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Test–Retest Reliability of Computational Network
Measurements Derived from the Structural Connectome

of the Human Brain

Julia P. Owen,1,2 Etay Ziv,1 Polina Bukshpun,3 Nicholas Pojman,3 Mari Wakahiro,3 Jeffrey I. Berman,4

Timothy P.L. Roberts,4 Eric J. Friedman,5 Elliott H. Sherr,3 and Pratik Mukherjee1,2

Abstract

Structural magnetic resonance (MR) connectomics holds promise for the diagnosis, outcome prediction, and treat-
ment monitoring of many common neurodevelopmental, psychiatric, and neurodegenerative disorders for which
there is currently no clinical utility for MR imaging (MRI). Before computational network metrics from the human
connectome can be applied in a clinical setting, their precision and their normative intersubject variation must be
understood to guide the study design and the interpretation of longitudinal data. In this work, the reproducibility
of commonly used graph theoretic measures is investigated, as applied to the structural connectome of healthy
adult volunteers. Two datasets are examined, one consisting of 10 subjects scanned twice at one MRI facility
and one consisting of five subjects scanned once each at two different facilities using the same imaging platform.
Global graph metrics are calculated for unweighed and weighed connectomes, and two levels of granularity of
the connectome are evaluated: one based on the 82-node cortical and subcortical parcellation from FreeSurfer
and one based on an atlas-free parcellation of the gray–white matter boundary consisting of 1000 cortical
nodes. The consistency of the unweighed and weighed edges and the module assignments are also computed
for the 82-node connectomes. Overall, the results demonstrate good-to-excellent test–retest reliability for the en-
tire connectome-processing pipeline, including the graph analytics, in both the intrasite and intersite datasets.
These findings indicate that measurements of computational network metrics derived from the structural connec-
tome have sufficient precision to be tested as potential biomarkers for diagnosis, prognosis, and monitoring of
interventions in neurological and psychiatric diseases.

Key words: connectome; diffusion tensor imaging (DTI); graph theory; magnetic resonance imaging (MRI);
network; structural connectivity; tractography; white matter

Introduction

Over the past 30 years, magnetic resonance (MR) imag-
ing has revolutionized the diagnosis and clinical man-

agement of neurological disease, including major illnesses
such as stroke, brain tumors, multiple sclerosis, and epilepsy.
However, despite this record of progress, most of the world-
wide morbidity and death from neurological and psychiatric
diseases remain unaddressed by current diagnostic imaging
techniques. Current clinical MR imaging (MRI) modalities
are not typically helpful for diagnosis, outcome prediction,
or treatment monitoring of many common neurodevelop-

mental, psychiatric, and neurodegenerative disorders. Prom-
inent examples include autism, schizophrenia, bipolar
disorder, major depression, Parkinson’s disease, and Alz-
heimer’s disease. Collectively, they have much greater preva-
lence than those neurological diseases for which MRI is
routinely useful, and the incidence of disorders such as au-
tism and Alzheimer’s disease continues to rise (Rosen and
Napadow, 2011).

The pathophysiology of many neurodevelopmental, psy-
chiatric, and neurodegenerative diseases is thought to be
structurally diffuse, unlike that of more focal disorders such
as stroke and brain tumors for which MRI has proven clinical
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utility. Therefore, advances in diagnosis and prognosis de-
pend on a better understanding of the brain at a systems
level. Recently, there has been much interest in measuring
the structural and functional connectivity of brain regions
using diffusion MR tractography and resting-state functional
MRI, respectively. This has in turn led to the new science of
MR connectomics, a burgeoning research methodology that
applies graph theory to whole-brain structural and functional
networks, which are referred to as connectomes (Bullmore
and Sporns, 2009; Gong et al., 2009; Hagmann et al., 2007,
2010; Iturria-Medina et al., 2007; Kuceyeski et al., 2011; Li
et al., 2012a, 2012b; Seung, 2012; Sporns et al., 2005; Sporns,
2011; van den Heuvel and Sporns, 2011; Zalesky et al.,
2010). Graph theoretic principles can be used to ascertain
properties such as the local and global efficiency of a network,
the similarity of different networks, and the modular organi-
zation of distinct subnetworks within a larger network. The
connectome framework has already yielded novel insights
into the structural and functional organization of the normal
human brain and has begun to be applied to the study of
human brain development and of neurological and psychiat-
ric diseases (Fan et al., 2011; Fornito and Bullmore, 2012; Hag-
mann et al., 2012; Irimia, et al., 2012; Owen et al., 2012; Shu
et al., 2009; Shu et al. 2012; Tymofiyeva et al., 2012; Verstraete
et al., 2011; Yan et al., 2011; Yap et al., 2011).

For clinical application of MR connectomics, there is a need
to determine the measurement precision of whole-brain net-
work metrics and their normative intersubject variation.
This information, in conjunction with effect size, can be
used to determine statistical power and sample sizes for
cross-sectional studies of group differences between patients
and matched controls, as well as for longitudinal studies of
development, disease evolution, and treatment efficacy.

There have been several prior studies that examine the as-
pects of the test–retest reliability of structural connectome re-
construction methods and the application of graph analytics
to the resulting networks (Bassett et al., 2011; Cammoun
et al., 2012; Cheng et al., 2012; Dennis et al., 2012; Hagmann
et al., 2008; Vaessen et al., 2010). However, many important
details of the connectome reconstruction pipeline differ across
these prior studies, with no consensus on the best approach.
Further, only fair-to-good levels of reproducibility have
been achieved for measurements of connectome graph met-
rics in these previous reports.

In this article, we investigate the test–retest reliability and
intersubject variation of network metric measurements from
the normal adult structural connectome using acquisition
and analysis methods suitable for clinical research. This
includes a standard 3T diffusion MRI protocol and widely
used postprocessing software. Connectomic analysis was
carried out at both low- (82 regions) and high- (1000 regions)
parcellation scales. We explore weighed connectomes, in
which connection strength information is preserved as
edge weights, and unweighed connectomes, in which the
edges are binarized as being present above a connection
strength threshold or absent otherwise. In addition to sum-
mary metrics of the entire network, such as mean degree,
characteristic path length, and mean clustering coefficient,
we also examine measures at higher levels of granularity, in-
cluding the modular organization of subnetworks as well
as the consistency of individual network connections in
edge space.

