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A Radon-Nikodým theorem for Fréchet measures

Adam Bowers

Department of Mathematics
University of California at San Diego

La Jolla, CA 92093-0112, U.S.A

Abstract

We apply results in operator space theory to the setting of multidimensional
measure theory. Using the extended Haagerup tensor product of Effros and
Ruan, we derive a Radon-Nikodým theorem for bimeasures and then extend
the result to general Fréchet measures (scalar-valued polymeasures). We also
prove a measure-theoretic Grothendieck inequality, provide a characterization of
the injective tensor product of two spaces of Lebesgue integrable functions, and
discuss the possibility of a bounded convergence theorem for Fréchet measures.

Keywords: multidimensional measure theory, bimeasures, extended Haagerup
tensor product
2000 MSC: 28A10, 46M10

1. Introduction

The origins of multidimensional measure theory (also known as multilinear
measure theory) can be traced back to the work of Fréchet in 1915 [11], when
he characterized the bounded bilinear functionals on C[0, 1]. These bounded
bilinear functionals later came to be identified with set functions called bimea-
sures [17]. Since that time, multidimensional measure theory has developed and
contains many interesting and deep results (e.g., [2, 3, 7, 18]).

In higher dimensions, these set functions have been called polymeasures or
multimeasures, but we prefer the name Fréchet measures when the set functions
are scalar-valued [3], which is the case considered here. Let (X1,A1), . . . , (Xn,An)
be measurable spaces. A Fréchet measure, or Fn-measure, on A1 × · · · × An is
a scalar-valued set function µ : A1× · · ·×An → C that is a measure in each ar-
gument separately; that is, µ(E1, . . . , Ej−1, ·, Ej+1, . . . , En) is a measure on Aj
for fixed Ek ∈ Ak (k 6= j). We denote by Fn = Fn(A1, . . . ,An) the collection
of all n-dimensional Fréchet measures on A1 × · · · × An.

Fréchet measures have received much attention over the years, and have
recently found application in the context of stochastic processes [15], quantum
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mechanics [14], harmonic analysis [12], and functional analysis [4].
The Fréchet variation of µ ∈ Fn(A1, . . . ,An) is given by

‖µ‖Fn
= sup

∣∣∣ ∑
j1,...,jn

εj1 · · · εjn µ(Ej1 , . . . , Ejn)
∣∣∣, (1)

where the supremum is taken over all εjk ∈ C such that |εjk | ≤ 1 and over finite
measurable partitions (Ejk)jk of Ak, for 1 ≤ k ≤ n. It is known that (Fn, ‖·‖Fn

)
is a Banach space [3, Corollary VI.7].

Fréchet measures were introduced to characterize bounded multilinear func-
tionals on certain spaces of continuous functions. If K1, . . . ,Kn are compact
Hausdorff spaces, and B1, . . . ,Bn are their respective Borel fields, then there is
a one-to-one correspondence between bounded n-linear functionals on C(K1)×
· · · × C(Kn) and elements of Fn(B1, . . . ,Bn). A natural way of phrasing this
statement is in the context of projective tensor products, in which case we have(

C(K1)⊗̂ · · · ⊗̂C(Kn)
)∗

= Fn(B1, . . . ,Bn). (2)

(See [3, Theorem VI.13].) This provides an elegant generalization of the classical
Riesz representation theorem.

One may wonder: In what way do other classical theorems of measure the-
ory generalize to higher dimensions? Is there, for example, a generalization of
the Radon-Nikodým theorem? Indeed, there have been some theorems in this
direction [10, 13]. In this note, we prove a very natural generalization of the
classical Radon-Nikodým theorem, which (following the example of (2)) casts
the theorem in the context of tensor products:

Theorem 1.1. Let (X,A) and (Y,B) be measurable spaces and let µ ∈ F2(A,B).
Suppose ν1 and ν2 are positive σ-finite measure on (X,A) and (Y,B), respec-
tively. If µ is absolutely continuous with respect to ν1 × ν2, then there exists a
function ψ ∈ L1(X, ν1)⊗eh L1(Y, ν2) such that∫

φdµ =

∫
X×Y

φ(x, y)ψ(x, y) (ν1 × ν2)(dx, dy),

for all φ ∈ L∞(X, ν1)⊗̂L∞(Y, ν2).

When we say µ is absolutely continuous with respect to ν1 × ν2, we mean
that µ(E,F ) = 0 whenever ν1(E) = 0 or ν2(F ) = 0. The tensor product ⊗eh
is the extended Haagerup tensor product of Effros and Ruan [9]. The function
ψ is in general not an element of L1(ν1 × ν2), but rather the limit (in a certain
weak∗ sense) of a specific net of integrable functions. By an abuse of notation,
we write this limit as a pointwise limit:

ψ(x, y) = lim
K
ψK(x, y), (x, y) ∈ X × Y.

The integral in Theorem 1.1 is also given by a limit:∫
φψ d(ν1 × ν2) = lim

K

∫
φψK d(ν1 × ν2).
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In Section 2, we introduce much of the notation and background information
we will be using. In Section 3, we introduce absolute continuity for Fréchet
measures and relate it to integrability. The multidimensional Radon-Nikodým
theorem for bimeasures appears in Section 4. Before that, however, we recall
the Haagerup and extended Haagerup tensor products. As an application of the
extended Haagerup tensor product, we prove a measure-theoretic version of the
Grothendieck inequality.

In Section 5, we use the Haagerup tensor product to provide a characteriza-
tion of the injective tensor product of spaces of Lebesgue integrable functions:

L1(X, ν1)⊗̌L1(Y, ν2) = L1(X, ν1)⊗h L1(Y, ν2).

Also, if ‖ · ‖⊗̌ and ‖ · ‖⊗h
denote the norms on the injective and Haagerup

tensor products, respectively, then ‖ · ‖⊗̌ ≤ ‖ · ‖⊗h
≤ KG‖ · ‖⊗̌, where KG is the

Grothendieck constant.
In Section 6, we generalize to higher dimensions. In Section 7, we close by

discussing the possibility of a bounded convergence theorem for Fréchet mea-
sures. To make use of the machinery of operator theory, we will work over the
scaler field C. Many of the arguments can be adapted to R, but with some
change in constants.

2. Background

Let (X,A) be a measurable space. We denote by L∞(X) the collection of
scalar valued bounded measurable functions on X. This forms a Banach space
when equipped with the supremum norm:

‖f‖∞ = sup{|f(x)| : x ∈ X}, f ∈ L∞(X).

Now suppose ν is a σ-finite measure on (X,A). We let L∞(X, ν) denote the
collection of equivalence classes of scalar-valued essentially bounded measurable
functions on X. As is standard, we consider functions to be equivalent when
they are equal almost everywhere with respect to ν. This forms a Banach space
when equipped with the essential supremum norm:

‖f‖∞ = inf{M ∈ R : ν(|f(x)| > M) = 0}, f ∈ L∞(X, ν).

In the event we must distinguish the supremum norm from the essential
supremum norm, we will write ‖ · ‖L∞(X) and ‖ · ‖L∞(X,ν), respectively. We
remark that every equivalence class in L∞(X, ν) contains a function in L∞(X).

If 1 ≤ p < ∞, we let Lp(X, ν) be the collection of equivalence classes of
scalar-valued measurable functions f on X such that

∫
X
|f(x)|p ν(dx) < ∞.

