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Catch more to catch less: Estimating timing choice as1

dynamic bycatch avoidance behavior2

3

January 7, 20254

Abstract5

We model harvesters’ temporal participation behavior in a fishery with individual6

quotas for both a target and bycatch species. Harvesters make participation decisions7

given time-varying characteristics of the fishery (e.g., catch rates, price, and bycatch8

rates) and outside opportunities (e.g., other fisheries). A harvester’s problem is season-9

ally dynamic under the individual quota scheme because quota acts as an intertemporal10

budget constraint. We construct a theoretical model to describe how the shadow value11

of individual quota plays a role in a harvester’s decision and propose an empirical model12

that captures the dynamic effect of the seasonal quota usage. Our study finds support13

for the existence of dynamic bycatch avoidance: harvesters use the security provided14

by quota allocations to reduce harvesting around periods of high bycatch. Our policy15

simulation demonstrates that opening the season earlier could reduce bycatch while the16

main target catch is maintained due to temporal shift of quota usage.17

Keywords Bycatch, Dynamic Avoidance, Policy Simulation, Prohibited Species Catch,18

Shadow Value of Individual Quota19

JEL classifications C61, Q22, Q2820
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Introduction21

The incidental catch of non-target species, so-called bycatch, is a key challenge for fisheries22

management: left unchecked, bycatch can create conflict with other user groups that claim23

the species as a valuable target or cause ecosystem issues through stock depletion. The24

fundamental cause of bycatch is imperfect selectivity of fishing gear to target specific species.25

While there are technical approaches that improve gears and enhance target-ability, behavioral26

approaches have been emphasized as an important margin along which fishers can adjust27

target-ability in a cost-effective manner (Branch & Hilborn, 2008; Reimer, Abbott, & Wilen,28

2017). Bycatch avoidance is costly for harvesters because measures generally decrease the29

catch rates of target species. Economic analysis has informed bycatch reduction policies by30

demonstrating this trade-off between bycatch reduction and costly avoidance, using models to31

illustrate the margins that efficiently reduce bycatch. While the emphasis on spatial behavior32

has been made in bycatch management (Abbott, Haynie, & Reimer, 2015; Abbott & Wilen,33

2011; Little, Needle, Hilborn, Holland, & Marshall, 2015; Miller & Deacon, 2017), this study34

focuses on relatively understudied temporal avoidance strategies by constructing a model of35

multi-fishery participation choice to analyze the effect of a season length policy on bycatch.36

One of the challenges of empirically modeling participation choices for a fishery with37

individual quotas is to capture the forward-looking behavior of managing quota usage.38

Individual quotas introduce an opportunity cost of harvesting: harvesting today means that39

there is less quota available for harvesting in the future. The magnitude of this shadow cost40

depends on expected future catch rates, the amount of remaining quota, and the number of41

periods remaining in the season. The shadow cost associated with the use of quota is difficult42

to estimate because expectations regarding quota usage in future periods are unobserved.43

Previous work has approximated the shadow cost of binding fleet-wide quotas by interacting44

contemporaneous expected catch rates with the amount of remaining time periods and quota45

(e.g., Abbott & Wilen, 2011; Haynie, Hicks, & Schnier, 2009), but has not incorporated46

information regarding expected future catch rates or bycatch.47
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We address this gap by developing a theoretical framework to derive a harvester’s optimal48

participation choice as a function of the shadow cost of target and bycatch quota, allowing49

for time-varying catch and bycatch rates. We use this decision mechanism to specify an50

empirical model of fishery participation with a composite variable, which we call Quota Speed,51

which serves as a proxy for the shadow cost of quota. We apply the model to the Bering52

Sea/Aleutian Islands (BSAI) pollock catcher-processor fleet, which targets pollock and other53

species while being subject to prohibited species catch (i.e., bycatch) of salmon species.54

Our results show that harvesters have incentive to participate in the present period when55

bycatch rates are expected to be higher in the future, reflecting forward-looking bycatch56

avoidance behavior. With an emphasis on the harvesters’ forward-looking behavior, we apply57

our model in the Alaska pollock fishery, where we simulate a counterfactual policy that sets a58

longer season length to give fishers more flexibility to avoid bycatch. The simulation results59

demonstrate that the new regulation reduces bycatch while maintaining target species catch,60

suggesting that the current season length policy, which was originally created for conserving61

the target species, is obsolete when considered jointly with quota and the newly emerged62

bycatch issue. Indeed, the bycatch restriction was layered on top of previous regulations63

without considering its potential interaction with the season length restriction. Updating64

the regulation by elongating the season may allow harvesters the flexibility to substitute the65

timing of target species catch to avoid bycatch.66

There are two primary reasons why the timing of participation should be highlighted as an67

important margin of bycatch avoidance. First, previous work has suggested individual bycatch68

quota as a bycatch management instrument in addition to other policy tools such as financial69

instruments or spatial restriction (Boyce, 1996; Diamond, 2004; Edwards, 2003; Hannesson,70

2010). The main idea of individual bycatch quota is to incentivize harvesters to avoid bycatch71

by creating a shadow value associated with use of the quota, which represents the marginal72

cost of bycatch today in terms of the foregone benefit of target species catch in the future.73

This shadow value incentivizes harvesters to allocate effort over a season to take advantage of74
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low bycatch rates. Second, fishery choice is an important decision margin for fishers that can75

target multiple species (e.g., Bockstael & Opaluch, 1983). It is therefore natural to model76

the timing of quota use as a problem of sequential fishery participation choices over a season77

when harvesters have the opportunity to participate in more than one fishery and face the78

bycatch rate varies over a season. Arguing for the importance of considering outside options,79

Stafford (2018) models daily choices of participation in alternative fisheries using a nested80

logit model; we extend her approach by incorporating a dynamic term reflecting the shadow81

value of using a constraining bycatch quota.82

Our study contributes to the literature by developing the first empirical model of in-83

dividual’s temporal choice of fishing under individual quota, and suggesting an approach84

to calibrating it without a full structural estimation. While seasonal allocation of fishing85

quota has been studied, as it is a key margin under individual quota management (e.g.,86

Birkenbach et al., 2020), capturing individual harvester behavior based on microfoundations87

is challenging due to unobserved expectations and shadow values of quotas. The allocation88

of fishing effort through time has been studied to show how individual quotas can attenuate89

the race to fish. This has been modeled as an optimal control problem which maximizes the90

seasonal profit given individual quota (Boyce, 1992, 1996; Clark, 1980). Empirical models91

of optimal temporal fishing effort allocation, in contrast, are limited. Kellogg, Easley, &92

Johnson (1988) apply a dynamic seasonal model to a scallop fishery, but the main purpose is93

to find the optimal seasonal length for the management body rather than estimating a model94

of harvester behavior. Previous empirical studies have investigated the fishery choice problem95

for fisheries without individual quotas; however, these studies model harvesters’ choice as96

static problem rather than dynamic because the management schemes under consideration97

created derby-style fisheries (Eggert & Tveteras, 2004; Pradhan & Leung, 2004). Curtis &98

McConnell (2004) model a forward-looking harvester’s choice of fishery and location at the99

trip level, but no seasonal level study exists considering allocation of individual quota. Bisack100

& Sutinen (2006) study the effect of bycatch ITQs as a bycatch reduction measure; however,101
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their approach is to simulate profits and efforts under policy alternatives given estimated102

revenue and costs rather than directly estimating harvesters’ responses.103

The empirical challenge of the dynamic participation choice problem in fisheries is to104

model harvesters’ unobserved expectations of future quota usage. The most obvious way to105

tackle this issue is to solve a harvester’s full dynamic programming (DP) problem; however106

the stochastic evolution of the state variables (remaining quotas) combined with the need107

to recursively solve for a harvester’s optimal participation choice makes the model become108

intractable. Our approach does not fully solve the DP problem; instead, we include a109

composite variable derived from our theoretical model of optimal participation choice that110

approximates the forward-looking behavior of harvesters by specifically taking into account111

the future use of individual quota.112

This paper is organized as follows. Section 2 presents our theoretical model to highlight113

the mechanism of harvesters’ decision making for fishery participation under a quota managed114

fishery. Section 3 describes our case fishery, the Bering Sea and Aleutian Islands pollock115

catcher-processor fleet. Section 4 presents our empirical model and estimation strategy.116

Section 5 presents the estimation results. Section 6 shows the simulation results of an117

alternative policy based on the estimates of the empirical model. Section 7 concludes the118

article.119

The Seasonal Participation Model120

To investigate harvesters’ temporal effort allocation under seasonal individual quota and121

bycatch avoidance, we construct a model of harvester’s timing choice of fishery participation.122

We conceptualize harvesters as solving an annual (or seasonal) planning problem, given123

time-varying expected catches and prices and the constraints of individual quotas for target124

and bycatch species. The key implication of the model is the existence of a dynamic trade-off:125

a forward-looking harvester will balance current gains, the cost of bycatch, and future benefits126

5



from saved quotas when deciding on participation in a fishery. Our motivation for developing127

a theoretical model is to analyze how time-varying conditions and shadow costs affect the128

decisions of harvesters.129

Our model builds on seasonally dynamic and single target fishery models (Boyce, 1992;130

Clark, 1980), but allows for multiple fishery choices. While these previous studies focus on131

the optimal management under stock externality from the perspective of a social planner,132

we present a model of individual private harvester’s within-season decision on the extensive133

margin given an individual quota-based management scheme. Accordingly, we use a dynamic134

framework with remaining quota as the state variable of interest. We do not explicitly135

consider a stock externality. Instead, we assume that the catch of the fleet is only a small136

portion of the stock, which is managed to a steady state by a TAC, and individuals take the137

time-varying expected catch as given.138

The model focuses on a harvester maximizing seasonal profit under individual target and139

bycatch quotas. The harvester allocates effort across two fisheries over a season. Fishery 1140

is under individual quota management for both target and bycatch, and Fishery 2 is free141

access for the harvesters without quantitative restriction. The seasonal profit of harvester i142

is defined as143

V =
∫ T

0
[dit(p1tq1t − γbtq1t) + (1− dit)p2q2t − c]dt (1)

where qjt is the time-varying catch of target species in Fishery j, bt is the time-varying bycatch144

rate in Fishery 1, p1t is the time-varying price of fish in Fishery 1, p2 is the price of fish in145

