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Abstract

Trace Zero Points on Elliptic Fibrations

by

Nadir Hajouji

The goal of this dissertation is to develop tools for studying genus one fibered

Calabi-Yau 3-folds without section, with an eye towards applications in F-theory.

In particular:

• Locally trivial fibrations are well-understood via the work of Mark Gross and

others - we know that there are only finitely many families parametrizing all

of them, we know they are classified by the Tate-Shafarevich group and we

can use Ogg-Shafarevich theory to classify all such fibrations with a common

Jacobian.

• Since we have an genus one fibration structure, we can always find an equa-

tion describing the generic fiber as a genus one curve in some projective

vector bundle. Furthermore, we can obtain an equation for the Jacobian

from an equation for the torsor.

The work of Mark Gross is especially relevant and helpful, but it has two

shortcomings:

• Ogg-Shafarevich theory can only be used to classify fibrations whose geom-

etry is reasonably nice - it requires a smooth base, with a simple normal

crossings divisor, and only classifies fibrations without multiple fibers.

We will see that there are fibrations which simultaneously fail all of these

conditions.

• It is important to be able to relate arithmetic phenomena to degenerations on

elliptic fibrations in every possible codimension. Purity for the Brauer group

means we shouldn’t expect to gain precise information about degenerations

in codimension 2.
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The Jacobian formulae can be used to obtain information about codimension

2 singularities by brute force. However, the problem there is that the formulae

become too messy to actually be used to analyze codimension 2 singularities.

In Part I and Part II, we go over the necessary background. In Part III, we

begin our analysis of torsors. We start by reviewing the theory of torsors of index

2 and 3. We will see that the data of the torsor can be recovered from the data a

trace zero point on the Jacobian. In the final chapter, we propose using trace zero

varieties as a tool for studying torsors in general, and explain why this approach

is well suited for answering some outstanding questions in F-theory.

• Trace zero points are part of the data used to study torsors in either of the

other two settings. If we have a class in X, it can be represented by a

cocycle, and the cocycle is determined by a set of trace zero points.

• Trace zero points are easy to parametrize. In the final chapter, we construct

a variety that parametrizes pairs consisting of an elliptic curve and a point

of trace zero on that elliptic curve.

• Trace zero points can be thought of as a generalizing of torsion points. We

have a good understanding of moduli space for torsion pairs, and in fact we

will use those moduli spaces to bound torsion on elliptically fibered Calabi-

Yau 3-folds.

We will also explain how we hope to use these ideas in future work in the

last chapter.
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Chapter 1

Varieties and Schemes

In this chapter we collect basic definitions and theorems from algebraic geometry

and commutative algebra that will be used frequently in the remainder. More

details on these topics can be found in [41].

1.1 Varieties and Schemes

Let k be a field. When we say X is a variety over k, we will mean that X is one

of the following:

• An affine variety is a subset of kn of the form:

X = {(a1, . . . , an) ∈ kn : f(a1, . . . , an) = 0 for all f ∈ I}

where I ⊂ k[x1, . . . , xn] is an ideal.

• A projective variety is a subset of Pnk of the form:

X = {[a0 : a1 : . . . , an] ∈ Pnk : f(a0, a1, . . . , an) = 0 for all f ∈ I}

2



where I ⊂ k[x0, x1, . . . , xn] is a homogenous ideal.

Every projective variety has an open cover consisting of affine varieties, and which

can be obtained by restriction to the standard affine opens of Pnk . Conversely, every

affine variety can be “projectivized”:

• We start by choosing polynomials f1, . . . , fr defining X in kn, and we fix an

embedding kn → Pnk , usually (a1, . . . , an) 7→ [1 : a1 : · · · : an].

• Let di be the total degree of fi, and define:

Fi(x0, . . . , xn) = xd0fi(x1/x0, . . . , xn/x0).

Then Fi is a homogenous polynomial of degree d, and:

Fi(1, x1, . . . , xn) = fi(x1, . . . , xn).

The variety in Pn defined by F1, . . . , Fr intersects the image of kn in Pn at X.

An (abstract) affine scheme over k is Spec R for a Noetherian k-algebra R.

A scheme over k is a space which is a space obtained by gluing together affine

schemes. We will mainly be interested in varieties, so we will not review what

it means to glue together schemes. However, this is a good time to mention the

following classical result:

Proposition 1.1. Let S be a topological space, let ∪Ui be an open cover of S and

suppose we have sheaves Fi for each Ui.

We write Sij, Sijk for the intersections Si ∩ Sj, Si ∩ Sj ∩ Sk, respectively.

Then there exists a sheaf F on S such that F|Ui = Fi if and only if:

• For all i, j, there exist isomorphisms φij : Fi|Sij → Fj|Sij for all i, j.

3



• For all i, j, k, the following condition is satisfied:

φik = φjk ◦ φij

Furthermore, if such a sheaf exists, then it is unique up to isomorphism.

See [12] for a proof.

This theorem is crucial to the construction of many of our main tools.

• We use it to identify Pic(X) with H1(X,Gm) in sheaf cohomology.

• The theorem can also be used to prove that twists are classified byH1(G,Aut(X))

in Galois cohomology, see e.g. Ch. 4 of [62].

Definition 1.2. Let X be a scheme over k and R a k-algebra.

A k-point on X is a morphism Speck → X. An R-point on X is a morphism

SpecR→ X. The set of R-points on X will be denoted X(R).

Note that k-points on Speck[x1, . . . , xn]/I are in bijection with points (a1, . . . , an) ∈

kn in the zero set of I, so this definition generalizes the intuitive notion of “point

on a variety”.

Definition 1.3. Let X/k be an affine variety, say the zero set of f1, . . . , fr ∈

k[x1, . . . , xn] in kn. Let p = (a1, . . . , an) ∈ X(k). We say that X is smooth at p if

the matrix:


(

∂
∂x1
f1

)
(a1, . . . , an) . . .

(
∂
∂xn

f1

)
(a1, . . . , an)

...
...(

∂
∂x1
fr

)
(a1, . . . , an) . . .

(
∂
∂xn

fr

)
(a1, . . . , an)


has maximal rank. We say that X is smooth if X is smooth at every point p ∈

X(k).

4



Definition 1.4. Let R be a Noetherian k-algebra of Krull dimension d. Let m be

a maximal ideal, and let R(m) be the local ring at m.

We say that R is regular at m if m can be generated by d elements of R(m). We

say that R is regular if it is regular at every maximal ideal.

Finally, we say that a scheme X is regular if X is a union of affine schemes

SpecR with R a regular ring.

Smoothness and regularity essentially capture the same idea:

Proposition 1.5. Let k be a perfect field, R = k[x1, . . . , xn]/I, m a maximal ideal

in R and R(m) be the local ring at m. Let X ⊂ kn be the variety defined by I, and

let p ∈ X(k) be the point associated to m.

Then X is smooth at p if and only if R(m) is a regular local ring.

Proof. [19]

1.2 Derivations and Canonical Bundle

Let R be a k-algebra.

Definition 1.6. Let M be an R-module. A k-derivation of R into M is a map

d : R→M satisfying:

• d(rr′) = rd(r′) + r′d(r).

• d(a) = 0 for all a ∈ k.

There is an R-module ΩR/k and a derivation R → ΩR/k that satisfies the

following universal property: for every R-module M and every derivation d : R→

M , there is a unique R-module homomorphism ΩR/k → M making the following

triangle commute:
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The R-module ΩR/k can “detect smoothness”:

Proposition 1.7. Let k be a perfect field, R a finitely generated k-algebra and R(p)

the local ring at some prime p ⊂ R. Let d be the Krull dimension of R(p).

Then R(p) is a regular local ring if and only if ΩR/k is a free R-module of rank

d.

Proof. [41] Ch. II.Theorem 8.8

We can extend these definitions and results to general varieties by replacing

modules with sheaves. The analog of the last proposition says that ΩX/k is a locally

free sheaf of rank equal to the dimension of X if and only if X is smooth.

Finally, we define the canonical bundle of X.

If X is smooth, this is straightforward:

Definition 1.8. Let X/k be a smooth variety of dimension d. The canonical

bundle of X, denoted ωX , is the dth exterior power of ΩX/k:

ωX :=
d∧

ΩX/k

Since ΩX/k is locally free of rank d, ωX is a line bundle on X. If X/k is a

singular variety, the dualizing sheaf is a reasonable substitute for ωX .

Proposition 1.9. Let X/k be a proper variety.

• If X has a dualizing sheaf, then it is unique up to isomorphism.

• If X is projective, then a dualizing sheaf exists.

• If X is projective and has at worst Gorenstein singularities, then the dualizing

sheaf is a line bundle.
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• If X is a smooth, projective variety, then the dualizing sheaf is isomorphic

to ωX .

Proof. See [41] for the definition and proof.

We will tacitly be assuming that all varieties are Gorenstein, and denote the

dualizing line bundle by ωX .

1.3 Valuations

Let K be a field, and (A,+,≤) a totally ordered abelian group. Let A′ = A∪{∞},

and extend the ordering on A to A′ by declaring a <∞ for all a ∈ A.

Definition 1.10. A valuation on K with value group A is a map ν : K → A′

satisfying the following:

• ν(x) =∞ if and only if x = 0.

• The restriction K× → A is a surjective group homomorphism.

• For all x, y ∈ K:

ν(x+ y) ≤ min {ν(x), ν(y)} (1.1)

Furthermore, if ν(x) 6= ν(y), then we have equality in 1.1.

For each valuation ν : K → A′ is a valuation, we define:

Rν = {x ∈ K : ν(x) ≥ 0}
mν = {x ∈ K : ν(x) > 0}

Then Rν is a local ring with maximal ideal mν . Next, we define valuation rings.
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Definition 1.11. Let K be a field and R ⊂ K a subring. We say that R is a

valuation ring if, for all x ∈ K×, x ∈ R or x−1 ∈ R.

Again, the definition of valuation guarantees that Rν is a valuation ring. In

fact, if (R,m) is a local ring with fraction field K, then R is a valuation ring.

In fact, one can show that these objects are essentially interchangeable - every

valuation ring is local, and every local ring can be obtained from a valuation. This

is all standard, but we review the construction of the valuation associated to a

local ideal, as it is needed in many definitions later on.

Definition 1.12. Let R be a commutative ring and I, J ideals. We write IJ to

denote the ideal generated by products of the form xy with x ∈ I, y ∈ J .

For each positive integer `, we write I` for the ideal generated by products

x1x2 · · ·x` with x1, . . . , x` ∈ I.

We will need the following result:

Lemma 1.13. Let R be an noetherian integral domain and I a proper ideal. Then

⋂
`≥0

I` = 0

Proof. Since I is proper, I is contained in some maximal ideal m, and since I` ⊂ m`,

it suffices to prove the result for m.

Let M = ∩`≥1m
`. Then mM = m, so by Nakayama’s lemma, M = 0.

Now, let (R,m) be a Noetherian local ring and let x ∈ R be a nonzero element.

By the previous lemma, ∩`m` = 0 so x ∈ m` for only finitely many values of `.

• We define νm(x) = `, where ` is the largest nonnegative integer such that

x ∈ m`.
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• For φ = x
y
∈ K×, we define νm(φ) = ν(x)− ν(y).

If m/m2 6= 0, this defines a valuation on K× with value group Z.

In general, we can start with an integral domain R of finite Krull domain and

a prime ideal p ∈ R and define νp : K× → Z as we did above. If we then compute

Rνp , we recover the localization of R at p.

Finally, note that this definition also makes sense if we replace f by an ideal

I ⊂ R - we define νp(I) as the largest integer ` such that I ⊂ p`. We will use this

notation in the next section.

1.3.1 Discrete Valuation Rings

A discrete valuation ring is a noetherian valuation ring R satisfying one of the

following equivalent conditions:

• R is a principal ideal domain.

• R is a regular local ring.

• Every ideal in R is of the form ($`), where $ is a fixed nonunit in R and `

is a nonnegative integer.

The element $ is called a uniformizer. For an element x ∈ R, computing ν(x)

boils down to determining the exponent of $ in a factorization of x = u$`, where

u ∈ R×.

Discrete valuation rings are particularly easy to work with, and we can usu-

ally generalize many results about varieties over fields to varieties over discrete

valuation rings without much trouble.

For example:
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Lemma 1.14. Let R be a DVR of characteristic 0, and let f ∈ R[x, y]d be a

homogenous polynomial of degree d.

Then there exists

a11 a12

a21 a22

 ∈ SL2(R) such that f(a11x+a12y, a21x+a22y) =

c0x
d + c2x

d−2y2 + · · · .

In other words, we can eliminate the coefficient of xd−1y without introducing

denominators.

Proof. We start by taking care of some easy case.

• If ν(c0) = 0, then a is a unit in R, so we can use the matrix

1 −a1
d

0 1

 to

eliminate the coefficient of xd−1y.

• If ν(cd) = 0, we can act by

0 −1

1 0

 to obtain a new equation with ν(c0) =

0.

• Suppose ν(c0), ν(cd) 6= 0 but ν(c0) = min {ν(ci)} (or ν(cd) = min {ν(ci)}).

Then we can factor out $ν(c0) from f(x, y) to obtain a new homogenous

polynomial ν(c0) = 0.

Since the action of SL2(R) commutes with multiplication by elements of R,

we can use the same matrix we used for f0 to eliminate the coefficient of

xd−1y in f .

Finally, we should that we can reduce to the last case using an element of

SL2(R). Let m = min {ν(ci)} and let f0 = $−mf(x, y).

Let f0 be the image of f0 in (R/($))[x, y]. Then f0(x, y) 6= 0.

The polynomial f0(x, 1) has at most d roots in R/($). Thus, there exists t ∈ R

such that f0(t, 1) 6= 0.
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Acting by the matrix

1 t

0 1

 gives us a new polynomial g(x, y):

g(x, y) = c0x
d + · · ·+ f0(x, t)yd

The coefficient of yd is now a unit in R, so we can use the usual change of variable

y → y + λx to eliminate the coefficient of xyd−1 (and then act by

0 −1

1 0

).

Tate’s algorithm (6.2.1) and the theory of Néron models (see 6.1) work best

over SpecR, where R is a discrete valuation ring.

Indeed, many of the problems we have to deal with will stem from the fact that

we have to work over rings which are not discrete valuation rings.

1.4 Rational maps

Let X, Y be schemes over k.

Definition 1.15. A rational map φ : X → Y is a morphism φ : U → Y defined

on a dense open set U of X. The domain of φ is the open set U .

Definition 1.16. Let φ, φ̃ : X → Y be rational maps. We say that φ̃ extends φ if

the domain of φ is contained in the domain of φ̃, and the restriction of φ̃ to the

domain of φ coincides with φ.

Definition 1.17. A rational map X → Y is dominant if the image is dense in Y .

Dominant rational maps X → Y are in bijection with injections of the function

field of Y into the function field of X.
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1.4.1 Rational maps to P1

Let X/k be an integral scheme with function field K.

• Rational maps X → P1
k are in bijection with elements of K.

• Constant maps X → P1
k correspond to elements in k ⊂ K.

Let R = k[x1, . . . , xn]/I be a UFD, with k algebraically closed, and let X =

SpecR. The function field of X is just the fraction field K of R.

Every element of φ ∈ K can be written as φ = f
g
, where f, g have no factors

in common. Note that the pair f, g is uniquely determined by φ, up to replacing

f, g by tf, tg for some t ∈ k×. The associated rational map X → P1
k sends a closed

point x ∈ X to [f(x) : g(x)] ∈ P1, where f(x) is the image of f ∈ R/mx = k.1

Definition 1.18. Let R be a UFD with fraction field K, and let X = SpecR. For

each φ ∈ K, we define the indeterminacy locus of φ as V (f)∩V (g) ⊂ X. We also

define:

mφ(p) = νp((f, g))

In other words, mφ(p) is the largest nonnegative integer such that (f, g) ⊂ p`.

The following conditions are equivalent:

• φ : SpecR→ P1
k is a morphism.

• mφ(p) = 0 for all p ∈ SpecR.

• V (f) ∩ V (g) = ∅.
1Note that there is a unique isomorphism of R/m with k which restricts to the identity on

k/m.
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Thus, mφ quantifies the failure of φ to be a morphism. This will be crucial to

the arguments in (9).

1.4.2 Rational maps between curves

Let k be an algebraically closed field. For each field extension K/k of transcen-

dence degree 1, there is a unique, up to isomorphism, curve C/k which is smooth,

projective and has function field K. We refer to C as the curve associated to the

extension K/k.

If K,K ′ are field extensions of transcendence degree 1 and C,C ′ are the asso-

ciated curves, there are bijections between the following sets:

• k-algebra homomorphisms K → K ′.

• Rational maps C ′ → C.

• Morphisms C ′ → C.

One interprets this as an equivalence between the opposite category of the

category of k-algebras of transcendence degree 1 over k and the category of curves

over k, see

We’ve already discussed the correspondence between the first two objects, so

the content in the equivalence is mainly the assertion that every rational map

extends to a morphism.

In other words, the obstruction to extending an element of K to a morphism to

P1 is the indeterminacy locus V (f)∩V (g), and this has codimension 2, so there are

no obstructions if the domain has dimension 1. Furthermore, note that if K → K ′

is injective, the associated map C ′ → C is surjective.

We derive two easy consequences of this bijection that will be used later on:
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• The field k(t) injects into every field extension K/k of transcendence degree

1 - in fact, this is built into the definition of transcendence degree in certain

texts.2 Consequently, every curve C has a surjective morphism to P1.

• Conversely, Luroth’s theorem tells us that every subfield of k(t) which prop-

erly contains k is isomorphic to k(t). Thus, if we have a nonconstant rational

map P1 → C to a curve C, then C ∼= P1.

1.5 Resolution of Singularities

Definition 1.19. Let X, Y/k be varieties. A birational map X → Y is a rational

map that induces an isomorphism of function fields.

Definition 1.20. Let X/k be a variety. A resolution of singularities of X is a

proper, smooth variety X̃ together with a birational map X̃ → X.

Definition 1.21. Let X/k be a variety with at worst Gorenstein singularities, and

let ωX be the canonical bundle of X. A crepant resolution of X is a resolution

ρ : X̃ → X satisfying ρ∗(ωX) = ωX̃ .

We summarize results on the existence of resolutions and crepant resolutions.

We start by discussing the existence of resolutions. Not surprisingly, the con-

clusions become weaker as the dimension gets larger.

• Resolution of singularities for curves is completely straightforward - for every

curve C, there is a unique curve C̃/k which is smooth and proper over k and

which has the same function field as C.

• If char (k) = 0, then resolutions exist for varieties of arbitrary dimension.

2By Noether normalization, K is an algebraic extension of k(x1, . . . , xd); the integer d is the
transcendence degree of K/k.
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• If char (k) 6= 2, 3, 5, then resolutions exist for surfaces and 3-folds. However,

resolutions are no longer unique. Furthermore, it is no longer the case that

there is a single smooth variety associated to each field - even in dimension

2 and characteristic 0, there are lots of smooth, rational surfaces which are

not isomorphic to P2.

We now assume that k has characteristic 0 and discuss the existence of crepant

resolutions.

• Every surface with at worst Gorenstein singularities admits a crepant reso-

lution. Furthermore, the resolution is unique.

• Every 3-fold with at worst Gorenstein quotient singularities admits a crepant

resolution, but the resolutions are no longer unique.3

• In dimension 4 and higher, crepant resolutions need not exist.

3However, they are related by flops.
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Chapter 2

Galois Cohomology

In this chapter, we explain what it means to say that objects X, Y/k are twists of

each other and we show how Galois cohomology can be used to classify twists.

2.1 Group Cohomology

Let G be a group.

Definition 2.1. A G-set is a pair (X,µ), consisting of a set X and an action

G×X → X.

A G-group is a G-set (X,µ), where X is a group, and for all g ∈ G, x, y ∈ X,

we have g · xy = (g · x)(g · y).

A G-module is a G-group (M,µ), where M is an abelian group. Note that a

G-module is an object in the category of Z[G]-modules.

A morphism of G-sets/groups/modules is a morphism of the underlying sets/groups/modules

which is G-equivariant.

The main example to keep in mind is the following: Let X/k is a variety and

k′/k is a Galois extension with Galois group G.
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• X(k′) is a G-set.

• If X/k is an algebraic group, then X(k′) is a G-group.

• If X/k is an abelian variety, then X(k′) is a G-module.

If X is a G-set, we write XG to denote the subset of X consisting of elements

invariant under the action of G.

Note that XG is a group if X is a G-group, and MG is an abelian group if M

is a G-module.

2.1.1 Group Cohomology as a Derived Functor

Let G-mod be the category of G-modules and Ab the category of abelian groups.

Let M,N be G-modules and let f : M → N be a morphism of G-modules.

Then f restricts to a morphism MG → NG.

Proof. Suppose m ∈MG. For any g ∈ G, we compute:

g · f(m) = f(g ·m) = f(m)

Thus, f(m) is invariant under the G-action, so f(m) ∈ NG.

Thus, the assignment M 7→ MG gives us a functor from the category of G-

modules to the category of abelian groups. In fact, this functor is representable.

Let Z be the G-module (Z, trivial) consisting of the abelian group Z endowed with

the trivial action of G.

A morphism Z→M of G-modules is determined by where it sends 1, and the

image of 1 has to be fixed by G. However, every element of MG gives rise to a

morphism, so we have a bijection between MG and Hom(Z,M).

17



We define the ith cohomology group of G with coefficients in M :

H i(G,M) = Exti(Z,M)

2.1.2 Cocycles and Coboundaries

We can give a uniform description of H i(G,M) for all M by computing a resolution

of Z. Such a resolution is described in [67] Ch.7, section 3.

We set P0 = Z[G], P1 = Z[G×G], P` = Z[G`+1] in general. These are abelian

groups; we endow them with a G-module structure by defining G× P` → P`:

g · (g0, . . . , g`) = (gg0, . . . , gg`)

Let P0 → Z be the map
∑
agg 7→

∑
ag. For each ` ≥ 1, we define a map

P` → P`−1:

(g0, . . . , g`) 7→ (g1, g2, . . . , g`)− (g0, g2, . . . , g`) + (−1)`(g1, g2, . . . , g`−1)

Then:

· · · → P1 → P0 → Z→ 0

is a free resolution of Z in the category of G-modules.

We can use this to show that H1(G,M) ∼= Z1(G,M)/B1(G,M), where:

Z1(G,M) = {f : G→M : f(gg′) = g · f(g′) + f(g)}
B1(G,M) = {(g 7→ g ·m0.−m0) : m0 ∈M}
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2.1.3 Subgroups

Let G be a group and H a subgroup. We have a forgetful functor from G-modules

to H-modules. Furthermore, we have restriction maps H i(G,M)→ H i(H,M) for

all i ≥ 0 and all G-modules M .

If H is a normal subgroup of finite index, we also have a corestriction morphism:

cor : H i(H,M)→ H i(G,M)

for every G-module M .

At the level of H0, the corestriction map H0(H,M) = MH → H0(G,M) = MG

is given by by:

m 7→
∑

g∈G/H

g.m

2.1.4 Non-abelian cohomology

We briefly review a non-abelian generalization of Galois cohomology. The main

reference is [28].

Let G be a group and let X be a G-group. Define:

Z1(G,X) = {f : G→M : f(gg′) = f(g)(g · f(g′))}

If G acts trivially on X, then Z1(G,X) is simply the set of group homomor-

phisms from G to X.

We define an equivalence relation on Z1(G,X) by f ∼ f ′ if there exists x ∈ X

such that for all g ∈ G:
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f ′(g) = x−1f(g)(g · x)

If G acts trivially on X, then f ∼ f ′ is equivalent to f ′(g) = x−1f(g)x for all

g ∈ G.

We write H1(G,X) to denote the set of equivalence classes for ∼. This set

contains a distinguished element - the equivalence class of the trivial map G→ eX

that takes every element of G to the identity in X.

• If X is a G-module, then the two definitions of H1(G,X) agree.

• Let X be a G-group and N a normal subgroup of X which is also a G-group.

Then we have a “short exact sequence” of G-groups:

0→ N → X → X/N → 0

This induces a long exact sequence:

0→ NG → XG → (X/N)G → H1(G,N)→ H1(X,N)→ · · ·

If N is contained in the center of X, we can use this idea to obtain a map

from the pointed set H1(G,X), where X is only a G-group, into H2(G,N),

which has a group structure.

Galois cohomology is essentially just group cohomology, where the group under

consideration is a Galois group. By restricting to Galois groups, we obtain new

interpretations of the groups H i(G,M), which we discuss in the next section.
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2.2 Twists and Galois Cohomology

Galois cohomology can be thought1 of as the special case of group cohomology

where G is a Galois group.

The goal of this section is to explain how Galois cohomology can be used to

classify twists.

We start by explaining what a twist is.

2.2.1 Twists

Let k be a non-algebraically closed field, k the algebraic closure, G = Gal(k/k)

and X/k a variety.

A twist of X is a variety Y/k such that X × Speck ∼= Y × Speck as varieties

over k. If Y, Z are twists of X, we write Y ∼ Z if Y, Z are isomorphic as varieties

over k. We write Twists(X/k) for the set of ∼-equivalence classes of twists of X.

• For any variety over any field k, Twists(X/k) 6= ∅, since Twists(X/k) always

contains a class representing the k-isomorphism class of X.

• Let k′ be an intermediate field k ⊂ k′ ⊂ k. Then we have a map Twists(X/k)→

Twists(X/k′).

The problem of classifying twists of X/k is a special case of the more general

problem of classifying descents of a variety X/k to k. Weil gave necessary and suf-

ficient conditions for classifying descents of a variety, and Grothendieck generalized

the result to (1.1) in [38].

It turns out that the data needed to descend Xk to back down to a variety over

k is the same as the data needed to construct a cocycle in H1
Gal(G,Aut(Xk).

1If G is infinite, we have to restrict to morphisms which are continuous under the profinite
topology, although in practice we can always reduce to the finite case and take a limit.
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Let X/k be a variety, and Xk as above. We will describe (one half of) a bijection

between Twists(X/k) and H1(G,Aut(Xk). Let Y be a twist of X, and choose an

isomorphism φ : Xk → Yk.

Now, for each σ ∈ G, we write Φσ for the automorphism of X that takes a

point p ∈ X to φ−1(σ(φ(x))).

