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SUMMARY
A reciprocal theorem is de?eioped for a time-variable, linear visco-
elastic body whose mechanical prébérties are governed by a single aging time
function. The reciprocal relation obtained‘is‘of the Maxwell-Betti type,
but it involves a convolution in time over a faﬁily of histories of mec?anical
states, rather than over a‘single history. A simple application of .the
theorem is made, to deduce a formula for fhe total volume change of a time-

variable viscoelastic body.




INTRODUCTION

The Maxwell-Betti reciprocal theorem of statics for linear elastic
bodies is very well known; and has found wide application in the classical
theory of elasticity and the classical theory of structures. Dynamic

reciprocal theorems for linear elastic bodies have also been developed and

[1,2,3,4]*

applied although such theorems do not appear to be quite so well

known.

Reciprocal theorems of this type have been extended to linear viscoelastic

[3,4] had done in develop-

[5]

bodies. Utilizing the Laplace transform; as Graffi
ing his dynamic reciprocal theorems/for the elaéticrbody, Predeleanu
éstablishéd é dyﬁamic reciprocal theorem for a non-aging, isotrbpic, linear
_yiscoe}astic body»(including the dilation due to temperature change)%*. The
body was taken to be constrained at certain points of its surface by fixed .
sﬁpﬁorts, and was subjected to tractions over the remainder of its surface
and to body forces throughout its volume. Although not done so by‘Predeleanu,
vhis theorem may be directly extended to the case of mixed-mixed boundary
conditions.

Actually, V. Volterrarﬁ] apparently develdped the first reciprécal

theorem for linear viscoelastic bodies very early in the development of ‘his

Numbers in brackets designate References at end of paper.

kK
Predeleany assumed the viscoelastic properties to be independent of
temperature. Since, in fact, these properties are highly temperature
dependent, it would appear that the thermal effectg are not realistically
accounted for in Predeleanu's theorem.




theory of '"hereditary elasticity”. Restricting attention to quasi-static
motions of the medium, he considéréd a more general class of linear visco-
elastic materials than did Predeleanu: van anisotropic material with time-
variable relaxation properties, bdtrwith time-invariable instantaneous elastic
response. However, this theorem is of an entirely different type than the
usual kind of reciprocal theorem, for - as was pointed out by Gurtin and

[7]

Sternberg - the theorem involves ''...two states only one of which is
viscoelastic". That is, one of the sets of displacement, strain and stress
histories appearing in the theorem is not that which could occur in a
viscoelastic body, For this reason, applications of Volterra's reciprocal
theorem would appear to be very limited in comparison to applications of
the usual Maxwell-Betti type of reciprocal theorem.

A reciprocal theorem of the usual Maxwell-Betti type for linear visco- |
elastic bodies was also established recehtly by Gurtin and Sternberg[7].
'They restricted attention to quasi-static motions of time—invariable,
isotropic, linear viséoelastic bodies, and by use of the properties of
ord}nary Stieltjes convolution established a reciprocal theorem which has
the same form as Predeleanu 's theorem. However, the theorem as given by
Predeleanu[5] is more general, since he stated that it holds also for
dynamic cases.

Here we establish a quasi-static reciprocal theorem fpr a subclass of

the 'general linear viscoelastic body . By a general linear viscoelastic

body, we mean one in which the instantaneous elastic response, as well as




the hereditary properties, may change with time. (Aging viscoelastic
materials, such as concrete, are of this type. Some time-invariable
viscoelastic materials subjected to transient temperature distributions.also
may be effectively considered of this type.) In contradistinction to
Volterra's theorem both of the states involved in our theorem aré viscoelastic.
Neither the Lapla;e transform nor ordinary convolution are found to'be
bérticularly useful in the development of the theorem. Instead a general-
ization of ordinary convolution to a convolution over a family of hiétories

- of mechanical states is used.

