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Abstract

In the current era of combination antiretroviral therapy (ART), human immunodeficiency virus 

(HIV)-infected individuals are living longer and healthier lives. Nevertheless, HIV-infected 

persons are at greater risk for age-related disorders, which have been linked to residual immune 

dysfunction and inflammation. HIV-infected individuals are almost universally co-infected with 

cytomegalovirus (CMV) and both viruses are associated with inflammation-related morbidities. 

Therefore, a detailed investigation of the relationship between CMV and aging-related morbidities 

emerging during chronic HIV infection is warranted. Here, we review the literature on how CMV 

co-infection affects HIV infection and host immunity and we discuss the gaps in our knowledge 

that need elucidation.

Keywords

CMV infection; HIV infection; Inflammation; Aging; Immune response

Introduction

Antiretroviral therapy (ART) can control HIV replication indefinitely in most HIV-infected 

individuals who adhere to their medications [1]. Nevertheless, and depending on timing of 

ART initiation, HIV-infected persons may experience greater morbidity and mortality than 

the HIV-uninfected do. These morbidities include non-AIDS defining disorders such as 

cardiovascular disease, a spectrum of malignancies, frailty, and neurocognitive impairment 

that are also seen as people age [2]. This increased morbidity and mortality has been 

associated with residual immune dysfunction which persists in some individuals despite long 

term suppressive ART [3]. The mechanisms of residual immune dysfunction are 

incompletely understood and most likely multifactorial in origin. Persistent co-infections 
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with other pathogens are common in HIV infection, and likely contribute to overall immune 

dysfunction during HIV disease [4, 5]. For example, HIV-infected individuals are nearly 

universally co-infected with cytomegalovirus (CMV), and both HIV and CMV infections are 

independently associated with increased inflammation and inflammation-related morbidities 

[6]. Therefore, a detailed investigation of the relationship between CMV and aging-related 

morbidities emerging during chronic HIV infection is warranted.

Epidemiology, Life Cycle, and Pathogenesis of CMV Infection

Cytomegalovirus (CMV, also known as human herpesvirus 5 or HHV-5) is a widespread β-

herpesvirus that causes persistent infection and is often acquired during childhood or during 

sexual debut. CMV seroprevalence can vary from 40 to 100 % in the adult population 

depending on age, socioeconomic status, and geographical region [7–9]. Primary CMV 

infection in immunocompetent hosts is often asymptomatic or minimally symptomatic, but 

morbidity and mortality dramatically increase during immunodeficiency (particularly among 

transplant recipients and HIV-infected people) [7, 8]. After primary infection, the virus 

establishes episomal latency in pluripotent CD34+ hematopoietic stem cells in the bone 

marrow [10]. As these cells differentiate along the myeloid lineage to monocytes and 

macrophages, latent CMV can reactivate and be released in response to different (often 

inflammatory) stimuli to infect new cellular targets. Other non-hematopoietic sites of latency 

have been suggested, particularly in epithelial cells, but this is still controversial since most 

in vivo studies failed to distinguish between true latency (no productive infection) and 

persistence (low-level productive infection in the absence of cytopathic effects) [10]. In fact, 

episodic bursts of asymptomatic CMV reactivation are frequently documented (particularly 

among HIV-infected persons) and are rapidly controlled by cell-mediated immune-

surveillance [11]. One very common site of CMV shedding is the genital tract. The 

frequency of CMV shedding in genital secretions varies substantially across different studies 

and is strongly dependent on the geographical location, cohort characteristics, and detection 

methods used [9]. When an infected person has a compromised immune system, shedding of 

CMV increases dramatically. For example, in Southern California, almost half of HIV-

infected men who have sex with men asymptomatically shed CMV in their genital tract, 

regardless of CD4+ T cell count or use of ART [12–14]. Less is known about the frequency 

of CMV shedding in the genital tract of HIV-infected women. Two studies of HIV-infected 

women conducted in the USA with partial uptake of ART found that CMV DNA was 

detected infrequently (3–7 %) in cervicovaginal lavage [15, 16]. In a study of HIV-infected 

Kenyan women not on ART, CMV was detected in 59 % of provider-collected cervical 

swabs [17]. Another recent study quantified vaginal shedding of CMV DNA longitudinally 

among 96 HIV-infected women starting ART in Rakai, Uganda. Vaginal CMV was detected 

in 75 of 96 women (78.0 %) and in 379 of 1080 individual visits (35.1 %). Compared to 

shedding pre-ART, CMV shedding increased, peaking from month two to four after ART 

initiation, suggesting a possible immune reconstitution inflammatory syndrome (IRIS). 