Once again, we consider two functions to be equivalent in Lp(X, ν) whenever
they are equal almost everywhere with respect to the σ-finite measure ν. The
set Lp(X, ν) forms a Banach space when equipped with the norm

‖f‖p =
(∫

X

|f(x)|p ν(dx)
)1/p

, f ∈ Lp(X, ν).
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When unambiguous, we often write Lp(ν) instead of Lp(X, ν).
For any Banach space X, the notation ‖ · ‖X will denote the norm on X.

The dual space of X will be denoted X∗, and the dual action of X∗ on X will
be written 〈x, x∗〉, for x ∈ X and x∗ ∈ X∗. Any other notation will be defined
as it appears. We mostly follow the conventions of [2].

Let (X1,A1), . . . , (Xn,An) be measurable spaces. Define the projective ten-
sor product Vn = Vn(A1, . . . ,An) = L∞(X1)⊗̂ · · · ⊗̂L∞(Xn) to be the comple-
tion of the algebraic tensor product L∞(X1)⊗ · · ·⊗L∞(Xn) in the projective
tensor norm

‖φ‖Vn = inf
{∑

j

‖f (1)
j ‖∞ · · · ‖f

(n)
j ‖∞ : φ =

∑
j

f
(1)
j ⊗ · · · ⊗ f (n)

j

}
,

where the infimum is taken over pointwise representations and finite sums.
It is known that if φ is an element of Vn, then there exists a pointwise

representation φ =
∑∞
j=1 f

(1)
j ⊗· · ·⊗ f

(n)
j and ‖φ‖Vn is obtained as the infimum

of
∑∞
j=1 ‖f

(1)
j ‖∞ · · · ‖f

(n)
j ‖∞ over such representations [5, Proposition 1.1.4].

Theorem 2.1. There exists a well-defined integral
∫
φdµ, for every φ ∈ Vn

and µ ∈ Fn, and |
∫
φdµ| ≤ ‖φ‖Vn‖µ‖Fn

.

A proof of this theorem can be found in [2] or [3]. (In these works, the
reader will notice the presence of a 2n term which results from defining the
Fréchet variation using real scalars εjk in (1).) We will give an outline of one
construction of the integral; one we shall make use of later. Let (f1, . . . , fn) ∈
L∞(X1) × · · · × L∞(Xn) and µ ∈ Fn(A1, . . . ,An). Define a set function on
A2 × · · · × An as follows:

µf1(A2, . . . , An) =

∫
X1

f1(x1)µ(dx1, A2, . . . , An), (3)

for all (A2, . . . , An) ∈ A2 × · · · ×An. The set function µf1 is a Fréchet measure
on the product A2 × · · · × An and ‖µf1‖Fn−1 ≤ ‖f1‖∞‖µ‖Fn [3, Lemma VI.9].
(The integral in (3) is well-defined, since µ(·, A2, . . . , An) is a countably additive
measure, by assumption.)

Continuing recursively, let m ∈ N be such that 1 < m < n, and define a
scalar-valued set function µf1⊗···⊗fm on Am+1 × · · · × An by

µf1⊗···⊗fm(Am+1, . . . , An) =

∫
Xm

fm(xm)µf1⊗···⊗fm−1
(dxm, Am+1, . . . , An),

(4)
for all (Am+1, . . . , An) ∈ Am+1×· · ·×An. It follows that µf1⊗···⊗fm is an element
of Fn−m(Am+1, . . . ,An) and ‖µf1⊗···⊗fm‖Fn−m

≤ ‖f1‖∞ · · · ‖fm‖∞‖µ‖Fn
.

Finally, we observe that µf1⊗···⊗fn−1
is a countably additive measure on

An of finite total variation. If (f1, . . . , fn) ∈ L∞(X1) × · · · × L∞(Xn) and
µ ∈ Fn(A1, . . . ,An), then∫

f1 ⊗ · · · ⊗ fn dµ =

∫
Xn

fn(xn)µf1⊗···⊗fn−1(dxn). (5)
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If φ ∈ V2 and φ =
∑∞
j=1 f

(1)
j ⊗ · · · ⊗ f

(n)
j is a pointwise representation, then the

integral of φ with respect to µ can be computed by∫
φdµ =

∞∑
j=1

∫
f

(1)
j ⊗ · · · ⊗ f (n)

j dµ. (6)

The equality in (5) provides a method of iterating the integral. It is worth
noting that the order of integration is irrelevant. To make this precise, we state
a Fubini-type theorem, the proof of which can be found in [3, Theorem VI.10].
It suffices to state the theorem for n = 2:

Theorem 2.2. If (f1, f2) ∈ L∞(X1)× L∞(X2) and µ ∈ F2(A1,A2), then∫
X1

f1(x1)µf2(dx1) =

∫
X2

f2(x2)µf1(dx2).

Now define the Grothendieck tensor product to be the space

Gn = Gn(A1, . . . ,An) = L∞(X1)⊗g · · · ⊗gL∞(Xn),

the completion of the algebraic tensor product L∞(X1)⊗ · · ·⊗L∞(Xn) in the
norm

‖φ‖g = inf
{∥∥∥∑

j

|f (1)
j |

2
∥∥∥1/2

∞
· · ·
∥∥∥∑

j

|f (n)
j |

2
∥∥∥1/2

∞
: φ =

∑
j

f
(1)
j ⊗ · · · ⊗ f (n)

j

}
.

The infimum is taken over all pointwise representations.
The following theorem is taken from [2, Theorem 1.1]. It is a multilinear

extension of the well-known Grothendieck inequality.

Theorem 2.3 (Blei). For all n ≥ 2, we have the inclusion Gn ⊆ Vn and there
is a constant cn > 0 that depends only on n such that ‖φ‖Vn ≤ cn‖φ‖Gn for all
φ ∈ Gn. In particular, G2 = V2.

The Grothendieck inequality itself is obtained when n = 2; c2 = KG is the
Grothendieck constant. As a consequence of Theorem 2.3, we have the following
[2, Corollary 2.2]:

Theorem 2.4 (Blei). Every φ ∈ Gn is integrable with respect to every µ ∈ Fn,

and
∫
φdµ =

∑∞
j=1

∫
f

(1)
j ⊗ · · · ⊗ f

(n)
j dµ, whenever φ =

∑∞
j=1 f

(1)
j ⊗ · · · ⊗ f

(n)
j .

Furthermore,
∣∣ ∫ φdµ∣∣ ≤ cn‖φ‖Gn‖µ‖Fn

, where cn > 0 is a constant that depends
only on n.

3. Absolute continuity of Fréchet measures

Let (X1,A1), . . . , (Xn,An) be measurable spaces and suppose ν1, . . . , νn are
positive σ-finite measures on A1, . . . ,An (respectively). A Fréchet measure µ ∈
Fn(A1, . . . ,An) is said to be absolutely continuous with respect to ν1× · · ·× νn
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if µ(E1, . . . , En) = 0 whenever νk(Ek) = 0 for any k ∈ {1, . . . , n}. When µ is
absolutely continuous with respect to ν1×· · ·×νn, we write µ� ν1×· · ·×νn. We
remark that these notions coincide with established terminology and notation
when n = 1.

Let Vn(ν1, . . . , νn) = L∞(X1, ν1)⊗̂ · · · ⊗̂L∞(Xn, νn).

Proposition 3.1. Every element of Vn(ν1, . . . , νn) can be integrated with respect
to any µ ∈ Fn, provided µ� ν1 × · · · × νn.
Proof. Let µ ∈ Fn(A1, . . . ,An). We will show that the set function µ deter-
mines a bounded n-linear functional on L∞(X1, ν1)× · · ·×L∞(Xn, νn). We will
construct an iterated integral, like the one in Section 2.

