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Abstract

Marginal structural models for time-fixed treatments fit using inverse-probability weighted 

estimating equations are increasingly popular. Nonetheless, the resulting effect estimates are 

subject to finite-sample bias when data are sparse, as is typical for large-sample procedures. Here 

we propose a semi-Bayes estimation approach which penalizes or shrinks the estimated model 

parameters to improve finite-sample performance. This approach uses simple symmetric data-

augmentation priors. Limited simulation experiments indicate that the proposed approach reduces 

finite-sample bias and improves confidence-interval coverage when the true values lie within the 

central “hill” of the prior distribution. We illustrate the approach with data from a nonexperimental 

study of HIV treatments.
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1 | INTRODUCTION

Hernán et al. described a marginal structural Cox proportional hazards model (Cox MSM) 

for semiparametric survival regression with time-varying treatments (Hernán, Brumback & 

Robins, 2001). Effects of time-fixed treatments can also be estimated using MSM 

(Richardson, Kinlaw, MacLehose & Cole, 2015; Sato & Matsuyama, 2003). Conceptually, if 

we could observe the entire population under each treatment we would know the parameter 

value. In reality, we only observe a subset of the population, and this subset is restricted such 

that each patient is observed under only one treatment. Therefore, conditions are required to 

identify the population effect of a treatment beyond standard regularity conditions (Casella 

& Berger, 2002, p. 516). Identification is the ability to compute the parameter value that 

generated the data if the entire (factual but not counterfactual) population were observed. 

One set of sufficient identification conditions for inverse probability (IP)-weighted fitting of 

MSMs is: no interference (Hudgens & Halloran, 2008), treatment-version irrelevance 

(VanderWeele, 2009), no bias due to measurement error (Edwards, Cole & Westreich, 2015), 

conditional exchangeability (Hernán & Robins, 2006), positivity (Westreich & Cole, 2010), 

and correct model specification (Platt, Brookhart, Cole, Westreich & Schisterman, 2013). 

Correct specification is needed for the models used to construct the IP weights, as well as for 

the structural model used to relate the treatment with the outcome of interest.

In comparative effectiveness research, there is a desire to estimate long-term all-cause and 

cause-specific survival for a broad set of treatments. When the structural model used for this 

purpose is of moderate or high dimension relative to the amount of information available, 

penalized estimation (also known as shrinkage, ridge regression, and partial, empirical, 

hierarchical, or semi-Bayes estimation; Cox, 1975; Efron & Morris, 1971, 1972, 1973; 

Good, 1987, 1992; Good & Gaskins, 1971; Morris, 1983) can reduce mean-squared error 

and thereby improve the accuracy of reported effect estimates from epidemiologic data 

(Efron & Morris, 1973; Greenland, 1993,1997; Morris, 1983). The Cox proportional hazards 

model (Cox, 1972) is widely used in comparative effectiveness research, notwithstanding the 

notable finite-sample bias present in the standard partial-likelihood estimator (Johnson, 

Tolley, Bryson & Goldman, 1982). The IP-weighted estimator for the parameters of a Cox 

MSM inherits finite-sample bias from the Cox model, and this bias may be exacerbated by 

the use of IP weighting (Westreich, Cole, Schisterman & Platt, 2012). Specifically, both 

ordinary and IP-weighted partial-likelihood fitting of Cox models are subject to finite-

sample bias when the number of events per treatment group is not much larger than the 

number of model covariates. The present paper concentrates on specification of the 

structural model in the setting of a time-fixed treatment.

In Section 2, we review the Cox MSM and describe a semi-Bayes extension to the model to 

penalize the resulting estimates in proportion to their distance from a prior mean (usually 

zero, resulting in shrinkage of the estimates). In Section 3, we present a simulation 

experiment. In Section 4, we describe our motivating example using data from an ongoing 

NIH-funded multisite clinical cohort study of HIV-seropositive US adults (Kitahata et al., 

2008). We discuss implications of the proposed approach in Section 5.
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2 | METHODS

2.1 | Notation

The observed data consist of n individual records {Z, X, Y, Δ}i, where i = 1,..., n indexes 

patients. We suppress the patient index i below where possible to ease exposition. Uppercase 

letters represent random variables and lowercase letters represent possible realizations. The 

vector Z contains the multiple fixed covariates (at study entry). The vector Xj contains the j 
= 1,..., J fixed (at study entry) treatments; we assume each treatment in X has been centered 

and scaled so that 0 is a meaningful value and 1 is a meaningful unit difference in values. 

The observed survival time is Y = min(T, C), where T is the time from study entry to the 

event of interest and C is the time from study entry to right-censoring due to administrative 

end of study or loss to follow-up. If Y = T then the event indicator Δ = 1, else Δ = 0. We 

assume independent censoring given measured covariates, or formally f{T|Z, X} = f{T|Z, X, 
C}, where f(·|·) is the conditional density function. We also assume that measurement error 

is negligible (Hernán & Cole, 2009) and independent between individual processes, 

including negligible interference (Hudgens & Halloran, 2008).

2.2 | Cox MSM

A possible treatment is denoted by x. The potential survival time indexed by this possible 

treatment is Tx. A particular potential survival time Tx is factual and thus may be observed if 

X = x, and there is only one version of treatment and no measurement error. When there are 

multiple versions of treatment (i.e., differences in treatments within a given recognized level 

of treatment), we must either refine the treatment definition to account for this multiplicity, 

or assume that treatment version is irrelevant (potential outcomes are independent of 

version; Cole & Frangakis, 2009; VanderWeele, 2009). A marginal structural Cox 

proportional hazards regression model is then

h
Tx(t) = h0(t)exp xβ , (1)

where h0(t) is the reference hazard function for x = 0, β = (β1,...,βJ), and exp(βj) is the causal 

hazard ratio for a unit change in treatment component xj. The contribution to the weighted 

partial-likelihood corresponding to participant i failing at time yi is

Li(β) = Ri yi exp Xiβ / ∑
k = 1

n
Rk yi wk yi exp Xkβ

wi yi
,

where Ri(y) is an indicator of being in the risk set at time y and wi(y) is the estimated 

stabilized IP weight. We denote by β the estimator obtained by maximizing ∏i = 1
n Li(β).

