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Abstract

This paper develops two orthogonal contributions to scalable sparse regression for competing 

risks time-to-event data. First, we study and accelerate the broken adaptive ridge method (BAR), 

a surrogate ℓ0-based iteratively reweighted ℓ2-penalization algorithm that achieves sparsity in 

its limit, in the context of the Fine-Gray (1999) proportional subdistributional hazards (PSH) 

model. In particular, we derive a new algorithm for BAR regression, named CYCBAR, that 

performs cyclic update of each coordinate using an explicit thresholding formula. The new 

CYCBAR algorithm effectively avoids fitting multiple reweighted ℓ2-penalizations and thus yields 

impressive speedups over the original BAR algorithm. Second, we address a pivotal computational 

issue related to fitting the PSH model. Specifically, the computation costs of the log-pseudo 

likelihood and its derivatives for PSH model grow at the rate of O(n2) with the sample size n 
in current implementations. We propose a novel forward-backward scan algorithm that reduces 

the computation costs to O(n). The proposed method applies to both unpenalized and penalized 

estimation for the PSH model and has exhibited drastic speedups over current implementations. 

Finally, combining the two algorithms can yields > 1, 000 fold speedups over the original 

BAR algorithm. Illustrations of the impressive scalability of our proposed algorithm for large 

competing risks data are given using both simulations and a United States Renal Data System data. 

Supplementary materials for this article are available online.
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1 Introduction

Advancing informatics tools make large-scale data such as electronic health record 

(EHR) data and genomic data routinely accessible to researchers. This data deluge offers 

unprecedented opportunities for new and innovative approaches to improve research and 

learning (Schuemie et al., 2018). However, it also presents new computational challenges 

and barriers for quantitative researchers as many current statistical methodologies and 

computational tools may grind to a halt as the sample size (n) and/or number of covariates 

(pn) grow large. Such challenges are particularly common in time-to-event data analysis 

where the likelihood function (such as the partial likelihood for the Cox model with data) 

and its derivatives typically require O(n2) number of operations, which will explode quickly 

as n increases. The computational burden can be further aggravated as the number of 

covariates (pn) increases. Statistical methods coupled with high-performance algorithms are 

critically needed for large-scale time-to-event data analysis.

This paper aims to develop high-performance computational methods for large-scale 

competing risks time-to-event data analysis by addressing two orthogonal computational 

challenges due to large pn and large n respectively. First, we develop a scalable surrogate 

ℓ0-based method for simultaneous variable selection and parameter estimation for the large 

pn problem. It is well known that ℓ0-penalized regression is natural for variable selection 

(Breiman, 1996; Shen et al., 2012), but is computationally NP hard and not scalable 

to even moderate pn. As a scalable approximation to ℓ0-penalized regression, the broken 

adaptive ridge BAR estimator, defined as the limit of an ℓ0-based iteratively reweighted 

ℓ2-penalization algorithm, has been recently studied for simultaneous variable selection 

and parameter estimation and shown to possess some desirable selection, estimation, and 

grouping properties under various model settings (see, e.g., Zhao et al. (2018), Dai et al. 

(2018), Zhao et al. (2019b), Zhao et al. (2019a), and Kawaguchi et al. (2020)). Since 

BAR requires fitting multiple reweighted ℓ2-penalized regressions until convergence, it is 

not computationally as efficient as other single step penalization methods such as SCAD 

and MCP, especially when a large number of iterations is needed for convergence. As 

demonstrated in Section 4 (Table 1), BAR can grind to a halt for large data, which calls 

for more efficient BAR algorithms. Second, we address a pivotal computational issue 

specifically related to fitting the PSH model when n is large. In Section 2.4, we will show 

how the computation of the log-pseudo likelihood and its derivatives for the PSH model 

involves O(n2) number of operations, and that commonly used efficient computational 

techniques for fitting the classical Cox (1972) model do not apply to the PSH model 

since the computations involve weighted sums over some risk sets where the weights are 

subject-specific and the risks sets are not monotone over time. To the best of our knowledge, 

no algorithm has been developed in the literature to reduce the computational cost for the 

PSH model from O(n2) to a lower order.

In addressing the aforementioned computational challenges for large data, the contribution 

of this paper is two fold:

1. We propose a novel cyclic coordinate-wise update algorithm for BAR, referred 

to as CYCBAR, by deriving an explicit analytic coordinate-wise update for a 
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fixed-point problem whose unique solution approximates the BAR estimator. 

