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Simulations of the n = 2 absorption spectra of Hey
with nuclear configurations sampled by path integral
is treated by a new approach, ALMO-CIS+CT, which 1
singles (CIS) based on absolutely-localized mol{u
the previously reported ALMO-CIS model (Jg C
spatially localized charge transfer (CT) effects.

% 94720,
Q<

T= 70,180, 231,300) clusters are reported,
oleculdy dynamics. The electronic structure
formulation of configuration interaction
ular-orbitals (ALMOs). The method generalizes

~Theory Comput. 11, 5791 (2015)) to include
t is designed to recover large numbers of excited
ntire n = 2 Rydberg band in helium clusters.
ror caused by neglecting charge transfer in

states in atomic and molecular clusters, s as thi
ALMO-CIS+CT is shown to recover it ofithe
ALMO-CIS, and has comparable accuracy tosstandard CIS for helium clusters. For the n = 2 band,

CT stabilizes states towards the blue
cubic scaling of ALMO-CIS with géspect

over that originally reported for A CIS,
utm resources. A detailed simulation of the absorption
p bands of helium clusters up to 300 atoms is reported, using path
erical boundary condition to generate atomic configurations
rimentally reported fluorescence excitation spectra for helium

hundreds of atoms using modest co
spectra associated with the 2s a
integral molecular dynami¢s gwith
at 3K. The main features

clusters are reproduced.

I. INTRODUCTION

£

Atomic and molefﬁw%t&rs/épan the range be-

tween the gas phade and bulkdlimits, and they are

useful for investi 'Mmental differences be-
suar%ce properties. Helium clusters

tween bulk an
erest: they are weakly interact-
an be used as a spectroscopic

perl?entally, fluorescence spectra’®
ufiderstand how the excited elec-

ing, super
medium?3.

of sharp atomic lines accompanied
lue-shifted wings, and their relative intensities
onl the cluster sizes.

en, for helium, the simplest many-electron
abom, theoretical study of the excited electronic
states remains a challenge for large clusters. A
method must balance accuracy against efficiency to

Jdoebyup to 0.5eV. ALMO-CIS+CT retains the formal

ystem size. With improvements to the implementation

LMO-CIS+CT is able to treat helium clusters with

be practically useful. Two of the simplest meth-
ods are time-dependent density functional theory
(TDDFT)" 1% and configuration interaction singles
(CIS)%!!, TDDFT is more widely used, because in
many cases where the dynamic electron correlation is
important, it outperforms CIS in terms of accuracy.
CIS often has quite large (~ 1eV) errors in excita-
tion energies due to the neglect of dynamic electron
correlation.

Nonetheless, CIS does not suffer from the incor-
rect asymptotic potential and self-interaction error
of TDDFT. For this reason, for relative energies of
Rydberg states in helium clusters, CIS is the method
of choice. Moreover, CIS can be improved system-
atically by adding higher substitutions to the CI
wavefunction'?. Previous CIS calculations on small
clusters involving up to 25 helium atoms shows that
CIS is capable of elucidating the spectroscopy'?® and
the post-excitation dynamics of helium clusters'®.
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Publishin g{ ywever, modern experiments mainly focus on he- was extended to excited state calculations by em-

1

LLLLLL clusters with hundreds to tens of thousands of
atoms or even larger, which is beyond the normal
capability of CIS due to its high order scaling with
respect to system size: a conventional CIS calcula-
tion for all states scales as O(M?®), with the number
of (identical) atoms or molecules, M, in the cluster.
When only a handful of the low-lying excited states
are requested, the CIS eigen-equation can be solved
iteratively using Davidson’s method!®16, which re-
duces the scaling to O(M*) in the molecular orbital
(MO) basis per state. In the atomic orbital (AO)
basis, matrix element sparsity reduces the cost to as
low as O(M?) per state (with a large prefactor) for
the rate-determining matrix-vector contraction.
Unfortunately, to directly compare with the ex-
perimental spectra of large homogeneous clusters,
we need a full description of the energy bands of He
clusters. The number of states required then grows
at least linearly with the number of atoms (for in-
stance, the n = 2 band of a 1000-atom helium cluster

ploying the multilayer FMO method, in which the
region of chemical interest is treated with CIS23,
CIS(D)?* or TDDFT?, while the environment is
kept at the HF/DFT level. Wu et al. proposed a
linear scaling TDDFT method through the use of
fragment LMOs which are orthogonal but still well
localized?®. More receutly, Herbert and co-workers
implemented the FrenkelDavydov exciton model to
study the excited s s&{rﬁgates, where an ex-
citonic state is colistrugted from direct products of
fragment confi state function basis?" 29,
consistent,

thod, which is fully self-

S ‘L‘j approach based on absolutely lo-

calized molegul bitals (ALMOs), which were first
introdueed, to'speed up SCF calculations on weakly
interagting systems’® 34, ALMOs are defined by the
constraint that the MO coefficient matrix is block di-
agoral be fragments. This type of constrained
Sﬁpr dure is commonly referred to as SCF for

nolecular Anteractions (SCF-MI). Subsequently AL-

elopment of energy decomposition analysis (EDA)

requires a minimum of 4000 states), suggesting tha\; fi'om SCF-MI have also proven useful in the de-
Vi

iterative methods are not preferred. On the other
hand, direct solution for all states is not feasible,

already discussed.

Great effort has gone into reducing the scalin
CIS and TDDFT methods. By exploiti
types of spatial locality or sparsity in
sentations, some linear scaling methods<have\been
developed!™ . However, rigorous linea‘ksaqglE is
only achieved in substantially lar ems, espe-
cially since the electronic density of exeited*states is
often much more delocalized than that of the ground
state (here we mainly focus ystems whose excita-
tions cannot be localized i ertainfregion, such as
homogeneous clusters). For this'sgasén, these linear
scaling methods are ully’ applicable for systems
consisting of hunrc'iyg,: of oms,/ and different ap-
proximations seemto ble for these cases.
A common feat

f

the above mentioned methods
'z:cﬁnolecular orbitals (LMOs) are
ocalizing canonical molecular orbitals
hysical regions. This “top-
)f{en found to be inefficient due
o

calizing virtual orbitals when
20,21

>ases

scheme, where LMOs are obtained di-
subsystem calculations without comput-

10t Os first. One example is the fragment
%&@ular orbital (FMO) method developed by Ki-
taura and coworkers??. The idea is to divide the
system into fragments and perform ab initio calcu-
lations of fragments and their dimers. The method

thiods35 39,

In a previous publication, we reported ALMO-

S%0 an ALMO-based excited state method, and
its application to helium clusters. The ALMO-CIS
method scales as only O(M?) for the evaluation of
O(M) states. Two factors contribute to the reduc-
tion of the scaling: (a) The molecular orbitals (MOs)
are linear combination of only AOs centered on a
certain fragment, which greatly reduces the cost of
transforming the electron-repulsion integrals (ERISs)
from AOs to MOs; (b) the locality of MOs allows us
to associate a single substitution to fragments, and
the CIS equation can be truncated in a physically
meaningful manner. In the ALMO-CIS model, only
intrafragment single excitations are considered, and
this reduces the matrix dimension from O(M?) to
O(M) in the CIS equation and thereby reduces the
scaling of the method.

A TDDFT(MI) method has also been recently
proposed by Liu and Herbert4!, which shares the
same spirit with ALMO-CIS. The major difference
is that TDDFT(MI) computes several lowest excited
states for the monomers first, then evaluates the su-
persystem excited states as the linear combination
of these local states, using the Davidson algorithm.
This current implementation is optimized for sys-
tems such as solvated chromophores, where a rela-
tively small number of the excited states are of in-
terest. With some modification of the algorithm,
TDDFT(MI) could also be extended to obtain the
full spectrum of molecular clusters.
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excitations to be intrafragment, which means the
charge transfer (CT) effect is neglected. For he-
lium clusters, the ALMO-CIS method is found to
have ~ 0.5eV overestimation for excitation energies
at the blue end of the n = 2 band, when measured
against standard CIS. It also has systematic error for
predicting the spectrum profiles*®. For many other
systems with stronger interaction than helium, we
expect the error will be more pronounced. All these
considerations motivate us to seek a way to correct
the ALMO-CIS model by at least partially reintro-
ducing the neglected charge transfer class of excita-
tions.