We demonstrate that the proposed connectome-processing
pipeline produces good-to-excellent reliability of network
metric measurements, both for a single imaging site as well
as across two geographically distant sites, employing the
same type of MR scanner. These results represent an initial
step toward validating structural brain network metrics as
quantitative imaging biomarkers of neurologic and psychiat-
ric diseases, including for multicenter clinical trials.

Materials and Methods

Subjects

Ten healthy control subjects (mean age 26.7 – 5.9 years, five
men, nine right-handed) were scanned at Site 1 twice with an
average of 30.4 – 2.7 days between scans. Five healthy con-
trols subjects (mean age 34.6 – 10.7 years, four men, four
right-handed) were scanned once at Site 1 and once at Site
2, with an average of 60.8 – 33.6 days between scans. All
study procedures were approved by the institutional review
boards at our medical centers and are in accordance with
the ethics standards of the Helsinki Declaration of 1975, as re-
vised in 2008.

Image acquisition

All MRI was performed on a 3T TIM Trio MR scanner (Sie-
mens, Erlangen, Germany) at each site, using 32-channel head
phased-array radiofrequency head coils. High-resolution
structural MRI of the brain was performed with an axial 3D
magnetization prepared rapid-acquisition gradient-echo
(MPRAGE) T1-weighed sequence (echo time [TE] = 1.64 ms,
repetition time [TR] = 2530 ms, TI = 1200 ms, flip angle of 7�)
with a 256-mm field of view (FOV), and 160 1.0-mm contigu-
ous partitions at a 256 · 256 matrix.

Whole-brain diffusion was performed with a multislice 2D
single-shot twice-refocused spin-echo echo-planar sequence
with 30 diffusion-encoding directions, the iPAT technique
for parallel imaging with a reduction factor of 2, a diffu-
sion-weighing strength of b = 1000 s/mm2; TE/TR = 88/
10300 ms; number of excitations [NEX] = 1; interleaved 2-
mm axial sections with no gap; inplane resolution of
2 · 2 mm with a 128 · 128 matrix; and an FOV of 256 mm.
An additional image set was acquired with no diffusion
weighing (b = 0 s/mm2). The total acquisition time for diffu-
sion imaging was 8.5 min.

Data preprocessing

After the nonbrain tissue was removed using the Brain
Extraction Tool (Smith, 2002), the diffusion-weighed images
were corrected for motion and eddy currents using the func-
tional MRI of the brain (FMRIB) linear-image registration tool
(FLIRT) with a 12-parameter linear image registration ( Jen-
kinson et al., 2002) using the b = 0 s/mm2 image as the refer-
ence. The fractional anisotropy (FA) image was calculated
using FSL’s DTIFIT.

Cortical parcellation

The T1-weighed MR images were automatically seg-
mented using FreeSurfer 5.1.0 (Fischl et al., 2004) with the
default settings of recon-all, resulting in 68 cortical re-
gions and 14 subcortical regions. The 68 cortical regions
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were transformed to the gray–white matter boundary (GWB)
using FreeSurfer. These 82 regions represent the nodes of the
low-resolution connectome. In addition to this atlas-based
coarse parcellation, an atlas-free finer parcellation of the cor-
tical GWB was performed. One thousand clusters of voxels
were grown along the 3D boundary as described in the first
phase of the boundary partition in Hagmann et al. (2007).
These 1000 regions represent the nodes in the high-resolution
cortical connectome. These nodes, however, are purely corti-
cal, as the GWB is not easily segmented for the subcortical
structures.

Fiber tractography and connectome reconstruction

Using FLIRT, the affine transform from diffusion to struc-
tural space was calculated by registering the FA volume to
the T1 volume. Each of the cortical GWB volumes and the
subcortical volumes was registered to the diffusion space to
be used as seeds for the tractography. Probabilistic tractogra-
phy was performed with probtrackx2 (Behrens et al., 2007),
with 2000 streamlines initiated from each seed voxel using
the default options. The number of streamlines from each
seed to each of the other seeds, called targets, was summed
across the voxels to obtain a connection strength between
each seed and target pair. This connection strength was
then divided by the sum of voxels in the seed and target re-
gion to account for differences in volume between the various
cortical or subcortical regions. Since tractography cannot de-
termine directionality due to the antipodal symmetry of diffu-
sion imaging, the normalized connection strength between
each seed and target pair in both directions was summed,
and the connection strength of a seed with itself was set to
zero. This processing pipeline (Fig. 1) closely follows the
M2 method, described by Li et al. (2012b), and is also de-
scribed in detail in Owen et al. (2012).

Weighed and unweighed connectomes were used in this
investigation. The weighed connectomes do not require
thresholding, but a threshold value for the connection
strength has to be used to binarize the weighed network for
the unweighed metrics. A threshold of 200 was applied to
all the 82-node connectomes; this value was chosen such
that the mean degree of the 10 intrasite subjects was *12, fol-
lowing van den Heuvel and Sporns (2011). The same connec-
tion strength threshold of 200 was also used to binarize all of
the unweighed 1000-node connectomes.

Network analysis: graph metrics

The reproducibility of summary graph metrics was inves-
tigated for the unweighed and weighed whole-brain struc-
tural networks.

The unweighed metrics used to assess the stability of the
global network structure include mean degree (K), character-
istic path length (L), mean global efficiency (E), and mean
normalized betweenness centrality (B). The degree of a

FIG. 1. Cartoon depicting the 82-node connectome-processing
pipeline. First, the diffusion and structural magnetic resonance
images are aligned; then, the FreeSurfer labels are transformed
to the diffusion space to seed the tractography. Tractography
is performed with each of the 82 seed regions to construct the
structural connectome.