Because the CYCBAR algorithm avoids carrying out iteratively reweighted ℓ2-

penalizations, it can result in substantial gains in computational efficiency. We 

emphasize that the application of the CYCBAR algorithm over the original BAR 

method is not limited to the PSH model and spans a variety of models and data 

settings such as generalized linear models and time-to-event models, as well 

as sparse signal reconstruction (Gorodnitsky and Rao, 1997) and compressive 

sensing Candes et al., 2008; Chartrand and Yin, 2008; Gasso et al., 2009; 

Daubechies et al., 2010; Wipf and Nagarajan, 2010 where the ℓ0-based iteratively 

reweighted ℓ2-penalization algorithm are popularly used. In our numerical studies 

(Section 3.3, Figure 1(b)), CYCBAR shows marked reduction in runtime over the 

standard BAR implementation.

2. By exploiting the special structure of the risk set and the subject-specific weight 

functions associated with the Fine-Gray pseudo likelihood and its derivatives, we 

derive a novel forward-backward scan algorithm to reduce their computational 

costs from O(n2) to O(n), allowing one to analyze competing risks data much 

quicker than current approaches. We have observed in empirical studies, e.g. 

Figure 1(c) in Section 3.3, that the forward-backward scan algorithm can 

yield dramatic speedups over standard implementations. We point out that our 

proposed forward-backward scan algorithm for the PSH model is not specific 

to the BAR method and can be applied to accelerate other penalized regression 

methods such as LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), adaptive 

LASSO (Zou, 2006), and MCP (Zhang, 2010) for the PSH model (Fu et al., 

2017), and the unpenalized estimation method of Fine and Gray (1999), as well 

as hypothesis testing and cumulative incidence estimation for the PSH model.

The rest of this article is organized as follows. In Section 2.1, we review the mathematical 

formulation of competing risks data and the Fine and Gray (1999) proportional 

subdistribution hazards model. Section 2.2, introduces the BAR estimator for the PSH 

model and refers its asymptotic properties to the Online Supplementary Material. Section 

2.3 derives the cyclic coordinate-wise BAR algorithm. The forward-backward scan method 

for the PSH model is described in Section 2.4. Section 3 presents some simulation studies to 

demonstrate the computational efficiency gains of both the CYCBAR and forward-backward 

scan algorithms. We provide a proof-of-concept real data example for fitting large-scale 

competing risks data in Section 4 using a subset of the United States Renal Data System 

(USRDS). Lastly, we give concluding remarks in Section 5. The proposed method has been 

implemented in an R package, named pshBAR, which is available at https://github.com/

erickawaguchi/pshBAR.

2 Methodology

2.1 Competing risks data, model, and parameter estimation

Competing risks time-to-event data arises frequently in clinical trials, reliability testing, 

social science, and many other fields (Prentice et al., 1978; Pintilie, 2006; Putter et al., 

2007). Competing risks occur when individuals are susceptible to more than one types of 
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possibly correlated events or causes and the occurrence of one event precludes the others 

from happening. For example, one may wish to study time until first kidney transplant 

for kidney dialysis patients with end-stage renal disease. Then terminating events such 

as death, renal function recovery, or discontinuation of dialysis are competing risks as 

their occurrence will prevent subjects from receiving a transplant. For i = 1,…, n, let Ti, 

Ci, ϵi, and zi be the event time, possible right-censoring time, cause (event type), and a 

pn-dimensional vector of time-independent covariates, respectively, for subject i. Without 

loss of generality assume there are two event types ϵ∈{1,2} where ϵ=1 is the event of 

interest and ϵ=2 is the competing risk. With the presence of right censoring, we generally 

observe Xi= Ti Λ Ci,δi= I(Ti ≤ Ci), where a Λb = min(a,b) and I(·) is the indicator function. 

Competing risks data consists of n independent and identically distributed quadruplets 

(Xi, δi, δiϵi, zi i = 1
n . Assume that there exists a τ such that (1) for some arbitrary time t, t 

∈[0,τ]; (2) Pr(Ti > τ) > 0 and Pr(Ci > τ) > 0 for all i =1,…, n.

An important quantity for competing risks data is the cumulative incidence function (CIF), 

which describes the probability of failing from a certain cause of interest before the other 

causes. The CIF for cause 1 events conditional on the covariates is defined as F1(t;z) = Pr(T 
≤ t,ϵ=1| z). To model F1(t;z), Fine and Gray (1999) introduced the now popular proportional 

subdistribution hazards (PSH) model:

ℎ1(t ∣ z) = ℎ10(t)exp z′β , (1)

where

ℎ1(t ∣ z) = lim
Δt 0

Pr t ≤ T ≤ t + Δt, ϵ = 1 ∣ T ≥ t ∪ (T ≤ t ∩ ϵ ≠ 1), z
Δt = − d

dt log 1 − F1(t; z)

is a subdistribution hazard (Gray, 1988), h10(t) is a completely unspecified baseline 

subdistribution hazard, and β is a pn × 1 vector of regression coefficients. As Fine and 

Gray (1999) mentioned, the risk set associated with h1(t;z) is somewhat counterfactual as 

it includes subjects who are still at risk (T ≥ t) and those who have already observed the 

competing risk prior to time t(T ≤ t∩ϵ≠1). However, this construction is useful for direct 

modeling of the CIF.