In this work, we add back the charge transfer ef-
fect by using a real-space distance cutoff. The model
presented here is called ALMO-CIS+CT. The re-
mainder of the paper is organized as follows: in
the Theory section, we introduce the generalization
of the ALMO-CIS model to ALMO-CIS+CT, and
a Davidson-like variational method that is used to

solve the eigenvalue problem. Next, we discuss som fr
optimization we have done for the fast implem wi

tation of the ALMO-CIS+CT model.

neighbor fragments defined by the distance criterion.
For a system with identical fragments, the number
of fragments M can be used to denote the size of the
system.

We use standard tensor notation to work with
nonorthogonal functions*?. A covariant function is
denoted by a subscript and a contravariant function
is denoted by a superséript. The Einstein summa-

tion convention is al§o ployed, where an index
that occurs once iant ‘and once contravariant

1
implies a sum. )

B. ALMO-CIS«and its_generalization to include
charge transfer

efining the ALMOs. The atoms
luster (or molecules in a molecu-
lat cluste divided into non-overlapping sub-
st%jh re referred to as fragments. The atom

en erems can thus be partitioned based on the
chts they belong to. In the ALMO formalism,
olecular orbital (MO) on a given fragment is

in an

superposition of AOs centered on the same frag-

n_
The ac&\
racy and timing results are presented in the esu.],t\gl‘ent exclusively, and this results in a block-diagonal
e

section. Finally, we apply ALMO-CIS+CT for
study of helium clusters, and the resulti
are compared with the experimental data.
description of a more rigorous simulagi

for, the
cluster geometries with path integral m% y-
namics can also be found in the A 139.1;'0\%(: ion.

£ y
O/ 1 is used throughout the pa-
i

The following nota
per. i, j, k, I: M indices; a, b: virtual
MO indices; p, xncric O indices. x,: atomic
orbitals; xpd xg\auxiliary basis functions. The
7 1, and ¢ is used for pro-
. Fragments are indicated by
nless otherwise specified, two or-
bital indices c3lnected as pg or pq belong to two
fragments (or the same fragment).

1. THEORY

A. Notation

or

with) system size, and lowercase letters for
ies that do not: O, V, N: total number of
q@pﬁ.&d/virtual/ atomic orbitals in the system; o, v,
the average numbers of occupied/virtual/atomic
orbigals per fragment; o, v, n: the average numbers
of occupied/virtual/atomic orbitals within the near-

O coefficient matrix.

) = Y [xu)CH,  peF (1)

HEFT

The MO coefficients can be solved within the frame-
work of self-consistent field theory with the con-
straint that the MO coefficient matrix should be
fragment-blocked. The resulting ALMOs are orthog-
onal within a fragment but are nonorthogonal be-
tween fragments.

In the previous ALMO-CIS publication??, we have
derived the generalized CIS equations that apply to
nonorthogonal molecular orbitals:

Ao it = wersSapSijt?? (2)

Here wers = E — Egr is the excitation energy, and
7% are the CIS amplitudes. The overlap metric S ap-
pears because of the interfragment nonorthogonality
of ALMOs. We have chosen known matrix elements
to be covariant, and the unknown amplitudes to be
contravariant. The (restricted) CIS Hamiltonian can
be constructed from the Fock matrices f, overlap
metric S and the two-electron integrals:

Aiajb = fanSij—fijSap+2 (Yida | dot0j)—(Witd; | ¢(%¢)5b)

All virtual orbitals above are technically “projected
virtuals”, which are defined by projecting out the
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that occupieds and virtuals are orthogonal (the un-
projected ALMO virtuals on a fragment are non-
orthogonal to both occupied and virtual ALMOs on
other fragments).

|¢u> - Na(|wa> - Poch)a))
= Na([%a) = [0x) (S~ (W1]t0a)
= N ([ba) — i) (V¥ [0a)) (4)

where N, is the normalization constant and |*) =
[41)(S™H! are the contravariant occupied orbitals.
In the ALMO-CIS model, the CIS matrices are
truncated by including only “intra-fragment” single
substitutions (i.e. those that promote an electron
from an occupied level to a virtual level assigned to
same fragment), which can be denoted as follows:

[l - [l

b D b
Ao v’ = wersSapSijt!” = wersGia, jpt’ (5)
o = o

ALMO-CIS model is free of charge-transfer

ntri —
butions. As shown in the appendix, this can als he\ Z

proven, in the sense that fragment Mulli
lations are unchanged from the ground stat
ALMO-CIS model.

The ALMO-CIS equation, Eq. 5 can xie al-
ized to include some charge trans T')\Gypessin-
gle substitutions based on a selectionwof ificant
fragment pairs within which CT will be ‘permitted.

Specifically, we use a distange based cutoff (r¢y:) to
S to be consid-
. gnificant frag-

atell, conlprising all pairs

of fragments whose distances arf smaller than 7.,;.

Pairs of a same fr m&:ize ed twice are consid-
air.

ered as zero dist e? nd thus are also included
sponding

to a pair.of ment)ﬁn the pair list, we will include
it in tHe truncated ‘matrices. In this way, the form

T POPU-

ment pair list can be

ut the meaning of the contraction lines
isigeneralized. In the ALMO-CIS model, a contrac-
tiom line cgnnccts two indices that belong to a same
Now, in the generalization that we will
refer 4 as ALMO-CIS+CT, the two indices belong
te, a significant pair of fragments.

e cutoff distance is a user-defined parameter in
the ALMO-CIS+CT model. At one extreme, in the

\@>

G is the metric associated with the retained intra-
fragment single substitutions. It is intuitive that ‘?ﬁ\
l_

in he\

clude the pairs that contain the same fragment twice,
and ALMO-CIS+CT reduces to the original ALMO-
CIS model. At the other extreme, when a very large
reut 1S chosen, all possible single substitutions are
included, and the untruncated CIS equations (eq. 2)
are recovered. For a weakly interacting system, such
as a helium cluster, a ftoﬂ that corresponds to in-
cluding the first shell{of\necighboring atoms will be
shown (in the Res 'Mo be sufficient to re-
cover most of th errzscause by neglecting CT in
ALMO-CIS.

The oscillator “stren

dC‘ﬁnC‘d as: )
&L"@Kd)o'ﬁ

Within“the AI)IO—CIS—%CT theory, the dipole ma-
tyix eleme n be calculated as:

-

Y. D tYilalga)
Fr,Fa € i€Fy
FrgPairList a€Fa

-
ia Tu v

E tire uc,  (7)

Fr,Fa € i€Fr

FrgPairList a€Fa

of an excited state x is

These matrix elements will be used later in evaluat-
ing the absorption spectrum of helium clusters.

C. Davidson-like variational method

The eigenvalue problem of eq. 5 can be solved by a
full diagonalization. In the ALMO-CIS model, this
O(M?) scaling step was found to be a minor step
because of its relatively small prefactor. However,
when CT substitutions are included, the computa-
tional effort will increase by the cube of the factor
by which the number of single substitutions has in-
creased. For the nearest-neighbor cutoff, applied to
a medium-sized helium cluster, the ALMO-CIS+CT
matrix size is roughly five to six times larger than for
ALMO-CIS, and as a result the diagonalization tim-
ing is about 200 times longer. Full diagonalization is
still feasible, but becomes a dominant step. Thus, we
propose a one-step Davidson-like variational method
to alleviate this problem.

