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Abstract

Blood coagulation is a series of biochemical reactions necessary to form a
blood clot upon a vascular injury. The process occurs in three stages (initia-
tion, amplification, and propagation) and in the presence of flow. To regulate
bleeding disorders, the clotting system involves inhibition mechanisms at each
stage. Initiation in the tissue factor pathway begins when clotting factor VIIa
in the plasma binds its cofactor, tissue factor (TF) forming an active enzyme
complex (TF:VIIa). Next, clotting factor X in the plasma binds with TF:VIIa
and is enzymatically cleaved into activated factor X (Xa). Xa is required for
other reactions as coagulation progresses.

Tissue factor pathway inhibitor (TFPI) is known to be a strong inhibitor
during the initiation phase, with the primary mechanism of binding to Xa in
the plasma and then rebinding to TF:VIIa to form the quaternary complex
TF:VIIa:Xa:TFPI. However, previous mathematical models of TFPI inhibition
predict contradicting results. Some studies suggest that TFPI is a powerful
inhibitor for Xa inhibition and others claim that it is a weak inhibitor because
flow acts as a more potent inhibitor than TFPI.

In this study, I re-investigated the mechanisms of TFPI inhibition by con-
sidering a previous static experimental study of TFPI by Baugh et. al [2] where
two inhibitory mechanisms were hypothesized to exist. The suggested reaction
scheme, which incorporated both an Indirect Binding mechanism and a Direct
Binding mechanism for TFPI inhibition, was never studied by Baugh et. al.
[2]. I used a mathematical model based on this scheme and a constrained opti-
mization framework to fit this proposed reaction scheme to multiple sets of data
simultaneously. I found that this scheme for TFPI better fits the experimental
data, explains the role of TFPI in regulating factor Xa under static conditions,
and is consistent with the previously known kinetic rates and rate constants.
Next, I studied the two mechanisms in the presence of flow to understand which
mechanism can explain the role of TFPI in inhibiting the formation of Xa. I dis-
covered that Direct Binding mechanism is essential for Xa inhibition by TFPI
in the presence of flow.

Keywords: Mathematical modeling, TFPI, factor X, constrained optimization,
parameter estimation.
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1 Introduction to Blood Coagulation and

Motivation

Blood coagulation is a complex system of biochemical reactions that are re-
quired to form a clot in response to injury (Figure 1(a)). The process is initiated
by the exposure of tissue factor and collagen on the surface of subendothelial
cells. This exposure triggers the activation and adhesion of zymogens, enzymes,
and platelets, leading to thrombin formation. Thrombin then cleaves fibrino-
gen into fibrin monomers, which polymerize to form a meshwork that stabilizes
the clot. Thrombin is one of the most important clotting factors in the coag-
ulation cascade because it is responsible for forming a stable blood clot at the
site of injury, which allows the damaged vessel to repair and ultimately leads
to the restoration of normal blood flow. However, both bleeding disorders and
clotting irregularities can disrupt the coagulation process. For instance, under-
clotting can be a result of deadly illnesses such as von Willebrand disease and
hemophilia [25], while overclotting may lead to fatal diseases such as pulmonary
embolism, heart attacks, and strokes [13]. Therefore, it is crucial to understand
the underlying dynamics of the clotting process and its regulation to prevent
disease complications caused by bleeding disorders and clotting irregularities.

Mathematical modeling has been used to gain insight into this complex
process, but many questions still need to be answered including the role of
tissue factor pathway inhibitor (TFPI). One role of TFPI is to inhibit the
activation of clotting factor X in the initiation phase. As depicted in Figure
1(b), the factor X becomes activated (denoted Xa) by binding with the enzyme
complex TF:VIIa, which is fixed at the injury site and is composed of clotting
factor VIIa and tissue factor (TF). Xa plays a significant role in the coagulation
cascade since it combines with Va to form the complex prothrombinase, which
activates prothrombin (factor II) to thrombin (factor IIa). TFPI inhibits the
activation of X by targeting TF:VIIa through two distinct mechanisms. Indirect
Binding (depicted in red) involves the formation of a complex Xa:TFPI in the
fluid, which can bind to TF:VIIa, blocking its ability to activate additional X.
Direct Binding (depicted in blue) operates through TFPI binding directly to
Xa that is already bound to TF:VIIa, thereby inhibiting the enzyme activity
and ultimately preventing the release of Xa.

Previous mathematical models disagree on the role of TFPI in regulating
Xa activation. Some of these models are based on static systems, i.e. describing
the experiments in a test tube. For these kinds of systems of TFPI, models
and data have suggested that TFPI plays a crucial role in coagulation. For
instance, one static study suggested that thrombin generation is sensitive to
TFPI [8]. But for models considering coagulation under flow, a study has
suggested that flow itself is a more potent inhibitor than TFPI [10]. However,
clinical studies conducted on knockout mice have shown that the lack of TFPI
Kunitz 1 domain (Xa dependent inhibition of TF:VIIa) leads to embryonic
death and claimed that TFPI is necessary for embryogenesis [20, 29].There
are several reasons why the role of TFPI is not fully understood. We may
not fully understand the biological mechanisms behind TFPI’s role, or perhaps
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the mathematical model used to describe TFPI is incomplete from a biological
standpoint. The conventional mechanism used to understand TFPI may be
insufficient in comprehending its full role. Additionally, the kinetic rates used
in current models may be incorrect. Therefore, a systematic study is much
needed to determine the exact role of TFPI.

To fill the gap in the knowledge, my study focuses on understanding which
inhibition mechanism explains the role of TFPI in inhibiting the activation of
factor X in the presence of flow. First, I revisit previously reported experi-
mental data in a new way and considered a model including two mechanisms
of TFPI inhibition (standard models include only 1). I conduct a thorough
mathematical analysis of the model based on the proposed scheme to establish
a set of kinetic rates that is consistent with the experimental data. I employ
constrained optimization enforcing known values and relationships to fit the
previously reported data simultaneously. Because the coagulation process oc-
curs in the presence of flow, I develop and analyze an ODEs flow model to
understand how the system behaves when both Direct Binding and Indirect
Binding are at play.
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Figure 1: Blood Coagulation Dynamics. (a) Schematic of coagulation cas-
cade [28]. (b) During the initiation process, clotting factor X, present in the
plasma, becomes activated factor X (denoted Xa) by binding with TF:VIIa.
Double-headed solid black arrows represent binding/unbinding interactions.
The single head arrow indicates the catalytic reaction. TFPI inhibits this ac-
tivation through two biochemical mechanisms: Indirect Binding (in red) and
Direct Binding (in blue).
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2 Modeling Inhibition of Factor X Activa-

tion by TFPI in the Presence and Absence

of Flow

This Chapter focuses on understanding the role of TFPI in regulating factor X
activation and TFPI inhibition in the absence and presence of flow. It is divided
into four sections. The first Section 2.1 introduces the reader to modeling
biochemical reactions in general and develops background knowledge of the
published experimental data and previous modeling of Xa activation and TFPI
inhibition mechanisms. The second Section 2.2 describes the mathematical
model for a closed system (i.e. without the presence of flow) and the constrained
optimization method used to discover the precise role of TFPI in inhibiting the
formation of factor X. The third Section 2.3 develops the mathematical model
to understand how the TFPI inhibition mechanisms behave in the presence of
flow. The last Section 2.4 summarizes the major takeaways from my study.

2.1 Modeling Biochemical Reactions, Background on
Experimental Data, and Previous Modeling Work

I begin by describing the the modeling of of biochemical reactions in general, the
background on experimental data, and then provide details about the evolution
of the schemes used to describe the formation of factor Xa and its inhibition
by TFPI.

2.1.1 Modeling of Biochemical Reactions

Let’s consider the following biochemical reaction

A+B
k+i−−⇀ A:B (R1)

where the two reactants A and B can bind together to form the complex A:B
with the binding rate k+i for a reaction type i. The reactants A, B, and the
complex A:B are measured in concentrations (e.g., nM). The concentration is
denoted as [·]; for example, [A] symbolizes the concentration of A. Applying the
Law of Mass Action, which states that the instantaneous rate of any reaction
at a constant temperature is proportional to the product of the concentrations
of each reactant involved in the reaction and the rate coefficient [21], one can
express the rate of change in concentration of A:B due to reaction (R1) using
the following ordinary differential equation (ODE),

d[A:B]

dt
= k+i[A][B]︸ ︷︷ ︸

Binding
of A to B

. (1)
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Note that the binding rate k+i is measured in 1/(concentration×time) or 1/([·]×time)
as explained below:

d[A:B]

dt
= k+i[A][B]

[·]
time

= k+i[·][·] =
1

��[·]× time�
�[·][·] =

[·]
time

.

