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Stability of Implicit, But Not Explicit, Motor Learning
following Visuomotor Adaptation
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2Department of Neurology, University of California, Davis, Davis, California 95616

Abstract

Normal aging is associated with a decline in memory and motor learning ability. However, the exact form of
these impairments (e.g., the short-term temporal stability and affected learning mechanisms) is largely un-
known. Here, we used a sensorimotor adaptation task to examine changes in the temporal stability of two
forms of learning (explicit and implicit) because of normal aging. Healthy young subjects (age range, 19–28
years; 20 individuals) and older human subjects (age range, 63–85 years; 19 individuals) made reaching move-
ments in response to altered visual feedback. On each trial, subjects turned a rotation dial to select an explicit
aiming direction. Once selected, the display was removed and subjects moved the cursor from the start posi-
tion to the target. After initial training with the rotational feedback perturbation, subjects completed a series of
probe trials at different delay periods to systematically assess the short-term retention of learning. For both
groups, the explicit aiming showed no significant decrease over 1.5min. However, this was not the case for
implicit learning; the decay pattern was markedly different between groups. Older subjects showed a linear
decrease of the implicit component of adaptation over time, while young subjects showed an exponential
decay over the same period (time constant, 25.61 s). Although older subjects adapted at a similar rate, these
results suggest natural aging selectively impacts the short-term (seconds to minutes) temporal stability of im-
plicit motor learning mechanisms. This understanding may provide a means to dissociate natural aging memo-
ry impairments from deficits caused by brain disorders that progress with aging.
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Significance Statement

Although normal aging is known to reduce learning retention, the time course and specific mechanisms that
underlie these deficits are largely unknown. Here, for young and older subjects, we examined the contribu-
tion of two learning mechanisms (implicit and explicit) to motor output adjustments in response to changes
in visual feedback. We also systematically quantified the short-term temporal decay of these different types
of learning in both groups. We found that over a short time period explicit movement planning was not sig-
nificantly different between the two age groups, but the stability of implicit motor learning was affected by
normal aging. Interestingly, older subjects showed a distinctly different pattern of decay, suggesting an
age-dependent impairment in the short-term retention of implicit motor learning.
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Introduction
Normal aging is consistently associated with learning

and memory deficits (Seidler et al., 2010; King et al.,
2013; Cai et al., 2014), which accompany impaired deci-
sion-making and motor performance (Cai et al., 2014). For
example, young and older subjects can learn sequences
in a serial reaction time task, but older subjects demon-
strate reduced performance when learning probabilistic
sequences (Dennis et al., 2006; Clark et al., 2015). In addi-
tion, younger subjects perform significantly better at pair-
ing items in associative binding tasks (Light et al., 2004;
Provyn et al., 2007; Old and Naveh-Benjamin, 2008).
Aging also correlates with memory deficits (Nyberg et al.,
2012; King et al., 2013); working memory declines with
age (Park et al., 2002; Malouin et al., 2010), along with
forms of long-term memory (e.g., episodic; Rönnlund et
al., 2005; Metzler-Baddeley et al., 2011; Sauzéon et al.,
2016). However, studies have also suggested that other
types of memory are preserved during aging (e.g., seman-
tic memory; Spaniol et al., 2006; St-Laurent et al., 2011;
Kennedy et al., 2015).
Within the context of movement, associations between

aging and reduced motor adaptation have been shown
(Wolpe et al., 2020). Trewartha et al. (2014) found that de-
spite similar adjustments to physical perturbations of arm
reaching movements, older subjects demonstrated less
retention and poor explicit memory performance com-
pared with young subjects. Likewise, Malone and Bastian
(2016) found that when learning a novel walking pattern,
older subjects were more likely to forget and show a per-
formance reduction after breaks. However, despite the
known effect of aging on learning retention, the exact
temporal properties (e.g., short-term temporal stability) of
this deficit are largely unknown.
Prior studies have shown that short-term motor adapta-

tion involves concurrent learning mechanisms with differ-
ent temporal properties and drivers (i.e., error signal
sensitivity; Smith et al., 2006; Taylor et al., 2014). Previous
studies have also demonstrated the temporal decay of
the memory trace in a wide range of tasks, suggesting
that motor adaptation provides a tractable method to
probe both different learning mechanisms and changes in
relative stability (Sing et al., 2009; Talamini and Gorree,
2012; Hadjiosif and Smith, 2013; Kitago et al., 2013;
Loaiza and McCabe, 2013; Taylor et al., 2014; Zhou et al.,
2017). One notable task involves visuomotor rotation
(VMR), in which individuals adapt to a visual feedback

perturbation (i.e., a rotation of the feedback trajectory;
Krakauer et al., 1999; Redding et al., 2005). This adapta-
tion has been shown to involve concurrent explicit and im-
plicit learning mechanisms (Taylor et al., 2014). Implicit
learning mechanisms use sensory prediction errors to up-
date the internal forward model, likely mediated by the
cerebellum on a subconscious level (Tseng et al., 2007;
Synofzik et al., 2008). Additionally, explicit processes also
contribute to the adaptation to the rotation of the feed-
back through conscious efforts, minimizing the experi-
enced target errors (Mazzoni and Krakauer, 2006; Bond
and Taylor, 2015). Thus, the VMR paradigm provides a
method for assessing both explicit and implicit compo-
nents of motor adaptation; the explicit component of
learning is determined through an aiming report made by
the subject, while the implicit learning is based on sub-
tracting this planned movement direction from the actual
movement trajectory (Taylor et al., 2014; Morehead et al.,
2015). Furthermore, studies have used this VMR task to
examine age-dependent differences in learning. Bock
(2005) and Buch (2003) used this paradigm to measure
age-related variations in adaptation. However, these
learning differences were either inferred by different meth-
ods (i.e., a combination of motor and nonmotor tests) or
were based on the size of motor adaptation aftereffects.
More recent studies have suggested that aging specifi-
cally reduces the extent to which explicit learning mecha-
nisms are used during training to adjust motor output
through more direct measures (Vandevoorde and Orban
de Xivry, 2019) or are inferred through neuroimaging and
nonmotor memory tests (Wolpe et al., 2020).
Based on the studies above, there are age-related dif-

ferences in the use of concurrent learning mechanisms
during motor adaptation. However, age-based variations
in the short-term (seconds to minutes) temporal proper-
ties of these mechanisms (i.e., stability of the memory
trace) remain uncertain. Here, we adapted a previous
VMR adaptation paradigm (Hadjiosif and Smith, 2013;
Zhou et al., 2017) to directly assess the extent to which
normal aging affects the use of different learning mecha-
nisms and then systematically examined their relative
temporal stability over 1.5min. Based on the studies
above, we hypothesized that older subjects would dem-
onstrate a reduced short-term temporal stability of the
overall adaptation, and we focused on quantifying the in-
fluence of age on the rate of decrease and identifying the
driver (implicit or explicit learning mechanisms) of this
decay process.

Materials and Methods
Participants
Twenty young subjects (10 women; age range, 19–28

years) and 19 older subjects (14 women; age range, 63–
85 years) without known neurologic impairment were re-
cruited from the University of California, Davis, and the
surrounding community to participate in the study. The
cognitive function of all subjects was evaluated by using
the Mini-Mental State Exam (MMSE; Folstein et al., 1975)
and Trail Making Test (TMT, parts A and B; Army
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Individual Test Battery, 1944; Reitan and Wolfson, 1985).
Scores on both the MMSE and the TMT did not reach the
cutoff scores for concerns of cognitive impairment (24 of 30
on MMSE, 78 s for TMT part A, 273 s for part B) and were
not significantly different between groups. Handedness of
the subjects was measured by the Edinburgh Handedness
Inventory (Oldfield, 1971). All young subjects recruited were
right handed, and 2 of 19 older subjects were left handed.
Note that performance for these two subjects was not differ-
ent from that of the respective group. All subjects gave writ-
ten informed consent and received financial compensation
for their participation. The study protocol was approved
by the University of California, Davis, Institutional Review
Board.

Experimental apparatus
In the task, subjects were seated at a desk in a dimly lit

room facing a horizontal 27 inch LCD monitor (Fig. 1A).
The chair height was adjusted for each subject so that
they could comfortably perform the task and view the
screen. The experimental system included a monitor, a
digitizing tablet, and a PC to run the experimental para-
digm and collect the behavioral data. The LCD monitor
was mounted horizontally in front of subjects at shoulder
level, displaying the various visual cues during the experi-
ment. The monitor was 10 inches above the digitizing tab-
let (a workspace of 12 by 19 inches; Intuos4, Wacom) that
tracked and recorded hand position at 200Hz. Subjects
grasped a cylindrical handle (diameter, 2.5 cm) containing
the tablet stylus inside. The hand/stylus moved on the
tablet below the monitor (refresh rate, 60Hz), with its posi-
tion presented on the above screen as a round cursor (di-
ameter, 0.3 cm). The midline of the subject was aligned
with the center of the tablet and monitor. This also served
as the center of the workspace. The position of the LCD
monitor obstructed the vision of the tablet and the arm
movements made by subjects. The large 27 inch screen
provided sufficient space to ensure that the space be-
tween the edge of the screen and visual objects used in
the task (e.g., the circular path of the rotation marker) did
not provide unintended spatial landmarks to the subjects.
A rotation knob (diameter, 3.8 cm) was mounted on the
left side of the tablet to allow the subjects to choose their
aiming direction before each movement.