The eigenvalue problem of eq. 5 is now expressed
in terms of the intra-fragment (local) subspace (de-
noted by ) and the charge transfer subspace (de-
noted by ¢). In the matrix elements below, each in-
dex [ or ¢ corresponds to an occupied-virtual pair 7a.
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Ny and N, respectively. Likewise, the trailing state
index in the amplitudes, t, and elgenvalues w, can
be associated with a state that is primarily local )

or primarily CT (c).
|-lé &l lls

Il 0

Solving the above full-size eigenvalue problem can
be avoided since we are wanting to obtain corrected
roots only for the ALMO-CIS states (i.e. only for the
“” block). We will show that the dimension of the
eigenvalue problem to be solved for those corrected
roots can be reduced to just 2 x N; by using a one-
step Davidson-like method.
We first solve an eigenvalue problem in the local
G”tl(lo)wl(o)
glo) and ""z( ) as the uncorrected eigenvectors and
eigenvalues. They are simply the ALMO-CIS eigen-
vectors and eigenvalues. Next, we form a transfor-
mation to a projected CT basis C that is constructed
to be orthogonal to the local subspace.

G- [*tl(?)tff”Gzc} _ [C}
I I

where I is the N, x N, identity matrix. With
jected CT basis, the eigenvalue problem beco

tu tic
tcl tcc

C';ll
Gcl

Glc
Gee

tu tic

{ Ay A
ter tec

Acl Acc

subspace, i.e., solve A”t( ) — and obtain

All Alc tu tlc Gzz t 1 0
A,-l Acc tcl tcc 0 We
(10)
where the projected blocks are-given by
Ay =Ay; A=A Ay
A.. =ClAC = CfAfC +Ad ClA,+ A,
Gy = Gy; Ciz/: 0 Y.
G.. = C'SC =C'Gji€ + GiC + C'Gy. + G,
) (11)
Similar to the Dawidson method, we compute the

correction§ectors by

. A, — wécc)flr

(12)

A cidn; ) are the residue vectors of the un-

O-CIS excited states. The scalar, @,
the preconditioner is a parameter wh1ch
chosen based on the states that one is
intgrested in, and it should be close to the target
eigenvalues. For example, in our study of helium
clusters, we target the n = 2 manifold of states,
and thus w is approximated by the average of the

0
We

(0)

uncorrected n = 2 eigenenergies w; ’, so that sepa-
rate preconditioning for each state can be avoided.
It is thus required to solve an N.-dimensional lin-
ear equation once to apply the preconditioner in Eq.
12. One can avoid this third-order scaling step by

nsidering keeping only diagonal elements of the
aiccondltloncr However, the cost of solving the lin-
ear equation has a qu small prefactor. In fact, for

the helium cluster sy e have studied, it is ac-
tually not the domi %te in the whole Dav1dson—
like procedure. erefore, the reduction of compu-

tational cost from ‘mphﬁed preconditioner does
not seem to be e, considering the dimin-
ished accu cy at es with it. Detailed timings
i e method and tests showing the
ypes of preconditioners are re-

e
nowgtach the correction vectors to the lo-
d form A and G in a 2 x N; subspace
tl(lo) and 8. The result is a generalized
envalueproblem of dimension 2 x N;, which is typ-
3 times smaller than that of the full ALMO-
The eigenstates and eigenvalues

ica
CIS+CT model. i i
\c sponding to intrafragment excited states (now

corrected for CT) can be obtained by taking the low-

est NN} eigen-solutions. This approach is like a one-

step Davidson method, and the resulting excitation

energies are variational upper bounds to the exact

ALMO-CIS+CT eigenvalues that come from solving
q. 5 exactly.

I1l. EFFICIENT IMPLEMENTATION AND
SCALING

An efficient implementation of the ALMO-
CIS+CT model has been completed within a de-
velopment version of Q-Chem quantum chemistry
program package?®*. With CT states included, the
size of the truncated Hamiltonian and overlap met-
ric will increase by a factor that depends on the cut-
off distance one chooses. However, the storage for
these matrices still scales as O(M?). For the size of
systems we have studied, this fact allows the matri-
ces to be explicitly calculated and stored in mem-
ory, and Eq. 5 to be solved as a final step without
memory issues. Thus, the algorithms for building
the Hamiltonian reported in the implementation of
the ALMO-CIS method*® can be inherited without
major modification. Nevertheless, some aspects of
the two-electron integral evaluation have been refor-
mulated to further increase computational efficiency.
The following subsections will discuss these aspects
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A. Strategy for Two-Electron Integral Evaluation

The two electron integrals appearing in Eq. 3, in-
cluding a Coulomb-like term (1/)@ | Q/J‘jib,b) and an

| —
exchange-like term ( ¥;%; |Pq¢p), are expanded in
terms of unprojected ALMO contributions and pro-
jection corrections:

(0 | 1hidp) = NaNp{ (g | ¥j1bp)
= 2( it [¥59) (V" [ 4w)

(it | o) (0F [) (& Jn)}
J =N Np(J1 —2-J23 + J4) (13

J23 = (Whirka lWyn) (V" | ) =
T4 = (i | i) (0° 1) (
)

(Yihs |Padr) =NaNo{( i) |[Wathy)
—2( iy [atr) (VF |1hp)

(g | detbn) (8 [a) (' 1)}
K =N,Ny(K1—-2-K23+K4) (14)

the same as in the ALMO-
/0 indices connected by
a contraction line g tosgwo neighboring frag-
ments, rather tha restrlc ed to the same frag-

ment. The terdis in Vmg four-center two-electron
integrals wit, thl T r occupied indices (.J23,
J4, K23 a d arésgorrections to the four-center

unprojectedintégralg and are essential for quantita-
tive acfuracy.
We evaluateghe‘eorrection terms using the resolu-

e ide&ity (RI) approximation®® 47 where
two-electron integrals are decom-
posed 1rr3 three-center integrals, (¢;%;| xp) and

The expansion is exac
CIS model, except

as well as the inverse of the Coulomb
HTthe auxiliary basis (x* | x?):

K23 = (st [athe) (" |gb)\~i
K4 = (1/%%‘ | Yethr) (VF |¢;) ( /)b)

The number of three- ctron integrals

needed does not depénd Whe?(er charge transfer

states are includedd singe for h cases, the indices

of three-center twos le:tﬁra\iiltegrals should run over

a@virtua orbitals, as well as all

Thus, the algorlthm used in

namely, the “digestor” that

E?enter integrals from AO basis

adopted without any change.

, the following contraction steps

ified to account for the fact that more
I pairs are now included.

e leading terms, J1 and K1, can be evaluated
ing chemes that were presented previously*?
owever, this may not be optimal and we have de-

oped new algorithms that will improve the com-
putational efficiency. In the next two subsections,
we shall compare different possible schemes in build-

(vl ) (71X Ora | ) (9° 1) (4 1)

(

ing the J1 and K1 terms, and discuss the necessity
of adopting a better scheme when charge transfer
states are present.

B. ALMO Coulomb Integral Evaluation

Let us begin by analyzing the formal scaling
of the previous ALMO-CIS implementation. The
most computationally signiﬁcant step was to form

(X,LLXI/ | "/’ﬂ/’a)

which were computed as a contraction of the AO in-

the half-transformed integrals J! o

za

tegrals (u& | Ag) with the pseudo densities P’\" =

c}cl?. When the excitations are restricted to be in-
trafragment, the only AO integrals we need to com-
pute are those with u and v on the same fragment,
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PUb'IShIM@ A and o on a different fragment. Their number
isouly NNnn. Because of the block structure of the
density, each integral will contract with ov densities,
so the scaling for the contraction step is N Nnnov.

With CT excitations between near-neighbors in-
cluded, the AO integrals that are needed will grow
to become NNnn, and the scaling will become
NNnnov. Therefore, although the scaling of the
contraction remains quadratic with system size, the
prefactor is (72/n)? times larger, which is roughly a
factor of 25 for the case of helium clusters. Based
on the ALMO-CIS timing results?®, this suggests
that building the Coulomb integrals is likely to be-
come a dominant step if no improvements are made.
Thus, we have to look into other ways of doing the
Coulomb-type contraction.