PRELIMINARIES

Consider a viscoelastic body occupying a closed region R in three-—
dimensional space, the kxmﬂdawyof R being B. We are concerned with'
infinitesimal deformations, i.e., deformations so small that the body may
be regarded as occupying R throughout its history. If we uée carteéian
coordinates X, (i = 1,2,3) to denote a point x of R, and t to denote time
(restricting attention to t 2’0, t = O being our arbitrary origin of time) ,
then the mechanical state of the bbdy is specifiedlby the displacement
vector u (x,t) with components uy (x,t), the strain temsor €(x,t) with
components eij(x,t) and the symmetric stress tensor g(x,t) with components
Uij(x,t); the indices i, j rangé over 1,2,3.

The strain components are related to those of the displacement vector

by

1
€5 = 3 (u, ., +u, ) / (1)




The stress satisfies the equation of equilibrium,

o., .+ £, =0 | (2)

Al

where £(x,t) is the body force vector (per unit of volume) having combonents
fi(x,t), and where we employ the usﬁal summation convention over repeated
indices. At a point x of B, if n denotes the outward unit normal vector with
components n,, then the traction vector t(x,t), with components ti(x,t), is

defined by
t., =n., 0, . : (3)

We will consider boundary-value problems in which a body is subjected
to specified body forces £(x,t) in R, to specified tractions T(x,t) over

B., part of its boundary surface, and is supported "conservatively” over

I)
BII’ the remaining portion of its boundary surface, with B = BI +‘BII. Thus
on BI we have
t(x,t) = T(x,t) x€ B, t =0 ' (4)

As a matter of convenience, we restrict attention to t = 0, and assume the
body to be in a quiescent state for t < O.

By "conservative" supports we mean those which give rise to displacement
and traction vectors in the surface of support such that for all t and for

all x€ B either

I1°.




tl (x,t) = t, (x,t) = t, (x,t) =0, or

2 3

t1 (x,t) = t2 (x,t) = ug (x,t) =0, or

tl (x,t) = u, (x,t) = t3 (x,t) =0, or

t1 (x,t) = u, (x,t) = ug (x,t) =0, or

u (x,t) = t, (x,t) = tg (g?t) =0, or lk (5)
u (x,t) = tz (x,t) ; uS (x,t) =0, or

ul (x,t) = uz‘(x,t) = t3 (x,t) =0, or

uy (x,t) = u, (x,t) = Ug (x,t) =0

where, in the above, ti>(x,t) and ui (x,t) are components referred to a

suitable time-invariable local cartesian base at x, x€ B The local base

II°

may vary with x, x€ BII’ In the above, it is to be understood that at any

point x_, x. € B only one of the eight relations given in Equation (5)

1 11’ .
holds, and it holds there for all times. At any other point x2, X € B

2 11’
the particular one bf the above eight relations holding thefé for all times
may be different than that holding at xl. Su§h supports include not only
all of the coﬁVentional types of supports ordinarily encountered in the
classical theory of structures (the "fixed" support, the "pinned" support,
the "roller" support and the "free' supportf, but generalizations of them.

We will.also consider boundary-value probléms (for t = 0, and
starting in an initially quiescent state) in which f (x,t) = 0 and the
displacement is specified over the whole of Bl'as the vector function

‘H.(x,t). Then we would have in place of Equations (2) and (4) the equations




g.. . =20 o : ‘ 2"

E(X’t) = U(x,t) X€ BI’ t =0 4")

Attention will be restricted to time-variable linear viscoelastic bodies
all of whose viscoelastic moduli are governed by a single aging time function.

Thus we assume the stress-strain relation in' the relaxation-integral form

t
3 . .
dij (x,t) =OU/‘ [ - 3 Eij ) (x; t,7) ] ekﬂ(x,T) dt (6a)
with
9 _
alli-w Eijk,@('x";t"r) = Gijk,(&(X) ¢ (t,T) (6b)

where we have admitted anisotropy and inhomogeniety, and have assumed
quiescence for t <O0. Eijkﬁ , the components of a fourth rank tensor,
represents the aging relaxation moduli of the body. It is.understood that
¢(t,r) =0vwhen t < T. ¢(t,r) is in general a distribution, so that the
integral in Equation (6a) includes instantaenous elastic response.

In dealing with the relationship between stress and strain, it is

conveniént to represent them (by employing the standard reduced indical

For an isotropic medium this would imply that in a standard creep test,
Poisson's ratio would be a constant, rather than a function of time.

