Title
Excitation Function of the Reaction C12(n,2n)C11 at High Energies

Permalink
https://escholarship.org/uc/item/2p81j337

Author
Heckrotte, Wolff

Publication Date
2010-01-14

Peer reviewed
UNIVERSITY OF CALIFORNIA
Radiation Laboratory

ROUTING SHEET
Do not remove this page

INDEX NO. UCRL 6
This document contains ___ pages
This is copy ___ of ___ Series ___

ISSUE TO: Def. Division

DECLASSIFIED
CLASSIFICATION

Each person who receives this document must sign the cover sheet in the space below. Please return the document to the Information Division. Do not send it to the next person on the list.

<table>
<thead>
<tr>
<th>ROUTE TO</th>
<th>NOTED BY</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RL-254
The excitation curve for the reaction $^{12}\text{Cl}(n,2n)^{11}\text{Cl}$ has been calculated for energies up to 100 Mev. The calculations were done as described in the preceding letter for the similar reaction of ^{12}C under proton bombardment.

The reaction can go in three ways:

(a) $n + ^{12}\text{Cl} \to ^{13}\text{Cl}^3$; $^{13}\text{Cl}^3 \to ^{11}\text{Cl} + 2n$

(b) $n + ^{12}\text{Cl} \to ^{12}\text{Cl}^2 + n$; $^{12}\text{Cl}^2 \to ^{11}\text{Cl} + n$

(c) $n + ^{12}\text{Cl} \to ^{11}\text{Cl} + 2n$ (knock out)

The results of the calculations for 50% charge exchange are shown in Figure 1. The calculated cross section for the reaction at 90 Mev is:

- 0.111 barns for 100% charge exchange
- 0.13 barns for 50% charge exchange.

The experimental value is 0.025 ± 0.004 barns. (1)

(1) E. M. McMillan and H. F. York, Phys. Rev., to be published

The ratio of the cross section of the reaction $^{12}\text{Cl}(p,pn)^{11}\text{Cl}$ to the cross section of the above reaction at 90 Mev is

- 5.8 for 100% charge exchange
- 3.8 for 50% charge exchange.
The experimental ratio is 2.7 at 90 Mev

This difference in cross sections between the two reactions is established by two factors. Firstly, there is the part played by charge exchange in the $^{12}\text{C}(p,pn)\text{Cl}^{11}$ reaction which leads to excited N^{12} with the subsequent boiling off of a proton, while a similar exchange process cannot take place for the $^{12}\text{C}(n,2n)\text{Cl}^{11}$ reaction. Secondly, there is the difference between the contributions of the knock out process as a result of the difference in the $n-p$ and the $n-n$ cross sections, which favors the $p+^{12}\text{C}$ knock out reaction. It will be noted that the parts of the reactions which go through excited ^{12}C, while practically equal, are so small that they do not greatly affect either reaction.

Although the results of these calculations do not agree too closely with the experimental results, the results are probably as good as are to be expected because of the crudity of the assumed model. The results do, though, seem to give a good qualitative picture of the contributing factors affecting the total reactions. Finally, it would seem that the assumption of 50% charge exchange gives better agreement.

The authors wish to express their appreciation to Professor Robert Serber for his continued assistance throughout the progress of these calculations.

This paper is based on work performed under Contract No. W-7405-Eng-48, with the Atomic Energy Commission in connection with the Radiation Laboratory, University of California, Berkeley, California.

Information Division

cb -November 4, 1947
(a) $n + C^{12} \rightarrow C^{+13} \text{;} C^{x13} \rightarrow C^{11} + n + p$
(b) $n + C^{12} \rightarrow C^{x12} + n \text{;} C^{x12} \rightarrow C^{11} + n$
(c) $n + C^{12} \rightarrow C^{11} + 2n (\text{KNOCKOUT})$
(d) TOTAL REACTION: $n + C^{12} \rightarrow C^{11} + 2n$

50% CHARGE EXCHANGE ASSUMED

PROBABILITY OF REACTION

BOMBARDING ENERGY IN MEV.