Other sites of CMV reactivation are the following: oral mucosa (where CMV may be found 

in 15–30 % of HIV-infected persons) [18, 19], peripheral blood mononuclear cells (PBMC) 

(where CMV may be found in 13–20 % of HIV-infected persons), urine (where CMV may 

be found in 10–30 % of HIV-infected persons), stool, and breast milk [20–22]. Such 
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asymptomatic shedding at different mucosal sites is likely important for the natural history 

and transmission dynamics of CMV itself, and also for the interplay of CMV with other co-

infecting viruses (e.g., HIV) and with the host immune environment.

CMV Infection and the Host Immune Environment

CMV has established a powerful interaction with the immune system, having infected 

humans since our species arose [9]. In a complex host-virus relationship, CMV elicits and 

maintains a high frequency of virus-specific T cells that engage in a lifelong effort to restrain 

CMV replication and prevent life-threatening disease [23]. In HIV-uninfected individuals, 

approximately 10 % of both CD4 and CD8 memory T cells in the circulation target CMV 

antigens, and these frequencies can increase to about one third of CD4+ T cells and nearly 

half of CD8+ T cells in older persons [23, 24]. In HIV-infected adults, CMV-specific CD8 

and CD4 T cell numbers are further elevated, similar to proportions observed in the HIV-

uninfected elderly, and remain high even after ART-mediated suppression of HIV replication 

[25, 26]. With a large 230-kB genome, CMV is one of the largest viruses to infect humans. 

A recent study using ribosomal profiling to determine the protein-coding capacity of CMV 

showed that as many as 751 CMV open-reading frames are translated into CMV proteins in 

virus-infected cells [27•], suggesting that the CMV proteome is far more complex than 

hitherto recognized. Interestingly, many of these proteins were not essential for CMV 

replication and are thought to allow the virus to avoid immune recognition, protecting 

reactivating cells from attack and destruction by host defenses. Since CMV replication is 

enhanced by inflammatory stimuli, it is not surprising that the virus also developed 

ingenious strategies to induce and augment inflammation [28]. In fact, CMV is able to 

directly upregulate the expression of several cytokines and inflammatory mediators in host 

cells, including IL-1β, IL-6, and type I interferon, thereby exacerbating the inflammatory 

response [29–32]. CMV infection has also recently been shown to be associated with an 

increase of IL-15 in plasma [33]. Although there is little evidence of direct upregulation of 

IL-15 by CMV, other herpesviruses have been shown to directly induce IL-15 production 

[34]. The elicitation of IL-15 and other common γ-chain cytokines (including IL-2 and 

IL-7) is of particular interest, as these cytokines can drive antigen non-specific activation, 

proliferation, and expansion of naïve and memory CD4 and CD8 T cells [35]. In addition, 

CMV encodes its own cytokines and chemokine homologs as well as cytokine receptor 

homologs that can further modulate levels of human cytokines, chemokines, and growth 

factors [29, 36, 37]. While regulating inflammatory responses to benefit its own replication, 

CMV has also developed mechanisms to avoid immune recognition and protect infected 

cells from attack by host defenses. For example, CMV impairs antigen presentation by 

inhibiting the expression of HLA class I and class II molecules; CMV can also induce 

immune-inhibitory pathways (for example PD-1 and IL-10) and can inhibit activation of 

natural killer (NK) cells by virus-encoded HLA class I homologs and NK cell immune 

evasion proteins, thereby impairing destruction of infected cells [36–41]. Strategies of 

immune evasion and immune subversion by CMV are summarized in Table 1.
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CMV Infection Drives CD8 T Cell Expansion