Inference for the PSH model based on the following log-pseudo likelihood (Fine and Gray, 

1999):

l(β) = ∑
i = 1

n ∫
0

τ
zi′β − log ∑

j
wj(s)Y j(s)exp zj′β ∣ × wi(s)dNi(s), (2)

where Ni(t)= I (Ti ≤ t, ϵi = 1), Yi(t) = 1 − Ni(t−), wi(t) is a time-dependent weight for 

subject i at time t defined as wi(t) = I Ci ≥ Ti ∧ t G(t)/G Xi ∧ t , and G(t) is the Kaplan and 

Meier (1958) estimate for G(t) = Pr(C ≥ t), the survival function of the censoring variable C. 

Note that, for any subject i and time t, wi(t)Y i(t) = 0 if an individual is right censored or has 
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experienced the event of interest; and wi(t)Y i(t) = 1 if t < Xi, and wi(t)Y i(t) = G(t)/G Xi  for 

events due to the competing risk.

Commonly-used optimization routines to estimate the parameters of the PSH model 

typically require the calculation of the log-pseudo likelihood (2), the score function

l̇ j(β) = ∑
i = 1

n
I δiϵi = 1 zij − ∑

i = 1

n
I δiϵi = 1

∑k ∈ Rizkjwikexp ηk
∑k ∈ Riwikexp ηk

, (3)

and, in some cases, the Hessian diagonals

l̈ jj(β) = ∑
i = 1

n
I δiϵi = 1

∑k ∈ Rizkj
2 wikexp ηk

∑k ∈ Riwikexp ηk
−

∑k ∈ Rizkjwikexp ηk
∑k ∈ Riwikexp ηk

2
, (4)

where

wik = wk Xi = G Xi /G Xi ∧ Xk , k ∈ Ri,

Ri ={y : (Xy ≥ Xi)∪(Xy ≤ Xi ∩ϵy = 2)} and ηk= zk′β. Direct calculations using the 

above formulas will need O(n2) operations due to the the double summations and is 

computationally taxing for large n. We will show how to calculate the double summation 

linearly in Section 2.4, allowing us to calculate these quantities in O(n) time.

2.2 Broken adaptive ridge estimation for the proportional subdistribution hazards model

Penalized regression is useful for simultaneous variable selection and parameter estimation 

and has recently been introduced to the PSH model for competing risks data Ha et al., 2014; 

Fu et al., 2017; Ahn et al., 2018; Hou et al., 2018. Below we extend the broken adaptive 

ridge (BAR) estimator to the PSH model.

Let l(β) be the log-pseudo likelihood defined by (2). The BAR estimator of β starts with an 

initial ℓ2-penalized (or ridge) estimator

β(0) = arg min
β

{−2l(β) + ξn ∑
j = 1

p
βj

2}, (5)

which is updated iteratively by a reweighted ℓ2-penalized estimator

β(k) = arg min
β

−2l(β) + λn ∑
j = 1

p βj
2

β i
(k − 1) 2 , k ≥ 1, (6)

where ξn and λn are non-negative penalization tuning parameters. The BAR estimator of β 
is defined as the limit of this iterative algorithm:
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β = lim
k ∞

β(k), (7)

which can be viewed as a surrogate to ℓ0-penalized regression.

Note that adaptively reweighting the penalty of a coefficient by the inverse of its squared 

estimate from the previous iteration allows each coefficient to be penalized differently. At 

each successive iteration, coefficients whose true values are zero will have larger penalties 

that will shrink the estimate further towards zero. We have shown in Section S1 of the 

Online Supplementary Material that the BAR estimator has an oracle property for selection 

and estimation and a grouping property for highly correlated covariates.

The BAR estimator can be implemented using the algorithm outlined in Section S2.1 

Algorithm S1 of the Online Supplementary Material in which a cyclic coordinate decent 

(CCD) algorithm is employed for each reweighted ℓ2-penalized regression. Because the 

algorithm runs a sequence ( k = 0,1,…) of adaptively reweighted ridge regressions, it 

adds an extra layer of computational complexity as compared to other popular single-step 

penalization methods such as LASSO and can create a bottleneck when a large number of 

iterations is needed. Moreover, because ridge regression is not sparse and thus the limit is 

never achieved at any given step of the BAR algorithm, an arbitrarily small cutoff value ϵ* 

has to be used to induce sparsity in Algorithm S1 (line 18), which is an unpleasant feature. 