Experimental paradigm
On each trial, the subject reached from a circular central

target (8 mm in diameter) located at the center of the
screen (20 cm from the body on the sagittal axis of the
body) to a circular reach target (diameter, 10 mm) located
10 cm away from the starting position along the midline.
At the start of the trial, a large circle (diameter, 10 cm) was
displayed centered at the starting location, showing the
path for the rotation maker and indicating the spatial rela-
tionship among the marker and targets. An orange rota-
tion marker was shown on this circular path and could be
moved along the path by rotating the knob (Fig. 1B). The
subject was instructed to first turn the rotation knob with
their left hand to select an aiming direction for the planned

movement. Once the subject had made a selection by
pressing the knob, the display of the circular path and ro-
tation maker was removed. Subjects then could initiate
the movement of the cursor from the center location to
the reach target using their right hand (Movie 1, VMR
Decay Task.mp4, examples of the task structure/require-
ments and the different trials used in the experiment).
Subjects were instructed to move the cursor from the start
position to the target as quickly and fluidly as possible.
Subjects received visual and auditory feedback on the
speed of their movement to ensure consistency of speed
and duration. If the movement was too slow (duration,
�400ms), the target turned blue once the radial distance
was exceeded. If the movement was too fast (�200ms), the
target turned red. The target turned green for movement du-
rations that were between 200 and 400ms. In addition, a
short-duration beep (frequency, 429Hz) was provided to
signify a good trial. Note that this feedback was based only
on movement duration and not on movement accuracy. On
adaptation trials, during the 10cm point-to-point reaching
movement full visual feedback of the cursor was provided to
the subject. Once the movement exceeded the radial dis-
tance of the target (10cm), only the end-point feedback
(cursor at a location where the movement exceeded 10cm)
was provided. One second after the end-point feedback
was presented, the cursor was removed and replaced by a
large circle centered on the initial start location. The radius
of the circle matched the distance of the hand/cursor from
the start location. Subjects were guided to move their hand
back to the start location by the size of the circle (the radius
of the circle decreased proportionally to the distance be-
tween the hand/cursor and the start location), which limited
the spatial information of the actual movements while pro-
viding enough information to guide the subject back to the
start location. Once the hand/cursor was within 2cm of the
start location, the cursor reappeared, and the subject
brought the cursor back to the central target. The intertrial
interval was set to 1 s. At the beginning of each trial, the or-
ange rotation marker appeared 10cm above the central
start position along the circular path.
All subjects in both groups (young and older group) ex-

perienced the same task structure used in previous stud-
ies (Fig. 1C; Hadjiosif and Smith, 2013; Zhou et al., 2017).
Subjects began the task with 20 familiarization trials to en-
sure that they were accustomed to the experimental de-
sign and desired movement speed. During baseline (40
trials), the cursor followed the true position of the hand/
stylus on the tablet below (Fig. 1D). On a random number
of trials (20%) visual feedback was removed (blank trials).
These blank trials (a total of eight blank trials) served
as the baseline for the retention probe trials described
below. After baseline, subjects were trained on a visuo-
motor rotation (60 trials) during which the cursor path was
rotated around the hand path by either a 145° [clockwise
(CW)] or �45° [counterclockwise (CCW)] perturbation.
Each subject experienced only one type of rotation (CW
or CCW), and the direction of the VMR was counterbal-
anced across all subjects. We defined three periods dur-
ing training to compare learning between groups [early
training: the first five training trials (1–5); middle training:
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the middle five trials of training (28–32); and late training:
the last five training trials (56–60)]. Note that these periods
were used to show the progression in behavior through-
out training and were based on the total number of train-
ing trials. Also, the results are similar for different window
sizes (three or seven trials).

After training, subjects completed the testing phase
based on a task structure developed by Hadjiosif and
Smith (2013). Subjects underwent a series of retention
probe trials and retraining trials for seven different delay
periods (0, 5, 10, 20, 30, 50, and 90 s). The sequence is
depicted in Figure 1C. Throughout the delay, subjects

Figure 1. Experimental design and task structure. A, The experimental setup consisted of an LCD monitor that displayed targets
and visual feedback of the hand, a digitizing tablet, and a PC that controlled the paradigm. The monitor was 10 inches above the
digitizing tablet. The midline of the subject was aligned with the center of the tablet and the monitor. B, Depiction of the explicit aim
selection, which consisted of a circle centered at the start location (gray filled circle). The movement goal is represented by the red
filled circle, and a yellow filled circle represents the selection marker. This circle appeared 10 cm from the starting position. Subjects
turned a knob at the beginning of each trial to move the yellow marker around the circle and indicate their explicit aiming direction.
C, The sequence of training and testing the subjects. After 20 familiarization trials, the subjects underwent 40 baseline trials where
the cursor followed the hand position. This was followed by 60 training trials, during which a 145° (clockwise) or �45° (counter-
clockwise) visuomotor rotation of the cursor movement feedback was applied. During the testing phase, each subject experienced
a delay period (0, 5, 10, 20 30, 50, and 90 s). This was followed by a single probe trial, and then 5-7 retraining trials before the next
delay period was tested. This pattern was repeated for a total of 4 probe movements for each delay duration. D, Depiction of hand
and cursor movements during baseline, and early and late training. During baseline, the cursor and hand paths were aligned. When
the visuomotor rotation was applied, there was a rotational offset between the cursor and hand path. Late in training, subjects ad-
justed the hand path to guide the cursor to the target. E, A representation of the explicit and implicit components of overall adapta-
tion. Explicit aiming was measured as the angle difference between the aiming direction and the target, while implicit adaptation
was defined as the angle difference between reach direction and aiming direction.
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held the cursor in the start target, which turned light green
as a signal for the subject to maintain their cursor at
the center position. After the delay period, the selection
marker appeared on the circular path to allow the subject
to select the planned movement direction of the upcom-
ing arm movement. The display disappeared after the
selection, cueing the subject to perform the reach. This
retention probe trial, which was the first trial after the
delay period ended, were also blank trials, meaning that
there was no visual feedback. The probe trial for each
delay period was followed by five to seven retraining trials
during which subjects performed movements to the
trained target with the rotation and full visual feedback.
This pattern (one retention probe movement followed
by five to seven retraining movements) was repeated
throughout the session, for a total of four probe move-
ments for each delay duration. The delays were randomly
selected throughout the session. Because of the random-
ness of the number of retraining trials, subjects made a
total of 168–224 movements divided between two blocks.
The entire session (40min for behavioral testing and
30min for clinical evaluations—the Mini-Mental State
Exam and Trail Making Test) was ;1 h and 30min with
breaks between blocks. A short video illustrating an ex-
ample of an early training trial, a late training trial, and a re-
tention probe trial can be found in the video VMR Decay
Task.mp4 (Movie 1).

Analysis of the movement data
The movement duration was defined as the interval be-

tween the times when the hand velocity exceeded 0.05
m/s and when the hand crossed the 10 cm radius. We fo-
cused on the initial heading angle of the hand—the feed-
forward mechanisms involved in the movement plan. We
determined the reach angle of each movement soon after
initiation by computing the angle of the line connecting
the hand position at 1 and 3 cm into the movement. To
quantify the contributions of explicit and implicit learning
to the motor recalibration in response to the rotated visual
feedback, we performed a procedure that was similar to

previous studies (Taylor et al., 2014; Bond and Taylor,
2015; Morehead et al., 2015). The explicit aiming was
measured by the angles that subjects selected as their
aiming direction (the angle of the line connecting the start
location and rotation marker). The implicit learning was
calculated by subtracting the aiming angles from the ac-
tual reaching angles (Fig. 1E). For simplicity, we refer to
the target direction as 0° and classify all movements rela-
tive to this direction in the analysis. The experiment was
designed to examine the retention of these two types of
learning after short time delays. For each time delay, the
retention of learning was quantified by comparing the an-
gular deviation on the no-visual-feedback probe trials to
the average angular deviation at the end of the preceding
retraining trials (the last three trials of the five- to seven-
trial retraining sequence). The absolute retention (differ-
ence in angular deviation between the probe trial and the
average on the retraining trials) and relative retention (per-
centage of the adaptation retained: (probe trial angle – av-
erage angle on the retraining trials)/average angle on the
retraining trials) were used to examine the decay of
the two learning components and overall learning over the
delay periods. These measures of retention were a direct
comparison of before and after the delay; there was no
need for a baseline correction. Because of the variance in
the selection time and movement duration across sub-
jects, we used the actual elapsed time to define the
delay for explicit and implicit learning instead of the im-
posed seven delay periods in the experiments to better
capture the influence of the delay for each learning
component. Thus, the delay for the explicit learning
component was defined as the time interval from the
end of the previous trial to the time when the selection
was made. The delay for the implicit learning compo-
nent was defined as the time interval from the end of the
previous trial to the movement onset. (Note that the ac-
tual elapsed time was always slightly longer for the im-
plicit learning component.)
As in previous work (Zhou et al., 2017), we applied a

standard exponential to determine the time constant of
decay, as follows:

y ¼ y0 � e�t
t 1C:

Here, the amount of learning (y) over time, t, depends
on (1) the scaling term, y0; (2) the time constant, t and (3)
an offset term, t, that represents the amount of learning
that remains stable following the short-term decay. We
also fitted the data using an alternative linear model to de-
termine which model provided a better description of the
data, as follows:

y ¼ k � t1C;

where k is the slope of the linear regression and C is the
intercept. We fitted the data with the two models using
functions fitnlm and fitlm in MATLAB and determined the
goodness-of-fit by comparing the Akaike information cri-
terion (AIC; Akaike, 1974) of the two models (a model is
considered to be a better fit for the data if its AIC is smaller
than the AIC of the other model).

