
UC Irvine
ICS Technical Reports

Title
Distributed adaptive simulated annealing for synthesis design space exploration

Permalink
https://escholarship.org/uc/item/2pb653hf

Authors
Gupta, Sumit
Bic, Lubomir

Publication Date
1999

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2pb653hf
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Distributed

Adaptive Simulated Annealing

for Synthesis Design Space

Exploration

Sumit Gupta

Lubomir Bic

Technical Report ^^99-05

Department of Information and Computer Science
University of California, Irvine, CA 92697-3425

January 1999

Abstract

This work has attempted to exploit information sharing to improve
the results of Adaptive Simulated Annealing [1] as an optimization al
gorithm of the high-level synthesis of testable data paths. We have
used Messengers [3] as a coordination tool to run several parallel in
stances of the annealing algorithm on the same design with different
probability arrays for the perturbations. When all these instances
complete annealing, they exchange information about the design
among them which is given by a cost function [2] based on area, speed
and testability costs of the digital design. This best design is then used
as a starting point and several instances of annealing are run again in
an attempt to further improve the design.

bOiOOi'ilCi rb

w£j .;r!yriV4GM v;. '̂

Contents yj^d.u \i IG]?;;

1 Introduction 2

2 Simulated Annealing 2

3 Adaptive Simulated Annealing 5

4 Distributed Computing: Messengers 6

5 Results 7

6 Conclusions 8

7 Future Work 9

List of Figures

1 A Hierarchical View of the Search Space in the Data Path Synthesis
Problem 3

2 (a) A sample data flow graph (b) A data path corresponding to the
sample data flow graph 4

3 Distributed Algorithm for Adaptive Simulated Annealing 7

1 Introduction

An adaptive version of the well known Simulated Annealing algorithm is
presentedin [2] and its application to the combinatorial optimization problem
arising in high-level synthesis of digital systems is described. A reward and
penalty scheme has been implemented to learn the usefulness of the various

perturbations applied to the design during annealing. The probabilities with
which perturbations are applied are set to initial values and are, thereafter,
"learned" as annealing progresses.

Experiments have shown us that the results of inherently random simu
lated annealing process produces varying results which depends on the initial
probabilities with which the perturbations are applied, the design space of
the particular design, the randomness of the Metropolis criterion used to
accept or reject the new solution, among other factors. These experiments
have motivated the present work, whereby we want to investigate whether
the results of the Adaptive Annealing algorithm can be further improved by
running the algorithm several times (in parallel) and exchanging information
about the best design produced and perhaps the probability arrays of the
perturbations.

In this report, we demonstrate how we have used Messengers [3] as a
coordination tool to run several parallel instances of the annealing algorithm
and use the best result of these parallel runs to re-run the annealing algorithm
in an attempt to further improve the design.

2 Simulated Annealing

Simulated Annealing has been used as cin optimization technique in a number
of applications related to electronic design automation. For example, the
popular TimberWolf placement and routing package is based on Simulated
Annealing [8]. Annealing has also been applied to problems such as travelling
salesperson [5], circuit partitioning [7], global routing [4], channel routing [4].

The conventional Annealing algorithm operates by starting with an ini
tial solution to the combinatorial optimization problem and improving the

Latency

Cycle 1

Searcb Space

Schedule 1

•

Schedule 2 Schedule 3 • ••

Z
Resource

Resource • ••

Allocahon 1
Allocation 2

Binding 1 Binding 2 •••

Figure 1: A Hierarchical View of the Search Space in the Data Path Synthesis
Problem

solution through a series of moves. Unlike a greedy algorithm which only
accepts system configurations resulting from better moves, annealing proba
bilistically accepts inferior moves.

Let S and S' denote the system configuration before and after the move.

Let cost(S) indicate the value of the objective function applied to system S.
Then 5 = cost{S') —cost{S) indicates the change in the level of the objective
function. In a minimization problem, 5 < 0 indicates a better move. While
annealing accepts better moves unconditionally, it accepts inferior moves with
probability e"^, where T is the temperature parameter [5]. Annealing begins
with a high value of temperature and decreases the temperature by a factor
a < 1 at each stage until the temperature reaches a predefined lower limit.
At each temperature, the algorithm makes a large number of moves until a
convergence criterion is satisfied.