Fishery 2. The choice variable dit ∈ [0, 1] denotes a harvester’s fishery decision, and can be146

interpreted as the proportion of effort allocated to Fishery 1—e.g., the harvester chooses147

to fully commit to Fishery 1 if dit = 1 and chooses to only harvest in Fishery 2 if dit = 0.148

While the choice variable dit is specified as continuous and can take on values between 0149

and 1, the optimal fishery decision will be a corner solution (as we demonstrate below) since150

it enters the objective function linearly. The parameter c is the operating cost of fishing,151
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and γ is the unit cost of bycatch, which represents a punishment of having bycatch even if152

the bycatch quota is not binding. This direct cost of bycatch is often seen in the bycatch153

management—for example, in the BSAI pollock fisheries, harvesters that catch a high number154

of salmon bycatch in a week are publicly listed on the “dirty 20 list”.1 In addition, harvesters155

with high bycatch may be restricted from accessing certain areas to fish. These measures work156

to provide harvesters with incentives to avoid bycatch in addition to the individual bycatch157

quota, and we take it into account as a form of direct cost of bycatch. We do not explicitly158

take into account discounting because the model presumes the within-season dynamics, and159

the effect of discounting is predictable while the main interest is the response to time-varying160

variables.2161

The harvester is subject to individual quota constraints in Fishery 1: Q1i is the amount162

of individual target species and Qbi is the amount of individual bycatch quota. The sums of163

the catch and bycatch should not exceed these quotas:164

Qi1 ≥
∫ T

0
ditq1tdt

Qbi ≥
∫ T

0
ditbtq1tdt.

(2)

Including the constraints for the decision variable 0 ≤ dit ≤ 1, the Lagrangian formulation of165

the constrained maximization problem of harvester i is as follows:166

L = V +λ1i[Q1i−
∫ T

0
ditq1tdt]+λbi[Qbi−

∫ T

0
ditbtq1tdt]+

∫ T

0
η1itditdt+

∫ T

0
η2it(1−dit)dt, (3)

where λ1i, λbi, η1it and η2it are Lagrange multipliers which correspond to the target species167

quota, the bycatch species quota, and the upper and lower bounds of the decision variable,168

1Number of appearance is reported on annual reports. e.g. Pollock Conservation Cooperative and High
Sea Catchers’ cooperative join annual report, https://www.npfmc.org/wp-content/PDFdocuments/catch_s
hares/CoopRpts2016/PCC_HSCC_AFA16.pdf

2For example, Birkenbach et al. (2020) includes discounting in their theoretical model for completeness,
but not explicitly treat it in their empirical section. We exclude the discounting to keep the expression simple.
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respectively. By rearranging the first-order condition of the Lagrangian in eq. 3 with respect169

to dit, we obtain the following necessary condition:170

Yit = [p1t − λ1i − (γ + λbi)bt]q1t − p2q2t, (4)

where Yit ≡ η2it − η1it is the difference between the Lagrange multipliers associated with the171

range conditions for dit. The first term on the right-hand side is the net benefit from Fishery172

1, and the second term is for Fishery 2. The operating cost, c, cancels out as we presume173

that the costs are same across fisheries. We refer to Yit as a participation index. Intuitively,174

since the index is the difference in net revenues between the two fisheries, the harvester175

chooses Fishery 1 if the index is positive. In this case, η2it > 0 and η1it = 0, which implies the176

constraint dit = 1 is binding. Conversely, if the index is negative, then η1it > 0 and η2it = 0,177

which implies the constraint dit = 0 is binding. We can express this link between the index178

and the decision variable as dit = I{Yit ≥ 0}, where I{·} is an indicator function.3179

The interpretation of the index is straightforward: the harvester chooses the fishery with180

higher net benefit. Notice that the net benefit of Fishery 1 includes the shadow costs of181

both the target and bycatch quota. These shadow costs capture the cost of lost harvesting182

opportunities in the future due to less remaining quota; hence, the harvester’s decision is183

dynamic. The participation index is the motivation for our empirical model specification,184

which we describe in detail below.185

Our interest is in empirically estimating the participation model in equation (4); however,186

this is made difficult by the existence of the shadow values λ1i and λbi, for which analytical187

closed-form solutions are not easily attained. Moreover, the shadow values are functions of the188

target catch q1t, bycatch rate bt, and remaining quotas Q1i and Qbi. Thus, the participation189

index in equation (4) is potentially nonlinear with respect to the independent variables of190

interest.191

3Note that a harvester is indifferent between the two fisheries when Yit = 0. In this case, η1it = η2it = 0
and 0 ≤ dit ≤ 1. For simplicity, we assume that a harvester would allocate all effort to Fishery 1 if indifferent.
In practice, this is rare. We provide a full derivation of the necessary condition in eq. 4 in Appendix A1.
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We address this issue by forming a Taylor-series approximation of order one for the192

participation index Y in equation (4) around a point x0 = (b0, q0
1, Q

0
1, Q

0
b), such that193

Yit(x) ≈ Yit
(
x0
)

+ dYit
dbt

(
x0
)
bt + dYit

dq1t

(
x0
)
q1t + dYit

dQ1i

(
x0
)
Q1i + dYit

dQbi

(
x0
)
Qbi, (5)

where x = (bt, q1t, Q1i, Qbi) can be considered as deviations for the point x0. We further194

decompose each of these partial effects below, with the goal of understanding the various195

components of the participation index so as to estimate it using a latent index model.196

Change in bycatch rate: The second term of eq. 5 is the change in the index with197

respect to the bycatch rate. Using the implicit function theorem, the total derivative of the198

participation index Yit with respect to the bycatch rate bt can be shown to be:4199

dYit
dbt

= ∂Yit
∂bt

+ ∂Yit
∂λ1i

∂λ1i

∂bt
I{λ1i > 0}+ ∂Yit

∂λbit

∂λbi
∂bt

I{λbi > 0}

= −(γ + λbi)q1t + q1t
(γ + λbi) ∂dit

∂Yit
q2

1t∫ T
t

∂dis

∂Yis
q2

1sds
I{λ1i > 0}

− btq1t
(dit − (γ + λbi) ∂dit

∂Yit
btq1t)q1t∫ T

0
∂dis

∂Yis
b2
sq

2
1sds

I{λbi > 0}

(6)

The first term on the right-hand-side is the direct effect of the change in bycatch rate. The200

second term is the dynamic effect via the shadow value of the target species quota. This201

term is positive, and relevant only if the shadow value is positive (i.e., the target quota is202

binding). The third term is the dynamic effect via the shadow cost of the bycatch species203

quota, the sign of which is ambiguous and depends on the level of the participation index,204

as well as the magnitude of the catch rate, the direct cost of bycatch, the shadow cost of205

bycatch, and the bycatch rate. If λbi = 0, only the first and second terms are relevant.206

Change in target catch: The total derivative of the participation index Yit with respect207

to target catch q1t can be shown to be:208

4A full derivation of the derivative is provided in the Appendix A2.
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dYit
dq1t

= ∂Yit
∂q1t

+ ∂Yit
∂λ1i

∂λ1i

∂q1t
I{λ1i > 0}+ ∂Yit

∂λbi

∂λbi
∂q1t

I{λbi > 0}

= [p1t − λ1i − (γ + λbi)bt] +
−q1t

{
ddit

dYit
[p1t − λ1i − (γ + λbi)bt] + dt

}
∫ T

0
ddis

dYis
q2

1sds
I{λ1i > 0}

+
−btq1t

{
ddit

dYit
[p1t − λ1i − (γ + λbi)bt] + dtbt

}
∫ T

0
ddit

dYit

2
ds

I{λbi > 0}

(7)

Note that ∂Yit

∂q1t
is the direct effect of the catch rate in period t, whose sign depends on the209

price, bycatch cost, and shadow costs in period t. The second term is the indirect effect210

through the shadow cost of target species quota, where ∂Yit

∂λ1i
< 0, ∂λ1i

∂q1t
≥ 0, hence the whole211

term is negative or zero. The third term is the indirect effect through the shadow cost of212

bycatch species quota, where ∂Yit

∂λbi
< 0, ∂λbi

∂q1t
≥ 0, hence the whole term is negative or zero.213

Change in target quota: The total derivative of the participation index Yit with respect214

to target quota Q1it can be shown to be:215

dYit
dQ1i

= ∂Yit
∂λ1i

∂λ1i

∂Q1i
I{λ1i > 0}+ ∂Yit

∂λbi

∂λbi
∂Q1i

I{λbi > 0}

= q1t∫ T
0

ddis

dYis
q2

1sds
I{λ1i > 0}

(8)

Note that the first term on the right-hand-side is unambiguously positive while the second216

term is zero, as main target species quota does not have any effect on shadow value of bycatch217

quota. Hence, the whole term is positive. This is also an intuitive result because the increase218

in the quota should means increases in the catch in each period, hence the opportunity cost219

is lowered.220

Change in bycatch quota: The total derivative of the participation index Yit with221

respect to target quota Qbi can be shown to be:222
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dYit
dQb

= ∂Yit
∂λ1i

∂λ1i

∂Qbi

I{λ1i > 0}+ ∂Yit
∂λbi

∂λbi
∂Qbi

I{λbi > 0}

= 0 + btq1t∫ T
0

ddis

dYis

2
ds

(9)