Let (f1, . . . , fn) ∈ L∞(X1, ν1)× · · · × L∞(Xn, νn). Define a set function on
A2 × · · · × An as follows:

µf1(A2, . . . , An) =

∫
X1

f1(x1)µ(dx1, A2, . . . , An), (7)

for all (A2, . . . , An) ∈ A2 × · · · × An. For fixed (A2, . . . , An) ∈ A2 × · · · × An,
the set function µ(·, A2, . . . , An) is a measure on A1 that is (by assumption)
absolutely continuous with respect to ν1. Consequently, the integral in (7) is
well-defined.

The set function µf1 is an element of Fn−1(A2, . . . ,An). To see this, take

any f̃1 ∈ L∞(X1) such that f1 = f̃1 a.e.(ν1). (Such a function always exists.)
For fixed (A2, . . . , An) ∈ A2 × · · · × An,∫

X1

f1(x1)µ(dx1, A2, . . . , An) =

∫
X1

f̃1(x1)µ(dx1, A2, . . . , An),

because f1 and f̃1 differ on a ν1-null set and µ(·, A2, . . . , An)� ν1. We already
know the integral on the right determines an element of Fn−1(A2, . . . ,An) (refer
to Section 2), and so the integral on the left must as well.

We have µf1 ∈ Fn−1, and so µf1(·, A3, . . . , An) is a measure on A2, for fixed
(A3, . . . , An) ∈ A3 × · · · × An. We claim that the measure µf1(·, A3, . . . , An) is
absolutely continuous with respect to ν2. To see this, take f1 to be a simple
function. In this case, a direct computation shows that µf1(A2, A3, . . . , An) = 0,
whenever ν2(A2) = 0. For general f1 ∈ L∞(X1, ν1), the result follows from the
density of simple functions.

Since µf1(·, A3, . . . , An) � ν2 for every (A3, . . . , An) ∈ A3 × · · · × An, the
set function

µf1⊗f2(A3, . . . , An) =

∫
X2

f2(x2)µf1(dx2, A3, . . . , An)

is well-defined, for each (A3, . . . , An) ∈ A3 × · · · × An.
Continuing recursively, let m ∈ N be such that 2 < m < n, and define a set

function µf1⊗···⊗fm on Am+1 × · · · × An by

µf1⊗···⊗fm(Am+1, . . . , An) =

∫
Xm

fm(xm)µf1⊗···⊗fm−1(dxm, Am+1, . . . , An),

(8)
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for all (Am+1, . . . , An) ∈ Am+1 × · · · ×An. Using the same reasoning as above,
the set function µf1⊗···⊗fm is an element of Fn−m(Am+1, . . . ,An), and the mea-
sure µf1⊗···⊗fm(·, Am+2, . . . , An) is absolutely continuous with respect to νm+1

for each (Am+2, . . . , An) ∈ Am+2 × · · · × An.
Now define

µf1⊗···⊗fn =

∫
Xn

fn(xn)µf1⊗···⊗fn−1(dxn).

Certainly, the map (f1, . . . , fn) → µf1⊗···⊗fn is n-linear, and by construction,
we have

|µf1⊗···⊗fn | ≤ ‖f1‖∞ · · · ‖fn‖∞‖µn‖Fn
.

Therefore, the map (f1, . . . , fn) → µf1⊗···⊗fn is a bounded n-linear functional
on the space L∞(X1, ν1)× · · · × L∞(Xn, νn).

Bounded n-linear functionals on L∞(X1, ν1)× · · · ×L∞(Xn, νn) correspond
to bounded linear functionals on L∞(X1, ν1)⊗̂ · · · ⊗̂L∞(Xn, νn). We define the
integral on elementary tensors by∫

f1 ⊗ · · · ⊗ fn dµ = µf1⊗···⊗fn ,

and extend to elements of Vn(ν1, . . . , νn) in the natural way:∫
φdµ =

∞∑
j=1

∫
f1,j ⊗ · · · ⊗ fn,j dµ,

where φ =
∑∞
j=1 f1,j ⊗ · · · ⊗ fn,j .

Naturally, the order of integration in the construction of the iterated integral
in the proof of Proposition 3.1 is irrelevant. Certainly we can construct iterated
integrals in any order, and they must all be equal by Theorem 2.2, since every
function in L∞(Xk, νk) is equal almost everywhere (with respect to νk) to a
function in L∞(Xk) (for each 1 ≤ k ≤ n).

We will have need of the following, which is essentially a corollary to Theo-
rem 2.2:

Proposition 3.2. Let (X1,A1, ν1), . . . , (Xn,An, νn) be measure spaces such
that the measures ν1, . . . , νn are positive and σ-finite. Assume µ� ν1×· · ·×νn.
Then ∫

f1 ⊗ · · · ⊗ fn dµ =

∫
Xk

fk(xk)µ⊗
j 6=k fj

(dxk), 1 ≤ k ≤ n,

for all (f1, . . . , fn) ∈ L∞(X1, ν1)× · · · × L∞(Xn, νn).

In the statement of Proposition 3.2, the notation µ⊗
j 6=k fj

refers to the it-

eratively constructed set function (as in (8)), constructed using all functions
f1, . . . , fn, except for fk.

Let Gn(ν1, . . . , νn) = L∞(X1, ν1)⊗g · · · ⊗gL∞(Xn, νn).

7



Corollary 3.3. Let (X1,A1, ν1), . . . , (Xn,An, νn) be measure spaces such that
the measures ν1, . . . , νn are positive and σ-finite and let µ � ν1 × · · · × νn. If
φ ∈ Vn(ν1, . . . , νn), then∣∣∣ ∫ φdµ

∣∣∣ ≤ ‖φ‖Vn(ν1,...,νn)‖µ‖Fn
.

Furthermore, if φ is in Gn(ν1, . . . , νn), then∣∣∣ ∫ φdµ
∣∣∣ ≤ cn‖φ‖Gn(ν1,...,νn)‖µ‖Fn

,

where cn > 0 is the constant from Theorem 2.4.

Proof. This follows from Theorem 2.4 and Proposition 3.1.

4. F2-measures

In this section, we will prove the Radon-Nikodým theorem in the special case
n = 2. Much can be said when n = 2, because of the connection (in this case)
between the Grothendieck tensor product and the Haagerup tensor product.
We begin by recalling the Haagerup tensor product for n = 2 and expressing
this connection.

4.1. Haagerup tensor products

Let A and B be operator spaces. (We are interested in the case when each
of A and B is an Lp-space for p = 1 or p = ∞.) Define the Haagerup tensor
norm on A⊗B by

‖u‖h = inf
{∥∥∥∑

j

aja
∗
j

∥∥∥1/2∥∥∥∑
j

b∗j bj

∥∥∥1/2

: u =
∑
j

aj ⊗ bj
}
.

(The sums are finite.) The completion of A ⊗ B in this norm is called the
Haagerup tensor product of A and B and is denoted by A⊗h B. The Haagerup
tensor norm can be defined on the algebraic tensor product of more than two
spaces; in that case, the norm is defined in terms of matrix products and the
interested reader is encouraged to peruse [8].