The IP weight is typically the product of treatment and censoring weights, specifically 

w(t) = wXwC(t). In general, the IP weight is a product of component weights, with one 
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component weight for each conditional exchangeability assumption. The treatment 

(exposure) weight is

wi
X =

f Xi
f Xi Zi

.

The denominator of this weight corresponds to each participant’s probability of receiving 

their treatment, given the covariates. The censoring weight is

wi
C(t) = ∏k = 0

t f Ci(k) = 0 Ci(k − 1) = 0, X / f Ci(k) = 0 C j(k − 1) = 0, Xi, Zi ,

where C(k) = C(0), C(1), …, C(k) . The denominator of this weight corresponds to each 

participant’s probability of remaining uncensored up to time t, given the covariates.

Weighting the observed data by these IP weights simulates observing a pseudopopulation in 

which treatment and censoring are unrelated to the measured covariates Z. Consistency of 

the estimator β for treatment effects on the log-hazard follows from a conditional 

exchangeability assumption, namely the assumption of weak sequential ignorability (no 

uncontrolled confounding). Specifically, we assume that treatment is mean-independent of 

each potential outcome given covariates, E(X |Z) = E X |Z, Tx . An analogous exchangeability 

assumption must hold for censoring. We also assume correct specification of the models 

used to estimate the IP weights and correct specification of the hazard model (1).

The standard asymptotic variance estimator for the partial likelihood is not used because β is 

a weighted M-estimator (Stefanski & Boos, 2002; Tsiatis, 2006), not a maximum likelihood 

estimator (MLE). Thus, we instead use the standard asymptotic robust (sandwich) variance 

estimator, which is conservative in this setting (Hernán et al., 2001).

2.3 | Semi-Bayes Cox MSM

Semi-Bayes (partial-Bayes) methods place prior distributions only on select parameters 

(Cox, 1975; Greenland, 1992), and can therefore be seen as a Bayes/non-Bayes synthesis 

(Efron & Morris, 1971, 1972; Good, 1987, 1992; Greenland, 2010). Semi-Bayes methods 

may be motivated as shrinkage estimators that employ log prior densities as penalties to 

improve frequency properties of point estimators (such as mean-squared error). These 

penalties can also improve confidence-interval coverage when the true values of the 

penalized parameters are in the region of high prior density. We explore these claims below. 

Unpenalized parameters are those for which prior information is not used, presumably 

because it is either so weak as to be ignorable, or too difficult or controversial to formulate 

as a prior distribution.

The fitting method we will employ subtracts a penalty from the IP-weighted log partial 

likelihood that will shrink the resulting semi-Bayes estimates βsb away from the weighted 

partial-likelihood estimates β and toward a prior value m = m1, …, mJ . A common penalty 
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is the quadratic penalty, a sum of squared standardized differences between the individual 

components of β and m. The resulting penalized log partial likelihood is

log L(β) − (β − m)′I p(β − m)/2,

where Ip is the penalty-information matrix, here assumed diagonal with diagonal elements 

1/vj, and vj is the prior variance for treatment j. This penalty is equivalent to a log density 

from a multivariate-normal prior with mean vector m and covariance matrix I p
−1, and 

corresponds to using independent lognormal priors for the hazard ratios exp(βj). We 

maximize this penalized IP-weighted log partial likelihood to obtain the semi-Bayes 

estimate βsb, and again use the standard asymptotic robust (sandwich) variance estimator.

We also used log-F(d, d) prior densities (Greenland, 2007a), which are symmetric and 

heavier tailed than the normal, lighter tailed than t priors, and which approach normality as d 
increases (Greenland & Mansournia, 2015). These priors have density identical to the 

standard logistic distribution, with density proportional to exp βd
2 / 1 + exp(β) d and hence 

penalty βd
2 − dlog 1 + exp(β) ; for d = 2 this prior is identical to the standard logistic 

distribution, with density proportional to exp(β)/ 1 + exp(β) 2. These densities are members 

of the generalized conjugate family for log-linear models, thus simplifying computation as 

described below, and correspond to using independent F priors on the hazard ratios exp(βj).

2.4 | Fitting methods

We use data augmentation to implement the penalization (Greenland, 2003, 2007a, 2007b), 

which corresponds to fitting the stratified Cox model

h
Tx(t) = h0 jk(t)exp xβ , j = 0, 1, 2, …, J, k = 0, 1,

where j = k = 0 indicates the actual data hazard function and treatment vector, and j > 0, k = 

0, 1 indexes the augmenting pseudodata encoding the prior information about β (prior data). 

The observed data comprise a stratum indexed here as k = 0, j = 0; the augmentation data 

comprise J pairs of strata indexed by j > 0, each containing two records indexed by k = 0, 1. 

The pseudodata xj are set to values which generate a likelihood contribution proportional to 

the desired prior density for β.

The “prior data” that generate a normal density for βj with mean mj and variance vj consist 

of four records. These four records are constructed as two matched-pairs (Greenland, 2003; 

Greenland & Christensen, 2001; Sullivan & Greenland, 2013). All four records have time Y 
= 1. The first pair has one record with a treated outcome event and one record with an 

untreated censoring event. The second pair has one record with an untreated outcome event 

and one record with a treated censoring event. To impose normal priors we employ a scaling 

factor s j = A/ 2/v j , where A = 400 is the prior-data event count and vj is the prior variance 
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for βj. This prior event count A is set arbitrarily large to improve the normal approximation 

of the data prior (Sullivan & Greenland, 2013). The count A is used as a frequency weight 

for the prior record, while the IP weights are set to 1 for all four prior-data records. The prior 

records also include a rescaled treatment indicator X j = 1/s j, while all other treatment 

indicators and covariates are set to 0. (While beyond the scope of this paper, if some prior 

means mj are nonzero, the prior records must also include an offset variable f j = − m j/s j, 

which is set to 0 in the actual-data records.)