Note that the first term on the right-hand-side is zero while the second term is unambiguously223

positive. Hence, the overall effect is positive. This is also an intuitive result because the224

increase in the quota should means greater buffer of bycatch in each period.225

Overall, we observe two important characteristics of the first order approximation. First,226

the total derivatives are decomposed into the direct (contemporaneous) effect and dynamic227

effects through the shadow costs of the quotas. Second, the magnitude of the dynamic effects228

depends on current fishing conditions relative to expected fishing conditions in the rest of the229

season. We utilize these characteristics to formulate an empirical specification of participation230

using a latent index model, which we discuss in more detail below.231

The Bering Sea/Aleutian Islands Trawl Pollock Fishery232

We apply our approach to the catcher-processor vessels which operate in the Bering Sea233

and Aleutian Islands (BSAI) pollock fishery in the North Pacific. A total of 17 vessels owned234

by seven companies are included in the data over the years 2005 to 2013. The fleet consists of235

similarly designed vessels with lengths from 270 to 376 feet. Employing pelagic (mid-water)236

trawl, vessels target walleye pollock in the BSAI and Pacific hake in West Coast of the United237

States. In addition, some vessels catch yellowfin sole (YFS) as a secondary fishery in the238

BSAI. The BSAI pollock fishery is the largest human food fishery in the world, and its harvest239

constitutes 40% of the competitive and highly substitutable global whitefish market (Fissel240

et al., 2015). There is a variety of products in this fishery including fillets, head and gutted,241

surimi and roe.242

The fleet consists of the vessels listed in Section 208 (e) of the American Fisheries Act. The243

American Fisheries Act was enacted in 1998, and its purpose is facilitating the BSAI vessels244
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to conduct their fishery in a more rational manner. The American Fisheries Act Pollock245

Cooperatives program was implemented by the U.S. congress and includes participation246

requirements, total allowable catch (TAC) allocations among sectors, the provision of an247

allocation to the Community Development Quota program, and authorization of the formation248

of cooperatives. 40% of the Bering Sea commercial pollock TAC is allocated to the catcher-249

processor sector. The catcher-processor fleet formed a cooperative to coordinate the pollock250

harvest under American Fisheries Act, called the Pollock Conservation Cooperative. The251

cooperative members allocate the sectoral quota among themselves, and this allocation is, by252

and large, treated as internally managed individual quotas.253

Vessels in the BSAI pollock fleet stay at sea fishing and processing for several weeks due254

to their size and processing facilities. During each season, harvesters make decisions on which255

species to target depending on time-varying profit opportunities, constrained by economic256

(e.g., harvesting costs), biological (e.g., catch rate of species, maturity of roe), regulatory257

(e.g., time and area closures) and environmental (e.g., sea ice, oceanographic and climatic258

trends) conditions (Haynie & Pfeiffer, 2013; Pfeiffer & Haynie, 2012). The species provide259

differing opportunities during different periods, leading vessels to choose particular targets260

throughout the season.261

The fishing year is divided into two regulatory seasons: the “A” season (January to June)262

is focused mainly on fishing pre-spawning pollock for the harvest of roe, which can consist263

over 4% of weight (Ianelli et al., 2013) but 20% to 40% of value (Fissel et al., 2015), and264

the “B” season (June to November) is aimed more to the production of fillets and surimi265

products. The main reason why the seasons are divided is that vessels intensively catch266

pollock in winter and spring due to the high value of matured roe. Too much fishing pressure267

on the spawning stock may result in low recruitment even though the annual fishing mortality268

satisfies the regulation. Accordingly, a portion of the annual quota is allocated to the B269

season after spawning is over. Given the nature of this difference in the seasons, we apply270

our model separately for the A and B seasons.271
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A recent major regulatory update to the pollock fishery changes the management of272

Chinook (king) salmon bycatch, which is designated as prohibited species catch (PSC) by the273

fishery management plan. Vessels in the BSAI pollock fishery are not allowed to retain or sell274

the species, even though it is valuable. While the pollock fishery achieves a high target species275

selectivity, bycatch numbers are still high in aggregate due to the large amount of pollock276

catch (Larson, House, & Terry, 1998). Initial regulations included time and area closures277

when bycatch limits were exceeded; however, Chinook salmon bycatch significantly increased278

between 2001 and 2007 (Gisclair, 2009; Stram & Ianelli, 2015). Changes in the migration279

pattern of Chinook salmon caused by environmental factors (e.g. temperature) are associated280

with the rise in bycatch in the pollock fishery, rather than other reasons such as common281

prey (Stram & Ianelli, 2015). To resolve the issue, the North Pacific Fishery Management282

Council implemented a new management measure under Amendment 91 to the BSAI Fishery283

Management Plan in 2011, which established a hard cap for Chinook bycatch (called the PSC284

limit) and required an industry-designed incentive program that would encourage harvesters285

to avoid bycatch even when cumulative bycatch is not close to the limit (NMFS, 2010). The286

PSC limit is set for the fleet and allocated by the cooperatives within the fleet proportional to287

the size of a vessel’s pollock quota. The PSC limits for individual vessels are not binding over288

the sample period, largely because the allocation of the limit is set to address unexpected289

bycatch events (Madsen & Haflinger, 2015).290

The bycatch of the pollock fishery is carefully monitored. The vessels in our study have291

100% on-board observer coverage (Gantz, 2018). It is often classified as 200% coverage,292

meaning that two observers are on board. Discarding is counted as a part of bycatch: The293

observers on board record the salmon catch regardless of whether it is retained or discarded.294

Hence we treat all the bycatch as fishing mortality which is tracked against the limit.295

The American Fisheries Act generally does not allow the catcher-processor fleet to catch296

non-pollock species in the BSAI area, but it allocates a portion of other groundfish species as297

their “traditional catch”, which are regulated by sideboard limits defined by pre-American298
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Fisheries Act catch history. The second fishery in the BSAI for the fleet, YFS, is categorized299

as non-pollock groundfish species along with pacific cod and Atka mackerel, which are caught300

by the catcher-processor fleet in small amounts. While a sideboard limit for YFS is determined301

on an annual basis, it is not binding for the fleet in any year between 2001 and 2015, and302

hence it is free to access without quota regulation.5303

The fleet also participates in the Pacific Hake fishery on the US West Coast when it is304

not operating in the Bering Sea. Pacific Hake is managed under West Coast Groundfish305

Trawl Catch Share Program. This is a limited entry Fishery under the management of the306

Pacific Fishery Management Council. Any catcher-processor needs a permit to target hake.307

The council allocates 34% of the TAC to the cooperative of the catcher-processors. The308

member companies of the cooperative negotiate the apportionment of the allocation and sign309

contracts to enforce it. The season of Pacific Hake fishery for the catcher-processor vessels310

opens on May 15 every year. The catcher-processor vessels finish using their A season quota311

of pollock in early May although the season lasts until June 20, because they move to the312

West Coast to start targeting Pacific hake.313

Empirical Strategy314

Empirically estimable model315

316

Our goal is to apply the theoretical model developed above to the BSAI pollock fishery.317

Our theoretical results demonstrate that fishery participation is driven by both contempora-318

neous and dynamic effects. A challenge in specifying an empirical version of the first-order319

approximated participation index (eq. 5) involves the dynamic effects of quota usage, the320

magnitude of which depends on the relative size of the catch (or bycatch) rate over the321

season. We adapt our theoretical model such that the first-order approximation of the latent322

5This is not an open-access, because the fishery is not open to public. It is open in the sense that the
catcher-processor fleet can access without quota regulation.
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participation index in eq. 5 can be represented by an indirect utility specification within the323

random utility model framework.324

The random utility model was initially applied to fishery choice by Bockstael & Opaluch325

(1983), and this approach established a sizable literature to analyze harvester behavior (e.g.,326

Abbott & Wilen, 2011; Haynie & Layton, 2010; Holland & Sutinen, 2000; Smith & Wilen,327

2003 ). Several studies adopt the random utility model framework to integrate dynamic328

aspects of fishers. There are primarily two approaches for dynamic empirical estimation of329

discrete choices. The full stochastic dynamic programming approach (e.g., Huang & Smith,330

2014; Provencher & Bishop, 1997) is notoriously difficult: the stochastic evolution of the331

state space (remaining quota) combined with the need to recursively solve for a harvester’s332

optimal participation choice makes the problem become quickly intractable. Moreover, the333

stochastic nature of catch makes it difficult to reduce the state space down to a manageable334

set of deterministic state variables under quota management, although some studies model in335

the empirical specifications for non-quota management fisheries (e.g., Hicks & Schnier, 2006,336

2008; Abe & Anderson, 2022). For this reason, we do not follow the full stochastic dynamic337

programming approach. Instead, we follow the second approach that incorporates reduced-338

form approximations of dynamic trade-offs (Curtis & Hicks, 2000; Curtis & McConnell, 2004),339

which has been shown can be effective for evaluating marginal counterfactual policy changes,340

as we do here (Reimer, Abbott & Haynie, 2022).341

To construct a seasonal-planning model without solving the full dynamic program, our342

empirical model includes an approximated key state variable that allows us to test for evidence343

of dynamic decision making and to simulate counterfactual bycatch-reduction policies. In344

addition to computational feasibility, the main advantage of our approach is the explicit345

linkage with the theoretical result that clarifies the mechanism of the dynamic decision. This346

theory-based estimation shares the idea of structural estimation, which estimates parameters347

in an explicitly specified economic model that is principally consistent with the data. We348

propose an approach to estimate the parameters that govern harvesters’ decision making, yet349
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tractable and applicable to the real-world data.350