• The map:

G 7→ Aut(Xk)) σ 7→ Φσ (2.1)

satisfies the cocycle condition.

• If we choose a different isomorphism, or if the isomorphism is defined over

φ, then the associated cocycles differ by a coboundary.

One also has to show that two twists give rise to the same class iff they are

isomorphic as varieties over k to complete the proof that this map is injective.

These details can be found in [70] Ch. 10, [67], [62] Ch. 4.

The real content of the proof is surjectivity - that is, the data of a cocycle is

enough to argue that a variety exists over k. To prove the result in full generality,

one uses the descent theorem of Grothendieck 1.1. See [62] for details. There is a

simpler argument if we only wish to prove that this group can be used to classify

twists of algebraic curves - see [70] Ch.10.

2.3 Period-Index

Let k′/k be a Galois extension. We write G = Gal(k/k) and N = Gal(k/k′); as

usual Gal(k′/k) ∼= G/N .

22



Now, recall that we have a forgetful functor from the category of G-modules to

the category ofN -modules. Furthermore, we have restriction morphismsH i(G,M)→

H i(N,M) for every G-module M . If we represent elements of H i(G,M) as cocy-

cles Gi → M , then the restriction functor takes each cocycle to the restriction

N i →M .

Definition 2.2. Let γ ∈ Hq(G,M) be a nontrivial class. We say that γ splits over

k′ if γ is in the kernel of the restriction map Hq(G,M)→ Hq(N,M).

Proposition 2.3. Let k be a field, G = Gal(k/k), M a G-module, ` a positive

integer and γ ∈ Hq(G,M) a non-trivial class.

Then γ splits over a finite extension k′/k.

Definition 2.4. Let γ be as above. The index of γ is the minimum of [k′ : k],

taken over all finite extensions k′/k over which γ splits.

The period of γ is the order of γ as an element of Hq(G,M).

We will show that period divides index - this will prove that the period is

always finite.

For this, we need to define corestriction morphisms H i(N,M)→ H i(G,M).

At the level of H0, we have H0(N,M) = MN , H0(G,M) = MG and the

morphism MG →MN is given by:

m 7→
∑

g∈G/H

g ·m

If M = k, then MG = k, MN = k′, the restriction map is just the inclusion

k → k′ and the corestriction map k′ → k is the trace map from Galois cohomology.

Similarly, if M = k
×

, then the restriction map is the inclusion and the corestriction

map is the norm. We will refer to corestriction maps as trace maps in the later

chapters.
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Now, we can compose these maps to obtain an endomorphism of Hq(G,M).

Lemma 2.5. Let M be a G-module and N a normal subgroup of G of index m.

Then the composition cor ◦ res : Hq(G,M) → Hq(G,M) is simply multiplication

by m.

Proof. This is straightforward - the corestriction map sends an element to the sum

of the elements in its G/N orbit. If an element is already fixed by G, then it

is fixed by G/N , so the corestriction map just ends up adding m copies of each

element of MG ⊂MN .

Thus, if γ splits over k′, then γ is in the kernel of the restriction map, so of

course it is in the kernel of cor ◦ res. Thus it is in the kernel of the multiplication-

by-m map, so the period of γ divides m.

This is true for every field extension that splits gamma, so in particular, it is

true for a field of minimal degree, so period divides index. For more details on

corestriction maps in general, see [27].

2.4 Important Examples

Before discussing twists of elliptic curves, we discuss twists of some simpler objects.

2.4.1 Twists of Vector Spaces

• Let V/k be a finite-dimensional vector space, and let W/k be a twist of V .

Then:

– V ⊗k k ∼= W ⊗k k as k vectors spaces.
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– Thus dimk V ⊗k k = dimkW ⊗k k.

– Dimension is preserved by base extension, so dimk V = dimkW .

– Thus V ∼= W as vector spaces over k.

Thus, Twists(V/k) = {[V ]} for any finite-dimensional vectors space V/k.

The automorphism group of V ⊗k k is isomorphic to GLn(k), so we can

interpret this as H1(G,GLn(k)) = 1.

Note that this result can be proven directly by showing that every cocycle is

a boundary - the computation is essentially the same as the computation in

the proof of Hilbert 90, so this result is sometimes referred to as “generalized

Hilbert 90”.

To recover classical Hilbert 90, we assume G = Gal(k′/k) is cyclic, we set

n = 1 and interpret the statement that every cocycle is a coboundary as

a statment about the multiplicative group of k′ (since G is cyclic every

coboundary is determined by the image of σ).

See also 3.6.

2.4.2 Severi-Brauer Varieties and Central Simple Algebras

Next, we discuss twists of Pn.

A twist of Pn is called a Severi-Brauer variety. For example, the curve:

x2 + y2 + z2 = 0

is a twist of P1. It is a trivial twist2 if and only if −1 can be written as a sum of

2 squares in k.

2That is, isomorphic to P1
k as a variety over k.

25



The automorphism group of Pn is non-abelian, so twists of Pn do not form a

group. However, if we consider Severi-Brauer varieties of all dimensions simulta-

neously, then they do form a group.

We use the short exact sequence:

1→ k
× → GLn(k)→ PGLn(k)→ 1

to obtain a long exact sequence containing the segment:

H1(G,GLn(k))→ H1(G,PGLn(k))→ H2(G, k)×)

By the previous example, H1(G,GLn(k)) vanishes for all n, so we have injec-

tions:

H1(G,PGLn(k))→ H2(G, k)×)

for all n.

We define Br(k) = H2(G, k
×

). One can show that every class in Br(k) comes

from a class in H1(G,PGLn(k)) for some n, so we can think of classes in Br(k)

as representing twists of Pnk for some n.

There is another interpretation of Br(k) which is helpful for understanding the

equivalence relation and the group law on torsors.

A central simple algebra over k is a finite dimensional k-algebra A which is

simple, and with Z(A) ∼= k.

• Over an algebraically closed field, the only CSAs are Mn(k).

• Thus every CSA is a twist of Mn(k).

• The automorphism group of Mn(k) is PGLn(k), so twists of Mn(k) are clas-

sified by the same object as twists of Pn!

26



An unexpected consequence is that we have a bijection between classes of

Severi-Brauer varieties and classes of central simple algebras.

• To obtain a Severi-Brauer variety from a central simple algebra, we think of

the algebra as a k-vector space endowed with a norm. The Severi-Brauer is

obtained by setting the norm equal to 0.

• Obtaining a central simple algebra from a Severi-Brauer variety is trickier,

but can be done in at least two ways.

– We can describe the central simple algebra as an extension of the tangent

bundle of the Severi-Brauer variety - see [46] for details.

– If the Severi-Brauer variety is described by a conic, we can construct

the associated central simple algebra as a Clifford algebra. See [25] for

details.

2.4.3 Elliptic Curves

Finally, we discuss twists of elliptic curves3.

• Let E/k be an elliptic curve. If E does not have complex multiplication,

then every element of Aut(Ek) is either a translation, or a composition of a

translation with the negation map.

Since translations don’t commute with negation in general, Aut(Ek) is a

non-abelian group.

However, if we think about twists of E as a set endowed with additional

structure, then we can obtain a group structure.

3See next chapter for definitions and properties of elliptic curves.
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Let E be an elliptic curve. Any automorphism of E as a curve that fixes

the identity automatically preserves the group law. Furthermore, every au-

tomorphism can be factored into a translation followed by an automorphism

that fixes the identity.

The automorphism group of (E, p0) as a pointed genus one curve coincides

with the group of automorphisms of E as an abelian group. If E is sufficiently

generic, there are two such automorphisms - the identity and negation. Thus,

twists of E/k as an elliptic curve are classified by H1(G, {±1}).

Note that this group does not depend on E. We will see that Twists((E, p0)) ∼=

k×/k×2 in the next chapter.

• On the other hand, we can look at twists of E as a torsor of itself. That

is, we work in the category of torsors, where every object comes equipped

with a simply transitive group action of E and where morphisms have to be

compatible with the action.

The automorphism group of E in the category of torsors is exactly the group

of translations.

The Weil-Chatelet group4 of E/k is WC(E/k) = H1(G,E(k)). This group

classifies k-isomorphism classes of torsors. The results of the last chapter

show that every genus one curve appears in WC(E/k) of its Jacobian, and

the class of a genus one curve is trivial in WC(E/k) if and only if C(k) 6= ∅.
4It’s clear that H1(G,E) is a group abstractly. The group law on torsors can be described

without using Galois cohomology, see cite
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2.5 Useful short exact sequences

Let E/k be an elliptic curve, and G = Gal(k/k). For every positive integer m, we

have a multiplication-by-m map E(k)→ E(m).

Since nonconstant maps of curves over an algebraically closed field are always

surjective, we have an exact sequence:

0→ E[m]→ E(k)→ E(k)→ 0 (2.2)

where E[m] denotes the m-torsion subgroup of E.

The long exact sequence in Galois cohomology gives us:

0→ E(k)[m]→ E(k)→ E(k)→ H1(G,E[m])→ WC(E/k)→ WC(E/k) (2.3)

The map WC(E/k) → WC(E/k) is multiplication by m, so the image of

H1(G,E[m]) coincides with the m-torsion subgroup of WC(E/k).

Thus, we have a short exact sequence:

0→ E(k)/mE(k)→ H1(G,E[m])→ WC(E/k)[m]→ 0 (2.4)

The short exact sequence 2.4 comes up in the definition of Selmer groups, and

plays a crucial role in the proof of the Mordell-Weil theorem, see [70] Ch.10.

Precisely, if k is a field and ν a valuation, we write kν for the completion5 of

k with respect to the metric associated to ν. We define X(E/k) as the kernel of

WC(E/k) →
∏

νWC(E/kν). It parametrizes torsors of E that have a point in

every completion6

The Selmer group is an auxilliary object which is earlier to compute and con-

5Not to be confused with the residue field of the valuation.
6When k is a number field or the function field of a curve, it is clear what we mean by every

completion. See [21] for the definition of X we use for higher dimensional fields.
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tains information about MW (E/k) and X(E/k) - explicitly, we have a short exact

sequence:

0→ E(k)/mE(k)→ S(m)(E/k)→X(E/k)[m]→ 0 (2.5)

In practice, this is used to compute the rank of the Mordell-Weil group. We

will not really need to use the Selmer group.

2.5.1 Brauer and Weil-Chatelet

In 7.2, we will discuss the role of the Brauer group in the classification of genus

one fibered 3-folds without multiple fibers.

There is a simpler version of that story for genus one curves over a field. To

state it, we need to define the Brauer group of a variety.

Definition 2.6. Let X/k be a scheme. The cohomological Brauer group of X is

the étale cohomology group H2(X,Gm).

The Azumaya Brauer group of X is the group of Morita equivalence classes of

sheaves of Azumaya algebras over X; we denote it BrAz(X). We start by listing

some basic properties of these groups. See Ch. 6 of [62] for proofs.:

• For any scheme X, we have an injection BrAz(X) → H2(X,Gm). If X is

quasiprojective, this is an isomorphism. We will only be interested Brauer

groups of quasiprojective varieties, so we use Br(X) to denote either of the

two Brauer groups.

• If X/k is a variety, the structure morphism induces a map Br(k)→ Br(X).

If X(k) 6= ∅, the map Br(k)→ Br(X) has a splitting Br(X)→ Br(k).

• If X is a smooth, irreducible variety with function field K, there is an injec-

tion Br(X)→ Br(K).
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Now, let E/k be an elliptic curve. There is a (split) short exact sequence:

0→ Br(k)→ Br(E)→ WC(E/k)→ 0 (2.6)

See Section 6 of [25] for details.
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Chapter 3

Genus One Curves

Let k be a field of characteristic 0, let k be the algebraic closure of k.

Definition 3.1. A marked genus one curve is a pair (C, q) consisting of a non-

singular curve C of arithmetic genus 1 and a point q ∈ C(k).

The field of definition of (C, q), denoted k(q), is the intersection of all field

extensions k′/k such that q ∈ C(k′).

The degree of (C, q) is the dimension of k(q) as a k-vector space.

The index of C/k is:

indk(C) = min
q∈C(k)

deg(C, q)

Thus, indk(C) = 1 iff C(k) 6= ∅. We will refer to marked genus one curves of

degree 1 as elliptic curves.

We will show the following:

• Let (C, q) be a marked genus one curve of degree d ≥ 2. Then we have an

associated map C → Pd−1 which is a double cover if d = 2 and an embedding

if d ≥ 3. Furthermore, when d ≥ 3, the image of C in Pd−1 is cut out by

polynomials with coefficients in k.
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• Let (E, p) be an elliptic curve. Then E is isomorphic to the closure in P2 of

an affine curve in A2 given by an equation of the form:

y2 = x3 + fx+ g

Furthermore, E(k) can be endowed with a group structure, with p as the

identity.

• Let C/k be a genus one curve. Then C(k) is a torsor of E(k)1, where E an

elliptic curve defined over k.

All three of these theorems will follow easily from Riemann-Roch. Although

this is all classical, it is worth reviewing the arguments, since we will be using

them with the relative Picard functor later on.

We will be following the exposition in Ch. II of [70].

3.1 Divisors

Let C/k be any smooth curve. Since C is defined over k, the Galois group G =

Gal(k/k) acts on C(k). Explicitly, if we choose equations f1, . . . , fr ∈ k[x1, . . . , xn]

such that:

C(k) =
{

(a1, . . . , an) ∈ kn : fi(a1, . . . , an) = 0
}

then for any σ ∈ G:

σ(fi(a1, . . . , an)) = fi(σ(a1), . . . , σ(an))

1We will make this precise later, but the basic idea is E(k) has a simply transitive action on
C(k).
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since field automorphisms commute with addition, multiplication and k-scaling.

Thus, fi(a1, . . . , an) = 0 iff fi(σ(a1), . . . , σ(an)) = 0, so the action of G on k
n

restricts to an action on C(k).

Furthermore, we can use this action to recognize elements of C(k) ⊂ C(k): a

point p ∈ C(k) is defined over k iff p is fixed by every σ ∈ G.

Now, let Div(C) be the free abelian group generated by the points on C(k).

We refer to elements of Div(C) as divisors - explicitly, a divisor is just a finite,

formal sum a1p1 + · · · + anpn with ai ∈ Z and pi ∈ C(k). The G-action on C(k)

induces a G-action on Div(C).

We define Divk(C) as the subgroup of Div(C) consisting of divisors which are

invariant under the G-action.

Let deg be the group homomorphism:

deg : Div(C)→ Z
∑

app 7→
∑

ap

We write Div0(C) to denote the kernel of deg and Div0
k(C) = Divk(C)∩Div0(C).

Later on, we will also write Div`(C) (resp. Div`k(C)) to denote the preimage

deg−1(`) in Div(C) (resp. in Divk(C).)

Let D =
∑
app ∈ Div(C). We write D ≥ 0 if ap ≥ 0 for all p. We extend this

to a partial ordering on Div(C) by setting D ≥ D′ if D −D′ ≥ 0.

We need to define two more objects to state Riemann-Roch.

Definition 3.2. Let K be the function field of C and set K = K ⊗k k. We define

a group homomorphism:

K
× → Div(C) φ 7→

∑
p∈C(k)

νp(φ)p

Here νp(φ) is the valuation associated to the closed point p.
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Note that div has the following properties:

• div(φ) = 0 iff φ ∈ k×.

• For every φ ∈ K×, deg(div(φ)) = 0.

In other words, we have an exact sequence:

0→ k× → K× → Div(C)

We define Pic(C) as the cokernel of K
× → Div(C). Since deg(div(φ)) = 0, the

map K×Div(C) factors through the inclusion Div0(C) → Div(C). We define

Pic0(C) as the cokernel of K× → Div0(C).

Altogether we have an exact sequence:

0→ k
× → K

× → Div0(C)→ Pic0(C)→ 0 (3.1)

Finally, we need one more definition before we can state Riemann-Roch.

Definition 3.3. Let D =
∑
app ∈ Div(C). We associate to D the (finite-

dimensional) k-vector space in K:

L(D) =
{
φ ∈ K× : div(φ) +D ≥ 0

}
We define `(D) = dimk L(D).

If D,D′ are divisors on C, the following are equivalent:

• L(D) ∼= L(D′).

• D −D′ = div(f) for some f ∈ K×.

The point is that L(D) is a line bundle on C. Furthermore, if C is smooth,

then every line bundle on C is of the form L(D) for some D ∈ Div(C).
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Thus, we will think of elements Pic(C) as representing line bundles on C. We

denote elements by Pic(C) as L or L(D) if we wish to lift the line bundle to

Div(C).

Without further ado:

Theorem 3.4. (Riemann-Roch for Genus 1 Curves) Let C be a nonsingular genus

one curve over an algebraically closed field and let D ∈ Div(C) be a divisor of

positive degree. Then `(D) = deg(D).

See [70] or [41] for a proof. We will use this theorem to obtain models for genus

one curves over our field of choice in (3.2). Then we use it to derive the group law

in (3.3) and to show that every marked genus one curve has a natural structure of

a torsor of an elliptic curve (3.4).

3.1.1 Generalizations of Picard Group

Of course, we can also define the Picard group of a general variety. There are

several ways of doing this, which agree for smooth varieties:

• We can define Div(X) has the free abelian group generated by codimension

1 subvarieties of X and define Pic(X) as above.

• We can define Pic(X) as the group of invertible sheaves/line bundles on X.

• The latter perspective also allows us to identify Pic(X) with a sheaf coho-

mology group:

Pic(X) ∼= H1(X,Gm)

The identification of H1(X,Gm) and the group of invertible sheaves holds

for most of the usual sites of X - that is.
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Since we have an identification of Pic with H1, that means Pic is a functor

from varieties to abelian groups.

• Every morphism of varieties C ′ → C induces a map of Picard groups.

• If X → Y is an isomorphism away from a codimension 2 subset, then the

induced map on Picard groups is an isomorphism.

There are two more important technical facts we need:

• So far, we’ve define the Picard group of X → Speck. We will also need the

relative Picard group when we study genus one fibrations. We can also define

the relative Picard group for S-schemes X → S.

• The Picard group is representable by a variety, and under certain technical

hypotheses, we also know that the relative Picard group is represented by

an S-scheme. Our constructions/definitions have been chosen so that we are

using the same tools to study elliptic curves and elliptic fibrations.2

For details on the relative Picard functor and on representability of the Picard

functor in general, we refer the reader to [12]. See also Ch.6 of [62].

3.2 Models for Marked Genus One Curves

We use Riemann-Roch to obtain a model for a genus one curve C from a divisor

D of positive degree. To begin, we assume that k is algebraically closed.

Let D be a divisor on C, with deg(D) = d > 0. Then 3.4 says `(D) = d, so we

can find deg(D) k-linearly independent elements x1, . . . , xd of L(D).

2For example, we only use the Jacobian formula for torsors of index 2 and 3 - the validity of
the formula has been checked for genus one curves over arbitrary schemes in this case.

37



• The dimension of L(mD) is md.

• Furthermore, L(mD) contains all products of the form xe11 · · ·x
ed
d where ei ≥

0 and e1 + · · ·+ ed = m.

Now, the number of monomials we can obtain from the xi grows faster than

the bound on the dimension. Thus, we can find relations between products of the

xi when m is sufficiently large. These relations give us models of our genus one

curve in Pd−1
k .

We start by obtaining a more precise description of the model associated to a

genus one curve with a divisor of degree d > 1. Then, we explain how these ideas

are used to obtain models over a nonalgebraically closed ground field.

Proposition 3.5. Let C/k be a genus one curve and D a divisor of degree d ≥ 1.

• If degD = 1, we obtain an isomorphism between C and a curve defined by

an equation of the form:

y2 = x3 + fxz4 + gz6 (3.2)

for some f, g ∈ k. Here, x, y, z can be thought of as coordinates in P2,3,1.

• If degD = 2, we obtain a description of C as:

w2 = au4 + bu3 + cu2v2 + duv3 + ev4 (3.3)

where u, v are coordinates on P1 and C is a double cover branched over the

roots of the quartic on the right hand side. Note that the quartic must have

distinct roots in order for the double cover to be smooth.
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• If degD = 3, we obtain an embedding C → P2. The image of C is a plane

cubic.

• Finally, if degD > 3, we obtain a map to Pd−1 and the image of C is cut

out by d(d−3)
2

quadratic forms.

Proof. We prove this degree by degree.

First, assume that degD = 1. Then L(D) is generated by a single element as

a vector space. Let z be one such element.

Now, z2 ∈ L(2D), but `(2D) = 2 so we need one more element to generate it

as a vector space. Choose such element, and call it x. Similarly, z3 ∈ L(3D), as is

x2z. We need one more element to obtain a basis. Choose one and call it y.

It is easy to check that the monomials in x, y, z of degree 4,5 (weighted appro-

priately) form bases of L(4D),L(5D), respectively: linear independence of those

monomials follows from linear independence of the sets {z} , {z2, x} , {z3, xz, y}

and 3.4 shows that they have the correct size.

We can obtain 7 monomials in L(6d), so by 3.4, they must be linearly depen-

dent. Thus, there exist ai ∈ C such that:

a5y
2 + a1xyz + a3yz

3 = a0x
3 + a2xz

2 + a4xz
4 + a6z

6

Furthermore, if a5 or a0 vanishes, then we would have an equation of linear depen-

dence in lower degree, which we have ruled out.

Finally, we rescale x, y so that a0 = a5 = 1 and use changes of variables of the

form y → y + λxz and x 7→ λxz2 to obtain an equation with a1 = a2 = a3 = 0.

If degD = 2, we choose a basis u, v of L(D), find w ∈ L(2D) so that w, u2, uv, v2

is a basis and then obtain a relation in L(4D):

w2 +Q2(u, v)w +Q4(u, v)
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where Q2(u, v), Q4(u, v) are homogenous quartics in u, v of degree 2,4.

We use a change of variable of the form w → w + Q2(u, v)/2 to obtain an

equation:

w2 = Q(u, v)

If degD = 3, we choose a basis x, y, z of L(D). There are 10 monomials in

L(3D), so we have a single equation describing C as a plane cubic.

Finally, if degD ≥ 4, we fix a basis x1, . . . , xd of L(D). There are d(d−1)
2

monomials in L(2D), so there must be d(d−1)
2
− d = d(d−3)

2
relations between the

degree 2 monomials.

Finally, we need to show that the equation just obtained can be chosen to have

coefficients in k if D ∈ Divk(C). This follows from:

Lemma 3.6. Let k/k be as above, let V be a vector space over k and suppose we

have an action of G on V which is compatible with the vector space structure. Let

V G be the subspace of G consisting of elements fixed by G.

Then V ∼= V G ⊗k k.

See ([70], Ch. 2, Lemma 5.8.1) for a proof. We will reinterpret this result in

(2.2).

Thus, as long as the line bundle associated to D is invariant under the action

of G, we can “descend” L(D) to a vector space over k. The coefficients in the

equation for E are equations of linear dependence, so they can be chosen in k.

Furthermore, note that we can associate a G-invariant divisor D to any marked

genus one curve (C, q). Let k′/k be a finite, Galois extension containing the field
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of definition of q. Let D =
∑

σ∈Gal(k′/k) σ(q). Then D is clearly G-invariant.3

In particular, when the characteristic of k is 0, we can always take k′ to be the

normal closure of the field of definition of q. This allows us to associate a model

over k to each marked genus one curve (C, q), even when k is not algebraically

closed.

Of course, if k is algebraically closed, then we can always find a divisor of degree

1 to obtain an equation 3.2.

3.3 Group Law

In this section, we will use Riemann-Roch to show that the set of k-points on an

elliptic curve form a group. The key idea is that every divisor of degree 1 is linearly

equivalent to the divisor [p] for a unique p ∈ C(k).

Now, fix a point p0 ∈ C(k). We can define a map C(k)→ Pic0(C) by sending

each point p to the class of L(p− p0).

• If p, q map to the same point, then L(p−p0) = L(q−p0). Tensoring both sides

by L(p0) shows that L(p) = L(q), so p = q. Thus, the map C(k)→ Pic0(C)

is injective.

• If D is a divisor of degree 0, then D+p0 has degree 1, so L(D+p0) = L(p) for

some p ∈ C(k). By construction, L(p−p0) = L(D), so the map is surjective.

Thus, we have a bijection between points on C(k) and elements in Pic0(C).

Since Pic0(C) is a group, this means we can endow C(k) with the group structure

3Note that this divisor coincides with the image of q under a corestriction map. While this
will not be needed in any proof, we would like to highlight it now, as corestriction maps will play
an increasingly important role as one progresses through the dissertation.
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Figure 3.1: The group law on a real elliptic curve in R2.

of Pic0. Note, however, that we have a (unique) bijection C(k)→ Pic0(C) taking

p0 to 0 for each choice of p0 ∈ C(k).

The Picard group is an abelian group, so the group structure on C(k) is abelian.

In fact, much more is true - representability of the Picard functor means Pic0(C)

is an abelian variety. This means that Pic0(C) is isomorphic to proper algebraic

variety, and the multiplication map is a morphism of varieties.

• If we fix a model for C, we can describe the group explicitly using polynomial

maps- see Ch. 3 of [70].

• If we embed our curve in P2, the group law can be described geometrically:

three points add up to 0 if and only if they are collinear.

Finally, note that if we have a genus one curve C/k, where k is not necessarily

algebraically closed, and we have points p0, p1, p2 ∈ C(k), then we can endow C(k)

with a group structure with p0 as the identity, and then we can add p1, p2 to obtain

a point p3 ∈ C(k).
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We denote the group of points on C(k) by MW (C/k) to indicate we are think-

ing about it as an abstract group.

The possible isomorphism types of MW (E/k) as an abstract group are well-

understood when k is a number field:

Theorem 3.7. Let E/k be an elliptic curve.

• If k has characteristic 0, then MW (E/k) is isomorphic to a subgroup of

S1 × S1.

• (Mordell-Weil) If k is a number field, MW (E/k) is finitely generated. Thus,

MW (E/k) ∼= Zr × (Z/m)× (Z/n) for integers m,n, r.

• (Mazur) If k = Q, the torsion subgroup of MW (E/k) is one of the following

groups:

Z/m m = 1, 2, 3, . . . , 10, 12

Z/2× Z/(2n) n = 1, 2, 3, 4

Proof. The first point is classical - over C, the group is isomorphic to S1 × S1 by

Riemann’s uniformization theorem. We can embed any field of characteristic 0

into C to prove the result.