When a biochemical reaction is bidirectional, the reaction scheme for A, B, and
A:B is written as

A+B
k+i−−⇀↽−−
k−i

A:B. (R2)

Here, k+i and k−i denote binding and unbinding rates respectively. The unit
of k−i is 1/time. Applying the Law of Mass Action, one can derive a system of
ordinary differential equations ODEs for the concentrations of all the species
from both reactions as follows:

d[A]

dt
= − k+i[A][B]︸ ︷︷ ︸

Binding
of A to B

+ k−i[A:B]︸ ︷︷ ︸
Unbinding

of A from A:B

(2a)

d[B]

dt
= − k+i[A][B]︸ ︷︷ ︸

Binding
of A to B

+ k−i[A:B]︸ ︷︷ ︸
Unbinding

of B from A:B

(2b)

d[A:B]

dt
= k+i[A][B]︸ ︷︷ ︸

Binding
of A to B

− k−i[A:B]︸ ︷︷ ︸
Unbinding

of A from A:B

. (2c)

Now, let [Aeq], [Beq], and [A:Beq] denote the concentration of A, B, and A:B
after the reaction has come to an equilibrium (i.e. the concentrations are not
changing), then each of the differential equations (2a- 2c) reaches a steady state
d[·]
dt = 0 which implies mathematically:

k−i

ki
=

[Aeq][Beq]

[A:Beq]
.

Let the equilibrium constant KD,i, also known as dissociation constant, be
defined as

k−i

k+i
≡ [KD,i] =

[Aeq][Beq]

[A:Beq]
. (Def. 1)

The dissociation constant for any binding and unbinding reaction i is a measure
of how much concentration of the complex A:B will dissociate back into A and
B. A lower KD,i value indicates stronger binding between the two reactants
[7]. Note that the unit of measurement of KD,i is concentration.

Many biological functions, including coagulation, are mediated by enzyme-
substrate interactions [19]. In the classical enzyme-substrate reaction, a single
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enzyme, denoted as E, binds reversibly to its substrate, referred to as S, re-
sulting in the formation of a complex known as E:S. This complex E:S can
dissociate back into either its constituent parts E and S, or E and the newly
formed product P if S is successfully converted to P . Subsequently, the un-
bound E is free for another S to bind it and catalyze a new reaction. This
biochemical process is generally described by the following biochemical reac-
tion scheme

E + S
k1−−⇀↽−−
k−1

E:S
k2−→ E + P. (R3)

Here, k+1, k−1, and k+2 represent the binding rate, unbinding rate, and cat-
alytic rate, respectively. The catalytic rate k+2 measures the efficiency of the
enzyme in converting the substrate into the end products, i.e. transforming the
S in the complex E:S into P . Again, a mathematical model can be obtained
using the Law of Mass Action, and the system of ODEs is described as follows:

d[E]

dt
= − k+1[E][S]︸ ︷︷ ︸

Binding
of E to S

+ k−1[E:S].︸ ︷︷ ︸
Unbinding

of S from E:S

+ k+2[E:S]︸ ︷︷ ︸
Free E after
catalyzation

(3a)

d[S]

dt
= − k+1[E][S]︸ ︷︷ ︸

Binding
of E to S

+ k−1[E:S]︸ ︷︷ ︸
Unbinding

of S from E:S

(3b)

d[E:S]

dt
= k+1[E][S]︸ ︷︷ ︸

Binding
of E to S

− k−1[E:S]︸ ︷︷ ︸
Unbinding

of S from E:S

(3c)

d[P ]

dt
= k+2[E:S].︸ ︷︷ ︸

P formed after
catalyzation

(3d)

Note that the unit of measurement for k+2 is 1/time.
For the enzyme kinetic reactions described by R3, the Michaelis-Menten

constant is defined as a parameter in enzyme kinetics that measures how tightly
the substrate binds to the enzyme. It is defined as the substrate concentration
at which the reaction rate is half of the maximum reaction rate achieved by
the enzyme [14]. The constant KM has concentration as its units and can be
expressed as follows

KM =
k−1 + k+2

k+1
. (Def. 2)

For more details about the assumptions and derivation, the reader should refer
to [14].

While it is not possible to directly measure the binding rate and unbinding
rates in biochemistry and coagulation in general, certain rates/rate combina-
tions can be measured for reacting species, such as the catalytic rate (k+2),
the Michaels-Menten constant (KM ), and the dissociation constant (KD,i) for
a binding and unbinding reaction i. Some reasons why measuring all kinetic
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Variables Definition

S X

E TF:VIIa

E:S TF:VIIa:X

E:P TF:VIIa:Xa

I TFPI

P Xa

P :I Xa:TFPI

E:P :I TF:VIIa:Xa:TFPI

P :I:E TF:VIIa:Xa:TFPI*

Table 1: Biochemical Species Definition. Various mechanisms of TFPI
inhibition and mathematical models are described/written in terms of the above
variables.

rates is biochemically challenging or impossible include system complexities,
intermediate reactions/transient species, or experimental constraints.

In my study, for simplicity, I will use the standard Enzyme (E), Substrate
(S), Product (P ), and inhibitor (I) notation given in Table 1 for the equations
and the description that follows. First, the substrate factor X (S) is converted
to product Xa (P ) by the enzyme TF:VIIa (E). As illustrated in Figure 2, this
production is inhibited by the inhibitor TFPI (I) in one of the three complexes:
Xa:TFPI (P :I), TF:VIIa:Xa:TFPI (E:P :I), or TF:VIIa:Xa:TFPI*(P :I:E). The
latter two are quaternary complexes formed through the interactions of enzyme
E with P and I in two different ways: the weaker inhibitory complex, E:P :I
consists of direct binding between the complex E:P and I, where I is only
binding to P and there is no interaction between E and I (see Figure 2b). On
the contrary, the stronger complex, P :I:E has an additional bond between E:I
(see Figure 2c). For my study, concentration is measured in nanomolars (nM),

P

I E

(a) via P :I

P

I E

(b) via E:P :I

P

I E

(c) via P :I:E

Figure 2: Inhibition of P by I through (a) P :I, (b) E:P :I, and (c) P :I:E

and time is seconds (s).

2.1.2 Background on Experimental Data

Part of the challenge in coagulation and biochemistry more broadly is that it is
only possible to measure certain biochemical species [28]. Typically, in exper-
iments, the substrate and enzyme concentrations are combined within a test
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tube, and the resulting product’s concentration is determined after a specified
time interval, sometimes involving preincubation. In a study by Baugh et al.

Variables ICI(nM) ICIIpre(nM) ICII(nM)

S 170 0 170

E E0 0 0.128

E:S 0 0 0

E:P 0 0 0

I 2.4 2.4 Ipost
P 0 Ppre Ppost

P :I 0 0 P:Ipost
E:P :I 0 0 0

P :I:E 0 0 0

Table 2: Initial Conditions for Experimental Data. ICI represents the
initial conditions for Experiment I:, in which E0 = [0.1024, 0.512, 0.384, 0.256,
0.192, 0.128, 0.064, 0.032] and all the other variables are fixed. For Experiment
II, ICIIpre represents the initial conditions for the pre-incubation phase in which
Ppre = [0, 0.25, 0.5, 1] and I is fixed. The set ICII indicates the initial con-
centrations for post-incubation phase, where Ipost, Ppost, and P:Ipost are varied
based on post-incubation for fixed S and E.

[2], the formation of Xa (P) was measured over time in the presence of TFPI
under two distinct experimental conditions. The first experiment, denoted as
Experiment I, involved keeping the concentrations of X (S, 170nM) and TFPI
(I, 2.4nM) fixed while varying the concentration of the enzyme TF:VIIa (E0)
in the range of 0.032nM to 1.024nM. The second experiment, referred to as Ex-
periment II, encompassed two sequential phases. In the initial phase, known as
pre-incubation, a fixed TFPI concentration (I, 2.4nM) was maintained while the
concentrations of Xa (Ppre) were varied from 0 to 1 nM over a two-hour period.
Subsequently, in the post-incubation phase, the resulting mixture derived from
the pre-incubation phase, comprising the complex Xa:TFPI (P:Ipost), TFPI
(Ipost), and Xa (Ppost), was combined with a fixed amount of X (S, 170nM)
and TF:VIIa (E, 0.128nM). Finally, the overall concentration of Xa (P) was
measured. For both experiments described above, each measurement of Xa is
an independent data point. The data itself and the details for the data extrac-
tion are given in the Appendix 3.2. The initial conditions for both experiments
are given in Table 2.