Just as a latent variable index is the difference between two alternative-specific utilities,351

the participation index from our theoretical model is the difference between the net benefits352

for two fisheries. Following from our Taylor-series approximation of the participation index353

(eq. 5), we specify a harvester’s indirect utility as354

Yit =αi + (β11 + β12QSpeedit + β13BQSpeeditA91t)EREVit+

(β21 + β22QSpeedit + β23BQSpeeditA91t)ECPRit+

(β31 + β32QSpeedit + β33BQSpeeditA91t)Quotai + θ′Zit + ξit,

(10)

where the explanatory variables and their interactions are motivated by the total deriva-355

tives presented in eqs. 6-9. The variable EREV denotes expected net revenue per unit356

effort, defined as the difference between pollock and YFS expected revenue: EREV =357

E(RevenuePoll)− E(RevenueYFS). Expected revenue is measured as expected catch (Metric358

Ton) divided by haul-duration multiplied by observed weekly price. The variable ECPRit359

denotes the expected Chinook-Pollock ratio (i.e. the bycatch rate). Expected revenue and360

bycatch rates are estimated using fleet-wide seasonal trends as common information and the361

previous week’s realized catch as individual information.6 Quotai is an individual quota for362

pollock, the main target species. We do not include the bycatch quota because it is defined363

as a fixed ratio of the main target species quota, and thus it causes perfect collinearity if364

included.365

We use auxiliary variables, Quota Speed (QSpeed) and Bycatch Quota Speed (BQSpeed),366

6Following the literature (e.g., Abbott & Wilen, 2011), we estimate harvesters’ expectations outside of
the fishery participation decision model. The formation and estimation of such expectations are discussed
in detail in Appendix A4. We note that a potential problem with using estimates of expectations is that
they likely contain measurement and prediction errors, which can lead to attenuation bias (assuming that
these errors are not systematically related to the latent expectation). We also note that since we model
expectations as a function of previous participation decisions, there is a possibility that our expectations
are correlated with the unobserved component of indirect utility, resulting in endogeneity bias. However, we
believe that such endogeneity bias is likely small since: i) an individual harvester contributes only a small
portion to fleet-wide harvests; ii) the stochastic nature of bycatch rates means that there is considerable
exogenous variation in bycatch, conditional on participation decisions; and iii) the inclusion of vessel fixed
effects captures any endogeneity arising from unobserved factors that are vessel specific and constant over
time. We thank an anonymous reviewer for pointing this out.
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that capture the expectation of the quota uses in future periods, whose constructions are367

described below in detail. These variables are motivated by the dynamic shadow-cost effect368

of quota in the total derivatives in eqs. 6-9, which show that the participation index is a369

function of expected quota use over the entire season due to the intertemporal nature of370

the quota constraint.7 We include a dummy variable A91 (equal to one if after 2011) to371

account for changes in bycatch avoidance behavior after the introduction of bycatch quota by372

Amendment 91. The covariates Z include the cost of switching fisheries as a dummy variable373

(equal to one if did not participate in the previous period), which captures the inertia to stay374

in one fishery, and monthly number of vessels in the Pacific Hake fishery, which reflects the375

net benefit of participating in that fishery.376

Note that the model of eq. 10 is estimated for A and B season separately. As previously377

discussed, the underlying conditions between A and B are different due to the highly-valued378

pollock roe occurring during the A season. In addition, regulation on salmon bycatch is more379

lenient in A season (e.g., a relatively higher cap of bycatch quota in the A season). Thus,380

harvesting behavior can be different in A and B season, and we therefore estimate the model381

separately for each season.382

Our theoretical model demonstrates that the dynamic effect of catch rates for target and383

bycatch species on fishery participation depends on current fishing conditions relative to384

expected fishing conditions in the rest of the season. Motivated by this result, we construct385

a variable called "Quota Speed" (Qspeed) that captures the dynamic component of quota386

usage. The constructed variable captures the pace of quota use relative to the time left in387

the season and consists of the remaining quota left, expected CPUE in future weeks, and the388

weeks remaining in the season:389

Qspeedt = %QuotaLeftt −%WeightT imeLeftt
%QuotaLeftt + %WeightT imeLeftt

, (11)

7Note that these dynamic effects only enter eq. 5 through the total derivatives in eqs. 6-9; thus, the Quota
Speed variables only enter into the indirect utility function as interactions.
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where %QuotaLeftt is the percentage of remaining quota and %WeightT imeLeftt is the390

percentage of the time left weighted by catch opportunities in the season. We describe the391

construction of these variables below.392

In the beginning of the season, a harvester has a planned path of quota use: the harvester393

participates in Fishery 1 and uses quota when the profitability of target catch is high. During394

the season, the realized catch may be different from the expected catch, and thus the speed at395

which quota is being used may be too fast or slow relative to the remaining catch opportunities396

in the rest of the season. The variable (Qspeed) measures this fast-or-slow quota-use speed.397

The value of (Qspeed) ranges between -1 and 1. When it is too fast, implying that the398

realized catch is greater than the expectation, the variable is negative. This is interpreted399

that the shadow cost of the quota becomes higher, and hence the harvester is less likely to400

participate in a period. The variable %WeightT imeLeft is analogous to the denominators of401

the dynamic effects in equation 6-9, and captures the behavior of forward-looking harvesters.402

The integral of catch rates over the remaining season is approximated by the sum of the403

weighted remaining weeks, where a week with a high expected catch rate is weighted more404

heavily because it provides a more profitable opportunity for harvesters to spend their quota.405

The probability of participation in a future week is also taken into account to determine the406

weight. The participation probability is analogous to the change in participation relative to407

the change in the index ∂dit

∂Yit
in the denominator of equation 6-9. The probability is simply408

calculated by the ratio of number of participating vessels in each week and the total number409

of vessels, assuming that the harvesters know the seasonal pattern of participation based on410

their experiences. Accordingly, the percent of weighted time left is specified as:411

%WeightT imeLeftt =
∑T
w=t Pr(DWw)E(CPUEw)2∑T
w=1 Pr(DWw)E(CPUEw)2 , (12)

where Pr(DWw) is a probability of participation in period w.412

413

414
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Estimation415

416

To estimate the model, we employ a maximum likelihood estimator of the binary logit417

model. A limitation of a simple panel-data logit estimator is that individual fixed effects418

cannot be estimated consistently. So long as the number of periods observed for each individual419

is fixed, individual dummy variables will be incorrectly estimated, and this error contaminates420

the estimates of the other parameters of the model (this is known as the incidental parameter421

problem (Neyman & Scott, 1948)). Even if individual heterogeneity itself is not of interest,422

it is possible that the parameters of interest are biased if the homogeneity assumption is423

violated. Hence, we employ an unconditional logit estimator with bias correction (Hahn &424

Newey, 2004).425

We adopt the bias correction method because it provides estimates of individual fixed426

effects, which can be used for post-estimation counterfactual policy simulations. A well-known427

estimation method used to combat the incidental parameter problem is the conditional logit428

approach proposed by Chamberlain (1980), which is an maximum likelihood estimator with429

a likelihood function that conditions out the individual fixed effects. While the conditional430

logit approach solves the incidental parameters problem, it does not recover estimates of431

the individual fixed effects. Hahn & Newey (2004) suggest an analytical bias correction432

approaches for nonlinear panel models based on asymptotics when the number of time periods433

T grows faster than the number of individual to the one-third, n 1
3 . The bias-correction434

approach is computationally heavy; however, a recent algorithm has been proposed by435

Stammann et al. (2016) that is as fast as the conditional estimator. We adopt it in this study.436

437

Data Description438

439

We use multiple data sources for our analysis. Our primary data set is collected by the440

North Pacific Groundfish Observer Program (NPGOP) and provides a complete record of441
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fishing effort and total catch for all vessels over 124 feet. The data available to us consists of442

vessel-week level observations for 17 vessels of the American Fisheries Act catcher-processor443

fleet from 2005 to 2013 when they are targeting pollock and YFS in Alaskan waters. Weekly444

variables for each vessel include number of hauls, tow duration, gear setting, and amounts of445

target species catch, prohibited species catch, and the bycatch species harvested.446

In addition to the NPGOP data, we use annual price data from the Economic Stock447

Assessment and Fishery Evaluation Report (Fissel et al., 2015), and monthly export data448

of fishery products that is collected by the U.S. Census Bureau and compiled by NOAA449

fisheries. While the unit export value is not exactly the price harvesters harvesters receive450

for their products, it captures the within-season variation in product values.8 We assume451

that variation in the in-season price of pollock is exogenous for at least two reasons. First,452

pollock is not a fresh market fish, so week-to-week price variability based on week specific453

landings are negligible; companies hold frozen product until weeks of lower supply. While454

the total annual catch, and thus supply of the frozen primary product, might matter to455

price, the exogenous total allowable catch is always fully exploited. The threat of price456

endogeneity is further dampened by the fact that pollock is sold into the highly substitutable457

global whitefish market (Bronnmann et al, 2016), which is sensitive to other countries’ total458

allowable catch for pollock (e.g. Russia, (Criddle and Strong, 2013)) and other high-volume459

whitefish species such as hoki, Pacific cod, Atlantic cod, and haddock.460

The vessel-specific Pacific Hake harvest data is held by a separate regional agency and not461

available due to confidentiality concerns, so we use public data on the Pacific Hake fishery.462

The only available data is number of vessels targeting Pacific Hake, which we use as a proxy463

for the productivity of Pacific Hake.464

Table 1 shows the summary statistics of the key variables for our analysis. “Expected”465

variables and “Quota Speed” variables are constructed based on the observed data. CPUE466

for each species and the bycatch rate (Chinook-pollock ratio) are constructed using only467

8The actual in-season variations of ex-vessel or wholesale prices were not available.
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target-species observations. The formation of the expectations is described in appendix A4.468

