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Thesis Abstract 

The high-throughput ability and sensitivity of mass spectrometry make it the most popular 

platform for a metabolomics study. Thus, identifying small molecules from mass spectra plays a 

central role in metabolomics. There are many computational techniques for mass spectra raw data 

processing, including feature detection, peak alignment, and mass spectral deconvolution. This 

dissertation focuses on the conversion between spectral and structural information. It is a 

spontaneous thought to identify compound structure from mass spectra by searching the query 

spectra against a reference library with similarity score. However, this approach is limited by the 

availability of reference spectra and standard compounds. To bridge the gap, different computation 

tools based on fragmentation trees are developed to help annotate spectra. The other thought is to 

generate in-silico spectra from the structural information. Several compound databases, such as 

PubChem, KEGG, HMDB and CHEBI can be the source of structural information. Machine 

learning and heuristic approaches are trained from spectral knowledge to generate in-silico spectra. 

However, all those approaches cannot predict beyond the known data. As a first-principles method, 

Quantum chemistry modeling is only based on the rules of quantum mechanics and can help us 

explore the unknown space of metabolites. Yet, the quantum chemical simulation on molecules 

over 600 Da is too expensive to get accurate results. Chemical ionization with methane reagent 

gas can help identify the molecular ion species and help the unknown metabolite identification. 

This dissertation describes computational studies using molecular dynamics on in-silico mass 

spectra of small molecule generation. Chapter 1 provides an overview of applications of quantum 

chemistry to generate in-silico mass spectra. Chapter 2 showcases the performance of quantum 

chemistry simulations on small molecules and probes the parameter space to find potential 

improvements to the existing method. The conformational flexibility effect is also explored and 
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has no correlation with prediction accuracy. Chapter 3 describes a new workflow to include 

chemical derivation, especially silylation in the quantum chemistry calculation. Different 

compound classes including organic acid, alcohol, amide, amine and thiols are simulated and 

compared against experimental mass spectra. The molecular dynamics trajectories are also 

investigated to find missed fragmentations from rearrangements. Chapter 4 provides a new 

algorithm that introduces excited state calculation into the molecular dynamics prediction of mass 

spectra. The new algorithm can predict more fragmentation reactions that are missing in previous 

studies and as a result, the mass spectral similarity scores are increased, and simulation is more 

accurate. Chapter 4 also discusses the limitations of molecular dynamics simulation time and the 

lack of rearrangement reactions. Chapter 5 provides another routine from the experimental side to 

help unknown metabolites identification with methane chemical ionization and quadrupole-time 

of flight mass spectrometry. 

 

 

 

Go, get you home, you fragments!1 

 

 

 

 

1 Coriolanus: Act 1, Scene 1, William Shakespeare 
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Chapter 1: An Introduction to Quantum-Mechanical 

Calculations for Mass spectrometry 

1.1. Quantum Chemistry  

With the development of computer science, quantum chemistry becomes an available tool with 

sufficient computational efficiency and chemical accuracy. The core idea of quantum chemistry is 

to find approximate solution of the many-electron Schrödinger equation. The Hartree-Fock theory 

and density functional theory (DFT) are the earliest and most popular quantum chemistry methods 

in 1920s. Since then, quantum chemistry has involved in chemical sciences by predicting and 

interpreting experimental observations, such as NMR, IR, UV, and Raman spectra. In contrast to 

those applications, no straightforward procedure exists for quantum-chemistry-based prediction of 

mass spectra. For example, prediction of IR and Raman vibrational spectra became possible by 

1965 using simple force fields and in the late 1970s using ab initio calculations. While single 

fundamental fragmentations can be predicted with the help of quantum chemistry, the cascade of 

reactions and rearrangements resulting from multiple reaction pathways, and most importantly the 

m/z peak abundances from complex molecules, have been highly difficult to deduce.  

In a major breakthrough and one of the most important discoveries in computational MS, Grimme 

published the Quantum Chemistry Electron Ionization MS (QCEIMS) program for the first 

principle calculation of 70 eV mass spectra in 2013.1 QCEIMS is discussed in more detail in the 

next section. 
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1.2. Electron ionization (EI) 

Electron ionization (EI) MS (70 eV) is an established analytical technique and is commonly 

coupled to GC for analysis of small molecules below 400 Da. Electrons are emitted from a heated 

filament and focused on gaseous neutral molecules. When the accelerated electrons hit the neutral 

molecule, radical cations are formed, and another electron is ejected. The vibrationally excited 

carbocations then undergo further bond dissociations and fragmentations on a very fast time scale. 

The smaller mostly singly charged fragment ions are then accelerated towards a detector and 

recorded as spectral signals. The ionization efficiency at 70 eV is the highest and most molecules 

can be ionized at this energy, allowing for creation of reproducible mass spectra.2 The power of 

GC-MS lies in the fact that the instrument industry has subsequently standardized the EI source 

energies to 70 eV, resulting in the availability of reproducible spectra and available databases to 

search3. Gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) has not reached 

a breakthrough yet, due to the more complex instrumentation and missing MS/MS spectral 

databases for spectral matching4. 

Historically, the interpretation of EI-derived spectra depended on statistical rate theory5-9 and 

investigation of kinetic processes, especially work based on quasi-equilibrium theory (QET)10 and 

Rice-Ramsperger-Kassel-Marcus (RRKM)11-14 theory which can be used to predict rate constants. 

Many of the classical investigations of 70 eV radical cations or anions are limited to single ion 

species or specific molecules due to the complexity of fragmentation and rearrangement reactions.  

The main disadvantage of traditional QET/RRKM approaches is that rate calculations are based 

on the selection of specific ion transition states and activated complexes on the PES. With 

increasing atom numbers, the complexity of the reaction space rises exponentially and would 
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require a priori knowledge of reaction pathways that are not always available15. Methods such as 

the global reaction route mapping (GRRM) strategy16, the AutoMeKin software17 or the Chemical 

Trajectory Analyzer (ChemTraYzer) software18 have been developed to systematically and 

automatically explore the reaction space19. 

The QCEIMS approach published by Grimme in 2013 combines Born–Oppenheimer molecular 

dynamics (BOMD), a type of AIMD, with statistical sampling to predict 70 eV mass spectra1. In 

contrast to other methods, QCEIMS is purely based on physical and chemical principles and can 

calculate mass spectra from any given molecule. Using a combination of ab initio molecular 

dynamics (AIMD) and stochastic sampling across hundreds of reaction pathways, the correct m/z 

value of ions and their associated abundances can be predicted. More excitingly, all reaction 

trajectories are retained and allow for a “look inside” the reaction processes of a mass spectrometer, 

which then makes it possible to investigate all fragmentations and rearrangements individually. To 

achieve a balance between efficiency and accuracy, QCEIMS can calculate on various levels of 

theory, including semiempirical models OM2/OM320, DFTB+21, GFNn-xTB22 and several DFT 

methods. The complex relaxation processes from the electronically excited state of the precursor 

ion are modeled by limiting the reaction on ionic ground state PES. The impact excess energy is 

converted to kinetic energy by a heating process, during which the atomic velocities are scaled to 

a preset impact excess energy value. Such a simple electronic structure can handle the 

fragmentation reactions, and can its ability to give a reasonable result is one of the key innovations 

of QCEIMS. 1  

The QCEIMS software is coupled with several independent software packages such as ORCA23-

24, TurboMole25, MOPAC26, MNDO9927-28 and DFTB+21. Most importantly, the latest 

independent and therefore stand-alone version of QCEIMS directly implements the GFN-XTB 
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method. This allows for simple installation and practical use of QCEIMS in any research 

environment with access to HPC. The only required input is a chemical structure. Because the 

GFNn-xTB22 methods are parameterized to elements up to Z=86, they are applicable to the most 

common molecules and therefore provide calculations of 70 eV mass spectra with metalloids such 

as silicone29-30. This is important, because the trimethylsilyl group (TMS) is often used during GC-

MS derivatization experiments31. 

One of the advantages of QCEIMS is that reaction pathways are automatically recorded as MD 

trajectories during the simulation. This allows for comprehensive investigation of the 

fragmentation mechanism. However, the confirmation of such reactions would require 

comprehensive investigations, because for any given reaction, a multitude of possibilities exists. 

In the original paper1, Grimme found that most of the primary fragmentations occur within 2–3 ps, 

while secondary fragmentation reactions take much longer but are important in larger systems. 

Many well-known reaction pathways in MS are accurately reported by QCEIMS, including -

cleavage15, McLafferty rearrangement, retro-Diels-Alder32 reaction and CO loss1. For molecules 

with several tautomers, a combination of initial conditions based on Boltzmann population can be 

used to improve simulation accuracy.32 

In 2016, Cautereels et al. described a different method for the calculation of 70 eV mass spectra 

using empirical rules for limiting the number of fragmentations along the PES based on DFT 

calculations33. The rules include observations of bond strengths, bond cleavages (that are 

thermodynamically controlled) and 1,4-rearrangements and McLafferty rearrangements (that are 

kinetically controlled).34 The procedure includes conformational sampling and calculation of 

Boltzmann weights including the calculation of the most stable radical cations. Homolytic and 

heterolytic fragmentation pathways are calculated under observation of the heuristic rules. Final 
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peak abundances are determined based on a formula that includes the average of energies of the 

fragmentation pathways and specific fragments. Such an approach could become very useful in 

the future for detailed investigations of reaction pathways using classical transition state theory. 

Similar to the evaluation of machine-learning prediction methods such as CFM-ID,35 quantum 

chemical models have to be rigorously tested by comparing theoretical predictions against 

experimental reference spectra.36 Similarity match scores and compound rankings should be 

reported.3 This can be done with the National Institute of Standards and Technology (NIST) MS 

Search program and the NIST and MassBank of North America (MoNA) mass spectral databases4. 

1.3. QCEIMS computational costs and accuracy 

The QCEIMS protocol contains three types of quantum mechanical calculations: energy/force 

calculations to generate the potential energy surface for MD, molecular orbital (MO) calculations 

to determine internal excess energies and ionization potential (IP) calculations of each fragment to 

generate the statistical charges. The original version of QCEIMS utilizes DFT methods for MO 

and IP calculations, whereas the energy/force calculations for the time-consuming MD steps use 

the OM2/OM337 orthogonal corrected semiempirical methods.  

For example, the simulation of the 70 eV EI mass spectrum of anisole (C7H8O, MW=108.057 Da) 

requires 1.2 million individual MD steps and 82 minutes of computational time on 16 CPU cores 

at the OM2 level. The choice of the underlying method significantly affects simulation speed. The 

GFNn-xTB methods29-30 will be 10–20 times slower than the semiempirical OM220 simulations, 

while purely DFT-based MD can be 100 or more times slower than the semiempirical methods. 

The computational cost for semiempirical methods is usually much smaller than ab initio methods 

(OM2/PM638 < GFNn-xTB < DFT), whereas in terms of accuracy, we see the opposite trend with 
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DFT being the most accurate method (DFT > GFNn-xTB > OMx/PMx). Interestingly, chemical 

bonds are more easily dissociated in semiempirical simulations relative to the more accurate DFT 

simulations39. Therefore, more accurate calculations of the PES may require even more simulation 

steps with longer fragmentation processes.  

Because DFT methods are closer to the ‘exact’ PES, they should be used as a reference in 

evaluating more approximate models,39 but their increased computational cost puts them out of 

reach for simulating EI mass spectra of larger molecules. We are optimistic that GPU-accelerated 

implementations of DFT methods in software such as TeraChem40-41 or Fermions++ may lead to 

fast high-accuracy simulations42. 

However, the usage of fractional occupation number weighted densities43 can reproduce some 

properties of multireference wavefunctions, making it a possible low-cost alternative for treating 

multireference systems. On the other hand, when the energy gap between the excited state and 

ground state goes to zero, the Born-Oppenheimer approximation and single reference methods 

used in QCEIMS can break down. The treatment of highly excited electronic states using multi-

reference methods,44-46 such as the states accessed during QCEIMS, is under active investigation 

and can guide the development of improved simulation approaches in the future. 

The accuracy of predicted in silico spectra has to be evaluated against diverse and large number of 

experimentally measured spectra.3 QCEIMS (with OM2/OM3) performs on the same accuracy 

level as the best available machine learning algorithms such as CFM-ID35. The QCEIMS method 

also has the advantage that any given molecule can be calculated. The reason is that machine 

learning methods require experimental training data, while QCEIMS as an ab initio method is only 

based on physical and chemical principles. The most important question for practitioners is the 

practical use of algorithms in daily research applications. Currently, it is not possible to calculate 
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most compounds with high similarity match scores (>850). It is also not yet possible to determine 

the quality of predictions in advance due to the stochastic nature of the computations. It is 

foreseeable that with improved accuracy of future versions of QCEIMS and related methods, a 

wide range of in silico spectra can be used for training in machine leaning to allow for even faster 

simulation of in silico mass spectra from all known compounds.  

 

1.4. Coupling EI to other spectroscopic methods 

 

While GC-MS mass spectra at 70 eV can give structural insights, it is not possible to fully interpret 

all mass spectra because in many cases the molecular ion is not observed and following individual 

fragmentations is not directly possible. Techniques such as chemical ionization or cold EI can help 

increase the stability and abundance of the molecular ion.47 Furthermore, integrating parallel 

analysis techniques such as IR, Raman, and UV will allow for easier structure-to-spectrum 

identification using quantum mechanical calculations of optical spectra48. In such a case, MS and 

optical spectroscopy experiments are performed in parallel and the resulting spectra can be 

investigated theoretically using quantum chemistry methods or QM/MM49. For example, threshold 

photoionization mass spectra can be acquired with photoelectron photoion coincidence (PEPICO) 

spectroscopy and can be coupled with DFT calculations to gain insights into fragmentation 

behavior.50-52 In particular, coupling MS with IR multiple-photon dissociation spectroscopy 

(IRMPD) seems to be an excellent way for interpreting dissociation pathways by combining 

experiments with quantum chemical calculations.53 While such instrumental setups are complex 

and expensive, they show the possibilities of instrumental integration with quantum mechanical 
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computations. Such techniques, while discussed here in detail for EI, can also be coupled to other 

methods such as ESI and CID MS/MS.  
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Chapter 2: Predicting in-silico electron ionization mass spectra 

using quantum chemistry 

2.1. Abstract 

Compound identification by mass spectrometry needs reference mass spectra. While there are over 

102 million compounds in PubChem, less than 300,000 curated electron ionization (EI) mass 

spectra are available from NIST or MoNA mass spectral databases. Here, we test quantum 

chemistry methods (QCEIMS) to generate in-silico EI mass spectra (MS) by combining molecular 

dynamics (MD) with statistical methods. To test the accuracy of predictions, in-silico mass spectra 

of 451 small molecules were generated and compared to experimental spectra from the NIST 17 

mass spectral library. The compounds covered 43 chemical classes, ranging up to 358 Da. Organic 

oxygen compounds had a lower matching accuracy, while computation time exponentially 

increased with molecular size. The parameter space was probed to increase prediction accuracy 

including initial temperatures, the number of MD trajectories and impact excess energy (IEE). 

Conformational flexibility was not correlated to the accuracy of predictions. Overall, QCEIMS 

can predict 70 eV electron ionization spectra of chemicals from first principles. Improved methods 

to calculate potential energy surfaces (PES) are still needed before QCEIMS mass spectra of novel 

molecules can be generated at large scale. 
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2.2. Introduction  

Mass spectrometry is the most important analytical technique to detect and analyze small 

molecules. Gas chromatography coupled to mass spectrometry (GC/MS) is frequently used for 

such molecules and has been standardized with electron ionization (EI) at 70 eV more than 50 

years ago 1. Yet, current mass spectral libraries are still insufficient in breadth and scope to identify 

all chemicals detected: there are only 306,622 EI-MS compound spectra in the NIST 17 mass 

spectral database 2, while PubChem has recorded 102 million known chemical compounds of 

which 14 million are commercially available. That means there is a large discrepancy between 

compounds and associated reference mass spectra 3. For example, less than 30% of all detected 

peaks can be identified in GC-MS based metabolomics 4. To solve this problem, the size and 

complexity of MS libraries must be increased. Several approaches have been developed to 

compute 70 eV mass spectra, including machine learning 5-6, reaction rule-based methods 7 and a 

method based on physical principles, the recently developed quantum chemical software Quantum 

Chemical Electron Ionization Mass Spectrometry (QCEIMS). 8 

 

While empirical and machine learning methods depend on experimental mass spectral data for 

development, quantum chemical methods only consider physical laws. Thus, in principle, 

QCEIMS can compute spectra for any given compound structure. Yet, approximations and 

parameter estimations are needed to allow predictions in a timely manner, reducing the accuracy 

of QCEIMS predictions. QCEIMS uses Born–Oppenheimer Molecular Dynamics (MD) to 

calculate fragment ions within picosecond reaction times with femtosecond intervals for the MD 

trajectories. A statistical sampling process is used to count the number of observed fragments and 

to derive the peak abundances for each observed ion 9 (Figure 2-1). 
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Figure 2-1 Workflow of QCEIMS. (1) generating conformers by equilibrium molecular dynamics; (2) 

ionizing each neutral starting structure by assigning impact excess energy (IEE) to kinetic energy; (3) 

generating EI fragments by parallel molecular dynamics; (4) assigning charges on each fragment using 

ionization potential (IP) energies and peak intensity counts, then assembling fragments to obtain summary 

spectra.  