A proof of the second point can be found in [70] Ch. 10.

Finally, see [51] for a proof of the third point.

Note, however, that there is no algorithm for computing the rank of an elliptic

curve. In practice, one computes the Selmer group and then has to break it up
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into a MW component and a X component.4

3.4 Torsors and Jacobians

Let C/k be a genus one curve. The Jacobian of C/k is the elliptic curve (Pic0(C), 0).

Definition 3.8. Let E/k be an elliptic curve. A torsor of E/k is a pair (C, µ)

consisting of a genus one curve C/k and a simply transitive group action µ :

E(k)× C(k)→ C(k).

We will typically write p+ q to denote µ(p, q) ∈ C(k).

Furthermore, since the action is simply transitive, we can also define a “sub-

traction map” C(k)× C(k) → E(k) that takes a pair (q1, q2) to the unique point

in p ∈ E((k)) satisfying p+ q1 = q2. We represent this point as [q2 − q1].

Proposition 3.9. • Suppose E is the Jacobian of C/k. Then C/k is a torsor

of E.

• Suppose C/k is a torsor of E. Then C is a twist of E.

• Suppose C is a twist of E. If we choose an isomorphism E → C, then we

can endow C with the structure of a torsor.

Proof. We can use the bijection between C(k) and Pic1(C) to define a simply

transitive action of Pic0(C) on Pic1(C). Thus, every genus one curve is a torsor

of its Jacobian.

To prove the second point, choose a point q ∈ C(k) and define a map E → C by

p 7→ p+ q. Since the action on C is simply transitive, this map is an isomorphism.

Thus, every torsor is in fact a twist.

4We will discuss the relationship between MW and X in the later sections, e.g. 8.2, although
we will be interested in X and MW will be the auxiliary tool we have to study.
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To explain the difference between twists and torsors, we need to define mor-

phisms of torsors.

Let E be an elliptic curve and C,C ′ a pair of torsors of E. A morphism

of torsors φ : C → C ′ is exactly what it sounds like - it is a morphism of the

underlying curves which is compatible with the action of E:

(∀q ∈ C(k), p ∈ E(k)) φ(p+ q) = p+ φ(q)

Requiring a morphism to be compatible with a simply transitive action is a

very strong condition. For example, every morphism of torsors is an isomorphism.

Fortunately, we don’t need to do much to produce a morphism of torsors.

Proposition 3.10. Let C1, C2 be torsors of an elliptic curve and suppose we have

a field extension k′/k and points qi ∈ Ci(k′). Then there is a unique morphism of

torsors C1 → C2 that takes q1 to q2.

Indeed, once we know that q1 goes to q2, the image of any q ∈ C1(k′) necessarily

has to go to (q−q1)+q2, where q−q1 is the point on E(k′) satisfying (q−q1)+q1 = q.

Furthermore, the converse is also true: if we choose points q1, q2, we can define a

morphism as above. For details, see [52].

In the next chapter, we use these ideas to classify genus one curves over non-

algebraically closed fields.
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Chapter 4

Classifying Genus One Curves

We now use the results of the last two chapters to classify genus one curves over

an arbitrary field k of characteristic 0.

To begin, we show that it is equivalent to compute the moduli space of marked

genus one curves over k.

Let C be a genus one curve, and let q, q′ ∈ C(k). We can use the group structure

on C to obtain an automorphism of C that takes q to q′. Thus, the forgetful map

from the space of isomorphism classes of marked genus one curves to the space of

isomorphism classes of genus one curves is injective.

If k is algebraically closed, then every genus one curve has a k-point, so the

map is in fact a bijection.

We start by discussing this case.

4.1 k = k

We explain how elliptic curves over k are classified by their j-invariant.

• Let C be a genus one curve, and let p ∈ C(k) be a point. Then we can
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compute a Weierstrass equation:

y2 = x3 + fx+ g

Conversely, every Weierstrass equation as above, with 4f 3 +27g2 6= 0, defines

a genus one curve. Thus, we can use the space of nonsingular Weierstrass

equations as a parameter space:

Wk =
{

(f, g) ∈ k2 : 4f 3 + 27g2 6= 0
}

• We define an action of k× on Wk by t · (f, g) = (t4f, t6g). Two elements

(f, g), (f ′, g′) define isomorphic elliptic curves iff they are in the same k×

orbit.

• Define a map:

j :Wk → k j(f, g) = 1728
4f 3

4f 3 + 27g2

Then j is constant k× orbits, and separates distinct orbits - i.e. j gives a

bijection between Wk/k
× and k.

Thus, the space of isomorphism classes of genus one curves over k can be

identified with k as a set, and geometrically coincides with the singular quotient

Wk/k
×.

See also B for an alternative description when k = C.
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4.2 k 6= k

4.2.1 Elliptic curves

Next, we classify elliptic curves over k, up to k-isomorphism, over a non-algebraically

closed field. Since every elliptic curve can be described by a Weierstrass equation,

we can use many of the same tools as we did when k = k:

• We still have Wk as a parameter space.

• We still have an action of k× on Wk. Furthermore, two points in Wk define

the same elliptic curve over k if and only if they are in the same k× orbit.

• We still have a surjective map j :Wk → k which is constant on k× orbits.

If k× 6= k×2, then j no longer separates points, since quadratic twists have the

same j-invariant. This is not a big deal, though, since the set of quadratic twists

of any elliptic curve is well-understood.1

In the later sections, we will mainly useW as our parameter space. As a result,

we will not need to worry about quadratic twists, since non-isomorphic quadratic

twists have different Weierstrass equations.

However, quadratic twists will come up again in 9.5, as they will help us classify

torsors that split over quadratic extensions.

4.2.2 Genus one curves without rational points

Every genus one curve C/k with C(k) 6= ∅ can be endowed with the structure of

an elliptic curve over k, and we’ve already classified those.

1The best way to describe it is as a “torsor” of k×/k×2 - there is a simply transitive group
action of k×/k×2 on the set of quadratic twists of any elliptic curve E/k.
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It remains to classify genus one curves with C(k) = ∅. Let C/k be any genus

one curve and let E/k be the Jacobian elliptic curve.

Then C is a torsor of E, so C gives rise to a class in WC(E/k). Furthermore,

the class of C is trivial in WC(E/k) if and only if C(k) = ∅.

Thus, the last step in the classification of genus one curves is understanding

WC(E/k) for every elliptic curve E/k.

• This classification appears for genus one curves C/Q in [52].

• A similar2 strategy is used in [34] to classify Calabi-Yau genus one 3-folds

without multiple fibers.

4.3 Classification using models

Let (C, q) be a marked genus one curve, and assume q is defined over a field

extension of degree d. Then C has a map to Pd−1 that we can use to obtain an

equation for C. Furthermore, there are uniform models for all such curves - e.g.

if d = 3, then the image of C is a plane cubic. Thus, we can use the space of

equations for plane cubics as a parameter space for genus one curves.

Now, we have an action of PGL(k, d) on Pd−1
k , and this induces an action on

the space of equations on Pd−1
k . We denote this space by Cd. If two elements of

Cd are in the same PGL(k, d) orbit, the associated genus one curves are clearly

isomorphic over k. Thus, the quotient of Cd by the appropriate group parametrizes

genus one curves of index d.

However:

2One difference is that Gross uses the Tate-Shafarevich group instead of the Weil-Chatelet
group, since the Tate-Shafarevich group is finite in that special case, and that allows him to draw
stronger conclusions.
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• When d = 2, it is not hard to find quartics which do not differ by a change of

variables, but that define the same genus one curve. For example, let k = R

and Q(u, v) is a positive definite binary quartic, and let C be the genus one

curve:

C : w2 = Q(u, v)

Since Q is positive definite, the discriminant of this genus one curve is a

positive real number.

The Jacobian of a genus one curve has the same discriminant as the curve,

so the Jacobian of C has a positive discriminant. In particular, this means

the Jacobian has full 2-torsion defined over R, so we can find an equation for

the Jacobian as:

y2 = (x− e1)(x− e2)(x− e3)

Now, it’s clear that E is also isomorphic to:

E : w2 = v(u− ve1)(u− ve2)(u− ve3)

Since q(u, v) is positive definite, q(u, 1) is a square in R, so C has an R-point.

This means C is isomorphic to E as an elliptic curve over R. However, it’s

clear that there is no change of variable taking Q(u, v) to v(u − ve1)(u −

ve2)(u−ve3), since the latter splits completely whereas Q(u, v) is never zero.

• By the time we get to d = 5, the parameter space is 50-dimensional. Thus,

while we technically do have a parameter space, it’s too big to be of practical

use.
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In particular, to use this perspective in F-theory, we need to be able to compute

an equation for the Jacobian from the model. In principle, this is possible by recent

results of Fisher [1]. However, the methods there are better suited for computing

the Jacobian of a single example - there is no closed form polynomial formula from

Cd to the space of Weierstrass equations when d ≥ 5.

4.4 Example: k = R

When k is not algebraically closed, one should expect the moduli space of genus

one curves over k to have infinitely many components:

• For each possible value of j ∈ k, we have as many quadratic twists as we

have classes in k×/k×2.

• We could assume that k is quadratically closed so that we don’t have to

worry about quadratic twists. However, if k is quadratically closed but not

algebraically closed, then Gal(k/k) is infinite.

There is only one situation where there there exist nontrivial torsors, but

Gal(k/k) is finite - when k is a real closed field. We run the two “programs”

to classify genus one curves over R - this will allow us to see what types of com-

putations one needs to be able to replicate.

• Elliptic curves over R are parametrized by WR.

• The j-map is:

j :WR → R (f, g) 7→ 1728
4f 3

4f 3 + 27g2
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Two elements ofWR define elliptic curves which are isomorphic over C if and

only if they map to the same element of R under the j-map. Furthermore,

the j-map is surjective.3 Thus, the space of real elliptic curves up to complex

isomorphism can be identified with R.

• Next, we classify real elliptic curves up to real isomorphism. This means we

have to classify quadratic twists. Since R×/R×2 = {[1], [−1]}, every elliptic

curve over R admits exactly one nontrivial quadratic twist.

The following elliptic curves represent the two R-isomorphism classes of elliptic

curves with j-invariant 1728:

E+ : y2 = x3 + x (4.1)

E− : y2 = x3 − x (4.2)

Every other elliptic curve over R is isomorphic to an elliptic curve of the form:

E+
f : y2 = x3 + fx+ 1 (4.3)

E−f : y2 = x3 + fx− 1 (4.4)

If 4f 3 > 4f 3 + 27g2, the elliptic curve has j-invariant greater than 1728. If

0 < 4f 3 < 4f 3 + 27g2, the elliptic curve has j-invariant less between 0 and 1728.

If f < 0, the elliptic curve has negative j-invariant.

Let E/R be an elliptic curve given by the Weierstrass equation:

y2 = x3 + fx+ g

3Since the map is continuous on WR, we can take limits and use the intermediate value
theorem to check this.
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Figure 4.1: A pair of real elliptic curves. The one on the left has j-invariant
greater than 1728 and the one on the right has j-invariant less than 1728.

Assume that the j-invariant of E is not equal to 1728 (equivalently, g 6= 0). Then

the following conditions are equivalent:

• The discriminant of x3 + fx+ g is positive.

• j ≥ 1728.

• The cubics x3 + fx± g split completely over R.

• Both E and the quadratic twist of E have all 2-torsion points defined over

R.

If j = 1728, one of the R-isomorphism classes satisfies all of these conditions,

and the other only satisfies j ≥ 1728.

Furthermore, these conditions can be checked easily if we represent the set of

points on E(C) as C/Λ, together with an action of Gal(C/R).

This allows us to obtain pictures of the moduli space of real elliptic curves

using the familiar pictures of the moduli space of complex elliptic curves, see 4.2.
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Figure 4.2: A fundamental domain for the moduli space of real elliptic curves as
a subset of the upper half plane. The green segments represent elliptic curves with
j > 1728, the blue segments represent elliptic curves with 0 < j < 1728 and the
red/pink segements represent elliptic curves with negative j-invariant.

Thus, the space of elliptic curves over R consists of two copies of R, although

something weird is happening at j = 1728.

It remains to classify the genus one curves over R without an R-point. Of

course, every genus one curve over R has a point after passing to C.

• We can try to compute WC(E/R) for each elliptic curve. Since WC(E/R)

is the cohomology group of a Z/2-module, we can compute it explicitly.

• Alternatively, we can use the fact that every genus one curve has a model

as w2 = q(u, v) for some quartic q(u, v), so we can try to understand the

quotient of the space of real quartics by SL2(R).

4.4.1 Weil-Chatelet

To compute the Weil-Chatelet group of an elliptic curve E/R, we need to know

the Mordell-Weil group.
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Fortunately, we can determine this directly from the j-invariant, provided j 6=

1728:

• If j > 1728, the Mordell-Weil group is isomorphic to (Z/2)× S1.

• If j < 1728, the Mordell-Weil group is isomorphic to S1.

• If j = 1728, one of the R-isomorphism classes has Mordell-Weil group (Z/2)×

S1 and the other has S1.

To compute WC(E/R), we will use the short exact sequence 2.4:

0→ E(R)/2E(R)→ H1(G,E[2])→ WC(E/R)[2]→ 0

Since every class in WC(E/R) has index 2, and period divides index, it follows

that every class in WC(E/R) has period 2,so WC(E/R) = WC(E/R)[2], so the

exact sequence above actually says there is a surjection H1(G,E[2])→ WC(E/R).

The group H1(G,E[2]) is small: we only need to determine whether an element

of E[2] is a possible image for σ. This will depend on how complex conjugation

acts on E[2], but there are only 2 ways it could act - trivially, or else it fixes one

of the nonidentity points and permutes the other two.

• If G acts trivially on E[2] (i.e. if E[2] is defined over R), then H1(G,E[2]) ∼=

Hom(G,E[2]) ∼= (Z/2)× (Z/2).

Furthermore, 2E(R) ∼= S1 so E(R)/2E(R) ∼= Z/2. THus the exact sequence

above is equivalent to:

0→ Z/2→ (Z/2)× (Z/2)→ WC(E/R)→ 0

so we conclude that WC(E/R) ∼= Z/2.
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• Otherwise E only has one two 2-torsion point defined over R. We write P for

the 2-torsion point defined over R and T1, T2 for the other nontrivial 2-torsion

points.

Now, E(R) = S1 and the doubling map S1 → S1 is surjective. This means

E(R) = 2E(R) so E(R)/2E(R) = 0. Thus, WC(E/R) ∼= H1(G,E[2]).

A computation shows that the only cocycles are the maps σ 7→ 0 and σ 7→ P .

Furthermore, since P = T1 + T2 = T1 − T2. = T1 − σ(T1), that cocycle is a

coboundary. Thus, we conclude that H1(G,E[2]) is also trivial in this case,

and thus WC(E/R) = 0.

Thus, to recap: E/R has nontrivial WC group if and only if E[2] ⊂ E(R).

Next, we try to extend our previous picture to one that contains these extra

genus one curves - we really only need to add a copy of (1728,∞) and a copy of

[1728,∞) to our two copies of R in some meaningful way. To achieve this, we use

the fact that every genus one curve over R has a model as w2 = Q(u, v). We will

try to find representatives for each R-isomorphism class in the space of quartics

up to the action of SL2(R).

4.4.2 Models

Finally, we describe a fundamental domain for real genus one curves in the space

of real quartics modulo the action of SL2(R).

Let Q(u, v) be a real binary quartic, and assume that Q(u, 1) has 4 distinct

roots in C. Note that Q(u, v) has a factorization:

Q(u, v) = Q1(u, v)Q2(u, v)

where Q1, Q2 are real quadratic forms. This factorization is not - if Q splits
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completely over R, then there are 6 factorization of Q into quadratic forms which

are genuinely distinct.

We restrict attention to quartics that do not split completely. The quartics

that split completely define elliptic curves with full 2-torsion over R, and we’ve

already classified those.

We assume that Q1(u, v) is an anisotropic quadratic form over R. Furthermore,

replacing Q1, Q2 by −Q1,−Q2 doesn’t change Q, so we may further assume that

Q1(u, v) is a positive definite quadratic form.

1. We can do a change of variable so that Q1(u, v) = λ(u2 + v2) for some

positive real number λ. Furthermore, replacing Q2 by λQ2, we may assume

that Q1(u, v) = u2 + v2.

In other words, the symmetric matrix that represents4 Q1(u, v) is the identity.

2. We can act on the space of binary quadratic forms by SO(2). The action

fixes u2 + v2. Furthermore, every symmetric matrix can be diagonalized

using the action of SO(2). Thus, we can find a change of variable that leaves

Q1(u, v) = u2 + v2 unchanged and puts Q2(u, v) in diagonal form.

Thus, every genus one curve over R can be represented by an equation of the

form:

w2 = (u2 + v2)(au2 + bv2)

for some a, b ∈ R×.

This gives us a 2-dimensional parameter space for all real genus one curves.

• Ca,b can only fail to have an R-point if a, b < 0.

4This is sometimes referred to as the polarization of Q.

57



• We can define a j-map on the space of pairs (a, b) by sending each pair (a, b)

to the j-invariant of the Jacobian of Ca,b.

• If we replace (a, b) by (ta, tb) for some t ∈ R, the new Jacobian is the

quadratic twist of the original by t.

Thus, scaling by positive real numbers doesn’t change the R-isomorphism

class of the genus one curve, and scaling by a negative real number changes

the R-isomorphism class but not the C-isomorphism class.

If a + b = 0, the genus one curve has j-invariant 1728. If ab = 0, we have a

nodal curve.

Altogether, this means we can represent the moduli space by the unit circle

in the (a, b)-plane. To determine the isomorphism class of the genus one curve

associated to a point (a, b), we use the Jacobian formula to determine the isomor-

phism class of the Jacobian. Each elliptic curve has at most one nontrivial torsor,

and the only pairs (a, b) that represent curves without R-points are the pairs with

a, b < 0.

We compute:

j(a, b) =
16 (a2 + 14ab+ b2)

3

ab(a− b)4
(4.5)

For a fixed value of j0 ∈ R, there are at most 12 (a, b) with that j-invariant

(up to replacing (a, b) by a scalar multiple):

j(a, b) = j0 ⇐⇒ 16
(
a2 + 14ab+ b2

)3
= j0ab(a− b)4 (4.6)

Now the right hand side of 4.6 is a homogenous polynomial of degree 6 in a, b,

so it has at most 6 solutions in P1
R. Each root in P1 gives us two pairs (a, b), up to

scaling by R+.
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Figure 4.3: On the left, we have the picture of the moduli space of elliptic curves
over R, depicted as a subset of the upper half plane. On the right, we have a picture
of the moduli space of real genus one curves, depicted as a subset of the space of
equations of quartic equations.

We can determine when the number of roots changes by computing the dis-

criminant of 4.6, and setting j0 = 0.

Altogether, we can show that the unit circle in the (a, b) plane contains a

fundamental for R-isomorphism classes of genus one curves. Furthermore, there

are no “redundancies” - each isomorphism class is represented exactly once.

For more details on what the picture means, see the author’s website.

4.4.3 Comments

• We found a fundamental domain in the set of quartics that do not split

completely. This is a little strange - it reflects the fact that completely split

quartics and irreducible quartics both give rise to genus one curves with

j > 1728 (and every curve with j > 1728 can be described by both types of

models).
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• To compute the Weil-Chatelet group, we used the fact that S1 is a divisible

group.

• To compute the quotient of the space of quartics, we needed the spectral

theorem.
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Part II

Elliptic Fibrations and F-theory

61



Chapter 5

Elliptic Fibrations

5.1 General Definitions

We start by defining elliptic fibrations in purely geometric terms.

Definition 5.1. Let k be a field and B/k an irreducible variety of dimension d.

A genus one fibration over B is a pair (X, π), where:

• X is a variety of dimension d+ 1 over k.

• π : X → B is a proper, flat morphism of k-varieties.

• For almost all b ∈ B, π−1(b) is a smooth curve of genus 1.

An elliptic fibration is a pair ((X, π), s) consisting of a genus one fibration

(X, π) and a section s : B → X of π.

We say that a genus one fibration is:

• Smooth

• Singular
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• Gorenstein

if X has that property.

The discriminant locus of an genus one fibration is the subvariety of B con-

taining all points whose fiber is not smooth.

There are two types of elliptic fibrations we will not be interested in.

Proposition 5.2. Let X → B be an elliptic fibration.

We say that X → B is of product type if X is birational to a product B×E. We

say that X → B is isotrivial if the smooth fibers of X have the same j-invariant.

It’s clear that every fibration which is of product type is isotrivial. The converse

is false. For example, the elliptic surface over SpecC[[t]]:

y2 = x3 + tx

is not a product, but every smooth fiber has j-invariant 1728.

In fact, if we fix any pair f, g ∈ C with 4f 3 + 27g2 6= 0, then we have an

isotrivial fibration:

y2 = x3 + t2fx+ t3g

There are several reasons one may want to avoid isotrivial fibrations. They are

not used in F-theory1. From a mathematical perspective, we gain two crucial tools

by restricting to fibrations which are not isotrivial:

• The Mordell-Weil theorem generalizes to elliptic fibrations which are not

isotrivial. In particular, we may assume MW (X/B)tors is finite for all fibra-

tions we discuss and the rank of the Mordell-Weil group is finite.

1One reason physicists became interested in elliptic fibrations was because the physical data
they were studying consisted of a “point varying in H/SL2(Z)”, which one could think of as a
family of elliptic curves under the identification of H/SL2(Z) with the moduli space of elliptic
curves. In an isotrivial fibration, there is no variation in the moduli space.
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See [48] or [69] for details.

• The results of [34] and [18] classify Calabi-Yau elliptic fibrations in dimension

3,4 which are not isotrivial. By restricting attention to fibrations which are

not isotrivial, we can use their results to reduce our proofs to computations

over a finite list of bases.

• Finally, elliptic fibrations which are not isotrivial can’t have complex multi-

plication.

We will mainly be interested in fibrations which are not isotrivial.

Let X → B be a genus one fibration, and let b ∈ B be a point in the discrimi-

nant locus.

The fiber over b is a singular variety of dimension 1. If X → B has a section,

then the fibers will be one of the following:

• A nodal genus one curve.

• A cuspidal genus one curve.

• A connected union of rational curves.

See 6.2 for details.

If X → B is a genus one fibration without section, then it may also have fibers

which are everywhere singular.

Definition 5.3. We say that the fiber over b is a multiple fiber if the fiber is

everywhere singular.

Let η ⊂ B be the generic point and K the function field of B. The definition

of elliptic fibration allows us to endow the fiber π−1(η) with the structure of an
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elliptic curve E/K: it’s clear that the fiber has genus one, and we can use the

section B → X to obtain a marked point defined over K.

We can define analogs of the Mordell-Weil group, and prove analogous theorems

about it, using the relative Picard functor. We require fibrations to be proper and

flat to guarantee representability of that functor.

In particular, if we have a genus one fibration Y → B without section, then

there is an associated elliptic fibration X → B that we will refer to as the Jacobian

elliptic fibration, and which is defined in exactly the same way as the Jacobian

elliptic curve, with the Picard group replace by the relative Picard group over B.

There are two different flavors of elliptic fibrations: fibrations over SpecR and

fibrations over projective bases.

5.1.1 Affine Base

Let R be an integral domain with fraction field K. Assume char(K) 6= 2, 3, and

let f, g ∈ R, with 4f 3 + 27g2 6= 0.

Let E ⊂ P2
R be the variety:

y2z = x3 + fxz2 + gz3

Then E → SpecR is an elliptic fibration.

If we start with an elliptic curve E/K given by a Weierstrass equation, we say

the equation spreads out to SpecR if f, g ∈ R. We call the fibration E → SpecR

an integral model for E/K.

Finally, we need to define minimal integral models.

Let E → SpecR be an integral model for an elliptic curve E/K:

y2 = x3 + fx+ g
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We say this is a minimal integral model if, for each irreducible factor $ of gcd(f, g),

either ν(f) < 4 or ν(g) < 6. We can always obtain a minimal integral model from

an integral model by pulling out factors of $4 from f and $6 from g, at least when

the base is SpecR, for R a UFD.2

Furthermore, there is a unique morphism of R-schemes E → Emin to the mini-

mal integral model.

5.1.2 Projective Base

Let B = Pn for some integer n > 0 and let L = O(d) be an ample line bundle on

Pn.

The space of global sections of L can be identified with the vector space of

homogenous polynomials of degree d in n+ 1 variables.

Let f be a global section of L⊗4 and g a global section of L⊗6. Define ∆ =

4f 3 + 27g2; note that this is a global section of L⊗12. If ∆ 6= 0, then we can define:

y2 = x3 + fxz4 + gz6

Starting from an elliptic fibration over an affine subset of Pn, we can always

be spread out to an elliptic fibration over Pn by homogenizing the coefficients

appropriately.

2There are fibrations that do not admit a globally minimal integral model, although we will
not need to worry about those.
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5.2 Weierstrass models and the fundamental line

bundle

Let X → B be an elliptic fibration. Our goal in this section is to generalize the

notion of Weierstrass equation to elliptic fibrations over a general variety B (not

necessarily of the form SpecR).

If every fiber of X → B is a smooth elliptic curve, then we have the following

result from [59]:

Proposition 5.4. Let B be a variety over k and E → B an elliptic fibration over

B. If V (∆) = ∅, then there is an open cover ∪SpecRi of B such that, over each

SpecRi, the fibration is isomorphic to:

y2 = x3 + fix+ gi (fi, gi ∈ Ri)

Furthermore, 4f 3 + 27g2 ∈ R×i for all i.

If B is projective, then any fibration satisfying the conditions of the previous

theorem is simply a product E ×B.

To obtain more interesting Weierstrass fibrations over a projective base, we use

sections of line bundles to define a global Weierstrass equation.

Definition 5.5. Let B be a projective variety.

A Weierstrass triple over B is a triple (L, f, g), where L is a line bundle over

B, f is a global section of L⊗4 and g is a global section of L⊗6.

We associate to a Weierstrass triple the form ∆ = 4f 3 +27g2, which is a global

section of L⊗12.

Now, let (L, f, g) be a Weierstrass triple. Let PB be the projectivization of the

rank 3 vector bundle L⊗2 ⊕L⊗3 ⊕OB over B, endowed with coordinates (x, y, z),

67



and define a relative curve X → B in PB by:

y2z = x3 + fxz2 + gz3

Then X → B is an elliptic fibration over B. Conversely, every elliptic fibration

is birational to a fibration determined by a Weierstrass triple.

