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ABSTRACT: High entropy alloys (HEAs) are a highly promising
class of materials for electrocatalysis as their unique active site
distributions break the scaling relations that limit the activity of
conventional transition metal catalysts. Existing Bayesian opti-
mization (BO)-based virtual screening approaches focus on
catalytic activity as the sole objective and correspondingly tend
to identify promising materials that are unlikely to be entropically
stabilized. Here, we overcome this limitation with a multiobjective
BO framework for HEAs that simultaneously targets activity, cost-
effectiveness, and entropic stabilization. With diversity-guided
batch selection further boosting its data efficiency, the framework
readily identifies numerous promising candidates for the oxygen
reduction reaction that strike the balance between all three
objectives in hitherto unchartered HEA design spaces comprising up to 10 elements.

■ INTRODUCTION
High entropy alloys (HEAs) constitute an emerging class of
materials that holds great promise for novel catalysts with
enhanced properties, including activity, selectivity, stability,
and cost-effectiveness.1−5 The strong interest in HEAs for
catalysis stems from their almost continuous distribution of
adsorption energies due to the entropically stabilized, highly
disordered local arrangement of their constituting elements,
giving rise to a wide range of surface compositional motifs. In
contrast to the discrete binding energies of conventional
(unary, intermetallic, core/shell, etc.) alloys, these continuous
distributions are believed to be better tunable to match the
“optimal” binding strengths in the sense of the classic Sabatier
principle.6 “Tunable” here refers to the number and type of
constituting elements and their respective molar fractions,
which in total spans a high-dimensional design space. In this
respect, intense efforts have recently been undertaken to
efficiently explore the vast HEA composition spaces by means
of high-throughput experiments7−9 and theory-guided screen-
ing studies.10−16

Despite recent advances, these efforts are restricted to
relatively low-dimensional compositions, barely scratching the
surface of the vast design space available for this class of
materials. For instance, recent theoretical13,15,17−22 and
experimental7,8,23 studies limit the optimization to 5-element
HEA spaces, and the selected constituent five elements are
primarily based on experimental observations or chemical
intuition. This hinders the understanding of higher-dimen-
sional landscapes and limits exploration to regions that have
been extensively experimentally tested. Nonetheless, thanks to

ongoing endeavors toward alloying a higher number of
elements, it has become evident that higher-dimensional
HEAs composed of 6,24−27 8,28−30 10,31 12,32 14,33,34 and
even 2135 elements can be successfully synthesized. To date,
these higher-dimensional spaces remain largely unexplored,
and their growing complexity and associated combinatorial
explosion call for the development of advanced search methods
and optimization frameworks.

In terms of optimization methodologies, single-objective
Bayesian optimization (BO) combined with experimental tests
or machine learning (ML) surrogate models for evaluation of
the catalyst activity has been employed with promising results.
This method has proven effective in significantly reducing the
number of evaluations required, typically down to around 50,
to identify the globally optimal composition for a 5-element
HEA space.21,23 That said, it is important to note that this
method prioritizes the catalytic activity as the sole target
property for optimization. Consequently, the top-ranking
candidates identified in the searched HEA space often turn
out to be previously known binary alloys.11,21 For such binary
alloys, the formation of a single solid solution is less likely due
to missing entropic stabilization. Instead, they are more likely

Received: December 20, 2023
Revised: February 21, 2024
Accepted: February 26, 2024
Published: March 11, 2024

Articlepubs.acs.org/JACS

© 2024 The Authors. Published by
American Chemical Society

7698
https://doi.org/10.1021/jacs.3c14486

J. Am. Chem. Soc. 2024, 146, 7698−7707

This article is licensed under CC-BY 4.0

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wenbin+Xu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Elias+Diesen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tianwei+He"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Karsten+Reuter"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Johannes+T.+Margraf"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.3c14486&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c14486?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c14486?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c14486?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c14486?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c14486?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jacsat/146/11?ref=pdf
https://pubs.acs.org/toc/jacsat/146/11?ref=pdf
https://pubs.acs.org/toc/jacsat/146/11?ref=pdf
https://pubs.acs.org/toc/jacsat/146/11?ref=pdf
pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/jacs.3c14486?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org/JACS?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


to form ordered phases with a few discrete binding energies.
This contradicts the assumption that HEA catalysts benefit
from featuring a complex distribution of binding energies.