It is unclear how reliable QCEIMS predictions are because the methods have not yet been tested 

on hundreds of compounds. MS matching accuracy is neither easily predictable nor quantifiable, 

because theoretical and experimental EI mass spectra have not been compared on a large scale. To 

test how structural constraints affect prediction accuracies, we utilized the QCEIMS method to 

predict spectra of 451 compounds with different molecular flexibility, sizes and chemical classes.  
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2.3. Methods 

2.3.1. Molecular structure preparation 

We used ChemAxon’s 10 MarvinView and MarvinSketch (v18.23) to manipulate structures. First, 

small molecules were manually chosen from the NIST 17 mass spectral database. 3-D coordinates 

were generated using the Merck Molecular Force Field (MMFF94) 11 with Avogadro (v1.2.0) 12 

in Molfiles (*.mol) format. We used OpenBabel (v2.3.90) 13 to convert structures to the TurboMole 

format (*.tmol) as required by the QCEIMS (v2.16) program. We used the QCEIMS plotms 

program to export JCAMP-DC mass spectra. External additional conformers were generated 

independently by conformational search packages, including GMMX from Gaussian14, the 

conformer generator in ChemAxon’s MarvinSketch and by using RDKit 15 (v2019.03.1). 

 

2.3.2. Parallel cluster calculation with QCEIMS  

We utilized the QCEIMS program for in-silico fragmentation with the following parameters: 70 

eV ionization energy, 500K initial temperature and 0.5 femtosecond (fs) time steps. For molecular 

dynamics, we used the semiempirical OM2 method 16 (Quantum-Chemical-Orthogonalization-

Corrected Method) using the MNDO99 (v2013) 17 software. The impact excess energy (IEE) 

satisfied the Poisson type distribution. The Orca software (3.0.0) 18 was employed to calculate the 

vertical SCF ionization potential at the PBE0 19 - D3 20 /SV(p) 21 level.  

 

We conducted QCEIMS calculations on cluster nodes equipped with two Intel Xeon E5-2699Av4 

CPUs, 44 cores and 88 threads in total, operated at 2.40 GHz. Each node was equipped with 128 

GByte RAM and a 240 GByte Intel DCS3500 datacenter grade SSD. In order to conduct and 

monitor the calculation process, we developed a SLURM job script to submit batch jobs. While 
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the initial ground state molecular dynamics simulation is only single-threaded, all subsequent 

calculations were massively paralleled. Because QCEIMS executes multiple trajectory 

calculations at once, we oversubscribed the parallel number of CPU threads to be used to 66 

(instead of 44) during QCEIMS production runs. Such a CPU oversubscription is possible, because 

molecular dynamics (OM2 with MNDO99) and density functional theory (DFT) calculations are 

executed in a heterogeneous way by different programs [8]. The speed advantage of using more 

threads than CPU cores available was confirmed with benchmarks.  

 

2.3.3. Similarity score evaluation 

QCEIMS generated several outputs and logging files, including the in-silico mass spectrum in 

JCAMP exchange format (*.jdx), structures of fragments (*.xyz) and molecular dynamics 

trajectories (*.xyz). We then used experimental mass spectra from the NIST17 database as 

references to compare with our computational results. In GC-MS, mass spectral similarity scores 

(0 to 1000) describe how well experimental spectra match recorded library spectra 22-23. Here we 

used the same principle for QCEIMS-generated spectra as input. Similarity scores below 500 are 

usually not considered for annotation of compounds. While similarity scores above 700 may 

represent true matches, only scores above 850 are regularly used for direct compound 

identifications in GC-MS experiments 24. Here we used two different kinds of similarity scores 

(see equations 1-3): 

 

𝐶𝑜𝑠 =  √
(𝛴𝐼𝑈𝐼𝐿)2

𝛴𝐼2
𝐿

 
𝛴𝐼2

𝑈
                                                                   (1) 

 

𝐷𝑜𝑡 = √
(𝛴𝑊𝑈𝑊𝐿)2

𝛴𝑊2
𝐿

 
𝛴𝑊2

𝑈
                                                                  (2) 

 

𝑊 = [𝑃𝑒𝑎𝑘 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦]𝑚[𝑀𝑎𝑠𝑠]𝑛                                                                (3) 
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We wrote a Python (v3.6) script to read mass spectra and analyze the similarity by (a) cosine 

similarity (Cos, eq 1) (b) weighted dot-product similarity (Dot, eq 2); with the test data, we set the 

parameters as m=0.6 and n=3. Our method calculates very similar values as implemented in the 

NIST MS Search program (see Supporting Information). To validate some of our simulations, we 

also used MassFrontier 7.0 7 to generate fragmentation pathways and compared them with the 

mechanisms found from our trajectories. MassFrontier can predict fragmentation pathways from 

general fragmentation rules and mechanisms recorded in its literature database.  

 

2.3.4. Flexibility analysis  

To describe molecular flexibility, we used two molecular descriptors: the number of rotatable 

bonds (RBN) 25 and Kier flexibility index (PHI) 26. The RBN is the number of bonds for which 

rotation around themselves is expected to be associated with low (< 5 kcal/mol) barriers, excluding 

ring bonds and amide bonds. The Kier flexibility index is a structure-based property calculated 

from atom numbers, rings, branches and covalent radii. With fewer rotatable bonds and lower Kier 

flexibility index, the molecule has less conformational flexibility. The software AlvaDesc 27 

(v1.0.8) is utilized to compute these properties. We used both Microsoft EXCEL for Mac and 

Matplotlib (v3.1.1) to analyze and visualize the data. 
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2.4. Results  

2.4.1. Comparison of in-silico and experimental spectra of example molecules 

Following the general workflow, we first tested the QCEIMS software on two trajectories for a 

simple molecule, 3-cyclobutene-1,2-dione (Figure 2-2). The observed fragment ions yielded an 

excellent weighted dot-product similarity score of 972 and a cosine similarity of 839. When 

analyzing the trajectories to show the fragmentation pathways, we found clear evidence of the 

mechanisms by which the three main product ions observed in the experimental mass spectrum 

were produced (m/z 82, 54, 26), i.e., molecular ion, a neutral loss of carbon monoxide [M-CO]+ 

and loss of another carbon monoxide to yield [M-2CO]+ (Figure 2-2). Trajectory 2 lasted only 402 

fs until the maximum of three fragments per trajectory was achieved (set in the QCEIMS source 

code), while trajectory 1 lasted 656 fs, because the initial two fragments reached a stable state and 

did not fragment further for a long time. The QCEIMS predictions also agreed with mechanisms 

predicted by the heuristic rule-based commercial MassFrontier software, showing first an α-

cleavage followed by a CO molecule loss. This simple example shows that QCEIMS can generate 

correct molecular fragments and predict reasonable reaction mechanisms.  
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Figure 2-2. Example for correctly predicting experimental EI mass spectra through molecular dynamics.  

(a) Fragmentation trajectories of 3-cyclobutene-1,2-dione to generating EI fragment m/z 54 (upper panel) 

and m/z 26 (lower panel) (b) Quantum chemistry molecular dynamics in-silico spectrum (upper panel) 

versus experimental mass spectrum (lower panel 

 

Here we show six molecules (Figure 2-3 a-f) as examples for QCEIMS predicted spectra versus 

experimental library spectra (Table 1). These examples demonstrate that QCEIMS yields different 

prediction accuracies. The examples also show different degrees of molecular flexibility. For each 

molecule, spectra showed specific characteristics that are here explained in brief. 
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Table 2-1 Mass spectral similarities of QCEIMS simulations against experimental spectra for select 

compounds  

Name InChIKey (short)* M.W.** RBN PHI Dot Cos 

2,4-Dimethyl-oxetane KPPWZEMUMPFHEX 86.07 2 2.64 414 729 

2-Nonene IICQZTQZQSBHBY 126.27 5 7.52 789 762 

2-Propynyloxy Benzene AIQRJSXKXVZCJO 132.06 0 1.17 379 426 

Furan YLQBMQCUIZJEEH 68.08 0 0.55 988 806 

1,8-Nonadiene VJHGSLHHMIELQD 124.25 6 7.05 163 713 

Adamantane ORILYTVJVMAKLC 136.13 0 1.18 883 678 

* first 14-characters of full InChIKey; **M.W. is the molecular weight in Daltons (Da); RBN (rotatable bond number) and PHI 

(Kier flexibility index) are rigidity descriptors and Dot and Cos are mass spectral similarity scores. 

 

2,4-dimethyl-oxetane (Figure 3a): With a weighted dot-product score of 417, this spectrum 

represents a low-quality in-silico prediction. We need to clarify that, for simplicity, we only 

calculated the spectrum of cis-2,4-dimethyl-oxetane, while its reference spectrum in NIST 17 mass 

spectral library contains no stereochemistry information because neither EI-MS nor 

chromatography technology can easily differentiate diastereomers. The experimental spectrum 

showed a low-intensity [M]˙+ at m/z 86 and initial neutral losses of a methyl-group and water (m/z 

71 and m/z 68). QCEIMS did not predict these initial losses. Indeed, the high number of 

experimental fragment ions suggest that this molecule splits readily along multiple reaction 
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pathways, most likely through breaking the molecular ether-bonds that subsequently break into 

smaller fragments. The main fragment ions at m/z 42 and m/z 44 were correctly predicted by 

QCEIMS as C3H6
+ and C2H4O

+ but not by the rule-based software MassFrontier. This case 

suggests that quantum mechanics-based simulations can produce novel reaction pathways that are 

absent from rule-base software predictions.  

 

2-Nonene (Figure 3b): The in-silico spectrum of 2-nonene was highly similar to the experimental 

spectrum with dot-product match of 789. The main fragment ion at m/z 55 and the [M]˙+ at m/z 

126 were very well reproduced. However, ion abundances of [M-1]+, [M-2] +, [M-3] + and [M-4] + 

were overestimated. In QCEIMS, these ions resulted from loss of several atomic or molecular 

hydrogens, suggesting that these bonds were fragmented more easily under semiempirical methods 

23 than under experimental conditions. 

 

Aromatic systems (Figure 3c and 3d): Both 2-propynyloxy benzene and furan were aromatic 

oxygen-containing molecules with low PHI values (1.71 and 0.55, respectively). Although the 

presence of most fragment ions was correctly predicted by QCEIMS for both molecules, dot-

product similarity scores were radically different with a dot-product of 379 for 2-propynyloxy 

benzene and a dot-product similarity of 988 for furan). For 2-propynyloxy benzene, this low 

matching score was caused by the absence of an experimental [M]˙+ at m/z 132 that was largely 

overestimated in the in-silico spectrum. The fragmentation base ion (at 100% intensity) at m/z 93 

represents the stable phenol ion and a neutral loss of C3H3, while the experimentally observed 

fragment at m/z 95 was missed in the QCEIMS prediction. At the same time, the presence of the 

C3H3
+

 product ion at m/z 39 (and a neutral loss of a phenol moiety) was overestimated by the 



24 
 

QCEIMS method. This result suggests that the QCEIMS method needs further optimization in 

predicting the correct assignment of cation stability and assignment of the molecule with the lowest 

ionization energy in the fragmentation process (Stevenson’s rule 28). 

 

1,8-nonadiene (Figure 3e): For this molecule, a great disagreement between the cosine similarity 

score of 713 and the weighted dot-product of 163 was observed. The weighted dot-product 

emphasizes high m/z ions that are penalized if missing in spectral matching. Again, QCEIMS 

overestimated the abundance of the molecular ion [M]˙+ and of several atomic or molecular 

hydrogens from it. In addition, QCEIMS underestimated a neutral methyl loss (to m/z 109) and a 

neutral loss of ethylene (to m/z 96). To capture all potential fragmentations in QCEIMS such as 

the missed ethylene loss, more accurate PES estimates are needed.   

 

Adamantane (Figure 3f): Adamantane is a well-known inflexible molecule. Our QCIEMS 

simulations correctly predicted the structure of the m/z 79 product ion as protonated benzene, 

proved by an independent publication of an infrared multiphoton dissociation spectrum 29 and DFT 

computations 30. In comparison, the rule-based MassFrontier generated less reasonable fragment 

molecules that included cyclopropyl-moieties. The QCEIMS results showed that the m/z 93 

product ion is likely associated with both ortho- and para-protonated toluene, in accordance with 

infrared multiphoton dissociation spectrum results 29. These instances highlight the ability of 

QCEIMS to predict non-obvious mechanisms, such as rearrangements from sp3 hybrid carbons to 

aromatic system. 
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Figure 2-3. Examples for comparing experimental 70 eV EI mass spectra (lower panels) to QCEIMS in-

silico mass spectra (upper panels) for six small molecules.  

 

2.4.2. Probing the QCEIMS parameter space 

A number of parameters can be chosen in the QCEIMS software, including the number of 

trajectories, impact excess energy per atom and initial temperatures. Other parameters such as the 

type of energy distribution and maximum MD time were excluded because they were already 
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optimized during the development of QCEIMS 8. We used OM2 because other semiempirical 

methods had been shown previously to perform worse 8. For each molecule we chose one 

conformer and performed QCEIMS simulations with different parameter settings. By repeating 

QCEIMS simulations 50 times, we confirmed that identical mass spectra were obtained when 

using the same conformer under the same parameter settings. We changed parameter settings for 

2,4-dimethyl-oxetane, 2-nonene and adamantane.  

 

(1) Number of trajectories (ntraj) 

In molecular dynamics, different reaction trajectories must be explored to cover possible routes of 

independent fragmentations across the energy surface. Each trajectory requires computational time, 

and therefore, the number of trajectories should be as low as possible. However, it is not clear a 

priori how many trajectories sufficiently cover the chemical reaction space and allow convergence 

to a consensus spectrum. By default, the QCEIMS program automatically calculates the number 

of trajectories by multiplying the number of atoms by 25. We explored this default value ranging 

from 8 to 1000 trajectories per atom for the different molecules, yielding up to 15,000 trajectories 

in total (Figure 2-4a). For each of the three molecules, the difference between the best and the 

worst similarity score differed only by 10% or less. None of the three molecules had improved 

similarity scores with higher number of trajectories. Indeed, it appeared that increasing the number 

of trajectories might lead to slightly lower dot-product similarity scores as observed for 2-nonene 

and adamantane, possibly due to a higher contribution of rare fragmentation reactions that lead to 

low abundant fragment ions that negatively impact similarity to experimental spectra. We 

concluded that the default value of 25 trajectories per atom number in a molecule was reasonable.  
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(2) Impact excess energy per atom (ieeatm) 

Next, we tested the impact excess energy (IEE) that is introduced by the colliding electron in 

electron ionization as vibrational energy into the molecules. The default value (ieeatm) in 

QCEIMS software is set at 0.6 eV per atom on the basis of previous OM2 tests 31. At the beginning 

of each molecular dynamics simulation the molecule is heated by increasing the atom velocities 

until the impact excess energy is converted to kinetic energy that leads to bond fragmentation. In 

other words, the collision energy is used to vibrationally excite and break the molecule. Higher 

impact excess energy will lead to a higher kinetic energy, causing the molecule to fragment more 

easily and to decrease the intensity of molecular ions. We observed that QCEIMS-simulated mass 

spectra contained fewer fragment ions than their experimental references. For example, the 

experimental spectrum of 2,4-dimethyl-oxetane (Figure 3a) has 23 product ions, while our 

QCEIMS simulation produced only four fragment ions plus the molecular ion peak m/z 86. We 

probed different internal excess energies from 0.2 to 0.8 eV (Figure 4b). With increasing IEE, 

more fragmentation occurs, increasing the intensity of low mass fragments, but we did not see an 

increase in the total number of fragments produced. Because the weighted dot-product score gives 

more weight to the more selective masses found at high m/z ranges, we found that higher IEE 

values led to decreasing similarity scores. In short, changing ieeatm did not provide a route to 

improve QCEIMS spectra and we kept the default value of 0.6 eV for subsequent tests.  

 

(3) Initial temperature (tinit) 

Last, we investigated the effect of temperature settings ranging from initial temperatures (tinit) of 

300 to 1000 K, while keeping all other parameters at default values (Figure 4c).  For 2-nonene and 

adamantane we found that the initial temperatures led to decreasing similarity scores, consistent 
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with the concept that molecules under higher temperature will have more kinetic energy and tend 

to fragment more easily. For QCEIMS simulations, 2,4-dimethyl-oxetane generated the molecular 

ion m/z 86 only at low tinit of 300 K, leading to an artificially higher similarity score. As the other 

two tested molecules also showed their best spectrum similarities at tinit 300K, we chose this 

parameter value for a final test that utilized a combination of each best setting of ieeatm, ntraj and 

tinit for each molecule. Interestingly, these simulations did not lead to significant improvements 

or even to overall decreased similarity scores (see Supporting Information). Therefore, we kept the 

overall default parameter values for subsequent studies.  

 

Figure 2-4. Impact of QCEIMS parameter settings on MS similarity scores comparing in-silico spectra to 

experimental spectra. Left panel: altering the number of trajectories (ntraj). Mid panel: altering the external 

energy per atom (ieeatm).  Right panel: altering the initial temperature (tinit). 

