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Abstract

Flexible Mixture Modeling Approaches to Renewal Processes

by

W. Zachary Horton

This dissertation develops flexible and computationally efficient Bayesian mixture mod-

eling methods for various types of renewal processes. Renewal processes are temporal

point process models whose stochastic mechanism focuses on the times between succes-

sive events, or inter-arrival times. They have been applied in a variety of fields, including

system reliability, earthquake recurrence modeling, and analysis of neural spike-trains.

The homogeneous renewal process assumes that the inter-arrival times are independent

and identically distributed, being a generalization of the homogeneous Poisson process

where inter-arrival times are exponentially distributed. Various extensions of this ba-

sic model have been proposed, of which discrete marks and time-varying hazards are

relevant to this work.

We first propose a Bayesian nonparametric mixture modeling framework for

homogeneous renewal process densities. Selection of the mixture kernel and prior speci-

fication are guided by specific features of renewal processes. The definition of a renewal

process requires finite mean for the inter-arrival time distribution. We discuss sufficient

conditions to satisfy this constraint. In addition, event clustering behavior is often of

interest in analyzing renewal process point patterns. Clustering behavior is assessed

through the renewal function, which can be obtained from the Laplace transform of the

xii



inter-arrival time density, hence kernels with analytical Laplace transform expressions

are preferred. We present model details using the gamma density kernel, requiring only

a minor restriction on prior hyperparameters to satisfy the finite mean requirement.

Motivated by the application area of earthquake recurrence modeling, we also develop

a model for decreasing density shapes using a uniform mixture kernel.

Markov renewal processes are a generalization of the homogeneous case where

discrete state information is observed with each event. Transitions from one state to

another are governed by a Markov chain, and inter-arrival times arise conditionally from

transition-specific distributions. For example, earthquake recurrence characteristics may

depend on whether the observed magnitudes exceed certain thresholds. Conventional

estimation methods for Markov renewal models treat each transition case independently,

which facilitates convenient computation but may ignore underlying structure or similar-

ities between cases. Using as foundation the nonparametric mixture modeling framework

developed for homogeneous renewal processes, we propose a novel modeling approach

for Markov renewal processes where dependence between transition cases is captured

through a dependent nonparametric prior. Our proposed framework contains both the

homogeneous renewal process and the conventional Markov renewal process as special

limiting cases, allowing the degree and nature of dependence to be studied. This method

is particularly useful in earthquake recurrence models, where the additional inferences

provided by our model reveal interesting patterns in how earthquake magnitudes af-

fect recurrence times. We explore model properties through simulated data and then

compare several models applied to an earthquake dataset from Southern California.

xiii



Certain extensions of the homogeneous renewal process, such as the time-

varying modulated renewal process, are defined in terms of the inter-arrival hazard rate

function rather than the density. In these settings, a flexible model applied directly

to the hazard function can be more easily adapted to such extensions. Additionally,

prior information in some applications may be more naturally expressed on the hazard

scale, which may be difficult to integrate into a density-oriented model. We propose

a novel basis representation model for hazard functions, using log-logistic hazard basis

functions and a nonparametric prior model for the basis coefficients. The result is a

flexible and computationally efficient model for renewal process hazard functions. To

demonstrate its tractability as a foundation for renewal process extensions, we formulate

a nonparametric model for modulated renewal processes.
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Chapter 1

Introduction

Point processes are a class of stochastic models that describe the occurrence of

random events over a continuum, such as space, time, or space-time. They have found

application in a wide range of fields, including seismology, ecology, finance, reliability,

neuroscience, and many others. Point processes theory has been studied extensively

(Cox and Isham, 1980; Daley and Vere-Jones, 2003), offering principled approaches for

answering questions about event frequency, clustering, and dependence, among other

behaviors. This dissertation is concerned with temporal point processes, more specifi-

cally a family known as renewal processes.