Below we show that these issues can be avoided using a new cyclic BAR algorithm.

2.3 A cyclic coordinate-wise BAR algorithm

In this section, we derive a fast cyclic coordinate-wise BAR algorithm that will result 

in the elimination of performing multiple ridge regressions and avoid using a cutoff ϵ* 

to introduce sparsity as required by the original BAR algorithm (Algorithm S1 in the 

Online Supplementary Material). For a consistent estimate β of β, consider the Cholesky 

decomposition − l̈ (β) = X′X and define y = X′ −1 − l̈ (β)β + l̇ (β)  as the pseudo-response 

vector. Approximating the negative log-pseudo likelihood by −l(β) ≈ (1/ 2)(y −Xβ)′(y −Xβ) 

using a second-order Taylor expansion in (6) leads to the following solution

β(k) = g β(k − 1) ,

where g(β)={X′X + λnD(β)}−1X′y. and D(β) = diag β1
−2, …, βpn

−2 . Hence, as k → ∞, the 

limit of the sequence {β(k)} is the fixed point of the function g(·) or the solution of g(β) = β.

Remark 2.1.—Floating errors can arise when calculating D(β) as it involves the inverse of 
β2 . However, this can be avoided by rewriting g(β) as

g(β) = X′X + λnD(β) −1X′y
= D(β)−1/2 D(β)−1/2X′XD(β)−1/2 + λnIpn −1D(β)−1/2X′y,
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which involves only multiplication rather than division by β.

The next theorem shows that each component of the fixed-point solution of g can be 

expressed as a function of all other components. The proof is deferred to Section S1.5 of the 

Online Supplementary Material.

Theorem 1.—Let β be the fixed-point solution of g(·). Then, for each j = 1,…,pn, the jth 
component of β can be expressed as follows

β j = gj β−j ≡
0, if bj < 2 λnxj′xj,

bj + sign bj bj
2 − 4λnxj′xj

2xj′xj
, otherwise,

(8)

where bj = xj′(y − ∑i ≠ jxiβ i) and β−j = β1, …, β j − 1, β j + 1, …, β pn
′.

The above result motivates our cyclic coordinate-wise broken adaptive ridge (CYCBAR) 

algorithm which performs cyclic coordinate-wise updates for the fixed point of g(·) using 

equation (8) as outlined in Algorithm 1 below. In Algorithm 1, X and y are initially 

estimated using the initial ridge estimate β(0) and then subsequently updated at step s using 

the previous estimate β(s−1) for s ≥ 1. Consequently, at step s, we have

bj
(s) ≡ xj′ y − ∑

i ≠ j
xiβi

(s − 1) = − l̈ jj β(s − 1) βj
(s − 1) + l̇ j β(s − 1) , for j = 1, …, pn,

where l̇ j(β) is the jth element of − l̇ (β) and − l̈ jj(β) is the jth diagonal element of l̈ (β). 
Note that an unpenalized estimator at each iteration may also be used in place of β(s−1) 

to construct X and y, which could conceivably reduce estimation bias with some increased 

computational cost. This is corroborated by our limited simulation studies (not reported 

here), which also showed that the performance differences between the two methods become 

negligible as the sample size increases.

Algorithm 1:

The CYCBAR algorithm

1 Set β(0) = βridge;

2 for s = 1, 2,... do

3 # Enter cyclic coordinate-wise BAR algorithm

4 for j = 1,...pn do

5 Calculate c1j = − l̇ j β(s − 1) , c2j = − l̈ jj β(s − 1)
 and bj

(s) = c2jβj
(s − 1) − c1j;

6 if bj
(s) < 2 c2jλn then

7 βj
(s) = 0;

8 else
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9 βj
(s) =

bj
(s) + sign bj

(s) bj
(s) 2

− 4c2jλn
2c2j

;

10 end

11 end

12 if ||β(s) − β(s−1)|| < tol then

13 βBAR = β(s) and break;

14 end

15 end

Remark 2.2. (CYCBAR versus BAR)—The CYCBAR algorithm is derived by 

approximating the log-psuedo likelihood with a quadratic approximation, so it provides 

an approximation of the BAR estimator. Because the quadratic approximation is updated 

iteratively in the algorithm, the difference between them are expected to be mostly 

negligible, which has been corroborated by our empirical studies.

Remark 2.3. (Convergence of CYCBAR)—The CYCBAR algorithm resembles the well-

known cyclic coordinate decent (CCD) algorithm that has been commonly used for 

some popular single-step penalized regression methods such as LASSO. However, its 

numerical convergence is guaranteed by a different mechanism since the CYCBAR algorithm 

makes coordinate-wise updates for a fixed-point problem whereas CCD aims to decrease 

an objective function with each coordinate update. Some graphical illustrations of the 

convergence of the CYCBAR algorithm for pn = 2 are given in Section S2.2 Figures S1 and 

S2 of the Online Supplementary Material. A rigorous proof of the numerical convergence of 

the CYCBAR algorithm is however not trivial and needs to be investigated in future research.