 

2.4.3. Different starting conformers as input for QCEIMS  

Local minima on the potential energy surface that are related by rotations around single bonds are 

called conformational isomers, or conformers. In a mass spectrometer, the conformations of a large 

cohort of individual chemical molecules are distributed in accord with a Boltzmann distribution at 

a given ion source temperature. All conformers contribute to the final mass spectrum, to varying 

degrees related to their relative energies. Ideally, QCEIMS should cover the overall ensemble of 
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conformers. To investigate the impact of the input conformers on the overall QCEIMS results, we 

selected the highly flexible 2-nonene (PHI=7.51, RBN=5) and the non-flexible adamantane 

(PHI=1.17, RBN=0) structures. We employed the GMMX software with the Merck Molecular 

Force Field (MMFF94) to generate starting conformers for individual QCEIMS simulations. For 

99 simulations with different starting conformers of 2-nonene, the maximum difference between 

the lowest-energy and the highest-energy conformer was 2.83 kcal/mol (Figure 2-5a). For these 

conformers, dot-product similarity scores ranged from 719 to 824, with a median of 781 and a 

standard deviation of 24 (Figure 5b). Due to the rigid skeleton and inflexibility of adamantane, 

GMMX provided only one conformer. Therefore, we used the open source molecular dynamics 

package CP2K 32 to generate 50 adamantane structures with twisted or stretched bonds that yielded 

an overall energy range of 5.39 kcal/mol (Figure 5c). Dot-product similarity scores ranged from 

849 to 948, with a median similarity of 923 and a standard deviation of 31 (Figure 5d). The 

examples of these very different molecules showed that QCEIMS similarity scores were 

independent from input conformer energies (Figure 5a, 5c). Yet, these examples also showed that 

for both molecules, the QCEIMS fragmentation of specific conformers can lead to quite different 

dot-product similarities compared to experimental mass spectra, ranging over 100 similarity score 

units. In addition, we found that dot-product similarities were not normally distributed (Figure 5b, 

5d). Our results showed that conformational and other small structural changes may affect 

QCEIMS simulations. Although adamantane has only a single conformational energy minimum, 

even slight bond stretches or twists led to quite different mass spectral similarity scores, 

presumably by biasing molecular dynamics trajectories toward different regions of the potential 

energy surface. While the QCEIMS software automatically chooses energy-optimized conformers, 
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we propose that a range of different conformers must be calculated to get a good estimate of 

average mass spectra across the conformational space.  

 

Figure 2-5. Impact of using different starting conformational isomers on MS similarity scores comparing 

in-silico spectra to experimental spectra. Each conformer has a specific single-point electronic energy.  

Upper panels: 2-nonene conformers yielding dot-product MS similarity scores with histogram of the 

simulation results. Lower panels: adamantane conformers yielding dot-product MS similarity scores with 

histogram of the simulation results. 
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2.4.4. Large scale QCEIMS prediction of small molecule fragmentations 

In order to be useful for experimental mass spectrometry, in-silico predictions must not only 

correctly explain fragmentation and rearrangement reactions for specific molecules but must also 

be scalable to generate spectra for hundreds, if not thousands of molecules. Here, we demonstrate 

the scalability of QCEIMS predictions for small molecules to systematically evaluate parameters 

and overall accuracies.  

 

The OM2 method only supports carbon, hydrogen, nitrogen, oxygen and fluorine. We therefore 

chose 451 low molecular weight compounds containing only carbon, hydrogen, nitrogen and 

oxygen (CHNO). Molecular masses ranged from 26 to 368 Da with an average mass of 129 Da 

(see Supporting Information). For OM2, computational effort scales as O(N2) ~ O(N3) 33, with N 

as number of atoms per molecule 33. The number of single point energy calculations can be 

estimated to be linearly related to the number of trajectories, and thus linear to the number of atoms. 

On our computer system with 66 CPU threads, we achieved an average calculation time of 1.55 h 

per molecule (Figure 2-6a). Yet, as expected, calculation times exponentially increased with the 

number of atoms per molecule. For example, with more than 50 atoms, calculation times exceeded 

14 hours on the system we had employed (Figure 6a). 

 

Overall, the QCEIMS calculations across all 451 molecules yielded moderately accurate weighted-

dot product similarity scores with an average of 608 (Figure 6b). Similarity scores below 500 are 

usually not considered for annotation of compounds. While similarity scores above 700 may 

represent true matches, only scores above 850 are regularly used for direct compound 

identifications in GC-MS experiments 24. 47% of all molecules showed good dot-product match 

factors >700 and 20% of the molecules had excellent scores at >850 similarity. In comparison, 
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lower cosine similarity scores were achieved with an average mass spectral similarity of 557 and 

a much higher proportion of unacceptably low scoring spectra at similarities <500 (Figure 6b).  

The regular cosine similarity score does not use weight functions for specific m/z values, unlike 

the weighted dot product score introduced in 1994 22 that gives more weight to more specific high 

m/z product ions in MS fragmentation compared to less specific low m/z fragmentations based on 

large GC-MS library evaluations. Here, we see a similar trend for QCEIMS spectra.  At this time, 

the Dot product score is recommended to use. The spectra with similarities < 500 is not 

recommended for matching, but the base peak or molecular ion peak can still provide useful 

structural information. In order to better apply the QCEIMS generated spectra in spectral matching 

purpose, a manual validation is required for each hit, regarding to the relative intensity and peak 

number. Additionally, a higher prediction accuracy is needed and the way to improve the accuracy 

has been discussed here. The related attempt is in progress in our lab. 

 

Figure 2-6. (a) Processing time of QCEIMS simulations of all 451 molecules versus the number of atoms 

per molecule. Red trend line: fitted exponential functions. (b) Histogram of weighted dot-product MS 

similarity scores against experimental spectra for all 451 molecules versus simple cosine similarity matches. 
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2.4.5. Molecular descriptors and prediction accuracy 

Next, we tested the impact of the chemical structures themselves. We used ClassyFire 34 to classify 

all 451 chemicals into superclasses. We found QCEIMS predictions were significantly worse when 

comparing the organic oxygen superclass of 75 compounds against other superclasses with more 

than 50 members. Organic oxygen compounds had an average weighted dot-product of 520 

whereas the 128 organoheterocyclic compounds achieved significantly better similarities of 648 

at p<0.0015. The 100 organic nitrogen compounds yielded an average dot-product similarity of 

657 at p<0.001 and the 62 hydrocarbons gave an average of dot-product similarity of 692 at 

p<0.0001. In conclusion, the QCEIMS method appears to perform worse for oxygen-containing 

organic compounds than for other major classes. For superclasses with fewer than 50 compounds, 

statistical tests were deemed to be not robust enough to allow such conclusions.  

 

We also tested if rigid molecules resulted in better prediction accuracy than more flexible ones. 

Our hypothesis was based on an initial observation that for planar aromatic compounds such as 

pyridine or aniline, QCEIMS created better quality spectra than for molecules with long chain 

flexible structures. Our compound data set contained 295 molecules with low flexibility at Kier 

flexibility index (PHI) < 5 and 161 molecules with high flexibility of PHI > 6. Dot product scores 

varied significantly across both high-flexibility and low-flexibility molecules (Figure 2-7a). We 

found no relationship between flexibility and prediction accuracy. Similarly, we tested rotatable 

bond number (RBN) as a potential cause for prediction errors (Figure 7b). The median scores for 

molecules with different RBN values varied between 200-800 and did not depend on increasing 

RBN. This finding suggests that prediction accuracy is independent of the number of rotatable 

bonds. In conclusion, we could not find a correlation between flexibility and prediction accuracy 

at the level of simulation employed. 
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Figure 2-7. Impact of molecular flexibilities on MS similarity scores comparing in-silico spectra to 

experimental spectra.  Influence of molecular flexibility. (a) scatter point plot of dot-product scores versus 

Kier flexibility index PHI; (b) boxplot of dot-product scores versus rotational bond number RBN 

2.5. Conclusions 

We here show that quantum chemistry calculations can be effectively used to correctly predict 

electron ionization fragmentation mass spectra as used in GC/MS analyses worldwide. Using 

QCEIMS software, mechanisms of fragmentation confirmed classic fragmentation rules. However, 

we found large differences in accuracy of predictions for different molecules. Changing parameters 

in QCEIMS was not a viable method to improve simulation results. Likely, capturing the potential 

energy surface accurately or even conducting the excited-state molecular dynamics 35-36 can be the 

key to further improving EI-MS prediction. For the first time, QCEIMS simulation was tested on 

hundreds of small molecules with limited computational resources within one month. We found 

that the superclass of organooxygen compounds performed much worse than organoheterocyclic 

compounds, hydrocarbons or organic nitrogen compounds. This observation may lead to future 
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improvements in QCEIMS software as well as further inclusion of other heteroatoms in QCEIMS 

simulations.  
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Chapter 3: Quantum chemical prediction of electron ionization 

mass spectra of trimethylsilylated metabolites 

3.1. Abstract 

Chemical derivatization, especially silylation, is widely used in gas chromatography coupled to 

mass spectrometry (GC-MS). By introducing the trimethylsilyl (TMS) group to substitute active 

hydrogens in the molecule, thermostable volatile compounds are created that can be easily 

analyzed. While large GC-MS libraries are available, the number of spectra for TMS-derivatized 

compounds is comparatively small. In addition, many metabolites cannot be purchased to produce 

authentic library spectra. Therefore, computationally generated in silico mass spectral databases 

need to take TMS derivatizations into account for metabolomics. The quantum chemistry method 

QCEIMS is an automatic method to generate electron ionization (EI) mass spectra directly from 

compound structures. To evaluate the performance of the QCEIMS method for TMS-derivatized 

compounds, we chose 816 trimethylsilyl derivatives of organic acids, alcohols, amides, amines 

and thiols to compare in-silico generated spectra against the experimental EI mass spectra from 

the NIST17 library. Overall, in-silico spectra showed a weighted dot-score similarity (1000 is 

maximum) of 635 compared to the NIST17 experimental spectra. Aromatic compounds yielded a 

better prediction accuracy with an average similarity score of 808, while oxygen-containing 

molecules showed lower accuracy with only an average score of 609. Such similarity scores are 

useful for annotation of small molecules in untargeted GC-MS based metabolomics, suggesting 

that QCEIMS methods can be extended to compounds that are not present in experimental 

databases. Despite this overall success, 37% of all experimentally observed ions were not found 
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in QCEIMS predictions. We investigated QCEIMS trajectories in detail and found missed 

fragmentations in specific rearrangement reactions. Such findings open the way forward for future 

improvements to the QCEIMS software. 

3.2. Introduction 

Gas chromatography coupled to mass spectrometry (GC-MS) requires volatile compounds for 

analysis. The generation of volatile derivatives from polar or thermo-labile compounds using 

silylation derivatization reactions is still the first choice for many modern applications.1 The most 

common reagents for such applications are MSTFA (N-methyl-N-(trimethylsilyl) 

trifluoroacetamide), TMCS (trimethylchlorosilane), BSA (N,O-bis(trimethylsilyl)acetamide) and 

BSTFA (N,O-bis(trimethylsilyl) trifluoroacetamide).2 Reactive functional groups that can be 

silylated with these reagents under mild conditions include alcohols, aldehydes, carboxylic acids, 

amines, amides, thiols, and inorganic acids. 2 

Silylation is used in many applications including medical investigations, metabolic profiling, 

toxicological screening, and environmental research.3-4 All these approaches use mass spectral 

library matching for compound annotations and identifications. An experimental spectrum is 

compared against a reference spectrum in a database. The reference spectra were obtained from 

authentic reference compounds that underwent silylation reactions. 

Licensed libraries such as Wiley or NIST205 contain around 5,000 TMS derivatives. Smaller TMS 

libraries for GC-MS4, 6-7 are also freely available in MassBank of North America (MassBank.us), 

including retention indices that are used to improve automatic compound annotations. However, 

these libraries contain less than 3000 compounds combined, which is in stark contrast to the 

estimated 300,000 known natural products8 and the more than 12 million commercially available 
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compounds of more than 100 million known structures in PubChem. Furthermore, many silylation 

reactions are incomplete. While hydroxyls, thiols and carboxylic acid moieties are always 

completely derivatized, primary and secondary amines may be not be exhaustively derivatized.9  

Even with softer chemical ionization and accurate mass GC-MS, it is very difficult to elucidate the 

structures of unknown compounds.10 To increase the size of available EI-MS libraries, mass 

spectra can be predicted in silico from molecular structures.11 While machine learning models have 

been used to model TMS compound spectra, accuracy in EI-MS predictions was found to be 

lacking.12-13 EI-MS spectra also can be predicted from first principles by quantum chemical 

modeling using QCEIMS14-17 with the semi-empirical GFNn-xTB18-20 method. Recent work 

showed that in-silico spectra generated by QCEIMS can help structure elucidation and identify 

unknowns.21 However, these methods have not been tested so far on TMS-derivatized molecules. 

We here present data testing the performance of QCEIMS to generate theoretical mass spectra for 

a diverse set of compound classes using 816 TMS derivatized compounds.  

3.3. Methods 

3.3.1. Parallel fragmentation prediction  

To test the general performance of QCEIMS for TMS-derivatized compounds (Figure 3-1), 816 

molecules with TMS groups at <700 Da were selected from the NIST17 mass spectral database. 

While we used mono-TMS compounds to test the impact of TMS-derivatives on different 

compound classes, we also calculated nine doubly (2TMS) and nine triply (3TMS) silylated 

derivatives to demonstrate the extensibility of the QCEIMS method. Starting with the IUPAC 

International Chemical Identifier (InChI), we generated 3-D structures with the Merck Molecular 

Force Field (MMFF9422) and saved them in mol (*.mol) and TurboMole format (*.tmol) using 
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OpenBabel (v2.3.90).23 We then used QCEIMS (v4.0) to generate in silico mass spectra, for which 

a new version QCxMS24 including an EI-MS prediction module has recently been released at 

https://github.com/qcxms/QCxMS. Default settings for QCEIMS were used, with GFN1-xTB18 

used for force/energy calculations and IPEA parameters used for ionization potential (IP) 

calculations. The CYLview25 program was used to visualize compound structures. 

 

Figure 3-2. QCEIMS workflow of TMS derivatives: 1) substituting the active hydrogen of test molecules 

with trimethylsilyl groups; 2) generating 3D structures and initial conditions for QCEIMS; 3) parallel 

simulation to get fragments and in silico spectra 

 

3.3.2. Substructure compound classification 

Chemical compounds can be classified by substructure analysis into many different classes.26 To 

evaluate the simulation accuracy on different compound classes, we here used the -position of 

heteroatoms next to the silicon in TMS-groups to classify compounds. For example, if the -

heteroatom belonged to a carboxyl substructure, such compounds were annotated as acid, 

regardless which other functional groups were present in the molecule. A python script based on 

( ) ( ) ( )
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RDKit27 was used to classify molecules into five main compound classes: alcohols, acids, amines, 

amides and thiols. A detailed classification tree is presented in Scheme S1. 

3.3.3. In silico accurate mass spectra 

The QCEIMS program currently generates integer mass-to-charge ratio. One advantage of using 

quantum chemistry for MS simulations is that the type and frequency of molecule fragments are 

counted, while element and isotopic masses are computed. Therefore, we programmed an 

extension to the QCEIMS program that also incorporates accurate isotopic masses for elemental 

compositions (Supporting Information, Zenodo repository). Such accurate-mass in silico spectra 

are important when using high-resolution GC-MS instruments, which are increasingly used during 

structure elucidation of unknown compounds detected by GC-MS.10, 28 

3.3.4. In-silico mass spectrum annotation  

Experimental mass spectra in the NIST17 database were used as the true positive examples to 

evaluate the accuracy of in silico spectra generated by the QCEIMS process. Cosine similarity 

scores and modified dot-product scores were used for spectra comparison.11  

𝐷𝑜𝑡 = √
(𝛴𝑊𝐼𝑊𝐸)2

𝛴𝑊2
𝐼

 
𝛴𝑊2

𝐸
                (1) 

𝑊 = [𝑃𝑒𝑎𝑘 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦]0.5[𝑀𝑎𝑠𝑠]3   (2) 

Where W is the mass-weighted peak intensity, the subscript I denotes the in-silico intensity and E 

denotes the experimental intensity. 

MassFrontier 7.029 was utilized to help annotate m/z peak and neutral losses for all 70 eV mass 

spectra.  
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3.3.5. Accurate mass GC-MS analysis 

Accurate mass spectra were acquired on an Agilent 7890A GC system with Agilent 7200 Accurate 

Mass Quadrupole Time-of-Flight(Q-TOF) mass spectrometer system (Agilent Technologies, 

Santa Clara, CA, U.S.A.). Chemicals were derivatized with 10 L of methoxyamine hydrochloride 

in pyridine (20 mg/ml) to protect aldehyde- or ketone- groups, and then trimethylsilylated to 

increase volatility by 90 L N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA). Previously 

published gas chromatographic conditions were used.30 Mass spectra were obtained from m/z 50 

to 800 at a 5 Hz scan rate in electron ionization mode with electron energy of 70 eV.  