In our view, the discovery of effective HEA catalysts
therefore necessitates considering multiple properties simulta-
neously. For instance, a good catalyst must not only exhibit
high catalytic activity but also demonstrate qualities such as
sufficient cost-effectiveness, stability, and synthesizability. A
noteworthy example explored the Pareto front of catalytic
activity and element scarcity on a uniform 5 at% grid of the
AgIrPdPtRu HEA composition space. This demonstrated that
by considering the scarcity of the constituent elements, the
focus of catalyst discovery shifts from binary compositions with
high catalytic activity to more complex ones, including
abundant elements.36 Additionally, multifunctional catalysts
need to promote multiple catalytic reactions (i.e., as target
properties),27,37 which is crucial for cascade reactions such as
electrocatalytic CO2 reduction.

Besides its focus on a sole target property, the single-
objective BO in these studies also places excessive emphasis on
a single global optimum within the explored 5-element
space,11,21,38,39 which is not directly applicable to higher-
dimensional scenarios. A recent experiment conducted in a 6-
element HEA space has demonstrated the existence of multiple
optimal solutions.26 Moving toward even higher dimensions is
expected to exacerbate this problem. Furthermore, in the
context of multiobjective optimization,12,40,41 the notion of a
single optimum is conceptually flawed. Instead, candidates
situated on the Pareto front�i.e., not dominated by any other
alternative�are equally important, and the ultimate choice
depends on the specific user-defined trade-off among the target
properties.42

In order to dive into higher-dimensional composition space
with an unbiased choice of constituent elements and discover
novel catalysts with multiple desired properties, we here
present a data-efficient multiobjective BO framework that
allows navigating different trade-offs along the Pareto front. As
a showcase, we focus on the discovery of HEA electrocatalysts
for the oxygen reduction reaction (ORR) with compositions

comprised of up to 10 elements. This translates to about 4.3 ×
1012 possible HEAs and is thus 6 orders of magnitude larger
than a 5-element space (4.6 × 106), when assuming a molar
fraction step size of 1%. We perform simultaneous
optimizations of catalytic activity, cost-effectiveness, and
mixing entropy in this vast design space and suggest a number
of promising HEAs. Our findings highlight the promise of ML
surrogate model-driven multiobjective optimization for ma-
terial discovery.

■ RESULTS AND DISCUSSION
Multiobjective Bayesian Optimization Framework.

The multiobjective BO framework depicted in Figure 1 is
built upon a customized diversity-guided approach (see
Section S4 of the Supporting Information) that operates on
batches of evaluated samples in each iteration to improve the
Pareto front.43 The built-in batch selection strategy takes into
account the diversity of both the design and performance
space, allowing for efficient and effective sampling. By using
this framework, our goal is to discover HEA electrocatalysts for
the ORR with multiple targeted objectives from a vast design
space with up to 10 elements (Ag, Au, Cu, Ir, Os, Pd, Pt, Re,
Rh, and Ru), including 3d, 4d, and 5d transition metals that are
potentially significant for the ORR. We consider this 10-
element space and all of its subspaces by taking a molar
fraction step size of 1% for each constituent element. As
mentioned above, this leads to about 4.3 × 1012 possible HEA
materials and correspondingly a tremendously challenging
discovery task. The performance space we explore spans up to
three objective dimensions, i.e., catalytic activity, cost-
effectiveness, and mixing entropy, and we aim at identifying
a continuous Pareto front that offers the ability to select
materials with different trade-offs of interest.

The design space is mapped to the performance space
through evaluators involving an ML surrogate model based on
first-principles density functional theory (DFT) data, as well as
empirical models. Specifically, the ML surrogate model in this
work refers to a GNN regression model for adsorption

Figure 1. Schematic illustration of the framework for discovering HEA electrocatalysts for ORR. (a) 10-element design space with a molar fraction
step size of 1%. The possible HEAs can be made up of arbitrary compositions. (b) Evaluators used to compute the values of the targeted objectives.
The ML surrogate model refers to the graph neural network (GNN) regression model for adsorption enthalpy prediction. The term “empirical
model” refers to the current density modeling and the computation of correlated mixing entropies. (c) Three target objectives, catalytic activity,
mixing entropy, and cost-effectiveness, are considered in this work. (d) Learned continuous Pareto front in performance space. The term “active
learning” refers to the update of the surrogate model during Bayesian optimization and the iterative expansion of the Pareto front in the
performance space.
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enthalpy prediction. However, using high-throughput exper-
imental tests as evaluators would also be possible, aligning well
with the built-in batch selection scheme of our multiobjective
BO framework: Independent experimental trials can be carried
out in parallel without delay. Ultimately, the entire framework
proceeds in an active-learning fashion, for which the Pareto
front is progressively expanded by incorporation of suggested
batch samples. A detailed description of the diversity-guided
multiobjective BO method, the GNN model, DFT calcu-
lations, and the empirical model can be found in the
Supporting Information.