2.4 Scalable parameter estimation via forward-backward scan

Before proceeding further, we note that for the Cox proportional hazards model with no 

competing risks, Ri ={y : Xy ≥ Xi} and wik ≡ 1 for all i and k. Therefore the score function 

can be written as

l̇ j(β) = ∑
i = 1

n
I δi = 1 zij − ∑

i = 1

n
I δi = 1

∑k ∈ Rizkjexp ηk
∑k ∈ Riexp ηk

, (9)

j = 1,…,pn. Again, if done directly, calculating l̇ j(β) will require O(n2) calculations. 

Suchard et al. (2013), Mittal et al. (2014), Kawaguchi et al. (2020), among others, have 

implemented the following technique to calculate (9) in O(n) calculations. Assume, for 

now, that event times are unique. If the event times are arranged in decreasing order, both 

∑k ∈ Rizkjexp ηk  and ∑k ∈ Riexp ηk  are a series of cumulative sums. For example, let 

Xi and Xi′ be two consecutive event times such that Xi > Xi′. Then, the set Ri′ consists 

of the observations from Ri and the set of observations y:Xy ∈ Xi′, Xi . Therefore 

∑k ∈ Ri′zkjexp ηk = ∑k ∈ Rizkjexp ηk + ∑k ∈ y:Xy ∈ Xi, Xi) zkjexp ηk  and calculating 
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both ∑k ∈ Rizkjexp ηk  and ∑k ∈ Riexp ηk , and consequently its ratio, for all i =1,…,n will 

only require O(n) calculations in total. Furthermore, the outer summation of subjects who 

observe the event of interest is also a cumulative sum since, provided that Xi > Xi′ and both 

δi = 1 and δi′ = 1,

∑
l = 1

i
I δl = 1

∑k ∈ Rlzkjexp ηk
∑k ∈ Rlexp ηk

= ∑
l = 1

i′
I δl = 1

∑k ∈ Rlzkjexp ηk
∑k ∈ Rlexp ηk

+ ∑m ∈ i′, i I δm = 1
∑k ∈ Rmzkjexp ηk

∑k ∈ Rmexp ηk

= ∑
l = 1

i′
I δl = 1

∑k ∈ Rlzkjexp ηk
∑k ∈ Rlexp ηk

+ I δi = 1
∑k ∈ Rizkjexp ηk

∑k ∈ Riexp ηk
,

(10)

where the last equality holds since Xi and Xi′ are consecutive event times and δm = 0 for all 

m∈(i′,i). Clearly, (10) will only require O(n) calculations since the ratio can be precomputed 

in O(n) calculations. The diagonal elements of the Hessian also follow a similar derivation 

and can also be calculated in O(n) calculations.

For the PSH model, however, ∑k ∈ Riwikexp ηj , i = 1,…,n, are not a series of simple 

cumulative sums because 1) the risk sets Ri are not monotone over time, and 2) for each 

i, a different set of weights wik = G Xi /G Xi ∧ Xk  k ∈Ri are required. To overcome this 

problem, we show in Lemma 1 below that ∑k ∈ Riwikexp ηj  can be decomposed into a 

forward cumulative sum and a backward cumulative sum over two disjoint monotone sets. A 

simple proof is provided in Section S1.6 of the Online Supplementary Material.

Lemma 1.—Assume that no ties are present. Then, for any 1 ≤ r ≤ p, 1 ≤ s ≤ p, and u, v = 

0,1, we have

∑
k ∈ Ri

zkr
u zks

v wikexp ηk = ∑
k ∈ Ri(1)

zkr
u zks

v exp ηk + G Xi ∑
k ∈ Ri(2)

zkr
u zks

v exp ηk

/G Xk ,
(11)

where Ri(1) = {y : (Xy ≥ Xi)} and Ri(2) = {y : (Xy < Xi∩ϵy = 2)} are distinct partitions 
of Ri. Furthermore, Ri(1) is monotonically decreasing over time and Ri(2) is monotonically 
increasing over time.