2.1.3 Background on Previous Modelling Work

While there are different schemes (see Figure 4) that have been used to describe
the activation of factor X by TF:VIIa and its inhibition by TFPI, they all have
a similar structure. The first biochemical scheme, Scheme I (see Figure 4), was
proposed by Huang et al. [11] and was investigated by Baugh et al. (1998) [2].
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(a) Experiment I (b) Experiment II

Figure 3: Experimental Data for Xa formation by Baugh et al. (1998) [2]

In this scheme, the activation of S was described by standard into P , which is
instantaneously released from E upon activation. In other words,

E + S −⇀↽− E:S −→ E + P. (4a)

The inhibition of P and E by I occurs in two step to form the quaternary
complex P :I:E (see equation 4b-4c). First, I binds to P to generate a complex
P :I through a reversible biochemical reaction 4b. Then, P :I can bind and
unbind to E to form the stronger inhibitory complex P :I:E (4c). This type of
TFPI inhibition is called the Indirect Binding mechanism

P + I −⇀↽− P :I (4b)

E + P :I −⇀↽− P :I:E. (4c)

Baugh et al. [2] could not fit the mathematical model based on Scheme I to the
experimental data described in section 2.1.2. Instead, they proposed Scheme
II (see Figure 4), which incorporated two additional sets of assumptions to the
existing scheme for product inhibition.
The first assumption considers the inhibition of E by P , that is P can remain
bound to E once it is formed and it can unbind and rebind from E (see Equation
5a)

E + S −⇀↽− E:S −→ E:P −⇀↽− E + P. (5a)

The second assumption proposes that I may also bind to P while P is still
bound to E (i.e. to the complex E:P ) creating the complex E:P :I (see Equation
5b). The latter quaternary complex can be described as a weaker form of
inhibition:

E:P + I −⇀↽− E:P :I. (5b)

Furthermore, the complex E:P :I would then allow the stronger complex, P :I:E
to form in two different ways. One way P :I:E can be formed is by the unbinding

14



Scheme I Scheme II

Scheme III Scheme IV

Figure 4: Biochemical Schemes for Xa formation and TFPI Inhibition:
Scheme I was suggested by Huang et al. (1993) [11] and was studied by Baugh
et. al.(1998) [2]. Scheme II was proposed by Baugh et. al. (1998) [2]but never
studied. Scheme III and Scheme IV were examined by Panteleev et al. (2002)
[26].

of P :I from E in the complex E:P :I. Then, the complex P :I can rebind to E
to form the stronger complex P :I:E.

E:P :I −⇀↽− E + P :I −⇀↽− P :I:E. (5c)

Another way P :I:E can be formed is by an isomerization where there is a
transition between the two complexes as follows

E:P :I −⇀↽− P :I:E. (5d)

Even though the Scheme II was not studied by Baugh et al., it was further
explored in another study by Panteleev et al. [26]. The latter analyzed several
mathematical models which included Scheme II and proposed two additional
schemes Scheme III and Scheme IV presented in Figure 4 to describe the
inhibition of E by I [26]. The Scheme III, which was a modified version of
Scheme II, considered the inhibition of P by E as represented in Equation 5a
but did not include direct inhibition of E by I represented by Equations 5b-5d.
And, Scheme IV was a replicate of Scheme II with an additional assumption
which included the displacement of S with P :I while S is still bound to E to
form the complex E:P :I as represented by Equation 6a.

E:S + P :I −⇀↽− S + E:P :I. (6a)
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In their study, Panteleev et al. examined different schemes to determine which
scheme could fit the data measured in Experiment I and Experiment II simul-
taneously and was capable of describing the experiments quantitatively. They
concluded Scheme II is not the right scheme to explain experimental data
because it not only fit the data poorly but also could not even order the exper-
imental curves same way as measured. They also reported that the Scheme III
was too weak to inhibit the factor P activation by I and could not describe the
experimental data [26]. They suggested that the only way the data could fit and
be ordered consistently was by invoking a trimolecular reaction (see Equation
6a). However, the data from molecular models (crystal structure) suggest that
these trimolecular reactions would be rare [23]. Moreover, the fitted kinetic
rates for the Scheme IV were inconsistent with the experimentally measured
rates and constants.

For my study, I hypothesized that Scheme II could describe the role of
TFPI in regulating the activation of factor X. I developed a mathematical
model based on Scheme II, which incorporated both Direct Binding and Indi-
rect Binding mechanisms for TFPI inhibition. I hypothesized that the reason
why previous studies were unsuccessful at fitting experimental data (described
in Section 2.1.2) using a mathematical model based on Scheme II is the choice
of kinetic rates. Instead, I estimated a set of kinetic rates that fitted the model
output for P to the experimental data simultaneously. This involved employ-
ing a constraints optimization framework, leveraging existing knowledge about
certain kinetic rates, and re-estimating the dissociation constant for reaction
(4b).

2.2 TFPI ODEs Static Model

2.2.1 Mathematical Model

The TFPI ODEs Static model based on Scheme II in Figure 4 tracks the species
concentrations for nine species ([E], [S], [E:S], [E:P ], [P ], [I], [P :I], [P :I:E],
and [E:P :I]) over time. By applying the Law of Mass Action, one can derive
the system of ODEs for the concentrations of species for Scheme II as follows:
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d[E]

dt
= −k+1[E][S]︸ ︷︷ ︸

Binding
of S to E

+k−1[E:S]︸ ︷︷ ︸
Unbinding
of S from E

+k−3[E:P ]︸ ︷︷ ︸
Unbinding

of P from E:P

−k+3[E][P ]︸ ︷︷ ︸
Binding
of P to E

−k+5[E][P :I]︸ ︷︷ ︸
Binding

of P :I to E

+k−5[P :I:E]︸ ︷︷ ︸
Unbinding

of P :I from E

(7a)

+k−8[E:P :I]︸ ︷︷ ︸
Unbinding

of P :I from E:P :I

−k+8[E][P :I]︸ ︷︷ ︸
Binding

of P :I to E

d[S]

dt
= −k+1[E][S]︸ ︷︷ ︸

Binding
of S to E

+k−1[E:S]︸ ︷︷ ︸
Unbinding
of S from E

(7b)

d[E:S]

dt
= k+1[E][S]︸ ︷︷ ︸

Binding
of S to E

−k−1[E:S]︸ ︷︷ ︸
Unbinding
of S from E

−k+2[E:S]︸ ︷︷ ︸
catalyzation
of S to P

(7c)

d[E:P ]

dt
= k+2[E:S]︸ ︷︷ ︸

catalyzation
of S to P

−k−3[E:P ]︸ ︷︷ ︸
Unbinding
of P from E

+k+3[E][P ]︸ ︷︷ ︸
Binding
of P to E

− k+6[E:P ][I]︸ ︷︷ ︸
Binding

of I to E:P

+ k−6[E:P :I]︸ ︷︷ ︸
Unbinding

of I from E:P

(7d)

d[P ]

dt
= −k+3[E][P ]︸ ︷︷ ︸

Binding
of P to E

+k−3[E:P ]︸ ︷︷ ︸
Unbinding
of P from E

−k+4[P ][I]︸ ︷︷ ︸
Binding
of I to P

+ k−4[P :I]︸ ︷︷ ︸
Unbinding
of I from P

(7e)

d[I]

dt
= −k+4[P ][I]︸ ︷︷ ︸

Binding
of I toP

+ k−4[P :I]︸ ︷︷ ︸
Unbinding
of I from P

−k+6[E:P ][I]︸ ︷︷ ︸
Binding

of I to E:P

+k−6[E:P :I]︸ ︷︷ ︸
Unbinding

of I from E:P

(7f)

d[P :I]

dt
= k+4[P ][I]︸ ︷︷ ︸

Binding
of I to P

−k−4[P :I]︸ ︷︷ ︸
Unbinding
of I from P

−k+5[E][P :I]︸ ︷︷ ︸
Binding

of P :I to E

+k−5[P :I:E]︸ ︷︷ ︸
Unbinding
of P :I to E

−k+8[E][P :I]︸ ︷︷ ︸
Binding

of P :I to E

+ k−8[E:P :I]︸ ︷︷ ︸
Unbinding

of P :I from E

(7g)

d[E:P :I]

dt
= k+6[E:P ][I]︸ ︷︷ ︸

Binding
of P :I to E

−k−6[E:P :I]︸ ︷︷ ︸
Unbinding

of P :I from E

−k+7[E:P :I]︸ ︷︷ ︸
Transition of

E:P :I to P :I:E

+k−7[P : I:E]︸ ︷︷ ︸
Transition of

P :I:E to E:P :I

+k+8[E][P :I]︸ ︷︷ ︸
Binding

of P :I to E

(7h)

− k−8[E:P :I]︸ ︷︷ ︸
Unbinding
of P :I to E

d[P :I:E]

dt
= k+5[E][P :I]︸ ︷︷ ︸

Binding
ofP :I to E

−k−5[P :I:E]︸ ︷︷ ︸
Unbinding

of P :I from E

+k+7[E:P :I]︸ ︷︷ ︸
Transition of

P :I:E to E:P :I

−k−7[P :I:E]︸ ︷︷ ︸
Transition of

P :I:E to E:P :I

. (7i)

Here, the k±i excluding k−2 represent the kinetic rates for the reactionumber
i = 1, 2, 3, 4, 5, 6, 7, 8. In particular, the rates for reactions i = 1, 3, 4, 5, 6, 8
are binding (+) and unbinding (−), k+2 is the catalytic rate, and k±7 are the
transitioning rates between complexes E:P :I and P :I:E.

I assume that E:P :I is an internally weaker complex because it has only
two points of interactions as illustrated in Figure 2b and P :I:E is an internally
stronger complex because it has three points of interactions as depicted in Fig-
ure 2c. Furthermore, I assume the formation of P :I:E through E:P :I complex
is rapid. I hypothesize that the transition from the stronger complex P :I:E to
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the weaker complex E:P :I is significantly slower as described by Baugh et. al
[2]. In other words,

k−7 ≪ k+7. (8)

2.2.2 Parameter Estimation

Prior Information about the Kinetic Rates
The TFPI ODEs Static model has fifteen distinct kinetic rates k±i (excluding
k−2), where i = 1, 2, ..., 8, describing the eight biochemical reactions illustrated
in Scheme II. For my research, I relied on previously reported values of k+5,
k−5, and KM measured by Baugh et al. [2]. In their study, Baugh et al. also
determined the value of KD,4 and provided the data used for its measurement.
I utilized this data to re-evaluate the value of KD,4 (see Appendix 3.1 for
details) and observed that my estimated value diverged from their reported
value. Consequently, I adopted my newly estimated value for my study.