As noted above, CMV reactive T cells comprise a substantial proportion of the effector 

memory T cell repertoire and this appears to increase with age [25, 26]. Since CMV 

replication tends to occur in effector tissues rather than in inductive lymphoid tissues, the 

exact anatomical sites of interaction between immune cells and CMV (for both CMV-

antigen specific and nonspecific interactions) are not well defined. One possibility is that 

many of these events occur in the draining lymph nodes, as many cytokines (including 

IL-1β, IL-2, and IL-15) are increased in lymph tissue or are elicited from lymph node 

histocultures of HIV-infected persons [42, 43]. In support of this hypothesis, recent evidence 

in mouse models suggests that murine (m)CMV can directly infect macrophages and non-

hematopoietic cells in lymph nodes [44], selectively inducing proliferation of CD8 T cells 

[45, 46]. This so-called “CD8+ T cell memory inflation” is characterized by the 

accumulation of high-frequency functional antigen-specific CD8+ T cells with an effector-

memory phenotype, which are typically enriched in peripheral organs. Although persistence 

of antigens is considered essential, the mechanism of this inflation is not completely 

understood, and it is not clear if similar mechanisms play a role also in the setting of human 

CMV infection [47]. One recent study investigated the clonal and phenotypic relations 

between T cells obtained from peripheral blood and lymph nodes during primary and latent 

human CMV infection to understand what cells sustain the circulating CMV-specific 

effector pool [48]. Interestingly, new clones that appear after primary CMV infection or 

during CMV reactivation seldom originated from peripheral blood or lymph nodes, 

suggesting that the precursors of the new CMV-specific clones are probably located 

elsewhere (e.g., in other secondary lymphoid tissues) or are recruited directly from the naïve 

CD8+ T cell pool.

Does “Occupancy” of the T Cell Repertoire by CMV-Reactive Cells have 

Impact on Immune Potential?

As CMV-infected persons age, an increasing proportion of their T cell repertoire becomes 

CMV-reactive and these cells are characteristically more differentiated (presumably as a 

result of repeated exposure to CMV peptides) and have a phenotype characteristic of 

replicative exhaustion and senescence [49]. The expansion of the T cell repertoire committed 

to CMV may compromise the ability to respond de novo to antigens by decreasing the 

diversity of the remaining naïve T cells or out-competing the naïve T cells for resources [50–

53]. Other studies, however, found that the entrance of CMV-specific CD8+ T cells 

expanded the antigen-primed CD8+ T cell pool rather than competing for space with pre-

existing memory T cells specific for persistent or cleared viruses [54, 55]. Furthermore, as 

predicted by their maturation phenotype, CMV-specific CD8+ T cells are negligibly present 

in the lymph nodes and thus do not limit immunologic “space” at sites where immune 

reactions are initiated [55]. These different findings might reflect the variability among 

humans in the magnitude of CMV-specific T cell responses that in turn reflect differences in 

CMV dosage, antigen exposure during shedding, and/or the immune competence of the host 

[56]. In support of this model, there is reason to suspect more profound influence of CMV 

infection on the immune repertoire in thymectomized individuals where the naïve T cell 
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repertoire is already diminished due to reduced thymic output, [57] and perhaps too in the 

elderly who have survived decades of thymic involution [58].

CMV Infection in the Young and the Old

Because the prevalence of CMV infection increases with age and also varies according to 

socio-economic factors [59], it has been difficult to distinguish the effects of CMV infection 

on aging-related complications from the effect of other confounding variables. To assess the 

relative contribution of heritable versus non-heritable factors, Brodin, et al. performed an 

elegant system-level analysis of 210 healthy monozygotic twins between 8 and 82 years of 

age [60•], measuring over 200 different immunologic indices, including cell population 

frequencies, cytokine responses, and serum proteins. The authors found that over three 

quarters (77 %) of these parameters were dominated and over half (58 %) were almost 

completely determined by non-heritable influences. Interestingly, in twins discordant for 

CMV serostatus, more than half of all these indices were affected, providing strong evidence 

that CMV co-infection has a profound effect on the immune system in healthy individuals. 