Movie 1. VMR Decay Task.mp4. The video illustrates the visual
display and objects controlled during the experiment: the selec-
tion marker, the circular path, target, and cursor. Three different
trial examples are sequentially shown: (1) an early training trial,
(2) a late training trial, and (3) a retention probe trial (5 s delay).
[View online]
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In addition to determining the time course of explicit
and implicit learning throughout training, and the relative
stability of the memory traces following the elapsed time,
we also examined the temporal properties of the selection
process of the explicit movement plan. Through the rota-
tion knob, we quantified the time required to select the ex-
plicit movement plan direction. The selection time for
aiming was defined as the interval between when subjects
started rotating the knob and when they pressed the
knob. We examined the selection time of the explicit aim-
ing process throughout the training trials and over the
elapsed time.

Statistical analysis
Data were analyzed offline using MATLAB 2019a

(MathWorks) and R version 3.6.2 (r-project.org). Trials
that had very slow/fast movement speeds (peak
speed,,0.22 or.0.5 m/s) and long selection time (se-
lection time,.30 s) were excluded (;3% of total trials
for the young group and ;4.5% of total trials for the
older group). The reason we excluded the trials with a
selection time .30 s is that all these trials were at the
beginning of the training session when subjects first
experienced the visuomotor rotation and were becom-
ing familiar with rotating the knob and making an aim-
ing selection. There were 2.1% of training trials with a
selection time .30 s for the older group and 0.6% for
the young group. All of these trials were in the first half
of the training phase; none of the subjects made a se-
lection with a time .30 s for trials in the second half of
the training session and the entire testing phase. We
applied a linear mixed-effects model (LMM) in R using
the lmerTest package (Kuznetsova et al., 2017) to test
the fixed effects of group (young and older) and peri-
ods (different trial periods in the experiment; e.g., early
learning, middle learning, and late learning periods) or
time delay periods and random effect of subjects on
the amount of explicit and implicit learning. To exam-
ine the potential difference in the temporal retention of
the learning between the two groups, we fitted the ab-
solute angular decay and the relative decay percentage
(see above) using an LMM with fixed effects of group and
learning type, a random effect of subjects, and actual elapsed
time as a covariate. By considering the actual elapsed time
as a continuous covariate, we were able to compare the re-
tention between the two age groups across a continuous
delay range (i.e., the short-term temporal stability of learning).
The LMM models were estimated using the restricted maxi-
mum likelihood method and the significance was obtained
using Kenward–Roger and Satterhwaite approximations with
the pbkrtest package (Halekoh and Højsgaard, 2014). If sig-
nificance was identified, post hoc tests were performed using
the emmeans package (Lenth et al., 2020) and adjusted for
multiple comparisons using Bonferroni–Holm corrections.
Effect size (d) was calculated using Cohen’s d (Cohen, 1988)
measurement (for LMM analysis, generalized effect size was
computed following similar procedures of Cohen’s d mea-
surement using the eff_size function in the emmeans pack-
age). For all tests, the significance level was set to 0.05. In all
cases, group data are presented as themean6 SEM. Please

see the statistical table for a summary of the data structure,
analysis, and confidence intervals (CIs; Table 1).

Results
Baseline performance
All subjects practiced selecting the aiming direction and

reaching to the targets during the baseline block with
20% blank no-visual-feedback trials (a total of eight blank
movements). During the baseline trials, all participants in
both groups moved the cursor directly to the target, and
the reach angles were not significantly different from each
other (young: 0.45° 6 0.23°; older: 0.47° 6 0.29°; two-
tailed unpaired t test: p=0.97, d=0.012) and not signifi-
cantly different from 0° (two-tailed one-sample t test;
young group: p=0.16, d=0.37; older group: p=0.12,
d=0.44). Participants demonstrated no explicit aiming or
implicit learning during this block, as expected (explicit:
young, �0.029° 6 0.046°; older, �0.031° 6 0.10°; two-
tailed one-sample t test; young group: p=0.53, d=0.14;
older group: p=0.75, d=0.073; implicit: young, 0.48° 6
0.24°; older, 0.50° 6 0.32°; two-tailed one-sample t test;
young group: p=0.06, d=0.45; older group: p=0.13,
d=0.36). Additionally, there were no significant differen-
ces between the explicit and implicit components of ad-
aptation in both groups (an analysis using LMM with fixed
effects of group and learning type and random effect of
subjects: group: F(1,74) = 0.0012, p=0.97; learning type:
F(1,74) = 0.35, p=0.12; interaction between the two fixed
effects: F(1,74) = 0.0021, p=0.96).

Adaptation to the visual feedback perturbation
After the baseline period, a 45° VMR (CW or CCW) was

introduced for 60 trials (Fig. 2A,B). After the perturbation,
the older subjects’ overall learning (Fig. 2B, light blue
trace) generally progressed in a pattern similar to that of
the young subjects (Fig. 2A, light blue trace). We first eval-
uated the mean adaptation over the training period for
both groups. Throughout the entire training period, the
subjects in the young group had a significantly higher ex-
plicit learning level (young group: 17.73° 6 3.40°; older
group: 11.56° 6 3.6°; two-tailed unpaired t test, p.
0.022, d=0.76) and a similar implicit learning level com-
pared with the subjects in the older group (young group:
16.35° 6 3.43°; older group: 18.65° 6 3.64°; two-tailed
unpaired t test, p=0.26, d=0.37), leading to significantly
higher overall adaptation for the young group (young
group: 34.07° 6 4.55°; older group: 30.20° 6 4.68°; two-
tailed unpaired t test, p. 0.023, d=0.75). To better inves-
tigate the progression of the learning and the potential dif-
ference in adaptation, we compared the learning between
the two groups at three periods during training (early, mid-
dle training, and late training; see Materials and Methods).
Over the entire training block, both groups demonstrated
an increase in overall learning. During the three training
periods, older subjects adapted at an overall rate similar
to that in young subjects (early training: young group,
12.60° 6 2.22°; older group, 13.04° 6 1.79°; middle train-
ing: young group, 42.56° 6 2.69°; older group, 42.59° 6
2.65°; late training: young group, 46.14° 6 1.36°; older
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Table 1: Statistics table for “normal aging affects the short-term temporal stability of implicit, but not explicit, motor learn-
ing following visuomotor adaptation”

Line # Data structure Type of test 95% CI

280 Normal Two-tailed unpaired t test Baseline overall reaching angles:

Young: [�0.026°, 0.93°]

Older: [�0.14°, 1.08°]

281 Normal Two-tailed one-sample t test

284 Normal Two-tailed unpaired t test Baseline explicit learning:

Young: [�0.13°, 0.068°]; older: [�0.24°, 0.18°]

Baseline implicit learning:

Young: [�0.014°, 0.98°]; older: [�0.17°, 1.17°]

285 Normal Two-tailed one-sample t test

288 Normal Linear mixed-effects model:

Explicit and implicit learning during baseline ; group

� learning type 1 (1|subject)

312 Normal Linear mixed-effects model

Overall learning ; group � training period 1 (1|

subject)

Overall learning during training:

Young: early, [7.96°, 17.24°]; middle, [36.92°, 48.19°]; late, [43.29°, 48.99°]

Older: early, [9.22°, 16.75°]; middle, [36.95°, 48.12°]; late, [40.35°, 48.88°]

338 Normal Linear mixed-effects model

Explicit and implicit learning during training ; group

� training period � learning type 1 (1|subject)

Explicit learning:

Young: early, [2.94°, 13.12°]; middle, [14.90°, 26.19°]; late, [18.23°, 29.38°]

Older: early, [0.95°, 8.22°]; middle, [11.58°, 21.23°]; late, [12.25°, 27.88°]

Implicit learning:

Young: early [1.29°, 8.50°]; middle [17.038°, 26.98°]; late [16.75°, 27.92°]

Older: early, [4.84°, 11.91°]; middle; [20.11°, 28.19°]; late, [18.14°, 30.96°]