One possibility is to replace the contraction of
AQO integrals with densities by two quarter trans-
forms to the ALMO representation. The AO in-
tegrals (ME. | )\g) are first transformed with ALMO

coefficients C to form (ME. | ig), and then the quar-

ter transformed integrals are contracted with
to form the half-transformed integrals (u& | z'a)

this scheme, with CT substitutions, the scalid

NNnno and N Nnov, respectively. Thus,

ing the contraction with densities by two ‘quarten,

transformations, the computational cdstecan
duced by a factor of v, the average numb N
signi

orbitals on a single fragment T 1&4\ ant

improvement.
However, there is a price

tries. For example, / is not only contracted
with PZ)L‘I”, but also SN“' /iv) to contract with

aboutrone-eighth of the inte-

ince there are eight such permu-
and, if the AO integrals are
ith MO coefficients, the per-
e bra side and ket side cannot

one, and only a batch of quarter trans-
or' e;Lintegrals (,uzl | 23) is held in memory at one
time. The first quarter transform must be completed
by munning over all pairs of ket indexes, so it is not
possible to only loop over the ket batches with in-

Algorithm 1: (Half) integral transfrom for the
Coulomb term, J,,iq = (,u&| 13)

for bra batches do

for ket batches do

for pv € batch do
for \o € batch do

A—)F[, —)FJ
for i %OF, do

Y _ X
| (B[ iohg= (v | Ao) Cy;

}OF, ,
JA) += (uv | Aa) C;

If e want to use “upper triangle” or “lower trl—

gle” loop structures for batches, the second half
transform has to be moved outside the loop over bra
batches. This, however, will demand all the quarter
transformed integrals to be stored in memory, which
is impractical for large systems, since the number
of quarter transformed integrals is NNno. There-
fore, in our current implementation, we employ the
quarter transform at the price of computing twice
as many AO integrals as we have before. The sac-
rifice is worthwhile if the cost of computing AO in-
tegrals is insignificant compared to the contraction
steps, which is true for the Coulomb like integrals,
as shown in the timing result in the Result section.

TABLE I: Comparison of the density contraction
and the MO Coefficient contraction schemes for the
half-transform to build J1

. computing
scheme step scaling AO-ERI twice
a (uy\ )\a) P>“’ (“ﬂl zg) N Niov No
>\ ==
b | 0we) oz lmplig) | N0 e
(pv| o) C7 — (pv] ia) 7ov
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scheme(which scales as (N N)nno), without the dis-

The exchange term in ALMO-CIS was eval-

72
( Xu¥i |x2%a), which were formed by contracting the
pro —

a

uated from half-transformed integrals

AO integrals with pseudo-density matrices

crcto. If this density contraction scheme is used for
the case with charge transfer excitations, the scaling
is predicted to be (N N)nfiov. Here the parentheses
on NN comes from the sparsity of uv pairs, namely,
the number of significant shell pairs grows linearly
with system size, and thus we expect the overall scal-
ing to form the half transformed integrals is O(M)
for large enough systems (a limit that is not easily
reached with the very diffuse basis sets needed for
excited states).

It is promising to consider using the two quar-
ter transformations for the exchange term as well.
There will be further improvement in both scaling

and memory concerns if we transform the two occu,
Umaree |

pied indexes first. The first step transforms ( pv | Ao
1

with C! to form ( iv [Ag), with compute efforf that

scales as (NN)nno. Next, the quarter transfor

[ —

MO contraction scheme will reduce t

gesting the integrals by a factor of @ as it\diduin the
Coulomb case, and the memory st ‘We half
transformed integrals is also reduced a factor of
v/o.

However, we have not i
yet. For the helium clust,
tailed timings show t

g the AO integrals is

terms, the cost of c@mputi
comparable to the ¢ost of the transformation steps.

Thus the advantageNa tion is likely to be
offset by comp tir%]twicc ; many integrals. For
hélium clusters, we implemented

for digestion, where the two
iced are transformed at the same time.
is. method is similar as using density
lew it as contracting with a den-

_ vt
=l

tails of this scheme are shown in Algo‘;ithm 2.

ble II} compares different aspects of the three
entioned above. It is noteworthy that our
(NN)iifioo. For the he-

lemented that scheme
focus on, de-
¢ Coulomb-like

built by occupied orbitals Pij”

ent, i.e. 0 = 1. Therefore we actually achieve
the same scaling as MO coefficient transformation

advantage of doubling the cost of computing AO in-
tegrals. When the cost for digestion step is dom-
inant, which is likely to happen for systems with
larger fragments, successive quarter transformation
scheme will be preferable.

y
Algorithm 2: (Half<{integral transform for the

\(_J

Exchange term, o= (fwlij
Y i
for bra batches N
for ket batches
for pv € bateh do
fo ba, do

)\‘57

— J,IJ%FJ,)\%FK,O'%FL,
if\if, e FrgPairList and

€ FrgPairList then

“\FJz
fér k= 1,0F, do
\\ or!=1,0F, do
L ! o
| (i [KY) += (aw|ho) CRLCE
for i =1,0F, do
for j =1,0F, do
1
| Aglig) += (o) Circhy
if I, ', € FrgPairList and
Fj, Fx € FrgPairList then
for k =1,0F, do
for [ =1,0F, do

7 _ KA ~Lo
B L( pr | Lk) += (uv | Ao) Cri Crj
for i =1,0p, do
for j =1,0F, do

A ~ Tu~L
[ (Roldi) += (u| do)Clrcly

Kuvij = Kuvij + Kopji
[ [ L

TABLE II: Comparison of different schemes for the
half-transform to build K1

. computing
scheme step scaling AO-ERI twice
a (pv Ao P{';" — (pi|Aa) |(NN)nnov No
(far o) CE = (1 ho) | (NN
b uv|Ao) C! w Ao nno Yes
(i |Xo)CY = (ij Ao (NN)noo
¢ |[(pr|Xo)CHCY — (ij|Xo) | (NN)nnoo No

We have also implemented some optimizations
with respect to the screening of integrals. The pre-
vious scheme for making the ”mini-list” (significant
quartet of AO basis shells) is summarized in Algo-
rithm 3. The screening is based on the Schwarz in-

equality | (pv| Ao)| < (uv| ,uu)% (Ao | )\O’)%. This
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Publish isnge ming step appears to be trivial, since all quanti-
tics needed in the algorithm can be pre-made, com-
putations inside the loops are only a few multiplica-
tions and conditional evaluations. However, this is
a quartic scaling step because of the loops over bra
and ket shell pairs, and, for large systems, it actu-
ally dominates the evaluation of exchange integrals
in the previous ALMO-CIS implementation. This is
the reason that the overall scaling of computing ex-
change integrals was found to be 2.88, while it was
supposed to be linear with system size.