‰
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node is the total number of suprathreshold connections it
makes with other nodes in the network. Characteristic path
length is calculated by taking the average of all the shortest
paths between all pairs of nodes in the network; it is related
to the speed at which information can be disseminated
through a network. The normalized betweenness of a node
is the number of shortest paths that pass through it and is nor-
malized by the total number of possible shortest paths. Nor-
malized betweenness provides a measure of dispersion of the
shortest paths. Global efficiency is computed by taking the
mean inverse path length between all pairs of nodes. This
measure is similar to the characteristic path length, but the in-
version reduces the disproportionate effect of long or infinite
path lengths that occur in very sparse or disconnected net-
works, respectively.

Local connectivity metrics include the mean clustering co-
efficient (C) and the mean local efficiency (Eloc). The latter
provides a measure of the efficiency of the local environment
of a node. The clustering coefficient is the ratio of closed trian-
gles between triplets of nodes and the total number of con-
nected triplets. The triangular pattern of connectivity is
assumed to be a feature of networks with strong local integra-
tion of information.

We also test the following weighed metrics: mean strength
(Kw), weighed characteristic path length (Lw), mean normal-
ized weighed betweenness (Bw), and mean weighed cluster-
ing coefficient (Cw), which have similar interpretations as
their unweighed analogs. The unweighed and weighed met-
rics were applied to the 82-node and 1000-node connectomes.
A comprehensive discussion of these network metrics and
their significance can be found in Rubinov and Sporns
(2010). All network metrics were implemented in MatLab,
and the code is a part of an open-source software package,
the Brain Connectivity Toolbox (Rubinov and Sporns, 2010).

Measurement precision of graph metrics

To quantify the stability of the network metrics, we use the
pooled within-group percentage coefficient of variation
(CV%) and the intraclass correlation coefficient (ICC). CV%
is defined as the ratio of the mean intrasubject standard devi-
ation (SD) to the overall measurement mean (Lachin, 2004;
Vaessen et al., 2010). CV% measures the precision of a metric
for all subjects. ICC is the ratio of intersubject variance to the
sum of intersubject and intrasubject variance. According to
the well-established guidelines for clinical research (Fleiss,
1986; Tooth et al., 2005), ICC below 0.4 are considered poor
reproducibility; ICC values between 0.4 and 0.75 are consid-
ered fair-to-good reproducibility; and ICC values above 0.75
are considered excellent reproducibility.

Since ICC quantifies the intersubject variation that is not
accounted for by the intrasubject variation, a large intrasub-
ject variance can be tempered by an even greater intersubject
variance. CV% and ICC are not independent measures (the
intrasubject variance is part of both), but they do not always
agree, because they reflect different aspects of the test–retest
variation. Low CV% indicates that the measure is precise,
whereas a low CV% and a high ICC indicate that the measure
is precise and captures individual variability (i.e., the inter-
subject variation is much larger than the intrasubject varia-
tion). However, a low CV% and a low ICC indicate that,
while the measure is precise, the variation over the subjects

is on par with the variation within a subject and is not highly
sensitive to individual differences. Conversely, a high CV%
and high ICC reveal that, while a measure is not precise, it
does reflect the individual variation. As such, these two mea-
sures are best interpreted in conjunction with each other.

To determine statistical significance, we calculated the p
values for ICC with a nonparametric, resampling method.
The subject labels are randomly reassigned, and ICC is
recomputed for the permuted data; a total of 5000 permuta-
tions were performed. The number of ICC values for the per-
muted data that are greater than the value obtained for the
original data is divided by the total number of permutations.
If the value obtained for the original data was greater than all
values from the permutated data, the p value is reported as
p < 0.0002. The null hypothesis is that the data labels are ran-
domly assigned. This procedure tests whether the ICC can be
improved upon by random reassignment, with a significance
threshold of p < 0.05.

Effect of connectome processing parameters

To be sure that the results are not biased by the threshold
level selected for probabilistic tractography, we explore the
effect of this threshold on the reliability of the global and
local network measures. CV% and ICC were recalculated
for the unweighed metrics for the 82- and 1000-node connec-
tomes at thresholds varying over a range of values centered
on 50 and 200 for the 82- and 1000-node connectomes, respec-
tively. In a separate examination, we vary the number of
streamlines initiated per voxel to assess the sensitivity of
the results to this parameter. The tractography was rerun
using 250, 500, 1000, and 4000 streamlines per voxel to com-
pare with the default value of 2000 streamlines per voxel used
in all other analyses presented in this article. ICC and CV
were calculated for each number of streamlines for the 82-
and 1000-node connectomes and for the unweighed and
weighed network metrics. For the unweighed metrics, the
threshold was set for each number of streamlines such that
the mean degree over all networks was equivalent to that
obtained with 2000 streamlines per voxel. Due to the compu-
tational expense involved, the tractography was only rerun
with 250 and 4000 streamlines per voxel for the 1000-node
connectomes. These two experiments, investigating the de-
pendence on threshold and on seeding density, were only
done with the intrasite data.

Network analysis: edge consistency

Edge consistency of the unweighed and weighed 82-node
networks was investigated. To assess the consistency of
unweighed connectomes, the number of edges either present
or absent in any pair of networks was normalized by the total
number of possible edges; we call this measure the edge
agreement (Hagmann et al., 2008; Cammoun et al., 2012).
For the weighed connectomes, the correlation coefficient
was computed between the weighed edges of two networks.
For both edge agreement and edge correlation, the metrics are
computed on an intrasubject and intersubject level as de-
scribed in the section entitled Intrasubject and Intersubject
Calculations. A second measure of connection strength con-
sistency was performed by calculating the CV% for every
suprathreshold edge ( > 50) present in both scans for each
intrasite subject. Then, we calculated the average number of
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FIG. 2. (a) Representative
connectome, (b) representative
module partition, and (c) mean
degree distribution across 10
intrasite subjects.
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steps between the two nodes corresponding to each of these
suprathreshold edges using the distance-weighing option in
probtrackx2. The correlation coefficient and p value were cal-
culated for the CV% and the distance between the nodes to
test the hypothesis that long-range connections have less-
reliable connection strengths.