Each set of four records representing a prior data set for βj are entered in the weighted Cox 

model as two distinct strata, one for each pair. The correctness of the prior data can thus be 

checked by running a Cox regression on these four weighted records alone with Xj entered 

as the only covariate in the model; the resulting estimate of βj should equal mj with standard 

error υ j
1/2.

The prior data that generate a log-F(d, d) density for βj are as described above with two 

alterations (Greenland, 2007a; Sullivan & Greenland 2013). First, we set A = d/2. Second, 

no scaling is required (i.e., sj = 1). The prior data for a hazard ratio thus again consist of four 

records (in two matched-pairs) with frequency weight d/2, which combined represent d 
events and 2d observations, with treatment indicator Xj = 1, all other treatment indicators 

and covariates set to 0. (Again, while beyond the scope of this paper, if there are nonzero mj, 

an offset variable is added that is f j = − m j in the prior records and 0 in the actual records.) 

The correctness of these prior data can again be checked by running a Cox regression on the 

four weighted records alone; the resulting estimate of βj should equal mj with reported 

standard error of 4/d. Further details on data augmentation for Bayesian and penalized 

estimation can be found in references (Bedrick, Christensen & Johnson, 1996; Cole, Chu & 

Greenland, 2014; Cole, Chu, Greenland, Hamra & Richardson, 2012; Disacciati, Orsini & 

Greenland, 2015; Greenland, 2003,2007a, 2007b, 2009a, 2009b; Sullivan & Greenland, 

2013).

When using perfectly tied event times (as given in the prior augmentation data) in a Cox 

model with Breslow’s method for ties, the robust variance option in SAS and R employ an 

adjustment that yields a variance contribution from the prior data that is 1/2 the desired prior 

variance. Therefore, one must undo this adjustment, which we accomplished using prior data 

with 1/2 the pair-weights dictated by the above theory to double the variance. Thus, the 

frequency weights become A/2 for the normal prior records and d/4 for the log-F prior 

records. Table A1 presents these “prior data” for the log-F(2,2) application discussed in 

Section 4.

3 | SIMULATIONS

3.1 | Experimental design

We explored select finite-sample properties of our approach in a setting similar to our 

example (see Section 4), simulating a cohort of size 10,000 with 200 events with fixed 

treatment and confounders, and 5000 iterations of the simulation.
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We used a binary confounder Z with probability 1/2 for Z = 1. The probability of receiving 

the reference treatment had a marginal probability of 1/5, dependent on Z. If not treated with 

the referent, one of nine possible alternative treatments had equal probability, each with 

marginal probability 4/45 ≈ 0.09. The potential outcome under the reference treatment was 

an exponential random variable T denoting time from treatment assignment to death, with 

rate parameter dependent on Z. We calculated the potential outcomes under each of the 

possible alternative treatments by multiplying the reference potential time by the set: 0.2, 

0.25, 0.33, 0.5, 1, 2, 3, 4, and 5, corresponding to alternative treatments 1, 2, 3, 4, 5, 6, 7, 8, 

and 9, respectively. We right-censored the combined data at the second percentile of the 

distribution of T, such that we have 2% events overall. This scenario represents moderate 

confounding as the binary confounder Z increased the hazard of the outcome 2.72 = exp(1) 

times and also increased the probability of any nonreferent treatment 2.72 = exp(1) times, 

but did not influence which of the non-referent treatments were chosen.

We fit three different Cox models for the treatment: unweighted, without the covariate Z 
(i.e., unadjusted); an IP-weighted Cox model with Z (i.e., a standard marginal structural 

model); and a penalized and IP-weighted Cox model with Z. While a standard Z-adjusted 

Cox model could be used in this setting to obtained unbiased covariate-conditional hazard 

ratios, our intent here is to estimate the covariate-marginal hazard ratios (as in classical 

direct standardization of rates). The time-fixed IP-weights were estimated using a 

polytomous logistic regression model, with the 10-level treatment variable as the outcome 

and the sole covariate Z; these weights were stabilized by the marginal distribution of the 

treatments as shown in Section 2.2.

We append prior data to the simulation data to implement penalization as described in 

Section 2, with the priors for each treatment coefficient centered on zero (m = 0). The first 

set of priors for the βj were normal with 95% of prior probability for each exp(βj) between 

either 1/500 and 500, 1/40 and 40, 1/16 and 16, 1/8 and 8, 1/5 and 5, 1/4 and 4, or 1/4 and 2 

(corresponding to variances of 10, 3.54, 2, 1.13, 0.67, 0.50, and 0.125). The second set of 

priors were log-F(d, d) with 95% of prior probability for each exp(βj) between either 1/648 

and 648, 1/39 and 39, 1/15.4 and 15.4, 1/7.15 and 7.15, 1/5 and 5, 1/4 and 4, or 1/2 and 2 

(corresponding to d = 1, 2, 3, 5, 7, 9, and 33.1).

We calculated percent bias as the ratio of the geometric mean of the 5000 estimated hazard 

ratios (the antilog of the simulated mean of β j) divided by the true hazard ratio 

R j = exp β j(true) , minus 1 times 100. We calculated the “average” standard error of 

coefficient estimates as the square root of the average of the 5000 robust variance estimates, 

and the Monte Carlo standard error as the standard deviation of the 5000 estimated log 

hazard ratios. We calculated the root mean squared error, where the mean-squared error was 

defined as the squared bias plus the squared MC standard error. We calculated the 95% 

confidence-interval coverage as the percent of the 5000 Wald-type confidence intervals 

(using the robust variance) that included the true value; when 94.0% coverage is observed 

this leads to a 95% confidence interval for our simulation coverage of 

Cole et al. Page 7

Biom J. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



94.0 ± 1.96 6.0 × 94.0
5000

1/2
= 93.3, 94.7. Finally, we calculated the geometric mean length of 

the 95% confidence intervals.

3.2 | Experimental results

Results of simulations for percent bias are provided in Table 1. The unadjusted estimates are 

biased as expected due to confounding. The weighted estimates are decreasingly biased as 

the effect of the treatment compared to the referent becomes more harmful. This is as 

expected because when the effect of treatment becomes more harmful, we increase the 

number of events and thereby reduce finite-sample bias. The sensitivity of the weighted 

results to finite-sample bias is seen most clearly for the most protective treatment where the 

true hazard ratio is 0.2, while finite-sample bias does not appear to notably affect the more 

harmful treatments (e.g., true hazard ratios of 2, 3, 4, and 5).