3.4. Results and Discussion 

3.4.1. Trajectory analysis of in-silico predictions of fragmentations in electron 

ionization spectra 

One advantage of first-principles simulation is that we can follow molecular dynamics (MD) 

trajectories during the fragmentation reactions. In this way, we can annotate observed m/z fragment 

ions with fragmentation substructures that provide insights into reaction mechanisms.31-32 A 

selection of representative head-to-tail mass spectral comparisons including MD trajectories are 

given in the Supplemental Information (Figure S1-S8). Experimental mass spectra represent the 

likelihood and frequency of many stochastic fragmentation events. Therefore, many trajectories 

are combined into simulated spectra when using QCEIMS. We first exemplify this principle on 

few typical mass spectra from different compound classes. As example of an aliphatic acid, the 

head-to-tail comparison of the QCEIMS-predicted fragmentation of O-trimethylsilyl-leucine to the 

experimental NIST17 library spectrum (Figure 3-2) shows that many experimental observed ions 
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were indeed correctly predicted by simulation. However, the ion intensities were often found to be 

different between predicted and experimental spectra, yielding a low dot-score MS similarity. For 

example, the [M-15]+ fragment ion m/z 188 was predicted at 70% of base peak abundance, 

compared to the experimentally found 26% abundance. Similarly, the [M-89]+ fragment ion at m/z 

114 was predicted at 14% abundance compared to an experimental 2% abundance. Such 

disagreements in ion relative abundances heavily distort dot-score similarity calculations. We 

therefore set out to better understand the QCEIMS trajectories that led to ion formation. Relative 

abundances are determined by the prevalence of trajectories leading to specific fragments.  

QCEIMS spectra account for all charged fragments from all trajectories. We used 25 trajectories 

per atom for each molecule, guided by the idea that large molecules may have more options of 

fragmentations than smaller ones 14. For example, the simulation of leucine-OTMS with 34 atoms 

accumulated a total of 850 trajectories. 27 trajectories resulted in the formation of the [M-89]+ 

fragment ion (m/z 114 in Figure 2) with an average trajectory length of 900 fs and a median 

trajectory length of 857 fs. The QCEIMS method predicted two fragmentation pathways: (1) in 24 

trajectories, a loss of ∙CH3 was followed by a loss of OSi(CH3)2 (Figure 2a, 2b) and (2) in three 

trajectories, a loss of a TMSO∙ radical was found (Figure 2c). For calculating the relative 

abundance of ions in QCEIMS spectra, the stability of ions is estimated by comparing the statistical 

charge of fragment to their ionization potentials, which is weighted by the Boltzmann distribution. 

Because of this weighting method, the same [M-89]+ fragment ion in pathway (1) and (2) shows 

an extremely different statistical charge. The statistical charge for the 27 trajectories in pathway 

(1) is almost +1 while the three trajectories of pathway (2) have an average statistical charge of 

0.04. In addition, we considered the impact excess energy (IEE), which denotes the residual energy 

introduced by the electron impact after ionizing the neutral molecule. For the 27 trajectories that 
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generated the [M-89]+  fragment ion, an average IEE of 25 eV was found. In contrary, for the 48 

trajectories that stopped after loss of a methyl-group, an average IEE of 16 eV was found. This 

lower IEE thus led trajectories to remain at [M-15]+ fragment ions without subsequent secondary 

fragmentations. We also found that [M-15]+ fragmentations were exclusively associated with 

methyl-losses from the TMS-group, but not from the branched leucine carbon backbone.  For the 

predicted [M-15]+ fragment ion, an average trajectory length of 1625 fs and median trajectory of 

1066 fs was found. In comparison, therefore, the [M-89]+ fragment will be formed faster, but only 

under conditions that lead to higher impact excess energy.  
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Figure 3-3. Fragmentation of leucine-OTMS modeled by QCEIMS compared to the experimental mass 

spectrum from the NIST17 mass spectral library. Lower panel: alternative fragmentation mechanisms (a-c) 

as detailed by QCEIMS trajectories. https://mona.fiehnlab.ucdavis.edu/spectra/display/MoNA040855 

 

 

Figure 3-4. Temporal change of vibrational energy of substructures during the fragmentation of leucine-

OTMS as modeled by QCEIMS for two individual trajectories. Upper panel: Trajectory #494 leading to 

substructure m/z 114 (blue), substructure dimethylsilanone (orange) and substructure methyl-group (grey). 

Inset: reaction intermediate observed at 380 fs. Lower panel: Trajectory #499 leading to substructure m/z 

188 leucine-ODMS (light blue) and substructure methyl-group (yellow). 

Previous papers have shown that statistical models purely based on IEE values are insufficient to 

predict experimental mass spectra.33-34 Aside from the IEE, the distribution of energy within a 

molecule may also influence the likelihood of specific fragmentation pathways. We therefore 
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analyzed fragmentation of leucine-OTMS from this perspective. To evaluate the effect of energy 

distributions, we performed an energy partition analysis35 on trajectories #494 and #499, which 

yielded fragment ions m/z 114 ([M-89]+ ion) and m/z 188 ([M-15]+ ion) (Figure 3). Energy 

distribution plots of substructures often show oscillations throughout the trajectories, but the 

timing of fragmentations indeed coincide with the most drastic changes in energy distributions. 

For example, in the trajectory leading to the m/z 188 ion (Figure 3, lower panel), the methyl-

substructure showed significant vibrational energy at 80 fs that led to bond stretching, but the 

actual fragmentation and generation of the methyl radical only appeared at around 240 fs. In 

comparison, for the m/z 114 ([M-89]+ ion trajectory #494, the methyl radical departed at around 

200 fs and, subsequently, a OSi(CH3)2 fragment departed at around 400 fs. At 380 fs, an 

intermediate structure was observed with a four-membered ring (Figure 3, upper panel insert). We 

also separated and validated the transition state structure for the methyl group loss in Figure S12. 

For both trajectories #494 and #499, methyl-substructures showed an increase in vibrational 

energy around 240-280 fs that led to fragmentation reactions. However, in trajectory #499 the 

vibrational energy was distributed within the leucine-ODMS substructure whereas in trajectory 

#494, the vibrational energy was rapidly distributed to the OSi(CH3)2 substructure. After a final 

energy redistribution to the dimethylsilanone substructure at around 420 fs, the loss of a neutral 

OSi(CH3)2 fragment occurred. In conclusion, analyses of QCEIMS trajectories, despite relying on 

the imperfect harmonic oscillator approximation, reveal how the distribution of vibrational energy 

can influence the directions of reactions and explain the prevalence of different reaction pathways.  
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3.4.2. Mass spectral fragmentation rules 

Over decades of interpreting electron ionization mass spectra, characteristic product ions have 

been determined for specific molecular substructures,36 including for trimethlysilylated 

compounds used in metabolomics.28 We therefore investigated if our MD simulations correctly 

predicted such product ions. Here we provide detailed information on fragmentation for two 

molecules, with additional examples given for other compound classes in Figure S9. The aromatic 

acid trimethylsilyl-4-methoxybenzoate (Figure 4) was predicted to form the molecular radical ion 

in a higher abundance than experimentally observed. For aromatic acids and their derivatives, five 

product ions have been described as characteristic fragments.28 Among these, the [M-CH3]
+ and 

[M-OTMS]+ neutral losses were accurately predicted with QCEIMS simulations (Figure 4b). The 

m/z 194 ion could be produced in two different ways, either as secondary methyl loss from a m/z 

209 ion leading to a m/z 194.039 radical cation that was also found when we analyzed this molecule 

using accurate mass GC-QTOF MS (Figure S9), but not the alternative m/z 194.076 ion that would 

have resulted from a neutral loss of O=CH2 from the 4-methoxy-group. Similarly, the m/z 135.045 

ion was correctly predicted by QCEIMS to arise from a neutral loss of TMSO*, and not as an 

alternative product with m/z 135.024 (C8H11Si) that would have been formed by a literature-

described four-membered ring rearrangement (Figure 4b).37 These examples show that QCEIMS 

can produce mechanistic predictions that were experimentally verified by accurate mass GC-

QTOF MS measurements.  

However, the neutral loss of CO2 from a m/z 209 species to form a m/z 165.073 fragment (Figure 

4c) via a four-membered ring arrangement was not correctly predicted by QCEIMS. Using the 

rule-based MassFrontier software,30 this ion likely originates from a rearrangement reaction in 

which the silicon is transferred to the benzene ring through a four-membered transition structure 
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with CO2 as leaving group.37 Two arguments may explain this observation. First, high energy 

transition structure itself can only be accessed if a specific initial conformation is formed, similar 

to conformer-defined reactions simulated previously.38 This example demonstrates that QCEIMS 

predictions could be improved by more comprehensive conformer sampling to correctly 

accommodate the probabilities alternative reaction pathways.  Secondly, our simulation time was 

limited to a few picoseconds (10-12 s). Rearrangement reactions in  mass spectrometry may reach 

a time scale of 10-11 ~ 10-6 s 39 which is too long to be simulated by molecular dynamics methods.    

QCEIMS predictions also correctly matched the experimental accurate mass m/z 107.050 for 

[C7H7O]+ leading to distributed positive charge along the aromatic ring (Figure 4d). However, 

several trajectories were also detected that led to other energetically unstable structures through 

ring-opening reactions (Figure 4e). Such trajectories may contribute to incorrect predictions of 

relative ion intensities. We also found that the m/z 77 for the benzyl cation and m/z 92 for C6H4O
+∙ 

were underestimated by the simulation. These two fragments were generated by two continuous 

fragmentations, highlighting the importance of considering multiple step fragmentations and the 

length of simulation times. 
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Figure 3-4. Fragmentation analysis of trimethylsilyl-4-methoxybenzoate as an example of aromatic 

carboxylates. (a) head-to-tail comparison of QCEIMS prediction against the experimental NIST17 library 

spectrum; (b) proposed structures predicted by QCEIMS simulation and validated by accurate mass GC-

QTOF MS measurements; (c) proposed structure of experimentally found rearrangement product m/z 165; 

(d) proposed aromatic structure for fragment ion m/z 107 along with a high energy structure predicted by 

QCEIMS trajectories; (e) energetically unstable structures observed; In-silico spectrum available at 

https://mona.fiehnlab.ucdavis.edu/spectra/display/MoNA040747 

In QCEIMS predictions for primary alcohols, many fragment ions correctly matched 

experimentally observed ions (Figure 3-5a): m/z 209 for [M-15] +, m/z 103 for TMS-OCH2
+, m/z 

73 for TMS+ ions, and m/z 59 for (CH3)2SiH+.28 The characteristic m/z 73 TMS+ ions are generated 

by Si-O bond dissociations. Errors in predicting ion abundances are likely due to inaccurate 

estimations of the dissociation energies of oxygen-silicon bonds. QCEIMS predicted different 

trajectories that led to two distinct fragment structures for the m/z 194 peak (Figure 5b): 

C11H18OSi+∙ (m/z 194.112) and C10H14O2Si+∙ (m/z 194.076) in an intensity ratio of 1:25. Nine 

trajectories showed a seven-membered ring rearrangement reaction en route to the m/z 

C10H14O2Si+∙ peak (Figure 5c). Both fragment ions were confirmed experimentally by high 
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resolution GC-QTOF MS (Figure S10), albeit with a different relative intensity ratio of 2:9. 

Nevertheless, this observation shows that QCEIMS can correctly predict rearrangement reactions.  

3.4.3. Average accuracy of QCEIMS predictions for different compound classes 

To obtain an overview how accurate the QCEIMS approach is for predicting TMS-derivatized 

mass spectra for different classes of typical metabolites, we calculated spectra for a total of 816 

molecules. All QCEIMS predicted spectra have been uploaded to MassBank.us. Molecules were 

selected by following the frequency distribution of chemical classes in the NIST database. A 

discussion of simulation time can be found in Figure S11. We summarized all structures into five 

major compound classes (Table 1) and subdivided these into aromatic and aliphatic structures by 

the location of the TMS-derivatized heteroatom (Figure S1). We had previously shown for 

QCEIMS predictions of underivatized molecules that mass-weighted dot score similarities were 

better suited than cosine scores for matching predicted to experimental spectra.11 We found the 

same trend for TMS-derivatized compounds here and therefore only present the mass-weighted 

dot score match factors (Table 1). Detailed comparisons for cosine and dot score similarities are 

given for all 816 compounds in Table S1. Across all compound subclasses, dot score similarities 

ranged from 532 to 847 when compared to standard 70 eV spectra in the NIST17 database (Table 

1).  In addition, for 18 example molecules we showed that the QCEIMS approach can be extended 

to 2TMS- and 3TMS-derivatives (Table S2). The nine tested 2TMS-derivatives yielded an average 

dot-product score of 615, whereas the nine tested 3TMS-derivatives only gave an average dot-

product score of 449. Short QCEIMS simulation times may become even more detrimental for 

predicting intramolecular rearrangements for molecules with multiple TMS groups, for example, 

for predicting fragments such as m/z 147 for TMS-diols37.  
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Figure 3-5. Fragmentation analysis of trimethylsilylated 2-methoxyphenylethanol as an example of 

primary alcohols; (a) head-to-tail comparison of QCEIMS prediction against the experimental NIST17 

library spectrum; (b) examples of correctly QCEIMS predicted fragment ions; (c) seven-membered ring 

structure of m/z 194.076     https://mona.fiehnlab.ucdavis.edu/spectra/display/MoNA040546 

 

Table 3-1. Matching 816 QCEIMS theoretical spectra against NIST17 experimental spectra using weighted 

dot-product and Jaccard similarity indices. Averages ± standard deviations are given. 

 

Super-class Subclass Count Dot score Jaccard 

acids total 211 605 ± 183 0.51 ± 0.10 

 aromatic 50 710 ± 123 0.49 ± 0.10 

 aliphatic 161 572 ± 187 0.51 ± 0.10 

alcohols total 443 611 ± 224 0.53 ± 0.13 

 aromatic 117 832 ± 79 0.52 ± 0.15 

 aliphatic 326 532 ± 206 0.53 ± 0.13 

amides total 30 727 ± 152 0.56 ± 0.12 
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 aromatic 14 806 ± 34 0.59 ± 0.11 

 aliphatic 16 658 ± 181 0.52 ± 0.13 

amines total 106 744 ± 186 0.58 ± 0.13 

 aromatic 50 838 ± 95 0.56 ± 0.12 

 aliphatic 56 661 ± 208 0.60 ± 0.13 

thiols total 26 743 ± 186 0.49 ± 0.11 

 aromatic 15 847 ± 31 0.55 ± 0.04 

 aliphatic 11 601 ± 217 0.41 ± 0.11 

 

Two important differences were noted when comparing mass spectral similarity scores between 

experimental and QCEIMS predicted spectra across all compound classes. (1) Most aromatic 

compounds yielded a significantly higher similarity score than corresponding aliphatic compounds 

of the same class, with the exception of aromatic and aliphatic acids, which yielded comparable 

scores. (2) Average mass-weighted dot scores of oxygen-containing compounds (acids, alcohols) 

were significantly lower than other compound classes (amides, amines, thiols).  

When inspecting head-to-tail comparisons of mass spectra (Figures 3-2, 4, 5 and S1-S8), we found 

that spectra with low dot score similarities usually exhibited disagreements in the high m/z peak 

region, especially with respect to the presence and abundance of the molecular ion peak (M+∙). The 

high m/z region is given especially large weight in the weighted dot-score calculation that is used 

in GC-MS analyses,40 and hence, differences in M+∙ abundances heavily contribute to lower scores. 

The radical ion produced for aromatic compounds can be stabilized through π-delocalization which 

leads to high ion intensities for both predicted and experimental spectra, and ultimately a high 

weighted dot-similarity score. When comparing the prediction errors across the different 



56 
 

functional groups (superclasses), it was clearly noted that both alcohols and acids showed a large 

difference in M+∙ abundances between predicted and experimental spectra. In comparison, 

intensities for M+∙ molecular ions were more predictable for thiols and amides, and to some extent, 

also for amines. This finding confirms our previous results for non-silylated compounds that also 

had shown worse matching scores for oxygen-containing molecules compared to molecules 

without oxygen atoms.11  

3.4.4. Relationship of MS-similarity score to QCEIMS spectral predictions  

Overall dot-score similarities are heavily influenced by predicted ion intensities. However, the 

current accuracy of QCEIMS predictions can also be evaluated based on the number of ions that 

were correctly simulated by QCEIMS trajectories, in relation to ions that were predicted but not 

experimentally validated, and ions that were experimentally found but not predicted. This 

evaluation can be mathematically expressed by the Jaccard Index: 

 𝐽(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
   

where A are predicted ions, B are experimental ions, |𝐴 ∩ 𝐵| is the intersection of ions found in 

both predicted and experimental spectra, and |𝐴 ∪ 𝐵| is the complement of both predicted and 

experimental ions. Therefore, the Jaccard index ranges from 0 (if no ion is correctly predicted) to 

1 (if all ions are correctly predicted). Because the generation of ions is an inherently stochastic 

process and as the QCEIMS model used here limited the number of tested trajectories to 25-times 

the number of atoms per molecule, we limited the calculation of Jaccard indices to ions that were 

found at more than 1% intensity of the base peak ions.  

