
αsCF

4π2

{[
− ω2

η
δ(1− x̂)

1

µ2
L0

(
l2⊥
µ2

)
+
ω2

ηϵ
δ(l2⊥)δ(1− x̂)− x̂

ω2

ϵ
δ(l2⊥)L0 (1− x̂)

+
ω2

2ϵ
Lζ δ(l

2
⊥) δ(1− x̂)− Lζ

2
δ(1− x̂)

1

µ2
L0

(
l2⊥
µ2

)
+ x̂L0 (1− x̂)

1

µ2
L0

(
l2⊥
µ2

)]
n̄α

+

[
2ω2

η
δ(1− x̂)

1

µ2
L0

(
l2⊥
µ2

)
− 2ω2

ηϵ
δ(l2⊥)δ(1− x̂) +

2ω2

ϵ
δ(l2⊥)L0(1− x̂)

+
ω2

ϵ
Lζδ(l

2
⊥)δ(1− x̂) + Lζδ(1− x̂)

1

µ2
L0

(
l2⊥
µ2

)
− 2L0(1− x̂)

1

µ2
L0

(
l2⊥
µ2

)]
lα⊥√
ζ

}
.

We note that to arrive at these expressions, we have performed an expansion in both η and

ϵ. The two traces entering into the matching and evolution expressions will also contain
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dependence on ϵ. However, these traces will depend at most linearly on ϵ such that the

expansions for the integrals need to be carried out only to order ϵ0.

To obtain the one loop expression for the TMDs in b-space, we need to take the Fourier

transform of the integrals. To perform the Fourier transforms, we note that we must perform

integrals of the form
∫
d2l⊥ e

il⊥·b lµt f
ν(l2⊥) = −i ∂

∂bα

d

db2
f(b2) . (6.59)

Furthermore, we also need to perform integrals of the form
∫
d2l⊥ e

il⊥·b lµt l
ν
t g(l

2
⊥) = − ∂

∂bβ

∂

∂bα
g(b2) . (6.60)

After performing the integration, the kinematic integrals entering into these expressions are

given by

Ĩαβ =
αsCF

16π

[(
1

ϵ
+ L

)(
2(1− x̂)gαβd−4 + x̂

(
n̄βnα + n̄αnβ

))]

+ i
αsCF

16π

[
(1− x̂)

√
ζ
(
n̄αbβ + n̄βbα

) (1

ϵ
+ L

)
+

4

b2
√
ζ

(
nαbβ + nβbα

)]

+
αsCF

4π
(1− x̂)

[(
1

ϵ
+ L

)
gαβ⊥
2

− bαbβ

b2

]

ĨIα =
αsCF

16π

[(
4

η
L +

4

ηϵ
+

2

ϵ
Lζ + 2LLζ

)
ω2 δ(1− x̂)− 4x̂

(
1

ϵ
+ L

)
L0(1− x̂)

]
n̄α

+ i
αsCF

2π

1

b2
√
ζ

[
2

(
1

η
δ(1− x̂)− L0(1− x̂)

)
+ Lζδ(1− x̂)

]
bα ,

where the tilde means that the kinematic integrals are in b-space. We note that the ex-

pression for Iαβ is closely analogous to Eq. (3.9) of Ref. [363] except that terms of the form
(
n̄βnα + n̄αnβ

)
and

(
n̄αbβ + n̄βbα

)
did not enter into their expression. However, we note

that terms of these forms vanish upon contraction with the traces for leading twist opera-

tors. However, these terms need to be considered at NLP. Similarly, for Iα operators of the

form bα do not enter at LP but will be vital to our analysis late in this chapter.