Figure 1 illustrates the search space in the data path synthesis problem.
At the top of the hierarchy is the set of possible latency cycles for pipelined
implementation. For any one of these latency cycles, there are several possible
schedules. For every schedule, several resource allocations are possible, and
for each resource allocation, there exist several bindings. A data path may

X3 X4

\

Input Bus

X3'Si' 'Y3

I'Yl.Zl

Ou^ut Bus

(b)

Figure 2: (a) A sample data flow graph (b) A data path corresponding to
the sample data flow graph

be viewed as a path from the root of the tree in Figure 1 to a leafnode, where
the nodes on the path correspond to the selection of values for the tuple <
Latencycycle, Schedule, ResourceAllocation, Binding >. The search space
of data paths is very large even for reasonably large data flow graphs. A
transformation to thedata pathshifts the location ofthecorresponding path
in the search tree. We illustrate a number ofsuch transformations taking the
example data flow graph in Figure 2(a).

3 Adaptive Simulated Annealing

An enhancement to the standard simulated annealing algorithm was pre

sented in [2]. The enhanced algorithm, called Adaptive Simulated Annealing,
is capable of "learning" [6] the best move which must be made at any stage
in order to modify the current system configuration. The power of adaptive

simulated annealing for the testability oriented data path synthesis problem
has been illustrated.

In a Simulated Annealing algorithm, the selection of a transformation is
a crucial decision which affects the properties of the resulting solution. An
adaptive mechanism was developed for the selection of the perturbation op
erator based on the theory of learning automata [6] to "learn" to apply the
appropriate perturb function. Initially, each of the K operators has equal
probability (l/K) of being selected. Depending on the outcome of the per
turbation, the probability of selection of the various operators is updated
according to the following rules. If the new solution resulting from the trans
formation i is an improved solution, we reward the operator i by increasing
the probability of selection for operator f by e. At the same time, the se
lection probability for the remaining operators is decreased by an amount of

^ similar way, if a transformation i results in an inferior configura
tion, we penalize the operator i by reducing its selection probability by an
amount e and increasing the selection probability of the remaining operators
by an amount of The amount e is selected as follows.

' = 1+ e-^/T
where Cq is a constant smaller than 1 and close to 0. In the implementation

presented, a value of cq = 0.02 was selected. Equation 1 ensures that the
reward (or penalty) is proportional to the amount of improvement 5 in the
quality of the solution.

4 Distributed Computing: Messengers

Simulated annealing (and other similar optimization techniques such as Ge
netic Algorithms) are computationally very expensive even for small bench
mark problems. Since high-level synthesis attempts to provide a low turn
around time (required in ASIC design), we need to look for techniques that
speed up the execution of the optimizationtechniques in high-level synthesis.

We observed that running annealing with the learning algorithm several
times even with the same initial probabilities led to very different results.
Furthermore, since the synthesis search space depends on the design being
considered, annealing results in widely different results when the initial prob
abilities of the perturbations.

We thus formulated a distributed version of the algorithm. The aim was
two-fold:

• Run several instances of annealing and compare results

• Study the effect of different initial perturbation probabilities for the
design under consideration

In the implementation described in this report, we anneal the same initial
solution but with different initial transformation probabilities (i.e. probabil
ity arrays) on several logical nodes. After these nodes complete annealing,
they communicate the best results that each of them have. The best result

of all the nodes is then taken as the initial starting solution and anneal
ing is run again on it on several nodes with different initial transformation

probabilities.

The algorithm for the distributed Adaptive Simulated Annealing is given
in Figure 3. This algorithm is implemented by starting with a parent mes
senger which reads the initial information about the design file name and
the design parameters. It then spawns off P identical messengers each of
which generate the initial data path and then run the simulated annealing
algorithm with learning.

When annealing completes, the messengers return to the parent node
with their best result and best cost. The parent node keeps the result with

C

6

procedure DistributedAnnealing()
begin

Generate an initial data path IDP using a latency cycle C,
schedule S and corresponding allocation and binding

for i = 1 to P do in parallel
Using different initial transformation probability arrays

PA_{i}, apply the Simulated Annealing algorithm with
learning to optimize the data path IDP in area,
performance and testability aspects

endfor

Find best cost and corresponding best data path BDP

for i = 1 to P do in parallel
Using different initial transformation probability arrays

PA_{i}, apply the Simulated Annealing algorithm with
learning to optimize the data path BDP in area,
performance and testability aspects

endfor

end

Figure 3: Distributed Algorithm for Adaptive Simulated Annealing

the best cost among all the messengers. It then uses this result as the initial

data path to repeat the process of spawning P identical messengers which
run annealing on this data path. Once again, the messengers return to the
parent with the best results of their annealing run. The parent then updates

its best result, if one of the messengers returns a better result.

5 Results

The original Adaptive Simulated Annealing algorithm for testability-oriented
synthesis was implemented on the Sun Solaris platform. The implementation
requires about 10,000 lines of C code including an X-windows based graphical

user interface.