On the basis of the limited experimental data available [8,9,10], it
appears (at least to a first approximation) that such a relationship
holds for concrete- probably the most important structural material
exhibiting aging, linear viscoelastic behavior. We also note that
incompressible, isotropic, aging linear viscoelastic materials fall
into this category.




notation[ll]) as vectors ¢ and € in a 6-space with components Ud and
€y > respectively (& = 1a2;"°'6)’ The fourth rank tensor with components

VGijkﬂ then goes over to»é matrix G with elements GO‘5 «@,p =1,2,...,6)
so that employing matrix multiplication; the relaxation integral form;of

the stress-strain relation may be written as
t ,
9(x,t) = G(x) - f e(x,n) ¢ (t,7) dr (7a)
ov

‘ ok
where the ° indicates matrix multiplication.
It is useful to have this relation in inverted form - that is, in

creep-integral form:

€(x,t)

1l

J(x) - ‘ft o(x,m ¥ (t,0) dr | (7b)

o
In the above, J is the matrix inverse to G, and V(t,7) (in general, also a
distribution, with ¥(t,7) = 0 when t < 1) is the kernel inversé to  ¢(t,T),

so that

G*Jd=JG= (8a)

i

t A + ’
Tk/ﬁ *(t,8) V(&,7) dt TL/“ V(t,E) ¢ (&,7) =0 (t-1) (8b)

where I is the identity matrix (i.e., the Kronecker delta in 6-space) and

® is the Dirac delta function.

% .
Generally, G is taken to be symmetric, The symmetry of G is established
by means of “either microscopic [12] or macroscopic [13] thermodynamic
arguments




In summary then, the "traction" boundary-value problem of interest here
is governed by the field Equations (1), (2) and (7a) or (7b) in the region

R, and by the boundary conditions (4) on BI and (5) on B with the traction

i1’
defined by Equation (3). The "displacement” boundary-value problem of

interest here is governed by the field Equations (1), (2') and (7a) or (7b)
and (5) on B

in R, and by the boundary conditions (4') on B with the

1 11

traction defined by Equation (3)., In actuality, both problems represeht a
special class of the so-called "mixed-mixed" boundary-value problem.[l4]
’bBefofebconsidering the solutions to these viscoelastic problems, it

is coﬁvenient to first define associated elastic problems and to consider
their solutions. The associated elastic ﬁroblem;for the “traction" boundary
value problem under consideration here, is defined by the field Equations QD)

and (2) in R, but in place of Equations (7a) or (7b), we have instead the

elastic stress-strain relation in R given by
g(x,t) = G(x) * e(x,t) : (9a)

or

ex,0) = J () - 9(x,1) | (9b)

The same boundary conditions (4) on BI and (3) on BII hold, along with

Equation (3). We call the solution to this elastic boundary-value problem

(which vanishes by definition for t < 0) the associated elastic solution.




Denoting the viscoelastic solution by unprimed symbols, and the associated
elastic solution by symbols carrying a superscript prime, then in terms of

the associated elastic solution, the viscoelastic solution is given by

a(x,t) = 9" (x,t) (10a)
t ' : .
ulx,t) = k/ﬁ u'x, ¥ (t,T) dt _ (10b)
(o] . .
t
€(x,t) = f €' (x,7) ¥ (t,7) d7 A 7 (10c)

0o

It is a simple matter to verify by direct substitution ﬁhat if 3‘,
€', U' is the associated elastic solution (i.e., if it satisfies Equations‘
(1), (2), (3), (4), (5) and (9) ) then u, € , U, as defined by Equations
(10), is the viscoelastic solution (i.e., it satisfies Equations (n, @, 3,
(4), (5) and (7) ). Assuming that Eijkz(x;t,t) eij ekz is a positive
definite quadratic form for x€R, t = 0, it then follows, from a uniqueness
theorem recently established by Lubliner and Sackman[ls] , that the above
solution is the unique solution to the posed viscoelastic'boundary~value
problem.