Furthermore, I used the experimentally measured dissociation constantKD,3

from the study conducted by Lu et al. [17]. I leveraged the knowledge of both
KD,3 and KD,4 by applying the definition of the dissociation constant (Def. 1)
to calculate the corresponding unbinding rates, k−3 and k−4, in relation to the
given binding rates, k+3 and k+4, respectively. Similarly, I used the known KM

and its definition (Def. 2) to determine k−1 for a given k+1 and k+2.
In summary, I considered rates k−1, k−3, k−4, k+5, and k−5 to be known

based on their reported values or their relationship to known constants from
literature. I estimated the remaining ten unknown kinetic rates θ = k+1, k+2,
k+3, k+4, k+6, k−6, k+7, k−7, k+8, and k−8 using a constrained optimization
method described below. For detailed information on all the kinetic rates,
please refer to Table 3.

Constrained Optimization Method
The goal was to estimate a set of kinetic rates θ that fits the ODEs Static model
to the experimental data described in section 2.1.2. This involved minimizing
the error between the experimental data and the model’s approximation of Xa
(P ) concentration, while simultaneously ensuring that all constraints based on
biological concepts and prior knowledge were met. Essentially to find such θ, I
had to solve the following minimization problem

min
θ

f(θ) such that

{
CI(x) ≤ 0

CE(x) = 0.
(9)

Here, f(θ) represents the objective function responsible for quantifying the
error between the data and the model’s output ([P ]), which depends on the
values of θ. Meanwhile, the constraints CE(x) and CI(x) are the inequality and
equality constraints, respectively. Both the objective function and constraints
are described further below.

To tackle this minimization problem, I employed a constrained optimization
framework. The latter, in general, is a branch of mathematical optimization
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focused on maximizing or minimizing an objective function with respect to
some variables while respecting constraints within the feasible region defined
by those constraints themselves [22]. The commonly used techniques for solv-
ing constrained optimization problems include the interior point method or
sequential programming. For this project, I utilized the interior point method,
a class of algorithms designed for solving linear and non-linear optimization
problems of minimization or maximization [22]. This method transforms the
contained problem into an unconstrained optimization problem by introducing
barrier functions, and it uses Newton’s methods to solve it. For the detailed
algorithm, please refer to Appendix 3.3. Some advantages of using the interior
point method include: robustness, feasibility guarantee, and being well-suited
for solving large-scale linear/nonlinear programming problems.

For the ODEs Static model, the constraints are described as follows.
Constraint 1. All the kinetic rates must be positive. This means

ki ≥ 0, (10)

for all i = ±1, 2,±3, · · · ,±8.
Constraint 2. Because there is a limit on how fast particles can diffuse, Alberty
et al. estimated an upper limit of enzyme-substrate reaction using the theory
of diffusion-controlled reaction [1]. According to their estimation, the upper
limit of enzyme-substrate reaction was 109M−1×s−1. Thus, I assumed that all
the binding rates k+i are bounded above by 1nM−1 × s−1, so

0 ≤ ki ≤ 1, (11)

where for i = 1, 3, 4, 5, 6, 8.
Constraint 3. Recall the assumption that the transitioning rate k−7 is signif-
icantly smaller than k+7 as described by inequality (8). One way to enforce
this constraint is by choosing feasible ranges for k+7 and k−7 such that the
inequality (8) is true. I assume that

0 ≤ k+7 ≤ 103 and 10−9 ≤ k−7 ≤ 10−4. (12)

These ranges were chosen for k+7 and k−7 based on my numerical experiments
of the model.
Constraint 4. The linear inequality constraint described below was formulated
by combining the definition of the Michaelis-Menten constant (see Def. 2) and
the positivity of k−1 from inequality (10).

−KMk1 + k2 ≤ 0. (13)

The derivation of the above inequality is as follows:

KM =
k−1 + k2

k1
Definition of KM

KMk1 − k2 = k−1 Solved for k−1

KMk1 − k2 = k−1 ≥ 0 from inequality (10)

−KMk1 + k2 = k−1 ≤ 0 Multiplied by -1.
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The objective function used for the estimation of the kinetic rates is given
by the Sum of Squares Error, f(θ), which measures the difference between
experimental data and predicted model output [4]. The function f(θ) for fitting
time series data from Experiment I and Experiment II simultaneously is defined
as follows:

f(θ) =

 1

96

8∑
k=1

12∑
i=1

(
DI

i,k − P I
i,k(t

I
i , IC

I
k ,θ))

)2
︸ ︷︷ ︸

Experiment I

+
1

48

4∑
n=1

12∑
m=1

(
DII

m,n − P II
m,n(t

II
m , ICII

n ,θ)
)2

︸ ︷︷ ︸
Experiment II


1/2

.

(14)
Here, DI

i,k and P I
i,k(t

I
i , IC

I
k ,θ) represent the experimental data point and the

corresponding ODE model solution respectively at discrete time point tIi and
the initial species’ concentrations ICI

k for Experiment I. Similarly, D2
m,n and

P II
m,n(t

II
m , ICII

n ,θ) indicate the experimental data and the corresponding ODE

model solution at the discrete time point tIIm and the initial species’ concentra-
tions ICII

n Experiment II.
My goal is to find a set of the kinetic rates θ that minimizes the objective

function f(θ), subject to the constraints. Mathematically, I want to solve the
following minimization problem

min
θ

f(θ) such that



ki >= 0, ∀i = i = ±1, 2,±3, · · · ,±8.

0 ≤ ki ≤ 1, ∀i = 1, 3, · · · , 6, 8.
0 ≤ k7 ≤ 103.

10−9 ≤ k−7 ≤ 10−4.

−KMk1 + k2 ≤ 0.

(15)

To solve this problem, I adopted MATLAB built-in nonlinear constrained opti-
mization [12] function fmincon, which uses the interior point method by default.
This function starts at a vector of initial guesses θ0 sampled randomly from
a uniform distribution. The feasible ranges for parameters in the vector θ are
defined by lower bounds and upper bounds, taking into account the constraints
(10), (11), and (12) associated with the kinetic rates. The function searches for
the optimal set of kinetic rates θmin that minimizes the error calculated by the
objective function (described in equation 14) subject to the linear inequalities
−KMk1+k2 ≤ 0. For my study, I did 1000 realization to find θmin. The details
about the feasible ranges, parameters relationships, and optimized kinetic rates
are provided in Table 3.

Though fmincon.m is a useful MATLAB optimization tool designed for con-
strained nonlinear problems, it also has notable limitations, some of which are
described as follows. First, it relies on the user-provided initial guesses, which
can significantly affect the optimization output by making the latter sensitive
to the choice of initial guess. Second, it requires the objective function and
constraints must have continuous and continuous first derivatives. Third, it
might not handle problems with numerous variables or constraints efficiently.
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Moreover, it attempts to minimize the maximum constraint value when the
problem is infeasible. Lastly, it may not guarantee a global optimality for com-
plex optimization problems, so the user should seek other global optimization
techniques. [12]

2.2.3 Results

Numerical simulations for the concentration of P were performed by fitting the
TFPI ODEs Static model to experimental data (described in Section 2.1.2) si-
multaneously using a constrained optimization framework (see Section 2.2.2).
Figure 5 illustrates the comparison between the model solution for the concen-
tration of P and the corresponding experimental data. In Experiment I (Figure
5a), I kept the concentrations of S and I constant at 170 nM and 2.4 nM, re-
spectively, and varied the initial concentration of E. In Experiment II (5b), I
fixed E at 0.128 nM and S at 170 nM. The complex P :I and I were obtained
by preincubating fixed I at 2 nM with various P concentrations of 0, 0.25, 0.5,
and 1 nM.

(a) Experiment II (b) Experiment II

Figure 5: Numerical simulations (solid lines) and extracted experimental data
(solid dots) of P concentrations given fixed concentrations of factor S = 170 nM
using optimized kinetic rates (See Table 2). (a) The concentration of I is fixed
at 2.4 nM, whereas the concentration of E is varied. (b) E is fixed to 0.128 nM.
I, P , and P :I concentrations are varied based on the preincubation from fixed
I under various P initial concentrations.