Network analysis: module assignment

To evaluate the reproducibility of the community structure
within connectomes, we measured the test–retest reliability of
the module assignments provided by a community detection
algorithm proposed in Blondel et al. (2008) as implemented
in the Brain Connectivity Toolbox. Both unweighed and
weighed 82-node connectomes, all thresholded at the same
level, but with suprathreshold edge-weight information
retained in the latter, were decomposed into modules, and
the consistency of the modular assignment was quantified
using the Hubert Rand index (HRI) as defined in Hubert
and Baker (1977). First, we investigated the stability of the al-
gorithm, since its community assignments are sensitive to the
ordering of the nodes; hence, multiple repetitions of the algo-
rithm can yield different assignments. We ran the algorithm
100 times, while randomly reordering the nodes, and com-
puted the mean and SD of the HRI across runs for each con-
nectome as a measure of algorithmic stability. We also
computed the mean and SD of the HRI for random commu-
nity assignments. A total of six communities were randomly
assigned to 82 nodes; we chose six, as this was the most fre-
quent number of modules detected. Then, we assessed the
test–retest reliability of the module assignments calculating
both the intrasubject and intersubject consistency as de-
scribed in the next section.

Intrasubject and intersubject calculations

For the edge consistency metrics and the HRI, we compute
a mean intrasubject value for each subject and a mean inter-

subject value, averaged over all subjects. To compare the
intrasubject consistency for the edge-consistency metrics,
we compute the edge agreement and correlation coefficient
for each subjects’ two scans and then compare these values
to the intersubject consistency by computing the mean edge
agreement and mean correlation coefficient for all pairs of
intersubject scans. This procedure is applied to both the
intra- and intersite data sets. With the intersite data, the inter-
subject edge agreement and correlation coefficient were only
computed for the pairs of scans obtained at different sites. As
with the edge consistency analysis, we computed the HRI for
the module assignments for each subject’s test–retest data
and the intrasubject module consistency, and compared that
to the intersubject module consistency by computing the
HRI for all pairs of intersubject scans. This procedure is ap-
plied to both the intra- and intersite data sets. With the inter-
site data, the intersubject module consistency was only
computed for pairs of scans obtained at different sites. To ac-
count for the variation introduced by the nondeterministic
community detection algorithm, we computed the module
assignments 100 times for each connectome, and thus the
HRI for each pair of community assignments was averaged
over 100 repetitions.

Results

Connectomes, degree distributions,
and modular assignments

In Fig. 2, we show an example of an 82-node connectome in
a single normal adult volunteer as well as the modular assign-
ments for the same subject. The locations of the high-degree
nodes, also known as hubs, are consistent with those reported
in the literature (Hagmann et al., 2008; van den Heuvel and
Sporns, 2011). The modules detected include the structural
core (Module 5) across both the cerebral hemispheres and
three other modules in each hemisphere. All seven modules ex-
hibit bilateral symmetry, and the six that are contained within

FIG. 3. Representative high-resolution cortical connectome: degree and strength of nodes.
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a single cerebral hemisphere segregate into the anterior, poste-
rior, and subcortical/inferior subnetworks. In Fig. 2c, the de-
gree distribution across the 82 nodes is plotted. Only the first
scans of the intrasite data set were used in this calculation (a
total of 10 subjects). The hub regions, defined as those nodes
with a degree greater than one SD above the mean, are colored
in red. These hubs correspond closely to those reported in Li
et al. (2012b). In Fig. 3, the degrees and strengths are shown
for the 1000-node cortical connectome for the same individual
illustrated in Fig. 2. For clarity, only the top 1% of edges by
strength are displayed in the bottom row of Fig. 3.

Test–retest reliability of summary graph metrics
for the 82-node connectomes

In Fig. 4, the summary network metrics of the 82-node con-
nectomes are plotted for the intrasite and intersite datasets. In
Table 1, the mean, SD for Session 1 and 2, CV%, and ICC, as
well as the p values for ICC, are provided for these metrics of
the unweighed 82-node connectomes across all 10 intrasite
and five intersite subjects. The CV% values for the unweighed
metrics computed for the intrasite data are all < 3.5%, indicat-
ing a low intrasubject variation with respect to the mean. The

FIG. 4. Selected unweighed and weighed metrics: K, L, C, Kw, Lw, and Cw are plotted for the 82-node connectomes across the
intrasite and intersite scans.
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ICC values for the summary network metrics, with the excep-
tion of C and Eloc, are ‡ 0.89, and their corresponding p values
are £ 0.0002. For the unweighed intersite data, the CV% val-
ues, while higher than for the unweighed intersite data,
are still < 6.3%. The unweighed summary network metrics
have excellent reproducibility across sites, with ICC values
> 0.75, once again with the exception of C and Eloc.

The reproducibility statistics for the weighed summary
network metrics are presented in Table 2. The weighed met-
rics, in general, are not quite as highly reproducible as the
unweighed metrics for both the intrasite and intersite data.
Kw and Cw have excellent reproducibility for the intrasite
data with CV% of 4.3% and 5.5%, respectively, and ICC val-
ues of 0.84 and 0.83, respectively, with p values for ICC
reflecting a strong statistical significance. For the intersite
data, however, Lw and Cw emerge as the most reproducible
with CV% values of 14.5% and 10.6% and ICC values 0.94
and 0.81, respectively, and p values reflecting significance.

The other weighed network metrics have a higher CV%, a
lower ICC, or are not statistically significant. The histograms
for the node metrics ki, li, ci, bi, kw

i, lwi, cw
i, and bw

i are pre-
sented in Supplementary Fig. S1 (Supplementary Data are
available online at www.liebertpub.com/scd). In general,
the variation for the node metrics is higher than the variation
for the summary network metrics, and the unweighed met-
rics are less variable than the weighed metrics.