For the "displacement’ boundary-value problem of interest here,
the associated elastic solution is defined to be the solution of Equétions
(1), (2", (3), (4"), (5) and (9). As before, denoting this solution by
g‘g €', ¢', then by direct substitution it is easy to verify that the

viscoelastic solution u, €, g(goVerned by Equations (1), (2'), (3), (4"},

(5) and (7) ) is given by
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uGx,t) = u'(x,8) | | (11a)

e(x,t) = €'(x,1) : (11b)

g(x,t) = \/ﬂtg‘(x,T) ¢ (t,T) dt (11le)
O

RECIPROCAL THEOREM

We shall first construct a reciprocal theorem appropriate for the
"traction” boundary-value problem previously described.

Consider two linear viscoelastic bodies, bédy (1) and body (2), each
occupying a’qlosed region R, with boundary B = BI + BII’ The étress-strain
'relatiohships for the bodies are given by Equations (7a) or (7b), with G
replaced by 9(1) and E(z), and J by i(l) and 5(2), respectively, for bodies

(1) and (2). Let G and J where the superscript T

T T
@ =% @ =Ly

denotes the transpose of a matrix. Each of the bodies is taken to be
"conservatively' supported, in the same manner, over the boundary region

BII' e

Body (1) is subjected to the specifiedbfamily of loadings consisting

D _

of the traction distribution t (x,t-£) over B_ and the body force

I
distributions ifl)(x,t-ﬁ) in R, whereas body (2) is subjected to the

specified family 3(2) = 2(2)(x,t—§) over BI and £(2)(x,t~§) in R. We

restrict attention to t = O and assume each body to be in a quiescent
. (a)_ (o)
state for t €< 0. It is to be understood that § = 0, and that T "'= £""'= 0

for t <&, q =1,2.
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Denote the displacement, strain and stress fields for the associated

elastic problem produced inhbdiies (1) and (2) by these loadings as

g‘(l)(x,t-ﬁ), _€_'(1)(X,t—§), U'(l)-(X,t—E) and 11_‘( )(x t-£), '(2)( ,t-8),

e

(x,t-£), respectively. (Obviously these solutions are identically zero

“for t < 0). Then from Equations (10)- we have for the viscoelastic solution

E(q)’ S“(q)’ E(q) in body (q), q = 1,2:
g(q)(x,t-ﬁ) = g'(q)(x,twﬁ) o (12a)
(@) b @
u “ (x,t,8) = u/‘ u' 4 (x,7-8) V(t,7)dT (12b)
o] .
D t,6) = ft ¢ @ x,-8) ¥ (t,mar (12)
S |

We shall now prove that theﬁfolloW3ng reciprocal relation holds:

f av f Vit - o® (x,t,0 dt + fdA f D (x, 23 uPx,t, 608 =
fdvf Dx,e) - o' 1,008 +fdAf '3(2’<x,§> a8 at
B © :

(13)

It may be noted that in Equation (13), the integrals carried out over B are
identical to the same integrals carried out over BI; This follows from our

definition of 'conservative” supports and the fact that both bodies (1) and

(2) are supported in an identical manner.
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By use of the .definition of the traction vector, the divergence theorem,
the symmetry of the stress tensor, the strain-displacement relations, and
the stress equation of equilibrium, the left~hand side of Equation (13),

which we denote as L, may be reduced to

f f e M (2)
dv Uij (x,6) eij (x,t,&) dt (14)
R o

From Equation (12) we may rewrite this as

| e | | |
= fdv ft U_‘ij (x,6) [fte.ij(2)(x,'c—§)‘lf(t,'r) d'r’-J‘ at (15)
R o :

(¢]

But, recalling that e‘ij(Z) (x,7-€) =0 for T < §

ft ¢ Clx,1-6)¥(t,v) dv = ft ¢ @D (5 -B)y(t,1) dr =
T i ij .

o . 3 .
A (16)
t-§ )
- f e'ij(z) (x,m) ¥ (t,8+n) dn
o
where we have used the substitution T - & = n ., Thus Equation (15) becomes
=f (@) -
b/‘dvu/\ (x Q)(L/\ eij (X,n)W(t,§+n)dn] dg (17)

(o]

We may rewrite the : iterated integral on the time variable in Equation (17)

as a double integral:
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ve [av [ o, @ ap e [P em v s aa as)
R D

where D is the closed region in the (£&,n) plane bounded by the triangle
consisting of the three straight line segments connecting the points (0,0),
(t,0) and (0,%).