ML-Enabled Catalytic Activity Prediction. The aim is to
develop a model capable of predicting the catalytic activity for
HEAs with arbitrary compositions. However, conventional
methods encounter difficulties in assessing the catalytic activity
for two main reasons. First, the statistical nature of HEAs
results in a vast number of possible active sites per surface.
Calculating the adsorption enthalpies, which serve as key
activity descriptors, for all of these sites using standard DFT
calculations is computationally prohibitive. This motivates the
use of a computationally inexpensive ML regression model;
given the vast 10-element design space targeted in this work,
the ML regression model must exhibit reliable extrapolation
capabilities to handle unknown materials. Second, even if the
adsorption enthalpies were known, the methods typically used
for surface kinetics modeling, such as mean-field approxima-
tion44,45 or Kinetic Monte Carlo methods,46,47 face challenges
when confronted with the inherent complexity of HEAs. An
alternative approach capable of addressing these challenges is
needed.

To this end, as demonstrated in Figure 2a, we employ an
extrapolative GNN model based on a variant of gated graph
convolutional networks48 that has recently been developed for
predicting 5-element HEA catalysts11 (see also the software
repository49). The model is trained on a new HEA data set

including the 5-element HEA spaces AgIrPdPtRu, AuOsPdP-
tRu, and CuPtReRhRu (see Section S1 of the Supporting
Information) to enable the prediction of adsorption enthalpies
on arbitrary HEAs within the 10-element composition space.
The consideration of both O* and OH* in the training data set
is due to the failure of widely used binding energy linear scaling
relations and Brønsted−Evans−Polanyi relations in describing
HEAs,9,50 so that going beyond a single descriptor, i.e., O* or
OH* alone, is required to describe the ORR mechanism. Note
that the ML model employed here is a “discrete” approach,
focusing solely on learning the local minima of the potential
energy surface. This approach takes a graph representation
(without 3D geometry information) of the initial state and
predicts the relaxed adsorption enthalpy. It is fundamentally
distinct from a “continuous” approach, i.e., an ML interatomic
potential, which learns the entire landscape of the potential
energy surface. In contrast, the latter approach is trained to
relax the initial structure and, thereby, predict both the relaxed
structure and adsorption enthalpies. Subsequently, we integrate
this GNN model with a heuristic current density modeling
technique that mimics surface coadsorption of O* and OH*
for ORR to obtain their net adsorption enthalpy distributions
and associated catalytic activity, i.e., average current density
(see Section S5 of the Supporting Information). O* and OH*
are considered to be adsorbed on their favorable fcc hollow
and on-top sites, respectively.

To train the GNN model, we performed a random 80%/
10%/10% training/validation/test split of the in-domain data
set, and early stopping was evoked based on validation error.
We present the mean absolute error (MAE) of the test split as
the predictive performance of interpolation. As shown in
Figure S6, we obtain MAEs of 0.057 eV on on-top OH* and
0.064 eV on fcc O* for the test split, where on-top OH* and
fcc O* are jointly trained but separately visualized. It is
noteworthy that state-of-the-art GNN models11,22,51,52 and

Figure 2. (a) Schematic illustration of ML-enabled catalytic activity prediction. The key components include an extrapolative ML model and
current density modeling, wherein the former is a GNN regression model trained on our established DFT data set. The resulting plot related to
catalytic activity presents both gross (gray outlines) and net (color-filled bars) adsorption enthalpy distributions, along with the normalized current
density (red dotted line). (b−e) Parity hexbin plots of DFT-calculated versus ML-predicted adsorption enthalpies for out-of-domain predictions,
including (b) on-top OH*, (c) fcc hollow O* for the composition-diversity data set, (d) on-top OH*, and (e) fcc hollow O* for the component-
diversity data set. The color bar indicates the number of data points contained in each hexbin.
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conventional ML methods53−55 typically show MAEs in range
of 0.1−0.2 eV for adsorption enthalpy predictions. Our results
indicate an excellent interpolation performance.