Test–retest reliability of summary graph metrics
for the 1000-node connectomes

In Fig. 5, the summary network metrics of the high-resolution
cortical connectomes are plotted for the intrasite and intersite
data sets. The intrasite data show a high test–retest reliability
for all metrics. For the intersite data, Kw and Lw are highly
consistent, while Cw is less reproducible in the intersite cohort
as compared to the intrasite data. In Table 3, the mean and SD

Table 1. Unweighed Metrics, 82-Node Connectome

Session 1 Session 2
Intrasite Avg. – SD Avg. – SD CV% ICC p Value ICC

K 12.8 – 1.4 12.4 – 1.4 3.21 0.89 0.0002
L 2.26 – 0.13 2.28 – 0.12 1.44 0.92 0.0002
C 0.54 – 0.02 0.53 – 0.02 3.40 0.51 0.46
B 0.032 – 0.003 0.033 – 0.003 2.73 0.90 < 0.0002
E 0.51 – 0.02 0.51 – 0.02 1.18 0.92 < 0.0002
Eloc 0.75 – 0.01 0.75 – 0.02 1.79 0.54 0.32

Site 1 Site 2
Intersite Avg. – SD Avg. – SD CV% ICC p Value ICC

K 13.8 – 1.6 12.7 – 2.6 6.26 0.79 0.02
L 2.22 – 0.13 2.30 – 0.21 2.26 0.82 < 0.0002
C 0.59 – 0.01 0.55 – 0.03 3.05 0.59 0.03
B 0.031 – 0.003 0.033 – 0.005 4.00 0.82 < 0.0002
E 0.52 – 0.03 0.50 – 0.04 1.94 0.84 < 0.0002
Eloc 0.78 – 0.01 0.76 – 0.02 1.61 0.63 0.02

The p values for ICC less than the significance threshold of 0.05 are given in boldface.
CV%, percentage coefficient of variation; ICC, intraclass correlation coefficient; SD, standard deviation; L, characteristic path length; C,

mean clustering coefficient; B, mean normalized betweenness centrality; E, mean global efficiency; Eloc, mean local efficiency.

Table 2. Weighed Metrics, 82-Node Connectome

Session 1 Session 2
Intrasite Avg. – SD Avg. – SD CV% ICC p Value ICC

Kw 6600 – 950 6400 – 840 4.31 0.84 0.001
Lw 0.083 – 0.05 0.096 – 0.08 34.75 0.67 0.05
Cw 15.9 – 3.4 15.1 – 3.0 5.50 0.83 0.001
Bw 0.067 – 0.005 0.069 – 0.004 4.58 0.52 0.34

Site 1 Site 2
Intersite Avg. – SD Avg. – SD CV% ICC p Value ICC

Kw 7500 – 970 7000 – 1700 10.17 0.69 0.14
Lw 0.190 – 0.12 0.170 – 0.15 14.46 0.94 < 0.0002
Cw 18.1 – 3.7 16.4 – 5.7 10.57 0.81 0.01
Bw 0.066 – 0.003 0.067 – 0.006 2.63 0.70 0.10

The p values for ICC less than the significance threshold of 0.05 are given in boldface.
Bw, mean normalized weighed betweenness; Kw, mean strength; Cw, mean weighed clustering coefficient; Lw, weighed characteristic path

length.
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for Session 1 and 2 and the CV% and ICC values for the
unweighed metrics are reported for the high-resolution con-
nectomes. In general, the CV% values are lower than 5% for
all unweighed summary metrics, both intrasite and intersite,
and the ICC values are all higher than 0.75, with many val-
ues exceeding 0.8. The ICC p values for all unweighed met-
rics show highly significant reproducibility. In Table 4, the
reproducibility statistics are presented for the weighed sum-
mary metrics of the 1000-node cortical connectomes. The
CV% values for all weighed metrics applied to the intrasite
data are < 3.6%, and the ICC values are ‡ 0.79. The p values

for ICC are again strongly statistically significant. The ICC
values for the intersite data reflect excellent reproducibility
of Kw and Lw, with CV% < 4% and ICC values ‡ 0.82. How-
ever, Cw and Bw are not significantly reproducible across
sites.

The effect of threshold and number of streamlines
on ICC and CV%

To address the possible confounds introduced by fixing the
connectivity threshold across subjects for the calculation of

FIG. 5. Selected unweighed and weighed metrics: K, L, C, Kw, Lw, and Cw are plotted for the high-resolution cortical con-
nectomes across intrasite and intersite scans.
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the unweighed network metrics, we investigate CV% and
ICC as a function of threshold (Fig. 6). The threshold was var-
ied over an order of magnitude from 10 to 100 for the 82-node
connectomes and from 50 to 500 for the 1000-node connec-
tomes. We found that for the 82-node connectomes, the ICC
and CV% values for the graph metrics that assess the global
structure (K, L, B, and E) were very stable. On the other
hand, the metrics that quantify the local structure (C and
Eloc) have more variable reliability, with ICC values ranging
from *0.5 to 0.8. In fact, the threshold of 50 that was chosen
as the default value is actually a local minimum of the ICC
versus threshold curve. The ICC and CV% values for the
1000-node connectomes exhibit a similar resilience to thresh-
old this is true for all metrics, both global and local. Figure 7
shows the results for varying the number of streamlines initi-
ated from each voxel for both unweighed and weighed met-
rics, at both the 82- and 1000-node resolution. To conserve
space, we only plot ICC; the CV% results are similar and
can be found in Supplementary Fig. S2. ICC and CV% are
very stable for all numbers of streamlines and metrics, with
weighed betweenness and weighed characteristic path length

showing the most variability in ICC and CV, respectively, at
the 82-node parcellation.