Temporal point processes are often represented through a counting process

{N(t) : t > 0} that tracks the number of events prior to time t and increments by

one whenever an event occurs. Inference for temporal point processes typically centers

around the conditional intensity function. The conditional intensity gives the instanta-
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neous rate of events at time t, and can be expressed by,

λ(t|H(t)) = lim
h→0

E[N(t+ h)−N(t)|H(t)]

h
, (1.1)

where H(t) denotes the process history up to t. The structure of the conditional in-

tensity determines the properties of the corresponding point process. For example, the

homogeneous Poisson process assumes a constant intensity, λ(t|H(t)) ≡ λ, leading to

event independence and Poisson distributed event counts. The nonhomogeneous Pois-

son process (NHPP) is a well-established extension that allows the intensity to vary

over time, λ(t|H(t)) ≡ λ(t), but otherwise preserves the Poisson count structure.

A realization of a temporal point process over the interval t ∈ (0, T ) results

in a random number of events N(T ) = n and a sequence of event times, denoted

{0 < t1 < . . . < tn < T}. Given a realized point pattern, the likelihood function is

constructed from the conditional intensity:

exp

(
−
∫ T

0
λ(u|H(u))du

) n∏
i=1

λ(ti|H(ti)) . (1.2)

For many point processes, such as the Poisson process, the likelihood is most tractable

when using event times as the primary input, but other models are more naturally ex-

pressed in terms of the inter-arrival times between successive events. Inter-arrival times

are obtained by xi = ti−ti−1, where t0 = 0 by convention, and therefore ti = x1+. . .+xi.

In terms of informational content, the sequence of inter-arrival times {x1, . . . , xn} is

equivalent to the set of event times, but certain models can be more succinctly ex-

pressed with this alternative representation of the data. Renewal processes are one such

family of models where the fundamental stochastic mechanism focuses on the structure
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of inter-arrival times. The simplest of these is the homogeneous renewal process, which

assumes that inter-arrival times are independent and identically distributed. An expo-

nential inter-arrival time distribution is a special case corresponding to a homogeneous

Poisson process. In the following sections, we introduce key background material for

renewal processes, discuss relevant extensions, and outline the objectives of the disser-

tation.

1.1 Renewal process background

A homogeneous renewal process (HRP) is characterized by a conditional in-

tensity where the primary argument is the elapsed time since the most recent event,

λ(t|H(t)) ≡ h(t−tN(t)). Substituting this into Equation (1.2) yields the HRP likelihood:

exp

(
−
∫ T

tn

h(u− tn)du−
n∑
i=1

∫ ti

ti−1

h(u− ti−1)du

)
n∏
i=1

h(ti − ti−1)

= exp

(
−
∫ T−tn

0
h(u)du−

n∑
i=1

∫ xi

0
h(u)du

)
n∏
i=1

h(xi) .

Letting H(x) =
∫ x
0 h(u)du, S(x) = exp(−H(x)), and f(x) = h(x)S(x), the likelihood

can be simplified:

S(T − tn)

n∏
i=1

f(xi) . (1.3)

Now written in terms of inter-arrival times, the likelihood elucidates key HRP properties.

The conditional intensity h acts as the inter-arrival distribution hazard function, and

therefore H, S, and f correspond to the cumulative hazard, survival, and probability

density functions; respectively. The multiplicative contribution of each inter-arrival
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time xi implies that they are independent and identically distributed (i.i.d.) given the

number of events N(T ) = n, a hallmark property of HRP models. Additionally, the

leading likelihood term highlights censoring information brought about by the upper

time bound T . Further properties and theoretical results for renewal processes can be

found in sources such as Cox (1962), Tijms (1994), or Daley and Vere-Jones (2003).

The term renewal in the process name refers to how the inter-arrival time

increment t− tN(t) returns to zero after each event. In other words, an event occurrence

triggers the underlying mechanisms or conditions to reset as if the system were just

starting. This phenomenon is embodied in realizations of HRP conditional intensities,

which trace the inter-arrival hazard function h until an event occurs, at which point

the intensity jumps back to the initial hazard level. Figure 1.1 illustrates this behavior

using a Weibull inter-arrival hazard with shape parameter 0.8. As a result, renewal

process event times are not independent, except in the special case of a homogeneous

Poisson process where the hazard is constant. This contrasts with a nonhomogeneous

Poisson process, where event times are independent but inter-arrival times are not. Both

perspectives are valuable, but in different contexts. Assumed renewal behavior is more

common in areas such as earthquake recurrence models, neural spike train analysis, and

queuing theory, to name a few.