The w∗-Haagerup tensor product ⊗w∗h is the dual to the Haagerup tensor
product: A∗ ⊗w∗h B∗ = (A ⊗h B)∗. The w∗-Haagerup tensor product was in-
troduced in [1] for pairs of dual operator spaces and was generalized in [9]. The
extended Haagerup tensor product ⊗eh was introduced in [9] and is defined to
be A⊗eh B = CBσm(A∗ ×B∗,C), the space of normal completely bounded mul-
tiplicative multilinear forms. This space can be characterized as the collection
of all Λ ∈ (A∗⊗hB∗)∗ that are weak∗ continuous in A∗ and B∗ separately; that
is, the maps

a∗ → Λ
(
a∗ ⊗ b∗0

)
and b∗ → Λ

(
a∗0 ⊗ b∗

)

8



are continuous in the weak∗-topologies on A∗ and B∗ (respectively) for fixed
a∗0 ∈ A∗ and b∗0 ∈ B∗. (See [16] or [9].) The norm on A ⊗eh B is the one
inherited from (A∗ ⊗h B∗)∗.

For dual operator spaces A∗ and B∗, the extended and w∗-Haagerup tensor
products coincide [9, Theorem 5.3]. In particular, this implies that

A⊗eh B ⊆ (A∗ ⊗h B∗)∗ = A∗∗ ⊗eh B∗∗.

The extended Haagerup tensor product is injective [9, Lemma 5.4], and so A⊗eh
B is a closed subspace of A∗∗⊗ehB∗∗. Consequently, A⊗ehB is a closed subspace
of a dual space, and as such can be endowed with the weak∗-topology of the
larger space.

The next theorem comes from [9, Section 5] and [1, Theorem 3.1]:

Theorem 4.1. Let A and B be operator spaces. If u ∈ A⊗eh B, then u has a
weak∗-representation u =

∑
i∈I ai ⊗ bi, and

‖u‖eh = inf
{∥∥∥∑

i∈I
aia
∗
i

∥∥∥1/2∥∥∥∑
i∈I

b∗i bi

∥∥∥1/2}
,

where the infimum is taken over all possible weak∗-representations of u. Fur-
thermore, there exists a weak∗-representation for which the infimum is achieved.

The index I in the above theorem may be uncountable. When we say there
is a “weak∗-representation” of u, we mean there is a representation of u in the
weak∗-topology on A ⊗eh B inherited from (A∗ ⊗h B∗)∗. Therefore, for every
(a∗, b∗) ∈ A∗ ×B∗,

〈a∗ ⊗ b∗, u〉 =
∑
i∈I
〈ai, a∗〉〈bi, b∗〉 = lim

K

∑
i∈K
〈ai, a∗〉〈bi, b∗〉, (9)

where the limit is taken over the directed set of finite subsets K of I. Of course,
for a given (a∗, b∗) ∈ A∗ ×B∗, the sum over I in (9) must be countable, and so
there must exist a countable subset J of I (which depends on a∗ and b∗) such
that

〈a∗ ⊗ b∗, u〉 =
∑
i∈J
〈ai, a∗〉〈bi, b∗〉. (10)

Remark 4.2. By definition, L∞(X) ⊗h L∞(Y ) = L∞(X) ⊗g L∞(Y ). This is
a result of the two norms having the same definition when n = 2, but it is not
true in general (i.e., for products of three or more).

Remark 4.3. When A and B are L1-spaces, we will use ? to denote the operator
space product (to distinguish it from the scalar product of two functions).

4.2. An application: a measure-theoretic Grothendieck inequality

Consider the following theorem [9, Proposition 5.6 & Theorem 5.7]:
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Theorem 4.4. Let A and B be operator spaces. Any bounded linear functional
Λ on A⊗hB can be extended to a bounded linear functional on A⊗ehB having
the same norm. In particular, if Λ ∈ (A ⊗h B)∗ = A∗ ⊗eh B∗ has weak∗-
representation Λ =

∑
i∈I a

∗
i ⊗ b∗i , then

Λ(u) =
∑
i∈I
〈a∗i ⊗ b∗i , u〉 = lim

K

∑
i∈K
〈a∗i ⊗ b∗i , u〉, u ∈ A⊗eh B,

where the limit is taken over the directed set of finite subsets K of I.

Let H be a Hilbert space with inner product 〈·, ·〉H , and suppose f : X → H
and g : Y → H are two bounded weakly measurable functions [6, Section II.1].
Let (ei)i∈I be an orthonormal basis for H and, for each i ∈ I, define

fi(x) = 〈f(x), ei〉H and gi(y) = 〈g(y), ei〉H , (x, y) ∈ X × Y.

Then 〈f , g〉H =
∑
i∈I fj ⊗ gj , and∥∥∥∑

i∈I
|fi|2

∥∥∥1/2

∞

∥∥∥∑
i∈I
|gi|2

∥∥∥1/2

∞
= sup
x∈X
‖f(x)‖H sup

y∈Y
‖g(y)‖H <∞.

Therefore, 〈f , g〉H ∈ L∞(X)⊗eh L∞(Y ).
Recall that L∞(X)⊗h L∞(Y ) = L∞(X)⊗g L∞(Y ) (Remark 4.2). By The-

orem 2.4, µ ∈ F2 determines a bounded linear functional on L∞(X)⊗h L∞(Y ),
and hence (via Theorem 4.4) on L∞(X) ⊗eh L∞(Y ). Therefore, 〈f , g〉 is inte-
grable with respect to any µ ∈ F2 and, by Theorem 4.4,∫

〈f , g〉H dµ =
∑
i∈I

∫
fi ⊗ gi dµ = lim

K

∑
i∈K

∫
fi ⊗ gi dµ,

where the limit is taken over the directed set of finite subsets K of I, and∣∣∣ ∫ 〈f , g〉H dµ∣∣∣ ≤ KG‖〈f , g〉H‖eh‖µ‖F2
. (11)

This provides a measure-theoretic version of the Grothendieck inequality.

4.3. The Radon-Nikodým theorem for F2-measures

Presently, we will provide the first formulation of the Radon-Nikodým theo-
rem for F2-measures (Proposition 4.5). First, we introduce the following nota-
tion:

E1
2 = E1

2 (ν1, ν2) = L1(X, ν1)⊗ehL1(Y, ν2). (12)

Recall that E1
2 is a subspace of G2(ν1, ν2)∗ = V2(ν1, ν2)∗.

Proposition 4.5. Let (X,A, ν1) and (Y,B, ν2) be measure spaces, where ν1 and
ν2 are positive σ-finite measures. Then µ ∈ F2(A,B) is absolutely continuous
with respect to ν1× ν2 if and only if µ corresponds to an element u ∈ E1

2 (ν1, ν2)
and ∫

f ⊗ g dµ = 〈f ⊗ g, u〉, (f, g) ∈ L∞(X, ν1)× L∞(Y, ν2). (13)
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Proof. First, let µ ∈ F2(A,B) be such that µ� ν1 × ν2. We wish to show that
u, defined by (13), is an element of L1(X, ν1)⊗ehL1(Y, ν2). By Corollary 3.3,
the bimeasure µ determines a bounded linear functional on G2. It remains to
show that u satisfies the required weak∗-continuity property. To that end, let

µ̂(f, g) =

∫
f ⊗ g dµ, (f, g) ∈ L∞(X, ν1)× L∞(Y, ν2).

It suffices to show that µ̂ is weak∗-continuous in each argument separately.
Let g(0) ∈ L∞(Y, ν2) be given. Define a bounded linear functional Λ1 on

L∞(X, ν1) by

Λ1(f) =

∫
f ⊗ g(0) dµ, f ∈ L∞(X, ν1). (14)

By Proposition 3.2,

Λ1(f) =

∫
X

f(x)µg(0)(dx).