As expected, the finite-sample bias exaggerates protective effects away from the null (here, 

downwards) because such finite-sample bias skews the partial likelihood toward infinity. 

Note that this finite-sample bias (due to the small number of events) is a separate issue from 

the large-sample confounding bias. Bias is similar for the normal and log-F penalized IP-

weighted Cox model estimates, especially when the prior variance was 2/3 or less. The 

penalized IP-weighted Cox model estimators exhibit little bias when penalization is weak, 

but show increasing bias toward the null (the prior center) as the penalization becomes 

stronger, which is especially apparent for the most harmful treatments when finite-sample 

bias is negligible.

Results of simulations for percent 95% confidence interval coverage are provided in Table 2. 

Confidence-interval coverage for the unpenalized IP-weighted estimator is 91% or less for 

true hazard ratios of 0.2 and 0.25, but 94% or more for true hazard ratios of 0.33 or larger, 

where finite-sample bias becomes unapparent. Both normal and log-F penalized IP-weighted 

estimators exhibit adequate coverage when penalization is weak, but poor coverage when the 

penalization becomes strong (i.e., when the prior variance is 1/2 or less), especially for the 

most protective treatments (those furthest from the center of the prior). The normal priors 

undercover when there is substantial finite-sample bias (i.e., true hazard ratio of 1/3 or 

smaller).

Results of simulations for the Monte Carlo standard error and confidence-interval precision 

are provided in Tables 3 and 4, respectively. The standard error decreases and hence 

precision increases both as a function of stronger penalization and as the true hazard ratio 

becomes larger. While the Monte Carlo standard errors are similar for analogous normal and 

log-F priors, the heavier tails of the log-F priors result in wider confidence intervals and 

somewhat better coverage (Table 2).

Results for root mean squared error are shown in Figure 1. Both panels show increasing 

mean-squared error as the treatments become more protective for both unadjusted and the 

unpenalized IP-weighted estimators. The IP-weighted estimators have notably higher mean-

squared error for the most protective treatments. The strongest prior examined (i.e., prior 

variance of 0.125) exhibits a low root mean squared error until the true hazard ratio was 1/2 
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or lower, thereafter this prior performs worse than the weaker priors examined. We chose the 

log-F(2,2) as the primary prior for the application because it exhibited relatively small bias 

in the range of hazard ratios we expect to see, and had slightly better interval coverage than 

the analogous (variance 3.54) normal prior, albeit at the expense of slightly increased width.

4 | APPLICATION

4.1 | Description of study and data

We compare 1-year all-cause mortality for 21 initial antiretroviral therapy treatments 

(Hammer et al., 2006; Thompson et al., 2012) each prescribed to at least 50 patients in the 

CFAR (Centers for AIDS Research) Network for Integrated Clinical Systems (CNICS) 

cohort between January 1998 and October 2013. Investigators may request data from the 

CNICS study by submitting a proposal at https://www.uab.edu/cnics/submit-proposal. We 

combine the remaining less common treatment plans into an “other” category, so that J = 22 

in this example. We estimate hazard ratios comparing mortality under each treatment with 

mortality under a reference treatment consisting of efavirenz, emtricitabine, and tenofovir, 

which was the most prevalent treatment during the study period.

The study entry coincides with initiation of HIV treatment, which is the time origin for the 

present pseudoexperiment (i.e., observational study). Eligible patients have no reported 

history of prior antiretroviral therapy use. While changes in HIV treatment plan may occur 

over follow-up, here we concentrate on the observational intent-to-treat estimator that 

ignores changes in treatment (see Cole, Hernán, Margolick, Cohen & Robins, 2005, p. 476).

The outcome of central interest is all-cause mortality, which obviates issues of competing 

risks (Lau, Cole & Gange, 2009). We have no right-censoring due to dropout because all 

patients, regardless of clinic follow-up status, were followed for all-cause mortality using the 

US Social Security Death Index.

In this example the treatment, type of initial HIV therapy, X is fixed at a constant value at 

therapy initiation. Consequently, confounders Z are also fixed at their value at HIV therapy 

initiation. The measured covariates are age, sex, race/ethnicity, CD4 count (cells/mm3), 

HIV-1 viral load (copies/ml), history of injection drug use, history of male sex with men, 

history of one or more AIDS diagnoses, and HBV/HCV coinfection, all measured prior to 

therapy initiation. The stabilized IP weights were estimated using maximum likelihood 

multinomial logistic regression of treatment regimen on the measured covariates (potential 

confounders) as the regressors. For each record, the resulting fitted treatment probability for 

the record enters the denominator of the weight, while the observed proportion in the 

treatment group of the record (which is the fitted marginal probability of treatment with no 

covariate adjustment) enters the numerator (Cole & Hernán, 2008; Hernán et al., 2001). 

Continuous covariates were modeled using restricted quadratic splines with four knots 

placed at the covariate’s 5, 35, 65, and 95 percentiles (Howe et al., 2011).

4.2 | Augmentation data

With the reference treatment consisting of efavirenz, emtricitabine and tenofovir, we 

assumed for every other treatment independent priors with log-F(2,2) priors for each βj, 
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which implies 95% prior probability that the hazard ratio is between 1/39 and 39 and is thus 

only very weakly informative. In terms of information content under the Cox model, it 

corresponds to previously observing one exposed and one unexposed event in matched-pairs 

randomized to each treatment plan. Penalization using other priors examined in the 

simulation altered results as expected based on the simulations (data not shown).

4.3 | Example results

Table 5 provides the characteristics of the 10,064 patients. Table 6 provides the distributions 

of the patients and deaths and antiretroviral therapy treatment regimens. Common treatments 

(with more than 5% of patients) included EFV-FTC-TDF (i.e.,the reference treatment), as 

well as FTC-TDF-ATV/r, FTC-TDF-DRV/r, and EFV-3TC-ZDV. Notably, 12% of patients 

were given one of a large number of infrequently used (i.e., less than 50 patients) other 

treatments.