[Table 1 inserted here]469

Estimation Results470

Table 2 and 3 show the estimation results for the A and B seasons, respectively. The471

first column of each table shows the estimates of the full model including all the relevant472

dynamic variables. The second and third column models reduce the interactions of Qspeed473

and BQspeed depending on the size of standard errors relative to the size of coefficient in474

the full model. To test whether the reduced variables have no effects, the likelihood ratio475

(LR) statistics provided at the bottom of the table (e.g., LR test for the Column 3 model476

against the Column 2 model is shown in the third column). The fourth column in each table477

show the model without any dynamic variables. According to the likelihood ratio tests, we478

reject the null hypothesis that dynamic variables are zero for both seasons. However, we are479

unable to reject the null hypothesis that the additional variables in the full model relative to480

the reduced models have effects. Accordingly, our preferred models are Column 3 models in481

both tables.482

[Table 2 inserted here]483

[Table 3 inserted here]484

For the A season, the coefficient on the expected Chinook-pollock ratio shows a positive485

sign, which implies that high expected bycatch rates increase the likelihood of participation486

in the pollock fishery. This counter-intuitive result may arise because the effect of bycatch487

rates is not well-identified: the timing of mature pollock roe and high Chinook bycatch rates488

tend to coincide in the A season. Thus, it is possible that harvesters choose not to avoid high489

bycatch rates by adjusting their participation because mature roe is too valuable to give up.490

In terms of our theoretical model, this means that the index value, Yit, remains above zero491
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even though the bycatch rate is high because the price p1t exceeds the cost of bycatch cost.9492

In other words, variation in the bycatch rate is not enough to induce fishery switching during493

periods of mature pollock roe, thereby creating an identification problem. The interaction of494

the pollock price and the bycatch rate is included to control for this effect, and indeed the495

coefficient on the ECPR is not statistically significant while the interaction is.496

The dynamic variable is important to explain the participation decision of the harvesters.497

This is in line with our theoretical model. Interestingly, the relevant dynamic variables in498

the A season are the interaction of Qspeed and EREV , and BQspeed and ECPR. The499

interpretation of the first interaction is straightforward: when the quota usage is too fast500

relative to the expected pace, the incentive to participate in the pollock is reduced, and501

vice versa. This is consistent with the sign of the second term in equation 7. The effect of502

the current expected revenue per unit through the shadow value is negative as it loses the503

opportunity cost to use the quota in the future. Similarly, the coefficient on the interaction504

of BQspeed and ECPR is positive, implying that the fast quota usage of bycatch quota505

weaken the incentive to participate in pollock fishery when the bycatch rate is high. The506

harvesters pay attention to the quota usage of the bycatch during the A season although it is507

less likely to bind. The high price due to mature roe is the main driver of the harvesters’508

behavior in the A season, but the newly created quota could enhance the incentive to avoid509

the bycatch in the dynamic allocation of quotas. Our theoretical framework predicts that the510

sign of this effect is ambiguous, depending on the participation. Because the A season is very511

attractive due to the high price of matured roe and the harvesters are already participating512

before the PSC limit is implemented, the result is consistent with the theory as it is the case513

dit = 1 in the third term of equation 6.514

The main variables that determine participation in the B season are persistence of515

participation (switching cost) and the relative benefit in the Pacific Hake fishery. The key516

dynamic variable in the B season is the individual quota and Qspeed. The coefficient is517

9Anecdotal evidence suggests that while limits on salmon bycatch do influence harvesting behavior,
harvesters tolerate a higher level of bycatch for the greater value of mature roe.
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positive, suggesting that the harvesters will participate in pollock fishery if the quota use is518

slower and having larger quota. Given that the price is stable in the B season, the result is519

interpreted that the harvesters are simply willing to consume the pollock quota as early as520

possible. ECPR has a negative coefficient, but statistically insignificant. The harvesters are521

already avoiding bycatch and hence attempt to consume the quota before the bycatch rate522

increases. Because many vessels are fishing using the quota before the large bycatch rate523

increase occurs, less variation may be observed.524

Although the coefficients are statistically insignificant, the negative sign on the coefficient525

of expected revenue is not consistent with our expectations. The possible reason is that there526

are few vessels targeting YFS in B season, and there is not much variation in expected pollock527

revenue. The harvesters do not respond to these variables directly, but they participate in528

the pollock fishery to utilize the pollock quota according to the predetermined schedule.529

Policy Simulation530

The result of our empirical model highlights that there is a significant difference in the531

harvester’s behavior between the A and B season: temporal avoidance behavior in the B532

season but not in the A season. Due to the specific background of the fishery in A season533

(overlapping timing of matured pollock roe and high salmon bycatch rate), a policy that534

affects the temporal margin may not be effective in the A season, but it could be helpful to535

reduce bycatch in the B season.536

We use our estimated participation model to examine a policy counterfactual of interest537

to the pollock fleet: can current regulations be adjusted to provide opportunities for more538

profitable pollock quota usage without increasing salmon bycatch? We run a simulation of an539

alternative policy that has been raised for analysis in the North Pacific Fishery Management540

Council process—namely, opening the B season earlier, which aims to reduce bycatch of541

Chinook salmon. Because Chinook salmon is frequently caught later in the B season, the542

23



early opening of the B season may provide the harvesters opportunities to use their pollock543

quota while the bycatch rate is low. We simulate the harvesters’ dynamic fishery choice in544

response to opening the B season two-weeks earlier, while the end date of the season remains545

at the status quo. We expect that the harvesters will participate earlier so that they can catch546

enough pollock using their target-species quota, thereby avoid bycatch of Chinook salmon in547

future periods. One concern of this alternative is that the other non-Chinook bycatch species,548

mainly Chum salmon, may be caught more than the amount under the current policy. The549

other non-Chinook salmon bycatch is not currently limited, but monitored for a possible550

future restriction.551

To understand the trade-off of the suggested policy, we simulate the harvesters’ partic-552

ipation under current and the alternative policies using the parameter estimates from our553

empirical model. First, we evaluate prediction performance using out-of-sample predictions554

of our empirical model for the B season. The coefficients are estimated with the B season555

sample while removing a ”hold-out” year to compare our predictions against (e.g., to predict556

the participation pattern in 2005, use the data of 2006-2013 for estimation). The predicted557

number of participating vessels is a sum of predicted participation probability for individual558

vessels. As shown in Figure 1, the general trend of participation is well predicted with the559

model we estimated. Note that this prediction is performed using the observed catch and560

quota usage.561

[Figure 1 inserted here]562

The policy simulation we conduct here is different from the out-of-sample prediction563

above. While the out-of-sample prediction uses the observed catch and remaining quotas in564

the data, we allow remaining quota to evolve endogenously given the participation decisions565

and catches of previous periods in order to construct Quota Speed based on counterfactual566

decisions. The harvesters’ decisions are predicted based on the estimated parameters for the567

first week of the B season. We then simulate each vessel’s catch based on their predicted568

24



decision.10 Simulated catch is determined by multiplying predicted catch by the probability569

of participation in the pollock fishery in the given vessel-year-week:570

̂PollockCatchit = P̂ r(dit = 1) exp(ρ̂wt DWt + ρ̂ytDYt + ρ̂viDVi), (13)

where P̂ r represents the predicted probability of participation in the pollock fishery and ρ̂571

parameters are estimated using weekly catch from the data in the B season. The parameters572

are weekly-, yearly-, and individual-specific, respectively. DWt, DYt, DVi are dummy variables573

of week, year and individual vessel, respectively. Because bycatch rates are seasonal and574

exogenous for harvesters, we use the observed weekly bycatch-pollock ratios and predicted575

catch to simulate the bycatch. This simulated catch is used to compute the quota use and576

QSpeed for the participation prediction of the next week. The simulations are performed for577

each year in the data (2005-2013) so that we can evaluate the policy against year-to-year578

variations in the bycatch rate.579

The alternative policy simulation is performed by adding two weeks before the first week580

of the current B season. The current opening date is June 10th and the alternative policy581

will open the B season on May 27th. Practically, we add two weeks in the data and simulate582

the participation decisions. The observed bycatch-pollock ratio of the added weeks are583

interpolated using the LOESS estimations and observations in later A season and early B584

season used in the main estimation section. We are interested in the changes in the timing585

and total amount of bycatch species caused by changes in the target species.586

The observed and predicted weekly number of vessels targeting pollock under the status587

quo policy are shown as the red and green lines, respectively, in Figure 2. The whiskers588

show the maximum and minimum value in a week among the simulated years (2005-2013)589

10We note that performing such policy simulations does not require identification of deep primitive structural
parameters; rather, only combinations of structural parameters need to be identified, so long as they remain
the same under the different policies we consider—i.e., they are policy invariant (Heckman, 2010). Thus, an
important assumption we make is that the parameters we identify in the indirect utility function (eq. 10) are
policy invariant. The performance of our out-of-sample predictions provides evidence that our participation
model is capturing mechanisms that are relevant for conducting counterfactual policy simulations. We thank
an anonymous reviewer for raising this issue.
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to express the year-to-year variations in participation. Although simulated participation590

under the status quo does not perfectly predict observed participation, it shares a common591

trend that the vessels participate in the early season and the number of vessels decreases592

over a season.11 The blue line in Figure 2 shows the predicted number of vessels under the593

alternative policy. As expected, the vessels target pollock in the additional first two weeks594

under the new policy, and the number of vessels in the mid to later season is less than under595

the current policy. The difference between the blue and green lines indicate the effect of the596

policy on participation.597

[Figure 2 inserted here]598

As expected, the weekly total catch of pollock increases in the first two added weeks599

and decreases in the later weeks due to the shift of participation timing under the new600

management policy, as the bycatch rate (Chinook-pollock ratio) tends to be lower in the601

early periods in B season. As shown in Figure 3, Chinook salmon catch does not change in602

the early B season, but it gets lower than the current policy in the middle of B season as the603

number of vessels targeting pollock under the alternative policy decreases this time of the604

season. It is noteworthy that the maximum weekly catch of Chinook salmon is also reduced605

under the new policy, as the vessels are less likely to target pollock in the later season. This606

implies that the alternative policy may be effective at reducing salmon bycatch even in a607

year of the highest salmon bycatch among 2005-2013. Figure 4 shows the average, minimum608

and maximum weekly cumulative bycatch of non-Chinook salmon across the years simulated.609