The measure µg(0) is absolutely continuous with respect to ν1 (see the proof of
Proposition 3.1). Therefore, by the (classical) Radon-Nikodým theorem, there
exists a function h ∈ L1(X, ν1) such that∫

X

fk(x)µg(0)(dx) =

∫
X

f(x)h(x) ν1(dx).

Consequently,
Λ1(f) = 〈h, f〉, f ∈ L∞(X, ν1),

where 〈·, ·〉 represents the dual action of L∞(X, ν1) on L1(X, ν1). This type
of linear functional defines the weak∗-topology on L∞(X, ν1), and so is weak∗-
continuous. A similar argument shows that g → µ̂(f (0), g) is weak∗ continuous
for fixed f (0). Therefore, µ determines an element of E1

2 , as required.
Now let u ∈ E1

2 . We show u determines an F2-measure µ that is absolutely
continuous with respect to ν1 × ν2. Recall that E1

2 = L1(X, ν1)⊗eh L1(Y, ν2) is
(by definition) a subspace of G∗2 =

(
L∞(X, ν1)⊗hL∞(Y, ν2)

)∗
. Denote this dual

action by 〈·, ·〉.
Define a set function µ on A×B by µ(A,B) = 〈1A ⊗ 1B , u〉. We show that

µ is countably additive in each argument separately. It suffices to check the first
argument.

Let (Aj)
∞
j=1 be a sequence of pairwise disjoint measurable sets in A. Let

A =
⋃∞
j=1Aj . For every h ∈ L1(X, ν1),

lim
N→∞

∫
X

N∑
j=1

1Aj (x)h(x) ν1(dx) =

∫
X

1A(x)h(x) ν1(dx),

by the Lebesgue dominated convergence theorem. Therefore,
∑N
j=1 1Aj

con-

verges to 1A in the weak∗-topology on L∞(X, ν1). By assumption, the map
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f → 〈f ⊗ g, u〉 is continuous in the weak∗-topology on L∞(X, ν1), for fixed
g ∈ L∞(Y, ν2). Consequently, for each B ∈ B,

lim
N→∞

N∑
j=1

〈1Aj
⊗ 1B , u〉 = 〈1A ⊗ 1B , u〉.

Therefore,
∑∞
j=1 µ(Aj , B) = µ(A,B), as required.

Next, we show that µ has finite Fréchet variation. Let (Aj)j and (Bk)k be
finite measurable partitions of A and B, respectively. Without loss of generality,
we may assume j, k ∈ {1, . . . , N} for some N ∈ N. Let εj and δk be complex

numbers with modulus 1 for each 1 ≤ j, k ≤ N . Finally, let f =
∑N
j=1 εj 1Aj

and g =
∑N
k=1 δk 1Bk

. Then

N∑
j,k=1

εj δk µ(Aj , Bk) =

N∑
j,k=1

εj δk 〈1Aj
⊗ 1Bk

, u〉 = 〈f ⊗ g, u〉.

By duality, |〈f ⊗ g, u〉| ≤ ‖f‖∞‖g‖∞ ‖u‖E12 = ‖u‖E12 , and so

∣∣∣ N∑
j,k=1

εj δk µ(Aj , Bk)
∣∣∣ ≤ ‖u‖E12 . (15)

The choice of partitions (Aj)j and (Bk)k, as well as complex numbers εj and
δk with modulus 1, was arbitrary, and hence we conclude that ‖µ‖F2

≤ ‖u‖E12 .
Therefore, µ has finite Fréchet variation, and so is a Fréchet measure.

It remains to show µ� ν1 × ν2. (Note that (13) follows from the density of
simple functions.) By Theorem 4.1, u has a weak∗-representation u =

∑
i∈I hi⊗

ki, where (hi, ki) ∈ L1(X, ν1)× L1(Y, ν2) for each i ∈ I. Let A ∈ A and B ∈ B
be measurable sets. Then 1A and 1B are bounded measurable functions, and
so there exists a countable index J such that

µ(A,B) = 〈1A⊗1B , u〉 =
∑
i∈J
〈hi,1A〉〈ki,1B〉 =

∑
i∈J

∫
A×B

hi(x) ki(y) (ν1×ν2)(dx, dy).

Suppose that ν1(A) = 0 or ν2(B) = 0. For each i ∈ J , the functions hi and ki
are integrable, and hence∫

A×B

∣∣hi(x) ki(y)
∣∣(ν1 × ν2)(dx, dy) = 0.

Thus,

|µ(A,B)| ≤
∑
i∈J

∫
A×B

∣∣hi(x) ki(y)
∣∣(ν1 × ν2)(dx, dy) = 0. (16)

Therefore, µ is absolutely continuous with respect to ν1 × ν2.

If (X,A, ν1) and (Y,B, ν2) are positive σ-finite measure spaces, then denote
by F2(ν1, ν2) the collection of all bimeasures on A × B that are absolutely
continuous with respect to ν1 × ν2.
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Corollary 4.6. Let (X,A, ν1) and (Y,B, ν2) be measure spaces with ν1 and ν2

positive σ-finite measures. Then F2(ν1, ν2) = L1(X, ν1)⊗eh L1(Y, ν2). Further-
more, if µ ∈ F2(ν1, ν2) corresponds to u ∈ E1

2 (as in Proposition 4.5), then

‖µ‖F2 ≤ ‖u‖E12 ≤ KG ‖µ‖F2 .

Proof. It follows from Proposition 4.5 that the two spaces coincide. It remains
only to show the relationship between the norms. For A ∈ A and B ∈ B,

µ(A,B) =

∫
1A ⊗ 1B dµ = 〈1A ⊗ 1B , u〉,

and consequently ‖µ‖F2
≤ ‖u‖E12 , using the argument that µ is an F2-measure

from Proposition 4.5. (See (15).)
Next, recall that the norm on the extended Haagerup tensor product E1

2 =
L1(ν1)⊗eh L1(ν2) is inherited from G∗2 = (L∞(ν1)⊗h L∞(ν2))∗. Consequently,
‖u‖E12 = sup |〈φ, u〉|, where the supremum is taken over all φ ∈ G2 such that
‖φ‖G2 ≤ 1. Since the algebraic tensor product L∞(ν1)⊗L∞(ν2) is dense in G2,
it suffices to consider φ as the finite sum of elementary tensors. In this case, it
is easy to see that 〈φ, u〉 =

∫
φdµ. By Corollary 3.3,∣∣∣ ∫ φdµ

∣∣∣ ≤ c2‖φ‖G2 ‖µ‖F2
.

Therefore, ‖u‖E12 ≤ c2 ‖µ‖F2 , as required, recalling that c2 = KG.

Suppose u ∈ E1
2 (ν1, ν2). By Theorem 4.1, there exists a weak∗-representation

of the element u, say u =
∑
i∈I hi⊗ki, where hi ∈ L1(X, ν1) and ki ∈ L1(Y, ν2)

for each i ∈ I, and ∥∥∥∑
i∈I

hi ? h
∗
i

∥∥∥1/2

∞

∥∥∥∑
i∈I

k∗i ? ki

∥∥∥1/2

∞
<∞.