In Figure 5, it can be observed that the TFPI ODEs Static model fits most
of the data from Experiment I and Experiment II simultaneously. In particular,
the bottom two curves associated with (E0 = 0.032nM and E0 = 0.064nM) for
Experiment I and the top curve for Experiment II are overestimated. The set of
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Table 3: Scheme Reactions and the Associated Kinetic Rates

Reaction Biochemical Kinetic Units Literature Optimized Feasible
Number Equation Constants Value Value Ranges

1 E + S
k1−−⇀↽−−
k−1

E:S k+1 (nMs)−1 - 1.9× 10−1 [k+2/KM , 1]a

k−1 s−1 - 3.6× 101 KM × k+1 − k+2

KM nM 2.38× 102 [2] - -
KD,1 nM - 191 -

2 E:S
k2−→ E:P k+2 s−1 − 9 [0, 10]b

3 E + P
k3−−⇀↽−−
k−3

E:P k+3 (nMs)−1 - 2.4× 10−1 [0, 1]a

k−3 s−1 - 1.24× 102 KD,3 × k+3

KD,3 nM 5.21× 102 [17] - -

4 P + I
k4−−⇀↽−−
k−4

P :I k+4 (nMs)−1 - 2.1× 10−3 [0, 1]a

k−4 s−1 - 5.4× 10−5 KD,4 × k+4

Kc
D,4 nM - 2.6× 10−2 -

5 E + P :I
k5−−⇀↽−−
k−5

P :I:E k+5 (nMs)−1 7.34× 10−3 [2] - -

k−5 s−1 1.1× 10−3 [2] - -
K∗

D,5 nM 1.5× 10−1 [2] - -

6 E:P + I
k6−−⇀↽−−
k−6

E:P :I k+6 (nMs)−1 - 3.6× 10−1 [0, 1]a

k−6 s−1 - 1 [0, 10]b

KD,6 nM - 2.8 -

7 E:P :I
k7−−⇀↽−−
k−7

P :I:E k+7 s−1 - 2.1× 102 [0, 103]b

k−7 s−1 - 1.6× 10−4 [1× 10−7, 1× 10−3]b

KD,7 - - - -

8 E + P :I
k8−−⇀↽−−
k−8

E:P :I k+8 (nMs)−1 - 6.7× 10−1 [0, 1]a

k−8 s−1 - 1.2 [0, 100]b

KD,8 nM - 1.8 -

a The upper bound was selected to be equal to 1 nM due to the diffusion limit of the rate of association. The
lower bound was chosen to be equal to zero since we are dealing with biological parameters (except k+1 has a
lower limit of KM/k+2 because it depends on the Michaelis–Menten constant and catalytic rate k+2).
b Assumed.
c Optimized (see Appendix).
∗ calculated using the formula k−5/k+5.
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kinetic rates used for the fitting was obtained through constrained optimization
and is described in 3). The optimized set of parameters was consistent with all
the prior knowledge.

Overall, it can be observed that the model output for the concentration
of P explains the qualitative behavior of each experimental data set because
the ordering and the shape of the curves are consistent with the experimental
data. This stands out as a novel development, as the earlier study conducted
by Panteleev et al. was not able to achieve this level of consistency. Moreover,
my results show the importance of having the Direct Binding mechanism in
Scheme II static conditions because the model fitted the experimental data
using both mechanisms.

2.3 TFPI ODEs Flow Model

While the previous sections have uncovered kinetic parameters for a static
model incorporating both TFPI Direct Binding and Indirect Binding inhibi-
tion mechanisms, a complete study should consider how the system behaves
under flow because the coagulation process occurs in the presence of flow [16].
This section aims to develop an ODEs flow model to understand how Direct
Binding and Indirect Binding mechanisms interact in an actual physical sys-
tem. I hypothesize that the Direct Binding mechanism is essential for TF:VIIa
inhibition in the presence of flow because it allows the inhibitor TFPI to bind
with Xa, while the latter is bound to TF:VIIa.

2.3.1 Biological and Modelling of the ODEs Flow Model

My model for Xa activation and TFPI inhibition in the presence of flow, as
illustrated by Figure 6, is a simplified version of the previously developed math-
ematical model of flow-mediated coagulation by Fogelson group [15, 10] with
minimal reacting species of interest. The model assumes that all the reactions
happen in a region located at the small (10µM × 10µM) [10] injury site, this
region is called the reaction zone. Clotting factors are transported into and out
of the reaction zone by a combination of flow and diffusion, represented by a
mass transfer coefficient (called ”flow rate” and denoted kflow). The value of
kflow (1/s) is given by the function that depends on vessel size, injury length,
blood flow speed, and the species’ diffusivity [15, 10]. Since I am working with
a small injury, it is assumed that all the species are well mixed in the reaction
zone, so each is characterized by its (volume) concentration. Inside the reaction
zone, the clotting factors’ concentrations change due to their interactions with
other species through biochemical reactions (in fluid or on the surface) and
their transport into and out of the reaction zone.

My model assumes that the TF:VIIa (E) is already formed and is fixed
to the injury site inside the reaction zone and does not enter or exit it. The
clotting factors that enter the reaction zone are factor X (Sup) and the inhibitor
TFPI (Iup). The ones that exit the reaction zone are X (S), Xa (P ), TFPI (I),
and Xa:TFPI (P :I). The system becomes inhibited when TF:VIIa is bound
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Figure 6: Activation of Xa and Inhibition by TFPI under Flow. During
the initiation process, clotting factor X, present in the plasma, becomes activated
factor X (Xa) by binding with TF:VIIa. TFPI inhibits this activation through
two different biochemical mechanisms: Indirect Binding (in red) and Direct
Binding (in blue). The blood flow (kflow) serves as a mediator for bringing in
and removing biochemical components present in the plasma from the reaction
zone. The formation of Xa and its inhibition occurs at respective kinetic rates
given in Table 3.
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by other species, which prevents it from binding and activating factor X. This
includes TF:VIIa binding with Xa or Xa:TFPI. Furthermore, recall that there
are two mechanisms (Indirect Binding and Direct Binding) by which TFPI acts
to inhibit the action of TF:VIIa after activation of factor X as depicted in Figure
6. The Indirect Binding mechanism occurs in two steps: the first step happens
in the solution, where TFPI binds to Xa; and in the second step, occurring
on the surface of the injury site, the TFPI:Xa complex rebinds to the TF:VIIa
complex at the injury site. The Indirect Binding mechanism is sensitive to flow
because it requires the binding of TFPI and Xa in plasma (hypothesis). On the
contrary, the Direct Binding mechanism occurs through the direct binding at
the injury site of TFPI to the Xa on the TF:VIIa complex immediately after
the activation of factor X (i.e., factor Xa never detaches from TF:VIIa to the
injury site). Per se, it removes the potential inhibition of Xa:TFPI by the flow.

2.3.2 Mathematical Model

For the description of my mathematical model and the results that follow, I will
use the same notation for biochemical species as described in Table 1. The new
model, named TFPI ODEs Flow Model, is an open system and is represented
mathematically as a compartment model system where species enter and exit
the compartment (the reaction zone). The mathematical equations for all the
reactions happening inside the reaction zone are the same as the differential
equations described previously by (7a-7i) for the ODEs static model (i.e. closed
system see Section 2.2.1). The species entering or exiting the reaction zone at
rate kflow(1/s) are described by kflow(Cup−C), where kflow is the mass transfer
coefficient, Cup is the upstream concentration of an arbitrary species C, and C
is unbound species in the fluid. The full set of ordinary differential equations
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for the TFPI ODEs Flow Model is as follows:

d[E]

dt
= −k+1[E][S]︸ ︷︷ ︸

Binding
of S to E

+k−1[E:S]︸ ︷︷ ︸
Unbinding
of S from E

+k−3[E:P ]︸ ︷︷ ︸
Unbinding

of P from E:P

−k+3[E][P ]︸ ︷︷ ︸
Binding
of P to E

−k+5[E][P :I]︸ ︷︷ ︸
Binding

of P :I to E

+k−5[P :I:E]︸ ︷︷ ︸
Unbinding

of P :I from E

(16a)

+k−8[E:P :I]︸ ︷︷ ︸
Unbinding

of P :I from E:P :I

−k+8[E][P :I]︸ ︷︷ ︸
Binding

of P :I to E

d[S]

dt
= −k+1[E][S]︸ ︷︷ ︸

Binding
of S to E

+k−1[E:S]︸ ︷︷ ︸
Unbinding
of S from E

+ kflow([Sup]− [S])︸ ︷︷ ︸
Difference in [S]
due to kflow

(16b)

d[E:S]

dt
= k+1[E][S]︸ ︷︷ ︸

Binding
of S to E

−k−1[E:S]︸ ︷︷ ︸
Unbinding
of S from E

−k+2[E:S]︸ ︷︷ ︸
catalyzation
of S to P

(16c)

d[E:P ]

dt
= k+2[E:S]︸ ︷︷ ︸

catalyzation
of S to P

−k−3[E:P ]︸ ︷︷ ︸
Unbinding
of P from E

+k+3[E][P ]︸ ︷︷ ︸
Binding
of P to E

− k+6[E:P ][I]︸ ︷︷ ︸
Binding

of I to E:P

+ k−6[E:P :I]︸ ︷︷ ︸
Unbinding

of I from E:P

(16d)

d[P ]

dt
= −k+3[E][P ]︸ ︷︷ ︸

Binding
of P to E

+k−3[E:P ]︸ ︷︷ ︸
Unbinding
of P from E

−k+4[P ][I]︸ ︷︷ ︸
Binding
of I to P

+ k−4[P :I]︸ ︷︷ ︸
Unbinding
of I from P

− kflow[P ]︸ ︷︷ ︸
Removal of P
due to flow

(16e)

d[I]

dt
= −k+4[P ][I]︸ ︷︷ ︸

Binding
of I toP

+ k−4[P :I]︸ ︷︷ ︸
Unbinding
of I from P

−k+6[E:P ][I]︸ ︷︷ ︸
Binding

of I to E:P

+k−6[E:P :I]︸ ︷︷ ︸
Unbinding

of I from E:P

+ kflow([Iup]− [I])︸ ︷︷ ︸
Difference in [I]
due to kflow

(16f)

d[P :I]

dt
= k+4[P ][I]︸ ︷︷ ︸

Binding
of I to P

−k−4[P :I]︸ ︷︷ ︸
Unbinding
of I from P

−k+5[E][P :I]︸ ︷︷ ︸
Binding

of P :I to E

+k−5[P :I:E]︸ ︷︷ ︸
Unbinding
of P :I to E

−k+8[E][P :I]︸ ︷︷ ︸
Binding

of P :I to E

(16g)