364 Normal Two-tailed unpaired t test Selection time during baseline:

Young: [0.66 s, 1.00 s]

Older: [1.02 s, 1.89 s]

371 Normal Linear mixed-effects model

Selection time during training ; group � training pe-

riod 1 (1|subject)

Selection time during training

Young: early, [3.17 s, 6.18 s]; middle, [1.80 s, 2.66 s]; late, [1.60 s, 2.27 s]

Older: early, [6.11s, 11.86s]; middle, [4.36s, 9.23s]; late, [2.92s, 6.58s]

432 Normal Two-tailed paired t test Overall learning during retraining vs 0 s:

Young: retraining, [44.14°, 45.68°]; 0 s, [44.21°, 45.72°]

434 Normal Two-tailed paired t test Overall learning during retraining vs 0 s:

Older: retraining, [40.87°, 43.76°]; 0 s, [39.80°, 43.11°]

436 Normal Linear mixed-effects model

Absolute temporal decay of the overall adaptation ;

group � actual elapsed time 1 (1|subject)

Absolute temporal decay of the overall learning:

Young: 0 s, [�0.77°, 0.92°]; 5 s, [�2.96°, �0.85°]; 10 s, [�2.45°, 0.0192°]; 20 s, [�3.67°, �1.04°]; 30 s,

[�4.11°, �0.40°]; 50 s, [�5.04°, �1.76°]; 90 s, [�5.49°, �2.12°]

Older: 0 s, [�1.65°, 0.99°]; 5 s, [�2.70°, �0.86°]; 10 s, [�3.30°, �0.66°]; 20 s, [�5.45°, �1.59°]; 30 s,

[�5.12°, �1.90°]; 50 s, [�7.06°, �2.37°]; 90 s, [�11.07°, �5.82°]

475 Normal Linear mixed-effects model

Absolute temporal decay of the explicit and implicit

learning ; group � actual elapsed time � learning

type 1 (1|subject)

Absolute temporal decay of the explicit learning:

Young:& 0 s, [�0.89°, 0.83°]; 5 s, [�0.61°, 1.02°]; 10 s, [�0.78°, 1.06°]; 20 s, [�1.07°, 0.41°]; 30 s, [�0.78°,

0.84°]; 50 s, [�0.30°, 0.76°]; 90 s, [�0.99°, 0.94°]

Older: 0 s, [�0.63°, 0.16°]; 5 s, [�1.02°, 0.18°]; 10 s, [�0.63°, 0.22°]; 20 s, [�1.08°, 0.51°]; 30 s, [�0.58°,

0.57°]; 50 s, [�0.96°, 0.30°]; 90 s, [�0.84°, 0.58°]

Absolute temporal decay of the implicit learning:

Young: 0 s, [�1.23°, 1.14°]; 5 s, [�2.92°, �0.13°]; 10 s, [�2.64°, 0.63°]; 20 s, [�4.61°, �0.75°]; 30 s,

[�3.74°, �0.25°]; 50 s, [�4.63°, �1.85°]; 90 s, [�5.70°, �1.44°]

Older: 0 s, [�1.48°, 1.14°]; 5 s, [�1.97°, 0.36°]; 10 s, [�2.78°, 0.32°]; 20 s, [�4.84°, �1.48°]; 30 s, [�5.81°,

�1.66°]; 50 s, [�5.77°, �1.61°]; 90 s, [�9.83°, �6.12°]

504 Normal Linear mixed-effects model

Relative temporal decay of the explicit and implicit

learning ; group � actual elapsed time � learning

type 1 (1|subject)

Relative temporal decay of the explicit learning:

Young: 0 s, [�2.98%, 4.02%]; 5 s, [�1.69%, 5.54%]; 10 s, [�3.13%, 3.67%]; 20 s, [�2.67%, 2.63%]; 30 s,

[�3.86%, 2.81%]; 50 s, [�1.50%, 4.32%]; 90 s, [�3.40%, 3.79%]

Older: 0 s, [�3.71%, 3.38%]; 5 s, [�9.34%, 2.55%]; 10 s, [�4.21%, 1.75%]; 20 s, [�6.26%, 4.34%]; 30 s,

[�4.66, 9.25%]; 50 s, [�9.89%, 4.22%]; 90 s, [�4.82%, 5.19%]

Relative temporal decay of the implicit learning:

Young: 0 s, [�8.37%, 5.45%]; 5 s, [�16.04%, �1.63%]; 10 s, [�14.04%, 0.24%]; 20 s, [�19.36%,

�5.20%]; 30 s, [�19.03, �1.50%]; 50 s, [�21.68%, �7.82%]; 90 s, [�23.88%, �6.41%]

Older: 0 s, [�12.49%, 3.40%]; 5 s, [�6.78%, 3.03%]; 10 s, [�14.86%, �0.92%]; 20 s, [�19.27%,

�1.83%]; 30 s, [�19.10%, �3.03%]; 50 s, [�28.13%, �9.73%]; 90 s, [�37.36%, �15.57%]

518 Normal Two-tailed paired t test Selection time during retraining vs. end of training

Young: retraining, [1.34 s, 1.93 s]; end of training [1.60 s, 2.27 s]

519 Normal Two-tailed paired t test Selection time during retraining vs end of training

Older: retraining, [2.30 s, 5.19 s]; end of training, [2.92 s, 6.58 s]

(Continued)
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group, 44.67° 6 2.01°). An LMM analysis with a random
effect of subjects was used to examine two fixed effects
of group (young and older) and training period (early, mid-
dle, and late training) on overall learning. This showed that
training period had a significant effect on overall learning
(F(2,74) = 185.61, p, 0.001), but there was not a significant
effect of group (F(1,37) = 0.032, p=0.85) or an interaction
between the two fixed effects (F(2,74) = 0.144, p=0.86).
Post hoc tests showed that subjects in both groups
adapted to the VMR perturbation rapidly and their overall
learning during the middle training period was significantly
greater than the learning during the early training period
(young group: p,0.001, d=3.62; older group, p, 0.001,
d=3.57). All subjects almost reached their asymptotic
performance during the middle training period, and their
learning did not increase significantly between the middle
and late training periods (young group, p=0.95, d=0.43;
older group, p=0.52, d=0.25).
Despite similarities in the overall adaptation, the subject

groups varied in their patterns of explicit and implicit ad-
aptation (Fig. 2A, red trace, B, dark blue trace). During
early training, the young subjects (Fig. 3A) demonstrated
a greater increase in their explicit aiming than in their im-
plicit learning (explicit, 8.03° 6 2.43°; implicit, 4.89° 6
1.72°). The explicit and implicit learning curves for the
young subjects both reached an asymptote in the middle
of the training block at similar levels (explicit, 20.55° 6
2.70°; implicit, 22.01° 6 2.38°), and both explicit and im-
plicit learning components remained at similar levels at
the end of the training (explicit, 23.80° 6 2.66°; implicit,
22.34° 6 2.67°). This pattern differed from that in the
older subjects (Fig. 3B), in that during early training the
explicit and implicit learning components had the oppo-
site relationship compared with young subjects (explicit,
4.58° 6 1.73°; implicit, 8.41° 6 1.69°). In the middle train-
ing period, implicit learning remained greater than explicit
aiming (explicit, 16.42° 6 2.22°; implicit, 24.19° 6 1.87°).
Similar to the young subjects, as training progressed for
the older subjects, the two learning components con-
verged to similar levels at the end of the training session
(explicit, 20.08° 6 3.71°; implicit, 24.58° 6 3.06°). An
LMM with random effects of subjects was used to exam-
ine the fixed effects of group, learning type, and training
period on the learning levels acquired by subjects in both

groups. We found that there was a significant main effect of
training period (F(1,220) =51.05, p, 0.001) and an interaction
between group and learning type (F(1,220) =4.94, p=0.028).
However, there were no other significant interactions among
the three fixed effects (interaction between training period
and group: F(2,220) =0.046, p=0.95; interaction between
training period and learning type: F(2,220) =0.78, p=0.46; in-
teraction among the three fixed effects: F(2,220) = 0.010,
p=0.98). Post hoc tests showed a significant increase in
both explicit and implicit learning components from early
training to middle training for both groups (p, 0.0038,
d.1.08 for all cases), with no significant change beyond
the middle training period (all cases: p.0.93, d,0.33).
During early and late training, explicit and implicit learning
components were not significantly different for both groups
(young subjects: early, p=0.36, d=0.29; late, p=0.67,
d=0.13; older subjects: early, p=0.28, d=0.35; late, p=
0.20, d=0.41). However, during middle training, there was a
significant difference between the explicit and implicit com-
ponents for older subjects (p= 0.035, d= 0.71), while the
difference was not significant for younger subjects
(p= 0.67, d= 0.13). The two learning components were
also compared across the two age groups in the post
hoc tests. We found that for all training periods, subjects
in the two groups applied similar levels of explicit aiming
(three training periods: p. 0.24, d,0.38) and implicit
learning (all three training periods: p.0.32, d, 0.31) to
counter the perturbation.