First, we define:

Definition 5.6. The fundamental line bundle of a genus one fibration π : X → B

is the line bundle LX/B := (R1π∗OX)−1 on B.

Proposition 5.7. Let X → B be an elliptic fibration and let X0 → B be the

fibration obtained by contracting every curve in the fibers which does not meet the

zero section.

Then X0 is isomorphic, as a B-scheme, an elliptic fibration defined by a Weier-

strass triple (LX0/B, f, g).

Proof. [59]

If one of f, g is 0, then the fibration is isotrivial and has complex multiplication.

If both are 0, or more generally if ∆ = 0, the associated elliptic fibration is every

degenerate. We will assume throughout that f, g,∆ are not everywhere 0 on B.

5.2.1 Calabi-Yau

A projective variety X/k is Calabi-Yau if ωX ∼= OX .3 Some authors impose other

conditions, see e.g. [33].

A Calabi-Yau variety of dimension 1 is a genus one curve. In higher dimension,

genus one fibrations and Calabi-Yau varieties no longer coincide, although they do

overlap.

3When dimX = 2, then one also has to add the condition that X is simply connected.
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• There are many examples of Calabi-Yau varieties which do not admit an

elliptic fibration. For example, the quintic threefold and any K3 surface of

Picard rank 1 have no genus one fibration structure.

• However, most known examples of Calabi-Yau’s surprisingly do admit a

genus one fibration:

– If X is a K3 surface, then X admits an elliptic fibration if and only if X

has a nontrivial line bundle of degree 0. Furthermore, every K3 surface

of Picard rank at least 5 admits an elliptic fibration. See [42] Ch. 11

Prop. 13.

– In [5], it is shown that most known examples of Calabi-Yau 3-folds admit

an elliptic fibration, and in fact, most 3-folds admit multiple fibrations.

We will be interested in the “inverse” of this problem: we will study elliptic

curves (and genus one curves) over function fields, and then discuss the problem

of finding Calabi-Yau models for genus one curves. By a model for a genus one

curve C/K, we mean a genus one fibration X → B:

• B is an irreducible variety with function field K.

• The fiber over the generic point of B is isomorphic to C/K.

The canonical bundle formula makes it easy to characterize Weierstrass triples

that give rise to Calabi-Yau elliptic fibrations:

Proposition 5.8. Let π : X → B be an elliptic fibration. Then:

ωX ∼= π∗(LX/B ⊗ ωB)
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Since we’re assuming that X → B has a section, φ∗ : Pic(B) → Pic(X) is

injective, so ωX is trivial iff LX/B ∼= ω−1
B .

We deduce that if X → B is a non-isotrivial Calabi-Yau fibration, then B is

Fano4 and LX/B ∼= ω−1
B . This implicitly gives a parametrization of all Weierstrass

equations that give rise to varieties with trivial canonical bundle. Once we know

the Weierstrass equations, we simply need to identify the equations that define

varieties which are not too singular.5

5.3 Resolutions

LetX → B be an elliptic fibration, say one of the elliptic fibrations in the examples.

Let Z ⊂ B be an irreducible variety contained in the discriminant locus of B, and

let νZ be the associated valuation.

Since Z ⊂ V (∆), νZ(∆) ≥ 1. If νZ(∆) > 1, then the total space X has

singularities over each point on Z.

Definition 5.9. Let X → B be an elliptic fibration.

A resolution of X → B is an elliptic fibration X ′ → B′, together with mor-

phisms:

X ′ X

B′ B

(5.1)

such that the horizontal arrows are birational morphisms and X ′ is nonsingular.

A B-resolution of X is a resolution X ′ → B, where the morphism X ′ → X is

a morphism of B-schemes.

4Or a blow-up of a Fano surface.
5For example, we may want the variety defined by the Weierstrass equation to admit a crepant

resolution.
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If S → C is any elliptic surface, we can always find a C-resolution S̃ → C, see

(6.1). Furthermore, if S → C is a minimal fibration, then the resolution S̃ → S

is crepant. When dimB = 2, resolutions still exist, but they are no longer unique

or crepant. Furthermore, we can no longer guarantee that they are B-resolutions

- see (7.1).

In applications, we only want to study models that admit a crepant resolu-

tion. However, “existence of a crepant resolution” is not a deformation invariant

property - in other words, there are Weierstrass models which admit a crepant

resolution, but where any deformation ceases to have a crepant resolution. We

will see an example of this is (8.2). This type of phenomenon is also discussed in

[10].

In some cases though, we can rely on numerical criteria to conclude that a nice

resolution does not exist. Precisely:

Definition 5.10. Let B be a smooth variety over k and let X → B be an elliptic

fibration, with associated Weierstrass triple (L, f, g).

Let Z ⊂ V (∆) be an irreducible subvariety, and let ν be the associated valuation.

Let d be the codimension of Z in B. We say the triple (L, f, g) has inadmissible

singularities over Z if:

νZ(f) ≥ 4d and νz(g) ≥ 6d

For example, (L, f, g) has inadmissible singularities over a codimension 1 locus

of B iff the fibration is not minimal. The methods of (9) show that while there are

elliptic 3-folds with trivial canonical bundle and with points of order as high as

10 in the Mordell-Weil torsion group, these 3-folds necessarily have inadmissible

singularities if the torsion point has order at least 7.
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Chapter 6

Elliptic Surfaces

In this section, k is an algebraically closed field and K is a field of transcendence

degree 1 over k. We write C/k to denote the unique smooth, projective curve over

k with function field K.

In this chapter we review properties of elliptic surfaces over C.

6.1 Néron models

The goal of this section is to give a brief account of Néron models. Much has

already been written about this topic, so we will mainly state and explain the

results that are needed later on. For a full account of the theory, see [12]. The

results in this section can also be found in [69]. See also [44] for a discussion of

these results in the context of F-theory.

We start by defining Néron models for arbitrary K varieties.

Definition 6.1. Let X/K be a smooth and separated variety. A Néron model for

X/K is a smooth and separated variety X → C satisfying the following conditions:

• The generic fiber of X → C is isomorphic to X/K.
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• For any smooth C-scheme Y → C, with generic fiber Y/K, and any rational

map Y → X, there is a unique morphism of C-schemes Y → X extending

φ.

Since Néron models are characterized by a universal property, they are unique,

so long as they exist.

Furthermore:

• The universal property, applied to C, shows that there is a bijection between

X(K) and X (R).

• If X/K is an algebraic group, then X is a group scheme over C (see 6.1.1.

Proposition 6.2. Let E/K be an elliptic curve, let S → C be a model for E/K

which is proper, minimal and smooth and let E → C the the largest C-subscheme

of S which is smooth over C.

Then E → C is a Néron model for E/K.

Proof. Theorem 6.1 in Ch. 4 of [69].

We can always resolve singularities in the fibers of an elliptic curve. Minimality

of the fibration is equivalent to the absence of −1 curves in the fibers; since minimal

smooth models exist for surfaces, we can always find a model of E/K satisfying

the conditons of the previous theorem. Thus, not only do Néron models exist, but

we can characterize them geometrically.

Now, to actually construct the minimal smooth model, we need to resolve sin-

gularities on the Weierstrass model. This can be achieved using Tate’s algorithm.

Note that if W → C is a minimal Weierstrass surface over a smooth curve C,

then the singularities on W are locally isomorphic to du Val singularities. In that
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case, we can find a crepant resolution S → W , and S → C is a Néron model for

E/K.

We describe the geometry of the resolved fibers in the next section. We also

explain how to determine the isomorphism type of the resolved fiber in the Néron

model directly from ν(f), ν(g), ν(∆).

6.1.1 Group Schemes

In this section, we describe group schemes over an arbitrary base. We continue to

write C for the base to make it clear how to relate the results of this section to

Néron models.

Definition 6.3. A group scheme over C is a C-scheme (i.e. a scheme G with a

structure morphism G→ C), together with morphisms (e, i, µ):

• e : C → G is a section of the structure morphism.

• i : G→ G is a morphism of C-schemes that we call the inversion morphism.

• µ : G×C G→ C is a morphism of C-schemes that we call the multiplication

map.

These morphisms allow us to formulate a group law over C - the identity is the

section C → G, the inversion map takes elements to their inverse and µ takes two

elements to their sum.

We require that certain squares constructed using morphisms commute in order

to encode the usual group theory axioms.

Every elliptic curve E/K has the structure of a group scheme over SpecK.

By the functorial characterization of the Néron model, the group law extends

to E . In particular, the group law extends to the singular fibers.
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• Suppose we have an In singularity over a point. The resolved fiber is a chain

of P1’s. The Néron model is obtained by taking a maximal open set in the

P1 which meets the zero section. Since each P1 meets exactly two other P1’s

at a single point, the maximal open set is P1 − {0,∞}.

We identify P1 − {0,∞} with k×; the group law is simply the group law on

k×. Thus, In fibers are sometimes referred to as multiplicative singularities.

• For every other singularity type, the P1 that meets the zero section only

intersects one other P1. Thus, the Néron model is P1−{∞}. The group law

is just addition on k, so these fibers are sometimes referred to as additive

singularities.

One can use the group structure on singular fibers to relate the geometry of

the fibration to arithmetic properties of the generic fiber.

For example, one can use this type of consideration to bound the size of the

Mordell-Weil torsion group of an elliptic fibration with an additive fiber in codi-

mension 1 - we have |MW (E/K)|tors ≥ 4 in this case. See [54] for a proof when

k = C and [66] for a proof in arbitrary characteristic.

6.2 Kodaira fiber types

Let k be an algebraically closed field, R a DVR with residue field k and fraction

field K, and let E/K be an elliptic curve. Let W → SpecR be a minimal integral

model and let E → SpecR be the Néron model. Let Wp, Ep be the fiber over the

closed point of SpecR.

Proposition 6.4. 1. Wp has at worst a du Val singularity.
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2. The resolved fiber is isomorphic to one of the following:

• If the fiber is irreducible, then it is isomorphic to one of the following:

– A fiber of type I0 is a smooth elliptic curve E.

– A fiber of type I1 is a nodal curve of genus one.

– A fiber of type II is a cuspidal curve of genus one.

• Type III: Two P1’s meeting tangentially at a point.

• Type IV : Three P1’s meeting at a single point.

• In all other cases, the singularity is a du Val singularity and the resolved

fiber is a configuration of P1’s arranged so that their incidence graph is

an ADE Dynkin diagram. See A for more on ADE singularities.
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– If the singularity on the Weierstrass model is of type An, we say

that the resolved fiber is of type In+1.

The resolved fiber is a collection of P1’s arranged in a chain - that

is, each P1 meets exactly two other P1s.

These singularities are sometimes referred to as fibers of multiplica-

tive type1, or as semistable fibers.

– If the singularity on the Weierstrass model is of type Dn, the re-

solved fiber is said to be of Kodaira type I∗n:

we say that the resolved fibre is of type I∗n.

– Finally, if the singularity on the Weierstrass model is of type E6, E7

or E8, we say that the resolved fiber is of type IV ∗, III∗, II∗, re-

spectively.

1To emphasize the group structure in the Néron model.
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Proof. See [69] Ch. IV Thm. 8.2.

Next, we explain how to determine the singularity type directly from the val-

uations of f, g,∆ at the singular point.

6.2.1 Tate’s algorithm

We start with a minimal, integral Weierstrass model:

y2 = x3 + fx+ g

over a DVR. Furthermore, we assume for now that the residue field is algebraically

closed.

We have a singularity of type In if ν(f) = ν(g) = 0 and ν(∆) = n. Note that

this characterization of In fibers is valid even if n = 0, 1.

If ν(f) = 0 and ν(g) 6= 0 or ν(f) 6= 0 and ν(g) = 0, then the special fiber has

complex multiplication, but is otherwise smooth, so we get an I0 fiber.

In every other case:

• Both ν(f) and ν(g) are nonzero.

• Either ν(f) < 4 or ν(g) < 6.

If 3ν(f) 6= 2ν(g), then ν(∆) is determined by ν(f), ν(g). There are only finitely

many inequivalent ways to choose f, g with this property:
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• If ν(g) = 1 and ν(f) ≥ 1, we have ν(∆) = 2. The fiber in the Néron model

is of type II in this case - we don’t actually have to blow anything up.

• If ν(f) = 1, ν(g) ≥ 2, we have ν(∆) = 3. The resolved fiber is of type III.

• If ν(g) = 2 and ν(f) ≥ 2, we have ν(∆) = 4. The resolved fiber is of type

IV .

Note that these singularities are all reduced, and the remaining ones are not re-

duced.

Before discussing the remaining singularities with 3ν(f) 6= 2ν(g), we discuss

Weierstrass models with ν(f) = 2 and ν(g) = 3. In this case, ν(∆) depends on

f, g- the discriminant vanishes to order at least 6, but can vanish to arbitrarily

high order.

We have an I∗n singularity if ν(f) = 2, ν(g) = 3 and ν(∆) = 6 + n.

There are three more possibilities to consider:

• ν(f) ≥ 3, ν(g) = 4 gives ν(∆) = 8 and a resolved fiber of type IV ∗.

• ν(f) = 3, ν(g) ≥ 5 gives ν(∆) = 9 and a resolved fiber of type III∗.

• ν(f) ≥ 4, ν(g) = 5 gives ν(∆) = 10 and a resolved fiber of type II∗.

6.3 Elliptic surfaces over P1

Let R = C[t], K = C(t) and let E/K be an elliptic curve.

• We can find a Weierstrass equation for E/K as:

y2 = x3 + fx+ g

with f, g ∈ K.
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• Next, replacing f, g by φ(t)4f(t), φ(t)6g(t) for some φ(t) ∈ R if necessary, we

may assume that f, g ∈ R.

• Similarly, replacing f, g ∈ R by φ(t)−4f(t), φ(t)−6g(t) if necessary, we may

assume that we have a minimal integral model over R.

Write deg(f), deg(g) to denote the degree of f, g, respectively. Let:

d = max

{⌈
deg(f)

4

⌉
,

⌈
deg(g)

6

⌉}
and define:

F (t0, t1) = t4d0 f

(
t1
t0

)
G(t0, t1) = t6d0 g

(
t1
t0

)
Then:

• F (1, t) = f(t) and G(1, t) = g(t).

• F,G are homogenous polynomials of degree 4d, 6d respectively.

• Let f∞(t) = F (t, 1) and g∞(t) = G(t, 1). Then:

y2 = x3 + f∞x+ g∞

is a minimal integral model for an elliptic curve E/R.

Thus, (O(d), F,G) is a Weierstrass triple over P1, and the associated elliptic

surface is minimal.

We can use Tate’s algorithm to (crepantly) resolve singularities on the Weier-

strass surface, thus obtaining the Néron model E → P1 of the fibration.

• The topological Euler characteristic of E is 12d.

80



• As explained earlier, the canonical bundle of E is determined by d. Precisely,

E is a rational elliptic surface iff d = 1, E has Kodaira dimension 0 iff d = 2

and E has Kodaira dimension 1 if d > 2.

Note that the integer d, and thus ωE can be determined directly from the

minimal integral equation - we don’t actually have to compute the resolution.

6.3.1 Rational Elliptic Surfaces

Elliptic surfaces that appear in the wild may not come in Weierstrass form, and

may not even look like an elliptic fibration.

In particular, we need the following characterization of rational elliptic surfaces:

Proposition 6.5. Let π : S → P1 be a rational elliptic surface. Then S is iso-

morphic to the blow-up of P2 at the base points of a pencil of cubics.

Proof. Prop 8.1 in [66].

6.4 Quadratic Twists and Base Change

Finally, we explain how the singular fibers change if we pass to a quadratic twist

or if we base change. We continue to assume that R is a DVR with algebraically

closed residue field.

6.4.1 Quadratic Twists

Suppose we have two elliptic curves E1, E2 defined over R, and assume they become

isomorphic after adjoining
√
a, where a ∈ R. We may assume that a is a nonsquare,
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so ν(a) is odd. Replacing a by at−2 if necessary for some t ∈ R, we may assume

that ν(a) = 1.

Now, since E1, E2 are quadratic twists, there exists t ∈ K such that f1 = t2f2

and f2 = t2f3.

If we assume fi, gi ∈ R, and we assume that both equations are minimal, then:

(ν(f1), ν(g1)) ≡ (ν(f2), ν(g2)) (mod ()2Z× 3Z)

means one of the elliptic curves has a reduced singularity and the other has a

nonreduced singularity.

6.4.2 Base Change

Let E/R be an elliptic curve, K ′/K a field extension and R′ ⊂ K ′ a valuation ring

extending R.

If R′/R is unramified, the closed point splits up into several points, and the

fiber over each of this points looks like the original singular fiber.

If R′/R is a ramified extension, then valuations get multiplied by some fixed

constant after base changing.

Say R′ = R[$1/d], where $ is a uniformizer of R and d > 1. Let ν ′ be the

valuation on R′, normalized so ν($1/d) = 1. Let E/R be the elliptic curve:

y2 = x3 + fx+ g

As shown above, the isomorphism type of the special fiber of the Néron model

over SpecR is determined by ν(f), ν(g). This data also determiens the isomorphism

type in the Néron model over SpecR′, since ν ′(f) = dν(f), ν ′(g) = dν(g), etc.

In particular, if the special fiber is smooth, then any base change is smooth. If

the special fiber is of multiplicative type, then so is the special fiber after any base

82



change, although the isomorphism type might change within that class - that is,

if we start with an In fiber and pass to a ramified extension of degree d, then the

special fiber in the new Néron model is of type Ind.

On the other hand, the class of additive fibers is not stable under base extension.

For example, if we have a fiber of type I∗n and we pass to the ring R[
√
$], then

the model over R′ is not minimal. After passing to the minimal integral model, we

find a singularity of multiplicative type. The semistable reduction theorem says

that we can do this for any additve singularity.
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Chapter 7

Elliptic 3-folds

In this section we will discuss elliptic 3-folds. Geometrically, this means we are

looking at 3-folds X which have an elliptic fibration X → B to a surface B.

Algebraically, we have an elliptic curve E/K, where K is a field of transcendence

degree 2 over k.

We start by reviewing some of the ideas in [53], [21], [34] which are relevant to

our problem.

The starting point is the idea of a Miranda model.

7.1 Miranda Models

Let X → B be an elliptic 3-fold. Our goal is to find a resolution X̃ → B̃. We

describe the algorithm in [53] for finding such a resolution.

The main challenge is resolving singularities over collision points.

Definition 7.1. Let π : X → B be an elliptic fibration, and let V (∆) ⊂ B be the

discriminant locus.

We can write V (∆) = ∪Γi, where Γi are distinct irreducible subvarieties of B
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of codimension 1.

A collision point is a point b ∈ B such that b ∈ Γi ∩ Γj for i 6= j.

We say that the collision over b is of type x + y if the fiber over Γ1 is of type

x and the fiber over Γ2 is of type y.

Now, let j : B → P1 be the rational map that sends a point b ∈ B to the

j-invariant of the fiber over b. In principle, j is only defined on the complement of

the discriminant locus, but we can extend j generically so that the domain misses

at most a codimension 2 locus of B.

Say we have an irreducible, smooth curve Γ ⊂ B contained in the discriminant

locus of X → B. Let ν be the valuation associated to Γ.

• If the fiber over Γ is nodal, i.e. if ν(f) = ν(g) = 0, then the j-invariant is∞.

• If 3ν(f) > ν(∆), e.g. if we have a type II or IV singularity, then the

j-invariant is 0.

• If 3ν(f) < ν(∆), e.g. we have a singularity of type In or type III, then the

j-invariant is ∞.

• The only other possibility is 3ν(f) = ν(∆), e.g. type I∗0 . In that case the

j-map can be extended, and the j-invariant is a nonzero element of k.

Miranda’s algorithm essentially proceeds by blowing up the base until only a

few types of collisions appear.

• First, we blow up the discriminant locus until it is a simple normal crossing

divisor. The local ring at each codimension 1 component is then a DVR, so

the fibers over each codimension 1 component are of Kodaiara type.
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• Next, we blow up collisions with different j-invariants. Note that this is the

same as resolving indeterminacy of the j-map.

This gets rids of collisions of type II + III, e.g.

• Next, suppose we have a collision of type II+II∗, III+III∗, IV+IV ∗, I∗0 +I∗0 .

If we blow it up, we obtain a new fibration which is not minimal over the

new exceptional divisor. Passing to a minimal fibration over this new base

gives us a new 3-fold with those collisions missing.

• We continue blowing up collisions until we are left with only the following:

– (j = 0) II + I∗0 , II + IV ∗, IV + I∗0 .

– (j ∈ k×): III + I∗0 .

– (j =∞): I2m1 + I2m2 , I2m1 + I2m2+1, Im1 + I∗m2
.

• Finally, we use Tate’s algorithm to resolve singularities over the Γi. The

singular points over the collisions will automatically be resolved as long as

we only have collisions from the list above.

The fiber type over each collision point is determined by the fiber type of the

curves colliding at that point; a description of the fiber types can be found

in [53].

To obtain a Calabi-Yau elliptic fibration, we need LX/B ∼= ω−1
B to have global

sections. However, if we start with a Fano base and blow up too much, we may

end up with a variety whose canonical bundle has positive degree. Fortunately,

the work of Grassi [30] addresses this problem.

Miranda models play an integral role in Dolgachev and Gross’s generalization

of Ogg-Shafarevich theory to elliptic 3-folds. We discuss this next.
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7.2 Ogg-Shafarevich Theory

Next, we sketch some of the key results from [21].

Suppose we have a genus one fibration Y → B satisfying the following (equiv-

alent) conditions:

• The fiber over each b ∈ B has a component with multiplicity one.

• For each b ∈ B, there is an open neighborhood Ub such that the fibration

YUb → Ub has a section.

Let X → B be the Jacobian fibration, and E/K the fiber over the generic

point of B. We write X(X/B) to denote the Tate-Shafarevich group of X → B.1

Then:

• We can find a Miranda model for Y → B.

• Once we have the Miranda model, we can reduce the computation of X(E)

to the computation of Br(Y ) and some extra cohomology groups which are,

in principle, easier to understand.

To explain how to use this machinery, we fix the following notation:

• Bis a smooth irreducible complex surface.

• We write η to denote the generic point of B and i : η → B for the inclusion

morphism.

• We write K to denote the function field of B.

1The Tate-Shafarevich group of an elliptic fibration is the intersection of the kernels of the
localization maps WC(E/K)→WC(Eν/Kν), where we localize at..
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• π : X → B is a genus one fibration2 with local sections. We denote the fiber

over η as C/K.

• We write E/K for the Jacobian of C/K.

Now, C is a torsor of E, so C gives rise to a class in WC(E/K). We write δ′

for the index of [C] in WC(E/K). Since we are assuming C has local sections, C

actually gives rise to a class in XB(E).

7.2.1 Galois to Étale

The first step is to pass from Galois cohomology to étale cohomology.

• If B is an irreducible variety, then étale cohomology η coincides with Galois

cohomology of the generic point. In particular, this means:

WC(E/K) ∼= H1
et(η, E)

On the right hand side of the equation, we are treating E as an étale sheaf

that assigns to B → η the abelian group of B-valued points on E.

• The Leray spectral sequence, applied to the inclusion i : η → B, gives us the

following exact sequence:

0→ H1(B, i∗E)→ H1(η, E)→ H0(B,R1i∗E)→ · · ·

Note that the middle term, H1(η, E), is WC(E) by the previous comment.

• Next, we use the following theorem:

2The map is required to be flat and proper, as in our definition of genus one fibration.
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Let f : X → S be a quasicompact and quasi separated morphism, and let F

be a sheaf of abelian groups on the etale site of X and let s ∈ S be a closed

point. Then:

(Rqf∗F)s ∼= Hq(X ×Os, p−1F)

In particular, taking q = 1 and f the inclusion η → B, we get:

(R1i∗A)b ∼= H1(B × ηb, p−1A) = H1(ηb, Eb) = WC(Eb)

Thus, we may identify
∏

b∈BWC(Eb) with
∏

b∈B(R1i∗E)b.

• Now, we know that every the group of global sections of a sheaf injects

into the product of its stalks; thus the map H0(B,R1i∗E) →
∏

(R1i∗E)b ∼=∏
WC(Eb) is an injection. The kernel of the composition:

H1(η, E)→ H0(B,R1i∗E)→
∏
b∈B

WC(Ab)

coincides with the kernel of H1(η, E) → H0(B,R1i∗E). This allows us to

identify XB(E) with the étale cohomology group H1(B, i∗E).

We now focus our attention on the group XB(E) = H1(B, i∗E). As mentioned

earlier, we are going to reduce the computation of this group to the computation

of Br(X) and some “error terms”.

In order to relate these groups, we use the fact that both can be constructed

from Gm,X :

• By definition, Br(X) = H2
et(X,Gm,X).

• We can think of the Jacobian of X as a the kernel of the degree map from

the relative Picard group to Z.
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Let PX/B = R1π∗Gm, X. There is a morphism PX/B → i∗i
∗PX/B. We denote

the kernel of that morphism by E .

Note that if X → B is a Miranda model, then the morphism above is surjective,

so we have a short exact sequence:

0→ E → PX/B → i∗i
∗PX/B → 0

Furthermore, the support of E is contained in the subvariety of B consisting of

points b ∈ B whose fiber π−1(X) has multiple components.

There is one more technical tool we need: for a normal variety B, the group

H3(B,Gm) is torsion.

Now, one can construct a diagram:

0

0 Br(B) Br(X) H1(B,PX/B) H3(B,Gm)

0 Z/δZ XB(E) H1(B, i∗i
∗PX/B) 0

0 H2(B, E)
⊕

t∈B(1) H2(B, it∗i
∗
tE)

that reduces the computation of X to the computation of easier groups.

When the geometry of the fibration is simple enough, then the computation of

X boils down to computing the cokernel of Br(B)→ Br(X):

• If B is a smooth surface, then H3(B,Gm) = 0.

• If B is smooth and rational, then Br(B) = 0.

• If X is smooth and the fibers of X → B are irreducible, then H2(B, E) = 0.
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7.2.2 Example

We review Example 1.18 in [21] to explain how this machinery is useful in practice.