+ k−8[E:P :I]︸ ︷︷ ︸
Unbinding

of P :I from E

− kflow[P :I]︸ ︷︷ ︸
Removal of P :I
due to kflow

d[E:P :I]

dt
= k+6[E:P ][I]︸ ︷︷ ︸

Binding
of P :I to E

−k−6[E:P :I]︸ ︷︷ ︸
Unbinding

of P :I from E

−k+7[E:P :I]︸ ︷︷ ︸
Transition of

E:P :I to P :I:E

+k−7[P : I:E]︸ ︷︷ ︸
Transition of

P :I:E to E:P :I

+k+8[E][P :I]︸ ︷︷ ︸
Binding

of P :I to E

(16h)

− k−8[E:P :I]︸ ︷︷ ︸
Unbinding
of P :I to E

d[P :I:E]

dt
= k+5[E][P :I]︸ ︷︷ ︸

Binding
of P :I to E

−k−5[P :I:E]︸ ︷︷ ︸
Unbinding

of P :I from E

+k+7[E:P :I]︸ ︷︷ ︸
Transition of

P :I:E to E:P :I

−k−7[P :I:E]︸ ︷︷ ︸
Transition of

P :I:E to E:P :I

. (16i)

Notice the differential equations corresponding to species that enter or exit the
reaction zone (S,I, P :I, P ) include a kflow term. The equations for the two
species entering the reaction zone from up-stream (S and I) also include their
corresponding up-stream concentration ([Sup] and [Iup]).

Since I am working with a nine-dimensional nonlinear system of ODEs, it
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is extremely hard to find solutions analytically in practice. So, I solved the
system of differential equations numerically using Mathlab’s built-in function
ode23, which is a single-step solver and implements the explicit Runge-Kutta
method of third order[3, 27].

The initial concentrations for species entering the reaction zone are fixed to
be Sup = 170nM (taken from [18]) and Iup = 2.4nM (taken from [24]), which
are the physiological values used in experiments. The total amount of enzyme
initially available in the reaction zone, denoted ETotal, is set to be 1.024nM (the
highest enzyme value used for the static experiments considered in my study).
All the other species’ concentrations are zero initially. I used the same set of
kinetic rates calculated in the previous section for the static model. The flow
rates vary between 1e-3 ≤ kflow(1/s) ≤ 1e3 biologically (for more details see
Appendix 3.4). I define kflow = 0 as no flow, kflow = 1e-3 as low flow, kflow = 1
as mid flow, and kflow = 1e3 as high flow.

2.3.3 Comparing the Significance of Different Mechanisms of
TFPI

Reaction Biochemical Indirect Direct Direct and Indirect
Number Reaction Binding (IB) Binding (DB) Binding (DB-IB)

1 E + S
k1−−⇀↽−−
k−1

E:S ✓ ✓ ✓

2 E:S
k2−→ E:P ✓ ✓ ✓

3 E + P
k3−−⇀↽−−
k−3

E:P ✓ ✓ ✓

4 P + I
k4−−⇀↽−−
k−4

P :I ✓ k4 = k−4 = 0 ✓

5 E + P :I
k5−−⇀↽−−
k−5

P :I:E ✓ k5 = k−5 = 0 ✓

6 E:P + I
k6−−⇀↽−−
k−6

E:P :I k6 = k−6 = 0 ✓ ✓

7 E:P :I
k7−−⇀↽−−
k−7

P :I:E k7 = k−7 = 0 ✓ ✓

8 E + P :I
k8−−⇀↽−−
k−8

E:P :I k8 = k−8 = 0 k8 = k−8 = 0 ✓

Table 4: Mechanisms of TFPI Inhibition

To understand the role of TFPI in inhibiting TF:VIIa, I consider three
different inhibition mechanisms based on the biochemical reactions: Indirect
Binding (denoted IB), Direct Binding (denoted DB), and Direct and Indirect
Binding (denoted DB-IB). As illustrated in Table 4, the inhibition through In-
direct Binding involves reactions (1-5); the inhibition by Direct Binding consists
of reactions (1-3 and 6-7); and the inhibition via Direct and Indirect Binding
incorporate biochemical reactions (1-8). In order to compare the amount of
inhibition happening across all these mechanisms, I define the inhibition of E,
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denoted EInhibited, to be the concentration of enzyme that is bound and thus is
unable to convert S to P . EInhibited is quantified by summing the total concen-
tration of E that is occupied by either P or P :I and is described mathematically
as follows:

[EInhibited] = [E:P ] + [E:P :I] + [P :I:E].

2.3.4 Results

All the results presented in this section focus on the total concentration of
inhibited TF:VIIa ([EInhibited]) at steady-state to understand the long-term
inhibition of E. The steady-state concentrations of EInhibited were obtained
by running the model simulation for a long time t = 1e6(s). The first part
of the results aims to determine the inhibition of TF:VIIa in the presence and
absence of flow across different inhibition mechanisms, which include No TFPI
and TFPI. The second part focuses on understanding how doubling or halving
KD,3 affects the overall inhibition of TF:VIIa (E) for varying flow rates across
different mechanisms.

Inhibition of E in the Presence and Absence of Flow across dif-
ferent inhibition mechanisms

(a) No Flow (b) Varying Flow

Figure 7: The steady state concentration of Einhibited for (a) no flow (kflow = 0)
with fixed [S] = 170nM, [E] = 10nM, and [I] = 2.4nM; and (b) varying flow
rates (kflow ̸= 0) with fixed [ETotal] = 10nM,[Sup] = 170nM, and [Iup] = 2.4nM
in the absence of TFPI (black) and the presence of TFPI: with Indirect Binding
(IB) mechanism (red), with Direct Binding(DB) mechanism (blue), and with
Direct and Indirect Binding (DB-IB) mechanism (green).

Figure 7 represents the relationship between the inhibited concentration of
TF:VIIa [EInhibited] at steady state and: (7a) no flow (kflow = 0) with fixed
[E] = 10nM, [S] = 170nM, and [I] = 2.4nM; (7b) varying flow rates (kflow ̸=0)
for fixed [ETotal] = 10nM, [Sup] = 170nM, and [Iup] = 2.4nM in the absence of
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TFPI (black) and in the presence of TFPI: with Indirect Binding mechanism
(red), with Direct Binding mechanism (blue), with Direct and Indirect Binding
mechanism (green). As depicted in subfigures (7a-7b), it can be observed that
[Einhibited] is approximately the same for both no flow (kflow = 0) and low flow
(kflow =1e-3) across all the different mechanisms. The detailed analysis of each
inhibition mechanism is described below.

No TFPI (black): when there is no inhibitor in the system, the inhibition
of E is only possible by the complex E:P . In this case, the concentration of
[Einhibited] at steady state is approximately 0.25 nM for both no flow and low
flow rates. It decreases gradually as kflow varies from low to mid flow rates,
and it flattens out for mid to high flow rates. The decrease in the Einhibited

concentration is due to flow, which washes away free P from the reaction as it
increases. This suggests that flow itself is both procoagulant and anticoagulant.
On the one hand, flow promotes inhibition by bringing clotting factors to the
injury site, but on the other hand, flow hinders inhibition by washing away free
factor Xa (high flow).

Indirect Binding (red): With TFPI present in the system, the concentration
of Einhibited via the Indirect Binding mechanism is four times stronger than
when there is no TFPI in the system (black) for no flow and low flow rates as
described in (7a-7b). For low to mid flow rates, [Einhibited] decreases gradually
at first and then rapidly plunges to the same amount of inhibition as the case
when there is no TFPI in the system. After that, it stays steady as flow varies
between mid and high flow rates. The sudden decrease in inhibition level is due
to the flow removing free P and P :I from the reaction zone and forbidding the
latter’s binding to free E fixed at the injury site.

Direct Binding (blue): The concentration of EInhibited for the Direct Binding
mechanism is flattened out approximately at ETotal across all flow rates as
depicted in (7a-7b). In this case, there is a total inhibition of E because the
flow does not have the ability to remove P from the reaction zone since I
directly binds to P while the latter is bound to E, which is fixed at the injury
site.

Direct and Indirect Binding (green): when both TFPI binding mechanisms
are at play, [EInhibited] is approximately at its maximum capacity (i.e. ETotal)
for no flow and low flow. It slowly reduces by 5% for low to mid flow rates and
stays steady as flow increases. The reduction in the inhibition is due to the
presence of free P and P :I in the fluid, and the species are subject to being
washed away by the flow.