Selection time of explicit aim direction during training
We also compared the selection time for the direction

report (see Materials and Methods) between the two
groups during training (Fig. 4A,B). For the eight baseline
trials, we observed that older subjects required signifi-
cantly more selection time, although the VMR was not ap-
plied (young, 0.87 6 0.10 s; older, 1.46 6 0.21 s; two-
tailed unpaired t test: p=0.015, d=0.82). This indicates
that older subjects initially required a longer time to oper-
ate the knob. Interestingly, both groups required a large
selection time to choose their aiming directions after the
first exposure to the VMR in early training (young, 4.68 6
0.72 s; older, 9.006 1.37 s). For both groups, the changes
in the selection time followed a similar pattern as subjects
learned the task, with an initial sharp increase and

Table 1: Continued

Line # Data structure Type of test 95% CI

521 Normal Linear mixed-effects model

Selection time during adaptation decay ; group �
delay period 1 (1|subject)

Selection time during adaptation decay:

Young: 0 s, [1.68 s, 2.65 s]; 5 s, [2.14 s, 3.05 s]; 10 s, [2.28 s, 3.31 s]; 20 s, [2.40 s, 3.33 s]; 30 s, [2.48 s,

4.06 s]; 50 s [2.66 s, 3.98 s]; 90 s [2.68 s, 3.77 s]

Older: 0 s, [2.40 s, 4.87 s]; 5 s [3.63 s, 6.53 s]; 10 s [4.04 s, 6.53 s]; 20 s [4.73 s, 8.25 s]; 30 s [4.82 s, 8.43

s]; 50 s [4.31 s, 7.19 s]; 90 s [4.74 s, 8.26 s]

535 Normal Two-tailed unpaired t test Selection time during retraining

Young: [1.34 s, 1.93 s]

Older: [2.30 s, 5.19 s]

541 Normal Linear mixed-effects model

Change of selection time during adaptation decay ;

group � delay period 1 (1|subject)

Change of selection time during adaptation decay:

Young: 0 s, [0.27 s, 0.80 s]; 5 s [0.68 s, 1.15 s]; 10 s, [0.83 s, 1.52 s]; 20 s, [0.93 s, 1.53 s]; 30 s, [1.00 s,

2.32 s]; 50 s, [1.23 s, 2.10 s]; 90 s, [1.25 s, 2.02 s]

Older: 0 s, [�0.59 s, 1.17 s]; 5 s, [�0.05 s, 2.87 s]; 10 s, [0.48 s, 2.59 s]; 20 s, [1.96 s, 4.41 s]; 30 s, [1.97 s,

4.47 s]; 50 s, [1.60 s, 3.45 s]; 90 s, [1.97 s, 4.59 s]
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Figure 3. Overall adaptation, and levels of explicit and implicit learning during training. A, B, Histograms of the average amount of
explicit, implicit, and overall adaptation that occurred for young (A) and older (B) subject groups during the early, middle, and late
training periods. Overall, explicit, and implicit adaptation were measured in degrees, as described in Figure 1E. The light blue sym-
bols represent the overall adaptation, while red and dark blue symbols represent the explicit and implicit adaptation levels, respec-
tively. The individual data for each subject are represented by the black filled circles next to the respective histogram. Vertical error
bars represent the SEM.

Figure 2. Adaptation curves over the training period. A, B, The learning curves for young (A) and older (B) subjects during training.
The x-axis represents the progression of trials, divided into pretraining (baseline, without the visuomotor rotation perturbation) and
training (which was composed of 60 trials). The dark gray trace represents the magnitude of the rotation of visual feedback, and
light gray vertical bars are the three periods during training (early: the first five trials; middle: the middle five trials; and late: the last
five trials). Overall and implicit adaptation, and explicit aiming levels were measured in units of degrees, through the methods de-
picted by Figure 1E. The light blue symbols represent the mean overall adaptation on each trial, while red and dark blue symbols
represent the mean explicit and implicit adaptation levels on each trial, respectively. Background shading represents the SEM.
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reaching an asymptote at the end of the training, albeit at
different levels (late training: young, 1.94 6 0.16 s; older,
4.75 6 0.87 s). An LMM with random effect of subjects
was used to test the fixed effects of group and training pe-
riod (early, middle, and late) on the selection time during
training. We found that both effects were significant (main
effect of group: F(1,74) = 10.69, p, 0.001; main effect of
training period: F(2,37) = 22.42, p,0.001) with no interac-
tion between them (F(2,74) = 0.76, p=0.47). This was also
the case when the initial baseline differences were taken
into account. Post hoc tests showed that the selection
time for subjects in both groups significantly decreased at
the end of training compared with early training (young
group: p=0.038, d=0.81; older group, p=0.001, d=
1.25). For all training periods, older subjects required a
significantly longer selection time than young subjects
(Fig. 4B; training periods: p, 0.022, d. 0.83). Thus, at
the end of training, although subjects in the two groups
fully learned the VMR and adopted similar levels of explicit
strategy to compensate for the perturbation (Figs. 2, 3),
older subjects still required a significantly longer selection
than young subjects.
To further examine the relationship between explicit

aiming and selection time, we plotted the former as a
function of the latter in Figure 5. As subjects began to
develop an explicit aiming strategy during early training
(Fig. 5, top row), the major axes of the ellipses were ori-
ented toward a positive slope for both age groups, indi-
cating that the explicit aiming directions increased as
subjects used a longer selection time. After further adap-
tation during the middle and late training periods (Fig. 5,
middle and bottom rows, respectively), the confidence el-
lipses for both groups rotated counterclockwise and their

major axes oriented toward similar directions along the y-
axis (90°). This change in orientation is reflected in Figures
2 and 4; over the training period, subjects in the respec-
tive groups selected similar aiming directions (Fig. 2,
asymptotes, red traces) within a shorter time (Fig. 4,
asymptotes, purple and green traces). However, as noted
above, older subjects still required a longer selection time
than the young subjects, which is demonstrated by the
wider minor axes of the corresponding confidence ellip-
ses. To quantify the relationship between explicit aiming
and selection time, we applied a model type II linear re-
gression (using the lmodel2 package in R; Legendre,
2018) on the two variables (because both explicit aiming
and selection time are noisy measurements, we used
model II linear regression instead of model I). The black
solid lines in Figure 5 are the model II regression fit, and
the black dashed lines are the 95% CIs for the regression.
During the early training period, the slopes for the linear
regressions were significant for both groups (young sub-
jects: 5.92; 95% CI, [3.93, 8.92]; p, 0.02; older subjects:
1.72; 95% CI, [1.13, 2.62]; p,0.05). During the middle
and late training periods, the slopes of the linear regres-
sion became steeper for both groups showing that sub-
jects were able to use a shorter time to select their
aiming directions (middle training: young subjects,
�11.32; 95% CI, [�18.02, �7.11]; p = 0.12; older sub-
jects, 3.60; 95% CI, [2.16, 5.97]; p = 0.42; late training:
young subjects, �17.81; 95% CI, [�28.63, �11.08];
p = 0.40; older subjects, 5.64; 95% CI, [3.55, 8.97];
p = 0.11). Furthermore, the slopes of the regression
were not significant for both groups during middle and
late training, indicating that across subjects the explicit
aiming strategy used to compensate for the visuomotor
rotation did not significantly change with selection time.

Figure 4. Explicit movement direction selection time over the training period. A, Selection time was plotted as a function of trial
number during pretraining (baseline, without the visuomotor rotation perturbation) and training period (which was composed of 60
trials). The young and older subject groups are represented by green and purple traces, respectively. B, Histograms of the selection
time at the three training periods (early, middle, and late) for young and older subjects. The individual data for each subject are rep-
resented by the black filled circles next to the respective histogram. Vertical error bars represent the SEM.
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Temporal decay of implicit and explicit learning
We first assessed the retention of explicit aiming, and

implicit and overall learning by comparing the aiming an-
gles and reaching angles on the nonvisual feedback
probe trials to the average aiming and reaching angles
over the last three retraining trials (see Materials and
Methods). We plotted the former as a function of the latter
for each individual probe trial in Figure 6. For the explicit
learning (Fig. 6A), the majority of the data points for both
groups were on the diagonal unity lines for the different
delay periods, indicating no obvious decay over time
(note the mean values in each panel of Fig. 6 are on the
unity lines). For the implicit learning and overall learning
(Fig. 6B,C), most data points started to fall below the unity
line as the delay period increased. Also, the data points
for the older group (Fig. 6B,C, purple squares) deviated
further from the diagonal unity lines than those for the
young group (Fig. 6B,C, green circles), suggesting greater
decay with time (Fig. 6B,C, the mean values are below the
unity line, with the data for the older group below the
young).
To better observe the difference between groups and to

quantify the retention of learning, absolute angular decay
(Fig. 7A) and relative learning decay (Fig. 7B) for the probe

trials compared with the end of the preceding retraining
trials were examined (see Materials and Methods). For an-
gular decay (Fig. 7A), at the delay of 0 s, the amount of
compensation for the VMR was not significantly differ-
ent from the amount of overall recalibration during re-
training for both groups (young group: retraining, 44.94°
6 0.66°; 0 s, 44.97° 6 0.81°; two-tailed paired t test,
p. 0.94, d = 0.0065; older group: retraining, 42.29° 6
0.91°; 0 s, 41.47° 6 1.22°; two-tailed paired t test,
p. 0.48, d = 0.17). To investigate the difference in tem-
poral decay of overall adaptation (reaching angles) be-
tween the two groups, we fitted the angular decay data
using an LMM with fixed effects of group, random effect
of subjects, and actual elapsed time as a covariate.
Throughout the delay periods (range, 0–90 s), the temporal
decay of the overall adaptation for young subjects (Fig. 6A,
light blue circles) was consistent with previous studies
(Hadjiosif and Smith, 2013; Zhou et al., 2017). There were sig-
nificant effects of group and delay period on the retention of
overall learning (main effect of group: F(1,51.68) =10.55,
p=0.002; main effect of delay period: F(1,215.34) =85.73,
p=0.0001), and the interaction between the two effects was
also significant (F(1,215.34) =13.60, p=0.0003). Thus, the over-
all temporal retention for both groups decayed significantly