Test–retest reliability of network edges

Figure 8 illustrates the test–retest reliability of the network
edges. The top row displays the results for the unweighed 82-
node connectomes. The points are the edge agreement for the
intrasubject data, and the red line denotes the mean intersub-
ject edge agreement with the SD plotted as the dashed line
above and below the mean. The intrasubject edge agreement
for all subjects in both the intrasite and intersite cohorts is
greater than the mean intersubject agreement, and all, but
one, of the intrasubject points are greater than the mean
plus one SD for the intersubject edge agreement. The bottom
row of Fig. 8 displays the correlation coefficients for the edge
weights for the intrasite and intersite weighed 82-node con-
nectomes. Here, the data points represent the intrasubject cor-
relation coefficient, and the red line marks the mean
intersubject correlation coefficient with the SD interval indi-
cated as dashed lines. The general trend is similar to that

Table 3. Unweighed Metrics, 1000-Node Connectome

Session 1 Session 2
Intrasite Avg. – SD Avg. – SD CV% ICC p Value ICC

K 13.3 – 0.9 13.3 – 0.8 2.89 0.78 0.0034
L 5.0 – 0.3 5.0 – 0.3 2.96 0.79 0.004
C 730 – 20 720 – 20 1.12 0.78 0.001
B 0.0061 – 0.0007 0.0061 – 0.0006 4.89 0.79 0.005
E 0.23 – 0.01 0.23 – 0.01 2.58 0.78 0.005
Eloc 0.72 – 0.01 0.72 – 0.01 0.42 0.75 0.0072

Site 1 Site 2
Intersite Avg. – SD Avg. – SD CV% ICC p Value ICC

K 13.7 – 1.9 14.3 – 1.6 3.81 0.89 0.0004
L 5.0 – 0.5 4.9 – 0.5 1.98 0.94 0.001
C 740 – 20 730 – 20 0.94 0.88 0.02
B 0.006 – 0.001 0.006 – 0.001 3.31 0.94 0.002
E 0.23 – 0.02 0.24 – 0.2 1.74 0.94 < 0.0002
Eloc 0.72 – 0.01 0.72 – 0.01 0.42 0.87 0.01

The p values for ICC less than the significance threshold of 0.05 are given in boldface.

Table 4. Weighed Metrics, 1000-Node Connectome

Session 1 Session 2
Intrasite Avg. – SD Avg. – SD CV% ICC p Value ICC

Kw 18200 – 1300 18200 – 1000 2.78 0.79 0.002
Lw 0.052 – 0.005 0.053 – 0.0051 1.69 0.95 < 0.0002
Cw 4.0 – 0.4 4.0 – 0.3 3.53 0.80 0.003
Bw 1200 – 66 1200 – 69 1.26 0.93 < 0.0002

Site 1 Site 2
Intersite Avg. – SD Avg. – SD CV% ICC p Value ICC

Kw 19000 – 2900 20000 – 2200 3.33 0.90 < 0.0002
Lw 0.047 – 0.004 0.047 – 0.005 3.99 0.82 0.01
Cw 3.9 – 0.8 4.0 – 0.6 13.91 0.54 0.31
Bw 1200 – 120 1100 – 50 4.54 0.69 0.11

The p values for ICC less than the significance threshold of 0.05 are given in boldface.
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FIG. 6. The effect of threshold on intraclass correlation coefficient (ICC) and percentage coefficient of variation (CV%) for the
graph metrics computed for the 82- and 1000-node connectomes.

FIG. 7. The effect of number of streamlines initiated from every seed voxel on ICC for the unweighed and weighed graph
metrics computed for the 82- and 1000-node connectomes.
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observed for the binarized edge agreement, with less intra-
subject variability than intersubject variability. In Fig. 9a, a
histogram of the CV% values for the individual connection
strengths is shown; most connection strengths have a CV%
ranging from 10% to 40%, demonstrating that the connection
strengths between pairs of nodes are less reliable than the
summary graph metrics. In Fig. 9b, a scatter plot of CV% of
the connection strengths and the step distance between

nodes are provided for an individual connectome; the corre-
lation coefficient is 0.32 ( p < 0.000001). This illustrates that
there is a significant correlation between the reproducibility
of connection strength and the distance along the white-mat-
ter tract between the two connected nodes, as inferred over all
edges within a single connectome. On average, longer white-
matter tracts tend to have less-reproducible connectivity than
shorter white-matter tracts. However, the tract length

FIG. 8. Edge consistency for binary and weighed connectomes: the edge agreement and correlation coefficient are plotted for
pairs of intrasite and intersite scans. In each plot, the black points denote the intrasubject variability, and the red line denotes
the mean intersubject variability with a dotted line showing the standard deviation (SD).

FIG. 9. Consistency of individual connection weights: (a) Histogram of the CV% for all suprathreshold connection weights
and (b) correlation of CV% of node-to-node connection weights and the number of tractography steps between the two nodes

REPRODUCIBILITY OF THE HUMAN STRUCTURAL CONNECTOME 171



accounts for < 10% of the variance in connection strength
reliability.

Test–retest reliability of modular organization

In Fig. 10, we present the results from the test–retest reli-
ability analysis of the module assignments. In Fig. 10a, the
mean and SD of the intrascan HRI are plotted for each 82-
node connectome in the intrasite cohort. There is some vari-
ability in the reproducibility from scan to scan, but all HRI
values are above 0.8, giving bounds for the amount of vari-
ability introduced by the community detection algorithm.
We computed the mean and SD of HRI for random commu-
nity assignments to be 0.44 – 0.01. In Fig. 10b, the mean and
SD of the interscan HRI are plotted for each intrasite subject,
and the red line denotes the mean HRI between all intersub-
ject pairs. All, but one, of the intrasubject HRI values are
within one SD of the mean intersubject HRI. In Fig. 10c, we
show the intersite data, plotted in the same fashion as the
intrasite data. Here, we also find that the intrasubject HRI val-
ues are within one SD of the mean intersubject HRI.