Large population studies in Scandinavia demonstrated that infection with CMV makes a 

significant contribution to the so-called immune risk profile (IRP), which is predictive of an 

increased mortality in very old individuals [61]. This immune risk profile (including 

expansion of CD8+ CD28 T cells and inverted CD4/CD8 T cell ratio) was rarely seen in 

Swedes who survived into their eleventh decade [62]. Other epidemiological studies in the 

USA suggested that CMV infection itself might have a negative impact on survival [63, 64], 

and higher levels of anti-CMV antibody were correlated to poor survival in older adults with 

stable cardiovascular disease [65, 66]. What different antibody titers actually reflect is 

however unclear and one recent study found that high CMV IgG levels were associated with 

less CMV replication [67], suggesting that CMV IgG levels are not simply a correlate of 

replication burden.

In summary, there is increasing evidence that CMV has a broad impact on human immunity: 

in older adults, it might exacerbate the aging processes contributing to the development of 

age-related morbidities that have been linked to immune senescence, such as frailty, cancer, 

neurocognitive impairment, and cardiovascular disease [2, 61, 68]. The effects of CMV 

infection on host immunity, however, are not always deleterious, and a recent study 

suggested that CMV might even have a beneficial effect on the immune system in younger 

healthy people, which could help to explain why humans and many other species tolerate the 

very high prevalence of this infection [69•].

Bidirectional Interaction Between HIV and CMV Replication

As described above, CMV is able to maintain an inflammatory environment that is beneficial 

for its own replication and survival and it has concurrently developed numerous strategies to 

control immune function so that CMV-reactive immune cells and other effectors are less able 

to eradicate virus-infected cells. It is reasonable to hypothesize that other co-infecting 

pathogens (for example HIV) could take advantage of this particular immune environment to 

protect their own persistence and replication.
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Several studies have suggested that both direct and indirect interactions between CMV and 

HIV could influence their replication and the resulting disease pathogenesis. Several 

mechanisms could play a role including the following: (i) direct interaction between CMV-

encoded regulatory proteins and the HIV long terminal repeat (LTR) region resulting in 

transactivation of viral gene expression [70, 71], (ii) enhanced HIV replication stimulated 

through a release of CMV-induced inflammatory cytokines and chemokines [72], (iii) 

upregulation of CCR5 expression in central memory T cells, which has been recently 

described in cord blood mononuclear cells exposed in vitro [73] and might be mediated by 

enhanced (CMV-induced) interferon production [74], and (iv) clonal expansion of HIV-

infected T cells through CMV-induced inflammatory cytokines and chemokines [75]. This 

relationship between CMV and HIV has been widely documented in the genital tract, where 

presence of detectable CMV DNA has been repeatedly associated with increased genital 

shedding of HIV RNA [12, 13, 76–79] and with increased HIV transmission [11, 14, 76]. 

Additionally, presence of detectable CMV DNA was also associated with increased levels of 

HIV DNA in peripheral blood cells in both treated and untreated HIV infected individuals 

[20, 21, 75].

Impact of CMV Co-infection on the Course of HIV Infection

In the setting of underlying immune deficiency, CMV is associated with a wide range of 

serious clinical diseases, such as retinitis, pneumonitis, colitis, and other end organ disease 

[9], as well as with indication of more rapid HIV disease progression and increased 

occurrence of AIDS-related events [80, 81]. The incidence of these life-threatening 

conditions has decreased dramatically with the advent of ART. These changes are likely the 

consequence of a restoration of CMV-specific immune responses that result in diminished 

CMV expression and viremia [82]. While the clinical importance of CMV co-infection in 

the setting of ART-treated HIV infection is less clear, emerging evidence links CMV to 

determinants of both clinical risk [59] and immune pathogenesis [19, 75] during well-

controlled HIV infection. Indeed, CMV co-infection is linked to a more inflammatory 

profile [83], including increased circulating levels of Interferon gamma-induced protein 

(IP)-10 and D-dimer, and to a profound expansion of circulating CD8 T cells and a reduced 

CD4/CD8 ratio that characterize treated HIV infection, [83, 84] and that is linked to an 

increased morbidity and mortality [85, 86].