Φ
[Γa] (1)
unsub

(
x, b,S;µ, ζ/ν2

)
=
∑

b

∫
dx′

x′
Φ
[Γb]
unsub

(
x′, b,S;µ, ζ/ν2

)
(6.61)
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×
(
Ĩαβ Tr

[
Γ̄bγ

µγαΓaγ
βγµ
]
+ ĨIαTr

[
Γ̄b/nγ

αΓa

])
. (6.62)

To obtain the anomalous dimensions, we once again perform multiplicative renormalization

Φ̂
[Γa] (1)
unsub

(
x, b,S;µ, ζ/ν2

)
= ZΓa Γb

(
x, b,S;µ, ζ/ν2

)
Φ

[Γa] (1)
unsub

(
x, b,S;µ, ζ/ν2

)
. (6.63)

Therefore, we have the evolution equations

∂

∂lnµ
Φ

[Γa] (1)
unsub

(
x, b,S;µ, ζ/ν2

)
= γµ

Γa Γb

(
b;µ, ζ/ν2

)
Φ
[Γb] (1)
unsub

(
x, b,S;µ, ζ/ν2

)
, (6.64)

∂

∂lnν
Φ[Γa] (1)

(
x, b,S;µ, ζ/ν2

)
= γνΓa Γb

(
b;µ, ζ/ν2

)
Φ[Γ

b] (1) (x, b,S;µ, ζ/ν2
)
, (6.65)

where the anomalous dimensions are defined in terms of the multiplicative renormalization

terms as

Γµ
Γa Γb = − ∂

∂lnµ
ZΓa Γb(b;µ, ζ/ν2) , Γν

Γa Γb = − ∂

∂lnν
ZΓa Γb(b;µ, ζ/ν2) . (6.66)

From the computed anomalous dimensions, we can obtain the renormalization group equa-

tions for the intrinsic sub-leading TMD PDFs as follows

∂

∂lnµ




Φ[/n]

Φ[/nγ
5]

Φ

[
iσk′+γ5

]

Φ[1]

Φ[γ
5]

Φ

[
γk′

]

Φ

[
γk′γ5

]

Φ

[
iσk′l′γ5

]

Φ[iσ
+−γ5]




=
αsCF

2π
Γµ




Φ[/n]

Φ[/nγ
5]

Φ[iσ
k+γ5]

Φ[1]

Φ[γ
5]

Φ[γ
k]

Φ[γ
kγ5]

Φ[iσ
klγ5]

Φ[iσ
+−γ5]




. (6.67)
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Here the matrix Γµ have the following form

Γµ =




Γµ
2 0 0 0 0 0 0 0 0

0 Γµ
2 0 0 0 0 0 0 0

0 0 Γµ
2δ

k′

k 0 0 0 0 0 0

0 0 0 Γµ
3 0 0 0 0 0

0 0 0 0 Γµ
3 0 0 0 0

0 0 0 0 0 Γµ
3δ

k′

k 0 0 0

0 0 0 0 0 0 Γµ
3δ

k′

k 0 0

0 0 0 0 0 0 0 1
4
Γµ
3

(
δk

′

k δ
l′

l − δl
′

k δ
k′

l

)
0

0 0 0 0 0 0 0 0 Γµ
3




. (6.68)

The relevant functions in the above matrix are given by

Γµ
2(µ, ν, ζ) =

αs(µ)CF

2π
(2Lζ + 3) Γµ

3(µ, ν, ζ) =
αs(µ)CF

2π

(
Lζ −

1

2

)
(6.69)

Similarly, the rapidity evolution equations are given by

∂

∂lnν




Φ[/n]

Φ[/nγ
5]

Φ

[
iσk′+γ5

]

Φ[1]

Φ[γ
5]

Φ

[
γk′

]

Φ

[
γk′γ5

]

Φ

[
iσk′l′γ5

]

Φ[iσ
+−γ5]




=
αsCF

2π
Γν




Φ[/n]

Φ[/nγ
5]

Φ[iσ
k+γ5]

Φ[1]

Φ[γ
5]

Φ[γ
k]

Φ[γ
kγ5]

Φ[iσ
klγ5]

Φ[iσ
+−γ5]




. (6.70)
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The corresponding anomalous dimensions Γν are givebn by

Γν =




2L 0 0 0 0 0 0 0 0

0 2L 0 0 0 0 0 0 0

0 0 2Lδk
′

k 0 0 0 0 0 0

0 0 0 L 0 0 0 0 0

0 0 2ibk
xP+

∂L
∂b2

0 L 0 0 0 −L
2ibk

′

xP+
∂L
∂b2

0 0 0 0 Lδk
′

k 0 0 0

0 2ibk
′

xP+
∂L
∂b2

0 0 0 0 Lδk
′

k 0 0

0 0 i
xP+

∂L
∂b2

(
bl

′
δk

′

k − bk
′
δl

′

k

)
0 0 0 0 L

(
δk

′

k δ
l′

l − δl
′

k δ
k′

l

)
0

0 0 2ibk
xP+

∂L
∂b2

0 −L 0 0 0 L




.