A more important aspect of this work is to assess the
predictive performance of the GNN model for extrapolation
tasks, where compositions are dissimilar to those in the
training data set. This is because the GNN model will be used
to predict a larger HEA design space. To this end, we consider
two out-of-domain data sets: (1) Composition-diversity data
set: An unknown 5-element space, RuRhPdIrPt, with 120
uniformly sampled compositions. (2) Component-diversity
data set: 100 different unknown 5-element spaces, each with
four randomly sampled compositions (see Section S1 of the
Supporting Information for further details on the out-of-
domain data set). Figure 2b−e shows the resulting parity plots
of DFT-calculated versus ML-predicted adsorption enthalpies
on these two data sets. The predictive performance is excellent,
with a MAE of less than 0.1 eV for all predictions. This reflects
the practical utility of the model for catalyst discovery. The
composition-diversity task (Figure 2b,c) is generally easier
than the component-diversity task (Figure 2d,e). This is likely
due to the fact that the composition-diversity data set contains
a less diverse set of active sites, leading to narrower energy
spans of ∼2.5 eV compared to ∼3.5 eV for the component-
diversity data set. Furthermore, for the predictions of fcc
hollow O* adsorption enthalpies (Figure 2c,e), we obtained
MAEs of 0.051 and 0.094 eV, while of 0.039 and 0.074 eV for
their on-top OH* counterpart (Figure 2b,d). The slightly
higher error for the O* against OH* predictions can be
attributed to the more complex local environment of the fcc
hollow site.

As for the downstream step, the computationally inexpensive
GNN model described above was then used to predict the
adsorption enthalpies of all active sites in sufficiently large
supercells, e.g., a 100 × 100 supercell containing on the order
of 105 active sites, within seconds. The resulting gross
adsorption enthalpy distribution is shown as a gray outline in
Figure 2a. The current density model subsequently enforces
heuristic surface coadsorption rules that are used to obtain the

net adsorption enthalpy distribution (see color-filled bars in
Figure 2a) and average current density. This model is based on
a recent development11 (see also the software repository49)
and has demonstrated good agreement with experimental
measurements in previous studies,9,56 thus serving as a
practically useful target for catalyst design. Although it has
predominantly been used for predicting 5-element HEAs, it is
also applicable beyond the 5-element HEA space. As an
extension, in this work, we will use it together with the
extrapolative GNN model to discover higher-dimensional HEA
electrocatalysts.

Biobjective Optimization. Having established a robust
ML-based model that can predict catalytic activity for HEAs
with arbitrary composition, we first take catalytic activity as our
primary objective and, as a second dimension, use cost-
effectiveness as a simple but important and commercially
valuable objective. Because, in experiment, the fabrication of
thin-film HEA libraries is typically carried out using magnetron
sputter deposition in a high-throughput manner,7−9 cost-
effectiveness is directly related to the consumption of each
amount of metal species in metallic targets. Therefore, we
simply represent the cost-effectiveness as an average cost of the
constituent metal species with reference to Pt, i.e., Tcost =
∑i = 1

n ciXi
Pt, where ci is the individual molar fraction and Xi

Pt is
the relative cost of each metal species as of January 2023.57

For ease of illustration, we choose five different 5-element
HEA spaces: AgIrPdPtRu, AuOsPdPtRu, AgCuIrPdRe,
IrOsPdPtRh, and IrPdReRhRu, where the first two have
been synthesized and studied in recent publications.9,11,21,38

Figure 3a shows the resulting Pareto front of biobjective BO
for catalytic activity and relative cost. The Pareto front is
defined as the set of nondominated solutions that provide a
suitable compromise between all objectives.41,58 It is intriguing
that, in general, activity and relative cost are conflicting
properties, and different 5-element compositions exhibit varied
relationships between these two objectives. Specifically,
AgIrPdPtRu and AgCuIrPdRe exhibit a broader Pareto front
compared to the other three variants, which can be quantified
via so-called hypervolume indicators, measuring the volume of

Figure 3. Learned Pareto fronts for five different 5-element HEA spaces obtained using biobjective BO for (a) catalytic activity and relative cost
and (b) catalytic activity and mixing entropy. The blue star in (a) represents the result of single-objective BO on the AgIrPdPtRu HEA space.
Linear fitting is used to emphasize subclusters on the Pareto fronts, where the corresponding Pareto-optimal set changes smoothly (see text). Gray
dashed lines indicate the catalytic activity of Pt(111) and the relative cost of Pt, so that the top right quadrant of the figure contains materials that
are both cheaper and more active than Pt.
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the objective space dominated by a given Pareto front (see
Figure S9a).