Table 7 provides the unadjusted, unpenalized IP-weighted, and penalized IP-weighted Cox 

hazard ratios and 95% confidence intervals for 1-year mortality. For the penalized IP-

weighted results, compared to the reference treatment many of the 21 other treatments 

exhibited elevated hazard ratios for 1-year mortality. Ten regimens exhibited a hazard ratio 

larger than 1.5, two of which had 95% confidence intervals that excluded the null value of 1 

(i.e., other regimen and 3TC-LPV/r-TDF). As expected, penalized estimates were closer to 

the null with notably tighter confidence intervals. In particular, we obtain a penalized 

estimate for the treatment ATV/r-3TC-TDF, whereas standard approaches failed to provide 

an estimate.

5 | DISCUSSION

Both ordinary (Johnson et al., 1982) and IP-weighted (Westreich et al., 2012) partial-

likelihood fitting of Cox models are subject to finite-sample bias when the number of events 

per treatment group is not much larger than the number of model covariates. To reduce this 

problem, we have presented a semi-Bayes approach to penalize the estimated coefficients in 

the marginal structural hazard model, paralleling methods for ordinary Cox models 

(Greenland & Christensen, 2001; Verweij & Van Houwelingen, 1994). The proposed 

approach was examined in a limited simulation study, and in an example where there were 

multiple versions of initial treatment.

The log-F(2,2) prior used here is a standard logistic distribution, which corresponds to 

adding one record with each outcome to a discrete-outcome data set. It thus can be viewed 

as a generalization of Laplace’s law of succession (Laplace, 1814, p. 19; Greenland & 

Mansournia, 2015) to coefficient estimation (Greenland & Mansournia, 2015). There are 

other approaches to stabilize estimates from Cox models, including Firth’s bias adjustment, 

which corresponds to use of the Jeffreys invariant prior for penalization (Firth, 1993), and 

which is implemented in several software packages (Coveney, 2015; Heinze, & Ploner, 

2002) including SAS, Stata, and Statistica. The Firth adjustment reduces to the log-F(1,1) 

prior when only indicators in orthogonal designs are being penalized but otherwise has no 

straightforward Bayesian interpretation in terms of contextual prior information, and in fact 
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depends on the data through the observed information matrix (Greenland & Mansournia, 

2015).

Under standard first-order asymptotics, the penalized estimators are (such as the MLE) 

normal, unbiased, and equivalent to the standard (unpenalized) estimator, but this 

equivalence breaks down at higher orders and hence in finite samples. For example, to 

second order the MLE is biased away from the null (often severely) while the posterior 

mode using a Firth penalty (Jeffreys prior) is unbiased (Firth, 1993). In finite samples, as the 

prior precision 1/v or the prior sample size d grows, the penalized estimators become 

increasingly biased toward the prior mean m.

The extent of penalization varies with the prior, and the substantive impact on estimates of 

the prior should be explored before inferences are used to set policy or guidelines 

(Greenland & Mansournia, 2015). In particular, in finite samples where uncertainty about βj 

is high, one should choose relatively small values for the penalty tuning parameters (i.e., 1/v 
for the quadratic/normal penalty or d for the log-F penalty). For example, the simulations 

presented here suggest that independent null-centered log-F(2,2) priors perform well (with 

respect to minimizing mean-squared error) when treatment effects are in the neighborhood 

of a hazard ratio of 0.2 to 5, which is typical of much epidemiologic research.

There are two basic approaches to selecting the penalty tuning parameter. The empirical-

Bayes approach estimates the parameter from the data (e.g., using marginal maximum 

likelihood or cross-validation), which requires accounting for this estimation step in 

subsequent computation of interval estimates and tests. We do not explore this approach, 

which can be computationally involved (Carlin & Louis, 2010). The second, simpler 

approach is classical Bayes, in which the parameter is specified on a priori grounds. This can 

be done by examining the prior probability intervals for the penalized regression 

coefficients, as implied by various choices for the parameter, then choosing a parameter 

value that leads to intervals which agree well with results inferred from information outside 

the current study (Greenland, 1992, 1993, 2003, 2007a, 2007b).

In practice, there is an impression that both of these approaches tend to lead to excessive 

shrinkage relative to what might be desired based on more careful considerations of possible 

costs of false negatives and false positives. This concern has led to a “conservative” variation 

on Bayes, which sets the tuning parameter just large enough to render recognizably extreme 

coefficient values as highly improbable, without leading to a highly informative 

concentration of prior probability near the null. For example, in detailed epidemiologic 

comparative effectiveness research, hazard ratios for study treatments are typically expected 

to fall in a range of roughly 1/5 to 5 and are rarely found far outside that range, because truly 

large effects tend to be detected and confirmed well before such sophisticated analyses are 

initiated. Assuming the outcome is a rare disease, this observation could be incorporated into 

the penalty by setting v = 1/2 or d = 9 for the penalty on a coefficient β in a Cox model, both 

of which lead to (1/4, 4) as a 95% prior probability interval for the approximate hazard ratio 

exp(β). When large effects are considered reasonable possibilities, one could reduce d 
further, for example, d = 3 and d = 1 correspond approximately to 95% prior probability for 

exp(β) in (1/16, 16) and (1/40, 40), respectively.
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Here, we penalized the parameters in the structural (potential outcome) model. We could 

have instead or also penalized the parameters in the models used to construct the IP weights. 

In our example, however, we did not expect the weight models to require such stabilization 

because the smallest treatment group consisted of 50 people, and there were relatively few 

parameters in the weight models. Others have explored Bayesian methods for marginal 

structural modeling that involve priors for the parameters of the weight models (Saarela, 

Stephens, Moodie & Klein, 2015). While these and other partially Bayesian approaches can 

improve the frequency properties (calibration) of estimators, fully Bayesian inference is 

infeasible in typical sparse-data settings due to the breakdown of classical finite-dimensional 

asymptotic properties of the likelihood (Robins, Hernán & Wasserman, 2015).