(6.71)

From Eqs. (6.67) and (6.70) we see the interesting behaviour that the diagonal anomalous

dimensions for the NLP distributions are half those for the LP distributions. This interesting

behaviour can be traced back to how the sub-leading fields interact with the Wilson lines.

The explicit expression for the interaction of the Wilson lines with the intrinsic sub-leading

field is given by

−g n
µ

n · l γµ φ
c (p) = O (λ) . (6.72)

So the result that the anomalous dimension of the intrinsic sub-leading twist TMDs is half

of the leading twist TMDs is a consequence of the fact that the interaction of this field

with the Wilson line vanishes. We note that this behavior is not limited to the intrinsic

NLP distributions but also occurs for the kinematic NLP distributions. This can be seen

by examining the interaction of the Wilson line with this field, explicitly the interaction is

given by

−g n
µ

n · l γµ
/p⊥/n

2p+
ξckin (p) = O (λ) . (6.73)

For the case of the intrinsic sub-leading distributions, we also find that the Collins-Soper

evolution equation is not diagonal, which is consistent with the calculation which was per-

formed in Ref. [364]. As a result, solving the rapidity evolution equation is highly non-trivial

at twist-3.
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Φ
(
x2,k2⊥,S2; µ, ζ2/ν

2
)

Φ
(
x1,k1⊥,S1; µ, ζ1/ν

2
)

ϕc χ̄c

χ̄c̄ χc̄

t

z

ξ⊥

𝒰n̄(ξ−,−∞;ξT)

𝒰T(ξT,0T;−∞)

𝒰n̄(−∞,0;0T) 𝒰n(0,−∞;0T)

𝒰T(0T,ξT;−∞)
𝒰n(−∞,0;0T)

Figure 6.3: Example diagram for the collinear Wilson line structure for Drell-Yan. The red

lines represent the Wilson lines for the incoming quark distribution while the blue Wilson

lines represent the Wilson lines for the incoming anti-quark distribution. The dashed blue

line represents the vanishing Wilson line due to the interaction with the sub-leading field.

We note that there is an additional interaction where the bad field enters on the right side

of the cut as φ̄c.

6.3.4 Soft Subtraction, Factorization Breaking, and Renormalization Group

Consistency

In Chapter 2, we saw that the properly defined TMDs are obtained through the relations

f(x1, b;µ, ζ1)f(x2, b;µ, ζ2) = funsub(x1, b;µ, ζ1/ν
2)
√
S(b;µ, ν) (6.74)

× funsub(x2, b;µ, ζ2/ν
2)
√
S(b;µ, ν) , (6.75)

where I have used the case of unpolarized hadron production in Drell-Yan as an example.

At NLP, we could take the Cahn effect in Drell-Yan as an example process and we would

expect that the soft subtraction should go like

ki⊥
P+

f⊥(x1, b;µ, ζ1)f(x2, b;µ, ζ2) ∼
ki⊥
P+

f⊥ unsub(x1, b;µ, ζ1/ν
2)
√
Sint(b;µ, ν) (6.76)

× funsub(x2, b;µ, ζ2/ν
2)
√
Sint(b;µ, ν) . (6.77)

By studying the appearance of the ν dependent term, one can show that for the case of f⊥

that the soft subtraction is well defined. However, since Sint =
√
S, the soft subtraction
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for the TMD FF does not cancel all of the appearances of the scale ν. As a result, this

naive picture for the soft subtraction fails. This failure can also be seen at the level of the

anomalous dimensions. Namely at LP, we know that we have the relation

ΓS LP
ν + Γf

ν + Γf
ν = 0 . (6.78)

However, at NLP, we would have

Γν
S int + Γν

f + Γν
f⊥ =

1

2
ΓS LP
ν + Γν

f + Γν
f⊥ = Γν

f⊥ . (6.79)