Figure 5. Relationship between explicit aiming direction and selection time during adaptation. A, B, Explicit aiming directions during
the three training periods (early, middle, and late) as a function of selection time for young (A) and older (B) subjects. The young and
older subject groups are represented by green and purple symbols, respectively. Each filled circle represents the mean explicit aim-
ing direction and the corresponding selection time during each training period for each subject. The shaded ellipses are the 95%
confidence ellipses of the data. The black solid lines represent model type II linear regression fits to the data, and the black dashed
lines represented the 95% confidence intervals for the regression.
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as the actual delay period increased (values are actual delay
and mean delay period: young group: 0 s, 2.476 0.19 s; 5 s,
8.016 0.23 s; 10 s, 13.196 0.27 s; 20 s, 23.116 0.30 s; 30
s, 33.326 0.24 s; 50 s, 53.716 0.33 s; 90 s, 93.076 0.65 s;
older group: 0 s, 4.01 6 0.52 s; 5 s, 10.55 6 0.81 s; 10 s,
16.146 0.75 s; 20 s, 26.746 0.88 s; 30 s, 36.816 0.86 s; 50
s, 55.16 6 0.1.19 s; 90 s, 96.91 6 0.96 s). The decay of the
older group was significantly larger than the decay of the
young group over time. We fit the decay data with both the
exponential and linear decay models (see “Materials and
Methods”) and found that the pattern of temporal decay of
overall learning for young subjects was well represented by
the single exponential decay model (Fig. 6A, light blue line;
exponential model: R2 = 0.54, p=0.00,011, AIC=627.13;
vs linear model: R2 = 0.45, p=0.00,013, AIC=648.20). The
time constant of the exponential fit was 25.61 6 23.08 s,
indicating that only a portion of the overall learning was de-
pendent on the passage of time. In contrast to the young
subjects, the temporal decay of overall learning for the
older group was best described by the linear model
(Fig. 6B, light blue line; exponential model: R2 = 0.42, p,
0.0001, AIC=650.39; vs linear model: R2 = 0.46, p,
0.0001, AIC=641.56). The slope of the linear model k was
�0.0796 0.011. Thus, the overall learning for the two age
groups decayed in a significantly different way. The differ-
ences in decay rate between the young and older subject
groups suggest that there would continue to be significant
age-related differences in retention at longer delay periods,
since the retention in younger subjects had reached
asymptote.
The decay in explicit aiming and implicit learning during

the decay process was also assessed. The young sub-
jects demonstrated a near complete retention of explicit

aiming across the delay periods (Fig. 7A, red filled circles).
This trend resembled the same results for the older sub-
jects (Fig. 7B, red circles). We fitted the explicit aiming
decay for both groups with the linear model and found
that the linear model was not significantly different from a
constant model (young group: p=0.99, ˛2 = 0.0001; older
group: p=0.52, ˛2 = 0.0033). That is, there was near con-
stant retention of the explicit aiming direction across the
actual elapsed time. However, the retention and decay
pattern for implicit learning was very different between the
two groups (Fig. 7A,B, dark blue filled circles). For both
groups, the decay of implicit learning was very similar to
the decay of the overall learning (young group: time con-
stant, 23.62 6 26.86 s; older group: slope, �0.0786
0.020). This was expected, because, as shown above, the
explicit aiming component remained fairly constant over
the time delay periods. The analysis using an LMM with a
random effect of subjects was performed to examine the
effects of actual elapsed time, learning type, and group
on the explicit and implicit learning decay. Significance
was found for all three fixed effects (actual elapsed time:
F(1,488.16) = 49.35, p, 0.0001; learning type: F(1,484.68) =
156.10, p=0.0018; group: F(1,75.87) = 10.52, p=0.0018)
and interaction among the three fixed effects (F(1,484.89) =
9.62, p=0.002). Post hoc tests showed that for both
groups, implicit learning decay was significantly larger
than the explicit learning decay over time (young group:
tratio(484) = 3.02, p=0.0026; older group: tratio(486) = 7.19,
p, 0.0001). However, there was no significant difference
in the temporal angular decay of explicit aiming between
the two groups (tratio(486) = 0.18, p.0.85) and temporal
decay of the implicit learning for the older group was
significantly larger than the decay of the young group
(tratio(484) =�4.17, p, 0.0001).

Figure 6. Retention of learning with respect to previous retraining trials. A–C, The amount of learning (aiming and reaching angle) on
the probe trial is plotted against the amount of learning on the previous retraining trials for explicit aiming (A), implicit learning (B),
and overall learning (C) for the seven different delays (each respective column). The individual data for each subject are represented
by the green circles (young subjects) and purple squares (older subjects). The group mean in each panel is depicted by the larger
filled symbols for each respective group, and the shaded ellipses represent the 95% confidence intervals. Horizontal and vertical
dashed lines show the maximum VMR perturbation (45°), and the diagonal dashed line is the unity line.
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To better understand the temporal decay for the two
learning components, we also measured the relative re-
tention compared with the end of the preceding retraining
trials (Fig. 7C,D). The relative retention of the overall learn-
ing and explicit learning for both groups follows the same
trends as the absolute angular retention shown in Figure
7, A and B. (Fig. 8A–C shows a direct comparison of the
relative retention of explicit, implicit, and overall learning
between the two groups, respectively.) Both groups had
similar relative retention of the explicit learning, and the
relative overall learning decay for the older group was sig-
nificantly larger than that for the young group. For actual
elapsed time up to 100 s, the average decay of the overall
learning for the older group (15%) was about twice the
decay for the young group (8%). One interesting result we
observed was that the relative decay of the implicit learn-
ing for both groups was about twice that of the relative
decay of their overall learning. This difference is because
of dividing the absolute angular decay by the implicit
learning levels at the end of the retraining trials, which

accounted for ;50% of the overall learning (i.e., both ex-
plicit and implicit learning contributed ;50% to the over-
all learning for both groups at the end of training; Figs. 2,
3). Thus, the relative temporal decay of the implicit learn-
ing was actually greater than the relative decay of the
overall learning for both groups because of the stability of
the explicit aiming (young group: time constant for the im-
plicit decay, 16.76623.44 s; time constant for the overall
decay, 17.386 23.84 s; slope for the implicit decay,
�0.266 0.095; slope for the overall decay, �0.146
0.052). The same LMM with random effect of subjects
was performed to examine the effects of actual elapsed
time, learning type, and age group on the relative tempo-
ral decay of the explicit and implicit learning. Significance
was found for the interaction among the three fixed ef-
fects (F(1,484.89) = 4.80, p=0.029). Post hoc tests revealed
the same results that relative retention of the explicit
learning was not significantly different between the two
groups (tratio(486) = 0.36, p. 0.71) and the relative temporal
decay of the implicit learning for the older group was

Figure 7. Temporal decay curves. A–D, The decay of implicit, explicit and overall learning as a function of the actual elapsed time is
shown for young (A, C) and older (B, D) subjects. The actual elapsed time is the time interval from the end of the previous trial to the
time when the selection was made for the explicit learning component, and the time interval from the end of previous trial to the
movement onset for the implicit learning component. Note that the actual elapsed time was always slightly longer for the implicit
learning component. The absolute retention (angular deviation) and relative retention (percentage of the adaptation at the end of
preceding retraining trials) are shown on the top and bottom rows, respectively. The mean value for each respective measure (over-
all learning: light blue symbols; explicit aiming: red symbols; implicit learning: dark blue symbols) on the probe trial is plotted for the
actual elapsed time for each respective delay period (0, 5, 10, 20, 30, 50, and 90 s). Each panel includes the best fit function (A, C,
exponential for young subjects; B, D, linear for older subjects) for the decay of overall adaptation and implicit learning. Explicit learn-
ing for each group was best described by a linear function. Vertical error bars represent the SEM in the respective measures of
decay, and horizontal error bars represent the SEM in the actual elapsed time.
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significantly larger than the decay of the young group (tra-
tio(484) =�2.69, p=0.0074).