This representation need not be unique, and I, which we call the associated
index set, may be uncountable. We define a function ψ on X × Y by

ψ(x, y) =
∑
i∈I

hi(x) ki(y), (x, y) ∈ X × Y. (17)

The sum in (17) is generally uncountable, and so there is no reason to assume
that ψ(x, y) exists in a pointwise sense. We call ψ a function and write ψ(x, y)
merely for convenience. We express ψ in terms of nets. Consider the directed
set {K : K ⊆ I} of finite subsets K of I. Then

ψ(x, y) = lim
K

∑
i∈K

hi(x) ki(y), (x, y) ∈ X × Y,

where the limit is actually a weak∗ limit taken over all finite subsets K of I.
For each finite subset K of I, define

ψK(x, y) =
∑
i∈K

hi(x) ki(y), (x, y) ∈ X × Y. (18)
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Then ψ = limK ψK , where K is taken from the finite subsets of I. Note that
ψK does determine an integrable function on X×Y , and so ψK(x, y) does have
a meaning.

Let ψ be given by a weak∗-representation of u, as in (17). Let

‖ψ‖ρ(u) =
∥∥∥∑
i∈I

hi ? h
∗
i

∥∥∥1/2

∞

∥∥∥∑
i∈I

k∗i ? ki

∥∥∥1/2

∞
.

Denote by ρ(u) the collection of all functions ψ that are weak∗-representation
of u, as defined in (17), for which ‖ψ‖ρ(u) < ∞. Then ‖u‖E12 = inf{‖ψ‖ρ(u) :
ψ ∈ ρ(u)} and there exists a ψ which achieves this infimum (see Theorem 4.1).
In particular, ρ(u) is not empty.

Remark 4.7. If ψK is defined as in (18), then ψK ∈ L1(X×Y, ν1×ν2) whenever
K is finite. Thus, ψ is the limit of a net of integrable functions, even though ψ
itself will in general not be integrable.

Remark 4.8. Let u ∈ E1
2 and let ψ ∈ ρ(u) be such that ‖ψ‖ρ(u) = ‖u‖E12 . We

think of ψ as being a representative of u in E1
2 , and so we (inaccurately) say

ψ ∈ E1
2 and write ‖ψ‖E12 for ‖u‖E12 .

We now state and prove the Radon-Nikodým theorem for bimeasures:

Theorem 4.9. Let (X,A) and (Y,B) be arbitrary measurable spaces and let µ
be in F2(A,B). Suppose ν1 and ν2 are positive σ-finite measures on A and B
(respectively). If µ� ν1 × ν2, then there exists a ψ ∈ E1

2 such that∫
φdµ =

∫
X×Y

φ(x, y)ψ(x, y) (ν1 × ν2)(dx, dy),

for all φ ∈ V2(ν1, ν2), and |
∫
φdµ| ≤ ‖φ‖V2 ‖ψ‖E12 .

Proof. Because ψ(x, y) is shorthand for a limit, the integral appearing in the
statement of the theorem is also a limit. What we mean to say is∫

φdµ = lim
K

∫
X×Y

φ(x, y)ψK(x, y) (ν1 × ν2)(dx, dy).

This limit exists, by assumption.
By Proposition 4.5, we view µ as an element of L1(X, ν1)⊗ehL1(Y, ν2). By

Theorem 4.1, µ can be given a weak∗-representation ψ =
∑
i∈I hi ⊗ ki, where I

is an index set and hi ∈ L1(X, ν1) and ki ∈ L1(Y, ν2) for each i ∈ I, and such
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that ‖ψ‖ρ(µ) = ‖µ‖E12 . Then, for (f, g) ∈ L∞(X, ν1)× L∞(Y, ν2),∫
f ⊗ g dµ = 〈f ⊗ g, ψ〉 =

∑
i∈I
〈hi, f〉〈ki, g〉

= lim
K

∑
i∈K

∫
X×Y

f(x)g(y)hi(x)ki(y) (ν1 × ν2)(dx, dy)

= lim
K

∫
X×Y

f(x)g(y)
(∑
i∈K

hi(x)ki(y)
)

(ν1 × ν2)(dx, dy)

= lim
K

∫
X×Y

f(x)g(y)ψK(x, y) (ν1 × ν2)(dx, dy),

(19)

where the limit is taken over finite subsets K of I. In (19), we implicitly made
use of Fubini’s theorem, which can be done because ψK ∈ L1(ν1 × ν2) for each
finite index set K.

Now let φ ∈ L∞(X, ν1) ⊗ L∞(Y, ν2). For any ε > 0, the function φ can

be given a pointwise representation φ(x, y) =
∑N
j=1 fj(x) gj(y), where (x, y) ∈

X×Y, N ∈ N, fj ∈ L∞(X, ν1) and gj ∈ L∞(Y, ν2) for each j ∈ {1, . . . , N}, and

such that
∑N
j=1

∥∥fj∥∥∞∥∥gj∥∥∞ ≤ ‖φ‖V2 + ε. Because the sum is finite, we have

∫
φdµ =

N∑
j=1

∫
fj ⊗ gj dµ =

N∑
j=1

〈fj ⊗ gj , ψ〉

= lim
K

∫
X×Y

( N∑
j=1

fj(x)gj(y)
)
ψK(x, y) (ν1 × ν2)(dx, dy)

= lim
K

∫
X×Y

φ(x, y)ψK(x, y) (ν1 × ν2)(dx, dy).

We thus conclude that∫
φdµ =

∫
X×Y

φ(x, y)ψ(x, y) (ν1 × ν2)(dx, dy).

By choice of representations,

∣∣∣ ∫ φdµ
∣∣∣ =

∣∣∣ N∑
j=1

〈fj ⊗ gj , ψ〉
∣∣∣ ≤ ∞∑

j=1

∥∥fj∥∥∞∥∥gj∥∥∞ ‖ψ‖E12 ≤ (‖φ‖V2 + ε
)
‖ψ‖E12 .

Taking the infimum over pointwise representations of φ, we have
∣∣ ∫ φdµ∣∣ ≤

‖φ‖V2 ‖ψ‖E12 . Because L∞(ν1) ⊗ L∞(ν2) is dense in V2(ν1, ν2), the proof is
complete.

Definition 4.10. If ψ ∈ E1
2 corresponds to µ ∈ F2(ν1, ν2) as in Theorem 4.9,

we call ψ a derivative of µ with respect to ν1 × ν2.
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Corollary 4.11. Let (X,A, ν1) and (Y,B, ν2) be positive σ-finite measure spaces.
If ψ is a function in E1

2 (ν1, ν2) and

µ(A,B) =

∫
A×B

ψ(x, y) ν1(dx) ν2(dy), (A,B) ∈ A× B,

then µ ∈ F2(ν1, ν2) and ψ is a derivative of µ with respect to ν1 × ν2.

Proof. This is a consequence of Proposition 4.5 and Theorem 4.9.

In Theorem 4.9, the integral
∫
φdµ was written in terms of integration over

the product space (X × Y, ν1 × ν2). The integral can also be iterated in the
following sense:

Proposition 4.12. Let (X,A, ν1) and (Y,B, ν2) be positive σ-finite measure
spaces. If ψ ∈ L1(ν1)⊗eh L1(ν2), then∫
X×Y

f(x) g(y)ψ(x, y) (ν1×ν2)(dx, dy) =

∫
X

f(x)

(∫
Y

g(y)ψ(x, y) ν2(dy)

)
ν1(dx),

for all (f, g) ∈ L∞(ν1)× L∞(ν2).