Thus at NLP, this naive picture does not provide renormalization group consistency. To

address this issue, let us now study the left panel of Fig. 6.3. In this figure, we examine an

example sub-process where the top correlator is a LP one and the bottom correlator is a sub-

leading. We have also included the two anti-collinear gluons in blue which are responsible

for generating the anti-collinear Wilson lines. These anti-collinear Wilson lines represent the

⊗ in diagrams such as Fig. 2.6. In the LP case, there are two non-vanishing interactions in

Fig. 6.3 which give rise to the two Wilson line interactions in Fig. 2.6. However, in the case

of Fig. 6.3, we must re-examine the interaction of a collinear sub-leading quark field and an

anti-collinear gluon. One can easily show that

−i
(
/p+ /l

)

(p+ l)2
(−igγµ)φc (p)Aµ(l) = − g

n̄ · l
/̄n

2

/n

2
φc(p)n̄ · A(l) +O (λ) (6.80)

= O (λ) . (6.81)

As a result, the field of gluons which is responsible for generating one of the Wilson lines for

f vanishes. There are far reaching implications of this result.

Firstly, when one computes the evolution of the LP distribution in the presence of a

sub-leading field, one should only consider a single Wilson line interaction. As a result, the

UV divergences which are associated with the evolution of the LP distributions should be

exactly half the usual ones. Therefore, the anomalous dimensions for the LP TMDs are

half the usual ones when considering NLP contributions. This can be explicitly verified by

studying the renomalization group consistency equations

Γν
S int +

1

2
Γν
f + Γν

f⊥ = 0 , (6.82)
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Γν
a

Γ̄µ
b

+

Γ̄µ
b

Γν
a

Figure 6.4: Two graphs contributing to the rapidity divergence of the three parton TMDs

in light-cone gauge. The ⊗ represents the Wilson lines while the operators Γµ
a represent the

NLP operators in the decomposition of the three parton correlator.

Γµ
S int +

1

2
Γµ
f + Γµ

f⊥ + Γµ
H NLP = 0 . (6.83)

Therefore RG consistency is only achieved once we have taken into consideration that the

evolution for the LP soft function is different when one introduces an intrinsic sub-leading

field. As the idea of factorization theorems is that the distributions should be blind to the

total scattering event, the fact that the evolution equations for the TMD PDF are different

when one considers sub-leading azimuthal asymmetries indicates that the evolution for the

LP distributions is modified. The second issue is much more dramatic. Since the gluons

which generate the Wilson line cannot connect to the sub-leading field, the gauge invariance

of the LP TMD PDF does not manifest diagram by diagram in perturbation theory. Both

of these effects indicate that the naive factorization must be modified at NLP. In the right

side of Fig. 6.3, I have included a figure which provides the collinear Wilson loop for the

Drell-Yan cross section. The red Wilson lines are those which are associated with f⊥ while

the blue Wilson lines are those associated with f in the Cahn effect. The dotted line is the

‘missing’ Wilson line at sub-leading twist. Finally, while I have discussed these issues for the

intrinsic sub-leading distributions, I would also like to note that these issues enter for the

kinematic sub-leading distributions as well.
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6.3.5 Evolution for the three parton correlator

A final point of our discussion is to examine the rapidity evolution equation for the dynamical

twist-3 distributions.

Previously we saw that these distributions are generated when one considers the intro-

duction of an additional transverse gluon in the matrix elements. This gluon introduces

additional complications when calculating QCD evolution equation.

dµν(p) = −gµν + pµnν + pµnν

n · p (6.84)

which is the metric associated with gluons in this gauge. Closely analogous to the expression

for the two parton correlator, we can express the one loop expression for the three parton

TMDs as

∫
d2k⊥e

−ik⊥·bΦ[Γa]µ
Aunsub

(
x, x1,k⊥,S;µ, ζ/ν

2
)
=
∑

b

∫
dx′

x′

∫
dx′1
x′1

(6.85)

∫
d2p⊥ e

−ip⊥·b Φ[Γb]µ
Aunsub

(
x′, x′1,p⊥,S, µ, ζ/ν

2
)∑

i

F i
ab (x, x1, x

′, x′1, b) .

In this expression i is the index associated with each of the graph which contribute at NLO.

In this chapter, we focus on the Collins-Soper equation of the three parton correlator. In

light-cone gauge, the two graphs which are responsible for generating the rapidity divergence

are given in Fig. 6.4.