For time-fixed treatments, marginal structural Cox models provide consistent estimates of 

causal effects of treatment under the equally strict conditions required by standard Cox 

proportional hazards models. Cox MSM analyses estimate marginal treatment effects, which 

compare hazards averaged (standardized) over the sample covariate distribution, while 

ordinary Cox models estimate covariate-conditional treatment effects. These estimates can 

differ even in the absence of confounding because the hazard ratio is not collapsible 

(Greenland, 1996). As described here, penalization does not alter the target parameter. 

Therefore, the identification conditions are unaltered by the use of a penalized estimator. 

Moreover, the penalized estimator remains a consistent estimator of the parameter of 

interest, as long as the prior information is not a function of sample size. In finite-samples 

when estimates are shrunk toward the null (i.e., m = 0), accompanying confidence intervals 

will likewise be shifted toward the null and tests based on the confidence limit closest to the 

null value will be somewhat conservative.

When treatment is time-varying, Cox MSMs maintain consistency under feedback between 

time-varying treatments and time-varying confounders, while standard time-dependent Cox 

models do not (Hernán et al., 2001). Future work is needed to assess penalization of a Cox 

MSM in the setting of time-varying treatments, though theory suggests similar benefits 

would be found.

Our example is a nonrandomized study analyzed to parallel an experiment in which the 

initial HIV treatment is randomized and then assigned treatment is analyzed using an 

intention-to-treat approach, ignoring subsequent regimen nonadherence. Because patients 

were not randomized to an HIV treatment, we accounted for confounding by measured 

factors through IP weighting (Hernán et al., 2001; Robins, 1999; Robins, Hernán & 

Brumback, 2000; Westreich et al., 2012). Nonetheless, uncontrolled confounding may 

explain some or all of the results.

Measurement errors for select patient characteristics (e.g., age, sex), assigned treatment, and 

mortality are likely negligible. The impact of measurement errors for other controlled factors 

(e.g., injection drug use) is unknown, but would be negligible if either the errors are small or 

if there is relatively modest confounding by these factors (Greenland & Robins, 1985). 

Selection bias would be negligible because few patients were excluded at entry and no 

patients were lost to follow-up. The generalizability of our results is uncertain, although 

recent work suggests that the CNICS cohort may be largely representative of the US HIV 

Cole et al. Page 12

Biom J. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



epidemic (Lesko et al., 2016). These caveats would however apply to any standard method 

as well as all of the analyses we conducted. Within that scope, it appears to us that the 

results obtained from weakly informative priors are preferable to the usual unpenalized 

results when we combine frequentist accuracy considerations with background information 

that the effects under study are probably quite limited.
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APPENDIX

TABLE A1

Log-F(2,2) prior augmentation data example

Record
identifler Regimen

Prior 
hazard
ratio, 
hr Time

IP-
weight

Frequency
weight, A

a
Strata

Regimen
1 …

Regimen
k …

Regimen
22

Event
indicator

Offset,
f

1 1 1.0 1 1 0.5 1 1 … 0 … 0 l 0
b

2 1 1.0 1 1 0.5 1 0 … 0 … 0 0 0

3 1 1.0 1 1 0.5 2 0 … 0 … 0 1 0

4 1 1.0 1 1 0.5 2 1 … 0 … 0 0 0
b

… … … … … … … … … … … … … …

85 22 1.0 1 1 0.5 43 0 … 0 … 1 1 0
b

86 22 1.0 1 1 0.5 43 0 … 0 … 0 0 0

87 22 1.0 1 1 0.5 44 0 … 0 … 0 1 0

88 22 1.0 1 1 0.5 44 0 … 0 … 1 0 0
b

a
Noninteger frequency weight is A = (d/4), correcting for the robust variance in SAS or R (see text).

b
Offset is f = −log(hr).
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FIGURE 1. 
Root mean squared error by true hazard ratio, 5000 simulations of 10,000 participants with 

200 events

Note: Left panel displays normal priors, right panel log-F priors.
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TABLE 1

Percent bias in hazard ratio
a
 from 5000 simulations of 10,000 participants with 200 events

b

True hazard ratio (expected number of events)

0.2 (2.3) 0.25 (2.8) 0.33 (3.8) 0.5 (5.7) 1 (11.2) 2 (22.5) 3 (33.4) 4 (44.3) 5 (54.8)

Model

 Crude −66      −46      −15      13      22      27      28      29      29      

 Weighted −73      −57      −33      −10      −3      1      1      2      2      

 Normal priors

  Intervals Variance                                                       

  1/500, 500 10.0 −19      −16      −12      −7      −3      <1      1      2      2      

  1/40, 40   3.54 −6      −7      −7      −5      −3      <1      <1      1      1      

  1/16, 16   2.00 4      <1      −2      −3      −3      −1      <1      1      <1      

  1/8, 8   1.13 18      11      4      −1      −4      −2      −2      −1      −1      

  1/5, 5   0.67 35      23      12      2      −5      −4      −4      −3      −3      

  1/2, 4   0.50 46      31      17      5      −6      −6      −6      −5      −5      

  1/2, 2   0.125 118      84      51      19      −12      −21      −23      −22      −22      

 Log-F(d,d) priors

  Intervals Variance d                                                       

  1/648, 648   9.87 1 −15      −13      −10      −6      −3      <1      <1      1      1      

  1/39, 39   3.29 2 −3      −4      −5      −4      −3      −1      <1      1      1      

  1/15.4, 15.4   1.87 3 7      3      <1      −2      −4      −1      −1      <1      <1      

  1/7.15, 7.15   0.98 5 22      14      7      1      −4      −3      −2      −1      −2      

  1/5, 5   0.66 7 34      23      13      3      −5      −4      −4      −3      −3      

  ¼,4   0.50 9 45      31      18      5      −5      −6      −6      −5      −5      

  1/2, 2   0.125 33.1 118      85      52      20      −10      −20      −21      −21      −20      

a
100 × exp(average coefficient estimate)/(True hazard ratio), minus 100.

b
20% of participants exposed to the reference treatment (19.4 expected events), 9% to each of these nine comparator treatments.
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TABLE 2

Percent coverage of true hazard ratios by Wald-type 95% confidence intervals from 5000 simulations of 