Overall, an average of 53% of all experimental ions were correctly predicted by the QCEIMS 

method for the 816 trimethylsilylated molecules examined (Figure 3-6, Table 3-1), showing that 
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quantum chemistry for electron ionization spectra is both scalable for hundreds of molecules and 

can produce useful true positive rates. Interestingly, the Jaccard index shows that we have on 

average a higher proportion of fragment ions that were experimentally found but not QCEIMS 

predicted than incorrect predictions by QCEIMS that were not experimentally validated (Figure 

6). This observation shows that a range of fragmentation reactions were not located using QCEIMS, 

for example, the rearrangement via a four-membered ring transition structure in Figure 3-5 

(missing ion m/z 165). Other reactions that heavily depend on conformational or electronic states 

are likely undersampled, for example, hydrogen migration reactions. When we investigated the 

degree of Jaccard index accuracy with respect to different substructures, no statistical difference 

was found (Table 1), unlike for overall dot-product similarities. Similarly, when we investigated 

the dependency of dot-score similarities of QCEIMS predicted spectra versus the Jaccard index 

errors, no significant impact was evident for the relative contribution of overpredicted ions or 

underpredicted ions.  
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Figure 3-6. Comparison of 816 compound spectra for QCEIMS prediction versus experimental mass 

spectra. For each spectrum, the Jaccard similarity index was calculated giving three fractions:  the 

intersection of correctly predicted ions (green dots), versus ions only found in experimental spectra 

(underpredicted, orange), or ions only found in QCEIMS predicted spectra (overpredicted, blue).  

3.5. Conclusions 

We presented the first large-scale application of the QCEIMS algorithm on trimethylsilylated 

compounds. We completed calculations for almost twice as many compounds than in a previous 

report on non-derivatized molecules.11 Together, these two studies show that quantum chemistry 
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prediction of mass spectra is now on the verge of being applicable to thousands of compounds, 

with the prospect of being useful for compounds that are not commercially available and not 

present in current MS libraries. On a single CPU thread, calculations took approximately 2.3 hours 

per atom or approximately 7.2 hours on a 16 CPU cluster for a molecule with 50 atoms. Calculation 

times increase quadratically if larger molecules are calculated. Assuming these calculations were 

run on 5000 nodes with molecules that do not exceed 50 atoms, we might be able to calculate 

spectra for 100,000 molecules within 100 days, as long as the size and complexity of molecules is 

similar as presented here. 

To assess the accuracy of such predictions, we analyzed the fragmentation reactions for specific 

molecules and the MS/MS matching scores of QCEIMS predicted spectra across aliphatic and 

aromatic trimethylsilylated compounds. Overall, we found that QCEIMS predictions were most 

accurate for aromatic compounds with nitrogen-heteroatoms than for oxygen-containing aliphatic 

compounds. We also uncovered some challenges for this method. For example, internal vibrational 

energy redistribution appears to impact the selectivity between competitive reactions. While many 

complex rearrangements were correctly predicted, we found that some reactions with four-

membered transition states were missed by QCEIMS trajectory analyses. When calculating the 

Jaccard Index of QCEIMS predicted spectra versus experimental reference spectra, we concluded 

that such missed reactions had more impact on poor MS-similarity scores than over-predicted 

fragment ions. Despite the necessary approximations used in the QCEIMS tool, overall matching 

scores showed that predicted spectra have high enough quality to be useful in mass spectrometry 

research, including identification of unknown compounds in untargeted screens. Future 

advancements in QCEIMS may explore additional conformer sampling and different atom 
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velocities. In addition, we will test excited-state MD simulations to investigate if the inclusion of 

higher energy states may improve predictions in electron ionization mass spectrometry. 38, 41  
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3.7. Supporting Information 

 

 

Scheme S1. Flowchart of compound classification 

 

 

Table S1. Mass spectral similarities of selected compounds in different classes and their cosine and dot-

product similarity scores when compared against experimentally obtained reference mass spectra. 

# Name Dot Cos 

305 trimethylsilyl 2-amino-4-methylpentanoate 373 697 

470a trimethylsilyl 4-methoxybenzoate 729 575 

486a 2-(2-methoxyphenyl) ethoxy-trimethylsilane 571 585 

491 trimethyl-(2-propoxyphenoxy) silane 724 529 
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587 5-pyridin-3-yl-1-trimethylsilylpyrrolidin-2-

one 

517 473 

566 5-methyl-1-trimethylsilylindole-2,3-dione 363 596 

444 1-phenyl-2-(trimethylsilylamino) propan-1-

one 

665 665 

535 1-N-trimethylsilylnaphthalene-1,5-diamine 898 538 

501 trimethyl(2-phenoxyethylsulfanyl) silane 47 454 

648 methyl 2-trimethylsilylsulfanylbenzoate 840 695 

 

a. Discussed in the paper 

 

Table S2. Dot and Cos similarity scores of multi-TMS-derivative compounds 

 

 

NAME TMS  #ATOM ExactMass Dot Cos 

Methylamine, 2TMS derivative 2 31 175.1212 712 458 

Hydroxylamine, 2TMS derivative 2 29 177.1005 746 483 

Formamide, 2TMS derivative 2 30 189.1005 633 428 

Ethanamine, 2TMS derivative 2 34 189.1369 589 513 

Methoxyamine, 2TMS derivative 2 32 191.1161 524 321 

Trimethylsilylpropargyl alcohol, 2TMS 

derivative 
2 32 200.1052 327 136 



68 
 

Allylamine, 2TMS derivative 2 35 201.1369 674 440 

Propylamine, 2TMS derivative 2 37 203.1525 438 299 

1,2-Ethenediol, 2TMS derivative 2 32 204.1001 890 777 

Hydroxylamine, 3TMS derivative 3 41 249.1400 159 336 

Urea, 3TMS derivative 3 44 276.1509 575 151 

Ethanolamine, 3TMS derivative 3 47 277.1713 300 348 

3,4-Bis(trimethylsilyl)-1H-pyrazole, 

3TMS derivative 
3 45 284.1560 660 515 

Glycine, 3TMS derivative 3 46 291.15060 550 290 

 

 

3.7.1. Trajectory analysis 

For example (Figure S1, #305, L-Leucine-TMS derivative), the molecular ion peak in the 

reference spectrum almost disappeared and in the in-silico spectrum it is relatively high 

abundant.  The Figure S1b shows the fragments generated by MassFrontier and validated by our 

accurate in-silico mass spectrum. It is a common situation that under 70 eV most of the molecular 

ions are fragmented and result in a low abundant molecular ion peak, while the [M-117]+  peak 

(loss of COOTMS•) becomes  the base peak. Thus, the molecular ion has a shorter lifetime in the 

experiment, and we didn’t provide enough energy to break the molecules in the simulation.  

 

The figure S1c scans the bond length between the CH3 and the Si under high level calculation 

(pbe0/6-31G(d)) on a more general model. It shows that a four-member ring generation after the 

loss of •CH3, which is also validated by the QCEIMS simulation.  



69 
 

Figure S1. Fragmentation analysis of carboxylic groups; (a) head-to-tail spectrum of trimethylsilyl 

leucinate against reference spectrum; (b) fragments found in the simulation; (c) energy change of bond 

length scan   

(In-silico spectrum available at https://mona.fiehnlab.ucdavis.edu/spectra/display/MoNA040855) 

3.7.2. Mass spectral fragmentation rules (Part II) 

Alcohols 

We discussed two alcohol isomers with different aromaticity. Figure S2 shows an aromatic alcohol 

compound. The [M-CH3]+ and m/z 73 peak are characteristic peaks of TMS derivatives. The 

fragmentations of m/z 194 and m/z 120 peak are found in the simulation and validated by the 

MassFrontier prediction, but those peaks are not in the experimental spectrum.  

One interesting observation is peaks m/z 135 and m/z 136 (Figure S2c). There are 18 trajectories 

generating m/z 135 and one peak generating the peak m/z 136. Whether the hydrogen on position 

B migrates to position A decides the different positive charge sites of peak m/z 135. Rather than 
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the Si-O-O-C four-member ring structure proposed by MassFrontier, the simulation only found a 

radical ion m/z 136 peak. But in this trajectory (TMP.642), a sequential hydrogen atom 

rearrangement is observed. The five-member ring in m/z 136 and 151 is also a typical structure of 

ortho-oxygen aromatic compounds. 42 

 

Figure S2. Fragmentation analysis of aromatic carboxylic group; (a) head-to-tail spectrum of 2-

propoxyphenol, TMS derivative against reference spectrum; (b) fragments found in the simulation; (c) 

energy change m/z peak 135 and 136 

(In-silico spectrum available at https://mona.fiehnlab.ucdavis.edu/spectra/display/MoNA040498) 
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Amides contain amine groups next to a ketone functional group. In the case which nitrogen is 

adjacent to an aromatic carbon, we assigned the molecules as aromatic amides. Amides have a 

similar structure to carboxylic acids and similar fragments in the mass spectrum are observed. 37, 

43 For Aliphatic amides (#587, Figure S3), the simulation reproduced the dominant peaks (m/z 234, 

219, 165, 145, 73) quite well, but missed the m/z 118 peak, which is only one hydrogen less than 

the peak at m/z 119. The generation of C8H8N+ peak contains a nitrogen rearrangement and is 

shown in the simulation energy plots. The fragmentation reaction started with a TMS group 

migrating from nitrogen to oxygen (compound A). From compound B to compound C, the energy 

kept increasing, while it is equilibrated from C to D. We can find four main structures from the 

trajectory 432.  
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Figure S3. Fragmentation analysis of aromatic carboxylic group; (a) head-to-tail spectrum of Norcotinine, 

TMS derivative against reference spectrum; (b) fragments found in the simulation; (c) energy-simulation 

time plot 

(In-silico spectrum available at https://mona.fiehnlab.ucdavis.edu/spectra/display/MoNA040305) 

 

The example showed is not a typical aromatic amide (#566, Figure S4). The m/z 205 peak comes 

from the loss of a carbonyl group. The m/z 174 peak is missing both in the simulation and 

MassFrontier prediction. The m/z 118 peak is identified as C7H4NO+ and C8H6O+• and by their 

accurate masses. 

 

Figure S4. head-to-tail spectrum of 5-Methylisatin, TMS derivative and fragments found in simulation 

(In-silico spectrum available at https://mona.fiehnlab.ucdavis.edu/spectra/display/MoNA040974) 

  

Amines  

Primary amines (#444, Figure S5) can be double or single TMS derivatives, but here we only 

focused on one TMS group bound to an amine group. Again, the molecular ion peak is 

overestimated by QCEIMS, while the other two peaks m/z 116 and 73 match the reference quite 
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well. There are two fragments contributing to the m/z 116 peak where the C5H14NSi+ peak is the 

dominant one existing in 130 trajectories and the C6H8N+ fragment is only found in 4 trajectories. 

The C6H8N+ is an aromatic structure with many degrees of unsaturation and the trajectory shows 

a SN2 type rearrangement mechanism.  

 

Figure S5. head-to-tail spectrum of Cathinone, TMS derivative and fragments found in simulation  

(In-silico spectrum available at https://mona.fiehnlab.ucdavis.edu/spectra/display/MoNA040552) 

 

 #535(Figure S6) is an example of Aromatic amines. The Naphthalene ring made its mass spectrum 

simple and clean, meaning it’s a good way to study the relative intensity and the reaction selectivity. 

The m/z 45, 59, 73, 215 peaks are typical TMS derivatives peaks. The m/z 158, 157, 142, 141 are 

resulted from the cation or radical cation stabilized by the naphthalene ring. It should be noted that 

the m/z 100 peak are recorded as C8H4+• and C4H10NSi+ in the simulation and lost in the 

MassFrontier prediction, while it is presented in the experimental reference spectrum. This 

reaction needs to be validated by accurate mass spectra. The abnormal structures could come from 

the inaccuracy of the GFN-XTB method we used, DFT level simulation should be investigated in 

the future.   
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Figure S6. head-to-tail spectrum of 1,5-Diaminonaphthalene, TMS derivative and fragments found in 

simulation  

(In-silico spectrum available at https://mona.fiehnlab.ucdavis.edu/spectra/display/MoNA040622) 

 

 

Thiols  

Thiol compounds exhibit many equivalents to alcohol compounds with a mass difference of 16 

Da, for example, m/z 133, 106 and 91 37. However, in example (#501, Figure S7), the experimental 

result does not have the [M-30]+ peak (m/z 196). The simulation shows an m/z 153 peak rather 

than the m/z 151 peak. The latter comes from the loss of two hydrogen atoms and an alpha cleavage. 

The m/z 121 peak results from the loss of (CH3)3SiS•, which is also found in other thiol compound 

and validated by deuterium labeling. 44 The typical peak m/z 106 is also missed in the reference 

spectrum. The in-silico spectrum has a strong m/z 105 peak as C3H9SiS+ coming from the 

hydrogen atom loss from m/z 106. The m/z 94 and 93 peak also have one hydrogen difference.  
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  Figure S7. head-to-tail spectrum of 2-Phenoxyethanethiol, TMS derivative and fragments found in 

simulation  

(In-silico spectrum available at https://mona.fiehnlab.ucdavis.edu/spectra/display/MoNA040782) 

 

 

The aromatic thiol (#648, Figure S8) shows a higher dot product score. The molecular ion peak is 

missed in the experimental reference spectrum. The m/z 195 has two resources C9H11OSiS+ (6 

trajectories) and C8H7O2SiS+ (32 trajectories). The m/z 136 peak has a high intensity in the 

reference spectrum and the simulation generates a fragment with two five-membered-ring. The 

m/z 89 peak is in disagreement with the simulated and the reference spectrum. It is identified as 

C4H9O+ in the simulation and the MassFrontier software was not able to predict this reaction.  
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Figure S8. Head-to-tail spectrum of Methyl thiosalicylate, TMS derivative and fragments found in 

simulation 

(In-silico spectrum available https://mona.fiehnlab.ucdavis.edu/spectra/display/MoNA040841) 

 

3.7.3. Accurate Mass spectra 

 

Figure S9. Accurate mass EI-MS of Trimethylsilyl 4-methoxybenzoate 
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Figure S10. Accurate mass EI-MS of [2-(2-Methoxyphenyl)ethoxy](trimethyl)silane 

 

3.7.4. Estimate Processing time of QCEIMS TMS compounds 

 

Because the calculations are divided into trajectories, the program has a good ability of 

parallelization, while at the same time it’s hard to analysis the average calculation time. Instead, 

we use the time of a single point calculation and assume that each trajectory has 5000 steps to 

estimate the running time of each molecule. Because we used two different type of CPUs, we only 

evaluate 464 molecules calculated on Intel Xeon E5-2699Av4 CPUs. 

 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑡(𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑜𝑖𝑛𝑡) × 5000 × 𝑛(𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠) 

 

Compared with our previous project11, the average calculation time increases from 1.6 h to 1.9h 

(on 44 CPU threads) where better PESs and larger molecules (TMS derivatives) are simulated. 

Because of the better parameterization and algorithm, the QCEIMS v4.0 has a computational effort 

scales better than O(N2). Thus, the increase of simulation time can be bypassed by better 

parallelized property. 
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Figure S11. Processing time of 464 molecules versus the number of atoms 

 

 

Figure S12. (a) The transition state structure of methyl group loss under B3LYP45-46/6-31G47 level (b) The 

intrinsic reaction coordinate (IRC)48 calculation with Gaussian0913 proves the transition state structure 

linking reactants and products. The energy barrier of this reaction is 23.18 kcal/mol under wb97xd49/def2-

TZVPP50-51 level. 
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3.7.5. Energy partition analysis  

The classical single trajectory dynamics approach52 is used to calculate the translational, rotational 

and vibrational energies, where the molecule is treated as rigid body. The python code is adopted 

from Kurrouchi et al.35 The total kinetic energy is calculated by equation (1), where i donates atom 

number and 𝑣𝑖
 (𝑡) is the velocity of atom i at time t. 

𝐸𝑘𝑖𝑛(𝑡) = ∑
1

2

𝑛
𝑖=1 𝑚𝑖𝑣𝑖

2(𝑡)……(1) 

The translational energy was calculated as 

𝐸𝑡𝑟𝑎𝑛𝑠 =
1

2
𝑀𝑉𝐺

2(𝑡), 𝑀 = ∑ 𝑚𝑖
𝑛
𝑖=1 ……(2) 

Where 𝑉𝐺
  is the velocity of the center of mass. 