Because Ri(1) grows cumulatively as the event times decrease from the largest to the 

smallest, whereas Ri(2) grows cumulatively as the observed event times increase from the 

smallest to the largest since it only involves subjects who observed a competing risk and had 

an observed event time smaller than subject i. Thus, similar to the Cox model, the ratio of 

summations for the score and diagonal Hessian values can be calculated in linear time via 

a forward-backward scan where one scan goes in one direction to calculate the cumulative 

sums associated with Ri(1) and the other scan goes in the opposite direction to calculate the 

cumulative sum associated with Ri(2). Therefore, we can effectively reduce the number of 

operations from O(n2) to O(n).
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Remark 2.4. (Fitting the proportional cause-specific hazards model)—It is well 

known that for a given cause, fitting the proportional cause-specific hazards (PCSH) model 

is identical to fitting the standard Cox proportional hazards model for right censored data 

by treating the competing events as right censored. We further observe that the first term 

of (11) in Lemma 1 corresponds to the unweighted sum involved in fitting the standard 

Cox proportional hazards model for right censored data and that the second term of (11) 

in Lemma 1 will disappear for right censored data (in the absence of competing risks). 

Therefore, as a by-product, our developed algorithms for the PSH model can be directly 

applied to fit a PCSH model by treating the competing events as right censored.

3 Simulation study

3.1 Simulation setup

We simulate datasets under various sample sizes and parameter dimensions. The design 

matrix, Z was generated from a pn-dimensional standard normal distribution with mean zero 

and pairwise correlation corr(zi, zj) = ρ|i− j|, where ρ = 0.5 simulates moderate correlation. 

The vector of regression parameters for cause 1, the cause of interest, is β1 = (0.40, 0.45, 

0, 0.50, 0, 0.60, 0.75, 0, 0, 0.80, 0p−10). The data generation scheme follows a similar 

design to that of Fine and Gray (1999) and Fu et al. (2017). The CIF for cause 1 is 

F1 t; zi = Pr Ti ≤ t, ϵi = 1 ∣ zi = 1 − [1 − π 1 − exp( − t) ]exp zi′β1 , which is a unit exponential 

mixture with mass 1−π at ∞ when zi = 0. Unless otherwise noted, the value of π is set 

to 0.5, which corresponds to a cause 1 event rate of approximately 41%. The CIF for 

cause 2 is obtained by setting Pr(ϵi = 2|zi) = 1−Pr(ϵi = 1|zi) and then using an exponential 

distribution with rate exp(zi′ β2) for the conditional CIF Pr(Ti ≤ t|ϵi = 2,zi) with β2 = 

− β1. Censoring times are independently generated from a uniform distribution U(0,umax) 

where umax controls the censoring percentage. The average censoring percentage for our 

simulations vary between 30 − 35%.

3.2 Finite-sample properties of BAR

In this section, we briefly summarize the results for comparing the operating characteristics 

of BAR along with LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), adaptive 

LASSO (Zou, 2006, ALASSO), and MCP (Zhang, 2010) which are implemented in the 

crrp package (Fu et al., 2017). Our simulations illustrate that 1) the BAR estimator is 

insensitive over the choice of ξn over a large interval and 2) BAR performs as well as 

other oracle-based procedures in terms of estimation and variable selection. This has been 

observed consistently over several different combinations of model dimension, event rates, 

signal values, sample sizes, and model sparsity. Due to the page limitation, we refer readers 

to Section S3 of the Online Supplementary Material for a more detailed explanation of the 

conclusions from the study.

3.3 Computational savings via CYCBAR and forward-backward scan

In this simulation we illustrate the impressive computational savings obtained from CYCBAR 

and the forward-backward scan described in Sections 2.3 and 2.4. We compare three 

implementations of BAR for the PSH model: the original BAR without the forward-
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backward scan, CYCBAR without the forward-backward scan, and CYCBAR with the forward-

backward scan. We let n vary from 600 to 2000, pn = 100, and ρ = 0.5 and compute the 

runtime of each method averaged over 100 simulations. We report the runtime on a system 

with an Intel Xeon processor at 2.60 GHz and 64GB of memory.

Figure 1(a) displays box plots of runtime (in seconds) for each method as the sample 

size increases, which shows that the runtime of the original BAR (right box plot of 

each triple) increases quickly while the runtime of BAR implementing both CYCBAR and 

forward-backward scan (left box plot of each triple) grows at a much slower rate. Figure S6 

in the Online Supplementary Material is a magnified version of Figure 1(a) to focus on the 

differences between both CYCBAR implementations. Panels (b) and (c) further demonstrate 

the separate contributions of CYCBAR and the forward-backward scan method, respectively, 

using fold change, defined as the ratio of runtime between implementations. Panel (b) 

shows a 15–20 fold decrease in runtime between CYCBAR and the original BAR. Panel 

(c) shows the benefit of linearized estimation, with a 50–225 fold decrease in runtime 

between CYCBAR with and without the forward-backward scan. Additionally, we perform 

both SCAD and MCP penalizations both with and without the forward-backward scan 

implementation and observe similar gains in computation efficiency and the results are 

presented in Table S6 and Figure S7 of the Online Supplementary Material. Panel (d) 

illustrates that using both CYCBAR and the forward-backward scan results in a multiplicative 

gain, yielding an impressive 1,000–2,000 fold speedup in runtime. Our simulation studies 

in Figures 1 and S7 strongly suggest that parameter estimation without linearization is 

computationally infeasible for even moderately large n. As a comparison, Figure S8 of the 

Online Supplementary Material illustrates that for even much larger sample sizes (n = 10, 

000 to 500, 000), CYCBAR, SCAD, and MCP using the forward-backward scan can be 

performed within minutes.