Because of the early open of the B season, the non-Chinook salmon catch in early weeks610

increases.611

[Figure 3 inserted here]612

[Figure 4 inserted here]613

11The slight overprediction of the simulated participation under status quo may be due to prediction error
of pollock catch: predicted catch is not exactly the same as the actual catch, and hence Quota Speed and the
participation in the next week may have prediction error. Our focus is the difference between the status quo
and the policy alternative.
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The differences of total seasonal catch of each species between status quo and the policy614

alternative are shown in Figure 5 in rate, and in Table 4 in value. Chinook salmon bycatch is615

reduced by about 24 percent on average, and is reduced even in the worst bycatch year, in616

which bycatch decreases by about 9.5 percent. Despite the reduction in Chinook bycatch,617

there is very little evidence of a decrease in pollock catch.12 The possible drawback of the618

alternative policy is an increase in non-Chinook salmon bycatch; however, non-Chinook619

salmon bycatch is actually reduced by about 2.7 percent on average, and only increases by620

2.6 percent in the worst year. The increased magnitude is not as large as the good years of621

Chinook bycatch reduction. As shown in Table 5, the total annual catch (in numbers) of622

non-Chinook salmon is reduced by 150, on average, and non-Chinook salmon bycatch increases623

in only one year under the policy alternative.13 Thus, the simulation results indicate that624

the policy alternative would decrease non-Chinook salmon bycatch in most years, suggesting625

that the possible cost of the policy is low.626

[Figure 5 inserted here]627

[Table 4 inserted here]628

In summary, the proposed policy alternative could reduce bycatch by giving the harvesters629

opportunity to catch pollock when Chinook salmon bycatch is less while not likely increasing630

non-Chinook salmon bycatch. Note that this result is based only on changes in participation631

timing and not due to any other bycatch avoidance measures. The dynamic bycatch avoidance632

behavior explains this outcome because the increase in the Chinook bycatch rate in the633

later B season induces harvesters to target pollock earlier and the additional first two weeks634

provide time to spend their pollock quota while Chinook bycatch rates are relatively low.635

12The total seasonal catch of pollock seems to increase by a small amount. This is because catch predictions
may exceed the quota in the last week of participation in the simulation process. In reality, there is no reason
that the total pollock catch should increases since the individual quota is binding under the status quo.

13In 2006, many non-Chinook salmons were exceptionally caught in the early season, resulting in an increase
of 647 non-Chinook salmon caught as bycatch under the alternative policy (a relative increment of only 2.6
percent).
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Conclusion636

This paper empirically investigates the temporal bycatch avoidance pattern of harvesters637

based on a theoretical dynamic optimization framework. We contribute to the literature638

by establishing the timing of participation as an important margin of behavior for avoiding639

bycatch. Our theoretical model clarifies the relationship between a harvester’s participation640

decision and the shadow cost of quota. Further, the Taylor-series approximation of the641

participation index from the model motivates the development of a composite variable,642

Quota Speed, which approximates the dynamic effect of instantaneous variables through643

quota shadow values. This variable allows us to incorporate harvesters’ forward-looking644

behavior into a tractable and parsimonious empirical model of seasonal fishery participation.645

We applied the model to Bering Sea/Aleutian Island pollock catcher-processor fishery and646

investigated a counterfactual policy aimed at reducing bycatch without foregoing target647

species harvests. Our results confirm the hypothesis that harvesters are seasonally dynamic648

and that temporal substitution of target species catch opportunities is present under the649

bycatch regulation. The implication is that a season length policy change leads to a significant650

reduction in Chinook salmon bycatch as a result of harvesters shifting the timing of their651

participation timing and using individual quota before bycatch rates are high. Our results652

suggest that the current season length policy should be redesigned to consider recently added653

bycatch limits to minimize the adverse effect on target species harvesting.654

In this study, we demonstrate the importance of the temporal margin of harvesting655

behavior in a resource sector. While the spatial margin of harvester behavior has been656

investigated extensively in the literature, the temporal margin is also important with the657

assignment of individual property rights. Ultimately, the extent to which spatial versus658

temporal margins should be represented in a model of harvesting behavior depends on the659

question at hand and the characteristics of the fishery. In our case, temporal modelling of660

harvesting behavior provides important information for policy design under individual quota661

management due to seasonal variations in key variables, such as the catch rates of target and662
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bycatch species.663

The application in the current paper considers a participation choice between a single664

individual quota fishery and a single free-to-access fishery, but the model could be extended to665

include multiple fisheries managed by individual quotas. With multiple fisheries, the choice of666

target fishery during a season may be affected by the dynamic use of quota in other fisheries.667

In particular, a quota may not be fully used if selectivity is not perfect among target species.668

This problem of inter-related shadow values of multiple fisheries with individual quotas is an669

important consideration for future research.670
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Table 1: Summary Statistics of the data

season Mean SD Min P25 P75 Max
Pollock Price (USD/lb) A 1.667 0.194 1.370 1.370 1.815 1.815

B 1.248 0.036 1.206 1.221 1.258 1.430
Pollock CPUE (kg/haul min.) A 10367.247 7671.061 2.705 6750.431 13016.753 114821.720

B 9464.034 4538.566 55.499 6282.908 11822.008 34370.692
YFS CPUE (kg/haul min.) A 1097.789 3503.577 0.000 0.008 26.913 38434.042

B 7.469 152.975 0.000 0.000 0.000 4249.027
Chinook Pollock ratio A 0.038 0.062 0.000 0.003 0.046 0.748

B 0.008 0.032 0.000 0.000 0.004 0.880
Hake vessels A 0.000 0.000 0.000 0.000 0.000 0.000

B 3.709 3.661 0.000 1.500 5.000 14.000
Expected Pollock CPUE A 11556.441 2883.116 5549.666 9876.611 12848.871 48317.908

B 10427.116 3110.148 0.000 8413.705 12933.014 19130.586
Expected YFS CPUE A 5300.339 1299.166 4158.190 4638.287 5038.616 16771.791

B 3137.268 844.811 1836.699 2557.107 3277.516 5170.523
Expected Chin. Poll. ratio A 0.042 0.010 0.015 0.035 0.049 0.068

B 0.009 0.015 0.000 0.000 0.011 0.092
Quota Speed Pollock A -0.001 0.279 -1.000 -0.056 0.061 1.000

B 0.156 0.287 -0.942 0.000 0.253 1.000
Quota Speed Chinook A 0.305 1.399 -35.148 0.046 0.669 8.455

B -0.024 1.273 -22.451 -0.016 0.001 39.911
Note: Pollock Price is the average monthly price of all product type of pollock obtained from
Fissel et al (2015). Pollock CPUE and YFS CPUE, and Chinook Pollock ratio are observed
data and computed from the catch and effort duration (haul minutes). Hake Vessels is the
monthly number of vessels participating in the Pacific Hake fishery off the west coast of the
mainland U.S. Expected Pollock CPUE, Expected YFS CPUE and Expected Chin. Pollock
ratio are formulated expectation of the variables. The formulation process is described in the
appendix A4.Quota Speed Pollock and Quota Speed Chinook are the variables that capture
the expectations of the quota uses in the future period. The construction of the variables is
described in the empirical model section.
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Table 2: Binary Logit Result, A season

Dependent variable:
Pollock Target Dummy

(1) (2) (3) (4)
EREV 0.181∗∗∗ 0.184∗∗∗ 0.186∗∗∗ 0.047

(0.043) (0.042) (0.041) (0.028)

Expected Chin-Poll Ratio 70.402 70.544 84.628 74.830∗

(52.518) (51.770) (48.403) (36.653)

Switch Cost −3.686∗∗∗ −3.654∗∗∗ −3.779∗∗∗ −3.803∗∗∗

(0.669) (0.663) (0.631) (0.430)

Quota 0.107∗ 0.107∗ 0.117∗ 0.150∗∗

(0.052) (0.052) (0.050) (0.046)

EREV x Q Speed 0.296∗∗ 0.296∗∗ 0.233∗∗∗

(0.099) (0.099) (0.030)

ECPR x Q Speed 7.124 10.422
(42.568) (42.015)

Quota x Q Speed −0.106 −0.113
(0.105) (0.105)

ECPR x Price (Poll) 145.674∗∗∗ 141.802∗∗∗ 136.264∗∗∗ 70.453∗∗

(39.436) (38.682) (37.082) (24.473)

EREV x BQ Speed x A91 0.040
(0.234)

ECPR x BQ Speed x A91 75.059 174.789∗∗∗ 177.091∗∗∗

(111.833) (41.828) (41.448)

Quota x BQ Speed x A91 0.126
(0.256)

AIC 410.13 407.15 404.41 532.41
LR test 1.016 1.262 132.005***
Observations 1,356 1,356 1,356 1,356
Log Likelihood −178.065 −178.573 −179.204 −245.207

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001. EREV is the difference in the expected revenues
between pollock and YFS. ECPR stands for Expected Chinook-pollock ratio.Quota is
the size of individual quota. Q Speed is the Quota Speed of pollock, and BQ Speed is
the Quota Speed of Chinook salmon. A91 is the policy indicator of the amendment 91
of American Fisheries Act, which implements the bycatch individual quota.Switch cost
is an indicator whether the vessel was out of the pollock fishery in the previous period.
Likelihood Ratio (LR) test shows the statistics of the test comparing the model of the
column and one column left.
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Table 3: Binary Logit Result, B season