Algorithm 3: previous scheme for mini-list
selection in building K1

for bra shell pairs (IShl, JShl) do
IShl — Fr; JShl — Fjy;

for ket shell pairs (KShi,LShl) do
KShl — Fi; LShl — Fyr;

if Fr, Fx € FrgPairList and

Fy, Fr, € FrgPairList

or Fr, Fy, € FrgPairList and

Fy, Fx € FrgPairList then

I: max (pv| /u/)
I>: max (Ao | \o)Z2, 3, Ao € ket shell pairs

if Fr,Fg € FrgPalrLlst and 4\

Fj, Fr, € FrgPairList then
M- hs

pv € bra shell pairs

lrpmax. max(|P“’\| |PVU
if Fr, F, € FrgPairList and
Fj, Fg € FrgPairList then
| Praa: max(|PL7], |P)
if 1112 Pz > thresh the
| [Ladd IShl, JShl, KShl, L

The current scheme for ndini-lisg selection is de-
scribed in Algorithm 4. We 'egg%ragment pairs
based on the maximum value or'eccupied four center
integrals (ij | ij) on a
have a selection bef e en
pairs. In this Way,
be reduced to ¢
that has (ij| ¢
system size.

ien pair. is allows us to
ing }l{e loop of ket shell

umber of fragment pairs
er than thresh is linear with

IV. ASSESSMENT/OF THE ALMO-CIS+CT

We t study the accuracy of the ALMO-
C T model with different choices of 7.y, in the
hepe that a relatively small r.,; can yield satisfac-

tory accuracy, so that this model can be practi-
cally useful. Our test system is a small Hegs cluster

Algorithm 4: current scheme for mini-list
selection in building K1

for bra shell pairs (IShl, JShl) do

IShl — Fr; JShl — Fj

if max (ij | 4j) < thresh(i € F1,j € F;) then
Lcontinue

for ket shell pairs (KShl,LShl) do
KShl — Fri; LShl & Fr;

if Fr, Fx € FrgPai 1st and Fy, Fr, € FrgPairList
add IShl, JS

or Fr, Fr, € FrgPai LWJ, Fi € FrgPairList
[ LShl"to mini-list.
Note: The algorit

then
ted here is a simplified version of
our actual implem tatlo n practice, considering the

permutation petween br nd ket side, we also need to select
Fk, Fr, ba on max (kl | kl), and find Fy, F; that connect
with F, using PairList. This leads to a more

co liaed algerithm although it does not affect the

scaling.

t% een studied with both standard CIS and
40 In this and all the following calcula-
Moo ehum clusters, each helium atom will be
‘rroat | as a fragment. Flgurc 1 shows the excitation
r ies of the first 100 states (which is the n = 2
namfold) when 7., is chosen to be 6,7,8,10ag,
ng with the results obtained by standard CIS and
ALMO-CIS. In this test, the RI approximation and
the Davidson-like method are not applied, so that
any error purely comes from the truncation of ma-
trices in Eq. 5 (the error due to the use of ALMOs
instead of CMOs is negligible in the case of helium
clusters). The basis we use here is a modified 6-
311(2+4)G basis, which has 11 functions per helium
atom. Thus in the absence of truncation, there will
be 6250 single substitutions in total. By contrast,
ALMO-CIS retains only the 250 intrafragment exci-
tations. The choices of r. = 6,7,8,10a¢ lead to
the number of retained excitations being 330, 730,
1030 and 1490, respectively. From Fig. 1, we find
for royr = 8,10ag, the excitation energies are al-
most identical to those obtained in standard CIS. We
know that ALMO-CIS is least accurate at the high-
energy edge of each band because these are the states
with stronger CT character (some insights are pro-
vided in Sec. VD). For example, compared to stan-
dard CIS, ALMO-CIS exhibits errors of ~ 0.5¢eV at
the blue end of the n = 2 band. This error has been
reduced to less than 0.02eV in the ALMO-CIS+CT
model, when 7., = 8 ag.

Figure 2 compares the spectrum of Hess calcu-
lated by standard CIS, ALMO-CIS and ALMO-
CIS+CT with 7.y = 8ag. We use the same Hess
geometries that were used for the spectrum com-
puted by CIS and ALMO-CIS, which come from 100
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level of theory!'3. It has been
tends to give an overall more

under timate(a and that at the high-energy edge

(correspouding fo bulk states) being overestimated.
i . .

~when a cutoff distance of 8 ag is em-

extt, we want to demonstrate the accuracy of the
vidson-like variational method for the excitation
iies of the same Hess cluster. In Figure 3, we

en
compare the ALMO-CIS and ALMO-CIS+CT re-

N

“Samined, the full preconditioner P, and the di-

10

1 — ALMO-CIS+CT, reyy =8 ag
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FIG. 2:-Abso ti(hpectrum of Heos cluster at the
MO-CIS+CT (reut = 8ap) and
CIS level of theory. All spectrum profiles
to' the low-energy end by 0.625¢V to

re-shi
mat;Sthe atomic peak of the experimental

spectrum.

ts” with and without the Davidson-like method
(rewt = 8ap). Two different preconditioners were

agonal preconditioner P ;4.

Pfull = (i&cc - a}écc)_l
Pdiag = (diag(‘&cc - @écc))_l
(15)

We find with the full preconditioner, the Davidson-
like variational method causes nearly no additional
error, since the data points of Py, almost overlap
with those by solving Eq. 5 directly. When the di-
agonal preconditioner, P y;q4, is utilized, only about
75% of the ALMO-CIS model error can be elimi-
nated. These facts suggest that the matrices A..
and G, are dense, most likely because there is al-
ready a truncation in Eq. 5.

At this moment, we conclude that r.,; = 8ag and
a full preconditioner offer a good balance between
accuracy and efficiency, and they will be used for all
the calculations in the rest of the paper. Assuming
that the structures of helium clusters more or less
resemble that of the bulk system: an atom has 6
nearest neighbors*® and the interatomic distance is
3.6 A% the 7.y we have here will include the first
shell of nearby atoms. This means that for the finite
size clusters studied in this work, the matrix size of
ALMO-CIS+CT will be no more than seven times
(which is the bulk limit) of that in ALMO-CIS.
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FIG. 3: Errors of the excitation energies for Hess 10000 5389
using ALMO-CIS, ALMO-CIS+CT solved exactly,
and ALMO-CIS+CT solved by the Davidson-like 100
method, with P, and Pgiq4 as the =

preconditioners. 7., = 8 ag for all ALMO-CIS+CT e

calculations

B. Timings

are of particular interest: the scaling versus syste

(4A) with both ALMO-CIS and
(reut = 8 ag) models. All calculations ar
with a single core on an AM ron 6376 proces-
sor, using the same customized 6-31%(2+)G basis as

The relative costs

steps of ALMO-CI%nd

marized in Figure. “Lhe slo

show the scalin, :&KOverall, both methods
have sub-cubi c‘afiig, as we expected. It is note-
the RI integrals, which is the
in ALMO-CIS, is exactly the

this step 15*the reason for the fact that the total
cost of (ALMO +CT is about only four times as
lazge as that of ALMO-CIS, even though the matrix

— 6 times larger.
tailed)timing of forming the Coulomb-like and
-like integrals are tested with Hejs9 and
e lusters, and the results are presented in Ta-
IIT and Table IV. For the Coulomb-like integrals,
the'relatively expensive cost of contraction steps (es-
pecially the first quarter transform) supports our ar-

AN

Two issues related to the efficiency of our models ™.

11

o J1, slope =2.26
+ K1, slope =2.18
~ Rlintegral, slope = 2.65
= Rl algebra, slope = 3.07
Eigensolve, slope = 3.10
o Total, slope = 2.63
T - -

200

500
NAtom

(b) ALMO-CIS+CT

FIG. 4: CPU timing data for ALMO-CIS (a) and
ALMO-CIS+CT with re: = 8ag (b). The y axis is
in logarithm scale of the CPU time.

gument that it is worthwhile to apply the successive
MO transform scheme at the cost of computing AO
integrals twice. We note that for building AO in-
tegrals in J1, an incompletely optimized new inte-
gral library is used. We expect roughly a four times
speed-up of the AO integral computation in the fu-
ture based on the performance of the old library.
Also, we do not list the timing for mini-list selection
as we do for the exchange-like integrals because the
selection can be done at the shell-pair level, and it
is a trivial step as it scales O(M?).

On the other hand, even with the optimizations
described above, mini-list selection still takes about
half of the time in forming the exchange integrals for
ALMO-CIS+CT, and dominates in ALMO-CIS cal-
culations where forming integrals and contractions
are very cheap. The observed scaling of forming K1
is 2.77 for ALMO-CIS and 2.18 for ALMO-CIS+CT,

instead of linear as is asymptotically possible. When
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growth of computational effort in contraction steps
and forming AO integrals. Based on the ratio of
number of states in ALMO-CIS+CT and ALMO-
CIS, (f/n)? is estimated to be 25 and 35 for Hejag
and Hesys1, respectively, and the observed growth in
timing does not exceed these ratios.