Utilizing the elastic stress-strain relationship, Equation (9a), for the
associated elastic solution, and returning again to our matrix-vector

notation, Equation (18) may be rewritten as
L = f av jfg'(z) ORI NGO A N TER S LY (19)
R D ‘

In a similar manner, it may; be shown :that the right-hand side of

Equation (13), which we denote by M, may be rewritten as

w= u/‘ v u/1/\'-6-'(1) M - Ggy (0 - i'(z) (x,E)V(t,E+n) dE dn (20)
'R D |

Recalling that we chose G and that the region D is symmetric

(2) 9?(1)’
with respect to interchange of the variables & and 71, it then follows that
L>= M, and the reciprocal theorem is proved.

A similar reciprocal relation holds for the "displacement" boundary-
value problem previously described} For that case, tbe body force f is
:taken to be zero throughout R for both bodies (1) and (2). Instead of two

families of traction histories, E(q)(x, 1-£), being prescribed on.BI,

two families of displacement histories,iU(q) (x,7-6), g = 1, 2, are prescribed
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(with t = 0,\H(q) = 0 for t < £, and quiescence for t < 0).

The reciprocal relation then takes the form

op . |
fdAf £ eot,0 - u® e, at -
B o

: fdAft 3(2) (x,'t,é) . 3(1) (x,8) d§
Bv o

The proof of this theorem is similar to that given above to establish the

(21)

validity of Equation (13), and is not repeated here..

EXAMPLE

As a simple application of'the reciprocal relation just‘developed, we
deduce a formula for the total volume change of a viscoelastic body of the
" type under consideration here. The body is assgmed to be homogeneous and
isotropic, subjected to a body force distribution £ﬁx,t), and subjected to
‘a traction distribution E(x,t)vover its boundary surface,

In deaiingrwifh the homogeneous, isotropic body, it is convenient
to rewrite the stress;strain relationship (given for the general aniso-

tropic case by Equations (7) ) in the form

il

th s, . kx,T)‘W (t,r) dr (22a)
1]

(o

1
eij (X,t) E;

emm(x,t)

;—k ft dmm (x,7) ¥ (t,7) dr (22b)

o
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with ¢ and k constant. eij and sij are the deviatoric components of the

strain and stress tensors, respectively, defined by

1 v .
eij = eij -3 emm Bij (23a)

1 .
= U - - g . : .

i3 7 %3 73 “mm %ij (23b)
6ij being the Kronecker delta.

Now, in Equation (13), set

P -0, 1P oo =t en (24)
and let state (1) (with zgl)'E 0) be given by

LW £y _om el | -
éij (x,t-8) =8 (t-£) 6ij | (25a)
w P e, = v (6,6 x « o (25b)

: i (] - 3k ) » i ‘
€ (1)(x £,6) = - ¥ (¢ £ 3 : | (25¢)

ij *TrPe T 3k ! ij '

It is readily verified that state (1) satisfies all of the governing field

equations for a viscoelastic body of the type being considered here. dij(l)
gives rise to the tractioh vector
1 ,
P x,e-6) =0 5 (6-6) (26)

on the boundary surface B of the body, where n is the outward unit vector

normal to B,
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~ Application of Equation (13) yields

. . ,
AV(t) ='~13 fdv f £ (x,8 - zV¥ (t,8) df 4
R o) . '

- (27)

*7;71? f dA ftz (x,6) -r ¥ (t,8) at
j B o . o

where AV(t) is the total volume change of the body, and ;,is‘the position
vector,with components xi, from our arbitrary choice of origin to a generic

point in the closed region R, In~arriving at Equation (27) we have used the

- fact that

AV’:f_rl'y_dA=fV‘_qu=f€mde ' " - (28)
‘ B R R

~where 7 - u = ui;i'
Formulas similar to (27) were obtained by Gurtin and Sternberg[7] and

[16]

by Predeleanu for the time~invariable viscoelastic body.
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