Both AgIrPdPtRu and AgCuIrPdRe are thus promising
composition spaces yielding both cheap and high-performing
catalysts for the ORR. Furthermore, AgCuIrPdRe shows a
slightly higher hypervolume indicator than AgIrPdPtRu. We
can attribute this to the presence of Cu in AgCuIrPdRe leading
to a lower price and improved activity that can be observed
both in a higher-activity region, e.g., Ag49Cu9Pd42 vs Ag55Pd45
and low-cost region, e.g., Ag62Cu17Re21 vs Ag90Pd8Ru2. It is
worth noting that many identified Pareto-optimal solutions
contain substantial amounts of Pd and Ag. Nevertheless, the
Pareto-optimal solutions exhibit significant compositional
differences in terms of the Ag/Pd ratio. This can be seen for
Ag90Pd8Ru2 and Ag21Pd79, both shown in Figure 3a. These
candidates are not simply variations drawn from the same
optimum nor is the former merely a dilution of the latter. In
fact, the resulting Pareto front can be interpreted in terms of
subclusters. Particularly, in Figure 3a, we can identify AgPd,
AgCuPd, AgCuPdRe, and AgCuRe/CuRe/AgCu subclusters,
from right to left on the Pareto front of AgCuIrPdRe. The
gradual introduction of Cu and Re along with the reduction of
Pt in the catalysts gives rise to not only reduced relative cost
but also reduced catalytic activity. Each subcluster in the
performance space can be linearly fitted (illustrated by the
solid green line in Figure 3) and corresponds to a subcluster in
the design space where compositions change smoothly in this
local region, ensuring a continuous Pareto front.

It is interesting to compare these results with single-
objective BO as the hitherto prevalent approach for optimizing
HEA compositions. We therefore follow the recently
developed single-objective BO11,21 (see also the software
repository49) for AgIrPdPtRu that is solely focused on catalytic
activity (indicated by the blue star in Figure 3a). This method
successfully identifies a candidate with exceptionally high
catalytic activity. However, as seen from Figure 3a, this
candidate might not be desirable in terms of cost
considerations. In contrast, the biobjective approach not only

encompasses the solutions obtained through single-objective
optimization but also provides a range of candidates that are
equally valid, considering both lower cost and still relatively
high activity. Specifically, there are, for example, several
candidates with an activity twice as high as the one of Pt,
while simultaneously achieving a cost reduction of around 50%
with respect to this reference material.

Notably, this extended insight of the biobjective BO comes
along without compromising the well-known data efficiency of
single-objective BO. Twenty to 50 evaluations are required to
reach 95% of the maximal hypervolume indicator (see Figures
S9a, S10 and Tables S2, S3), which compares perfectly with
the ca. 50 evaluations needed to find the global optimum of the
5-element space in single-objective BO.21,23 This high data
efficiency can be ascribed to dedicated implementations in our
diversity-guided multiobjective BO approach that include a
first-order approximation in the Pareto-discovery solver, the
diversity-guided batch selection scheme, and a kernel-based
surrogate model, i.e., Gaussian process regression (GPR). The
results concerning the number of experiments required for
single-objective and multiobjective BO are presented in Tables
S2−S5, and a discussion of data efficiency is provided in
Section S4.3 of the Supporting Information.