Selection time during adaptation decay
We also compared the explicit aiming selection time

during the testing phase. We first examined the selection
time during retraining (the average of the last three retrain-
ing trials) for each delay period for both groups. During re-
training, subjects in both groups used a similar selection
time compared with their selection time at the end of train-
ing, each showing no significant difference (young group:
1.63 6 0.14 s; two-tailed paired t test, p=0.17, d=0.34;
older group: 3.7560.69 s; two-tailed paired t test, p. 0.37,
d=0.29). The selection time increased for both subject
groups as the delay period increased (Fig. 9A). We used an
LMM with the random effect of subjects to examine the
fixed effects of group and delay period on the selection time
and found that the two fixed effects and their interaction
were significant (effect of group: F(1,37) =16.18, p=0.00027;
effect of delay period: F(6,222) =13.69, p,0.00001; interac-
tion: F(6,222) =3.38, p=0.0033). Post hoc tests showed that
for all the delay periods.0 s, young subjects did not require
significantly greater selection times from their selection time
duration at 0 s (5–90 s delay periods: p. 0.05, d, 0.48),
while older subjects required a significantly longer selection
time than the time they required at 0 s (5–90 s delay periods:
p, 0.022, d. 1.12). For all delay periods (0–90 s), older
subjects required a significantly longer selection time than
young subjects (all delay periods: p, 0.040, d. 1.33).
Despite the significant difference in selection time be-

tween the two groups, we were not able to distinguish be-
tween whether the older subjects need more time for
choosing the explicit aiming direction or they just required
more time to operate the knob compared with young sub-
jects. Considering that both groups required significantly
different selection times during retraining trials (two-tailed
unpaired t test, p=0.0038, d=0.99), we used the selec-
tion time in the retraining as the baseline time to operate
the knob and examined whether the relative change of the
selection time for each delay length remained significantly
different. Thus, we took into account differences in the
operation time of the knob to determine between group

differences specific to forming the explicit aiming strategy.
We plotted the change of the selection time for each delay
period in Figure 9A by subtracting the average selection
time in the preceding retraining trials (Fig. 9B). The same
LMM as above was performed to evaluate the difference in
the change of selection time. There was a significant effect
of the delay period (F(6,222) = 12.01, p, 0.00001) but no sig-
nificant effect of group (F(1,37) = 2.37, p=0.14). The interac-
tion between the effects of group and delay period was
significant (F(6,222) = 3.20, p, 0.0051). Post hoc tests
showed that compared with the retraining trials, young
subjects did not require significantly more time to select
aiming direction (all delay periods: p. 0.18, d, 0.45),
while older subjects needed significantly more selection
time for all delay periods .10 s (all cases: p, 0.0001,
d. 1.35).

Discussion
Influence of aging on the interaction of implicit and
explicit learning mechanisms
Although natural aging is closely associated with learn-

ing and memory impairments (Seidler et al., 2010; King et
al., 2013; Cai et al., 2014), its effect on motor learning has
varied. In some cases, older subjects are significantly
slower to compensate for perturbations to movement. For
example, Fernández-Ruiz et al. (2000) found that older
subjects (age range, 50–78 years) required a longer train-
ing period to achieve the same level of prism adaptation
as younger subjects (age range, 18–24 years). Similarly, in
a visuomotor rotation task, Bock and Girgenrath (2006)
reported older subjects (age range, 62–79 years) had a
slower rate of movement recalibration compared with
younger subjects (age range, 21–30 years), which corre-
sponded with reduced performance in a cognitive reac-
tion-time tasks. In contrast, other studies have shown
little effect of aging on motor recalibration; young subjects
(mean age, 23.164.2 years) and older subjects (mean
age, 71.167.8 years) demonstrated a similar time course
of adaptation in a force-field adaptation task (Trewartha
et al., 2014). Similarly, Malone and Bastian (2016) showed
young subjects (mean age, 22.56 2.6 years) and older

Figure 8. Comparison of the relative retention between the two age groups. A–C, The relative decay percentage for explicit (A), im-
plicit (B), and overall (C) learning (compared with the end of preceding retraining trials). The mean decay percentage for the two
groups (young group: green symbols; older group: purple symbols) on the probe trial is plotted for the actual elapsed time for each
respective delay period (0, 5, 10, 20, 30, 50, and 90 s), together with the best fit for each dataset (the solid lines). Vertical error bars
represent SEM in the respective measures of decay, and horizontal error bars represent the SEM in the actual elapsed time.
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subjects (mean age, 52.86 5.8 years) adapted at similar
rates in response to perturbations of gait patterns.
In the current study, we examined the respective age-

dependent contributions of explicit and implicit learning
mechanisms to motor adaptation (Mazzoni and Krakauer,
2006; Heuer and Hegele, 2008, 2014; Lam et al., 2010;
Taylor et al., 2014; Bond and Taylor, 2015; Morehead et
al., 2015; De Brouwer et al., 2018; Vachon et al., 2020).
Although young and older subjects adapted to the feed-
back rotation at somewhat similar rates (Fig. 2), older
subjects consistently exhibited a higher implicit learn-
ing contribution (Fig. 3). This is largely consistent with
a number of prior studies. For example, Vandevoorde
and Orban de Xivry (2019) recently examined visuomo-
tor learning in young subjects (mean age, 22.86 2.9
years) and older subjects (mean age, 66.86 4.7 years).
Implicit learning was not impaired in older subjects,
while there was a deficit in the use of cognitive strat-
egies. Additionally, in the study by Malone and Bastian
(2016) older subjects demonstrated lower adaptation
curves when challenged with a distraction in the form
of visual and auditory stimuli, suggesting that diverted
attention hindered the ability to access and implement
explicit learning strategies. Next, Buch (2003) imple-
mented a visuomotor adaptation task in which the per-
turbation either increased in 11.25° increments every
45 trials (gradual) or were immediately exposed to a
90° perturbation (sudden). The hypothesis was that a
gradual rotation would primarily entail implicit strat-
egies, since subjects would purportedly not be con-
sciously aware of the perturbation, while the sudden
rotation was assumed to require more focus on declar-
ative learning. Older subjects demonstrated larger

errors than younger subjects during sudden adapta-
tion, suggesting impaired explicit strategies. In con-
trast, both age groups exhibited similar performance in
the gradual rotation task, suggesting comparable use
of implicit learning mechanisms during adaptation.
Finally, Wolpe et al. (2020) examined visuomotor adap-
tation in young subjects (age range, 18–45 years), mid-
dle-aged subjects (age range, 46–65 years), and older
subjects (age range, 66–89 years), and found an age-
related decline in motor adaptation. Wolpe et al. (2020)
associated this deficit with an age-related decline in
explicit memory systems based on behavioral correla-
tions with (1) explicit memory measures (e.g., the Anna
Thompson Story Recall task) and (2) the reductions in
gray matter volume. It is important to note that, similar
to the majority of previous studies described above,
Wolpe et al. (2020) did not directly assess implicit and
explicit contributions to the overall adaptation, but in-
ferred the role of explicit mechanisms by secondary
tasks and correlation analyses. However, as noted
above, our results are largely aligned with these con-
clusions; older subjects showed less of an explicit aim-
ing contribution during learning (Fig. 2). It would be
interesting to expand the findings of Wolpe et al.
(2020) to determine the relationship between these
identified neural areas and the differences in the short-
term temporal stability of learning shown here. For ex-
ample, the authors found that age-related differences
in motor adaptation were associated with gray matter
volume reductions in the striatum and prefrontal cor-
tex, but not in the cerebellum. In addition, adaptation
was associated with gray matter volume in the hippo-
campus, a relationship that increased with age. For the

Figure 9. Selection time during the decay period. A, Overall selection time for retraining trials and each delay period is shown for
the young (green symbols) and older subjects (purple symbols). B, The change in selection time for each delay period is shown, nor-
malized by the selection time on the preceding retraining trials. The individual data for each subject are represented by the black
filled circles next to the respective histogram. Vertical error bars represent the SEM.
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older subjects in the current study, this would be con-
sistent with largely intact cerebellar-based implicit
learning mechanisms during training, but perhaps im-
paired short-term memory retention because of an
age-based deficit of the hippocampus and associated
connections (Albouy et al., 2008; Doyon et al., 2009;
Addante, 2015).
The greater reliance on implicit learning by older sub-

jects in the current results may be because of a disad-
vantage in applying explicit knowledge (Light and Singh,
1987; Durkin et al., 1995). Recently, Miyamoto et al.
(2020) found that although visuomotor adaptation in-
volves similar levels of implicit and explicit strategies, the
two learning mechanisms act antagonistically, with im-
plicit learning compensating for the variability caused by
the explicit movement strategy. Our results may reflect
this trade-off; although older subjects demonstrated in-
creasing levels of explicit learning as training progressed,
the level of overall adaptation remained relatively consist-
ent. As a result, there was increased use of implicit learn-
ing when explicit mechanisms were hindered, as implicit
learning may have provided a stability advantage when at-
tempting to maintain overall adaptation. That is, the great-
er reliance on implicit learning mechanisms by older
subjects may be beneficial in countering a possible age-
associated increase in explicit strategy-induced perform-
ance variability.