Discussion

Methodological considerations and comparison
with the prior literature

We have focused on the reproducibility and interindivid-
ual variability of the commonly used computational network
metrics applied to the normal adult structural connectome, as
reconstructed from a diffusion MR acquisition employing pa-
rameters in wide current use for clinical research (Mukherjee
et al., 2008) and freely available postprocessing software such
as FSL and FreeSurfer that are popular worldwide. Overall,
we obtained the ICC values for the unweighed global graph
metrics, such as K, L E, and B (Tables 1 and 3), which are in
the range (ICC > 0.75) considered to be excellent reproducibil-
ity (Fleiss, 1986; Tooth et al., 2005). This compares favorably
to all prior studies of the human structural connectome,
which find only fair-to-good reproducibility (ICC = 0.40–
0.75) of these global metrics (Bassett et al., 2011; Cheng
et al., 2012; Dennis et al., 2012; Vaessen et al., 2010). Our re-
sults for reproducibility of the local network metrics, C and
Eloc (Tables 1 and 3), are in the same fair-to-good range
found by these prior reports. However, the dependence of
these measures on connectivity threshold indicates that a dif-
ferent choice of threshold would produce an excellent reliabil-
ity of these local metrics (Fig. 6). In addition, we report the
CV% and edge-weight consistency values in agreement
with those found previously (Bassett et al., 2011; Cammoun
et al., 2012; Cheng et al., 2012; Dennis et al., 2012; Hagmann
et al., 2008; Vaessen et al., 2010).

Since the graph analytics are computed from structural
networks reconstructed from the diffusion data, our investi-
gation evaluates the entire diffusion acquisition and connec-
tome reconstruction pipeline. Our robust results might
possibly be attributed to several advantages of the methodol-
ogy employed herein: (1) a relatively short diffusion MR ac-
quisition time, which limits motion artifacts; (2) HARDI
reconstruction of crossing fibers, as opposed to a simpler
DTI model; (3) probabilistic tractography, instead of a deter-
ministic streamline tractography; (4) cortical and subcortical
segmentation in the subjects’ native space, and not a common

FIG. 10. Module assignment consistency: the mean Hubert
Rand index (HRI) is plotted for (a) intrasite, intrascan data to
measure the reliability of the community detection algorithm,
(b) intrasite, interscan, and (c) intrasite, interscan. In (b) and
(c), the black points denote the intrasubject variability with
SD error bars, and the red line denotes the mean intersubject
variability with a dotted line for the SD.
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atlas space; and (5) a fixed connectivity threshold across
subjects, rather than a common level of network sparsity across
subjects. Although it would be ideal to systematically optimize
the diffusion MR acquisition and connectome processing pipe-
line while accounting for all of these various factors, this is
currently impractical because of the large parameter space in-
volved and the considerable computational expense involved
in reconstructing each structural connectome. Therefore, we
can only present a subjective appraisal of the variables that
might have affected the performance of our proposed method-
ology, compared to the existing literature.

Our diffusion imaging acquisition time is 8.5 min as
compared to *26 min for diffusion spectrum imaging as
investigated in Bassett et al. (2011) and used exclusively in
Cammoun et al. (2012). Arguably, a shorter scan time
would produce more-reliable results, especially for clinical
patients. From these diffusion MR data, we use bedpostx
for HARDI reconstruction to estimate multiple tensors (up
to 2) in every voxel allowing for sensitivity to crossing fibers,
in contrast to the single-fiber approach used in Vaessen et al.
(2010), Bassett et al. (2011), and Cheng et al. (2012). The use of
probabilistic tractography could also potentially increase the
reliability of the connectome reconstruction, as it was found
to be more robust and sensitive than deterministic streamline
tractography in an ex vivo mouse model (Moldrich et al.,
2010). Among prior studies, only Vaessen et al. (2010) and
Dennis et al. (2012) employ probabilistic tractography algo-
rithms. We found that the reproducibility of the network met-
rics is consistent across an order of magnitude of the number
of streamlines initiated, indicating that the choice to use 2000
streamlines per voxel is well within a stable regime (Fig. 7).

We segment the cortical and subcortical regions in the sub-
jects’ native space with FreeSurfer as opposed to registering
each subject to a common atlas space. Due to the individual
variability in cortical sulcation, using regions defined for
each subject would likely lead to more reproducible results.
Of the previous studies, Dennis et al. (2012) and Cammoun
et al. (2012) also use FreeSurfer to generate the seed and target
regions for the connectome, whereas the other studies use
segmentation in a group atlas space. Further, our study is
the only one to include the 7 subcortical areas segmented
by FreeSurfer. To examine the reliability of the connectome
reconstruction at a more fine-grained scale, we segment the
GWB of each subject into 1000 cortical ROIs and process the
connectomes entirely in the subjects’ native space. Other arti-
cles have also addressed the reliability of high-resolution con-
nectomes (Bassett et al., 2011; Cammoun et al., 2012), but their
subsampled parcels are derived after registration to a tem-
plate, rather than in the subject’s native space.

Lastly, the technique used to binarize the connectomes, ei-
ther fixing the connectivity threshold or fixing the sparsity
across all subjects, could affect the intersubject variation. If
a common sparsity is enforced across subjects, as done in
Vaessen et al. (2010), Bassett et al. (2011), and Dennis et al.
(2012), then it follows that the ICC values could be decreased
due to reduced intersubject variation. We instead take the ap-
proach of a common threshold to allow variability in the net-
work sparsity. We also investigate the effect of threshold on
ICC and CV%, finding that the majority of graph metrics
are reliable regardless of threshold at both the low- and
high-parcellation scales. Cheng et al. (2012) also used a
fixed threshold, although they found worse ICC values

than we do, likely due to the other aforementioned differ-
ences in the processing pipelines. The fact that we find the
variability of these summary network metrics to be much
smaller within subjects than between subjects suggests that
the interindividual differences in connectome sparsity may
be biologically meaningful. The sparsity values of the intra-
site unweighed 82-node connectomes in our study have a
mean of 0.84 – 0.02 and range from 0.82 to 0.87. This range
of network sparsity values is not wide enough to appreciably
bias the comparisons of graph metrics (Anderson et al., 1999).