To demonstrate the computational savings from
the Davidson-like variational method, we also re-
port the timing of the full eigen-solve for Hejog9 and
Hess; in Table V. It can be seen that although
the Davidson-like method does not change the cubic
scaling, it is about 7 times faster than solving the
full eigenvalue problem for these two systems. In
addition, the preconditioning step (with full precon-
ditioner) takes only about 1/6 of the total cost of the
Davidson-like method. Thus, a simplified precondi-
tioner such as Pg;,y would not significantly reduce
the computational cost. Considering the additional
error it entails, the diagonal preconditioner is not
recommended at this time.

A. PIMD simulation

many degrees of freed
Lennard-Jones po't(jﬁal = )A.‘).?K,ro =294),
we find the resulting clugters are too dense. To qual-
itatively match nownfacts about helium clus-
ters (for exam e.,?% average interatomic distance
in bulk heliwh is 3'6 A ), we were forced to use a mod-
ified Lennafd-Jones potential with a much shallower
potential welly(ey = 005 K) and a larger equilibrium
distande (7 = ). Of course the origin of the
failure ‘of the sﬁn ard classical force field is due to
lecting, the Muclear zero point motion, which is
critical for helium atoms.
’nmag’s path integral theory®® treats nuclei

uans echanically by mapping each quantum
.qlmeui onto a classical system comprising sev-
eral fictitious particles connected by springs (“ring-
polymers”). This provides an ideal computational
technique for the simulation of helium clusters, and

grven lﬁ-»
\ o
V. CALCULATING THE ABSORPTION SPECTRA = lim
OF HELIUM CLUSTERS S~

\J

~

12

path integral Monte Carlo (PIMC)®! and path in-
tegral molecular dynamics (PIMD)®%%3 to helium
systems. In this work, we employ PIMD to gen-
erate configurations of helium clusters of different
sizes, which are then used to calculate the absorp-
tion spectrum.

The temperature
measurements may
Bose statistics of 4
erly account for
particles, one

é.ato e significant. To prop-
¢ indistinguishability of identical
sample the permutations as

offhelium clusters in spectral
low as 0.4 K, where the
ms

uidity exists even in clusters as

For simplicity of implementation,

formalism neglects the exchange
Therefore our simulations are

, which is above the superfluid tran-

erature.

D formulation, the partition function is

pérforme
sitiont
n a PI

i () 070w
—00
(16)

where N is the number of distinguishable particles,
P is the number of discretization points of quantum
paths (or the number of chain particles in a ring
polymer), 8, = 1/Pk;T, and H,(p,q) is the ring
polymer Hamiltonian:

He(poa) =) )

i=1 p=1
P
+ Z V(ql,m q2,p---qN,p)

p=1

with wp = 1/8ph. In our simulation, the inter-
particle potential V' is described by the HFDHE2
potential®®. The time evolution of PIMD follows the
normal mode algorithm, and a white-noise Langevin
thermostat®® is employed (see Ref. 57 for further de-
tails). We find P = 64 and a time step of 2fs yield
converged results.

At finite temperature and zero pressure, the he-
lium cluster will always evaporate in the long time
limit. To avoid this issue, we confine the system
within a sphere of radius R, so that an equilibrium
between liquid and vapor can be established. The
parameter R, will affect the density of the system,
and the available zero temperature density profile of
helium clusters provide guidance for choosing R.. A
reasonable value of R. should not be too small, so

p?, 1
1, 2 2
<2mp; + §miwp[(h‘,p = Qipt1] )

(17)
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TABLE III: CPU time (s) for significant steps in the construction of J1 integrals.

A . o

Method System | NState | AO integrals ('u'nl:n‘ )\g) 'C" (MEJ zg) C‘l Total
— (w|io) | = (uv | ia)

Heq29 | 1290 3.75 2.31 0.17 6.60

ALMO-CIS Heas: | 2510 14.24 8.66 0.64 24.89

He129 | 6570 59.62 43.46 4.01 114.56

ALMO-CISHOT o1 | 14870 | 208.20 219.72 2090 |577.48

TABLE IV: CPU time (s) for significant steps in the constn@\tcgrals.

£
Method System | NState | Mini-list | AO integral ( UWJ Total
Ly W)
Heizo | 1200 | 7.81 026 N/ 034 9.48
ALMO-CIS | ye,r, | 2510 | 56.06 064 0.92 61.48
Hei29 | 6570 9.51 3126 6.81 23.69
ALMO-CIS+CT| g | 14870 | 63.9 9%( 3 17.93 110.79

—

-

TABLE V: CPU time (s) for the Davidson-like metho%h@ eigen-solve on Hejog and Hessq clusters.

System | Davidson-like metho econdyioning Full eigen-solve
Hei29 71.68 \&‘81 490.18
Heos: 696.87 ( 131.48 6409.57

o\

It cannot be too big either, otherwise it

that the boundary will not have too mdch in nce.\
role in pre-
venting the system from evaporatidg i

s undermined.
Unfortunately, we have no way to d b}‘mgan op-

timal value of R.. Therefore, for small clugters such
as Hezy and Heis9, we per i

mulations using
several different R., and e ine how the resulting
1e size-dependence

spectra change. Then, tofstud
le density, and

of the spectra, we pi
}ﬁined based on the

run the simulation with

fixed density for clé{b%
S

d‘H6150,

Spectively (R. = 16,18,20 A for
= 20&)3, 26 A for Hei50). The simulations
igh 200,000 warm-up steps (400 ps) to en-

ed from the following 400,000 time steps
The resulting geometries can be charac-

collected in Figure 5 along with the spectra. It is ev-

13

ident that the gas phase becomes increasingly dom-
inant for larger R., which is reflected in a stronger
atomic peak and smaller intensity at the high-energy
edge of the spectra. This trend exists for both clus-
ter sizes.

The kinetic energy (estimated by a virial
estimator®), potential energy and total energy per
helium atom are listed in Table VI. The posi-
tive total energies may imply that the system will
eventually dissociate into the gas phase. To ad-
dress this issue, we perform a simulation of He;sq
with R, = 24A, using only the repulsive part of
the HFDHE2 potential. The system quickly devel-
ops into an evenly distributed gas, and the corre-
sponding spectrum is more like a single atomic peak.
Snapshots of Heysg simulated with and without the
attractive part of the potential (Figure 6) exhibit
a clear difference. We conclude that liquid droplet
structure exists at least for the time scale of our sim-
ulation. Meanwhile, Barnett et al. has performed
similar PIMD simulation of Hery with R, = 18.3A
and Heyso with R, = 23.6A%2. The energies and
density profiles we obtained qualitatively agree with
those available in their publication.
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FIG. 5: Density profiles p(r), nearest neighbor dis

ibution: .
The density profiles are plotted vs distance from\%}&;t\r— f the confining sphere. Spectra are calculated

by the ALMO-CIS+CT model,

/

A\

(a) droplet

V.
FIG. 6:Snapshots
&HFg
~

(o Size-rspendence of the Spectra

<study the size-dependence of the spectra, we
inyestigate four helium clusters of different sizes:
He79, Heiso, Heosz; and Hezpg, and R, is set to
be 18,23,27,29 A, respectively, so that all four sys-

14
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9/ He150 cluster at ¢ = 400 ps when simulated with(a) and without(b) the attractive part
2 potential. The resulting configurations are droplet and gas-like, respectively.

tems correspond to roughly the same density of

2.9%x1073 A", In Figure 7, we can see that the spec-
tra of larger clusters have more intensity at the high-
energy edge. This is reasonable since this “shoulder”
next to the atomic peak results from the interaction
between helium atoms, which should be stronger
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Publlshlng 'ABLE VI: The density, per-particle kinetic,
potential and total energy of Heyg and Heqsg
clusters simulated by PIMD at 3K with different
choices of R,.