10,000 participants with 200 events
a

True hazard ratio (expected number of events)

0.2 (2.3) 0.25 (2.8) 0.33 (3.8) 0.5 (5.7) 1 (112) 2 (22.5) 3 (33.4) 4 (44.3) 5 (54.8)

Model

 Unadjusted 82 86 90 91 90 88 88 87 87

 Weighted 86 91 94 97 95 95 95 95 95

 Normal priors

  Intervals Variance

  1/500, 500 10.0 86 91 94 96 95 95 95 95 95

  1/40, 40   3.54 86 90 93 96 95 95 95 95 95

  1/16, 16   2.00 86 90 93 96 95 95 95 95 95

  1/8, 8   1.13 88 90 92 95 95 96 95 95 95

  1/5, 5   0.67 90 90 92 95 95 96 95 95 95

  1/4, 4   0.50 87 90 93 95 95 96 95 95 95

  1/2, 2   0.125   0 13 64 94 94 85 80 77 75

 Log-F(d,d) priors

  Intervals Variance d

  1/648, 648   9.87 1 96 97 96 97 95 96 95 95 95

  1/39, 39   3.29 2 96 96 96 97 95 96 95 95 95

  1/15.4, 15.4   1.87 3 95 96 96 97 96 96 95 95 95

  1/7.15, 7.15   0.98 5 93 94 95 97 96 96 95 96 96

  1/5, 5   0.66 7 91 93 95 97 96 96 96 96 96

  1/4, 4   0.50 9 88 91 94 97 96 96 96 96 96

  1/2, 2   0.125 33.1   7 32 69 94 96 88 85 84 83

a
20% of participants exposed to the reference treatment (19.4 expected events), 9% to each of these nine comparator treatments.
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TABLE 3

Monte Carlo standard error for the log hazard ratio from 5000 simulations of 10,000 participants with 200 

events
a

True hazard ratio (expected number of events)

0.2 (2.3) 0.25 (2.8) 0.33 (3.8) 0.5 (5.7) 1 (11.2) 2 (22.5) 3 (33.4) 4 (44.3) 5 (54.8)

Model

 Unadjusted 3.86 3.12 2.06 0.88 0.41 0.33 0.30 0.29 0.27

 Weighted 3.85 3.12 2.06 0.88 0.42 0.34 0.31 0.30 0.29

 Normal priors

  Intervals Variance

  1/500, 500 10.0 0.91 0.84 0.72 0.55 0.41 0.33 0.31 0.29 0.29

  1/40, 40   3.54 0.71 0.68 0.62 0.51 0.40 0.32 0.30 0.29 0.28

  1/16, 16   2.00 0.60 0.58 0.55 0.48 0.39 0.31 0.29 0.28 0.27

  1/8, 8   1.13 0.49 0.49 0.48 0.44 0.37 0.30 0.27 0.26 0.25

  1/5, 5   0.67 0.40 0.41 0.41 0.39 0.34 0.28 0.26 0.25 0.24

  1/4, 4   0.50 0.35 0.36 0.37 0.36 0.33 0.27 0.25 0.23 0.23

  1/2, 2   0.125 0.16 0.17 0.19 0.20 0.22 0.21 0.19 0.18 0.17

 Log-F(d,d) priors

  Intervals Variance d

  1/648, 648   9.87 1 0.87 0.80 0.69 0.53 0.40 0.33 0.30 0.29 0.28

  1/39, 39   3.29 2 0.70 0.67 0.60 0.49 0.39 0.32 0.29 0.28 0.27

  1/15.4, 15.4   1.87 3 0.61 0.59 0.55 0.47 0.38 0.31 0.29 0.27 0.27

  1/7.15, 7.15   0.98 5 0.50 0.49 0.47 0.42 0.36 0.30 0.27 0.26 0.25

  1/5, 5   0.66 7 0.43 0.43 0.42 0.39 0.34 0.28 0.26 0.25 0.24

  1/4, 4   0.50 9 0.38 0.38 0.38 0.36 0.32 0.27 0.25 0.24 0.23

  1/2, 2   0.125 33.1 0.17 0.18 0.19 0.21 0.22 0.21 0.20 0.19 0.18

a
20% of participants exposed to the reference treatment (19.4 expected events), 9% to each of these nine comparator treatments.
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TABLE 4

Geometric confidence interval length for the log hazard ratio from 5000 simulations of 10,000 participants 

with 200 events
a,b

True Hazard Ratio (expected number of events)

0.2 (2.3) 0.25 (2.8) 0.33 (3.8) 0.5 (5.7) 1 (112) 2 (22.5) 3 (33.4) 4 (44.3) 5 (54.8)

Model

 Unadjusted 14.96 13.26 10.80 7.50 4.61 3.47 3.31 2.97 2.88

 Weighted 15.37 12.63 11.12 7.74 4.80 3.63 3.29 3.12 3.03

 Normal priors

  Intervals Variance

  1/500, 500 10.0 14.92 12.84 10.31 7.35 4.70 3.57 3.24 3.08 2.98

  1/40, 40   3.54 10.85   9.99   8.67 6.73 4.54 3.48 3.16 3.00 2.90

  1/16, 16   2.00   8.58   8.21   7.48 6.18 4.38 3.38 3.07 2.91 2.82

  1/8, 8   1.13   6.56   6.48   6.18 5.46 4.13 3.24 2.94 2.79 2.70

  1/5, 5   0.67   5.08   5.12   5.06 4.73 3.84 3.07 2.79 2.64 2.56

  1/4, 4   0.50   4.38   4.45   4.46 4.30 3.64 2.96 2.69 2.55 2.46

  1/2, 2   0.125   2.41   2.46   2.52 2.60 2.61 2.40 2.23 2.11 2.04

 Log-F(d,d) priors

  Intervals Variance d

  1/648, 648   9.87 1 24.77 17.16 11.28 7.24 4.63 3.55 3.23 3.06 2.97

  1/39, 39   3.29 2 16.31 12.74   9.46 6.67 4.48 3.48 3.17 3.01 2.92

  1/15.4, 15.4   1.87 3 12.71 10.53   8.32 6.22 4.34 3.41 3.11 2.95 2.86

  1/7.15, 7.15   0.98 5   9.15   8.08   6.86 5.52 4.09 3.28 3.00 2.86 2.77

  1/5, 5   0.66 7   7.31   6.69   5.93 5.00 3.88 3.18 2.91 2.77 2.69

  1/4, 4   0.50 9   6.19   5.79   5.27 4.60 3.71 3.08 2.84 2.70 2.62

  1/2, 2   0.125 33.1   2.85   2.83   2.81 2.77 2.66 2.49 2.37 2.28 2.21

a
20% of participants exposed to the reference treatment (19.4 expected events), 9% to each of these nine comparator treatments.