Let f1, f2, f3 ∈ C[x0, x1, x2] be homogenous cubics of degree 3, let V be the

C-vector space spanned by f1, f2, f3, let S = PV and define:

X =
{

([x0 : x1 : x2], [t1 : t2 : t3]) ∈ P2 × S : (t1f1 + t2f2 + t3f3)(x0, x1, x2) = 0
}

• X is birational to P3. Thus Br(X) = 0.

• The projection onto S endows X with the structure of a genus one fibration.

• The groups Br(S) and H3(S,Gm) vanish because S is a smooth rational

surface. Note that this traps H1(S, PX/S) between two zeros in the master

diagram, so H1(S, PX/S) = 0.

• For generic f1, f2, f3, the fibration does not have a global section but has

local sections. In other words, X represents a class in XS(J), where J is

the Jacobian elliptic fibration. Furthermore, we have δ = 3 by construction.

• The discriminant is a singular curve in S. The fibers over smooth points on

the discriminant locus are of type I1. In particular, the fibers are irreducible,

so H2(S, E) = 0, since E has support on the subvariety of the discriminant

locus over which the fibers are reducible.

• We can obtain a Miranda model J ′ → S ′ by blowing up the singularities

of the discriminant locus. Furthermore, since the fibers are irreducible in

codimension 1, we have a short exact sequence:

0→ Br(S ′)→ Br(J ′)→XS′(E)→ 0
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Note that Br(S ′) = 0 because S ′ is a smooth rational surface, so we have an

isomorphism Br(J ′) ∼= XS′(E).

Putting it all together, we see that Br(J ′) ∼= XS′(E) ∼= Z/3Z.

Thus, while X → S and J ′ → S ′ become birational after base changing so

that X → S has a section, they have different Brauer groups. This is especially

interesting because Br(J ′) 6= 0 implies J ′ is not a rational threefold, but becomes

rational after a base change. This means that for sufficiently generic f1, f2, f3, the

Jacobian of the rational genus one 3-fold is unirational, but not rational.

7.2.3 Historical Comments

The relationship between torsors of elliptic curves/fibrations and cohomological

Brauer groups has been a topic of interest at least since Grothendieck’s papers

on the Brauer group [35, 36, 37] and Tate’s complementary paper [71].Note that

those results are mainly stated for arithmetic elliptic surfaces, rather than elliptic

fibrations over complex varieties. Tate credits Artin for observing that in special

cases, finiteness of X is equivalent to finiteness of the Brauer group. Later on,

Ogg [61] and Shafarevich [65] study the analogous problem for abelian varieties

over function fields.

7.3 Classification of Calabi-Yau Elliptic Fibra-

tions

In [34], Gross does the following:

• He shows that elliptically fibered Calabi-Yau 3-folds form a “bounded fam-

ily”. Concretely, this means there are only finitely many bases that can
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appear in a Calabi-Yau 3-fold, and for each base, there is a variety of finite

type classifying those Calabi-Yau fibrations.

• Furthermore, he shows that one can use Ogg-Shafarevich theory to study

families of Calabi-Yau 3-folds. He shows that XS(E) is finite if E is the

generic fiber of an elliptically fibered Calabi-Yau 3-fold.

• Finally, he combines these ideas to show that genus one fibered Calabi-Yau

3-folds form a bounded family.

Some of these results have been generalized in [18] to elliptically fibered Calabi-

Yau d-folds with d = 4, 5.

Ogg-Shafarevich theory is best suited for studying questions of a “global” na-

ture. We can use it to prove existence of torsors without multiple fibers, and we

can use it to prove finiteness theorems for those torsors. However, it does not let

us see as much of the geometry as we would like.

The reliance on Miranda models makes it difficult to use in settings which are

important to F-theory. For example, we may want to study fibrations with mild

singularities which can’t be resolved further without changing the canonical bundle.

Furthermore, we may want to study fibrations with a singular discriminant locus

as in [45]. In this case, the local rings are not DVRs, so we can have codimension

1 degenerations which are not of Kodaira type.

One detail we will need from [34] in the later sections is the following: if

X → B is a Calabi-Yau 3-fold which is not isotrivial, then B is either P2,Fn for

n = 0, . . . , 12 or a blow up of one of those surfaces. For each possible base B,

it is easy to construct the bounded family that parametrizes elliptically fibered

Calabi-Yau 3-folds over B.
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Chapter 8

F-Theory

F-theory is a branch of string theory where elliptic fibrations play a key role. We

quote [72]:

The F-theory paradigm consists in using [a] one-to-one correspondence between

supergravity backgrounds with 7-branes and Calabi-Yau elliptic fibrations in order

to study the first using insights on the latter.

It is worth noting that this correspondence sometimes leads to new, string

theory-inspired theorems in algebraic geometry. See [31, 31] and [50] for examples.

For more on F-theory in general, one can look in [57, 58], [72] and other places.

One of the virtues of F-theory is that it allows us to determine “properties of the

physical theory” by simply computing classical invariants of the associated elliptic

fibrations. For example, on the physics side of things, an important invariant is

the gauge group.

• The gauge group is a semisimple Lie group G, with a decomposition as

G ∼= U(1)r ×Gna, where Gna is a nonabelian Lie group.

• Let G̃na → Gna be the universal cover. Then G̃na is determined by the

94



codimension 1 degenerations of X. Precisely, each irreducible factor of the

discriminant determines a DVR and the singular fiber over that factor is one

of the fibers in Kodaira’s list. These fibers are analytically isomorphic to

duVal singularities, so we can associate a Dynkin diagram to each factor of

the discriminant locus. This Dynkin diagram has an associated Lie algebra,

which has an associated simply connected Lie group.

The group G̃na is the product of these simply connected Lie groups.

• The integer r, and the fundamental group π1(G), are determined byMW (X/B).

Precisely, the dictionary says π1(G) = MW (X/B), so r is the rank of

MW (X/B) and π1(Gna) = MW (X/B)tors.

The aspect of the gauge group most relevant to this dissertation is the group

of connected components of the gauge group, which we explain next.

8.1 Discrete Torsion and Torsors

Let Y → B be a fibration without a section, and let X → B be the Jacobian fibra-

tion. If we use X, Y to do F-theory, there is no difference between the associated

physical theories. However, if we do M-theory, then we can see that one of the

fibrations has a section and the other doesn’t.

The interpretation for this is that the gauge group G has multiple connected

components, one for each (birational class) of fibration Y → B whose Jacobian is

X → B.

An important tool for studying this problem is the Tate-Shafarevich group. In

[34], it is shown (Prop 2.2) that the Jacobian of an genus one fibered Calabi-Yau

threefold without multiple fibers is also Calabi-Yau.
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Thus, whenever XB(X) is nontrivial, we have a gauge group G with multi-

ple connected components. Furthermore, XB(X) can be computed using Ogg-

Shafarevich Theory (7.2), so that part of π0(G) is reasonably well-understood.

However:

• There is a well-known construction for torsors in F-theory which produces

CY fibrations without section that fail many of the hypotheses in [34]. Thus,

X is not quite the whole story.

• Ogg-Shafarevich theory works best if we have smooth models. However, in

F-theory, we may want to work with models that have mild singularities over

a codimension 2 or higher locus. Furthermore, we would like to understand

why nontriviality of X seems to force the Jacobian to have singularities even

if the torsor admits a smooth model. It’s not clear how to extract this type

of information from X.

8.1.1 Goals of this dissertation

The goal of this dissertation is to develop tools for studying genus one fibrations

without section in F-theory. Precisely:

• How do we extend the analysis of 8.2 to higher degree torsors? For example,

can we make meaningful predictions about codimension 2 singularities on

the Jacobian of a fibration of high index?

• Can we find an explicit (sharp) bound on the index of a genus one fibered

Calabi-Yau 3-fold? Even if we restrict attention to fibrations with local

sections, where such a bound is in principle computable, there are no known

examples of Calabi-Yau fibrations of index exceeding 6.
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• How do we classify Calabi-Yau fibrations that do not fit the criteria in [21]?

Furthermore, how can we ensure that their Jacobians are also Calabi-Yau?

In the remaining sections in this chapter, we give a brief summary of some

relevant results from recent F-theory papers. The purpose of this chapter is mainly

to give the reader a sense of what types of details are important in F-theory.

8.2 2-torsors in F-theory

Genus one fibrations with a bisection1 have been analyzed in depth in the F-theory

literature, see e.g. [14], [56]. In this section we summarize some of the important

results about 2-torsors, so as to give a sense of what the desired toolkit should be

able to accomplish.

Say we have a 3-fold Y → P2 without section, and Jacobian X → P2. Assume

that Y has a section after passing to a double cover of P2.

Then Y can be described by an equation:

w2 = a0u
4 + a1u

3v + a2u
2v2 + a3uv

3 + a4v
4

where ai are sections of a line bundle on P2. In order for Y to be Calabi-Yau, we

need ai to be a global section of O(6d − 2i`) for some integer `. If the fibration

doesn’t have a section, then (deg(ai)) is necessarily2 one of (2, 4, 6, 8, 10), (4, 5, 6, 7, 8)

or (6, 6, 6, 6, 6).

Furthermore:

• Generically, the discriminant of Y → P2 is an irreducible curve with 108

nodes.

1This is the geometric name for a 2-torsor, which we will discuss later.
2Reversing the roles of u, v if necessary.
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• We can resolve singularities on Y , but we can’t resolve the singular points

over the nodes on X. Thus, we have a situation where Y is smooth and X

has 108 singular points that can’t be resolved crepantly.

• If we tune a0 or a4 so that it becomes a square, then Y → B will now be a

model for an elliptic fibration with nontrivial MW group.

In this case, X, Y are birational. Furthermore, X still has codimension 2

singularities over the nodes of the discriminant. However, these singularities

can now be resolved simultaneously.

In F-theory, it is not enough to know that a singularity exists somewhere. It

is important to know exactly what type of singularities appear, how often they

appear and where they appear. However, we can’t quite extract this type of

information from Ogg-Shafarevich theory - e.g. to be the best of my knowledge,

I don’t know how one would deduce that X has at least 108 I2 singularities that

can’t be resolved using only the assumption that XB(X) has nontrivial 2-torsion.

The key tool used to obtain these results is the Jacobian formula. In the

later chapters, we study the Jacobian formula for genus one fibered Calabi-Yau

3-folds which acquire a section after passing to a cover of low degree. Although

the Jacobian formula very quickly becomes too complicated to be of use, we hope

that the trace zero variety 12.2.1 can be used as a substitute for the purposes of

analyzing these singularities on Jacobians of high index torsors.

8.3 Quotient Torsors

Next, we discuss “quotient torsors”. The construction first appears in [22], and

has since been used in several F-theory papers, e.g. [3, 4, 2].
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To get started, we need the following data:

• An elliptically fibered Calabi-Yau 3-fold Y → B, given by a Weierstrass

equation:

y2 = x3 + fx+ g

We write σ0 : B → Y for the zero section of the fibration.

• An automorphism α ∈ Aut(B) satisfying:

– αn = α ◦ · · · ◦α = 1B, i.e. α has finite order n as an element of Aut(B).

– α∗(f) = f and α∗(g) = g.

– σ0 ◦ α = σ0 - that is, α “fixes the zero section”.

With this data, we can define an action of 〈α〉 on the Mordell-Weil group of

the fibration.

• Finally, we need an element P0 ∈ MW (X/B) which “has trace 0 with re-

spect to α”. Precisely, this means we want a (nonidentity) section B → X

satisfying one of the following conditions:

– P0 is fixed by α, and nP0 = P0 + · · ·+ P0 = 0.

– P0 is not fixed by α, and
∑
αi(P ) = 0.

With this data, we define an action of 〈α〉 on X by combining the action of α

on B with the translation-by-P0 map on the fibers.

We define a new fibration X/ 〈α〉 → B/ 〈α〉.

• If X is smooth, then the new fibration is smooth.
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• If X is Calabi-Yau, then the new fibration is Calabi-Yau.

However, if α has fixed points, then the new base is singular and the new

fibration has multiple fibers over the singularities.

Thus, this construction gives a whole new class of torsors that are wildly dif-

ferent from those classified in [34]. For more on these torsors in F-theory, see [2,

13, 4].

8.3.1 Schoen Manifolds

Let S1, S2 → P1 be a pair of rational elliptic surfaces.

Let X = S1 ×P1 S2 be the fiber product.

• X is Calabi-Yau.

• If the discriminant loci of the two fibrations are disjoint, then X is smooth.

• X can be endowed with the structure of an elliptic fibration in two different

ways using the projections X → S1 and X → S2.

If X is birational to a fiber product of rational elliptic surfaces, we say that X

is a Schoen manifold.

Schoen manifolds have more structure than a general elliptic CY 3-fold, so

they tend to be easier to study. The quotient construction has been completely

analyzed for Schoen manifolds in [13].

8.4 Minimal Singularities and Torsion

In [40], we proved a bound for the size of the Mordell-Weil torsion group of an

elliptically fibered Calabi-Yau d-fold for d ≤ 4. We present the proof in full detail
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in 9. The goal of this section is to highlight some of the additional geometric

information we obtained in that paper that turned out to be important in F-theory.

• Our argument shows that there are Weierstrass fibrations with trivial canon-

ical bundle and with points of order as high as 10. However, as soon as we

have a point of order exceeding 6, the threefold has singularities over a codi-

mension 2 locus of the base that can’t be resolved crepantly.

• Furthermore, we show that the presence of a torsion section of order at least

4 severely constrains the possible degenerations in codimension 1 on the

fibration.

If we have a torsion section of order at least 5, the fibration is necessarily

semistable.3 However, we can say more: for example, every fibration with a

5-torsion section as at least 2 I1 fibers and 2 I5 fibers. If we have a torsion

section of order at least 6, we must have at least an I1, I2, I3 and I6 fiber.

• The minimal configuration of singularities is determined by the cusps on the

corresponding modular curve. In particular, once we’ve constructed the mod-

ular curve for a particular torsion group (either algebraically or analytically),

we can immediately determine the minimal configuration of singularities on

any 3-fold with that torsion group.

Finally, we note that the minimal configuration of singularities can be read off

of pictures like 8.1, which encodes information about the natural covering map

X1(n)→ X(1).

The moduli space of elliptic curves over C has a natural triangulation.4 We pull

3This is actually a well-known property of elliptic surfaces.
4Note that the edges in the triangulation coincide with the subset of the moduli space that

represents real elliptic curves.
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Figure 8.1: Triangulation of X1(6) and X1(7). Sides with equal colors are to be
identified.

back the triangulation on X(1) to obtain a triangulation on X1(n). Furthermore,

the picture show us to construct X1(n) by gluing together multiple copies of X(1).

Finally, note that the picture represents a fundamental domain inH∗ for the action

of Γ1(n).

Here’s the point: the configuration of singularities forced on an elliptic fibration

with a torsion section of order n can be read off the picture directly. When n ≥ 5,

the fibers are all of type Im. The number of Im fibers in the universal surface is

equal to the number of cusps on X1(n). The widths of the cusps coincide with the

minimal values of m in the Im fibers. 5

Now, the cusps are the points in 8.1 with imaginary part equal to 0. The width

of each cusp can be computed by counting the number of triangles that meet at

that cusp, and dividing the result by 2. This is one reason there we have made a

concerted effort to include reasonably faithful illustrations wherever possible.

Furtbermore, the numbers predicted by these pictures coincide with the sin-

5See [40] for a precise statement.
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gularities we computed on the compactification of the universal elliptic curve over

the normalization of the modular curve over Z[1
6
]. Thus, we can work “at the

level of the generic fiber” and still constrain the geometry of elliptic fibrations in

a meaningful way if we can replicate this set-up.
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Part III

Torsors
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Chapter 9

Special Fibrations

Many of the ideas appearing, and their applications to F-theory, are discussed in

[40].

Let X → B be an elliptic fibration over a positive dimensional base. We say

that X is special if there is a commutative square:

X S

B C

Φ

π p

φ

(9.1)

where:

• S → C is an elliptic surface over an irreducible curve.

• The horizontal maps are nonconstant rational maps.

• The vertical maps are proper.

• φ is flat.

The usefulness of this definition is summarized in the following proposition:
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Proposition 9.1. Let π : X → B be an elliptically fibered Calabi-Yau 3-fold.

Assume that:

• X is special.

• π : X → B is not isotrivial.

• X does not have inadmissible singularities.

Then X is birational to a fiber product of rational elliptic surfaces.

Before we can prove the proposition, we will need some lemmas.

9.1 Global Lemmas

A variety B is rationally connected if two general points b1, b2 can be joined by

a rational curve, i.e. there exists a regular morphism P1 → B taking [0 : 1] to b1

and [1 : 0] to b2.

Lemma 9.2. Let B be a rationally connected variety, C an irreducible, separated

curve, and φ : B → C a non-constant rational map. Then C has genus 0 and φ is

flat.

Proof. Since φ is non-constant, we can find points b1, b2 ∈ B such that φ(b1) 6=

φ(b2). Since B is rationally connected, there is a regular map P1 → B taking 0 to

b1 and ∞ to b2. The composition P1 → C is a non-constant rational map, so by

[41]1, C has genus 0.

To prove flatness of φ, it suffices to prove that the map is flat over each point in

P1. Any proper open neighborhood of P1 has the form SpecR0 for R0 a principal

ideal domain (PID), so we can determine whether the map is flat by studying the

1The assertion is proven in IV.2.5.4 and IV.2.5.5
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morphism of algebras R0 → K(B). Since R0 is a PID, flatness is equivalent to

K(B) being torsion-free, which follows immediately from the fact that the map

B → P1 is non-constant and K(B) is purely transcendental.

As in Section 2, we write LY/B = (R1π∗OY )−1 for the fundamental line bundle

of the elliptic fibration π : Y → B and ωY (resp. ωB) to denote the canonical

bundle of Y (resp. B). A variety B is Fano if ω−1
B is ample. Note that every Fano

variety is rationally connected by Theorem 0.1 of [47].

Lemma 9.3. Let π : Y → B a special elliptic fibration. Then LY/B ∼= φ∗LS/C.

Proof. The conditions in the definition of a special elliptic fibration allow us to use

Prop. III.9.3 in [41] to compute:

LY/B = (R1π∗OY )−1 = (R1π∗Φ
∗OS)−1 = φ∗(R1p∗OS)−1 = φ∗LS/C . (9.2)

Lemma 9.4. Let B be a rationally connected variety, π : Y → B be a special

fibration and let d be the degree of LS/P1.

Then ωY ∼= π∗(ωB ⊗ φ∗(OP1(1))⊗d).

Proof. This follows from the canonical bundle formula for elliptic fibrations, to-

gether with the computation from the previous lemma.

Proposition 9.5. Let π : Y → B be a special elliptic fibration, with ωY trivial

and B Fano. If φ is a morphism, then dimB = 1.
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Proof. First, since B is Fano, B is rationally connected so C ∼= P1. Next, since

π has section, π∗ : Pic(B) → Pic(Y ) is injective, so triviality of ωY forces

φ∗(OP1(1))⊗d ∼= ω−1
B . Since B is Fano, ω−1

B is ample so φ∗(OP1(1)) is ample.

Finally, suppose φ is a morphism. Then φ∗(O(1)) is generated by global sec-

tions. By Corollary 1.2.15 in [49], φ∗(O(1)) is ample if and only if φ is finite. Thus,

if φ is a morphism, dimB = 1.

In applications, we will be using in the contrapositive of the last proposition,

i.e. if dimB ≥ 2 then φ is not a morphism.

Definition 9.6. Let φ = p
q
∈ K, with p, q ∈ R relatively prime. We can think of

φ as a map SpecR → P1. The locus of indeterminacy of φ is V (p) ∩ V (q) ⊂

SpecR.

Definition 9.7. Let φ be as above, and assume the locus of indeterminacy of φ

contains a closed point b. Let mb ⊂ R be the corresponding ideal. We define

mφ(b) to be the order of vanishing of the ideal (p, q) at mb.

Note that mφ(b) makes sense whenever we have a rational map B → P1 from

a normal scheme B, since the property is local on B. Furthermore, the definition

mφ(b) makes sense for any irreducible component of the indeterminacy locus, and

not just for closed points. To ease the exposition, we will refer to irreducible

components of the indeterminacy locus as points, although the arguments do not

require this.

Proposition 9.8. Let φ : B → P1 be a non-constant rational map and f a global

section of OP1(d) for some d > 0. If b ∈ B is in the indeterminacy locus of φ, then

φ∗(f) vanishes to order mφ(b)d at b.

108



Proof. The claim is local on B, so we assume B is affine, say B = SpecR. Choosing

coordinates [x0 : x1] on P1, we can express f(x0, x1) as a homogeneous polynomial

of degree d in x0, x1. Furthermore, we can write the map φ : B → P1 as b 7→

[p(b) : q(b)], where p, q ∈ R have no common factors. In this notation, we have

φ∗(f)(b) = f(p(b), q(b)).

Since f is a homogenous polynomial of degree d, f ∈ (x0, x1)d ⊂ k[x0, x1]. If b ∈

B is in the locus of indeterminacy of φ, then m
mφ(b)

b ⊃ (p(b), q(b)) = φ#((x0, x1))

so:

φ∗f ∈ (p(b), q(b))d ⊂ m
mφ(b)d

b

We now easily deduce the following:

Corollary 9.9. Let π : Y → B be a special fibration, let d be the degree of the

fundamental line bundle of LS/P1, and let b ∈ B be a point in the indeterminacy

locus of φ. Then the Weierstrass coefficients f, g of Y vanish to order (4n, 6n),

where n = dmφ(b).

Proof. Commutativity of the square (9.1) tells us fB = φ∗(f 1
P) and gB = φ∗(g1

P).

The Weierstrass coefficients of the elliptic surface are homogenous polynomials of

degree 4d, 6d respectively, proving the claim.

Corollary 9.10. Let π : Y → B be a special elliptic fibration and suppose the

order of vanishing of (f, g) does not exceed (4, 6) over any point b ∈ B. Then

either φ is a morphism, or S is rational and the locus of poles and the locus of

zeros of φ intersect transversely.

Proof. Assume φ is not a morphism. Recall that an elliptic surface is rational

if and only if the fundamental line bundle has degree 1. If the fundamental line
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bundle has degree d > 1, then the order of vanishing over all points in the locus

of indeterminacy is at least (4d, 6d). The condition on (f, g) forces d = 1, hence

rationality of S. If the locus of poles meets the locus of zeros non-transversely at

some point b, then mφ(b) > 1 so (f, g) vanish to order at least (8, 12) over b.

9.2 Proof of Proposition

The proposition now follows easily from everything we’ve done:

Proof. • By 9.10, the assumptions on X → B guarantee that S → C is a

rational elliptic surface.

• We can resolve indeterminacy in the map B → C by blowing up the 9 base

points of φ. By results in [66] or [26], e.g., B̃ → C is a rational elliptic

surface.

• Since X has maps to B̃ and S, there is a unique morphism of C-schemes to

the fiber product X → B̃ ×C S.

• Since X does not have inadmissible singualrities, it is minimal, so the map

X → B̃ ×C S is an isomorphism.

9.2.1 Comments

• When B is a surface, we can use the birational classification of algebraic

surfaces to make stronger statements and simplify some of the assumptions.
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Simply requiring the fibration to not be isotrivial forces the base to be ratio-

nal. After contracting all exceptional curves in the base, we may assume that

B ∼= P2 or Fn. A computations show that φ has 8 or 9 points of indetermi-

nacy, with 9 occurring if and only if B ∼= P2. If we assume that B = P2 e.g.,

it is easy to see that resolving indeterminacy of φ means blowing up P2 at

the 9 points in the base locus of a pair of cubics, so the new map φ̃ : B̃ → P1

is itself an elliptic fibration. Commutativity of (??) gives us a natural map

Ỹ → B̃×P1 S. Minimality of the fibration Ỹ → B̃ then forces that map to be

an isomorphism, showing that any special Y → B is birational to a Schoen

manifold.

• Requiring the base to be Fano, and more generally requiring Y → B to be

birational to a fibration over a Fano base, is a mild but necessary requirement

for this type of theorem. Even in dimension 2, one has to exclude fibrations

of the form E1 × E2 → E2, where E1, E2 are elliptic curves, when giving

a bound on Mordell-Weil torsion of K3 surfaces. In dimension three, this

condition rules out fibrations over Enriques surfaces, which are also isotrivial

and thus can have an non-finitely generated Mordell-Weil group. It also

rules fibrations of the form S ×E → P1 ×E, where S → P1 is a K3 surface.

However, our conclusion fails in all of these cases, showing the condition is

necessary in dimensions.2 and 3.

• By Theorem 1.8 in [18] every smooth2 elliptically fibered Calabi-Yau n-fold

Y → B is birationally equivalent to a (possibly singular) fibration over a Fano

base, as long as the original base is not of product type. Roughly speaking3,

B is of product type if B is birational to a quotient of a product. This

2This condition can be relaxed; see [18] for details.
3See [18] for the precise definition.
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condition is necessary to rule out higher dimensional analogues of isotrivial

fibrations in the statement of the boundedness theorem in [18]. However,

our theorem also fails for fibrations over a base of product type, and in fact

it is easy to construct counterexamples to our theorem in any dimension by

taking the product of a K3 with Mordell-Weil group Z8 with a product of

elliptic curves.

• The condition on the order of vanishing of (f, g) is precisely the condition

needed to guarantee that the Weierstrass model admits a proper, flat crepant

resolution, see e.g. [30]. Thus, any smooth fibration Y → B is birational to

one satisfying the conditions of the previous theorem.

9.3 Mordell-Weil Torsion

In this section, we prove the following:

Theorem 9.11. Let π : Y → B be an elliptic fibration satisfying the hypotheses

of the previous theorem. Then MW (Y/B)tors is isomorphic to one of the following

groups:

Zn : (n = 1, 2, 3, 4, 5, 6) ,

Z2 × Z2m : (m = 1, 2) , Z3 × Z3 .

Note that this list of groups is exactly the list studied in [9], and they can all be

realized as torsion subgroups of Schoen manifolds in dimension 3.

In order to apply the results of the previous section to rule out the existence

of fibrations with a particular torsion group T , we need an elliptic surface S → C

with the following property: for any elliptic fibration Y → B whose Mordell-Weil
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group contains a subgroup isomorphic to T , there exists a special diagram:

Y S

B C ,

Φ

π p

φ

We call S → C a universal elliptic surface for T .