Reproducibility and intersubject variation in weighed
low-resolution connectomes

In addition to analyzing binarized connectomes, we extend
the evaluation of test–retest reliability to include weighed
connectomes. For the 82-node connectomes, the intersubject
variation of weighed network metrics is similar to that of
their unweighed counterparts (Fig. 4). The ICC values of
the weighed network metrics show them to have good-to-
excellent reproducibility (Table 2). Regarding local network
measures, the test–retest reliability of Kw is similar to that
of K, and the reliability of Cw is better than that of its
unweighed equivalent. The latter is because there is a greater
intersubject variation in Cw than in C. However, the repro-
ducibility of global network metrics such as L and B is consid-
erably less for weighed than unweighed measures (Tables 1
and 2). This is because the intrasubject variability of the
weighed global measures is higher than the unweighed mea-
sures (Fig. 4). Hence, for the 82-node connectomes, global net-
work measures appear to be more reliable for binarized
networks, whereas local network measures, excluding K, ap-
pear to be more reliable in weighed networks. However,
choosing a different threshold for binarization can result in
excellent reliability of the unweighed local graph metrics
(Fig. 6), similar to that of their weighed counterparts.

Reproducibility and intersubject variation
in high-resolution connectomes

Another direction encompassed by our study is to examine
the test–retest reliability of connectomes at high-parcellation
scales. In addition to providing more detailed maps of
white-matter connectivity than low-resolution connectomes,
the atlas-free segmentation is preferable for patients whose
brain morphology may not fit the templates based on normal
anatomy, such as those with mass lesions or structural anom-
alies. All network metrics were found to be highly reproduc-
ible for the intrasite 1000-node connectomes, including the
unweighed and weighed measures, with strong statistical sig-
nificance for ICC (Tables 3 and 4).

Reproducibility and intersubject variation
of connectomes across sites

We also conducted a preliminary investigation in five sub-
jects of test–retest connectome reliability across two different
sites, one on each coast of the United States, to establish fea-
sibility for multicenter studies. The results are qualitatively
similar to those of the intrasite data, but, in general, slightly
worse quantitatively (Tables 1–4). This resembles the find-
ings of multicenter DTI studies that show a slightly lower re-
liability of intersite data than intrasite data for white-matter
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microstructural measures such as FA (Heiervang et al., 2006;
Pfefferbaum et al., 2003; Vollmar et al., 2010).

Consistency of network edges and modules in unweighed
and weighed connectomes

The edge consistency, the most commonly analyzed mea-
sure of reliability for the connectome, is high for both the
unweighed and weighed 82-node networks (Fig. 8). How-
ever, the reproducibility of individual node-to-node connec-
tion strengths (i.e., edge weights) is much lower than that
of summary network metrics (Fig. 9a), in agreement with
the results of Vaessen et al. (2010). Bassett et al. (2011), Cam-
moun et al. (2012), and Cheng et al. (2012) have all reported
similar intrasubject correlation coefficients of *0.9 and inter-
subject correlation coefficients from 0.6 to 0.8. Hagmann et al.
(2008) also examined the test–retest repeatability of connec-
tion strengths in one subject and reported an intrasubject
correlation coefficient of 0.78 and a mean intersubject correla-
tion coefficient of 0.65. Bloy et al. (2012) recently introduced a
new framework for computing structural connectivity from
diffusion tractography data that produce more reliable con-
nection strengths as well as more reproducible nodal connec-
tion distributions, an analog of node strength for weighed
connectomes.

We found that individual edge weights are harder to re-
produce across sites. This fact could explain the overall higher
CV% and lower ICCs for the weighed metrics applied to the
intersite scans.

Another interesting finding of our work is that longer
tracts tend to have less-reproducible connection strengths
than shorter tracts, although the effect of the tract length
was small (Fig. 9b). The relationship between tract length
and connection strength reliability may vary with the ap-
proach used to reconstruct the connectome, with possibly dif-
ferent effects of methods that seed only at the GWB versus
those that seed throughout the white matter. This remains a
direction for future research.

Network modules are generally consistent across healthy
individuals both within and between sites, with slightly in-
creased reproducibility for the intrasubject comparisons
(Fig. 10). It is not expected that modular assignments would
differ greatly across healthy adults at the level of granularity
of the 82-node connectomes; therefore, it is reassuring that
there is not a large effect of subject or site on the network
partitions.

Limitations and future directions

The within-site test–retest interval used in this study as-
sumes that the structural connectome is stable over 1 month
in healthy adults. However, the interscan interval was, on av-
erage, twice as long for the intersite data as for the intrasite
data. This could contribute to the increased variation ob-
served in the intersite data compared to that within a site, al-
though the intersite data still demonstrate precision within an
acceptable range for clinical research.

We have kept the scanner model and acquisition parame-
ters constant for all scans; therefore, this work does not inves-
tigate of the effect of an MRI scanner model or scanning
parameters on the connectome. Vaessen et al. (2010) investi-
gated the effect of diffusion directions on summary network
metrics. Future work is warranted to study the effect of

such variables as scanner model, spatial resolution, and trac-
tography algorithm on the reproducibility of graph metrics.

One drawback to the 1000-node connectomes is that many
of the analyses performed on the 82-node connectomes, such
as module assignments, overall edge consistency, and the
consistency of individual connection weights, cannot be
adapted to the 1000-node connectomes, since these smaller
nodes cannot be mapped one to one between scans. Register-
ing the gray–white matter boundary to a template would
allow for identical parcellations across scans. Using a tem-
plate, though, would not be atlas free, which we feel is a
strong advantage for the clinical populations whose brains
may not fit established norms. The 1000-node connectome
contains only cortical nodes; a future direction will be to in-
clude subcortical regions in the high-resolution connectomes,
which require parcellating the gray–white matter boundary
for the subcortical structures.

Conclusion

Taken as a whole, the results presented here further vali-
date the connectome framework as having sufficient preci-
sion for clinical research using common diffusion scan
parameters on a modern 3T system. Most network metrics
are highly reproducible and could be employed to track the
progression of disease or to assess the effectiveness of a
course of treatment, if it can be shown that they have suffi-
cient sensitivity to the underlying pathology and to the effect
of therapy. Given the compelling results of reliability studies
and initial investigations in clinical populations, the evidence
points toward MR connectomics having a major impact on
the scientific understanding and diagnostic evaluation of neu-
rological and psychiatric disorders for which MRI does not
currently have clinical utility.
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