F 1
ab (x, x1, x

′, x′1, b) =
g2

2

(
CF − CA

2

)(
µ2eγE

4π

)ϵ ∫
d2l⊥e

il⊥·b
∫
dl+dl−dd−4l⊥ϵ

(2π)d
(6.86)

× Tr
[
Γ̄αµγρ/k3Γ

βν/kγσ
]
dρσ(l)

1

k2
1

k23
ω2

(
l+

ν

)−η
(2π)δ(l2)

× 1

P+
δ

(
x− k+

P+

)
δ

(
x1 −

p+1
P+

)
(6.87)

F 2
ab (x, x1, x

′, x′1, b) =
g2

2

CA

2i

(
µ2eγE

4π

)ϵ ∫
d2l⊥e

il⊥·b
∫
dl+dl−dd−4l⊥ϵ

(2π)d
(6.88)

× Tr
[
Γ̄αµγρ/k3Γ

βν
]
V ασδ

(
x′1P

+,−l,−k2
)
dδβ(k2) dρσ(l)

236



× (2π)δ(l2)
1

k22

1

k23
ω2

(
l+

ν

)−η
1

P+
δ

(
x− k+

P+

)
δ

(
x1 −

p+1
P+

)

where

V µνρ(k1, k2, k3) = i [gµν (k1− k2)ρ + gµν (k1− k2)ρ] , (6.89)

is the kinematic part associated with the three gluon vertex. These integrals can be explic-

itly performed and the rapidity anomalous dimension can be obtained for Φ
[Γa]µ
A unsub and the

evolution equation becomes

∂

∂lnν
Φ

[Γa]µ
A unsub

(
x, x1,k⊥,S;µ, ζ/ν

2
)
= Γdyn

µ Φ
[Γa]µ
Aunsub

(
x, x1,k⊥,S;µ, ζ/ν

2
)
, (6.90)

where we find that the rapidity anomalous dimension of the three parton correlation function

is the same as the anomalous dimension of the leading-power TMDs.

6.4 Conclusion

In this chapter, I have presented the relevant distributions which enter at NLP to the cross

sections for Semi-Inclusive DIS and Drell-Yan. Through explicit calculation, I have for the

first time derived the evolution equations for these distributions as well as for the sub-

leading soft and hard functions. We find in our study that for the case of the intrinsic

and kinematic sub-leading distributions that while renormalization group consistency can

be obtained, that the introduction of the sub-leading fields leads to a modification of the

factorization and gauge invariance of the leading distribution, indicating that the full story

for TMD factorization at sub-leading twist may be much more complicated than what is

currently presented in the literature. Additionally, while in [362], the authors conjectured

for the form of the sub-leading soft function for the intrinsic sub-leading distributions, we

find through explicit calculation that this assumption is not valid. We do however find that

the rapidity anomalous dimension for the dynamical sub-leading twist distribution is the

same as the twist-2 distributions, which could indicate that the soft function associated with

these distributions is the same as those that are obtained at LP.
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CHAPTER 7

Summary and Conclusion

QCD is the fundamental theory of the strong interaction and governs the dynamics of bound

quarks and gluons and their relation to the hadronic properties. The EIC will allow us

to perform QCD tomography at never before achieved precision, and represents the newest

endeavor for humanity to uncover the underlying nature of matter. In this thesis, I have

discussed aspects of studying how hadronic spin affects the partonic degrees of freedom by

discussing TMDs.

Due to the non-perturbative nature of QCD, to perform full tomography and make pre-

dictions at colliders, we rely on factorization theorems. In the language of Collins, Soper, and

Sterman, I have demonstrated that these factorization theorems arise due to the appearance

of IR divergences in the virtual loop diagrams. The kinematic regions in which these IR

divergences occur provide us with a catalog of the QCD modes which provide the asymp-

totic contributions to QCD amplitudes. We found that there were the appearance of two

modes, the soft and collinear modes. Using SCET, we reduce the degrees of freedom of our

theoretical formalism by accounting for these QCD modes and integrate out modes which do

not contribute to the asymptotic behavior of QCD. For Drell-Yan, I provided an overview of

the factorization theorem. We saw in this analysis the appearance of large logarithms in the

perturbative expressions and I presented a procedure for performing resummation of these

large logarithms. In the case of the TMD PDFs, we saw the appearance of a new soft mode

due to the appearance of the infrared rapidity poles. We calculated this new soft function

and used it to perform soft subtraction in the TMDs.