Proof. If T is cyclic and |T | ≥ 4, then there is a well-known construction for a

universal elliptic surface. We give a construction for S → C and φ in Appendix ??.

For these groups, C ∼= X1(n), where n = |T |. A computation shows that C

has positive genus if n = 11 or n ≥ 13, and LS/C ∼= O(1) for n = 4, 5, 6 and

degLS/C > 1 for n ≥ 7. Thus, we can immediately rule out the existence of a

point of order exceeding 6 in MW (Y/B).

If T is not cyclic, then T is isomorphic to Zm × Zn for some pair of positive

integers m,n with 1 6= m|n.4 The previous argument also shows we may assume

n ≤ 6. If m = n and m ≥ 35, then it is also well-known that a surface S → C with

the desired property exists ([43] Cor. 4.7.2.) and that C ∼= X(m). A construction

for S → C is described in [68]. For these groups, one computes that X(m) has

genus 0 if m = 3, 4, 5 and has positive genus otherwise. Thus, we can rule out any

group containing Z6 × Z6. A computation using the formulae in the appendix of

[40] shows that LS/C ∼= O(1) for m = 3 and degLS/C > 1 for m = 4, 5, which

allows us to rule out Z4 × Z4 and Z5 × Z5.

Finally, we have to rule out Z2 × Z6 and Z3 × Z6.

See [40] for a construction of the surfaces S → C for T ∼= Z2×Z2m (m ≥ 2) and

T ∼= Zm × Z2m (m ≥ 3 and m odd) with the desired universal property. One can

4First, note that Zm×Zn ∼= Zgcd(m,n)×Zlcm(m,n), so we may assume m|n . Furthermore, we
may assume m 6= 1, since in that case T is cyclic.

5We do not need to consider Z2 × Z2 since the group is in our list of possible subgroups.
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compute the degree of the fundamental line bundle directly from the Weierstrass

model obtained from construction, to check that d = 1 is possible only in the

Z2 × Z4 case.

That will suffice to complete the proof.

Note that when dimB ≥ 3, the locus of indeterminacy of φ still has codimension

2, since it is a nonempty intersection of 2 hypersurfaces in B.

9.4 Quotient Torsors

In this section, we show that any fixed elliptically fibered Calabi-Yau threefolds

admits only finitely many quotient torsors. This shows that the results of [34] can

be extended to include a slightly larger class of Calabi=Yau 3-folds.

A priori, there is no reason to expect such a bound. Let K = C(s, t) and let

E/K be an elliptic curve given by a Weierstrass equation:

y2 = x3 + f(s, t)x+ g(s, t)

Suppose f(s, t) = f0(st) and g(s, t) = g0(st), where f0, g0 are univariate polyno-

mials. Then there are automorphisms of arbitrarily high order that fix f0, g0: for

any root of unity ζ, we have an action h(s, t) → h(ζs, ζ−1t). Furthermore, if we

choose f, g so that the elliptic curve has a point of order n > 1, then we can use

this data to construct torsors of index mn for all positive integers m.

• A quotient torsor is basically a ”normal” torsor of a descended version of

the original fibration - requiring f, g to be invariant under α is the same as

saying the fibration is defined over a proper subfield, and the quotient torsor

data lets us construct a torsor over the subfield that splits when we base

change back to the original field.
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• Let k = C(f, g). Exactly one of the following holds:

– k = C; this is the same as saying that the fibration is a product E×B.

– k has transcendence degree 1 over C.

– K/k is a finite degree extension.

We can ignore the first case, since isotrivial fibrations are not suitable for

F-theory. We can use the results in this chapter to show that every fibration

in the second class is special, hence Schoen. Quotient torsors of Schoen

manifolds are classified in [13].

That leaves the third case, which is easy to study, since the assumption that K/k

is algebraic means that there are at most finitely many automorphisms of K that

fix the coefficients f, g.

For any automorphism α which is compatible with the fibration, we can only ob-

tain finitely many inequivalent quotient torsors: the Mordell-Weil group is finitely

generated, and if we have two points in P1, P2 ∈ ker(Tα) with P1 − P2 ∈ nE(K),

where n is the order of α, then the associated cocycles differ by a coboundary,

so the associated quotient torsors will be isomorphic as curves over Kα. Since

E(K)/nE(K) is finite and Aut(K/k(E)) are both finite, it follows that any fixed

Calabi-Yau 3-fold admits at most finitely many inequivalent quotient torsors.

9.4.1 Comparison to other dimensions

The previous result shows that there are only finitely many families of genus one

fibered Calabi-Yau 3-folds, even if we include quotient torsors. This shows that

Gross’ finiteness result can be extended “by ε.”
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It is interesting to note that X is always infinite for elliptic K3 surfaces, and

the set of quotient torsors is always infinite for genus one Calabi-Yau’s of dimension

at least 4, but both are finite exactly when the total space is a Calabi-Yau 3-fold.

9.5 Applications to the torsor problem

• If we can construct a universal object classifying torsors, then we might be

able to use it to analyze singularities forced on the Jacobians the way we

used cusps on minimal singularities in

• If we can prove theorems of the form:

(∃X)(WC(E/K) 6= 0) =⇒ (∃Y )(MW (Y/B)tors) 6= 0

then we can use the bound on Mordell-Weil torsion on CY 3-folds to obtain

bounds on the order of WC.

• The quotient torsor story gives us an example where we have 3 distinct CY

3-folds - the original fibration X/B, the quotient torsor Y/(B/G) and the

Jacobian of the quotient torsor.

This suggests a possible criterion for determining when a class in WC admits

a CY model: it might be sufficient (maybe necessary too) that the base

extension EL admit a CY model.

Now, base extension changes the degree of the fundamental line bundle, so

that would mean we can only have torsors if the Jacobian has singularities

in codimension 1 that become non-minimal singularities after base change.

In Part II, we will study torsors of index 2 and 3 in depth, and show that we
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can construct something like a modular curve that encodes much of the theory.

We then show how to generalize that construction to classify torsors that split over

an arbitrary (finite) Galois extension L/K.
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Chapter 10

Index 2 Torsors

Let E/k be an elliptic curve. We will refer to torsors of E of index 2 as 2-torsors.

If C/k is a genus one curve, with C(k) = ∅ and C(k(
√
a)) 6= ∅ for some a ∈ k×,

then C is a 2-torsor of its Jacobian. We will also refer to such genus one curves as

2-torsors, leaving the Jacobian implicit.

• If C/k is a 2-torsor, then C can be described as:

w2 = Q(u, v)

for a homogenous quartic Q.

• Since period divides index, every 2-torsor of E has period dividing 2. Fur-

thermore, a 2-torsors can’t have period 1, so every 2-torsor has period 2.

• If we start with an equation:

w2 = Q(u, v)

then C is a 2-torsor iff:
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– Q(u, 1) is an irreducible polynomial of degree 4.

– We can view Q as a map of sets P1 → k×/k×4. In order for C to be a

2-torsor, the image of P1 in k×/k×4 should be disjoint k×2/k×4.

Concretely, we’re just saying thatQ(u, v) is not a square for any u, v ∈ k,

since otherwise we have a k-point on C.

In particular, we can deform the equation of a 2-torsor to obtain the

equation of an elliptic curve with a non-identity MW point, by replacing

the leading coefficient of Q by a square.

10.1 Jacobian Formula

If we start with an equation:

w2 = Q(u, v)

then we can use the Jacobian formula to obtain an equation for E/k. This is one

of the main tools in [56], so we review this now so that we can explain how to

generalize it to higher degree in the next chapter.

If we write:

Q(u, v) = au4 + bu3v + cu2v2 + duv3 + ev4 (10.1)

then the Jacobian of C is the Weierstrass elliptic curve:

y2 = x3 + cx2 + (bd− 4ae)x+ ad2 + b2e (10.2)

If char(k) 6= 3, the coefficients of the short Weierstrass equation are:
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f = −4ae− c2

3
g = −8ace

3
+ ad2 +

2c3

27

• The cubic used to define the Jacobian coincides with the resolvent cubic of

Q(x, 1).

• The invariants f, g are scalar multiples of the classical invariants of Q under

the action of SL2(k).

We write Q = {(a, b, c, d, e)} for the space of equations of quartics as in 10.1.

Let C2 ⊂ Q be the subset consisting of nondegenerate quartics. We will think

of elements of C2 as representing smooth genus one curves w2 = Q(u, v).

The group SL2(k) acts on Q: The discriminant is invariant under this action,

so it restricts to an action on C2.

Since the coefficients f, g of the Jacobian are SL2(k) invaraints, they are also

SL2(k) invariants, so we can think of the Jacobian formula as a map C2 →W that

factors through the quotient C2/SL2(k). The problem of classifying all 2-torsors

of fixed elliptic curve E is then the same as computing the fiber over a fixed point

(f, g).

We start by studying the action of some subgroups of SL2(k) on C.

10.1.1 Translations

Let Q(u, v) be a quartic with coefficients in C∗2 , and let C be the associated genus

one curve. If C(k) = ∅, then Q(u, 1) = a ∈ k×, where a is a nonsquare in k, and

C splits over k(
√
a).

For any such Q, there is a unique λ ∈ k such that Q(u + λv, v) is given by an

equation of the form:
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w2 = au4 + cu2 + du+ e

Thus, it suffices to consider genus one curves given by an equation with b = 0. We

denote this subset C0
2 .

Note that the Jacobian formula, when restricted to C0
2 , simplifies to:

y2 = x3 + cx2 − 4aex− 4ace+ ad2

10.1.2 k× action

Let D ⊂ SL2(k) be the subgroup of diagonal matrices. Note that D ∼= k×, since

every element has the form

t 0

0 t−1

 for some t ∈ k×.

Then D acts on quartics by:

t ·Q(u, v) = Q(tu, t−1v)

At the level of coefficients, the action is:

t · (a, b, c, d, e) = (t4a, t2b, c, t−2d, t−4e)

• The action respects the monomial structure, so in particular, it restricts to

an action on C0
2 .

• If Q,Q′ are in the same D orbit, then their leading coefficients are in the

same square class.

We write T2 for the quotient C0
2/D, and T 0

2 for the subset of T2 consisting of

equations with d = 0.
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• Note that c, ad2, ae are invariant under this action, so the Jacobian formula

indeed factors through T2 →W .

• Furthermore, we have a projection map T2 → k that sends an equivalence

class in T2 to c.

Let T2 →W × k be the product of those maps.

We will show the following:

• The map is surjective.

• This map is a bijection away from T 0
2 .

• Elements of T 0
2 map to pairs ((f, g), c), where c3 +fc+g = 0. The fiber over

such a triple is a k×/k×2 torsor.

This implicitly gives us the desired description of the fibers C2 →W : we have

factored the map as:

C2 → C0
2 → T2 →W

The fibers of C2 → C0
2 are k-torsors, the fibers of C2 → T2 are k×-torsors and the

fibers of T2 →W look like one of the following:

• If (f, g) defines an elliptic curve with no 2-torsion points over k, then the

fiber over (f, g) is isomorphic to k.

• If (f, g) defines an elliptic curve with a single 2-torsion point, then the fiber

looks like (k − {c0}) t k×/k×2, where c0 is the unique root of x3 + fx+ g.

• If (f, g) has full 2-torsion defined over k, then the fiber is (k − {c1, c2, c3}) t

(k×/k×2) t (k×/k×2) t (k×/k×2).
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Figure 10.1: An illustration of the map T2 →W.

• If x3 + fx + g, the fiber over (f, g) looks like k: for each c ∈ k, there is a

unique a ∈ k×/k×2 such that a ≡ c3 + fc+ g. Choosing a representative for

that square class lets us solve for d, e.

• If x3 + fx + g is not irreducible, but we choose c ∈ k which is not a root

of the cubic, we still have a unique point in the fiber over (f, g) with that

choice of c.

If c3 + fc+ g = 0, there are k×/k×2’s worth of torsors with c = 0 - we choose

a freely and solve for e:

w2 = au4 + cu2 − c2 + 3f

12a

Thus, if we work with T2 instead of the full space of quartics, we are not really

losing anything - however, the Jacobian map becomes much easier to understand.
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10.2 Cocycles and Trace Zero Points

We interpret the results of the previous section using Galois cohomology.

Let C be the 2-torsor:

w2 = au4 + cu2v2 + duv3 + ev4

Let k′ = k(
√
a), σ the generator of Gal(k′/k), and q ∈ C(k′) the point with

coordinates a = 1, u = 0, w =
√
a.

The cocycle representing (C, q) in WC(E/k) is the map:

Gal(k/k)→ E(k) τ 7→ [τ(q)− q] ∈ E(k)

Since q ∈ C(k′), the orbit of q contains only two elements, so the cocycle can

be described as:

τ 7→
{

0 if τ(
√
a) =

√
a

[σ(q)− q] if τ(
√
a) = −

√
a)

Thus, we can recover the entire cocycle if we know
√
a and p = [σ(q) − q] ∈

E(k′).

Now, let p ∈ E(k′) and suppose p = [σ(q)− q] for some q ∈ C(k′).1

Then p+ σ(p) = 0.

• In order to satisfy the cocycle condition, the image of σ has to satisfy σ(p) +

p = 0.

• A different way of seeing this is using the torsor condition: if p = [σ(q)− q],

then:

(σ(p) + p) + q = σ(p) + (p+ q) = σ(p) + σ(q) = σ(p+ q) = σ(σ(p)) = p

1In other words, suppose the map σ 7→ p satisfies the cocycle conditon.
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Thus, σ(p) + p fixes a point on C, so it must be the identity since the action

is simply transitive.

Thus, cocycles with values in E(k′) are in bijection with points in the kernel of

the trace map E(k′)→ E(k).

10.2.1 Quadratic Twists

Let E/k be an elliptic curve:

E : y2 = x3 + fx+ g

and let a ∈ k× be a nonsquare. Let Ea be the quadratic twist of E/k:

ay2 = x3 + fx+ g

Let k′ = k(
√
a).

• There is an isomorphism E(k′) ∼= Ea(k
′).

• The image of Ea(k) in E(k′) coincides with the kernel of the trace map

E(k′)→ E(k).

• The intersection E(k)∩Ea(k) coincides with the 2-torsion subgroup of E(k).

Proof. Define a map:

E(k′)→ Ea(k
′) (p, q) 7→ (p,

√
aq)

It’s clear that this takes pairs satisfying y2 = x3 + fx + g to pairs satisfying

ay2 = x3 + fx+ g, and that the map is a bijection.

The image of Ea(k) under the inverse map consists of all points of the form

(p,
√
aq) ∈ E(k′).
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This subset of E(k′) can be characterized in several ways:

• P ∈ E(k′) such that x(P ) ∈ k and y(P ) ∈
√
ak.

• P ∈ E(k′) such that σ(x(P )) = x(P ) and σ(y(P )) = −y(P ).

• P ∈ E(k′) such that σ(P ) = −P .

• P ∈ ker(E(k′)→ E(k)).

• P ∈ E(k′) satisfying x(P ) ∈ k and exactly one of the following two condi-

tions:

– P ∈ E(k′).

– P is a 2-torsion point.

• x(P ) ∈ k and Trk′/k(y(P )) = 0.

• Tr(P ) = 0.

The equivalence of these conditions is obvious.

Furthermore, it’s clear that if P ∈ E(k) ∩ E(k′), then P is a 2-torsion point.

Thus, the problem of finding all cocycles that split over a given extension k′

boils down to finding all k-points on the quadratic twist Ea(k). This is a hard

problem.

However, if we instead try to classify all cocycles that split over an arbitrary

quadratic extension, then the problem becomes trivial: starting from the Weier-

strass equation, we simply evaluate the cubic x3 + fx+ g at every point c ∈ k.

For at most 3 values of c, we get 0. In those cases, we have just found a 2-

torsion point on E. Since the 2-torsion points in E(k) are contained in the kernel
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of every trace map E(k′)→ E(k), we have an associated cocycle for each quadratic

extension k′.

A direct construction for the torsor from the cocycle for this special case is

given in [70].

In the generic case, i.e. when c3+fc+g ∈ k×, we either have c3+fc+g ∈ k×2, in

which case we’ve found a rational point in E(k), or else there is a unique quadratic

extension k′/k where c3 + fc+ g is a square.

10.2.2 Example: k = R

Say we have an elliptic curve E/R:

y2 = x3 + fx+ g

Then every c ∈ R either gives rise to a point on E(R) or a point on the quadratic

twist of E, depending on whether c3 + fc+ g ≥ 0 or c3 + fc+ g ≤ 0.

We can represent all of these as a subset of R3: we use one of the axes to

represent x, and the other two axes represent y and iy. The xy-plane represents

the points on E(R) and the x(iy)-plane represents points on the quadratic twist.

If j(E) < 1728, every cocycle is a coboundary. When j(E) > 1728, there are

cocycles which are not coboundaries. Since we have a surjection of E(C) onto the

coboundaries, the space of coboundaries is connected and contains the identity.

Thus, we can make a picture (10.2) representing the cocycles and coboundaries

of WC(E/R): we will use two axes to represent y, iy and the remaining axis to

represent x (with x, y ∈ RR). Plugging in real values into x3 + fx+ g either gives

us 0, in which case we have a 2-torsion point, a positive value, in which case we’ve

found a pair of points in E(R) or a negative value, in which case we’ve found a

pair of trace zero points.
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Figure 10.2: Cocycles and coboundaries for WC(E/R) as a subset of E(C).

10.3 Quaternion Algebras and the Witt Ring

In [39], it is shown how to construct a quaternion algebra over E that represents

the class of [C] in Br(E) under the splitting of:

0→ Br(k)→ Br(E)→ WC(E/k)→ 0

afforded to us by the section Br(E) → Br(k), provided we have an equation for

C/k.

Let (c,
√
ad) be a trace 0 point on E. The methods of the previous section

show that we can recover an equation for C/k from the Weierstrass coefficients of

E and a, c, d.

• We can write down the algebra without having to use the equation for C.

• The trace 0 condition on (c,
√
ad) allows us to prove that the quaternion

algebra spreads out from Br(k(E)) to Br(E).

• We use the relationship between the Witt ring of E and the Brauer group of
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E, and certain identities between quadratic spaces, to obtain a description

of WC(E/k)[2] in terms of generators and relations.

To begin, we show that the trace 0 condition can be used to give a direct proof

that (x+ c, a) spreads out to an algebra in Br(E).

Lemma 10.1. Let E be an elliptic curve, (c,
√
ad) a point of trace 0 and (x−c, a) ∈

Br(K(E)).

Then (x− c, a) extends to a class in Br(E).

Proof. We have to find new presentations for the algebra that can be used when

x− c or a vanish. Note that:

y2 − ad2 = (x− c)(x2 + cx+ f + c2)

FUrthermore, y2 − ad2 is the norm of an element in K(
√
a), so:

((x− c)(x2 + cx+ f + c2), a) = (y2 − ad2, a) = 0

But that means:

(x− c, a) ≡ (x2 + cx+ f + c2, a)

If 3c2 + f = 0, then our curve is singular at the trace 0 point.

Next, we discuss the group law. Suppose we have a pair of 2-torsors C,C ′ of

E. Let P, P ′ be the associated trace 0 points.

The cocycle that determines C,C ′ is determined by P, P ′, and the cocycle that

represents their sum is determined by P + P ′ (the sum taken in Mordell-Weil).
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If P, P ′ are defined over the same quadratic extension, then P + P ′ is also

defined over that extension, so we end up with a third point of the form (c,
√
ad).

We use the previous results to obtain an equation for the associated torsor.

However, if P, P ′ are defined over distinct quadratic extensions, the sum P +P ′

has a Galois orbit with 4-elements, so the associated torsor has index 4. We can

keep adding new trace 0 points defined over quadratic extensions to obtain 2-

torsion classes in WC(E/k) which do not have index 2. However, no matter how

many points we add, the associated torsor always has index at most 4.

We can use the Witt ring of E to obtain a model of index 4 for any torsor of

period 2. For ease of exposition, we assume that E[2] ⊂ E(K).

Theorem 10.2. Let E/k be the elliptic curve:

y2 = (x− e1)(x− e2)(x− e3)

Let W (k) be the Witt ring of k and W (E) the Witt ring of E.

1. W (E) is isomorphic, as a W (k)-module, to:

W (E) ∼= W (k)⊕W (K) 〈x− e1〉 ⊕W (k) 〈x− e2〉 ⊕W (k) 〈x− e3〉

2. Every class of index 2 in Br(E)/Br(k) can be represented by a quaternion

algebra of the form (x− ei, a) for a ∈ k×.

3. Every class of period 2 in Br(E)/Br(k) can be represented by a quaternion

algebra or a biquaternion algebra.

4. Every class in WC(E/k)[2] has index 2 or 4.

5. Period equals index in WC(E/k)[2] if and only if every quadratic form:
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aT 2
0 + (x− e1)T 2

1 − a(x− e1)T 2
2 = bT 2

3 + (x− e2)T 2
4 − b(x− e2)T 2

5

is isotropic in W (E). In particular, period equals index if the function field

of E is linked.

.

Proof. The proof of (1) is in [6, 7].

We use (1) to prove (2).

The isomorphism I2/I3 ↔ Br(E)[2] identifies the quaternion algebras (α, β)

with 2-fold Pfister form 〈〈α, β〉〉 . The decomposition of the Witt ring above makes

it clear that every 2-fold Pfister form has one of the following forms:

• 〈〈a, b〉〉 for a, b ∈ K×. The corresponding algebras come from Br(K), and

can be ignored.

• 〈〈x− er, a〉〉, a ∈ K×.

• 〈〈x− er, x− es)〉〉.

Consider the quaternion algebra Q = (x− er, x− es) for r, s ∈ {1, 2, 3}.

Case 1: r = s. Then:

[(x−er, x−er)] = [(x−er, (−1)(er−x))] = [(x−er, er−x)]+[(x−er,−1)] = [(x−er,−1)]

Case 2: r 6= s. Say r = 1, s = 2 and let i, j, k be the standard orthogonal basis

of the space of pure quaternions in (x− e1, x− e2). Then:

k2 = −(x− e1)(x− e2) =
−y2

x− e3

= −
(

y

x− e3

)2

(x− e3)
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(i+
√
−1j)2 = i2 +

√
−1(ij + ji)− j2 = (x+ e1)− (x− e2) = e1 − e2

(i+
√
−1j)k + k(i+

√
−1j) = (ik + ki) +

√
−1(jk + kj) = 0

so the space of pure quaternions in (x− e1, x− e2) is isometric to the space of pure

quaternions in (x−e3, e1−e2), so the algebras are isomorphic, i.e. [(x−e1, x−e2)] ≡

[(x− e3, e1 − e2)]. This proves (2).

To prove (3), note first that Br(E) injects into the Brauer group of its function

field, and the 2-torsion subgroup of the latter is generated by quaternion algebras

by Merkurjev’s theorem. We’ve shown that every (relevant) quaternion algebra

has the form (x − er, a). By well-known properties of quaternion algebras, we

have:

(x− er, a)⊗ (x− er, b) ∼= M2(K)⊗ (x− er, ab)

so tensor products of arbitrarily long length are always Morita equivalent to a

tensor product of the form:

(x− e1, a)⊗ (x− e2, b)⊗ (x− e3, c)

Finally, using the defining equation of E, we can show that:

(x− e3, c) = ((x− e1)(x− e2), c) ≡ (x− e1, c)⊗ (x− e2, c)

so:

(x− e1, a)⊗ (x− e2, b)⊗ (x− e3, c) ≡ (x− e1, ac)⊗ (x− e2, bc)

This proves (3).

(4) follows easily from (3); the torsor associated to (x− e1, a)⊗ (x− e2, b) is:
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aX2
0 − bX2

1 = (e2 − e1)X2
3 aX2

0 − abX2
2 = (e3 − e1)X2

4

Finally, (5) is simply the Albert criterion applied to the quaternion algebras

above.

Remark: As a corollary, we have a formula for the group law in WC(E/K)[2];

the results above tell us that every torsor is represented by an algebra of the form

(x− e1, a)⊗ (x− e2, b), and it’s clear how to “add” those algebras. Since we can

freely go back and forth between equations for torsors and Azumaya algebras, we

have our “group law formula”.

Finally, we show how to express a given algebra (x − c, a) in terms of the

generators.

Lemma 10.3. Let α, β ∈ K×, with α+β 6= 0. The quaternion algebra A = (α, β)

is isomorphic to (α + β,−αβ) as K-algebras.

Proof. We will find an orthogonal basis of A that satisfies the relations of the

second algebra.

Let ĩ = i+ j and j̃ = βi− αj.

Observe that:

ĩ2 = (i+ j)2 = i2 + ij + ji+ j2 = α + β

k̃2 = (βi− αj)2 = β2i2 − βαij − βαji+ α2j2 = αβ(α + β)

ĩk̃ = βi2 − αij + βji− αj2 = (β − α)ji

k̃ĩ = βi2 + βij − αij − αj2 = (β − α)ij
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The last two displays show that:

ĩk̃ + k̃ĩ = 0

Thus, A ≡ (α + β, αβ(α + β)).

The usual equivalence (γ, δ) ≡ (γ,−γδ) gives us the final representation A ≡

(α + β,−αβ).

Proposition 10.4. Consider E/k:

y2 = (x− e1)(x− e2)(x− e3)

and suppose we have a torsor d 6= 0 with quaternion algebra (x− c, a), with c 6= e`

for ` = 1, 2, 3 (in the notation of Prop 5.1).

Then:

(x− c, a) ≡ (x− e1, c− e1)⊗ (x− e2, c− e2)⊗ (x− e3, c− e3)

in the Brauer group of E.

Proof. By the proposition above, we know that c is the abscissa of a K-point on

the quadratic twist of E by
√
a, so:

(c− e1)(c− e2)(c− e3) ≡ a (mod K×2)

(x− c, a) ≡ (x− c, c− e1)⊗ (x− c, c− e2)⊗ (x− c, c− e3)

Applying the lemma:
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(x− c, a) ≡
3⊗
`=1

(x− c, c− e`)

=
3⊗
`=1

(x− e`, (x− c)(e` − c))

≡
3⊗
`=1

(x− e`, (e` − c))⊗ (x− e`, x− c)

≡ ((x− e1)(x− e2)(x− e3), x− c)⊗
3⊗
`=1

(x− e`, (e` − c))

≡ (y2, x− c)⊗
3⊗
`=1

(x− e`, (e` − c))

≡
3⊗
`=1

(x− e`, (e` − c))

10.4 2-Torsors over Discrete Valuation Rings

We quickly comment on the theory of 2-torsors over discrete valuation rings, as

many of our tools work better than expected in that setting.