4 End-stage renal disease

The United States Renal Data System (USRDS) is a national data system that collects 

information about end-stage renal disease in the United States. Patients with end-stage renal 

disease are known to have a shorter life expectancy compared to their disease-free peers 

(USRDS Annual Report 2017) and kidney transplantation has been shown to provide better 

health outcomes for patients with end-stage renal disease (Wolfe et al., 1999; Purnell et 

al., 2016). As an illustration of the scalability of various methods for large data, we run 

penalized regressions for a PSH model with 63 demographic and clinical variables using a 

subset of n = 225, 000 patients from the USRDS that spans a 10-year study time between 

January 2005 to June 2015. The event of interest was first kidney transplant for patients who 

were currently on dialysis. Death, renal function recovery, and discontinuation of dialysis 

are competing risks. Subjects who are lost to follow up or had no event by the end of study 

period are considered as right censored. We randomly split the data into a training set (n = 

125, 000) and test set (n = 100, 000). Table S7 in the Online Supplementary Material shows 

that the proportions of each type of event are similar across the training and test sets.

The BAR method along with SCAD and MCP penalizations are used to fit the PSH model 

using the training set. As with Section 3.3, we consider four implementations of BAR: 1) 
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without both CYCBAR and the forward-backward scan; 2) without CYCBAR and with the 

forward-backward scan; 3) with CYCBAR and without the forward-backward scan; and 4) 

with both CYCBAR and the forward-backward scan. BIC score minimization, implemented 

with a 25-value grid search, is used to find the optimal value for the tuning parameter for all 

three methods. We fix ξn = log(pn) for the BAR method. SCAD and MCP were performed 

using the crrp @@R package (Fu et al., 2017) where its generalized cross validation 

estimation component is removed to allow a fair comparison of their runtime to BAR 

with respect to parameter estimation. Additionally, we run SCAD and MCP penalizations 

using our forward-backward scan to compare the computational performance of our new 

implementation to the current state of the art. The BIC score based on the training data 

is used to compare selection performance between models and predictive performance is 

measured by the concordance index (c-index) proposed by Wolbers et al. (2009) based on 

the test data. Table 1 summarizes the computational time (in seconds), the BIC score, the 

c-index, and the number of selected variables for each method.

We observe from Table 1 that CYCBAR, without the forward-backward scan, took 46 

hours to finish, a marked reduction in runtime over the original BAR implementation 

which did not finish after 96 hours and was terminated. More impressively, adding the 

forward-backward scan resulted in an enormous boost in speeding up the computation, 

performing the same task in 40 seconds. We observe similar trends in both SCAD and 

MCP implementations as well. Our forward-backward scan algorithm results in significant 

reduction in runtime, over-thousand fold, for BAR, SCAD, and MCP, allowing us to perform 

variable selection for large-scale competing risks data within seconds rather than days. 

Moreover, since the CYCBAR algorithm resembles cyclic coordinate descent (see Remark 

2.3) it is computationally on par with SCAD and MCP.

The predictive and selection performances of all methods are comparable with similar BIC 

scores, c-index values and model sizes (number of selected variables), that we attribute to 

the massive sample size of both the training and test set. As expected, BAR (and CYCBAR) 

selects a sparser model compared to both SCAD and MCP. This is due to BAR being an 

ℓ0-based approach as opposed to an ℓ1-based approach. The variables selected by BAR are 

also a subset of the variables selected by both SCAD and MCP. The magnitude and sign 

for the variables selected are consistent between methods and with some previous findings 

in the literature. For example, smoking has a negative effect on the subdistribution hazard 

revealed by all four proposed methods (BAR: −0.59, CYCBAR: −0.60, SCAD: −0.61, MCP: 

−0.62) for kidney transplantation and is consistent with the results of Stack et al. (2016). 

Other variables such as racial differences Kasiske et al., 1991; Purnell et al., 2016, 2018, 

insurance type Keith et al., 2008; Schold et al., 2011, and neighborhood poverty (Patzer et 

al., 2009) have also been previously reported to have an impact on kidney transplantation.