Proof. For each x ∈ X, let ψg(x) =
∫
Y
g(y)ψ(x, y) ν2(dy). Let ψ have weak∗

representation ψ =
∑
i∈I hi ⊗ ki. Then

ψg(x) = lim
K

∫
Y

g(y)
∑
i∈K

hi(x)ki(y) ν2(dy) = lim
K

∑
i∈K

hi(x)

∫
Y

g(y) ki(y) ν2(dy),

where the limit is taken over finite subsets K of I. Thus,

ψg = lim
K

∑
i∈K

hi〈ki, g〉 =
∑
i∈I

hi〈ki, g〉. (20)

The object in (20) is known as a right slice. (See, for example, [8, 16].) It is
known (e.g., [16, Theorem 2.4]) that the right slice of an element in the extended
Haagerup tensor product A⊗eh B lies in the operator space A. It follows that
ψg ∈ L1(ν1). In fact, if we choose ε : X → C with |ε(x)| = 1 a.e.(ν1) such that∫

X

∣∣∣ ∫
Y

g(y)ψ(x, y) ν2(dy)
∣∣∣ ν1(dx) =

∫
X

ε(x)

(∫
Y

g(y)ψ(x, y) ν2(dy)

)
ν1(dx),

then
‖ψg‖L1(ν1) = 〈ε⊗ g, ψ〉 ≤ ‖ε‖∞‖g‖∞‖ψ‖E12 = ‖g‖∞‖ψ‖E12 .

It remains to show the equality, but this follows from the dominated conver-
gence theorem, because, for given f and g, the sum defining ψ can be taken to
be countable.

Corollary 4.13. If µ ∈ F2(ν1, ν2) has derivative ψ and g ∈ L∞(ν2), then
µg(dx) = ψg ν1(dx).
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Remark 4.14. From Corollary 4.6, we see that the F2-measures that are abso-
lutely continuous with respect to ν1×ν2 coincide with the elements of G2(ν1, ν2)∗

that satisfy a certain weak∗-continuity property. By Theorem 2.3, we may iden-
tify G2(ν1, ν2) with V2(ν1, ν2), and consequently, we see that F2(ν1, ν2) cor-
responds to the bounded bilinear functionals on L∞(ν1) × L∞(ν2) that are
weak∗-continuous in each argument separately. It is the weak∗-continuity prop-
erty that coincides with countable additivity. It is easy to see, then, that the full
space G2(ν1, ν2)∗ corresponds to the space of finitely additive Fréchet measures
on A× B that are absolutely continuous with respect to ν1 × ν2.

5. A characterization of L1(ν1)⊗h L
1(ν2)

Let (X,A) and (Y,B) be measurable spaces and let ν1 and ν2 be positive
σ-finite measures on A and B, respectively. Denote by P2 = L1(ν1)⊗̌L1(ν2) the
completion of L1(ν1)⊗L1(ν2) in the injective tensor norm:

‖ψ‖P2
= sup

{
|ψ(f, g)| : ‖f‖∞ ≤ 1, ‖g‖∞ ≤ 1

}
.

(We use the letter P because of the relationship to Pettis integrable functions;
see, for example, [6, Chapter VIII].)

Suppose ψ ∈ L1(ν1) ⊗ L1(ν2), say ψ =
∑m
j=1 hi ⊗ ki. Then, for (f, g) in

L∞(ν1)× L∞(ν2),

ψ(f, g) =

m∑
j=1

〈hi, f〉〈ki, g〉 =

∫
X×Y

f(x)g(y)ψ(x, y) (ν1 × ν2)(dx, dy).

Since the sum is finite, the element ψ determines an L1-function on X×Y , and
so the set function

µ(E,F ) =

∫
X×Y

1E(x) 1F (y)ψ(x, y) (ν1 × ν2)(dx, dy)

determines a measure on A× B.
Let us compute the Fréchet variation of µ: Let (Em)Mm=1 be a finite measur-

able partition of A, and let (Fn)Nn=1 be a finite measurable partition of B. Next,
let εm and δn be complex numbers having modulus 1 for each 1 ≤ m ≤M and
1 ≤ n ≤ N . Furthermore, let f =

∑M
m=1 εm 1Em

and g =
∑N
n=1 δn 1Fn

. Then∑
m,n

εm δn µ(E,F ) =
∑
m,n

∫
X×Y

εm1Em
⊗ δn1Fn

ψ dν = ψ(f, g).

Consequently, ∣∣∣∑
m,n

εm δn µ(Em, Fn)
∣∣∣ ≤ ‖ψ‖P2 .

The choice of partitions and scalars was arbitrary, and so we conclude that
‖µ‖F2

≤ ‖ψ‖P2
.
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We have that ‖ψ‖P2 ≤ ‖ψ‖L1(ν1)⊗hL1(ν2) = ‖ψ‖L1(ν1)⊗ehL1(ν2). (The last
equality following from the fact that the Haagerup tensor product maps into
the extended Haagerup tensor product by a completely isometric injection; see
[9].) By Corollary 4.6, ‖ψ‖L1(ν1)⊗ehL1(ν2) ≤ KG‖µ‖F2

. Putting all of these
inequalities together, we have

‖ψ‖P2 ≤ ‖ψ‖L1(ν1)⊗hL1(ν2) ≤ KG‖µ‖F2 ≤ KG‖ψ‖P2 .

Thus, the norms ‖·‖L1(ν1)⊗hL1(ν2) and ‖·‖P2
are equivalent. Since both L1(ν1)⊗h

L1(ν2) and P2 are completions of L1(ν1)⊗L1(ν2), and the norms are equivalent,
we conclude the two spaces are the same. To summarize:

Proposition 5.1. If (X,A, ν1) and (Y,B, ν2) are positive σ-finite measure spaces,
then L1(ν1)⊗̌L1(ν2) = L1(ν1) ⊗h L1(ν2) and ‖ · ‖P2

≤ ‖ · ‖L1(ν1)⊗hL1(ν2) ≤
KG‖ · ‖P2

, where KG is the Grothendieck constant.

Remark 5.2. We let F2(N,N) denote the Fréchet measures on N × N. It is
known (for example, [3, Equation IV.6.9]) that F2(N,N) = `1⊗̌`1. This is a
consequence of the density of the algebraic tensor norm `1⊗`1 in the space
F2(N,N) [3, Theorem IV.6]. Proposition 5.1 can be viewed as a non-discrete
analogue of this result.

6. The general case

Our goal is to generalize the arguments of Section 4.3 to Fn-measures for n ≥
3. In dimensions greater than two, however, the Grothendieck and Haagerup
tensor products of L∞-spaces do not coincide, and so we can no longer work
within the framework of the extended Haagerup tensor product. We will over-
come this obstacle by defining the extended Grothendieck tensor product for
L1-spaces.

Let (X1,A1, ν1), . . . , (Xn,An, νn) be positive σ-finite measure spaces. We
define the extended Grothendieck tensor product L1(X1, ν1)⊗eg· · ·⊗egL1(Xn, νn)
to be the collection of all bounded linear maps Λ ∈ (L∞(X1, ν1) ⊗g · · · ⊗g
L∞(Xn, νn))∗ = Gn(ν1, . . . , νn)∗ such that, for each j, the map

fj → Λ
(
f1 ⊗ · · · ⊗ fj ⊗ · · · ⊗ fn

)
is continuous in the weak∗-topology on L∞(Xj , νj) for fixed fk ∈ L∞(Xk, νk),
k 6= j. We take the norm ‖ · ‖eg on L1(X1, ν1)⊗eg · · · ⊗eg L1(Xn, νn) to be the
one inherited from Gn(ν1, · · · , νn)∗.