Besides catalytic activity and cost-effectiveness, another
essential objective in the development of HEAs is mixing
entropy. A low mixing entropy typically means that the system
will tend to form intermetallics or multiple solid solutions,
making it challenging to achieve a single solid solution (HEA)
in synthesis.59,60 Furthermore, such a HEA is likely less stable
as a catalyst under reactive conditions since it would have a
tendency to evolve toward the thermodynamically preferred
(e.g., intermetallic) state. It is noteworthy that the omission of
the entropic effect in single-objective optimization often leads
to the selection of top-ranking HEA candidates that are, in fact,
mere binary alloys. To address this, we performed a biobjective
optimization on catalytic activity and mixing entropy for the
same set of five 5-element HEA spaces as before and utilizing
an ideal mixing entropy rule: ΔSmix = −R∑i = 1

n ci ln ci, where R

Figure 4. Learned Pareto fronts for five 5- to 10-element HEA spaces using biobjective BO for catalytic activity and mixing entropy. (a)
Hypervolume indicator as a function of the number of evaluations, where the curve is averaged over five different seeds, and the variance is
represented as a shaded region. (b) Resulting Pareto front with highlighted Pareto-optimal solutions. Gray dashed lines indicate the catalytic
activity of Pt(111).
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is the ideal gas constant and ci is the molar fraction of element
i. We also tested the correlated mixing entropy indicator
reported in refs 61 and 62, which is an empirical model taking
into account the contributions of atomic size and bond
mismatch to the entropy (see Section S6 in the Supporting
Information). Highly comparable findings are obtained with
both methods.

As demonstrated in Figure 3b, mixing entropy and activity
are, in general, conflicting objectives. A distinct interplay can
be observed between activity/mixing entropy against activity/
cost-effectiveness across the five HEA spaces. However,
AgIrPdPtRu and AgCuIrPdRe are still more promising than
others in terms of the area covered by the Pareto front. Further
analysis of the AgCuIrPdRe front reveals that there is a
subcluster that contains HEAs composed of all five elements in
the lower-activity region, whereas AgCuRe/CuRe/AgCu
subclusters appear in the corresponding region of the
activity/cost-effectiveness performance space (see Figure 3a).
In addition, while AgPd binary alloys demonstrate remarkably
high catalytic activity, our analysis reveals a range of ternary
and quaternary alloys with equally appealing properties,
achieving 240−280% catalytic activity [relative to Pt(111)]
coupled with a high 8−10 J·mol−1·K−1 mixing entropy.

Next, we increase the dimensionality of the design space
from 5D to 10D and perform a biobjective BO on catalytic
activity and mixing entropy. Two overlapping 5-element
spaces, namely AgIrPdPtRu and IrOsPdPtRu, as well as 6D,
7D, and 10D spaces, are considered where the higher-
dimensional spaces are chosen to encompass the lower-
dimensional ones. We present hypervolume indicators against
the number of evaluations in Figure 4a. It is not surprising that

higher-dimensional spaces require a larger number of
evaluations to converge: 5-, 6-, 7-, and 10-element HEA
spaces used around 50, 100, 110, and 140 evaluations to reach
95% of the maximum hypervolume, respectively. Compared to
the orders of magnitude increase in the size of the design
space, this increase in the number of required evaluations is
nevertheless quite modest and attests to the high data
efficiency of the approach. Importantly, our biobjective
framework exhibits self-consistent results in that the Pareto
front of the low-dimensional space is covered by its superset
higher-dimensional space (see Figure 4b), in agreement with
their hypervolume indicators (see Figure 4a). By increasing the
dimensionality, we find that the fraction of Pd can be gradually
decreased, and we are able to identify a number of senary,
septenary, and octonary alloys exhibiting enhanced catalytic
activity of 190−230% relative to Pt and associated with high
mixing entropies of 11−13 J·mol−1·K−1. Note that these alloys
are not accessible in low-dimensional spaces, and they can
neither be obtained through biased component sampling
anymore as there are too many combinations to consider.

Importantly, our findings on biobjective optimization are in
good agreement with experiments. Prior studies have high-
lighted the favorable electrocatalytic ORR activities of
identified binary alloys such as AgPd63,64 and IrPt65,66 (see
Figure 3a), as well as ternary alloys like AuPdPt67,68 and
AgCuPd69 (see Figure 3b). In particular, the optimal
compositions were determined to be around Ag10Pd90

64 and
Ir15Pt85,

65 which aligns well with our results. For systems with
more elements, such as the quaternary (AgPdPtRu)56 and
quinary (AgIrPdPtRu)9 alloys, our method is inherently
capable of predicting the experimental outcomes. This is

Figure 5. Learned Pareto fronts for a 10-element HEA space (AgAuCuIrOsPdPtReRhRu) using triobjective BO for catalytic activity, cost-
effectiveness, and mixing entropy. The 3D Pareto fronts are projected to three pairwise 2D subplots. Selected Pareto-optimal solutions are
highlighted as triangles.
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because it uses the same current density modeling technique as
in refs 9 and 56, and because the AgIrPdPtRu data set used
therein is a subset of our training data. It should be further
noted that Batchelor et al.9 restricted the fraction of
constituting five elements to a narrow composition range,
e.g., Ag1−9Ir8−18Pd17−49Pt12−33Ru17−52, and carried out theoreti-
cal predictions using a grid search. Our method can identify
these quinary alloys more efficiently, suggesting Pareto-optimal
candidates that are discovered in a wider composition range.