We also fitted penalized proportional cause-specific hazards (CSH) models using our 

methods as discussed in Remark 2.5. BAR, SCAD, and MCP-penalized proportional 

CSH regression models selected 41, 46, and 47 nonzero variables, respectively. While the 

CSH and PSH models estimate covariate effects on two distinct quantities of interest for 

competing risks data, all three penalized proportional CSH regression models yield similar 
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inferential conclusions to their PSH counterparts in terms of variables selected, effect sizes, 

and sign.

5 Discussion

In extending the surrogate ℓ0-based BAR methodology to the Fine and Gray (1999) 

PSH model for competing risks data, we have developed a novel coordinate-wise update 

(CYCBAR) algorithm to avoid carrying out multiple ridge regressions in the original BAR 

implementation. Furthermore, we introduce a forward-backward scan algorithm to reduce 

the computational cost of the log-pseudo likelihood and its derivatives for the PSH model 

from the order of O(n2) to O(n). While showing comparable selection and estimation 

performance, the BAR method for the PSH model using the two new algorithms can produce 

greater than 1,000 fold speedups over some current penalization methods for the PSH model 

in numerical studies.

While our methodology enables scalable penalized PSH regression, data storage continues to 

be a challenge for high-dimensional and masssive sample size (HDMSS) data in our modern 

era. To this end, it is helpful to distinguish between HDMSS data with sparsely represented 

covariates and those with densely represented covariates. Sparse HDMSS data arises when 

only a small portion of covariates are nonzero for a given subject. This is often the case 

for massive electronic health record (EHR) databases such as the Observational Health 

Data Sciences and Informatics (OHDSI) program (Hripcsak et al., 2015) (https://ohdsi.org/) 

and the U.S. FDA’s Sentinel Initiative (https://www.fda.gov/safety/fdas-sentinel-initiative). 

In this domain of applications, an effective strategy is to store the data in a sparse format 

by exploiting the sparsity in the data matrix. This approach has been implemented for 

generalized linear models Genkin et al., 2007; Friedman et al., 2010; Suchard et al., 2013 

and for the standard Cox model (Mittal et al., 2014). More recently, Kawaguchi et al. 

(2020) has implemented the standard BAR algorithm for sparse HDMSS right-censored 

data. We are currently working on implementing our developed algorithms using the sparse 

format for massive PSH model with sparse HDMSS competing risks data, which will 

enable one to efficiently fit a massive PSH model using our forward-backward scan method. 

However, when covariates are densely represented, loading the entire HDMSS data may 

often be infeasible since it will exceed a computer’s storage limit. In such a scenario, 

our fast algorithms can be coupled with distributed computing/learning methods such as 

divide-and-conquer (Wang et al., 2019) to improve the scalability of existing algorithms 

for massive size competing risks data. Distributed computing/learning methods for the PSH 

model remain open and warrants further investigations.

Currently, our forward-backward scan algorithm require covariates to be fixed. When 

covariate values are time varying, we can no longer accumulate the risk set contributions 

using a simple forward (or backward) scan. Efficiently estimating time-dependent covariate 

effects in linear time remains an open area of research for both right-censored and 

competing risks data.

Finally, we emphasize that the developed CYCBAR method in Section 2.3 and the forward-

backward scan method of Lemma 1 in Section 2.4 are of interest on their own. The CYCBAR 
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method can be applied directly to other models and data settings. It is also straightforward 

to apply the forward-backward scan method to accelerate other estimation methods for the 

PSH model. Using this approach, we are currently developing a stand-alone package for R 

that includes the unpenalized estimation method of Fine and Gray (1999) and other popular 

penalization methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Runtime comparison between three BAR (λn) implementations (cycBAR = CYCBAR 

described in Section 2.3; lin. = forward-backward scan described in Section 2.4). For 

each triple of box plots in Figure 1(a): Left - CYCBAR w/forward-backward scan; Middle 

- CYCBAR w/o forward-backward scan; Right - BAR w/o forward-backward scan. Fold 

change is calculated as the ratio of runtime between two implementations.
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Table 1

Analysis results of a USRDS data using BAR and CYCBAR along with MCP and SCAD. (BAR/CYCBAR: ξn 

= log(pn) and λn selected through a grid search; BIC was used to select tuning parameters for all methods; 

Seconds: Runtime in seconds without the forward-backward scan (no scan) and with (scan); BIC score: BIC 

score based on the training data; c-index: c-index based on the test data; Model size: Number of nonzero 

parameters

BAR CYCBAR SCAD MCP

Seconds (no scan) 345,600+* 167,020 92,571 102,565

Seconds (scan) 1,401 40 37 35

BIC score 251873.7 251867.6 251929.9 251895.3

c-index 0.85 0.85 0.85 0.85

Model size 43 42 48 49

*
The original BAR without CYCBAR and forward-backward scan did not finish after 96 hours.)
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