Overall, it can be observed that the flow both helps and hinders the inhibi-
tion of E when there is no TFPI in the system. The presence of TFPI in the
system does increase the concentrations of EInhibited across all the mechanisms
except for Indirect Binding at mid to high flow rates. It can also be observed
that the Indirect Binding is the most sensitive to inhibition mechanism to flow.
Both Direct Binding alone and Direct and Indirect Binding mechanisms are
less sensitive to flow.
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Total Inhibition of E in the Presence of Flow for varying KD,3

(a) No TFPI (b) Indirect Binding Mechanism

(c) Direct Binding Mechanism (d) Direct and Indirect Binding Mechanism

Figure 8: EInhibited as kflow increases under different KD,3 (5.21nM (⃝),
52.1nM, (□), and 521 nM (△) for different TFPI mechanisms: (a) No TFPI,
(b) Indirect Binding Mechanism, (c)Direct Binding Mechanism, and (d)Direct
and Indirect Binding Mechanism.

Next, I am interested in determining how varying KD,3 affects EInhibited

across different mechanisms, and this relationship is described by Figure 8.
Generally, a smaller value of KD,3 indicates greater binding affinity between P
& E and vice-versa. This can be seen when there is no TFPI in the system,
decreasing KD,3 increases inhibition levels as illustrated in Figure 8a due to
product inhibition. For the TFPI Indirect Binding mechanism, I discover that
EInhibited varies slightly regardless of KD,3 for low flow rates, but it is sensitive
to KD,3 values under higher flow rate. Again, the increase in the concentration
of EInhibited for mid to high flow as KD,3 decreases is due to the strong prod-
uct inhibition, suggesting that product inhibition itself and flow are stronger
inhibitors than TFPI. These results are consistent with the results from the
prior study by Fogelson et al. [10] about TFPI indirect binding. On the other
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hand, the concentration of EInhibited through TFPI Direct Binding mechanism
is insensitive to KD,3 across all flow rates (see Figure 8c) suggesting that TFPI
itself is a stronger inhibitor than product inhibition or flow. For both Direct
and Indirect Binding mechanisms, the concentration of EInhibited is the same
for KD,3 = 5.21 and KD,3 = 52.1, but it slightly decreases for a higher KD,3

when flow rates are high (see Figure 8d). This also suggests that the presence
of Direct Binding mechanism is important to understand the full role of TFPI.

2.4 Discussion and Conclusions

The main objective of my study was to develop a framework for TFPI mecha-
nisms that aligns with well-established experimental data published by Baugh
et al. [2]. To achieve this, I conducted a thorough mathematical analysis of the
mechanisms of TFPI inhibition, specifically focusing on the scheme proposed
in the same study (Scheme II ). The purpose was to establish a set of kinetic
rates that simultaneously fit the TFPI ODEs static model to the experimental
data.

First, I employed constrained optimization to re-estimate the value of KD,4

and utilized this updated value, along with known rates and relationships, to
optimize the remaining kinetic rates. By employing constrained optimization,
which enforces known values and relationships, I successfully identified a set
of kinetic rates that fitted the TFPI ODEs static model across multiple time
series data. The results obtained from the TFPI ODEs static model indicate
that Scheme II has the potential to explain qualitatively all the experimental
data and effectively describe the role of TFPI in inhibiting Xa formation in
a static system. The fitting of the TFPI ODEs model is innovative because
previous studies [2, 26] could not fit or sort the data correctly. The previous
studies failed to fit the data because of the choice of kinetic rates. When I
attempted to redo the fitting using the kinetic rate ranges Panteleev et al. [26]
gave in their study, I had to set k−6 = k+7 = k−7 = k−8 = 0 to reproduce the
identical results published in their studies. Moreover, they used the previously
reported of KD,4 from Baugh et al. [2]. The dissociation constants for all the
other rates are identical or have the same order of magnitude.

In order to gain a deeper understanding of the system within a real physi-
cal context, I further investigated the two mechanisms in the presence of flow.
Overall, the TFPI ODEs flow model findings highlight the significance of Direct
Binding mechanism, where E directly binds P :I, in regulating the formation
of P by I. Additionally, I quantified the level of inhibition by examining the
concentrations of TF:VIIa bound to Xa or TFPI. The analysis led to the con-
clusion that Direct Binding mechanism exhibits the strongest inhibitory effect,
which is further enhanced by the presence of flow. On the other hand, Indirect
Binding mechanism is characterized as a weak inhibitor, and its effect is dimin-
ished by flow. The results for the Indirect Binding mechanism are consistent
with the study by Fogleson et. al [10], in which it was concluded that TFPI has
no inhibitory effect on TF exposure and flow itself is a more potent inhibitor.

For my results, It was also observed that the combined action of Direct
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and Indirect Binding mechanism provides a higher level of inhibition compared
to Indirect Binding mechanism alone, although it remains weaker than the
inhibition achieved by Direct Binding mechanism due to the potential removal
of the Xa:TFPI complex by the flow. In summary, the presence of Direct
Binding mechanism is essential for regulating Xa and its inhibition by TFPI in
the presence and absence of flow.
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3 Appendix

3.1 Analysis of the Dissociation Constant for Inhi-
bition of Factor Xa by TFPI

Consider the biochemical reaction that describes the inhibition of Xa by TFPI

Xa+ TFPI
k+4−−⇀↽−−
k−4

Xa : TFPI. (17)

Experiment Description: The experiment consists in mixing initial concen-
trations of Xa0 = 0.1 nM and Xa0 = 0.2 nM with increasing concentration
of TFPI and keeping track of the residual factor Xa concentration after a pro-
longed incubation in both cases.

Figure 9: Inhibition of factor Xa by TFPI (left) The residual factor Xa
as TFPI increases for initial concentrations of Xa = 0.1 nM (in red) and Xa =
0.2 nM (in blue) following prolonged incubation. The dashed line is model
output for using kinetic rates k+4 and k−4 given by [2] and the solid line is the
model fit to the data.

We extracted the two data sets of residual Xa concentrations with from
figure 4 in the Baugh paper (extraction process is explained below) and plotted
it along with the model output for Xa concentration called ’Baugh Xa’ (dashed
lines in Figure 9) for reaction 17 using the corresponding kinetic rates k+4 =
0.9 µM−1s−1 and k−4 = 3.6× 10−4 · s−1 (taken from column 1 of table 1 from
[2]). We found a huge difference between the model and the data outputs. After
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a close analysis, we discovered that the reported kinetic rates for 17 in [2] are
different by factor of 1/15 as compared to the kinetic rates found by fitting the
data. This mean, that any k and k−4 that satisfy the equality

k+4

k−4
=

KD,4

15

can fit the data to the model. However, we interesting in knowing what is the
optimal KD,4 that can fit the two experimental data sets effectively.
Steps to find the optimal value of dissociation constant for inhibition
of Xa by TFPI

1. Solve the steady state in terms of [Xa] for reaction 17
2. find all the possible dissociation constant values using the steady state for

[Xa] found in step 1 and data extracted in step 2.
3. find the optimal dissociation constant using constrained optimization.

Step 1 Using the Law of Mass Action, we can write the reaction 17 as a system
of differential equations given below

d[Xa]

dt
= −k+4[XA][TFPI] + k−4[Xa : TFPI]

d[TFPI]

dt
= −k+4[Xa][TFPI] + k−4[Xa : TFPI]

d[Xa : TFPI]

dt
= +k+4[Xa][TFPI]− k−4[Xa : TFPI]

We can set each differential equations equal to zero for finding the equilibrium
points of the system and we get an equation of the form

k−4[Xa : TFPI] = k+4[Xa][TFPI].

Dividing both sides by k+4 gives us

k−4

k+4
[Xa : TFPI] = [Xa][TFPI].

Let KD,4 =
k−4

k+4
be the dissociation constant for the reaction (17), then

KD,4[Xa : TFPI] = [Xa][TFPI].

Then, we can use the conservation laws

[Xa : TFPI] = [Xa0]− [Xa] and [TFPI] = [TFPI0]− [Xa : TFPI]

in the above equation to get

[Xa]2 + ([TFPI0]− [Xa0] +KD,4)[Xa]−KD,4[xa0] = 0.

Solving for [Xa] gives two quadratic solution

[Xa1,2] =
−([TFPI0]− [Xa0] +KD,4)±

√
([TFPI0]− [Xa0] +KD,4)2 + 4[Xa0]KD,4

2
.
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Since we are dealing with biological concentration, we will only accept the
positive solution. In other words,

[Xa] =
−([TFPI0]− [Xa0] +KD,4) +

√
([TFPI0]− [Xa0] +KD,4)2 + 4[Xa0]KD,4

2
.(18)

Step 2 Next, we implemented a code that
1. computes Xa concentration using the equation 18 for each KD,4 given by

(k+4, k−4) pair, where 0.01 ≤ k−4 ≤ 1 and 10−8 ≤ k+4 ≤ 0.4.
2. calculates the corresponding relative error for each (k+4, k−4) pair using:

ϵ =
2∑

i=1

 12∑
j=1

(Yi,j −Di,j)
2

D2
i,j

 1
2

(19)

where Yi,j and Di,j are the computed Xa concentration and the data
respectively at ith experimental curve and jth time point.