System R. (A) p(1073A7°) T(K) V(K) E(K)
16 4.08 744 -5.94 1.50
Hero 18 2.87 6.26 -3.67 2.59
20 1.57 5.57 -2.32 3.25
20 148 850 -7.99 0.51
Hejs0 23 2.94 7.61 -6.21 1.40
26 2.04 6.85 -4.77 2.07

in larger clusters, as they have smaller interatomic
spacing indicated by the density profile and nearest
neighbor distribution. Moreover, the larger fraction
of bulk atoms in the larger clusters also contributes
to the broadening of the spectra.

D. Characterization of Excited States

A previous CIS study'® of small helium clysfers™
(He7 and Hegs) concluded that the highéy-energnex-

cited states mainly come from bul
while the lower-energy states come
tations. To further understand this, we
droplet (Figure 6(a)) and g igure 6(b
of Heyso at R. = 16 and 2 A (Figure 8(a)). The
droplet typically has a ly decreasing den-
face, while the

gas structure has a
whole sphere. Fo
are broader and

he droplet spectra
to the high-energy

with the s s also interesting to see, that
when R, , the atomic peak diminishes in
the dr ragdwhile for gas, we see a shift of

face/bulk character of each state motivates us to
find a ma&)ing between these two. Previous state-

-statednspection'® of the attachment and detach-
%tdgnsity is unfeasible for large clusters and mul-
tiple configurations. Alternatively, here we intro-
duce a scalar quantity R to represent the “average
position” of the excitation relative to the center of

15

the cluster. For state , R, is defined as:

Re= Y > |0PIE +Ra)/2l (18)
F1,Fs € i€EFT
FrgPairList a€Fa

where R;(R ) represe{r/s the position of Fy(F4) rel-

ative to the center offfllecluster, and £ = G/t so
that t is orthonor ctween states.
With the same §pirit, Jwe can'define another quan-

tity AR as the weig average of |[R;— R 4|, so that
it serves as a met® . charge transfer character

of each sta, ‘)
_ T~ - - -
AR, > |BPIRr - Ral

F;FA €

-, FrgPairList

&ac@ystem, R and AR can be plotted against
a

itation energy. As shown in Figure 8(b) and
(),

exdgital

R and AR are strongly correlated with the ex-
itation energy in droplet systems. For both the 2s
and“the 2p band, the low-energy excitations corre-

(19)
i€ Fr
acFy

_ ““spond to larger R and smaller AR, which indicates

AN

that these excitations mainly come from the surface
and have less CT character. As the excitation energy
increases, bulk excitations with stronger CT charac-
ter gain more importance, so we see the decrease of
R and the increase of AR. For gas systems, it is still
true that CT raises the excitation energy, so we can
still see the patterns of AR. However, because the
density distribution of gas systems is more uniform,
the correlation between excitation energies and the
location of the excitation site is much weaker. Thus,
the curves of R are much flatter for the gas systems,
except for the dips at the beginning of each band re-
sulting from the boundary of the simulation sphere.

E. Comparison with Experiment

The size-dependence of helium droplet spectra
have been studied by Mbller and coworkers®6. In
both Ref 4 and Ref 6, the authors observed that
an increase in cluster size results in relative reduc-
tion of the atomic peak and relative enhancement of
the hump at the high-energy edge. As was already
demonstrated in Figure 7, this trend is reproduced
by our computational simulation, and its origin is
elucidated by the analysis of the surface/bulk char-
acter of each state introduced in Section VD. It is
quite encouraging that the overall bandwidth seen



AllP

| This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |

Publishing **

0029 "
.

density

0.014

— Hezo
~=-Heqso

probability

300

— Hezo
== Heiso
-~ Hegg
— Hegoo

200

1004

Intensity (arbitrary unit)

FIG. 7: Density profiles p(r), nearest neighbor distributions nn(r
ALMO-CIS+CT for Herg (R. = 18 A), Heys0(R. = 23 A), Heas) (R, = 27

nearest neighbor distance (A)

21.0

e =
21.5 22.0 225

%05
Excitation Energy (eV)
anH}pekxalculated by

ard Hesoo(R. = 29 A) clusters

-—-gasR,=23 A " = ’ - N 3R
3 204 , gas Rg =2 gas Rg =23
- 400 ! — droplet R, = 23 A : o d(oplect R, =2 \\ o8 o droplect R.=23A
E i ---gasR.=16 A ‘| + gasRe=16A K - gasR.=16A
3 i — droplet R, = 16 A o droplet Rg=16 A 1 K o droplet R, = 16 A
2 300 1 15 2 - !
[ " 20.5 21.0 o0 10888.%0%
£ " ) L .. = B o388
El " - .. — .
< 2004 " .. -, H .
= E 8,"
g A 10 o° e 14 °
1% - . :
£ 1004 S0 T, ’ !
- 5 )
p - .
%5 270 2is 220 2 ; ‘ “ = % oA ‘ ‘
- g : - 2. 205 21.0 21! 220 225 205 21.0 215 22,0 225
Excitation Energy (eV) Exgitation Energ ) Excitation Energy (eV)
(a) (c)
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the same way. (both quantities are avera;

ation energy in the n = 2 band.

%Rc —16A and 23 A.
cit
er

(b) R for the droplet and
(c) AR evaluated in

eometries for each choice of R, as in the spectrum

gas-like at R, = 16 A and 23 A as a function o
Vi
&bdations).

experimentally is quite well reprod N\;Sl u-
lation. This suggests that the destabilizing neighbor
interactions responsible for i
droplet excitations toward

well reproduced by the Ad.
of the electronic structufe.

£

t itatively match the
experimental r Thexe are several sources of
difference between the simulations and the experi-
fact that the experiments are

However, it rem?ﬂ(s ac
cally predicted sp wa

i:ited states®, and there is an addi-
ime fluorescence. The nuclear wave-
ction ig not an eigenstate of the electronically ex-

stat§ and the non-stationary wavepacket will
volve, which is likely to affect the spec-
rum«This is an interesting topic for future investi-

tion. A second issue is that the current PIMD sim-
ulation does not treat the Bose statistics of helium
nuclei, and thus cannot account for the superfluid-

16

ity that is present in the experiments. A third issue
is that the current electronic structure model has
limitations. Specifically, dynamic correlation is ne-
glected in CIS, which results in an over-estimation of
excitation energies. For this reason we have to shift
all spectra to the left by 0.625eV so that atomic
peaks occur at the same position as in the experi-
ments.

Uncertainty associated with experimental condi-
tions adds further difficulty to a direct comparison
of the calculated and observed spectra. The exper-
iments usually prepare helium clusters by a nozzle
expansion. The final cluster densities are sensitive
to conditions such as nozzle temperature and pres-
sure, and therefore the spectral profiles can vary in
different experiments (for example when comparing
cluster with similar sizes, spectra in Ref 4 have larger
humps than those in Ref 6). As the actual density
and other structure characters of helium clusters are
hardly known, it is almost impossible to propose a
simulation that can reproduce the condition at the
experimental measurement. In addition, we believe
that the systems are not at equilibrium in the experi-
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Publish img] 5, while in the simulations we impose a confining
boundary to obtain reasonably converged results for
a system in liquid-vapor equilibrium.

Additionally, the current simulation model ap-
pears to miss some detailed features of the exper-
imental spectra. One example is that as stated in
Ref 6, a small hump associated with the 2s band
exists at around 20.95eV. Experimentally, the po-
sition of this maximum is nearly invariant as the
cluster size changes, while our calculations show a
feature that depends on both cluster size and den-
sity (for instance, see the magnified region in Fig-
ure 7(c)). It is hard to say whether this is due
to the limitation in the electronic structure model
or the difference between the simulation and exper-
imental conditions. Despite the above mentioned
deficiencies, we think that the PIMD simulation is
a clear physical improvement over our previous ex-
cited state studies of helium clusters'®4°. With the
charge transfer effect included via the new ALMO-
CIS+CT approach, our methodology also improves
the accuracy rendering it comparable to standar
CIS, while the former is dramatically more efficient.