b
Geometric length is the antilog of the mean length of 5000 log hazard ratio confidence intervals.
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TABLE 5

Characteristics of 10,064 HIV-seropositive CNICS patients initiating ART, 1998–2013

Characteristics Number Percentage

 Female 1743 17%

 Age (years)
a 39 32; 46

 Hispanic ethnicity 1249 12%

 African–American race 3769 38%

 Injection drug user, current or past use 1414 14%

 Men who have sex with men 6276 62%

 CD4 cell count (cells/ml3)
a 263 1G6; 417

 HIV-1 viral load (copies/ml)
a 41,853 5834; 145,754

 History of one or more AIDS diagnoses 2283 23%

 HCV coinfection 1211 12%

 HBV coinfection 6G7 6%

Note: ART, antiretroviral therapy.

a
Median, quartiles.
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TABLE 6

Distribution of 10,064 HIV-seropositive CNICS patients and deaths by initial ART regimens, 1998–2013

Patients Deaths, 1 year

ART regimen Number Percentage Number Percentage

ABC 3TC ATV/r 154   2      8      4      

ABC EFV 3TC 149   1      5      2      

ABC EFV 3TC ZDV 108   1      6      3      

ABC 3TC LRV/r 59   1      6      3      

ABC 3TC LPV/r ZDV 65   1      3      1      

ABC 3TC ZDV 271   3      7      3      

ATV/r FTC TDF 1391   14      23      11      

ATV/r 3TC TDF 53   1      0      0      

DRV/r FTC TDF 680   7      12      6      

EFV FTC TDF 3313   33      33      16      

EFV 3TC d4T 165   2      7      3      

EFV 3TC TDF 162   2      5      3      

EFV 3TC ZDV 654   7      11      5      

FTC FPV/r TDF 88   1      3      1      

FTC LPV/r TDF 295   3      10      5      

FTC NVP TDF 65   1      1      1      

FTC RAL TDF 397   4      4      2      

FTC RPV TDF 256   3      1      1      

3TC LPV/r TDF 133   1      10      5      

3TC LPV/r ZDV 258   3      5      2      

3TC NVP ZDV 112   1      2      1      

Other 1216   12      39      19      

Total 10,066   100      196      100      

Note: ART, antiretroviral therapy.
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TABLE 7

Hazard ratios for 1-year all-cause mortality by initial ART regimen, 1998–2013

ART regimen
Crude hazard
ratios 95% CI

IP-weighted
a

Hazard ratios 95% CI

Penalized
b

IP-weighted
a

Hazard ratios 95% CI

EFV FTC TDF 1 – 1 – 1 –

FTC RPV TDF 0.38 0.05, 2.81 0.31 0.04, 2.57 0.38 0.08, 1.89

FTC RAL TDF 1.07 0.38, 3.03 0.71 0.22, 2.32 0.71 0.24, 2.11

DRV/r FTC TDF 1.66 0.85, 3.22 1.31 0.63, 2.72 1.27 0.62, 2.57

ABC EFV 3TC ZDV 4.09 1.69, 9.88 1.61 0.61,4.26 1.50 0.58, 3.86

ATV/r FTC TDF 1.66 0.97, 2.83 1.07 0.61, 1.89 1.04 0.61, 1.78

EFV 3TC ZDV 1.46 0.73, 2.90 0.66 0.30, 1.45 0.65 0.31, 1.37

3TC NVP ZDV 1.99 0.48, 8.30 1.07 0.22, 5.27 1.03 0.24, 4.43

ATV/r 3TC TDF NA NA NA NA 0.39 0.05, 2.83

ABC EFV 3TC 2.70 1.05, 6.94 1.83 0.59, 5.64 1.72 0.57, 5.15

FTC LPV/r TDF 3.20 1.57, 6.54 2.32 1.01,5.35 2.22 0.98, 5.02

ABC 3TC ZDV 2.23 0.98, 5.05 1.54 0.62, 3.82 1.48 0.61, 3.55

ABC ATV/r 3TC 4.49 2.06, 9.76 1.57 0.63, 3.92 1.49 0.61, 3.60

3TC LPV/r ZDV 1.70 0.66, 4.36 1.77 0.59, 5.29 1.68 0.58,4.91

EFV 3TC TDF 2.84 1.10, 7.29 1.52 0.55, 4.25 1.44 0.54, 3.89

ABC 3TC LPV/r ZDV 3.64 1.11, 11.9 0.89 0.23, 3.47 0.88 0.27, 2.94

Other 2.95 1.85, 4.71 1.84 1.13,3.00 1.78 1.12, 2.82

3TC LPV/r TDF 6.92 3.38, 14.2 3.50 1.25,9.82 3.24 1.15, 9.15

FTC NVP TDF 1.47 0.20, 10.8 2.21 0.31, 15.8 1.93 0.28, 13.3

ABC 3TC LRV/r 8.47 3.52, 20.4 2.53 0.78, 8.28 2.26 0.70, 7.30

EFV 3TC d4T 3.87 1.70, 8.81 2.05 0.80, 5.27 1.93 0.76, 4.87

FTC FPV/r TDF 2.77 0.85, 9.06 2.40 0.67, 8.62 2.18 0.61,7.83

Note: ART, antiretroviral therapy; CI, confidence interval.

a
Inverse-probability weights for characteristics shown in Table 1, with continuous variables fit using restricted quadratic splines.

b
Penalized with log-F(2,2) data augmented prior hazard ratios of 1 with 95% prior mass between 1/39 and 39.
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