Using these perturbative methods, we then performed the highest precision extraction

238



of the quark Sivers function, which encodes information for how the parent hadron’s spin

alters the transverse momentum of unpolarized quarks. We saw in this section that the

Sivers asymmetry is generated due to multiple parton interactions. Using the global set of

data from HERMES, COMPASS, Jefferson Lab, and RHIC, we performed the first global

extraction of the Sivers function. Our findings were that the experimental data sets from

HERMES, COMPASS, and Jefferson Lab were all consistent with one another. While we

found that the size of the RHIC asymmetry was much larger than what the rest of the data

was indicating. By performing a thorough analysis, we found that this discrepancy did not

occur due to our non-perturbative parameterization. Recently, a re-analysis with additional

statistics at RHIC was released. This re-analysis found that the size of asymmetries are

much smaller than what the previous analysis indicated. These findings indicate that our

original global analysis was not flawed and that the current methods of performing a global

analysis of the Sivers function were all well-founded. We then provided projections at the

EIC in Semi-Inclusive DIS.

We then moved on to discuss how jets can be used to uncover hadronic structure at

the EIC and also in p-p collisions. Since the main interests of the EIC are to uncover the

gluon content of hadrons as well as the spin structure, the gluon Sivers function is regarded

as a golden measurement at the EIC. Using SCET, we established a factorization and re-

summation formalism for the gluon Sivers asymmetry at the EIC. We then provided first

predictions for this asymmetry and also the unpolarized process at this facility. Additionally,

we studied how dijet production in p-p collisions could be used to measure the Sivers func-

tion. Using SCET, we established a factorization and resummation formalism. We found in

this study that since the Sivers function is related to a three-parton correlation function, the

computation even at tree level for the hard contributions was non-trivial. Nevertheless, we

established a formalism for calculating these diagrams and used this to provide predictions

for the Sivers asymmetry at RHIC at
√
s = 200 GeV. Lastly in this chapter, we studied how

jet fragmentation functions can be used to study the distribution of hadrons within jets in

Z-tagged jets.
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I then moved on to discuss how the transversity TMD FF and the TMD PFF can be

obtained at the future EIC for Λ baryons. Using the recent measurement at Belle for sponta-

neous Λ polarization in DIA, I performed one of the first extractions of the TMD PFF. Using

the recent COMPASS measurement of the transverse spin transfer, I performed the first ex-

traction of the transversity TMD FF. We then performed a Pythia re-weighting analysis

in order to obtain statistical uncertainties at the EIC. Using these statistical uncertainties,

we categorized the required luminosity to reduce fit uncertainties for these distributions.

Using the TMD Fragmenting Jet Functions, we provided predictions at the future EIC

for spontaneous Λ production and the transverse spin transfer in lepton-jet correlations in

lepton-proton collisions. Due to similarities between the Sivers function and the TMD PFF,

these measurements will be vital for testing universality of the TMD FFs.

Lastly, I discussed the TMDs at sub-leading power. While virtually all TMD formalisms

up to this point neglect power corrections of q⊥/Q and M/Q, we discussed how sub-leading

formalism can be used to probe novel distributions. This study tests whether the LP formal-

ism for factorization and resummation can be naively applied to these higher twist computa-

tions. Through explicit computation at the next-to-leading order, we perform the calculation

of the hard, collinear, and soft contributions to the differential cross section at sub-leading

twist. We found that the introduction of an intrinsic or kinematic sub-leading field causes a

modification of both factorization and gauge invariance. We therefore provide evidence that

naively applying LP formalism at NLP leads to major issues in the factorization. Neverthe-

less, we establish renormalization group consistency at one loop for these distributions.

The TMD formalism and simulation tools developed in this thesis will have broad applica-

tions in the experimental program at the future Electron-Ion Collider. From these analyses,

we will be able to probe the spin structure of the proton in novel processes and at higher

precision than what was previously available.
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