Dependent variable:
Pollock Target Dummy

(1) (2) (3) (4)
EREV −0.175 −0.164 −0.148 −0.100

(0.112) (0.111) (0.109) (0.103)

Expected Chin-Poll Ratio −64.580 −50.424 −41.469 −19.665
(35.055) (29.037) (25.751) (22.498)

Switch Cost −4.630∗∗∗ −4.588∗∗∗ −4.732∗∗∗ −4.715∗∗∗

(0.459) (0.449) (0.437) (0.429)

No. of Hake Vessels −0.118∗∗∗ −0.114∗∗∗ −0.101∗∗∗ −0.114∗∗∗

(0.031) (0.030) (0.029) (0.029)

Quota 0.058∗ 0.059∗ 0.062∗∗ 0.063∗∗

(0.024) (0.024) (0.023) (0.023)

EREV x Q Speed −0.172 −0.169
(0.140) (0.142)

ECPR x Q Speed 66.387 43.698
(53.985) (50.541)

Quota x Q Speed 0.147 0.158 0.112∗∗∗

(0.081) (0.083) (0.034)

EREV (Poll) x BQ Speed x A91 1.027
(1.659)

ECPR x BQ Speed x A91 −235.384
(357.320)

Quota x BQ Speed x A91 0.299
(1.102)

AIC 549.7 545.99 544.76 552.26
LR test 2.285 2.776 9.501**
Observations 1,983 1,983 1,983 1,983
Log Likelihood −247.850 −248.993 −250.381 −255.132

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001. EREV is the difference in the expected revenues
between pollock and YFS. ECPR stands for Expected Chinook-pollock ratio.Quota is
the size of individual quota. Q Speed is the Quota Speed of pollock, and BQ Speed is
the Quota Speed of Chinook salmon. A91 is the policy indicator of the amendment 91
of American Fisheries Act, which implements the bycatch individual quota.Switch cost
is an indicator whether the vessel was out of the pollock fishery in the previous period.
No. of Hake Vessels is the monthly number of vessels participating in the Pacific Hake
fishery off the west coast of the mainland U.S. Likelihood Ratio (LR) test shows the
statistics of the test comparing the model of the column and one column left.

32



Table 4: Change in catches of each species by policy simulation
Mean Min Max

Chinook (num) -272.175 -423.917 -85.417
Non-Chinook (num) -183.726 -335.730 119.992
Pollock (MT) 4016.642 -2592.760 12024.450

Figure 1: Out-of-sample Predicted Participation in pollock, B season
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Figure 2: Simulated weekly number of vessels targeting pollock, B season
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Figure 3: Simulated weekly Chinook catch, B season
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Figure 4: Simulated weekly non-Chinook catch, B season
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Figure 5: Percentage changes of catch by species under alternative policy in B season
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Appendix671

A1.Derivation of the participation index672

The participation index for harvester i (equation 4) follows from the necessary first-order673

condition for the following constrained maximization problem:674

max
dit

V =
∫ T

0 [dit(p1tq1t − γbtq1t) + (1− dit)p2q2t − c]dt

subject to
∫ T

0 ditq1tdt ≤ Q1i∫ T
0 ditbtq1tdt ≤ Qbi

0 ≤ dit ≤ 1 ∀t.

The corresponding Lagrange function for the constrained maximization problem above is675

(including all inequality constraints):676

L = V + λ1i[Q1i −
∫ T

0
ditq1tdt] + λbi[Qbi −

∫ T

0
ditbtq1tdt] +

∫ T

0
η1itditdt+

∫ T

0
η2it(1− dit)dt,

where λ1i, λbi, η1it and η2it are Lagrange multipliers corresponding to the target species quota677

constraint, the bycatch species quota constraint, the lower-bound constraint on dit, and the678

upper-bound constraint on dit, respectively. The solution to the constrained maximization679

problem can be characterized by the following necessary first-order conditions:680

∂L
∂dit

= (p1tq1t − γbtq1t)− p2q2t − λ1iq1t − λbibtq1t + η1it − η2it = 0 ∀t (A1)
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λ1i[Q1i −
∫ T

0
ditq1tdt] = 0

λbi[Qbi −
∫ T

0
ditbtq1tdt] = 0

η1itdit = 0 ∀t

η2it(1− dit) = 0 ∀t

λ1i, λbi, η1it, η2it ≥ 0 ∀t

(A2)

The participation index is derived by defining Yit ≡ η2it − η1it in eq. A1 and solving for681

Yit:682

Yit = [p1t − λ1i − (γ + λbi)bt]q1t − p2q2t.

Intuitively, if the participation index is positive (i.e., the net benefits of fishing are higher683

in Fishery 1 than Fishery 2), then all effort is allocated to Fishery 1. Conversely, if the684

participation index is negative (i.e., the net benefits of fishing are higher in Fishery 2 than685

Fishery 1), then all effort is allocated to Fishery 2.686

To see this formally, note that it is not possible for both the upper-bound and lower-bound687

constraints on dit to be binding simultaneously. Thus, it must be that:688

(1) η1it > 0 and η2it = 0 =⇒ dit = 0,689

(2) η1it = 0 and η2it > 0 =⇒ dit = 1, or690

(3) η1it = η2it = 0 =⇒ 0 ≤ dit ≤ 1.691

Case 1 simply says that if Yit ≡ η2it − η1it < 0, then all fishing effort is allocated to Fishery692

2 (dit = 0). Conversely, Case 2 says that if Yit ≡ η2it − η1it > 0, then all fishing effort is693

allocated to Fishery 1 (dit = 1). Finally, Case 3 says that if Yit ≡ η2it − η1it = 0, then a694

harvester is indifferent between the two fisheries and can allocate any proportion of effort695

between the two fisheries (0 ≤ dit ≤ 1). For simplicity, we rule out this ambiguous case by696

assuming dit = I{Yit ≥ 0}, meaning that the harvester would allocate all effort to Fishery 1697
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if they are indifferent between the two fisheries. In practice, this occurrence is rare and has698

no bearing on our empirical application.699

700

A2.Derivations of total derivatives701

In this section, we provide the full derivations of the total derivatives described in the702

model section.703

As shown in the equation 5, the total derivative of the participation index with respect to704

bycatch rate is decomposed into two parts.705

dYit
dbt

= ∂Yit
∂bt

+ ∂Yit
∂λ1i

∂λ1i

∂bt
I{λ1i > 0}+ ∂Yit

∂λbi

∂λbi
∂bt

I{λbi > 0}. (A3)

The first term is the direct effect of the bycatch rate on participation, and is derived706

simply by taking the partial derivative of Yit in equation (4) with respect to bt. The second707

and third terms are the indirect (or dynamic) effects of the bycatch rate on participation708

through its influence on the shadow values of quota. To derive these effects, we invoke the709

implicit function theorem to obtain the partial derivative of the shadow values with respect710

to the bycatch rate. Recall that shadow values are determined by the participation index711

(equation 4) in combination with the quota constraint conditions:712

G1(bt, λ1i) = Q1i −
∫ T

0
ditq1tdt ≥ 0

Gb(bt, λbi) = Qbi −
∫ T

0
ditbtq1tdt ≥ 0.

(A4)

and the equality holds when the constraints are binding, implying that λ1i > 0 and λbi > 0,713

respectively. Suppose the constraint of main target species quota is binding. The derivative714

of the shadow value for target species quota with respect to the bycatch rate is715
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∂λ1i

∂bt
= −

∂G1
∂bt

∂G1
∂λ1i

= −
− ∂dit

∂Yit

∂Yit

∂bt
q1t

−
∫ T

0
∂dis

∂Yis

∂Yis

∂λ1i
q1sds

= −
(γ + λbi) ∂dit

∂Yit
q2

1t∫ T
0

∂dis

∂Yis
q2

1sds
≤ 0.

(A5)

where the function G1 is the binding constraint of the target species quota, which is defined716

when λ1i > 0 (i.e., when the quota constraint is binding). Recall that dit is a function of Yit,717

which in turn is a function of bt and λ1i. Hence, the derivative ∂λ1i

∂bt
is defined. Notice that718

changes in the bycatch rate in period t only influence the contemporaneous participation719

index but changes in the shadow value of the quota constraint change the participation720

index in all periods. Combined with the effect of the shadow value on contemporaneous721

participation, ∂Yit

∂λ1i
= −q1t, we have the following expression for the second term in equation722

(A3),723

∂Yit
∂λ1i

∂λ1i

∂bt
= q1t

(γ + λbi) ∂dit

∂Yit
q2

1t∫ T
0

∂dis

∂Yis
q2

1sds
≥ 0, (A6)

which is unambiguously positive. Thus, the dynamic effect of the bycatch rate through the724

shadow value of the target species quota counters, but does not completely offset, the direct725

effect of the bycatch rate on participation.726

We can follow a similar procedure for deriving the third term in equation (A3). The727

derivative of the shadow value for bycatch species quota with respect to the bycatch rate is728
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∂λbi
∂bt

= −
∂Gb

∂bt

∂Gb

∂λbi

= −
−(dit + ∂dit

∂Yit

∂Yit

∂bt
bt)q1t

−
∫ T

0
∂dis

∂Yis

∂Yis

∂λbi
bsq1sds

= −
−(dit + ∂dit

∂Yit
[−(γ + λbi)q1t]bt)q1t

−
∫ T

0
∂dis

∂Yis
bsq1sds

=
(dit − (γ + λbi) ∂dit

∂Yit
btq1t)q1t∫ T

0
∂dis

∂Yis
b2
sq

2
1sds

,

(A7)

the sign of which is ambiguous and depends on the value of the participation index Yit. For729

example, if Yit > 0 so that a vessel is already participating in Fishery 1, then dit = 1 and730