Even in the setting of ART-treated HIV infection, asymptomatic shedding of CMV was 

linked to increased levels of T cell activation, proliferation, and exhaustion [19, 75]. In 

HIV/CMV co-infected individuals, more CD8 T cells express the marker of cellular 

senescence CD57 and fewer express the co-stimulatory molecule CD28, compared to CD8 T 

cells of age-matched monoinfected persons [84, 86]. As discussed above, one of the main 

hallmarks of CMV infection is a demonstrable expansion of CD8 T cells (referred to as 

“memory T cell inflation”) [23, 87–90], which is particularly prominent and appears at 

younger age within the HIV co-infected populations [84, 91]. This ongoing recruitment, 

activation, and apparent dysfunction of virus-specific CD8 T cells fails to eliminate or 

effectively control CMV replication and results in an expanded pool of effector CD8 T cells, 

and consequently a low CD4:CD8 ratio that is associated with an increased risk of non-

AIDS morbidity and mortality [85, 86]. Since both aging and CMV contribute to immune 
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senescence [52, 92], it is not surprising that the importance of CMV co-infection becomes 

increasingly recognized as co-morbid conditions complicate the extended lifespan of the 

ART-treated HIV-infected population. A proposed simplified summary of the interactions 

between HIV infection, CMV replication, CD4, and CD8 T cells is shown in Fig. 1.

Recent epidemiological studies suggest a direct connection between CMV infection (or the 

magnitude of CMV-antibody response) and non-AIDS associated morbidities during ART-

treated HIV infection, including neurocognitive impairment, cancer, and cardiovascular 

disease [59, 93]. The most frequent association is between CMV and cardiovascular disease, 

which has been described in the setting of post-transplant atherosclerosis [94, 95] and HIV 

infection [66, 96]. Both CMV replication itself and the immune response against CMV can 

promote changes in endothelial cells that might contribute to the pathogenesis of 

atherosclerosis [97, 98]. Possible mechanisms include the secretion of pro-angiogenic 

factors through CMV-infected endothelial cells (e.g., IL-6, GM-CSF) and direct endothelial 

damage through CMV-induced inflammation. Additionally, immune cells responding to 

CMV infection can activate immune cascades resulting in endothelial damage and 

aggravating the effect of CMV replication. For example, there is increasing evidence to 

support a key role for fractalkine-fractalkine receptor (CX3CR1) interactions in the host 

inflammatory response leading to vascular injury [98, 99]. Interestingly, the expression of 

the host chemokine fractalkine (a key marker of inflammation in endothelial cells) is 

strongly upregulated in the presence of PBMCs from donors with a high frequency of CMV-

specific T cells [99]. The fractalkine-CX3CR1 interaction results in recruitment of natural 

killer cells, monocytes and possibly also CX3CR1+ CD8+ T cells [100] that may participate 

in driving vascular inflammation, coagulation, and the formation of atheromas. The 

cardiovascular complications associated with CMV infection are most likely multifactorial, 

and include consequences of direct effect of CMV replication driving activation of immune 

cells and cytokine/chemokine-mediated effects as an additional risk factor for development 

of chronic inflammation and endothelial cell injury.

Conclusions

Through millions of years of co-existence, CMV has developed a number of strategies to 

adapt and synergistically coexist with the human immune system. A detailed knowledge of 

the interactions among CMV, HIV, and host immune responses is necessary to understand 

the complex mechanisms underlying aging-related complications during HIV infection and 

to develop new strategies to prevent the premature occurrence of end-organ diseases that 

may be linked to CMV infection. For example, it will be important to understand the 

directional relationships among CMV reactivation, inflation of the CMV-specific T cell 

response, and immune dysregulation to determine where intervention should be targeted to 

affect these outcomes. Newer less toxic drugs with activity against CMV (e.g., Brincidofovir 

[101] and Letermovir [102]) could be applied in clinical trials to evaluate first the effects of 

CMV suppression on immune activation and inflammation. As these agents will not 

eradicate CMV, prolonged courses of therapy may be needed, particularly when effects on 

clinical outcomes are the endpoints. It remains to be seen if attenuation of CMV expression 

will be sufficient to reverse the inflammatory process initiated by CMV infection.
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Conceivably, HIV co-infected individuals with the most brisk CMV-specific immune 

response are at greater risk for morbid outcomes while persons with less robust CMV-

specific T-cell responses are not. Additional analyses stratified on the basis of the quantity 

and quality of the CMV response and in relation to markers of CMV replication will be 

needed to explore this issue. These analyses should not only include the T-cell compartment 

but should also encompass other immune defenses affected by CMV infection such as B 

cells and NK cells. Another intriguing open question is why CMV, uniquely among all 

human herpes viruses, is able to drive such dramatic expansion of virus specific T cells, 

while other common persistent viruses such as EBV do not.