The translation motion is removed to set the original point to the center of mass: 

𝑟𝑖
′(𝑡) =  𝑟𝑖

 (𝑡) − 𝑅𝐺
 (𝑡), 𝑣𝑖

′(𝑡) =  𝑣𝑖
 (𝑡) − 𝑉𝐺

 (𝑡)……(3) 

The principal moment of inertia 𝐼𝑥
 (𝑡), 𝐼𝑦

 (𝑡), 𝐼𝑧
 (𝑡) and the rotation matrix Ф are calculated by 

diagonalizing the inertia tensors. Then, the atom coordinate and velocity are rotated to the principal 

axes of the molecule:  

𝑟𝑖
′′(𝑡) =  Ф𝑟𝑖

′(𝑡), 𝑣𝑖
′′(𝑡) =  Ф𝑣𝑖

′(𝑡)……(4) 

With that, the angular momentum can be calculated as: 

𝐿𝑥
 (𝑡) =  ∑ 𝑚𝑖

𝑛
𝑖=1 (0, 𝑟𝑦

′′, 𝑟𝑧
′′) × (0, 𝑟𝑦

′′, 𝑟𝑧
′′), 

𝐿𝑦
 (𝑡) =  ∑ 𝑚𝑖

𝑛
𝑖=1 (𝑟𝑥

′′, 0, 𝑟𝑧
′′) × (𝑟𝑥

′′, 0, 𝑟𝑧
′′), 

𝐿𝑧
 (𝑡) =  ∑ 𝑚𝑖

𝑛
𝑖=1 (𝑟𝑥

′′, 𝑟𝑦
′′, 0) × (𝑟𝑥

′′, 𝑟𝑦
′′, 0)……(5) 
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The angular velocity around the principal axes ѡ , the rotational energy and the rotation velocity 

can be calculated as: 

𝐿𝑥
 (𝑡) = 𝐼𝑥

 (𝑡)ѡ𝑥
 (𝑡), 

𝐸𝑟𝑜𝑡 =
1

2
{𝐼𝑥

 (𝑡)ѡ𝑥
2(𝑡) + 𝐼𝑦

 (𝑡)ѡ𝑦
2 (𝑡) + 𝐼𝑧

 (𝑡)ѡ𝑧
2(𝑡)}, 

𝑣𝑖,𝑟𝑜𝑡
 (𝑡) = {ѡ𝑥

 (𝑡), ѡ𝑦
 (𝑡), ѡ𝑧

 (𝑡) × 𝑟𝑥
′′(𝑡)}……(6) 

Once we remove the rotation movement, the vibrational energy can be calculated: 

𝑣𝑖,𝑣𝑖𝑏
 (𝑡) = 𝑣𝑖

′′(𝑡) − 𝑣𝑖,𝑟𝑜𝑡
 (𝑡), 

𝐸𝑣𝑖𝑏 = ∑
1

2

𝑛
𝑖=1 𝑚𝑖𝑣𝑖,𝑟𝑜𝑡

2 (𝑡)……(7) 

With the energy partition analysis, we can separate the vibrational energy from the total kinetic 

energy in classical mechanics trajectory.  
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Chapter 4: Beyond the ground state: predicting electron 

ionization mass spectra using excited state molecular dynamics 

4.1. Abstract 

Here, we provide an algorithm that introduces excited states into the molecular dynamics 

prediction of 70 eV electron ionization mass spectra. To decide the contributions of different 

electronic states, the ionization cross section associated with relevant molecular orbitals were 

calculated by the Binary-Encounter-Bethe (BEB) model. We used a fast orthogonalization 

model/single and double state configuration interaction (OM2/CISD) method to implement excited 

states calculations and combined this with the GFN1-xTB semi-empirical model. Demonstrated 

by predicting the mass spectrum of urocanic acid we showed better accuracies to experimental 

spectra using excited state molecular dynamics than calculations that only used ground state 

occupation. For several histidine pathway intermediates we found that excited state corrections 

yielded an average of 73% more true positive ions compared to the OM2 method when matching 

to experimental spectra, and 16% more true positive ions compared to GFN method. Importantly, 

the exited state models also correctly predict several fragmentation reactions that were missing 

from both ground state methods. Overall, for 48 calculated molecules we found best average mass 

spectral similarity scores for the mixed excited state method compared to the ground state methods 

using either cosine-, weighted dot-score or entropy similarity calculations. Therefore, we 

recommend adding excited state calculations for predicting electron ionization mass spectra of 

small molecules in metabolomics.  
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4.2. Introduction 

Using quantum chemical methods along with statistical methods to predict electron ionization (EI) 

mass spectra (MS)1-2 has been explored for many types of molecules, including organic molecules, 

inorganic molecules3, heavy metal-containing molecules4. The quantum chemistry based QCEIMS 

software 1, 3-9  can provide reasonable results and detailed reaction pathways. In a recent publication, 

the QCxMS software was introduced, combining electron ionization and collision-induced 

dissociation modelling into a single software package. 10-11 However, a shortcoming of these 

methods is the ground state potential energy surface (PES) may have inaccurate results even with 

density functional theory (DFT) methods8, 12, which can cause missing fragment ions. For example, 

Wang et al. showed that only 50% of observed ions were generally captured in 681 

trimethylsilylated molecules, which compromised the accuracy of QCxMS simulations. To 

improve predictions of relative energies of structures on PESs, alternative theoretical methods (e.g., 

Post-Hartree-Fock methods13) can be utilized. In addition, the inclusion of excited states might 

improve predictions by accounting for fragmentation reactions that are not accessible on the 

ground state PES.14-15 The focus of the current study was to examine the impact of including 

excited states in the semi-empirical molecular dynamics method for prediction of 70 eV EI mass 

spectra. 

The EI ionization process can be described as a (1e, 2e) gas phase reaction: 

𝑀 + 𝑒− → (𝐴𝐵)+∙ + 2𝑒− 

In this process,  the analyte molecule M is impacted by 𝑒−, which will be scattered and cause the 

loss of another 𝑒−, resulting in the reaction complex (AB)+•, which can undergo further reactions.16 

Ionization cross sections play an important role in providing information of the EI process and the 

Binary-Encounter-Bethe (BEB) model17 provides an ab-initio means of calculating ionization 
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cross sections without any fitting parameters. The 70eV electron can traverse the molecule in a 

few femtoseconds, a much shorter time than the bond vibration period. Therefore, the transition 

from the v=0 vibrational state of the ground electronic state to an excited state generally obeys the 

Frank-Condon principle and can be modeled as “vertical ionization” 18-20: one electron is removed 

from the neutral molecule with the molecular structure unchanged.  

The impact energy can be divided into ionization energy and impact excess energy. According to 

the vertical ionization model, upon ionization, the impact excess energy is saved in highly excited 

vibrational modes, and this is the driving force of future fragmentation. With the increase of 

molecular size, energy must be distributed to more degrees of freedom (DOF), and thus more 

energy is needed for redistribution. 21  QCxMS assumes that the excited ion state goes through an 

internal conversion to the vibrationally hot ion ground state.1 This model introduces the impact 

excess energy (IEE) to the nuclear DOF in a continuous time by increasing the velocity of each 

atom. QCxMS has been tested successfully in many cases3-9 and it has been shown that the IEE 

distribution model1 has a small effect on the simulated spectra.  

We hypothesized that simulations including excited states could reveal reactions not encountered 

in ground state simulations. Because we focused on finding more reactions, non-adiabatic coupling 

between excited states22 was not considered in this project. Instead, in the excited state molecular 

dynamics, the molecule starts at different states, but will jump back to the ground state once the 

fragmentation is detected. In addition, one must determine which methods are the most appropriate 

to describe relevant excited state PESs in terms of both accuracy and computing resource 

feasibility. We found that the orthogonal-corrected semiempirical quantum-chemical methods 

OMx23 can be used for ground state mass spectral predictions.12 To include the dynamic and static 

electron-correlation effects for excited states, configuration interaction (CI) and multireference 
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(MR) methods are needed.24 A graphical unitary-group approach (GUGA)25 can be combined with 

OMx models. In this way, we can capture the excited state correlation effects with state-based 

semiempirical treatments. 26-29 In this paper, we provide a prototype of a mass spectra prediction 

model and discuss additional method improvements for large-scale MS predictions. This model 

combines ground state and excited state molecular dynamics based on the BEB model.  

4.3. Methods 

4.3.1. Ionization cross section by BEB model 

The BEB model is simplified from the binary-encounter-dipole model17, and has wide applications, 

including mass spectrometer normalization, plasma modeling and material radiation effects 

calculation. 30 The electron impact ionization cross section for molecular orbital i (MOi), is 

calculated by: 

𝜎𝑖 =
𝑆𝑖

𝑡𝑖 + 𝑢𝑖 + 1
[
ln 𝑡𝑖

2
(1 −

1

𝑡𝑖
2) + 1 −

1

𝑡𝑖
−

𝑙𝑛 𝑡𝑖

𝑡𝑖 + 1
] 

𝑢 =  
𝑈

𝐵
, 𝑡 =

𝑇

𝐵
, 𝑆 =

4𝜋𝑎0
2𝑁𝑅2

𝐵2
 

 

𝑎0 = 0.592Å, 𝑅 = 13.61 𝑒𝑉 

Where T is the energy of the impact electrons; B is the electron binding energy of MOi, U is the 

kinetic energy of MOi; the occupation number N of MOi is two for ground state molecules. The 

GAMESS31 package is used to calculate the molecular orbital properties under Hartree-Fock 

method with 6-31G basis set. The GAUSSIAN program32 is used to optimize the structure and 

calculate the molecular orbital contours. The Avogadro v1.2 software 33 was used to visualize the 

molecular orbitals. A python script package (https://github.com/Shunyang2018/EXMD) was 

https://github.com/Shunyang2018/EXMD
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developed to calculate the electron impact ionization cross section and relative ratio of each 

electronic states after ionization. 

4.3.2. Modified QCEIMS algorithm  

The QCEIMS v4.0 1, 3-9 code was used with several modifications to conduct excited state 

molecular dynamics. Default settings were applied for the ground state calculations at the GFN2-

xTB level34. For the excited state, uniform velocity scaling was enforced during the internal 

conversion step. The MNDO99 program 35 was used for the semiempirical OM223, 36 level gradient 

calculations for excited state molecular dynamics (MD)25, 28, 37. The active space is decided by the 

following rule set. Each  bond provides a pair of occupied/unoccupied orbitals, and each oxygen 

or nitrogen atom provides a lone pair orbital. Because the radical cation system is open shell, only 

one reference occupation is used. Restricted Open-shell Hartree-Fock (ROHF) is used, while 

single and double excitations are allowed for the reference configurations for simplicity. Different 

parameter settings of the excited state molecular dynamics were tested in Figures S8-S10. Once 

fragmentation is detected, the ionization potential (IP) of each fragment is calculated and partial 

charge is assigned by the Boltzmann distribution. Another MD simulation will be performed on 

the fragment with largest partial charge for secondary fragmentations. This MD simulation is for 

the ion ground state, where the fractional orbital occupations38 in unrestricted OM2/SCF 

calculations are used. Ions larger than 15 Dalton are counted and used to generate in-silico spectra 

of ground state and excited states separately. Then, the excited state (D1, D2…) spectra are used as 

corrections to the ground state (D0) spectrum per their relative ratios obtained from the BEB model, 

assuming that the D0 state is ionized from the highest occupied molecular orbital (HOMO) with 

an ionization cross section 0, D1 is from HOMO-1 with 1 and so on. Theoretically, D2 and higher 

excited states can contribute to fragmentation reactions, but we found that D1 state calculations 
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already predicted most of the experimentally observed reactions. Importantly, we did not aim to 

theoretically or comprehensively compare all different methods, but to give practical applications 

on molecules that are typically encountered in metabolomics research. The OM2/CISD method 

had an average failure rate of 0.64 across all trajectories of all 48 molecules due to self-consistent 

field convergence problems (Supplement S8). For simplicity, only the two lowest electronic states 

(D0, D1) are taken as reference states and non-adiabatic crossing is neglected. Because excited state 

calculations are used as corrections, this approach can be extended to other higher excited states 

in the future. 

4.4. Results  

4.4.1. Urocanic Acid as a demonstration case 

Urocanic acid is an intermediate of histidine catabolism.39 We chose urocanic acid as an example 

because it contains both nitrogen and oxygen elements, an imidazole aromatic system, and a 

carboxylic acid functional group, features typical of many organic molecules of biological interest. 

The MOs of urocanic acid are shown in Table S1 and visualizations of the MO contours are shown 

in Figure S2. The HOMO, HOMO-1, HOMO-3, and HOMO-5 orbitals are  orbitals, and the 

HOMO-2, HOMO-4, HOMO-6, HOMO-7, HOMO-8, and HOMO-9 are n orbitals associated with 

lone pairs on oxygen and nitrogen. Consequently, an active space of 11 electrons and 10 orbitals 

(11, 10) should be sufficient for modeling the first excited state of the urocanic acid radical cation. 

The MO ionization cross section according to electron kinetic energy of the four highest occupied 

MOs is shown in Figure 4-1. Vertical ionization from the HOMO generates the D0 state (remove 

one electron from HOMO), while from HOMO-1 generates the D1 state. According to the ratio of 

 at 70 eV, the ground state is significantly more likely than other states, thus the spectrum from 



87 
 

ground state MD contributes most to the final corrected spectrum. The apex of the ionization cross 

section curve is slightly lower than 70 eV and shifts to 70 eV with lower energy MOs, which is 

consistent with the region of highest ionization efficiency. That is the basic reason why 70 eV is 

the classic experimental energy for electron ionization in gas chromatography-mass spectrometry.  

 

Figure 4-1. Ionization cross section of four highest molecular orbitals of Urocanic acid; dash line denotes 

the 70 eV kinetic energy used in EI; blue line denotes the Highest Occupied Molecular Orbital, which has 

the largest ionization cross section.  

 

 Different quantum chemistry methods, including GFN1-xTB, GFN2-xTB, OM2 and PBE040-

D341/SV(P)42 (density functional theory) were tested on urocanic acid in the ground electronic 

state (Figure 4-2). OM2 (Figure 2c) is one of the fasted methods available in the QCEIMS program, 

but it is only parameterized for five elements: C, H, O, N, F. The default GFN1-xTB method and 

its advanced GFN2-xTB version (Figure 2a) yielded only minute differences in predicted mass 

spectra when applied to the chemical urocanic acid. More GFN2-xTB calculations can be found 
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in Support File S13. Interestingly, neither the PBE0/SV(P) method (Figure 2b) nor GFN1-xTB or 

GFN2-xTB correctly predicted the experimental m/z 45 fragment ion. The PBE0/SV(P) method 

requires larger computing resources. This disadvantage is amplified if hundreds of trajectories 

need to be calculated. In comparison to the GFN1-xTB method, the prediction of relative 

intensities of other fragment ions (m/z 138, 93, 39) did not improve with PBE0/SV(P) method; 

more false positive ions (m/z 98, 44) were captured and ions missing in simulations with the semi-

empirical methods were still not found. The comparison between these three different methods 

showed that optimizing the potential energy surface did not solve all the problems in mass spectral 

predictions.  

The spectrum calculated from the first excited state MD and the mixed spectrum after correction 

of the first excited state are compared in Figure 2c and 2d. When moving from the ground state to 

the excited state, the molecular ion intensity decreased dramatically, and more fragment ions and 

higher intensities of these ions were found in the low mass range. This change can be explained 

by a higher reactivity of the excited state. We used the weighted dot product score 12 to evaluate 

the similarity between in-silico spectra and the experimental reference spectra given in the NIST 

17 mass spectral library. Although the dot product score slightly decreased from 907 to 894 with 

excited state correction, the details of the in-silico spectrum improved. For example, the group of 

fragment ions around m/z 28, 39 and 67 were better captured, giving a higher confidence when 

comparing spectra. The m/z 39 fragment ion was identified as C2HN by Mass Spectrum 

Interpreter43 software, a product that was missing in all ground state simulations. In the first excited 

state simulation, the m/z 39 ion was found in 30 out of 400 trajectories, arising from C2HN+ and 

C3H3
+. Overall, the mixed spectra predicted 62 instead of only 44 fragment ions from the D0 

spectrum. The number of true positives, i.e. predicted ions that found in experimental spectra, 
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increased from 31 to 37. Some problems remained unsolved even when including the D1 excited 

state, however. For example, the excited state MD overestimated the intensity of low mass ions, 

especially m/z 28 and 40. This problem might be solved by including more electronic states.  

 

Figure 4-2. In-silico spectra of urocanic acid using different simulation methods. (a) semi-empirical level 

GFN2-xTB versus GFN1-xTB.  (b) DFT level PBE0/SV(P) versus the experimental spectrum from the 

NIST17 library; (c) semi-empirical level OM2 at ground state versus the semi-empirical configuration 

interaction level OM2/CISD (first excited state); (d) mixed spectrum of D0 (OM2) and D1 (OM2/CISD) 

simulations versus the NIST17 experimental spectrum 

When we compared the experimental spectrum of urocanic acid with all in-silico generated spectra 

by all molecular dynamic methods, we found that three significant fragment ions were missed or 
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underestimated, especially evident when removing isotope ions (Figure S12). Here, m/z 68 was 

missing from all simulations, whereas m/z 120 and m/z 94 were represented much found at much 

lower intensity in predicted spectra compared to experimental spectra (Figure 2). All three ions 

shared a similar pattern: while the exact fragment ion product is missing or very low abundant, 

there was an abundant ion within 1 Dalton of its expected location (m/z  1). This observation 

implied that hydrogen rearrangements were not described correctly in the simulations. For example, 

the m/z 94 fragment ion results from a loss of CO2, which is a product of a three-membered ring 

rearrangement reaction of hydrogen that is transferred to a double bond. We found that the other 

two fragments ions m/z 120, 68 were also generated by hydrogen rearrangements, as discussed 

later in more detail.   

4.4.2. Rearrangement reaction in the unimolecular dissociation 

To validate the overall performance of excited state corrections and to investigate the 

rearrangement reactions, we selected several molecules from the histidine biosynthetic pathway.44 

Seven of the 10 major pathway intermediates had 70eV EI mass spectra included in the NIST 17 

database. Table 4-1 shows the parameters used in the calculation. On average, the ground state 

simulation contributed around 60% to the final mixed spectra, while the first excited state 

contributed around 40%. If we added the second excited state with a similar weight as D1 state, 

the contribution of the ground state would be decreased to around 40%. The mass spectral 

prediction with the OM2 method had an average running time of 1.55 h per molecule, while the 

GFN1-xTB required 7.2 h per molecule, both on 16 CPU threads. The OM2/CISD simulation took 

about twice as long as the OM2 ground state calculation. MD on the first excited state required a 

similar amount of simulation time as the ground state simulation. GFN1-xTB does not allow for 

computations of excited state MD trajectories. The OM2 method has its own disadvantage because 
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it is only parameterized for limited elements, C, H, N, O and F, while GFN1-xTB includes 86 

elements.  