Influence of aging on the temporal stability of implicit
and explicit learning mechanisms
Similar to previous studies of age-related differences in

the temporal decay of performance (Loaiza and McCabe,
2013; Trewartha et al., 2014; Malone and Bastian, 2016),
all subjects experienced a decrease in the overall learning
with time. This is consistent with prior adaptation studies
that demonstrated lower aftereffects either as a function
of time or over consecutive no-feedback trials (Galea et
al., 2011; Kitago et al., 2013; Taylor et al., 2014; Zhou et
al., 2017). However, the pattern of temporal stability dif-
fered between the subject groups because of an age-re-
lated difference in the rate of the decay of implicit learning
—exponential for young subjects and linear for older sub-
jects. The differences in decay rate between the young
and older subject groups suggests that there would con-
tinue to be significant age-related differences in retention
at longer delay periods, since the retention in younger
subjects had reached asymptote after ;30 s. It is impor-
tant to note that these results point to an age-related defi-
cit in the short-term temporal stability, which appears in
contrast to the previous finding that older and younger
subjects had similar retention of implicit and overall adap-
tation over a 1 min break during learning (Vandevoorde
and Orban de Xivry, 2019). However, Vandevoorde and
Orban de Xivry (2019) assessed this retention after a sin-
gle time point, whereas we were interested in how this re-
tention systematically changed over time. In addition,
even in our study this single time point shows similar lev-
els of decay between the two groups (Fig. 7, near the 50 s
time point); extending the range beyond a minute (.90 s)
provides a full view of the difference in the decay rates.

Furthermore, we assessed the age-based difference in
stability after asymptotic levels of learning had been
achieved and maintained (through retraining), not during
training as in this previous study. Because of the short
timescale studied (seconds to 1.5min), the current results
do not contradict the observed age-related retention defi-
cits of explicit memory functions for nonmotor tasks over
longer time periods (Naveh-Benjamin et al., 2003; Kessels
et al., 2007). Finally, prior studies that observed a de-
crease of adaptation over consecutive movement trials
examined a combination of movement-dependent and
time-dependent decay, rather than strictly time-depend-
ent changes—a difference likely involving distinct neural
mechanisms (Kitago et al., 2013).
There is ample evidence that short-term motor adapta-

tion involves different learning mechanisms operating
along multiple timescales (Smith et al., 2006; Körding et
al., 2007; Criscimagna-Hemminger and Shadmehr, 2008;
Joiner and Smith, 2008; Mawase et al., 2014; Inoue et al.,
2015; McDougle et al., 2015; Alhussein et al., 2019). Sing
et al. (2009) hypothesized that there is an interaction of
temporally labile and temporally stable learning mecha-
nisms (represented by fast and slow learning processes;
Smith et al., 2006) that interact during adaptation. The
temporally labile fast learning process decreases with the
passage of time (passive decay), while the temporally sta-
ble slow component is not significantly affected with the
passage of time. The slower decay of adaptation for
young subjects may represent the relative stability of the
temporally labile fast process, while the greater decay for
older subjects may reflect the combined fading of both
the slow and fast learning mechanisms. However, be-
cause adaptation to visual manipulations involves explicit
cognitive strategies, we should note that state-space
models that reflect fast and slow learning processes fail to
capture some aspects of this type of motor recalibration
(Zarahn et al., 2008). Additional studies must be conducted
to develop a computational framework that fully captures
these age-based behavioral results in terms of temporally
labile and temporally stable learning mechanisms.
Our results presented in Figure 5 suggest that during

early training the increase of the explicit aiming was re-
lated to the increase of the selection time; with longer se-
lection time, subjects in both groups had a larger explicit
aim to counter the perturbation. Although demonstrated
on a significantly smaller timescale (milliseconds as op-
posed to seconds/minute), this benefit of increased deci-
sion time is observed in previous findings (Haith et al.,
2015, 2016) where subjects exhibited significantly greater
error on trials with low preparation time compared with tri-
als with high preparation time. Importantly, the results
suggest that the time allowed to prepare the motor output
differentially influences the explicit and implicit learning
components—more time allows for a greater contribution
of explicit strategy. The shallower relationship in early
training for older subjects suggests that they required
more time to form an aiming direction that young subjects
were able to formulate in much less time. In addition, all
subjects required more time to select an aiming direction
as the delay period increased (Fig. 8). However, similar to
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training (Fig. 4), the older subjects often required twice
the amount of time compared with young subjects, sug-
gesting greater uncertainty in forming the explicit plan.
This finding is consistent with prior studies (Trewartha et
al., 2014; Trewartha and Flanagan, 2016), where older
subjects had a longer task reaction time during an explicit
memory task. Furthermore, the increased reaction time in
the older group for the memory task was found to corre-
spond with reduced explicit memory performance, dem-
onstrating a negative relationship between reaction time
and explicit memory. Trewartha and Flanagan (2016)
demonstrated similar findings in the context of a weight
prediction task. Our results did not show a similar tempo-
ral relationship; older subjects were able to maintain aim-
ing accuracy although the selection time increased (Figs.
7, 8). However, in both the training and testing phases,
the longer selection time for older subjects may result
from uncertainty in the aiming direction, rather than a gen-
eral difficulty in making the selection. That is, there was
no significant change in the explicit aiming at the end of
training (Fig. 3) or over the testing phase (Fig. 7), but older
subjects continued to require significantly more selection
time compared with young subjects.

Potential application to neurodegenerative disorders
Our experimental paradigm may provide a basis for

clinical assessments of implicit and explicit learning and
memory deficits. For example, it is well known that normal
aging contributes to neurochemical and physiological al-
terations within the brain, including cortical thinning and
decreased hippocampal volume (Nyberg et al., 2012),
leading to reduced working and episodic memory (Park et
al., 2002; Rönnlund et al., 2005; Malouin et al., 2010;
Sauzéon et al., 2016), pair association (Light et al., 2004;
Old and Naveh-Benjamin, 2008), and decision-making
(Cai et al., 2014). There is also evidence that propriocep-
tive perception and associated processing declines with
age (Adamo et al., 2007; Goble et al., 2009; Piitulainen et
al., 2018), which likely contribute to deficits in error-based
learning and decision tasks. Treatment of neurodegenera-
tive diseases requires a thorough understanding of how
these age-related changes in sensory processing and
memory stability are distinct from pathologic deficits. For
example, Alzheimer’s disease (AD) patients commonly ex-
perience memory deterioration and a decreased ability to
make judgments and decisions (e.g., the Rey Auditory
Verbal Learning Test and verbal fluency tasks; Klimkowicz-
Mrowiec et al., 2008). In contrast, implicit learning remains
largely intact, specifically in simple motor tasks (e.g., maze
test, rotor pursuit, mirror tracing, and serial reaction time;
Heindel et al., 1988, 1989; Knopman, 1991; Ferraro et al.,
1993; Dick et al., 1995, 2001, 2003; Starkstein et al., 1997;
Taylor, 1998; Rouleau et al., 2002). Our findings provide a
possible standard to distinguish motor learning and reten-
tion deficits accompanying normal aging from those
caused by brain disorders that progress with age. One hy-
pothesis is that the overall short-term temporal stability of
motor adaptation will be significantly impaired for AD pa-
tients because of an abnormal fading of the explicit aiming
direction over time, in addition to the reduced ability to

store the implicit memory component caused by hippo-
campal damage. Importantly, age-associated differences
in the short-term temporal stability of implicit learning in
the current study were observed despite similar perform-
ance on the MMSE and TMT. Thus, analyzing the temporal
properties of implicit and explicit motor learning within the
same behavioral context may provide a novel behavioral
assay to determine the potential biomarkers of the associ-
ated structural and functional neural changes that accom-
pany neurodegenerative disorders.

Conclusions
In this study, we examined the differences in the short-

term (seconds to 1.5min) temporal stability of explicit and
implicit motor learning following adaptation of arm-reach-
ing movements. We specifically focused on possible var-
iations in the stability because of normal aging. In general,
both young and older subjects showed similar overall
learning rates of adaptation, and by the end of training
there was not a significant difference in the level of explicit
aiming and implicit learning between the two groups.
Interestingly, over a short-term delay period (from 0 to 90
s), both young and older subjects showed almost complete
retention of the explicit aiming achieved during adaptation.
However, the temporal change for implicit learning was
very different between subject groups. Consistent with pre-
vious work, young subjects had an exponential decrease in
the implicit learning component. In stark contrast, older
subjects had a linear decrease over the same time period.
These results demonstrate that within the context of this
motor adaptation task, normal aging reduces the short-
term stability of implicit motor learning across time, with
very little impact on explicit motor learning processes.
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