∂dit

∂Yit
= 0, which implies that ∂λbi

∂bt
> 0. Intuitively, the shadow value of bycatch quota will731

increase with the bycatch rate so long as a vessel derives a benefit from having more bycatch732

quota in terms of increased target species catch in Fishery 1. Conversely, if Yit < 0 so that a733

vessel is participating in Fishery 2, then dit = 0 and ∂dit

∂Yit
= 0, which implies no impact on the734

shadow value because ∂λbi

∂bt
= 0. In this case, a vessel derives no value from additional bycatch735

quota since no bycatch is encountered in Fishery 2. The only case in which the shadow value736

of bycatch quota will decrease with the bycatch rate is if the increased cost of bycatch is737

large enough to push a vessel from Fishery 1 into Fishery 2. In this case, Yit = 0, dit = 1,738

and ∂dit

∂Yit
= 1, which implies that ∂λbi

∂bt
< 0 if and only if 1 > (γ + λbi)btq1t. Combined with739

the effect of the shadow value on contemporaneous participation, ∂Yit

∂λbi
= −btq1t, we have the740

following expression for the third term in equation (A3):741

∂Yit
∂λbi

∂λbi
∂bt

= −btq1t
(dit − (γ + λbi) ∂dit

∂Yit
btq1t)q1t∫ T

0
∂dis

∂Yis
b2
sq

2
1sds

. (A8)

Hence, the total derivative of the participation index with respect to the bycatch rate is742

expressed as the equation (6).743

The total derivatives of the participation index with respect to other variables744

(∂Yit

∂q1t
, ∂Yit

∂Q1i
, ∂Yit

∂Qbi
) can be derived in a similar manner. We provide the partial745
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derivatives that are necessary for the derivations in the next appendix section.746

747

A3. Partial Derivatives748

The partial derivative of shadow values with respect to the catch rate of main target749

species.750

∂λ1i

∂q1t
= −

∂G1
∂q1t

∂G1
∂λ1i

= −
−
(
∂dit

∂Yit
· ∂Yit

∂q1t
+ dit

)
−
∫ T

0
∂dis

∂Yis

∂Yis

∂λ1i
q1sds

=

{
ddit

dYit
[p1t − λ1i − (γ + λbi)bt] + dt

}
∫ T

0
ddis

dYis
q2

1sds

(A9)

The sign of the effect depends on the sign of the net benefit per unit catch of the main751

target.752

∂λbi
∂q1t

= −
∂Gb

∂q1t

∂Gb

∂λbi

= −
−
(
∂dit

∂Yit
· ∂Yit

∂q1t
+ ditbt

)
−
∫ T

0
∂dis

∂Yis

∂Yis

∂λbi
bsq1sds

=

{
ddit

dYit
[p1t − λ1i − (γ + λbi)bt] + dtbt

}
∫ T

0
ddis

dYis
b2
sq

2
1sds

(A10)

The sign of the effect depends on the sign of the net benefit per unit catch of the main753

target.754

The partial derivative of shadow values with respect to the main target quota.755
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∂λ1i

∂Q1i
= −

∂G1
∂Q1i

∂G1
∂λ1i

= − 1
−
∫ T

0
∂dis

∂Yis

∂Yis

∂λ1i
q1sds

= − 1
−
∫ T

0
ddis

dYis
q1sds

= − 1∫ T
0

ddis

dYis
q2

1sds
< 0

(A11)

∂λbi
∂Q1i

= −
∂Gb

∂Q1i

∂Gb

∂λbi

= − 0
−
∫ T

0
∂dis

∂Yis

∂Yis

∂λ1i
q1sds

= − 0
−
∫ T

0
ddis

dYis
q1sds

= − 0∫ T
0

ddis

dYis
q2

1sds
= 0

(A12)

The partial derivative of shadow values with respect to the bycatch target quota.756

∂λ1i

∂Qbi

= −
∂G1
∂Qbi

∂G1
∂λ1i

= − 0
−
∫ T

0
∂dis

∂Yis

∂Yis

∂λ1i
q1sds

= − 0
−
∫ T

0
ddis

dYis
q1sds

= − 0∫ T
0

ddis

dYis

2
ds

= 0

(A13)

∂λbi
∂Qbi

= −
∂Gb

∂Qbi

∂Gb

∂λbi

= − 1
−
∫ T

0
∂dis

∂Yis

∂Yis

∂λ1i
q1sds

= − 1
−
∫ T

0
ddis

dYis
q1sds

= − 1∫ T
0

ddis

dYis

2
ds

< 0

(A14)
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A4. Modeling Expectations757

758

In our estimation of Eq. 10, we employ proxies of expected revenues EREV and bycatch759

rates ECPR. To form proxies of weekly-level expectations of catch, we assume that harvesters760

know the distribution of seasonal catch and bycatch rates. There are two key aspects for761

formulating catch expectations in the fisheries literature: 1) common and private information,762

and 2) temporal and spatial resolution of information. While some studies assume that763

harvesters use only common information and utilize a rolling average or autoregressive moving764

average as a common expectation associated with fishing alternatives (e.g., Curtis & Hicks,765

2000; Curtis & McConnell, 2004; Smith & Wilen, 2003), recent work considers the role of766

private information to form individual expectations with fine resolution of data (Abbott &767

Wilen, 2011). At the week level, however, idiosyncratic information may not play a large role768

in the participation choice; instead, prior knowledge about seasonality and the updated current769

season information would matter most. In addition, we aggregate fine-grained information to770

model weekly level decisions. Thus, we model catch expectations using weekly and annual771

trends, in addition to time invariant vessel effects.772

We first estimate weekly standardized catch per unit effort (CPUE) and bycatch rates. To773

capture seasonal trends in the data, we estimate standardized catch per unit effort (haul-hour)774

and bycatch rate (Chinook-pollock ratio) for each week, assuming a log-normal and Poisson775

distribution, respectively, and the following specifications for the mean:776

ln(PollCPUEit) =
∑
t

δtDWt +
∑
t

δtDYt +
∑
i

δiDVi (A15)

ln(Chinit) =
∑
t

ηtDWt +
∑
t

ηtDYt +
∑
i

ηiDVi + lnPollit, (A16)

where DW is a week dummy variable, DY is a year dummy, and DV is an individual vessel777

dummy. The weekly standardized CPUEs and bycatch rates are estimated as the vectors δ778
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and η. We assume that harvesters base their beliefs on within-season trends of catch and779

bycatch rates that are smooth over a season. Hence, we apply a local regression method780

(LOESS) to the estimated weekly CPUEs and bycatch rates to obtain smooth seasonal trends.781

Given the assumption that vessels know the true distribution of catch, we use all periods and782

vessels in the sample to estimate the standardized CPUEs and bycatch rates. Harvesters’783

expectations are assumed to be based on the seasonality which is formed at the fleet level784

and taken as exogenous for each vessel.785

The weekly expected CPUEs of individual harvesters are formed using the estimated786

seasonal trend (common information) and the observed standard CPUE of the previous week787

(individual information). We assume that individuals form rational expectations based on788

those variables, regress the trend and one-week lagged CPUE on the current CPUE, and789

use the fitted values as individual expectations. Table A.1 shows the result of the estimated790

model of rational expectations. As expected, both of the common and individual information791

are important for the formation of the expectation.792

Note that our measure of expected bycatch rates are the product of both intra-annual793

mixing of salmon and pollock and underlying bycatch avoidance decisions of the entire794

fleet (e.g., spatial avoidance). Hence, the expected bycatch rate in each period reflects the795

best practice of bycatch avoidance under existing measures. The expected bycatch uses796

information from the whole fleet; an individual harvester’s participation decisions are only797

a small contribution to this measure, so we believe the degree to which this measure is798

endogenous is small. We acknowledge that our measure of expected bycatch is not completely799

exogenous (i.e., natural mix of Chinook salmon and pollock), but the impact of endogeneity800

in terms of estimation bias is negligible.801

Figure A.1 shows the observed and expected pollock CPUE and Chinook-pollock ratio.802

As Panels A and B show, there are some large outliers in the observed data, but the weekly803

mean exhibits trends across a season. The pollock CPUE is relatively stable over the A804

season but decreases midway through the B season.The Chinook-pollock ratio starts high805
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in the beginning of A season, reduces toward the end of the A season and beginning of806

the B season, and then increases again towards the end of the B season. These trends are807

largely captured by the predicted expectations, depicted by the solid lines in Panels C and D.808

Each individual harvester forms their expectation based on this common trend, as well as809

individual information based on the result of Table A.1.810

Table A.1: Estimation results of the expected pollock CPUE and Chinook-pollock ratio

Pollock CPUE Chinook-Pollock ratio
Pollock CPUE Trend 0.544***

(0.036)
Pollock CPUE Lag (1) 0.363***

(0.015)
Pollock CPUE Trend x Lag (1) 0.437***

(0.023)
Chinook-Pollock Ratio Trend 1.258***

(0.043)
Chinook-Pollock Ratio lag (1) 0.009***

(0.002)
Chinook-Pollock Ratio Trend x Lag (1) -0.130

(0.084)
Num.Obs. 4204 4204
R2 0.271 0.197
R2 Adj. 0.268 0.193
Note: + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001
Standard errors in parentheses
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Figure A.1: Seasonal variation of Pollock CPUE and Chinook-pollock ratio, (A) observed
pollock CPUE ,(B) observed Chinook-pollock ratio, (C) expected pollock CPUE and (D)
expected Chinook-pollock ratio. The grey lines in panel (C) and (D) indicate the in-season
trends.
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