Table 4-1. Parameters used for simulating ground state/ excited state ratios. The fraction of D0 and D1 was 

decided by the ionization cross section. The sum of unoccupied and occupied molecular orbital is the size 

of active space. The number of active electrons is calculated as the product of electrons in the molecular 

orbitals minus 1.   

Name Fraction D0 Fraction D1 

Unoccupied 

MO 

Occupied 

MO 

Active 

electron 

Alanine 0.58 0.42 2 4 7 

Glutamic acid 0.58 0.42 2 7 13 

Histidine 0.60 0.40 3 6 11 

Histamine 0.60 0.40 2 5 9 

Carnosine 0.59 0.41 4 11 21 

1-Methyl-histidine 0.59 0.41 3 8 15 

Urocanic acid 0.62 0.38 4 6 11 

 

As shown in Figure 4-3, most ions fragments derived from alanine were correctly predicted. The 

in-silico spectra predicted the loss of two or three hydrogen fragments ([M-1]+, [M-2]+• ions) from 

the molecular ion m/z 89. Such hydrogen losses were not verified by the experimental spectrum 

and originated from the OM2 method parametrization.12 The prediction of the histamine mass 

spectrum benefited from the additional ions predicted by including the D1 excited state. However, 

the base ion intensity for m/z 82 was underestimated in both the D0 and D1 simulations. As in the 

urocanic acid example described above, this problem is a result of hydrogen rearrangement 
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reactions. 

 

Figure 4-3. Head-to-tail spectra of alanine and histamine; Top: mixed spectra obtained by GFN1-

xTB/OM2/CISD; Bottom: experimental spectra from the NIST17 library. 

Head-to-tail plots for the other molecules from Table 1 can be found in Figure S4-S7. For four of 

the seven molecules examined, the base ions were missing (m/z 94 of urocanic acid, m/z 82 of 

histidine and histamine, m/z 96 of 1-methylhistidine). The rule-based Mass Frontier software 

(Thermo Fisher Scientific Inc.) predicted that these ions were generated by hydrogen 

rearrangement reactions or a mobile proton mechanism.45-47 The MD trajectories in our 

calculations also supported this model; however, we observed very few occurrences of these 

specific hydrogen rearrangement reactions. As an example, we plotted the energy versus time for 

two trajectories at ground state simulations of the fragmentation of the urocanic acid radical cation 

(Figure 4-4). Trajectory #13 generated m/z 93 (C5N2 H5
+), with a neutral loss of CO2H• , while 

trajectory #318 generated m/z 94 (C5H2H6
+•), with a neutral loss of carbon dioxide. The difference 

was caused by a hydrogen rearrangement between two fragments in the latter trajectory. Although 

there was a mobile hydrogen in trajectory #13, it was only intramolecular rearrangement of 

C5N2H5
+ fragment. To better visualize the electronic energy change, we plotted the moving average 
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trend line per 100 fs. This trend line showed that energies stayed unchanged once the fragments 

were generated in trajectory #13. In trajectory #318, the energy decreased after an energy barrier 

was surmounted. Because unimolecular reactions do not include collision and energy exchange, 

the system electronic energy will not change for most homolytic bond cleavages. In other words, 

energy curves will stay at the same level after passing through transition states. However, 

rearrangement fragmentations face different conditions because forming new bonds during a 

rearrangement reaction decreases the system’s total electronic energy level. Therefore, 

rearrangement reactions are usually exothermic. After the transition state is passed, products will 

be found at energetically lower states, and this extra energy is converted to the kinetic energy 

(translational energy of fragments). This is the so-called kinetic energy release (KER) process.48-

49 In the QCxMS simulation, all molecular dynamics steps are under the constant total energy 

(NVE ensemble), except the heating process. These two different energy change types (Figure 4) 

were consistent with our observations that the electronic energy converted to translational energy 

of fragments and caused them to depart while the total energy was conserved. This observation 

proved that the model captured the hydrogen rearrangement reactions as an exit channel on the 

ground/excited state potential energy surface (PES). Yet, relative intensities of fragment ions 

(selectivity of the reactions) were still underestimated.  

One possible reason is the simulation time scale (on the level of a picosecond) is limited when 

compared to the total time that mass spectrometers use (on the level of a microsecond50). The 

reaction time scale of unimolecular rearrangement reaction in a mass spectrometer is  

10-11 ~ 10-6 s, while a simple bond dissociation fragmentation proceeds much faster at 10-12s.51 The 

typical ion flight time in a quadrupole or Time-of-flight mass spectrometer is around 50 μs.52 Our 

parameter settings simulated molecular dynamics for up to 5,000 femtoseconds which reproduced 
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most reactions well but failed to account for the frequency of rearrangement reactions. But even 

for simple fragmentation reactions, 5 ps may not be sufficient time as we found 42 / 400 trajectories 

that did not yield any fragmentations within the maximum simulation time. For the PBE0/SV(P) 

method we found even 115 trajectories that did not yield any fragmentation, increasing the 

prediction of the relative abundance of the unfragmented molecular ion and thereby lowering the 

weighted dot similarity score by 230 units, a decrease of 15% in prediction scores. Another 

explanation why rearrangement reactions were missed is that such reactions might need a specific 

starting conformation to overcome positional barriers53. More comprehensive conformer sampling 

might overcome this problem. Yet, when we tested conformer-rotamer sampling and Wigner 

distribution sampling, we did not improve results for the lacking rearrangement reactions. Hence, 

for correctly predicting hydrogen rearrangements, the limitation of simulation time may remain as 

the main obstacle.  
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Figure 4-4. Electronic energy change of the whole system according to the simulation time of urocanic 

acid; (1) blue: trajectory 13: C5N2H5
+ and neutral CO2H•; (2) orange: trajectory 318 C5H2H6

+• and neutral 

CO2; (3) all trend lines are moving average per 100 fs; (4) insert: the structures at around 780 fs 

4.4.3. Method test on small molecules 

The examples discussed before do not provide a theoretical validation of the value of adding an 

excited-state method to the ground state method. Unfortunately, more accurate ab-initio techniques 

are prohibited by the size of metabolites tested here. Instead, to compare QCxMS-based ground 

state simulations to the new excited state method, we randomly selected 48 molecules from our 

previously published study12. We used both weighted dot-score similarity and the Jaccard index 

that calculated the number of true positive predicted ions divided by the number of all ions 
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observed in combination of the in-silico and experimental spectra. For 48 calculated molecules, 

we found an improvement from an average dot product similarity score of 681 in the OM2 method 

to 724 for GFN1-xTB method and 726 using the mixed method, adding excited states to 

supplemented ground state simulations (Supplement S8). We have recently introduced the concept 

of entropy similarity scores that outperformed dot-product similarities and improved False 

Discovery Rates54. Comparing spectral entropy similarities indeed showed a significant 

improvement for the mixed method: the two ground state methods resulted in an average entropy 

similarity score of 600 whereas the mixed method gave an average score of 680 and a narrower 

Kernel density distribution (Figure 4-5). The OM2 method showed a much lower average Jaccard 

index of 0.34 than the default GFN1-xTB or the mixed method. While the average Jaccard index 

of these two methods were not statistically significant different, the mixed method clearly showed 

 

Figure 4-5. Kernel density estimate plot of (a) Jaccard index and (b) entropy similarity score of 

48 small molecules; Blue: ground state spectra predicted by GFN1-xTB; Orange: ground state spectra 

simulated by the OM2 method; Green: mixed spectra of D0 and D1 using the GFN1-xTB/OM2/CISD 

method 
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less variance and a higher maximum density of the Jaccard indices of the modeled in-silico spectra 

in comparison to the GFN1-xTB method. On average, the mixed method yielded 16% and 73% 

more true positive ions in pairwise comparisons than the GFN1-xTB and OM2 ground state 

method, respectively. We found that the mixed method avoided extremely poor simulations that 

were observed for the OM2 methods with dot score < 200 with a true positive rate < 0.4 (File S13).  

4.5. Conclusions 

We here show for the first time that molecular dynamics can be utilized with excited state 

calculations by using the BEB model to scale contributions based on ionization cross sections. We 

provided and tested this excited state correction method for quantum chemistry molecular 

dynamics prediction of standard 70 eV mass spectra and showed that it improved the existing 

GFNn-xTB method by generating about 16% more correctly predicted fragment ions. For example, 

the mixed method presented here added hydrogen shift reactions that were missed by the classic 

methods. When comparing this mixed method with other tools such as DFT and semi-empirical 

methods like OM2, we found clear improvements in accuracy that came with only 20% increased 

computational times. Although our OM2/CISD excited state simulations discovered more 

fragmentation reactions than the standard model, improvement in spectra similarities to 

experimental spectra were limited because the GFNn-xTB method generally already yielded a high 

number of excellent predictions, as shown in detail for the molecule urocanic acid. However, 

predicting rearrangement reactions are the bottleneck of QCxMS. Because much longer simulation 

times may be prohibitively expensive with respect to computational costs, we propose that 

machine learning methods are needed to recognize rearrangement reactions. We recommend this 
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mixed model to be used to generate in-silico electron ionization mass spectral libraries for small 

molecules.  
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4.7. Supporting Information  

Table 4-S1.  Molecular orbital energies (U, kinetic energy; B, electron binding energy) in eV and 

computed ionization cross section () at 70 eV 

 

MO Energy U B @70eV 

HOMO -6.84 33.90 8.52 2.29 

HOMO-1 -8.92 39.84 11.36 1.39 

HOMO-2 -9.45 34.25 12.07 1.32 

HOMO-3 -9.55 51.61 12.23 1.12 

HOMO-4 -9.66 63.49 12.52 0.99 

HOMO-5 -10.68 58.01 13.35 0.93 

HOMO-6 -12.42 43.59 15.30 0.81 

HOMO-7 -13.84 53.54 15.83 0.71 

HOMO-8 -13.96 38.98 16.20 0.76 

HOMO-9 -14.41 48.56 17.10 0.64 

 



105 
 

 

Figure 4-S1. Molecular dynamics based on vertical ionization model without excess energy 

(left)alanine, generating base peak m/z 44 (right) urocanic acid, no reaction within 2985 fs, 

generating the molecular ion peak  

 

 

Figure 4-S2. Molecular orbitals under HF/STO-3G level: the HOMO, HOMO-1, HOMO-3, and 

HOMO-5 orbitals are  orbitals; the HOMO-2, HOMO-4, HOMO-6, HOMO-7 are n orbitals 

associated with lone pairs on oxygen and nitrogen 

 

Alanine m/z 44 Urocanic acid

HOMO HOMO-1 HOMO-3 HOMO-5

HOMO-2 HOMO-4 HOMO-6 HOMO-7
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4.7.1. Effect of active space 

To better understand the results of our excited state MD simulations, we also tested the effect of 

active space size. Figure S2 shows the D1 state spectra with different active space settings. 

Compared with the D0 state spectrum, all D1 state spectra had a very small molecular ion peak m/z 

138. This phenomenon originates from the relative high energy of excited state structures which 

leads to easy fragmentation. The intensity of the molecular ion peak m/z 138 becomes larger, 

however, with the increase of active space size. A larger active space can describe the electronic 

structure better and lower the electronic energy. The m/z 67 peak is only abundant under (3,4) 

simulation, with 16 trajectories; with a (19,16) active space, only five trajectories lead to the same 

ion. Ring-opening/rearrangement of the imidazole ring gave the m/z 67 as C3H3N2
+. While with 

active space (3,4), the orbital used in the calculation cannot include the  orbital and cause two 

problems: the whole molecule broke into many pieces at the very beginning of the simulation to 

give chain shape C3H3N2
+; the C3H3N2

+ undergoes a fast ring-opening reaction once generated. 

These two problems cause the overestimation of m/z 67 under this relatively small active space. 

The failure of (3,4) active space implies that the choose of active space is important to get the 

potential energy surface correctly. Overall, a larger active space can make the simulation more 

accurate, and we need to find a balance between active space and computational time.  
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Figure 4-S3. D1 First excited state spectra of urocanic acid with different active space sizes; 

Orange line: m/z 67 of fragment C3H3N2
+, only observed strongly in active space (3, 4); Inside: 

ring break reaction taken from trajectory 54 

 

Figure 4-S4. Head-to-tail plot; Hybrid spectrum of glutamic acid against experimental spectrum 

from NIST17  
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Figure 4-S5. Head-to-tail plot; Hybrid spectrum of carnosine against experimental spectrum from 

NIST17  

 

Figure 4-S6. Head-to-tail plot; Hybrid spectrum of 1-methyl-istidine against experimental 

spectrum from NIST17  
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Figure 4-S7. Head-to-tail plot; Hybrid spectrum of histidine against experimental spectrum from 

NIST17  

 

a) OM2/CISD 
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b)  
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Figure 4-S8. Head-to-tail plot; a) OM2/CISD method with different electronic temperature. b) OM2 ground 

state method with different electronic temperature; Different temperatures didn’t affect the results; more 

examples were uploaded to the Zenodo repository. 

4.7.2. Parameter settings 

We also noticed that spectra simulated for 3000 K were almost identical to spectra predicted for 

7000 K with ion abundance changes remaining at <1%. However, when different ip-mndo methods 

are used, such as ip-orca applied for the 5000 K simulations, results will be different. This 

observation showed that the ionization potential distribution can affect the simulation but the 

electronic temperature in OM2 method does not impact predictions.  
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Figure 4-S9. Head-to-tail plot; OM2/CISD method with different impact energy.  

Lower impact energy did not change the excited-state spectra noticeably for #148 and #110. For 

#136, #1 and #142, there was no trend while lower energy or 70 eV avoided some impossible 

neutral loss reactions. Overall, lowering the ionization energy did not improve the fragmentation 

predictions; more examples were uploaded to the Zenodo repository.  

 

Figure 4-S10. Head-to-tail plot; GFN2-xTB and GFN1-xTB. Different temperatures didn’t affect the 

results; more examples were uploaded to the Zenodo repository.  
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Figure 4-S11. Head-to-tail plot; comparison of first fragmentations. Different temperatures didn’t affect 

the results; more examples including spectra without isotopic pattern and secondary fragmentations were 

uploaded to the Zenodo repository.  
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Figure 4-S12. PBE0/SV(P) spectra of Urocanic Acid without isotope ions 
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Chapter 5: Gas chromatography with methane chemical 

ionization and quadrupole-time of flight mass spectrometry 

obtains molecular ion species to automatically assign elemental 

formulas 

5.1. Abstract 

Gas chromatography–mass spectrometry (GC-MS) usually employs hard electron ionization, 

leading to extensive fragmentations that are perfectly suitable to identify compounds based on 

library matches. However, such spectra are less useful to structurally characterize unknown 

compounds that are absent from libraries, due to the lack of readily recognizable molecular ion 

species. We here tested methane chemical ionization on 367 trimethylsilylated (TMS) derivatized 

metabolites using an accurate mass quadrupole time-of-flight detector (QTOF) to determine if this 

approach could be used to automatically detect molecular ion species and how accurate the 

determination of molecular formulas from these spectra would be. For most compounds, we found 

a clear pattern of molecular ion adduct or fragment species. Overall, the automatic workflow 

correctly recognized 316 (86%) of all detected, derivatized standards. [M-H]+, [M]+ and [M+H]+ 

ion species were present in all cases, but varied in intensities. Specifically, strong [M-CH3]
+ 

fragments were observed in all 290 derivatized metabolites that were automatically recognized by , 

substantiated by concomitant  [M + C2H5]
+ adducts in 90% of the detected species, and [M + 

C3H5]
+ in 84% of the cases. Together, these species formed a pattern that could be extracted 

automatically from GC-QTOF MS spectra. Using Sirius software, correct elemental formulas for 

[M-CH3]
+ fragment ions were retrieved in 87% cases within the top-3 hits. In 71% of the cases, 
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the top-hit was found as the correct formula when hits for [M-CH3]
+ and [M]+ and [M+H]+ 

molecular ion species were combined. When investigating the 51 cases for which the automatic 

pattern analysis failed, we found that several analytes showed a previously unknown adduct [M + 

TMS]+, formed by rearrangement. Overall, we here demonstrate methane chemical ionization with 

GC-QTOF mass spectrometry as suitable avenue to identify molecular formulas for abundant 

unknown peaks. 

5.2. Introduction 

Gas chromatography–mass spectrometry (GC-MS) is a mature technology for small metabolites 

profiling, because of its wide coverage of chemical classes1 and high reproducibility2 using 

standardized 70 eV electron impact ionization  (EI)3. Lower energies lead to less sensitivity and 

fragmentation4-5. Large mass spectral libraries, such as NIST EI library6, Massbank of North 

America7, and Human Metabolome Database8. Yet, because the EI is a hard ionization leading to 

the strongest ionization and fragmentation, molecular ions or readily identifiable adducts are 

usually low abundant or absent, especially when using trimethylsilylation (TMS).  

Without knowing molecular masses of unknown metabolites, structural identifications are 

impossible. Alternatively, chemical ionization3 (CI) is a softer technique than electron impact. It 

usually obtains molecular masses and has been successfully used for compound identifications9. 