We compared the relative performance of Adaptive Simulated Annealing
with and without using the distributed paradigm for several benchmarks
including the BiQuad filter, AR filter, and Elliptic Wave filter. This is shown
in Table 1. The first row for each benchmark gives the results obtained

earlier without using Messengers and the second row gives the results using
the distributed algorithm presented in sectiondistcomp.

Cost Lat # # # # Test

Bench Mod Reg Mux Bilbo Time

biquad 733 8 6 20 45 7 14

745 8 20 48 6 12

arfilt 945 8 7 28 73 10 12

917 8 6 28 75 6 10

Table 1: Results of Distributed Adaptive Simulated Annealing

The cost in the table is a compound measure of the three objective func
tions, namely, the silicon area, performance, and testability [9]. The area
measure a refers to the area of the functional blocks such as adders and

multipliers as well as the area of interconnect modules and registers. The
pipeline latency £ is used as the performance parameter. The testability fac
tor r consists of the number of BILBOs [10] in the data path and the test
application time. The cost function is given by

Cost = /3i • (a X£) -f /?2 •r (2)

where f3i and (32 are constants. We indicate in the tables the number of

functional modules, the number of registers, the number of multiplexors,
the number of BILBO registers, and the test application time in the final
solution.

6 Conclusions

We have explored one ofthe ways ofdistributing the computation- expensive
simulated annealing algorithm. Although previous work [4] has attempted to
parallelize annealing, the novelty of this w;ork arises from the fact that it runs
co-ordinated distributed annealing threads and tries to exchange information
among them so as to make annealing more effective. Also, the adaptive
nature of the modified annealing algorithm used for this work, allows for a
very natural venue for applying distributivity.

8

Due to its inherent random nature, the annealing algorithm is known
to produce mixed results depending on which direction the hill climbing
proceeds. The aim of this study is to identify metrics which can be tuned to

direct annealing to produce better results. The methodology to do this, that
has been proposed in this report, is to run several instances of annealing on
the same design with different paramenters and then, "lea.rn" a good set of
parameters by monitoring the performance of these parallel runs.

In this report, we have demonstrated that Messengers can be efficiently
used as a co-ordination tool for running and managing concurrent tasks and
facilitate communication between them. Messengers provides a simpler and
easier to use communication paradigm than previous generation distributed
computing environments like PVM [11].

7 Future Work

Although this work has explored one aspect of parallelizing the adaptive
simulated annealing algorithm, there are several other techniques that can
be experimented with [1].

The experiments presented in this report need to be carried out with

bigger designs and effect of the various parameters needs to be studied. In
particular, further investigation needs to be done on the effect of the initial

design, the initial probability array, the rate of cooling or annealing, the
initial and final temperature and similar parameters of annealing and learning
on the results of the annealing. The system developed here provides an ideal
test bed to experiment with various design and annealing parameters.

References

[1] S. Gupta An Intelligent tool for Automatic Synthesis of Testable Data
paths, B.Tech. Thesis, Dept. of Electrical Engg., Indian Institute of Tech
nology, New Delhi, 1995

[2] C.P. Ravikumar, S. Gupta, A. Jajoo Synthesis of Testable RTL Designs
using Adaptive Simulated Annealing Algorithm, Eleventh International

Conference on VLSI Design, 1998, India,

[3] M. Fukuda, L. Bic, M. Dillencourt, F. Merchant, Distributed Coordination
with MESSENGERS, Science of Computer Programming Journal, Special

Issue on Coordination Models, Languages, and Applications, 31(2), July
1998

[4] P. Banerjee, M. Jones, and J. Sarjent. Parallel Simulated Annealing algo
rithms for Cell Placement. IEEE Transactions on Parallel and Distributed
Systems, 1(1):91-105, January 1990.

[5] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by
Simulated Annealing. Science, 220(4598):671-680, May 1983.

[6] K.S. Narendra and M.A.L. Thathachar. Principles of Learning Automata.
Printice Hall, 1989.

[7] C.P. Ravikumar. Parallel Algorithms for VLSI Physical Design. Ablex
Publishing Corporation, 1996.

[8] C. Sechen and A. Sangiovanni-Vincentelli. Timberwolf 3.2 : A new
standard cell placement and global routing package. In Proceedings of

lEEE/ACM Design Automation Conference, pages 432-439, 1986.

[9] S.-P. Lin, C. Njinda, and M. Breuer. Generating a Family of Testable
Designs using the BILBO Methodology. Journal of Electronic Testing:

Theory and Applications, pages 71-89, 1993.

[10] B. Konemann, J. Moucha, and G. Zwiehoff. Built-in logic block obser
vation technique. In Proceedings of IEEE Test Conference, pages 37-41,

1979.

[11] A. Geist and others. Parallel Virtual Machine Version 3.1. Oak Ridge
National Laboratory, Oak Ridge, Tennessee, May 1993.

10