Let R be a DVR over an algebraically closed field of characteristic 0, and let

C/R be a 2-torsor. Then we have a model for C of the form 10.1. By 1.14, we can

transform that to an equation:

w2 = au4 + cu2 + du+ e

with ν(a) = min {ν(a), ν(c), ν(d), ν(e)}.

• If ν(a) = 0, then the torsor splits (since we are assuming the residue field is

algebraically closed).
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• If ν(a) ≥ 2, then every coefficient is divisible by $2 so we can obtain a new

equation over R by dividing through by $2. Thus, we may assume that

ν(a) = 1 and ν(c), ν(d), ν(e) ≥ 1.

Thus, if C does not have a section over R, then the special fiber is singular.

The isomorphism types of singular fibers for 2-torsors are described in [63]. We

can determine the isomorphism type directly from the valuations of ν(a), ν(c), ν(d), ν(e)

using the Jacobian formula and the valuative characterizations of singular fibers

on the Jacobian.

To begin, we need an analog of a minimal integral equation for 2-torsors.

• Suppose we have an equation for C:

w2 = a0u
4 + a1u

3v + a2u
2v2 + a3uv

3 + a4v
4

and ν(ai) ≥ i for all i.

Then replacing v by $v, we obtain a new equation for C with coefficients

a′i = $−iai. Thus, we may assume ν(ai) < i for at least one value of i.

• Next, suppose ν(ai) ≥ 2 for all i. We can replace w by $w and divide

through by $2 to obtain a new equation over R. Thus, we may further

assume that ν(ai) < 2 for all i.

• Finally, we can use 1.14 to obtain an equation with ν(a0) = min {ν(ai)} and

a1 = 0.

This will reduce the possibilities for ν(ai) that we have to consider.

• We may assume that ν(a0) ≤ 1.
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• If ν(a0) = 1, then ν(ai) ≥ 1 for all i and the Jacobian has a nonreduced

singularity.

Now, assume that C is given by an equation as in 3.3, with coefficients in R

satisfying the minimality conditions just described. Let f, g be the Weierstrass

coefficients of the Jacobian. We compute:

ν(f) ≥ min {ν(a) + ν(e), 2ν(c)} (10.3)

ν(g) ≥ min {ν(a) + ν(c) + ν(e), ν(a) + 2ν(d), 3ν(c)} (10.4)

We can determine the isomorphism type of the special fiber on the Jacobian

from the valuations of the coefficients of C. For example, recall that we have a

singularity of type III if ν(f) = 1 and ν(g) ≥ 2.

• It’s easy to see that ν(f) = 1 is only possible if ν(a) = 0, ν(c) ≥ 1, ν(e) = 1.

• Under the conditions required for ν(f) = 1, we have ν(g) ≥ min {2ν(d), ν(c) + 1},

since 3ν(c) > ν(c) + 1.

Thus, we have a singularity of type III if and only if ν(a) = 0, ν(c), ν(d) ≥ 1

and ν(e) = 1.

Similar characterizations can be obtained for the other fiber types.

We make some final remarks about the geometry of 2-torsors (over local rings).

• Suppose ν(a) = 1, ν(e) = 3 and ν(c) ≥ 2, ν(d) ≥ 3. Then the equation for

the torsor is minimal, but the equation for the Jacobian is not.

This phenomenon is discussed in [55].

• For more on the geometry of the special fiber in torsors of low degree, see

[64].
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Chapter 11

Index 3 Torsors

11.1 Field Preliminaries

The next simplest case to consider is torsors that split over a cubic extension.

Already, though, there are new challenges:

• Every field (of characteristic not 2) contains a primitive 2nd root of unity.

However, fields as big as R can fail to have any other primitive root of unity.

• Every quadratic extension is Galois. Again, this is no longer the case as soon

as we pass to cubic extensions.

We can deal with both of these issues simultaneously by assuming that k is

quadratically closed and 6 ∈ k×; in that case ω = −1+
√
−3

2
is a primitive cube root

of unity.

The map WC(E/k) → WC(E/kq) is injective on odd-torsion, so we do not

have to worry about accidentally introducing rational points on index 3 torsors

that didn’t have any to begin. Furthermore, this assumption also guarantees we

have a primitive cube root of unity in k, since k must contain roots of x2 − x+ 1.
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Thus, every cubic extension of k has the form k( 3
√
a) for some a ∈ k×.

Now, say we have a quadratic polynomial ax2 + bx+ c over k and a quadratic

extension k(
√
d)/k. The polynomial splits over k′ iff d is in the same square class

as b2 − 4ac.

We will need an analogous results for cubic polynomials.

• We need to be able to find an element a ∈ k× such that k( 3
√
a) is the splitting

field of a given cubic.

• We need a criterion for determining whether an arbitrary cubic splits over a

given cubic extension k( 3
√
a).

Proposition 11.1. Let x3 + fx+ g be an irreducible cubic.

• Let a ∈ k×. Then x3 + fx + g splits over k( 3
√
a) iff there exist q, t ∈ k such

that:

− 3aqt = f − a2q3 − at3 = g (11.1)

• The cubic x3 + fx+ g splits after adjoining a cube root of:

g

2
+

√
∆

3
√

6
(11.2)

Proof. If x3 +fx+g is irreducible over k, then its roots in k′ have trace zero, so we

can write them as qα+ tα2, qωα+ tω2α2, qω2α+ tωα2 for some q, t ∈ k. Equating

coefficients in:

x3 + fx.+ g =
2∏
i=0

x− (ωiαq + ω2iα2t)

we obtain the system of equations:
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−3aqt = f − a2q3 − at3 = g

If x3 + fx + g splits over k, we can solve the system above, and if we have a

solution q, t to that system, then qα + tα2 is a root of the cubic.

The cubic formula show that we can take a = g
2

+
√

∆
6
√

3
.

Finally, note that we can still solve 11.1 over k if x3 + fx+ g splits completely

over k, and k contains a primitive cube root of unity ω. In that situation, we can

find p, q ∈ k such that:

x3 + fx+ g = (x− p)(x− q)(x+ p+ q)

= x3 + (pq − p(p+ q)− q(p+ q))x+ pq(p+ q)

= x3 + (p2 − pq + q2)x+ pq(p+ q)

= x3 + (p+ ωq)(p+ ω2q)x+ pq(p+ q)

11.2 Trace Zero Points

Since we’re studying torsors that split over a cyclic extension, it’s clear that we

will need to use trace zero points on the Jacobian at some point.

We characterize these before discussing torsors.

Let E/k be an elliptic curve given by a Weierstrass equation:

y2 = x3 + fx+ g

Let k′ = k( 3
√
a) be a cubic extension and let P ∈ E(k′).

Proposition 11.2. The following are equivalent:

• P is in the kernel of the trace map.
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• There’s a line that meets E at P, σ(P ), σ2(P ) 1

• σ(P ) + σ2(P ) = −P

• x(σ(P ) + σ2(P )) = x(P ).

• There’s a line defined over k that meets E at P, σ(P ), σ2(P ).

Proof. The equivalence of the first three conditions is clear. Furthermore, it’s

clear that σ(P ) + σ2(P ) = −P implies x(σ(P ) + σ2(P )) = x(P ), and that the last

condition implies the second conditon.

If we assume x(σ(P ) + σ2(P )) = x(P ), then y(σ(P ) + σ2(P )) = ±y(P ), so

either σ(P ) + σ2(P ) = −P or σ(P ) + σ2(P ) = P . In the first case, P clearly has

trace zero.

If P ∈ E(k′), x(σ(P ) + σ2(P )) = x(P ) and y(σ(P ) + σ2(P )) = y(P ), then

Tr(P ) = 2P . Since Tr(P ) ∈ E(k), this means Tr(2P ) = 6P . But Tr(2P ) =

2Tr(P ) = 4P so 2P = 0.

Thus P is a 2-torsion point on E(k′).

If P ∈ E(k), then P = σ(P ) = σ2(P ), so σ(P ) + σ2(P ) = 0. This means

x(P ) 6= x(σ(P ) + σ2(P )), which contradicts our current assumption. Thus, P 6∈

E(k).

This means x(P ) is a root of x3 +fx+g and so P, σ(P ), σ2(P ) are all 2-torsion

points on E(k). Since they all lie on the line y = 0, they are collinear.

Thus, the fourth condition implies the previous 3.

Finally, we show that the first 4 conditions imply the fifth.

Now, let P ∈ E(k′) be a point of trace zero and let λ be the slope of the line

through σ(P ) and σ2(P ). We use the formula for the group law to compute:

1If P is fixed by σ, then we mean the line passes through P with multiplicity 3.
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x(σ(P ) + σ2(P )) = λ2 − x(σ(P ))− x(σ2(P ))

Setting this equal to x(P ) and rearranging, we obtain:

x(P ) + σ(x(P )) + σ2(x(P )) = λ2

The left hand side of this equation is Tr(x(P )) ∈ k, so λ2 ∈ k. Thus λ is defined

over an intermediate extension in k′/k of degree at most 2. But k′/k has degree 3,

so λ ∈ k.

If P ∈ E(k′) has trace zero, we can perform a change of variable of the form

over k of the form y → y + λx+ t to obtain a new equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where the tangent at P has the form y = t0 for some t0 ∈ k.

The coefficient a1 is determined by P . However, we still have freedom in

choosing the remaining coefficients.

• Regardless of what we do to the left hand side, we will always assume that a

change of variable has then been performed on the right hand side to ensure

a2 = 0.

• If we have a trace zero point of order 3, we can choose an equation for the

Jacobian so that the line passing through our chosen point and its conjugates

has the form y = t for some t ∈ k. This choice uniquely determines a1, but

we still have some freedom in choosing t. Different choices of t give will

change the remaining coefficients.
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• In 11.4 we define unobstructed equations. For each pair (f, g) and each choice

of a1, there is at least one and at most two unobstructed equations. This

will allow us to assign one or two unobstructed equations to each pair (E, p)

consisting of an elliptic curve E/k and a point p ∈ E(k′) of trace zero.

11.3 Plane cubics

Every torsor of index 3 has a model as a plane cubic in P2
k. We have a 10-

dimensional space C3 of equations for non-degenerate plane cubics, and we can

define a map C3 →W that sends a cubic to it’s Weierstrass coefficients.

We have an action of PGL3(k) on C3.

For a given cubic F (x, y, z), the coefficients f, g of the Jacobian turn out to

be scalar multiples of the Aronhold invariants of F - that is, the map C3 → W

coincides with the quotient C3 → C3/PGL3(k).

The Jacobian formula for a general element of C3 over fields of characteristic

not equal to 2 or 3 can be found in [1]. The formula is generalized to plane cubics

over arbitrary schemes in any characteristic in [8].

Rather than presenting the full formula, we find a convenient subset of C3

which contains a fundamental domain for the action of PGL3(k). We then give

the Jacobian formula for cubics in that subset.

Precisely, we will show that there is a change of variable to an equation of the

form:

ax3 + by3 + cz3 + qy2z + txy2 +mxyz = 0

We write C0
3 be the subset of C3 consisting of equations of that form.

Proof. We will use the normalization process described in [25]. Let F (x, y, z) ∈ C3
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and let ` be a line in P2.

• The restriction of F to ` is a binary cubic. Note that this cubic is necessarily

irreducible over k, since otherwise we can find a nontrivial zero of F in k.

• Since k is quadratically closed, the splitting field of F |` is a cyclic extension

of degree 3. We can do a change of variables (essentially acting on P2 by a

fractional linear transformation in the coordinates of `) so that:

F (x, y, z) = by3 + F1(x, z)y2 + F2(x, z)y + (ax3 + cz3)

with F1, F2 binary forms of degree 1,2 respectively.

Note that b 6= 0, since otherwise the curve would have the point [0 : 1 : 0].

• Next, if we replace x by x+ λy, we obtain a new equation:

F (x+λy, y, z) = (b+aλ3)y3+(F1(x, z)+3aλ2x)y2+(F2(x, z)+3aλx2)y+(ax3+cz3)

If we set λ to be the negative of the coefficient of x2 in F2(x, z), we obtain a

new equation of the same form but where F2(x, z) is guaranteed to not have

an x2 term.

• Finally, replacing z by z+λy as above, we can eliminate the yz2 term without

affecting the yx2 term. Thus, we now have an element of C0
3 .

Thus, C0
3 contains a fundamental domain for C3/SL3(k).

11.3.1 k× action

Having decided on a “monomial structure”, we now describe some actions of k×

on C0
3
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• First, we have the action of k× on C0
3 that scales a polynomial. One often

uses this scaling to obtain an equation with c = 1 to eliminate one of the

variables.

• We also have an action of k× × k× on Cunob3 , where we identify k× × k× with

the subgroup of diagonal matrices in SL3(k). Explicitly, the action is given

by:

(t1, t2) · F (x, y, z) = F (t1x, t2y, (t1t2)−1z)

Note that the k× action changes the coefficients f, g of the Jacobian (see

next section) but the k× × k× action fixes them. Both actions preserve the k-

isomorphism class of the Jacobian, i.e. they don’t change the j-invariant.

11.4 Jacobian Formula and Unobstructed Equa-

tions

Now, we are going to try to invert the Jacobian formula as we did with 2-torsors.

This will be possible if we use unobstructed equations.

LetWext be the space of extended Weierstrass equations. Let F ∈ C0
3 and let C

be the associated genus one curve. The Jacobian of C is isomorphic to the elliptic

curve E/k:

E : y2 + a1xy + a3y = x3 + a4x+ a6

where:

145



a1 = m

a2 = 0

a3 = 9abc

a4 = −3acqt

a6 = −27a2b2c2 − a2cq3 + abcm3 − ac2t3 − acm2qt

We think of this as a map C0
3 →Wext.

Definition 11.4. Let C be a curve given by an equation F = 0 for F ∈ C0
3 . We

say the equation for C is unobstructed if:

−27a2b2c2 + abcm3 − acm2qt = 0

Let E/k be an elliptic curve, and assume E is given by an extended Weierstrass

equation with a2 = 0 and a3 6= 0. We say that the equation for E is unobstructed

if:

a2
3

−3
+
a3a

3
1

9
+
a2

1a4

3
= 0

An easy computation shows:

Lemma 11.5. TFAE:

• The equation for C is unobstructed.

• The equation for the Jacobian is unobstructed.

• The equation for the Jacobian is:

y2 +mxy + 9abcy = x3 − 3acqtx− a2cq3 − ac2t3
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We write Cunob3 (resp Wunob) for the subset of unobstructed equations in C0
3

(resp. Wext).

LetWext →W be the map that takes an extended Weierstrass equation to the

invariants f, g.

Now, we show how to associate to each a marked genus one curve of index 3

an unobstructed equation for the Jacobian.

Proposition 11.6. Let (C,Q) be a marked genus one curve of index 3 that splits

over k′ = k( 3
√
a). Let E/k be the Jacobian and let P ∈ E(k′) be the point [σ(Q)−

Q].

• P is a nonidentity point in the kernel of the trace map E(k′)→ E(k).

• There is an equation for E/k as:

y2 + a1xy + a3y = x3 + a4x+ a6

such that the line through P, σ(P ), σ2(P ) has the form y = t for some t ∈ k.

The equation is unique2 up to translations of the form y 7→ y + u for u ∈ k.

• There is at least one, and at most two, values of u that give an unobstructed

equation.

Proof. The only point that requires a proof is the last one.

If we start with an equation:

y2 + a1xy + a3y = x3 + a4x+ a6

and do a change of variable y 7→ y + u (followed by x 7→ x +
a′2
3

) to obtain a new

equation:

2Among Weierstrass equations with the same discriminant.
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y2 + a1xy + a3(u)y = x3 + a4(u)x+ a6(u)

where:

a3(u) = a3 + 2u

a4(u) = a4

a6(u) = a6 − u2

Now, the new equation is unobstructed if and only if:

− 12u2 + u
(
2a3

1 − 12a3

)
+ a3

1a3 + 3a2
1a4 − 3a2

3 (11.3)

Since k is quadratically closed, we can solve for u to obtain an unobstructed equa-

tion.

Thus, there are two values of u if and otherwise there is exactly one.

Finally, we show how to obtain an equation for C from an unobstructed equa-

tion for an elliptic curve E/k.

• Let a1, a3, a4, a6 be coefficients of an unobstructed cubic.

If x3 +a4x+a6 has a root in k, then it splits completely in k and we have an

elliptic curve with 3 rational points on the line y = 0. Otherwise, x3+a4x+a6

splits over an extension of the form k′ = k( 3
√
a). The element a is essentially

determined by the extension - any other choice of a has to generate the same

subgroup of k×/k×3. We can use 11.1 to find an a.

• By 11.1, the fact that x3 +a4x+a6 splits over k′ is equivalent to the existence

of q, t ∈ k satisfying 11.1.
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• Finally, we set m = a1, c = 1 and b = a3
−9a

. These choices guarantee that

(a, b, c, q, t,m) maps to (a1, a3, a4, a6) under the Jacobian map.

11.5 Factoring the Jacobian Map

Let Wunob be the space of unobstructed Weierstrass equations. We have a map

Wunob → W that takes an unobstructed equation to the coefficients of the short

Weierstrass equation.

The results of the last section can be interpreted as a factorization of the

Jacobian map into several, simpler maps:

C3 Wext

Cun Wun k ×W W

Cun/k× Wun/k× (k ×W)/k× W/k×

(11.4)

To compute the Jacobian, we start on the left side of 11.4 and work our way to

the right side of the diagram. We can describe the fibers of each of these simpler

maps.

Then map k × Ws → Ws is simply a projection, so our first task is under-

standing the fibers of the map Wun → k ×Ws. Let (f, g) ∈ Ws, representing the

elliptic curve:

y2
0 = x3

0 + fx0 + g

and let m, b ∈ k. We can do a change of variables replacing x0, y0 by x, y, where

y0 = y + mx+b
2

and x0 = x+ m2

12
. In the new coordinates, we have:
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y2 +mxy + by = x3 +

(
m4

48
− bm

2
+ f

)
x+

m6

1728
+
fm2

12
− b2

4
+ g

The obstruction of this equation is:

−3a2
3 + a3

1a3 + 3a2
1a4 = −3b2 +m3b+ 3m2

(
m4

48
− bm

2
+ f

)
= −3b2 − m3

2
b+m2

(
m4

16
+ 3f

)
This is a quadratic equation in b, so:

• For any elliptic curve with short Weierstrass coefficients (f, g), and any m ∈

k, there exists an unobstructed equation with for (f, g) with a1 = m.

• Away from the locus where:

m2(m4 + 36f) = 0

there are exactly 2 unobstructed equations for each choice of f, g,m.

Overall, the map Wun → k ×W is a double cover branched along a sextic (if

we give f,m the appropriate weights).

Next, we want to understand the fibers of Cun →Wun.

Now, let (a1, a3, a4, a6) ∈ Wun, and let a = a4
2

+

√
4a34+27a26

6
√

3
. Then either a is

a cube, in which case x3 + a4.x + a6 splits completely and we are in a degenerate

situation where the elliptic curve has k-rational points, or else x3 + a4x + a6 is

irreducible and splits completely after adjoining a cube root of a. By the previous

comment, we can find q, t such that −3aqt = a4 and −a2q3 − at3 = a6. We

set b = a3
−9a

, m = a1 and c = −1 to obtain an element of Cun that maps to

(a1, a3, a4, a6).
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Furthermore, for the most part, this lift is essentially unique: as long as x3 +

a4x+ a6 is irreducible, the splitting field k′/k is determined up to isomorphism, so

we only need to choose a primitive element A to obtain every other coefficient. We

could have chosen a2 instead of a, but then we would have obtained an element

of C where the roles of x, z have been interchanged. Thus, in the generic case, the

fibers contain exactly two elements, unless a = c and q = t, in which case the fiber

contains a single element.

If x3 + a4x+ a6 has 3 distinct roots in k, then the associated elliptic curve has

three k-rational points whose x-coordinates are the roots of that cubic and whose

y-coordinates are 0. They lie in the image of cubics that have a k-rational point,

so they do not actually lie in the image of C. We ignore this case for now.

Similarly, if x3 + a4x + a6 has 2 distinct roots in k, then the Jacobian has a

nontrivial Mordell-Weil group and we ignore these.

If a4 = a6 = 0, the associated elliptic curve necessarily has a 3-torsion point at

(0, 0). We can choose a, c freely and solve for b,m to compute points in the fiber

over these points. Note that replacing a, c by a different element in the same coset

in k×/k×3 gives the same element in C, so these fibers look like (k×/k×3)2/k×,

where we are taking the quotient by the kernel of the product map.

This completes the analysis of the horizontal maps.

Next, we remark that W2/k× ∼= k, since over a quadratically closed field, the

issue of quadratic twists does not come up, so elliptic curves are determined by

their j-invariant. Thus k ×W/k× ∼= k × k.

The map Wun/k× → k×W/k× is a double cover of k2 branched over a sextic,

so Wun/k× is birational to a K3 surface.

Finally, away from the locus where a4 = a6 = 0, the map Cun/k× → Wun/k×

is a bijection, and when a4 = a6 = 0, the fibers are in bijection with k×/k×3 as
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described above.

11.5.1 Parametrizing 3-torsors

We can use these results to construct two different objects that parametrize 3-

torsors.

• The space T3 = {(a, b, c, q, t,m)} /(k× × k×) contains a fundamental domain

SL3(k)- equivalence classes of equations for 3-torsors. Furthermore it is easy

to describe, and it is easy to obtain representatives of each torsor in T3.

However, T3 contains obstructed equations - the space of unobstructed equa-

tions is a hypersurface in T3.

• On the other hand, we can ignore the space of equations altogether and study

the family of elliptic curves:

y2 +mxy − 9aby = x3 − 3aqtx− a2q3 − at3

with a ∈ k× fixed and m, b, q, t varying.

Each of these elliptic curves has a point of trace zero defined over k( 3
√
a) with

y = 0.

In the next chapter, we explain how we can construct objects analogous to the

second type of parametrizing space, with no assumptions on the index.

11.6 Singularities on the Jacobian

Let X ⊂ P2×P2 be a bidegree (3,3) hypersurface. Then X is Calabi-Yau, and the

projection onto either factor endows X with the structure of a genus one fibration.
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Let us further assume3 that X is given by an equation of the form:

ax3 + by3 + cz3 + qy2z + txy2 +mxyz = 0

Let J → P2 be the Jacobian fibration. A computation using ?? shows that

over points in V (a) ∩ V (m) and V (c) ∩ V (m), the coefficients f, g vanish to order

(4, 6).

A quick way of verifying this is by checking that over V (a) and V (c), the

equation of the Jacobian is:

y2 +mxy = x3

The short Weierstrass coefficients of this curve vanish to order (4, 6) over m = 0.

We can characterize this subset of the base geometrically:

• The curves V (a) and V (c) are the branch locus of the cover S → P2 that

splits X.

• The coefficient m is the slope of the line through the trace zero point and its

conjugates.

Thus, if we start with the data of (f, g) and the trace zero point, we can in

principle find m, a, c, which means we know where to look for the codimension 2

singularities. Furthermore, we can count them - there are 2 × [ωB].[ωB] = 18 in

those intersections, where [ωB].[ωB] is the self-intersection number of the canonical

bundle of the base.4

This means we can avoid having to use the full Jacobian formula altogether,

and still obtain detailed information about codimension 2 singularities as in [56].

3We can always obtain an equation of desired form with coefficients in a quadratic extension
of K, but it is not clear how to generalize that result even if we have a DVR.

4Since we are assuming the base is P2 in the example, the self-intersection number is 9.
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Chapter 12

Torsors of Arbitrary Index

Finally, we discuss torsors of arbitrary index. The ideas in the chapter are part of

ongoing work, and should not be read as a “finished product”.

We could, in theory, continue our analysis of torsors by working degree by

degree. The results we have for 2-torsors and 3-torsors should allow us to say

interesting things about 4-torsors and 6-torsors without doing any new computa-

tions:

• Every Galois field extension of degree 4 has an intermediate extension of

degree 2. Thus, the problem of classifying points in the kernel of the trace

map can be broken down into analyzing two quadratic trace maps.

It may also be useful to use a degree 2 model for the Jacobian - at the

moment, it is not clear which of these tools will prove to be most useful.

• By the Chinese remainder theorem, every torsor of index 6 can be decom-

posed into a sum of a 2-torsor and a 3-torsor in WC(E/k). Thus, we can

parametrize all 6-torsors using T2 ×W T3.

However, the degree-by-degree approach introduces new complications at each
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stage:

• For torsors of index 4 and higher, we have to deal with torsors that acquire a

point over a non-Galois extensions. Furthermore, even when we have Galois

extensions, the structure of the Galois group will not be determined by |G|.

• To study torsors of index 5 and higher, the equations are no longer com-

plete intersections, so even choosing an equation for these curves becomes a

challenge.

• There is a formula for the Jacobian of a genus one curve of arbitrary in-

dex[24], although it becomes too complicated to write out once we get to

torsors of index 5.

We will change perspective and ask a new question:

Can we find a sharp bound on the index of genus one fibered Calabi-Yau 3-folds?

Such a bound is expected to exist - if we restrict the question to fibrations

which are either in X or arise from the quotient torsor construction, then the

results of [34], together with 9.4 show that the index can’t get arbitrarily large for

torsors of Calabi-Yau 3-folds.

In [16], Căldăraru proves an interesting conditional result: if we can find a

Calabi-Yau torsor of index exceeding 6, that would imply the existence of derived

equivalent threefolds which are not birational. He points out that there are no

known examples whose index is that high.

Now, there’s an easy explanation for this - torsors of index exceeding 6 are never

complete intersections, so they would not have appeared in the CICY database,

and the Jacobian formula for these torsors is not quite ready for use in F-theory.

However, it would also not be surprising if the bound on the index of torsors

matches the bound on the order of torsion points. In the rest of this chapter, we
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explain how one might go about proving this bound using the theory of trace zero

points.

It is worth mentioning that there may be a different approach using mirror

symmetry, although much more work would have to be done in order to prove the

bound that way. The conjecture predicts that for a mirror pair (X,X ′), the Brauer

group of X should be isomorphic to the torsion in Pic(X ′) and vice versa. The

idea is to think of Br(X) as the group parametrizing torsors and to show that

torsion in Pic(X ′) comes from Mordell-Weil torsion if X ′ is elliptically fibered.