Triobjective Optimization. Up to this point, we have
demonstrated the usefulness of our general multiobjective BO
framework for biobjective optimization and its advantages over
single-objective optimization. Next, we combine all complex-
ities, namely, three objectives and a 10-dimensional design
space, to conduct a comprehensive triobjective optimization.
To illustrate the results, we employ a pair plot (see Figure 5)
to visualize the learned 3-dimensional Pareto fronts projected
onto each pairwise combination of two dimensions for the 10-
element HEA space (AgAuCuIrOsPdPtReRhRu). It is
fascinating to observe that the distribution of Pareto fronts
in the projected two dimensions differs significantly from those
obtained through biobjective optimization (e.g., Figure 4b).
Many Pareto-optimal solutions are situated inside the frontier.
While these solutions may perform worse in the projected 2D
space, they succeed in the third objective.

Similar to the results of the 10-element HEA in Figure 4b,
Figure 5a showcases numerous candidates exhibiting an
appealing compromise between activity and mixing entropy.
The Pareto-optimal solutions found in these regions may not
outperform standard Pt in every objective though. For
example, candidates such as Ag18Au3Cu24Os1Pd43Re5Ru6 (red
triangle) exhibit a catalytic activity of 205% and a mixing
entropy of 12.3 J·mol−1·K−1, but come with a relatively higher
cost (130%). However, a spectrum of intriguing Pareto-
optimal solutions indeed demonstrates satisfactory perform-
ance across all objectives. Examples include 5-element
Ag35Cu19Pd42Pt2Ru2, Ag15Au2Cu42Pd36Re5, 6-element
A g 3 3 A u 3 C u 2 9 P d 2 5 R e 2 R u 8 , a n d 7 - e l e m e n t
Ag27Au3Cu25Ir2Pd37Re2Ru4, which exhibit activity/entropy/
cost in the range of 190−235%, 10−12 J·mol−1·K−1, and
50−75%, respectively.

Furthermore, despite exhibiting similar performance across
all objectives, an analysis of the compositions in these four
examples reveals that they do not belong to the same local
minima in the design space. For instance, the proportions of
Ag and Cu differ significantly between Ag35Cu19Pd42Pt2Ru2
and Ag15Au2Cu42Pd36Re5, while the fractions of Cu, Pd, and
Ru vary notably between Ag33Au3Cu29Pd25Re2Ru8 and
Ag35Cu19Pd42Pt2Ru2. This underscores the advantage of our
multiobjective optimization workflow, which is capable of
exploring different regions of the compositional landscape. In
general, the candidates resulting from triobjective optimization
are more promising in terms of cost-effectiveness. Such
candidates are not easily discovered through biobjective
optimization. A full list of discovered Pareto-optimal
candidates can be found in Section S7 of Supporting
Information.

We have also compared the Pareto fronts obtained from the
10-element HEA space with those from a selected 5-element
HEA space (see Figure S11). A broader frontier is evident
across all three pairwise combinations of two dimensions.
These findings suggest that our multiobjective BO framework
explores more promising regions in the 10D space and

manages to surpass the compromise among three objectives in
the 5D space. It is noteworthy, however, that there is a smaller
proportion of Pareto-optimal solutions in extreme scenarios,
such as very low (less than 30%) and high (greater than 300%)
catalytic activity regions. This phenomenon can be attributed
to the limited exploration of extreme scenarios, a known issue
referred to as the “long-term local minima problem”.70 The
algorithm may become trapped in local minima for extended
periods, resulting in insufficient exploration of these extreme
scenarios. Nonetheless, it is important to mention that these
extreme scenarios often involve less favorable materials, such as
binary alloys with low cost-effectiveness and mixing entropy,
which make them less relevant to our research objectives.