In chemical ionization, the reagent gas molecules (usually methane, ammonia or isobutane) are 

first ionized and then the reagent ions ionizes neutral analyte molecules with less energy 

transferred due to the exothermicity of ion-molecule reactions3. In CI, the molecular ion has higher 

probability to keep entire with significantly less fragmentations than 70 eV EI.  
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The following complex reactions have been described in the literature to produce typical molecular 

ion adducts in methane CI10-11:  

M +  CH4
+  → CH4 + M+ 

M +  CH5
+  → CH4 + [M + H]+ 

M +  CH3
+  → CH4 + [M − H]+ 

M +  C2H5
+  → [M + C2H5

 ]+ 

M + CH2
+  + 2 CH4

  → [M + C3H5
 ]+ + H2 + H· 

The formation of this series of predictable adducts can assist in automatically assigning the 

molecular ions in GC-chemical ionization QTOF MS.  By combining GC-electron ionization MS 

for profiling samples and using GC-CI-QTOF MS for identifying unknown compounds, we can 

keep the advantage of informative spectra from EI and of molecular ion integrity from CI. In this 

paper, we explore the feasibility of using automatic pattern analysis for recognizing molecular ion 

species in GC-CI-QTOF MS and then using that information to obtain elemental formulas. We 

performed these analyses on a large range of metabolites under trimethylsilylation conditions, as 

used in untargeted GC-MS metabolomics studies.  

5.3. Experimental methods 

5.3.1. Data acquisition 

To build a GC-CI-QTOF mass spectral test library, 1 mg of each metabolite standard was dissolved 

in a 1 ml methanol:water:isopropanol (5:2:2) solution.  20 μl of each standard was combined into 

mixtures of 20 non-isomeric compounds to minimize data acquisition time. Mixtures were 

evaporated to dryness and derivatized by methoximation and trimethylsilylation as published 

previously (ref), using O-methylhydroxylamine hydrochloride solution (Sigma-Aldrich) in 
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pyridine and N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA; Sigma-Aldrich). Retention 

index markers of C8-C30 linear chain fatty acid methyl esters (FAME markers) were added to the 

MSTFA. 100 ul samples were transferred to autosampler vials and 1 ul was injected at 25 s splitless 

time (Table 1).  

Table 5-1. Details of data acquisition parameters for the FiehnLib GC/MS libraries 

Gas Chromatograph Agilent 7890A GC system 

Mass Spectrometer 7200 accurate mass QTOF mass spectrometer 

GC column DB5 MS column 30 m + 10 m integrated guard, 0.25 mm id, 0.25 μm film 

GC parameters, injection 1 μL in 25 s splitless mode at 250 °C 

GC parameters, separation initial temperature of 60 °C with a hold time of 0.5 min, a temperature ramp 

of 10 °C/min to 325 °C, and a final hold time of 10 min at 325 °C. 

EI ion source temperature, 230 °C; energy, 70 eV 

Chemical ionization ion source 300 °C; CI electron energy 135 eV; CI methane gas flow rate 20% 

MS parameters, tuning autotune using FC43 (Perfluorotributylamine)  

MS parameters, data acquisition m/z 50 - 1200 at 5 Hz scan rate and 750 V detector voltage in both electron 

ionization (EI) mode and chemical ionization (CI) mode 

MS parameters, data processing Peak detection, deconvolution by MS-DIAL 49, 12 

 

SIRIUS+CSI:FingerID13 was used to predict molecular formulas with default parameters unless 

stated otherwise.  Code to evaluate prediction accuracy is available at 

https://github.com/Shunyang2018/EICI. 

5.3.2. Sample preparation 

We analyzed unknown metabolites from blueberry, strawberry and blackberry purchased fresh 

from a local supermarket. 20 mg of fresh berries were weighted and the other 2mg were dried 

down. All the samples were extracted with 1 ml EtOAC:H2O(1:1). Two sets of samples were 

https://github.com/Shunyang2018/EICI
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evaporated to dryness and derivatized by methoximation and trimethylsilylation as mentioned in 

the data acquisition part. GC-EI-MS spectra were obtained on a nominal mass GC-TOF mass 

spectrometer (Pegasus IV, Leco, MI) with a 95% dimethylpolysiloxane-5% phenyl column (rtx5-

SilMS, Restek) and accurate mass spectra were acquired on an Agilent 7200 GC-CI-QTOF with 

the same type of polysiloxane column under the conditions given above.  

5.4. Result and discussion 

We first manually investigated CI mass spectra and confirmed the frequent observation of a pattern 

of ions derived from the molecular ion: [M – CH3]
+, [M - H]+, [M] +,  [M + H]+, [M + C2H5]

+, and 

[M + C3H5]
+ . Often, the [M – CH3]

+ was observed as base peak ion (bp_, while molecular ion 

species [M - H]+, [M] +,  [M + H]+,  were presented at variable abundance but usually at larger 

than 5% bp intensity, except for [M + C2H5]
+, and [M + C3H5]

+  that were mostly found at <5% bp 

intensity . Occasionally, additional ions were observed a lower intensity as described before10-11 . 

A python script was developed to identify CI patterns by finding these isotopic ion groups and 

utilizing the nominal mass difference between them. (Figure 1). The molecular mass detection [M 

- H]+, [M] +,  [M + H]+  from the pattern recognition was used as precursor mass and combined 

with the CI spectrum as mgf format to be used for the SIRIUS+CSI:FingerID13 software that is 

usually employed for tandem MS/MS spectra annotation. SIRIUS+CSI:FingerID was used to 

predict the molecular formula including Si in the list of search elements.  
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Figure 5-1. Examples of molecular ion species patterns in methane chemical ionization GC-QTOF MS. 

 (a) CI pattern of 2’-deoxyguanosine, 4TMS, [M + H]+ with [M + C2H5]+, [M + C3H5]+ ; (b) CI pattern of 

1,2-cyclohexanediol, 2TMS,  [M - H]+; no further adducts detected; (c) CI pattern of 3-(4-

hydroxyphenyl)propionic acid, 2TMS, [M] + with [M + C2H5]+, [M + C3H5]+  

5.4.1. Overall detection rate of molecular ion species in GC-CI-QTOF MS 

We probed 369 standards (Supporting Information 1) and acquired them at high concentrations in 

GC-methane CI-QTOF MS in mixes of 20 non-isomeric compounds. 345 TMS-derivatized 

versions of these compounds were detected, but 46 compounds were not detected at all even after 

manual curation. CI spectra were processed by the CI pattern algorithm and manually curated to 

find lower abundant compounds that might not have fit the algorithm pattern. Table 2 gives an 

overview on the diversity of chemical classes included in the mixtures using the ClassyFire 

software14. Purine and pyridines, fatty acids, indoles, carboxylic acids and hydroxy acids were well 

covered in CI detection, while only half of the tested organonitrogen compounds were positively 

identified in our tests (Table 2). Carbohydrates, classified by the ClassyFire software as 

organooxygen compounds, were often true negatives even in manual investigations (Table 2), most 
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likely because these compounds bear many TMS derivative groups and for these compounds, even 

soft chemical ionization might lead to fragmentation of molecular ion adduct species and therefore 

loss of molecular ion information. Prenol lipids and steroids were also rarely detected in CI mode 

(Table 2), likely because of lack of ionization efficiency in CI mode compared to classic electron 

ionization. For most standards, retention index information was available in MassBank.us or 

NIST20, and hence, wide retention index windows were used to find standards within the mixtures.  

Here, without correct retention index data, using only accurate mass extracted ion windows led to 

1.3% false positive annotations (5 compounds). We confirmed a previous report that the sensitivity 

of GC-MS with chemical ionization is about 20 folds lower than GC-MS electron ionization mass 

spectrometry.15 This deficiency limits the use of chemical ionization in unknown metabolites 

identification to abundant compounds.  

 

Table 5-2. Different chemical classes detected by CI mode(with n>5). Classification by ClassyFire 

software. 

Class 
total  

number 

detected 

by CI (%) 

Carboxylic acids and derivatives 77 83.1 

Organooxygen compounds 47 55.3 

Benzene and substituted derivatives 35 77.1 

Fatty Acyls 29 89.7 

Phenols 26 73.1 

Indoles and derivatives 15 86.7 

Organonitrogen compounds 11 63.6 

Hydroxy acids and derivatives 9 88.9 

Phenylpropanoic acids 8 87.5 

Prenol lipids 8 25.0 

Cinnamic acids and derivatives 7 71.4 

Pyridines and derivatives 7 100.0 

Steroids and steroid derivatives 7 14.3 

Purine nucleosides 6 100.0 
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Overall, we detected 345 unique true positive standards (Supplement 1) with an average mass of 

345 ± 160 Da and an average mass error for the [M – CH3]
+ ion species of 0.001 ± 0.0008 Da. This 

data showed excellent mass accuracy for this instrument of only 2.8 ppm error that led us to expect 

high success rates for calculating elemental formulas. Of the molecular ion species clusters ([M - 

H]+, [M] + and  [M + H]+)  that were automatically detected by the algorithm, 70% had the highest 

intensity for [M + H]+ while surprisingly many derivatives were detected with highest abundance 

as [M - H]+ species (7%) or as [M]+ species (4%) (Table 3). Interestingly, 14% of the [M – CH3]
+ 

ion species were not recognized by the algorithm but were only found by manual investigations. 

Figure 2 shows the spectrum for 3,4-dihydroxyphenylacetic acid as an example spectrum that was 

rationalized manually, but that was not automatically annotated by the algorithm due to the 

presence of unexplained ion species above the maximum [M + C3H5]
+ , here at m/z 457. In the 

remaining 316 cases for which we automatically found [M – CH3]
+ ion species, we also detected 

Figure 5-2. Methane CI QTOF MS spectrum of the molecular ion species region of 3,4-

dihydroxyphenylacetic acid 3TMS.   
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corresponding [M + C2H5]
+ ion species 90% of the time, with [M + C3H5]

+ ion species detected 

84% of the time. In combination, the combined pattern analysis of all signature ion species led to 

high confidence for the automatic detection of molecular ions in GC-QTOF MS. 

Table 5-3 Count and molecular ion species of derivatized standards that were recognized automatically by 

the pattern algorithm 

[M] + 15 4% 

[M - H]+ 24 7% 

[M + H]+ 277 75% 

Not recognized by algorithm 51 14% 

total 367 Derivatized standards 

 

 

Within the 51 CI spectra that did not yield automatic annotations of [M-15]+ ion species, we found 

many examples that followed the same pattern as given in Figure 2. We rationalized these new ion 

species as previously unreported [M+TMS]+ ions and give mass errors for three examples in Table 

4. These examples unequivocally support the interpretation of these ion species, with excellent 

mass accuracies. Because the molecules themselves do not bear additional exchangeable, acidic 

protons, we conclude that these species are likely generated by intermolecular ion rearrangements 

of [M] · + ions with TMS· radicals that are cleaved from molecules within the CI reaction zone, 

supported by the high concentration of analyte ions used in our test cases. 
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Table 5-4. Examples of false negative annotations of molecular species that were missed by the automatic 

algorithm but rationalized as novel ion species [M+TMS]+. 

 observed 

m/z 

theoretical 

m/z 

mass 

error 

[mDa] 

Ion species 

3,4-dihydroxyphenylacetic acid 384.1612 384.1608 -0.4 [M]+   3TMS 

 369.1377 369.1374 -0.3 [M-CH3]
+   3TMS 

 413.2004 413.2000 -0.4 [M+C2H5]
+   3TMS 

 425.1996 425.2000 0.4 [M+C3H5]
+   3TMS 

 457.2088 457.2082 -0.6 [M+TMS]+   3TMS 

phosphoric acid 315.1031 315.1033 0.2 [M+H]+   3TMS 

 299.0719 299.0720 0.1 [M-CH3]
+   3TMS 

 343.1345 343.1346 0.1 [M+C2H5]
+   3TMS 

 355.1342 355.1346 0.4 [M+C3H5]
+   3TMS 

 387.1428 387.1428 0.0 [M+TMS]+   3TMS 

2,5-dihydroxyphenylacetic acid 384.1608 384.1608 0.0 [M]+   3TMS 

 369.1374 369.1374 0.0 [M-CH3]
+   3TMS 

 413.1995 413.2000 0.5 [M+C2H5]
+   3TMS 

 425.1985 425.2000 1.5 [M+C3H5]
+   3TMS 

 457.2082 457.2082 0.0 [M+TMS]+   3TMS 

 

5.4.2. Automatic calculation of elemental formulas.  

Obtaining the correct molecular formula is the starting point to identify unknown compounds in 

metabolomics. SIRIUS+CSI:FingerID was designed to interpret tandem mass spectrometry 

(MS/MS) consisting of both MS1 precursor ions and MS/MS fragment ions. SIRIUS uses 

fragmentation trees from mass spectral neutral loss information in addition to isotope pattern 

analysis to support overall calculated molecular formulas. To utilize the software for GC-CI-QTOF 
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MS spectra, we modified the file formats to include molecular mass information from our 

automatic pattern recognition algorithm. We then tested which ions were best suited to calculate 

correct elemental formulas in SIRIUS software, probing the most abundant [M – CH3]+ 

characteristic ion, the molecular ion species recognized by our pattern algorithm ([M+]+, [M-H]+ 

or [M+H]+) or using the isotope information in an overall combination with either molecular ion 

species and the [M – CH3]+ characteristic ion (Figure 3). We achieved this differentiation by either 

separating MS1 information as input (blue labeled ions in Figure 3), or excluding that information 

and only relying on the overall CI-QTOF fragment masses (green and red labeled ions in Figure 

3). Surprisingly, adding isotope distribution analysis to the accurate masses for elemental formula 

calculations dramatically worsened the accuracy (Figure 3, Table 5) compared to calculations that 

did not use isotope ratio information. This result is due to the complex reactions in chemical 

ionization that lead to mixtures of molecular ion species and their natural isotope abundances (see 

Figure 3). Here, the 13C natural isotope of the [M-H]+ ion would be measured together with the 

12C monoisotope ion of the [M]+ ion, as their accurate masses would be too close to be resolved 

with the QTOF MS instrument used here. Both species would also contribute to accurate mass and 

isotope abundance measurements for the [M+H]+ ion (see Figure 1). Likely for this reason, using 

the accurate mass of the molecular ion species with all fragment ions yielded only 60.7% correct 

top-hits (Table 5). In comparison, using all fragment ions, specifically with identifying the [M-

CH3]+ species, gave 71.4% correct top-hits, and 87% correct hits within the top-3 ranked formulas. 

Here, the higher abundance of the [M-CH3]+ certainly improved measurement accuracy, but this 
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species is also void of isotope contributions from other ion species because it can only derive from 

a methyl neutral loss of the corresponding 12C monoisotope [M]+ ion.    

Figure 5-3. Automatic calculation of molecular formulas by Sirius/CSI:Finger ID software using CI-QTOF 

MS data. Example CI spectra of 2-hydroxycinnamic acid, 2 TMS. Green: [M-CH3]+ isotope cluster. Blue: 

molecular ion species, summarizing [M-H]+, [M]+ and [M+H]+. Red: other fragments in CI-QTOF MS 

spectrum.  

In 8.3% of the cases, the Sirius software did not result in any hit (Figure 3, inserted table). In six 

of those cases, both [M]+ and [M + H]+ ion species returned the correct formula as top-hit. For 

most other cases, Sirius software did not return any hits when the formula calculation of [M – 

CH3]
+ ions failed. Hence, in summary, more than 70% of the automatically detected molecular ion 

species resulted in the correct formula as top-hit when considering [M – CH3]
+ species and adding 

[M]+ and [M + H]+ ion calculations for confirmation in cases where [M – CH3]
+ calculations fail. 

If researchers widen their search to the top-3 formula hits in compound identification workflows, 

more than 87% of these formulas would be expected to be correct (Figure 3, Table 5). From correct 

elemental formula, there are established algorithms to get 2D structure identification as previously 

published. 
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Table 5-5: Summary results for 316 TMS-derivatized compounds with automatically recognized molecular 

ions 

Correct formula Molecular 

ion species [M-CH3]
+ w/ isotope 

pattern 
No-hit 7.9% 6.9% 12.8% 
Top-10 91.7% 93.1% 87.2% 
Top-5 87.6% 91.0% 83.4% 
Top-3 83.1% 86.9% 78.6% 

Top-hit 60.7% 71.4% 59.0% 
  

5.5. Conclusions 

369 metabolite standards were used to test the mass accuracy of a commercial GC-QTOF under 

methane chemical ionization, and test its suitability to automatically detect molecular ions and 

elemental formulas. 95% of the detected trimethylsilylated analytical standards provided high-

quality CI spectra. We devised a novel algorithm that automatically searched patterns for 

molecular ion species, adducts and neutral loss of methyl groups and found that this algorithm 

correctly found 86% of all detected test molecules. Using those accurate masses in 

SIRIUS+CSI:FingerID  software yielded 91% correct formulas in the top-5 hits, and more than 

71% correct formulas retrieved as top-hit. Overall, we recommend using methane chemical 

ionization with GC-QTOF MS mass spectrometry as a viable route towards identification of 

abundant GC-MS peaks. 
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5.7. Supporting information  

Table S1. Manual curation results of 369 CI spectra of known reference standards 

 Reason n % 

FP Peak detected by molecular ion pattern, but accurate mass error > 5 mD and large RI difference 5 1.3 

TP Peak detected by molecular ion pattern, accurate mass 289 73.8 

FN 
CI ion intensity pattern too low to be used for automatic detection 14 3.6 

Additional ions at high m/z that did not fit the pattern for the algorithm 37 9.5 

TN No peak detected within expected RI windows 46 11.8 
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