Let

E1
n = E1

n(ν1, . . . , νn) = L1(X1, ν1)⊗eg · · · ⊗egL1(Xn, νn). (21)

In Section 4.3, we introduced the symbol E1
2 to denote the space L1(X, ν1)⊗eh

L1(Y, ν2). (See (12).) This does not result in any ambiguity, however, because
the extended Haagerup and extended Grothendieck tensor products coincide in
this case.
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If u ∈ E1
n(ν1, . . . , νn), we denote by ρ(u) the collection of all functions

ψ(x1, . . . , xn) =
∑
i∈I

g
(1)
i (x1) · · · g(n)

i (xn), (x1, . . . , xn) ∈ X1 × · · · ×Xn, (22)

such that u =
∑
i∈I g

(1)
i ⊗ · · · ⊗ g

(n)
i is a weak∗-representation of u in E1

n. As
in the case n = 2, the sum in (22) is generally uncountable and ψ may not
actually be a function. For convenience, we think of ψ as being a function that
represents u in E1

n and we say ψ ∈ E1
n and write ‖ψ‖E1n for ‖u‖E1n .

Let Fn(ν1, . . . , νn) denote the collection of µ ∈ Fn(A1, . . . ,An) that are
absolutely continuous with respect to ν1 × · · · × νn.

Theorem 6.1. Let (X1,A1, ν1), . . . , (Xn,An, νn) be positive σ-finite measure
spaces. Then µ ∈ Fn(ν1, . . . , νn) if and only if there exists a u ∈ E1

n(ν1, . . . , νn)
such that∫

f1 ⊗ · · · ⊗ fn dµ = 〈f1 ⊗ · · · ⊗ fn, u〉, fk ∈ L∞(Xk, νk), 1 ≤ k ≤ n.

If µ ∈ Fn corresponds to u ∈ E1
n, then ‖µ‖Fn

≤ ‖u‖E1n ≤ cn‖µ‖Fn
, where cn is

the constant in Theorem 2.3. Furthermore, if ψ ∈ ρ(u), then∫
φdµ =

∫
X1×···×Xn

φ(x1, . . . , xn)ψ(x1, . . . , xn) (ν1 × · · · × νn)(dx1, . . . , dxn),

for all φ ∈ Vn(ν1, . . . , νn), and |
∫
φdµ| ≤ ‖φ‖Vn ‖ψ‖E1n .

Proof. Let µ ∈ Fn(A1, . . . ,An) be such that µ� ν1×· · ·×νn. We wish to show
that the corresponding u is an element of L1(X1, ν1)⊗eg · · · ⊗egL1(Xn, νn). Let

µ̂(f1, . . . , fn) =

∫
f1 ⊗ · · · ⊗ fn dµ,

for all (f1, . . . , fn) ∈ L∞(X1, ν1) × · · · × L∞(Xn, νn). It suffices to show that
µ̂ is weak∗-continuous in each argument separately. Fix some k ∈ N such that

1 ≤ k ≤ n. For each j 6= k, let f
(0)
j ∈ L∞(Xj , νj) be given. Define a bounded

linear functional Λk on L∞(Xk, νk) by

Λk(fk) =

∫
f

(0)
1 ⊗ · · · ⊗ fk ⊗ · · · ⊗ f (0)

n dµ, fk ∈ L∞(Xk, νk). (23)

By Proposition 3.2,

Λk(fk) =

∫
Xk

fk(xk)µ⊗
j 6=k f

(0)
j

(dxk).

The measure µ⊗
j 6=k f

(0)
j

is absolutely continuous with respect to νk (Propo-

sition 3.1), and so (by the Radon-Nikodým theorem) there exists a function
gk ∈ L1(Xk, νk) such that∫

Xk

fk(xk)µ⊗
j 6=k f

(0)
j

(dxk) =

∫
Xk

fk(xk) gk(xk) νk(dxk).
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Consequently,
Λk(fk) = 〈gk, fk〉, fk ∈ L∞(Xk, νk),

where 〈·, ·〉 represents the dual action of L∞(Xk, νk) on L1(Xk, νk). Since this
is weak∗-continuous, and the choice of k was arbitrary, it follows that u is
an element of E1

n, as required. The remaining claims are proved using similar
arguments to those used in the proofs of Proposition 4.5, Corollary 4.6, and
Theorem 4.9.

As in the case n = 2, if ψ ∈ E1
n corresponds to µ ∈ Fn as in Theorem 6.1,

we call ψ a derivative of µ with respect to ν1 × · · · × νn.

7. A bounded convergence theorem?

The purpose of this note was to generalize the Radon-Nikodým theorem to
Fréchet measures. This complements the generalization of the Riesz represen-
tation theorem mentioned in the introduction. (See (2).) It is natural to ask if
the bounded convergence theorem can be similarly generalized.

Question 7.1. Let (X1,A1, ν1), . . . , (Xn,An, νn) be positive σ-finite measure
spaces, and suppose that µ ∈ Fn(ν1, . . . , νn). Let (φk)∞k=1 be a sequence of func-
tions that converge a.e.(ν1×· · ·×νn) and are uniformly bounded in Vn(ν1, . . . , νn);
i.e., supk ‖φk‖Vn <∞. Is it true that φ = limk→∞ φk a.e.(ν1 × · · · × νn) is in-
tegrable with respect to µ, and does it follow that

∫
φdµ = limk→∞

∫
φk dµ?

Functions of the type φ in Question 7.1 are members of the tilde algebra
of Vn(ν1, . . . , νn). Recall that Vn = Vn(ν1, . . . , νn) = L∞(ν1)⊗̂ · · · ⊗̂L∞(νn).

The tilde algebra of Vn, which is denote by Ṽn, is the collection of functions on
X = X1×· · ·×Xn that are almost everywhere (with respect to ν = ν1×· · ·×νn)
limits of functions φk ∈ Vn(ν1, . . . , νn), where the sequence (φk)∞k=1 is uniformly
bounded in the Vn norm. That is,

Ṽn =
{
φ ∈ L∞(X, ν) : φ = lim

k→∞
φk a.e.(ν), sup

k
‖φk‖Vn <∞

}
. (24)

The space Ṽn becomes a Banach algebra when equipped with the norm

‖φ‖Ṽn = inf
{

sup
k
‖φk‖Vn : φ = lim

k→∞
φk a.e.(ν), sup

k
‖φk‖Vn <∞

}
, (25)

Because Question 7.1 is a question about the integrability of functions in the
tilde algebra of Vn, it is sometimes called the tilde problem.
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[6] J. Diestel and J. Uhl, Jr., Vector Measures, no. 15 in Mathematical
Surveys, American Mathematical Society, first ed., 1977.

[7] I. Dobrakov, Multilinear integration of bounded scalar valued functions,
Math. Slovaca, 49 (1999), pp. 295–304.

[8] E. G. Effros and Z.-J. Ruan, Operator spaces, vol. 23 of London Math-
ematical Society Monographs. New Series, The Clarendon Press Oxford
University Press, New York, 2000.

[9] , Operator space tensor products and Hopf convolution algebras, J.
Operator Theory, 50 (2003), pp. 131–156.

[10] F. J. Fernández, P. Jiménez Guerra, and M. T. Ulecia, A Radon-
Nikodým theorem for vector polymeasures, J. Austral. Math. Soc. Ser. A,
66 (1999), pp. 189–200.
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