After presenting the notable findings in biobjective and
triobjective optimizations, we now turn our attention to
discussing the remarkable ability of our multiobjective BO
framework to explore high-dimensional HEA design spaces.
First, the batch selection strategy employed in our diversity-
guided BO methods takes into account the diversity in both
design and performance spaces. This strategy facilitates the
favorable selection of dissimilar compositions and drives the
discovery of a broader Pareto front in the performance space.
The inclusion of these diverse compositions further enhances
the predictive abilities of the GPR surrogate model, enabling a
reliable exploration of different regions in this vast design
space.

Second, the diversity-guided multiobjective BO method
incorporates various design choices which allow the search to
escape from local minima, such as hypercubic sampling and
stochastic sampling in the Pareto-discovery solver. Third, our
GNN model with superior extrapolative performance allows
for increasing the dimensionality of the design space. The key
to predicting the catalytic activity of arbitrary HEAs is to
address the diverse local environment of the active sites.
Although the training set includes only 5-element HEAs, the
use of uniformly sampled compositions ensures a significantly
diverse set of slabs and consequentially of active sites. In
addition, it is important to include some chemical similarity in
the training set or embeddings into the extrapolation tasks. For
instance, this work includes all targeted elements in the
training set, which is consistent with a previous study that has
shown that even minimal information about an element can
significantly improve extrapolation performance.53

We believe that ML surrogate model-driven multiobjective
optimization will revolutionize the search for more realistic and
multifunctional materials. Our multiobjective BO framework
represents a versatile approach in which we have demonstrated
that the utilization of the GNN model can efficiently and
reliably handle the complexity in HEAs. In essence, one can
leverage various ML surrogate models to predict multiple
intricate target properties of interest. The speed and efficiency
of these ML surrogate models make them highly suitable to be
integrated with multiobjective optimization algorithms, thus
enabling the evaluation of a large number of potential
candidates and quickly locating promising regions in the
design space.

The multiobjective BO framework is also potentially very
useful in driving high-throughput experiments. The batch
selection strategy allows the conduction of many experimental
tests in parallel, which is valuable in nontrivial experiments that
can take days or months to complete. While our framework is
data-efficient by design through an effective selection strategy
and Pareto-discovery solver, there is room for further
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improvement as it may not be necessary to discover the entire
continuous Pareto front for experiments. We believe that
focusing on identifying a few representative points within
subclusters and subsequently interpolating within those
subclusters can offer valuable efficiency, thus further reducing
the number of experiments required. We leave this direction
for further development and exploration.

The main remaining limitation of our multiobjective BO
framework is the simplified assumption of our surface model.
Although the fcc(111) surface with a random arrangement of
atoms is a good first approximation of HEA electrocatalyst
surfaces that has been successfully applied in many theoretical
studies,11,14−16,19−22 recent experiments have observed the
formation of multiphases,8 which suggests that these
assumptions may not be completely accurate for describing
the true catalyst surface. At the present, this is a frontier area of
HEA research. We anticipate that the development of a better
ML model for phase prediction71 and further experimental
characterization can help us improve such surface models.

■ CONCLUSIONS
In summary, we have developed a data-efficient multiobjective
BO framework tailored for the discovery of HEA electro-
catalysts for ORR. This framework advances beyond the state-
of-the-art by tackling higher dimensional HEA spaces and
expands beyond the prevalent single-objective BO approaches
by enabling the discovery of Pareto-optimal catalysts. This is
achieved by integrating an extrapolative GNN model with a
variety of design strategies inherent to multiobjective BO. This
allows for effective exploration in a targeted 10-element HEA
space, even when exclusively training on 5-element HEAs. By
concurrently targeting three key objectives (catalytic activity,
cost-effectiveness, and entropic stabilization), our method has
effectively identified a diverse range of promising HEA
electrocatalysts. These materials achieve a balance among all
objectives, which are unattainable with single-objective BO.
The identified optimal binary to quinary HEAs are supported
by previous experimental results, whereas those with more
elements are awaiting experimental validation. We underscore
that our data-efficient multiobjective BO approach is versatile
and applicable to both theoretical screening and high-
throughput experiments, accommodating various targeted
objectives. The reduced number of evaluations required
signifies an encouraging advancement, indicating that optimiz-
ing HEA compositions within vast compositional spaces is
experimentally feasible in a laboratory setting.
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