VI. CONCLUSIONS

We have generalized the previously rme@k

ALMO-CIS model to include charge fgansfer (CT)
effects. Similar to ALMO-CIS, the AL Xﬁ: T
model presented in this work is riant of
configuration interaction singles (CIS); ormu-
lated through the use of absolutely localized molec-
ular orbitals (ALMOs). T iffexence is that un-
1ent single ex-
T retains in-
ociated fragment
. For helium clus-
by ALMO-CIS are

n thedirst shell of neighboring
. /When many excited states are

tire band of states for a homo-

citations are involved,
terfragment excitationssw
pairs are within a %)ﬂ:

ters, the CT effe

ke ALMO-CIS) than standard
ining the same accuracy (in con-

ing the Hamiltonian matrix does not grow enor-
mously. This is partly because one of the most ex-

17

pensive steps (computing the three-center ERIs in
the RI approximation) remains the same, and partly
because the implementation of the Coulomb and Ex-
change integrals has been improved. Solving the
eigenvalue problem can potentially be dominant in
ALMO-CIS+CT calculations as its cost grows cubi-
cally with matrix size. This is remedied by employ-
ing a single step Da\z/son—like variational method
without significant 1dss“ef accuracy. The overall
scaling of ALMO- \C\third order with re-
spect to system e%lich is the same as ALMO-
CIS. For mediug siz elium clusters, the computa-

CT is about four times as
LMO-CIS. With our cur-
ion, systems with up to 377 helium
atomic basis are reported in this
standard workstation-level com-

app MO-CIS+CT to study the n = 2
absorptien spectra of helium clusters. To account
or the quantum nature of helium nuclei, the ge-

tridsused for spectral calculations are generated
from YPIMD simulation (at 3K to avoid the need
sihulate the superfluid phase). This approach is

\g(;t perfect due to the absence of indistinguishability

S

tween particles, but produces much more reason-
able configurations than classical molecular dynam-
ics. We report results on the size-dependence of the
spectrum, as well as the effect of a confining bound-
ary on the spectrum. We show that with reasonable
choices of the confining radius, the system behaves
as a liquid droplet in equilibrium with vapor on the
timescale of the simulations. Broad features of the
experimental spectrum, such as the bandwidth and
size-dependence of the 2p band are qualitatively re-
produced by the simulations. However, a number
of finer details are not fully compatible between the
simulations and reported experimental data.

As shown in the appendix, ALMO-CIS is CT-
free because it preserves fragment populations in
the Mulliken sense. Therefore differences between
ALMO-CIS and ALMO-CIS+CT quantify the role
of CT in cluster excited states. For helium cluster
absorption spectra, states towards the blue edge of
the 2p band are stabilized by up to 0.5e¢V by CT
contributions while the red edge is virtually unaf-
fected. The 2s states also show CT contributions
that increase with excitation energy while they are
negligible at the red edge. Even in a system whose
electron affinity is as unfavorable as helium, CT ef-
fects provide significant excited state stabilization
beyond a superposition of atomic excitations, and
should not be neglected.

Interesting topics for future work include correct-
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Publlshhng “he model for the neglected effect of dynamic
correlations, either by incorporating higher substi-
tutions into the wavefunction, or by extending the
model to TDDFT. The applicability of this model to
other molecular clusters with stronger interactions
between monomers (for instance water clusters) is
also potentially very interesting.
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is defined as follows:
AP" = APE/ + APl
= CI' PEoCy + CL PR Cf
Pl = — 95,1
P&l{/ = tZ‘lSi ]'-E
M&)?S&—I—CT amplitude with
olﬁair of significant fragments.

upied part of Eq. A2 gives:

(A2)

The t** here is the
i and a belongin
The sum over th

> APE, “5 Y St CY S,
pEFT \M,ie T aEFJf_(|F~1) _
. > St Y Cls,Cy

SiGFI a€F;(Fr) HEFT

C = X 185,
/) 1€Fr a€F;(Fr)

(A3)

W Fj’(F 7) means that F); is a near-neighbor frag-
mentjof F7;. The last equality holds because the
Appendix A: Proof that ALMO-CIS is free of charge upied MO coefficient matrix is block-diagonal,

transfer

fragment in the ALMO-CIS+CT modél, an 0
that when ALMO-CIS+CT reduces to O-€IS
the Mulliken population on each fr
served during excitation. In this
low the Einstein summation conventio
that are summed over the whel ce, but explicitly
write out the summation if 4n index'is only summed
over a certain fragment
built from projected icated by
for example, C* is ze P ecteglvirtual coefficient
while C# is the unprojected vigtual coeflicient.

The Mullike pﬁiﬁ%on fragment F7 is de-

fined as

b
ment 1Sy con-

1 we fol-

[1%a%})
)

/PI =
- 7M€FI

P, (A1)

is the density matrix. It has been
proven®? that for ground state calculations with the
ATIMO cotgtraint (SCF(MI)), each fragment’s Mul-
lation remains the same as in isolation.
o we.just need to compute ° cp AP*S,, (AP
iS\the (unrelaxed) difference density matrix) to see
if the excitation introduces any change in the frag-

ment Mulliken population. In ALMO-CIS+CT, AP

where,

\sgpthe restriction on pu € Fr can be dropped and

Here we compute the Mulliken populatio }?x

W

i SuwCy 1s just the occupied overlap metric, S;;.

The virtual part of Eq. A2 is a little more com-
plicated because projected virtuals are used, whose
coefficients are not block-diagonal.

> AP S, = Clt St CY S,
REFT HEFT

= > > CrStCY S
w,a€Fr i€Fy(Fr)

3 Y Y Crtias, t5CYS,,,

peFr Fx#Fr acFk 1€EF;(FK)

=3 ¥ t’?lsijtﬁ’ > CrSuCy

a€F ic€F;(Fr) HEFT

+ > > tZ‘lSijtﬁZC'gSWC*@’AAL)

Fr#Fr a€Fk i€F;(Fk) neFT

For the first sum in Eq. A4, we notice (75 =
N,C#, because the diagonal blocks of projected vir-
tuals take contribution from only the unprojected
virtuals. On the other hand, the overlap between
projected virtual a and b is:

Sap = C1S,,CY = No(CF — Ot (07 1) ¥ S10) S CF
= NuClSuCY = > NaClS,,CY
neFT

(A5)
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PUblIShlhlg 1e second row of Eq. A5, the first equality holds
because the projected virtual does not overlap with
the occupied, and the second equality comes from
the fact that the unprojected virtual coefficients are
block-diagonal. In the end, the first term in Eq. A4

becomes 3 e p, Sicr, (rp) ' Siit?" Sap-

As for the second term in Eq. A4, since the off-
diagonal projected virtual coefficient comes from the
occupied, we have C# = —N,Cl' (o™ 1)k Sy, u,l €
Fr,a € Fg # Fr. The constraint y € Fr can then
be dropped as C}" is block diagonal. We then find
an Sy in the second term of Eq. A4, which is zero,
so that the second term vanishes.

Combining these results, we see that for
the ALMO-CIS model, where ¢ and a be-
long to a same fragment, we have the change
in Mulliken charge, » cp, AP*S,, = 0 be-

cause — ;HEFIHAPSBSNV > per; AP S
Zi,aEFI tiagabtjbsij'
For ALMO-CIS+CT, unless t(i € Fr,a € Fy)

. 32
t“(i € Fy,a € Fr) (which could happen for a system Ady
consisting of two identical fragments), the occup&\ .
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