See [11], [60] for details.

12.1 Strategy

Instead of trying to classify torsors, we will focus on understanding trace zero

points. It is much easier to classify pairs consisting of an elliptic curve and a trace

zero point than it is to classify pairs consisting of an elliptic curve and a torsor.

Furthermore, in situations where we are able to work with explicit equations for

torsors, we were able to show that all of the important information is encoded in

the trace zero points.

• For 2-torsors, trace zero points are easily characterized. Furthermore, the

coordinates of the trace 0 point encode the equation for the torsor, and from

the trace 0 point, we can easily obtain Galois cohomology classes representing

the torsor in WC(E/K) and in Br(E).

• For 3-torsors, the situation is a little more complicated, because we had to

worry about “obstructed equations”. However, every pair (E,P ) determines

an unobstructed equation for the Jacobian, and the equation of the torsor
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can be recovered from the coordinates of P after having computed the un-

obstructed equation.

In both cases, we were able to construct a space that simultaneously parametrized

both torsors and trace 0 points, and contained a fundamental domain for the for-

mer.

• For 2-torsors, we had the variety:

{
(a, c, d, e) ∈ k4

}
/((a, c, d, e) ∼ (t−2a, c, td, t2e))

which parametrized equations for 2-torsors. Each point on this variety de-

termines a pair (E, p), where E is the Jacobian of the 2-torsor and p is the

point with coordinates x = c, y =
√
ad.

• For 3-torsors, the story is more complicated because we have to worry about

obstructed equations. However, we can still construct spaces that simulta-

neously parametrize pairs consisting of an elliptic curve and a torsor or an

elliptic curve and a point of trace 0.

We had a space T3, whose elements are k××k×-orbits of 6-tuples (a, b, c, q, t,m).

Each such orbit determines a genus one curve:

ax3 + by3 + cz3 + qy2z + txy2 +mxyz = 0

Inside T3, we have a hypersurface parametrizing unobstructed equations.

If E is the Jacobian of C, then E has an equation:

y2 +mxy − 9abcy = x3 + 3acqtx+ a2cq3 − ac2t3
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and E has the trace zero point (0, q 3
√
a+ t

3
√
a2) which allows us to invert the

Jacobian map.

12.2 Trace Zero Variety

Going forward, we will fix a (finite, Galois) field extension L/K and describe a

variety whose points parametrize pairs (E, p) with E an elliptic curve over K and p

a point in the kernel of the trace map. We can think of the spaces T2, T3 as disjoint

unions of TL/K as L ranges over all quadratic,cubic extensions, respectively.

If we’re lucky, we may be able to find a way to recover equations for torsors

from points on this space, as we did with 2-torsors and 3-torsors.

Even if we can’t achieve that, we hope that understanding TL/K might allow

us to mimic some of the arguments used to understand Calabi-Yau 3-folds with

prescribed torsion:

• If we can show that TL/K does not have K-points, that would mean there

are no genus one curves C/K that acquire a new point over L.

• If we can find a nice compactification of TL/K (or of a quotient of TL/K), we

may be able to make more precise predictions regarding the singularities one

should expect to find on the Jacobian of a torsor of high index.

We should explain why TL/K(K) = ∅ is even a possibility:

• The construction of TL/K mimics the algebraic construction of modular curves

B.2.1. In fact, we will see that we can embed the modular curve X1(n), where

n = [L : K], into TL/K .
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• Whenever we have a bound on torsion, that effectively tells us that X1(n)

has no K-points. For example, if K is a purely transcendental extension of

C, then X1(n) has no K-points1 for all n > 12.

• If n = 2 (or n = 3 and K is quadratically closed), then we have maps

X1(n)→ TL/K and TL/K → X1(n) such that the composition is the identity

on X1(n).

Now, suppose we have maps with those properties for all n. Then TL/K(K) 6=

∅ would imply X1(n)(K) 6= ∅. But we know X1(n)(K) = ∅ for sufficiently

large n, so TL/K(K) = ∅ for sufficiently large L.

• It’s possible that those maps no longer exist if n is large. In that case, if we

can show that TL/K has a compactification which is not a special manifold2,

that may be enough to bound the index of Calabi-Yau torsors.

12.2.1 Construction

We fix the following notation:

• L/K is a Galois extension of finite degree. We write G for the Galois group.

We also fix a basis e1, . . . , en of L/K.

• Let E → W be the W-scheme:

{
((p, q), (f, g)) : q2 = p3 + fp+ g

}
We think of points on E as representing pairs (E,P ) with E/K an elliptic

curve and P ∈ E(K) a non-identity point.

1Of course, one has to rule out points with values in C.
2In the sense of Campana, see e.g. [17]
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• Let EL/K →W be the W-scheme:

EL/K =
{

((ξ1, ξ2), (f, g)) ∈ L2 ×W : ξ2
2 = ξ3

1 + fξ1 + g
}

We have an inclusion E → EL/K of W schemes. We think of EL/K as

parametrizing pairs (E,P ) with E/K an elliptic curve and P ∈ E(L) a

non-identity point.

We write E (resp. EL/K) for the disjoint union E t W (resp. EL/K tW). We

write ∂EL/K to denote the copy of W in EL/K\W .

Now EL/K is a group scheme overW : if we have two points lying over the same

point in W , then they represent points on a common elliptic curve so we can add

them to obtain a new point over the same elliptic curve. The map W → ∂EL/K

is the zero section. Furthermore, we have an action of G on EL/K as a W-scheme.

Thus, we can define the trace map on the whole family by defining a morphism of

W-schemes EL/K → E .

We define TL/K as the preimage of ∂E in EL/K .

• From the construction, it’s clear that TL/K is a sub-W-scheme of EL/K .

• The action of G on EL/K restricts to an action on TL/K .

• The W-scheme of G-fixed points of TL/K parametrizes pairs (E, p), where

p ∈ E(K) is in the kernel of the multiplication by n-map.

Thus, TL/K contains something that looks like a “thickened” modular curve.

To make this precise, write E∗ for the subset of E consisting of elements

((p, q), (f, g)) with q 6= 0. Abstractly, this is the open set parametrizing pairs

(E, p) where p ∈ E(k) is a point of order greater than 2.
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This space is isomorphic to the space of coefficients (a1, a2, a3) of elliptic curves:

y2 + a1xy + a3y = x3 + a2x
2

• If we have an element of E∗, we do a change of variable so that (p, q) is at

the origin and the tangent has equation y = 0. This gives us a new equation

with a4 = a6 = 0.

• If we start with a triple (a1, a2, a3), we can do a change of variable to obtain a

short Weierstrass equation. The point (0, 0) goes to a pair (p, q) that satisfy

q2 = p3 + fp+ g, giving us an element of E∗.

Now, to construct the modular curveX1(n), one takes the quotient of (a1, a2, a3)

space by the usual action of k× on the space of Weierstrass equations. For each

triple with a2, a3 6= 03, there is a unique representative in the k× orbit with a2 = a3.

The modular curve X1(n) is obtained by computing multiples of (0, 0) on the

curve:

y2 + (1− u)xy − vy = x3 − vx2

and setting n(0, 0) = 0 to obtain a polynomial in (u, v) whose vanishing set is

X1(n).

The point is that the image of TL/K under the map E∗ → {(a1, a2, a3)} coincides

with the “cone over X1(n)” in the codomain.

Thus, we have a map X1(n)→ TL/K .

3If a2 = 0, we have a 3-torsion point at (0, 0). If a3 = 0, the curve is singular.
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12.2.2 Maps in the other direction

For 2-torsors and 3-torsors, we also have a map going in the other direction, al-

though it wasn’t described that way in the relevant chapters.

• Let (a, c, d, e) be a class in T2, and let C ′ be the genus one curve:

C ′ : w2 = au4 + cu2 + e

The Jacobian of C is:

E ′ : y2 = x3 + cx2 − 4aex− 4ace

Setting x = −c yields 0 on the right hand side, so the Jacobian of C has a

2-torsion point. Furthermore, this 2-torsion point coincides with the trace

zero point on E ′.

• Let (a, b, c, q, t,m) be a class in T2 and let C ′ be the genus one curve:

C ′ : ax3 + by3 + cz3 +mxyz = 0

The Jacobian of C is:

E ′ : y2 +mxy − 9abcy = x3

The associated trace zero point is (0, 0), which in this case is a 3-torsion

point.

In both cases, this gives us a map Td → X1(d) with the property that X1(d)→

Td → X1(d) is the identity.
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Note that this is not a map of W-schemes, which is the point: we would like

to use this to say that if one can find a torsor of high index, then somewhere out

there one can find an elliptic curve with equally high torsion.

If we can find such a map, then we can use the known bounds on Mordell-Weil

torsion to bound the index of torsors.

12.3 Functorial Interpretation

We may be able to obtain the map TL/K → X1(n) using the formalism of the

restriction of scalars functor.

We start with by reviewing basic properties of restriction of scalars.

• Let X/L be a variety. The restriction of scalars of X, if it exists, is a K-

variety X that is characterized by the existence of bijections:

X(R⊗K L) ↔ X (R)

for every K-algebra R. In other words, the restriction of scalars is a K-variety

that represents the functor of points of X.

• Let X/L be a variety and suppose the restriction of scalars X/K exists.

Then:

XL ∼=
∏
σ∈G

σ(X)

• Let A/L be a prinicipally polarized abelian variety over L. Then the restric-

tion of scalars A/K exists, and A is a prinicipally polarized abelian variety

over K.
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Now, let E/K be an elliptic curve. Let EL be the base extension to L, E the

restriction of scalars and EL the base extension of the restriction of scalars.

Since E is defined over K, EL = σ(EL) for all σ ∈ G. Thus:

EL ∼=
∏
σ∈G

EL

If E/L is an elliptic curve which is not defined over K, then there exists σ ∈ G

such that E 6∼= σ(E) as varieties over L.

However, the restriction of scalars of E is isomorphic to the restriction of scalars

of σ(E).

• Base extension and restriction of scalars are adjoints; thus, we can use the

unit and counit of the adjunction to obtain well behaved maps E(k)→ E(k)

and EL(L)→ E(L).

Note that E(k)→ E(k) is an embedding and EL(L)→ E(L) is a projection.

• Let E/K be an elliptic curve and E , EL as above. Since EL(L) ∼=
∏

σ∈GE(L),

we have two embeddings E(L)→ EL: we can embed a point via the diagonal

embedding or via the map P 7→ (σ(P ))σ∈G.

• We can use the group scheme structure on EL to define a map
∏

σ∈GE(L)→

E(L) that takes a |G|-tuple to the sum of the entires.

• We can compose either of the two maps E(L)→ E(L) with the map E(L)→

E(L) to obtain an endomorphism of E. The endomorphism will either be

multiplication by |G| or the trace map.

The idea would be to show that the maps E(L) → E(L) that come from the

adjunction give us the desired map TL/K → X1(n) by showing they take points in

the kernel of the trace map to points in the kernel of the multiplication by n map.
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Part IV

Appendices
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Appendix A

du Val Singularities

Let k be an algebraically closed field, R a k-algebra and assume that R is a discrete

valuation ring with residue field isomorphic to k.

Suppose we have a Weierstrass equation:

y2 = x3 + fx+ g

with f, g ∈ R, 4f 3 + 27g2 6= 0 and either ν(f) < 4 or ν(g) < 6. The associated1

R-scheme is not necessarily smooth, but it has at worst du Val singularities. The

goal of this chapter is to explain what that means.

There are many ways of defining/characterizing du Val singularities - fifteen

can be found in [23].

We proceed algebraically. An isolated point on a surface isX = Speck[[x, y, z]]/f(x, y, z)

for some polynomial f . We say thatX is an isolated singularity if k[[x, y, z]]/f(x, y, z)

is not a regular ring.

We say that an isolated singularity on a surface is a du Val singularity if it is

isomorphic to Speck[[x, y, z]]/f(x, y, z), where f(x, y, z) is one of the following:

1That is, the R-curve in P2
R cut out by the homogenization of the Weierstrass equation.
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(An, n ≥ 1) : x2 + y2 + zn+1 (A.1)

(Dn, n ≥ 4) : x2 + y2z + zn−1 (A.2)

(E6) : x2 + y3 + z4 (A.3)

(E7) : x2 + y3 + yz3 (A.4)

(E8) : x2 + y2 + z5 (A.5)

For each of these singularities, there is an associated Dynkin diagram with the

same name:

An :

Dn :

E6 :

E7 :

E8 :

The relationship between the singularity and the Dynkin diagram can be ex-

plained in several ways.

• For each du Val singularity, there is a unique minimal, smooth resolution

S̃ → S. The fiber over the singular point is a connected union of P1’s.

If we construct a graph whose vertices correspond to P1’s in the resolved fiber

and with edges between P1’s that intersect, we obtain the Dynkin diagram

with the same name.
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• There is a different approach using representation theory. The starting point

is the observation that the du Val singularities can be realized as C2/G,

where G is a finite subgroup2 of SL2(C).

The inclusion ρ : G→ SL2(C) is a representation of G. We construct a (di-

rected, multi-) graph whose vertex set is the set of irreducible representations

of G.

We draw k edges ρi → ρj if ρi ⊗ ρ contains k copies of ρj.

It turns out that for any pair of irreps ρi, ρj, we either have no arrows between

ρi, ρj or exactly one arrow going in each direction.3

The graph obtained is an affine Dynkin diagram - that is, it has one more

extra vertex than the previous graph, which corresponds to the trivial rep-

resentation.

This relationship is at the heart of the McKay correspondence, see e.g. [29] or

[15].

The McKay correspondence is key to the physics-algebraic geometry dictionary:

• Every minimal elliptic fibration has at worst du Val singularities over codi-

mension 1 components of the discriminant.

• Every du Val singularity has an associated Dynkin diagram.

• Every Dynkin diagram has an associated Lie algebra, hence a simply con-

nected nonabelian Lie group.

2Precisely, G is cyclic if we want an An singularity, G is a binary dihedral group if we want aDn

singularity and G is the binary tetrahedral/octahedral/icosahedral group if we want E6, E7, E8,
respectively.

3Note that this fails if we change G or replace ρ by another representation.
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Thus, there is a natural way of associated Lie groups to elliptic fibrations.

While this construction may seem arbitrary at first sight, the results in [32], [31]

show that the representation theory of that group is related to codimension 2

singularities on the fibration in ways that one would not expect.
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Appendix B

Modular Curves

In this appendix, we review classical results on modular curves. Since this material

is available elsewhere, we will only discuss the modular curves X(1) and X1(n) for

n > 1.

B.1 The Modular Curve X(1)

The modular curve X(1) classifies isomorphism classes of elliptic curves over C.

We already obtained an algebraic description of X(1) in 4:

X(1) ↔
{

(f, g) ∈ C2 : 4f 3 + 27g2 6= 0
}
/C×

where C× acts on that space by t · (f, g) = (t4f, t6g).

If fg 6= 0, the stabilizer of (f, g) under that action is {±1}. If g = 0, the

stabilizer is the group of 4th roots of unity and if f = 0, the stabilizer is the group

of 6th roots of unity. The j-map:

WC → C (f, g) 7→ 1728
4f 3

4f 3 + 27g2
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is constant on C× orbits, and gives us a bijection between points on X(1) and

points on C.

There is a standard compactification of X(1), denoted Y (1), obtained by al-

lowing nodal genus one curves in the moduli space. This adds a single point to

X(1). We identify the compactified modular curve with P1
C, and think of nodal

elliptic curves as curves with j-invariant ∞.

We can also construct the modular curves X(1), Y (1) using a completely dif-

ferent toolkit. The details we just mentioned can also be observed from this per-

spective.

B.1.1 Uniformization

Let (C, p0) be a pair consisting of a Riemann surface of genus one, and a point p0

on C.

• Let γ1, γ2 be a pair of cycles that generate H1(C,Z).

• For each p ∈ C, choose a path γp from p to p0.

• Finally, choose an invariant differential ω on C.

Let τi =
∫
γi
ω for i = 1, 2 and let Λ ⊂ C be the free abelian group generated

by τ1, τ2.

We define a map:

C → C/Λ p 7→
∫
γp

ω + Λ

Note that this map does not depend on the choice of path γp, since any two paths

differ by an element of H1(C,Z).
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In fact this map is an isomorphism. Thus, if we know Λ, then we essentially

know C. Furthermore, the only choice we had was in the choice of ω, and any

two choices are scalar multiples of each other. As a result, the lattice obtained by

using a different choice of ω is simply a scalar multiple of Λ.

We say that two lattices are homothetic if there exists t ∈ C× such that Λ = cΛ′.

Thus, we can think of X(1) as classifying lattices up to homothety.

Now, lattices in C are parametrized by a subset of C2, where each pair (τ1, τ2)

determines the lattice Λ = τ1Z⊕ τ2Z.

However, this space is much too big.

• First, there are lots of pairs that define “degenerate” lattices. We assume

τ1τ2 6= 0 throughout, but of course there are other pairs that do not define

a lattice. We discuss the compactification of the space afterwards, and for

now will make assumptions as needed.

• Second, we only care about lattices up to scaling. We can reduce to a single

copy of C× by rescaling the basis vectors so that one of the generators is 1,

e.g. (1, τ2
τ1

) instead of τ1, τ2.

• The lattice generated by τ1, τ2 is the same as the lattice generated by τ2, τ1.

Now, if τ1, τ2 are R-linearly independent in C, then exactly one of τ1
τ2
, τ2
τ1

is in

the upper half plane and the other is in the lower half plane.

Thus, we can take the upper half plane:

H = {z ∈ C : Re (z) > 0}

as a parameter space, with each point τ ∈ H representing the homothety class of

the lattice τZ⊕ Z.
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Figure B.1: Fundamental domain for the moduli space of elliptic curves.

Finally, we note that there are lots of points in H that determine the same

lattice via the rule above - for example, the lattice generated by {τ + 1, 1} is the

same as the lattice generated by {τ, 1}.

Two points in H determine the same homothety class of lattices if and only if

they are in the same SL2(Z) orbit, where SL2(Z) acts on H by fractional linear

transformations:

(
a b
c d

)
· τ =

aτ + b

cτ + d

Thus, we can identify X(1) with the quotient SL2(Z)\H.

In this section we use the letters S, T to denote the generators of SL2(Z):

S =

(
0 −1
0 1

)
T =

(
1 1
0 1

)

• The class of lattices determined by τ = i corresponds to the class of elliptic

curves with g = 0.

• The class of lattices determined by τ = e2πi/3 corresponds to the class of
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elliptic curves with f = 0.

• We have an analog of the j-map that gives us an identification of the quotient

SL2(Z)\H with C. The j-invariant in this case is a modular form.

To construct the compactification Y (1) analytically, we use the extended upper

half-plane H∗ = H ∪Q ∪ {∞}.

The fractional linear transformation z 7→ az+b
cz+d

takes ∞ to a
c
. One can show

that SL2(Z) ·∞ = Q∪{∞}, so we’ve added a single orbit to the parameter space.

B.2 X1(n)

Let n > 1. The modular curve X1(n) classifies pairs (E, p), where E is an elliptic

curve and p is a point of order n, up to isomorphism.1

B.2.1 Algebraic Constructions

If n = 2, 3, we can construct X1(n) algebraically as a quotient.

• If n = 2, we can find an equation for E as:

y2 = x(x2 + ax+ b)

with the 2-torsion point at (0, 0).

This equation is determined by the pair (a, b), and two pairs (a, b), (a′, b′)

defined isomorphic elliptic curves if and only if there exists t such that t2a =

a′, t4b = b′. The equation is singular if and only if b2(a2 − 4b) = 0.

1Here, an isomorphism of pairs (E, p) → (E′, p′) is an isomorphism of the underlying curves
that takes the origin on E to the origin on E′ and that takes p to p′.
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• If n = 3, we can find an equation for C as:

y2 + ax+ b = x3

with the 3-torsion point at (0, 0).

This equation is determined by the pair (a, b), and two pairs (a, b), (a′, b′)

defined isomorphic elliptic curves if and only if there exists t such that ta =

a′, t3b = b′.

For n ≥ 4, there is a well-known construction for X1(n) as a plane curve.

If ((E, p0), p) is a pair consisting of an elliptic curve and a point p of order

exceeding 3, there is a unique equation for E of the form:

y2 + (1− u)xy − vx2 = x3 − vx2

with the point p at (0, 0).

We can treat this as an elliptic curve over k(u, v), and compute multiples of p

over this field. For example, we have:

2(0, 0) = (v, uv) 3(0, 0) = (u, v − u)

This allows us to find polynomials φn(u, v) whose vanishing encodes the fact that

(0, 0) is a point of order n.

We can obtain plane curves X1(n) in the (u, v)-plane by setting φn(u, v) = 0.

Note that this construction also gives us a model for the universal elliptic curve

with an n-torsion point as an elliptic surface over X1(n).

To obtain the compactified modular curve algebraically, we projectivize the

normalization ˜X1(n)→ X1(n). As explained in 1.5, the compactification is deter-

mined up to isomorphism as soon as we know the function field of X1(n), which
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in turn is determined by φn(u, v).

The universal property of the normalization guarantees that the universal sur-

face S → X1(n) factors through the normalization.

B.2.2 Analytic Construction

• Every elliptic curve over C is isomorphic to Eτ = C/Λτ , where Λτ = τZ⊕Z ⊂

C is a rank 2 lattice, and τ ∈ H.

• Every point of order n on Eτ has the form cτ+d
n

+Λτ for some pair of integers

c, d satisfying gcd(c, d, n) = 1.

Thus, it suffices to study pairs (Eτ ,
cτ+d
n

) for τ ∈ H and c, d ∈ Z satisfying

gcd(c, d, n) = 1. We now need to determine when two pairs (Eτ ,
cτ+d
n

), (Eτ ′ ,
c′τ ′+d′

n
)

are isomorphic. We will show that the action of SL(2,Z) on the space of bases of

Λτ induces an action on the n-torsion points of Eτ .

Let p ∈ Eτ a point on the elliptic curve, that we can write uniquely as

p : xτ + y + Λτ for x, y ∈ [0, 1) . (B.1)

For γ =

a b

c d

 ∈ SL(2,Z), we define the action on that point p as

γ · p = (aτ + b)x+ (cτ + d)y + Λτ . (B.2)

It’s clear that γ induces an automorphism of Eτ as a group, so it necessarily

restricts to an automorphism of the n-torsion of Eτ . Thus SL(2,Z) acts on n-

torsion pairs (Eτ ,
cτ+d
n

). We next show that it acts transitively on such pairs:

in other words, for any pair (Eτ , p + Λτ ), we can find γ ∈ SL(2,Z) such that
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γ−1 · p + Λτ = 1
n

+ Λτ . This will show that the moduli space of pairs (E, p + Λτ )

is isomorphic to H/Γ1(n), where Γ1(n) is the stabilizer of the pair (Eτ ,
1
n

+ Λτ ).

Let cτ+d
n

+ Λτ be an arbitrary point of order n. Since gcd(c, d, n) = 1, there exist

integers a, b, k such that ad− bc+ kn = 1. That is equivalent to saying there is a

matrix in SL(2,Zn) with entries congruent to γ′ with entries as ad− bc+ kn = 1.

The reduction map SL(2,Z)→ SL(2,Zn) is surjective, so there exists γ ∈ SL(2,Z)

such that γ ∼=

a b

c d

 (mod n). Observe now the inverse action of γ on the pair

γ−1 ·
(
Eτ ,

cτ + d

n
+ Λτ

)
=

(
Eτ ,

c(dτ − b) + d(−cτ + a)

n
+ Λτ

)
=

(
Eτ ,

1

n
+ Λτ

)
.

(B.3)

Thus, if we take a larger fundamental domain in H, we do not have to keep track

of the specific coefficients c, d for the point of order n. The problem is now reduced

to understanding the stabilizer of (Eτ ,
1
n

+ Λτ ).

Specifically, we want a characterization of those γ ∈ SL(2,Z) that fix the torsion

point

γ · 1

n
+ Λτ =

1

n
+ Λτ . (B.4)

The new basis is given by aτ+b, cτ+d, and 1
n

+Λτ is being mapped to c
n
τ+ d

n
+Λτ .

It is clear that 1
n

is fixed exactly when c
n
∈ Z and d

n
∈ 1

n
+ Z. An illustration of

this action on the torus lattice is depicted in Figure B.2 for a chosen order two

torsion point. In particular, we need the entries to satisfy

c ≡ 0 (mod n) and d ≡ 1 (mod n) . (B.5)
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Figure B.2: Above we have chosen a fundamental domain colored in blue for Eτ
the depiction of a 2-torsion point τ

2
+ Λτ in orange. We act on the basis by the

generator T on the left, which translates the point τ
2

+ Λ to τ+1
2

+ Λ. On the right,
we act on the fundamental domain by T 2 in to obtain the pink one while fixing the
torsion point.

It then follows, that the matrices need to satisfy

(
a b
c d

)
≡
(
∗ ∗
0 1

)
(mod n) ≡

(
1 ∗
0 1

)
(mod n) , (B.6)

where we have used ad − bc = 1 and c ≡ 0 (mod n) such that we must have

ad ≡ a ≡ 1 (mod n).

To summarize, a matrix

a b

c d

 ∈ SL(2,Z) fixes (Eτ ,
1
n

+ Λτ ) as a torsion pair if

and only if

(
a b
c d

)
≡
(

1 ∗
0 1

)
(mod n) .

We thus define:

Γ1(n) =

{
γ ∈ SL(2,Z) : γ ≡

(
1 ∗
0 1

)
(mod n)

}
. (B.7)

The modular curve is thus identified with X1(n) = Γ1(n)\H, where H is the
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open upper half plane. This parametrizes pairs (E, p) consisting of a smooth

elliptic curve and a point p of order n. The compactified modular curve is Y1(n) =

Γ1(n)\H∪{∞}∪Q. The cusps of the modular curve are the points in Y1(n)\X1(n).

For more on the analytic description of modular curves, see [20].

See also the appendix of [40].
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[65] I. R. Šafarevič. “Principal homogeneous spaces defined over a function field”.

In: Trudy Mat. Inst. Steklov. 64 (1961), pp. 316–346. issn: 0371-9685.
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