3. plot the dissociation constants KD,4 (see Figure 10a) and error propaga-
tion (see Figure 10b) by varying k+4 and k−4. The navy blue line in the
first plot gives us the possible values of KD,4 associated to minimum error.
The region in navy blue in the second plot tells us the possible interval
of k+4 and k−4 where the error is minimum. This information is useful in
our optimization step.

Step 3 We use matlab built in constrained optimization function “fmincon”
to optimize the value of KD,4. The upper and lower bounds of (k+4, k−4) were
found based on the dark blue region in figure 10 left panel.

• k+4 must be positive because it is a biological parameter.
• k−4 can at most be 1 nM due to diffusion limit.

The optimal value of the Dissociation constant for inhibition of Xa by TFPI
was found to be

KD,4 = 0.0263 nM.

using the error formula found in Step 2 part 2 as an objective function.

3.2 Extraction of the data:

For all the figures using data points, the data was extracted by uploading the fig-
ure from the original paper to an online webpage http://www.graphreader.com/.
Individual data points from the graph were selected and the intervals of both
axis were provided. This online tool returned back two data sets,one for the
x-axis and the one for the y-axis.
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(a) (b)

Figure 10: The dissociation constant (KD,4 (nM)) for each k4 (s−1) and
k−4 (nM−1s−1) pair and the navy blue line represent KD,4 nM associated to
minimum error. (a) Error propagation on the log scale for residual Xa con-
centration for different k4,off and k4,on values. The navy blue region provides
the optimal range for the kinetic rates associated to the KD,4 with lowest error.
The optimized KD,4 is represented by the empty white circle present on the blue
line. (b) Error propagation as dissociation constant KD,4 increases.

3.2.1 Experiment I Data: Formation of P in Time for Various
E Concentrations

3.2.2 Experiment II Data: Formation of P in Time for Various P :I
Concentrations
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Time P(nM)

E = 0.032 E = 0.064 E = 0.128 E = 0.192 E = 0.256 E = 0.384 E = 0.512 E = 1.024

19 0.3044 1.0870 3.0435 5.6956 7.4783 13.6522 15.0435 20.4348

34 0.8696 1.7826 4.8261 7.6956 9.4783 16.1304 19.6957 28.7826

49 0.9565 2.2609 4.0869 8.4348 9.9130 14.4348 19.5217 30.8261

64 0.9130 2.5217 5.2174 8.5217 9.4348 15.7391 18.6957 31.6522

94 0.8696 1.9565 4.8696 8.2174 9.4348 16.6087 18.0870 34.7391

124 0.7391 1.9565 4.6087 7.5652 9.1304 13.6957 17.0870 33.3478

214 0.7391 1.7391 4.3044 7.2174 9.2609 14.8261 17.9130 34.1739

304 0.5217 1.6957 4.6087 7.6087 10.0000 14.8696 18.4783 34.2609

454 0.3044 1.4348 4.1739 7.5217 10.0869 16.3478 19.8261 33.6957

604 0.0435 1.0870 4.7826 7.0435 10.0435 15.8261 18.0870 36.0870

753 0.0869 1.0435 4.4783 8.0869 10.0435 16.5217 18.6087 32.2174

900 0.2609 1.4348 5.1739 7.5652 9.1304 17.1304 20.4348 37.6522

Table 5: Extracted data [2] for Xa concentration at time(s) (first column) for
increasing concentrations of E(nM)(columns 2 through 9).

3.2.3 Experiment III Data: Inhibition of P by I
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Time(s) P (nM)
P = 0 P = 0.25 P = 0.5 P = 1

15 3.4400 2.4000 1.6000 1.1400
30 4.7400 3.0200 1.8000 1.2700
45 4.5900 3.0300 1.8700 1.2000
60 4.6300 2.8700 1.8700 1.2600
90 4.4500 2.9900 1.7500 1.2500
120 4.2200 2.7800 1.7500 1.2300
210 3.8800 2.4400 1.7600 1.2900
300 3.9600 2.3800 1.4000 1.0000
450 4.0100 2.3200 1.2600 1.4000
600 3.9400 2.3700 1.2800 1.1100
750 4.0300 2.3400 1.5900 0.8700
900 4.1500 2.6000 1.4400 1.2200

Table 6: Extracted data [2] for Xa concentration at time points (s) (first column)
for increasing concentrations of P (nM)(columns 2 through 5).

3.3 Interior Point Method

Interior point methods represent a category of optimization algorithms used
to solve linear and non-linear convex optimization problems. These iterative
methods aim to maximize or minimize an objective function f(x), which de-
pends on decision variables x and is subject to constraints. These methods can
handle both equality CE(x) = 0 and inequality constraints CI(x) ≥ 0, which
define the feasible region for the problem. Mathematically, the constrained
minimization problem is formulated as follows

min
x

f(x) such that

{
CE(x) = 0

CI(x) ≥ 0.
(20)

Let’s rewrite the constrained optimization problem 20 in the standard form:

min
x,s

f(x) such that


CE(x) = 0.

CI(x)− s = 0.

s ≥ 0.

(21)

Note that we have converted the inequalities CI(x) ≥ 0 by introducing slack
variables s. Moreover, let l denote the number of equality constraints CE(x)
and let m denote the number of inequality constraints CI(x). To solve the
problem 21, the interior point method uses a barrier approach, which consists
in solving a sequence of approximate minimization problems. The approximate
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P = 0.1 nM
I(nM) Rate(∆405 × 10−3/min)

0 4.033
0.022 3.491
0.045 2.927
0.071 2.233
0.093 1.93
0.118 1.583
0.137 1.366
0.162 1.062
0.182 0.954
0.208 0.759
0.232 0.759
0.256 0.672
0.275 0.542
0.316 0.607
0.349 0.369
0.387 0.304
0.427 0.26
0.46 0.304
0.497 0.217
0.537 0.217
0.568 0.195
0.608 0.152
0.646 0.173
0.68 0.173

P = 0.2 nM
I(nM) Rate(∆405 × 10−3/min)

0 7.7708
0.0209 7.0833
0.044 6.375
0.0725 5.3125
0.0945 4.8125
0.1176 4.2292
0.1385 3.6875
0.1604 3.2917
0.1835 2.8542
0.2099 2.4167
0.2319 2.125
0.2538 1.75
0.2758 1.5625
0.3154 1.1875
0.3473 1.0625
0.3879 0.8125
0.4253 0.75
0.4593 0.7292
0.4978 0.5833
0.5352 0.5625
0.5681 0.4792
0.6088 0.4167
0.6462 0.3958
0.6808 0.375

Table 7: Extracted data [2] for the residual factor Xa activity (second column)
as the concentration of TFPI varies (1) for P = 0.1 nM (left) and P = 0.2 nM
(right).

minimization problem can be formulated as follows:

min
x,s

fµ(x, s) = min
x,s

f(x)− µ
m∑
i

ln(si) (22)

such that

{
CE(x) = 0.

CI(x)− s = 0.

where µ is a positive parameter, called barrier parameter, and −µ
∑m

i ln(si)
is the barrier term also known as barrier function. The barrier term is used
to enforce that the algorithm remains within the feasible region, defined by
inequality constraints CI(x). Note that the inequality s ≥ 0 is not included in
problem 22 because the barrier term prevents s from getting too close to zero
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(since ln(t) → −∞ as t → 0), i.e. discouraging the algorithm from venturing
outside the feasible region. As µ decreases with each iterate, the minimum of
fµ(x, s) must get closer to the minimum of original function f(x).

The interior point algorithm uses two main steps at each iteration to solve
the approximate minimization problem. The first step (also known as Newton
step) consists in solving KKT equations (for more details, check [22]) using a
linear approximation. The second step consists of using a conjugate gradient
step using trust region. As a standard procedure, the algorithm begins by
trying to execute a direct step. If it encounters difficulty in doing so, it then
attempts a conjugate gradient step.
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3.4 Derivation of flow Rates

In their study, Fogelson et. al. defined the flow rate as “the rate at which flow
brings a chemical[species] across the upstream (downstream)” and derived the
following expression to calculate it

kflow =
3

4

(
V 2D

(RL)2

)1/3

, (23)

where V is the blood flow speed (midstream velocity of blood flow), D is the
molecular diffusivity of a species, R is the radius of the vessel, and L is the
length of the injury [15].

For my study, I determined the range of the flow rates (kflow) based on the
above equation (23). I fixed the diffusion coefficient to a previously reported
literature value of D = 5×10−7cm2/s [30]. I kept the same assumptions for the
injury length to be L = 10µM as assumed by Fogelson et al. [10]. I calculated
the midstream velocities of the blood flow (V ) as a function of radius (R) for
varying flow rates. I determined the range of flow rates based on the previously
reported radius and midstream blood flow velocities values for each vessel type,
described in Table 8.

Vessel Type Radius(µm) [5, 6] Midstream Velocity (µm/s) [9]
Capillaries (2e0,5e0) (5e2,1e3)
Venules (5e0,5e1) (1e4,1e5)
Arteries (5e1,5e3) (1e5,5e5)
Veins (5e1,5e4) (3e5,1e5)

Table 8: Types of blood vessels with corresponding radius and midstream ve-
locity.
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