In this regard, it is not clear whether strategies to enhance CMV-specific immune responses 

such as via therapeutic immunization will decrease viral expression and provide indication 

of benefit or on the other hand, might further enhance the CD8 T cell expansion and 

inflammation that have been linked to non-AIDS-related co-morbidities during HIV 

infection.

Carefully designed clinical trials targeting CMV replication and immune responsiveness 

may help to understand the complex interrelationships between CMV and HIV pathogenesis 

and also may direct the design of interventional strategies that will have a positive effect on 

HIV disease progression and aging-related complications.
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Fig. 1. 
Proposed model connecting CMV, HIV, CD4 T cell dysfunction, and CD8 T cell expansion. 

We propose a model where HIV infection itself drives inflammation and cytokine production 

(for example IL-15) promoting CD8+ T cell expansion. HIV infection also induces CD4+ T 

cell loss and dysfunction, thereby failing to provide help to CD8+ T cells and permitting 

more CMV replication, which contributes to inflammation and further promotes the 

expansion of CD8+ T cells. Signals from CMV infection may also promote HIV persistence 

in CD4+ T cells (dotted line). Expanded CD8+ T cells are unable to control CMV 

replication, contributing to the vicious cycle. In addition, CD8+ T cell expansion, coupled 

with a loss of CD4+ T cells (leading to a lower CD4/CD8 T cell ratio) are linked to morbid 

outcomes of CMV and HIV infections, including cardiovascular risk (and other non AIDS 

events)
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Table 1

Summary of strategies of immune evasion and immune subversion/hijacking by CMV

Category Strategy Function CMV protein/gene References

Immune evasion MHC class I inhibition Destabilizes heavy chains US2 [103]

Impairs heavy chain transport and maturation US3 [104]

Inhibits peptide translocation by TAP US6 [105, 106]

Downregulates MHC-I heavy chains US11 [107]

Downregulates nonclassical HLA-G surface 
expression

US10 [108]

MHC class II inhibition Induces degradation of HLA-DR and HLA-DM US2 [109]

Reduces peptide-loaded MHC-II complexes US3 [110]

Interruption of interferon 
signaling

Blocks multiple levels of IFNα signal transduction UL83 [111]

Inhibits Stat2 signaling IE1 [112]

Inhibits NFκB binding to DNA IE2 [113]

NK cell evasion MHC-I homolog UL18 [114]

Prevents surface expression of NKG2D UL16 [115]

Downregulates MICA, leading to NKG2D 
reduction

UL142 [116]

Downregulates MICB, leading to NKG2D 
reduction

miR UL112 [117]

Downregulates NK cell activating ligand CD155 UL141 [118]

Inhibits NKp30 activating receptor UL83 (pp65) [119]

Promotes lysosomal degradation of MICA US18 [120]

Promotes lysosomal degradation of MICA US20 [120]

Encodes an MHC-like protein UL37 [121]

Immune Hijacking Interferon stimulation Mimics IFNγ-mediated host gene expression IE1 [122]

Cytokine and chemokine 
homologs

IL-10 homolog UL111A [37]

CXCL1 homolog UL146 [123]

CXCL2 homolog UL147 [124]

CC chemokine receptor homolog US28 [125]

TNFR homolog UL144 [126]

Blocks apoptosis of infected 
Cells

Prevents apoptosis IE1 [127]

Upregulates antiapoptotic molecule c-FLIP IE2 [128]

Inhibitor of caspase-8 mediated apoptosis UL36 [129]

Mitochondria-localized inhibitor of apoptosis UL37 [130]

Downregulates TRAILR1 and TRAILR2 UL141 [131]

Stabilizes mitochondrial membrane potential RNA 2.7 [132]

Host cytokine induction IL-6, IL-1β IE genes [32, 133]

TNFα, IFNγ, IL-15 Unknown [33, 134]

MHC major histocompatibility complex, NK cells natural killer cells, IFN Interferon
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