The renewal function is a pivotal quantity in mathematical renewal theory and

can be used to study additional properties of a renewal process, namely event clustering

(Daley and Vere-Jones, 2003). It is defined asM(t) = E[N(t)] =
∑∞

i=1 Fi(t), where Fi(t)

is the distribution function of the ith event time. The renewal function also satisfies the
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Figure 1.1: Illustration of a realized homogeneous renewal process conditional intensity function
resetting after each event. The left panel shows the conditional intensity function over time, while
the right panel shows the corresponding Weibull inter-arrival time hazard function.

renewal equation, given by,

M(t) = F (t) +

∫ t

0
M(t− x)dF (x) , (1.4)

where F (x) = 1−S(x) is the distribution function of inter-arrival times. Using Equation

(1.4), the renewal function can be expressed in terms of the inter-arrival density f

through the Laplace domain:

LM (s) =
Lf (s)

s(1− Lf (s))
, (1.5)

where Lg(s) =
∫∞
0 e−stg(t)dt is the Laplace transform of a positive function g with

support on R+. Assuming Lf is available, numerical Laplace inversion routines can be

applied to Equation (1.5) to recover the renewal function M(t).

The renewal function carries information about event clustering behavior, often

represented through the K-function of Ripley (1977). Letting X denote the inter-arrival
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Figure 1.2: Simulated point-patterns with gamma distributed inter-arrival times and their corre-
sponding K-functions. Top panels use a gamma distribution with shape 0.5, producing clustering
behavior. Bottom panels use a gamma distribution with shape 5, producing declustering behavior.
The line K(t)− t = 0 is plotted to emphasize clustering behavior relative to a homogeneous Poisson
process. Both processes have inter-arrival distributions with mean of 1 and generate 50 events over
t ∈ (0, 50).

time random variable with E[X] =
∫∞
0 xf(x)dx denoting its expectation, theK-function

is given by K(t) =M(t)E[X]. The K-function is motivated by the elementary renewal

theorem, which states that the renewal function satisfies limt→∞ t−1M(t) = E[X]−1

provided that E[X] <∞. Events are said to exhibit clustering behavior when K(t) > t

and declustering behavior when K(t) < t. The special case of K(t) = t corresponds

to a homogeneous Poisson process, which serves as a neutral point of reference. To

illustrate these behaviors, Figure 1.2 shows two simulated point-patterns with gamma

distributed inter-arrivals and their corresponding K-functions. The quantity K(t)− t is

plotted instead of K(t) itself to emphasize clustering relative to a homogeneous Poisson

process.

It is important to note that the definition of a renewal process requires that the
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inter-arrival time distribution have a finite mean, i.e., E[X] <∞. This condition ensures

that the renewal function is well-defined and that the elementary renewal theorem holds.

Although straightforward to satisfy for parametric models, care must be taken when

developing nonparametric models with prior support over distributions with infinite

first moment. The finite mean restriction will play a role throughout our developments

in later chapters.

1.2 Renewal process extensions

Various extensions of the basic renewal process have been proposed. These

aim to accommodate additional dependencies and more complex temporal structures,

including time-varying behavior, self-exciting intensities, marked events, multivariate

realizations, and many others. Two extensions relevant to this dissertation are the

Markov renewal process and the modulated renewal process.

A Markov renewal process (MRP) generalizes the homogeneous case by allow-

ing the distribution of inter-arrival times to depend on discrete state marks associated

with each event. That is, realized event times ti are paired with state labels si, where

si ∈ {1, . . . , S} can be one of S states. The inter-arrival time xi = ti − ti−1 can be

interpreted as the time taken to sojourn from state si−1 to state si, hence xi is com-

monly referred to as a sojourn time in this setting. While the terminologies can be used

interchangeably, we will refer to sojourn times only in the context of MRP models to be

consistent with the literature, defaulting to inter-arrival times otherwise. Theoretical
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properties of MRP models are deeply connected to those of semi-Markov models, for

which Howard (1971) and Limnios and Oprişan (2001) are comprehensive references.

Under a Markov renewal process, the sequence of states {s1, . . . , sn} is assumed

to follow a stationary Markov chain, referred to as the embedded Markov chain. The

probability of transitioning to state k conditioned on the starting state j is denoted

p(j,k) = Pr(si = k|si−1 = j). Given an observed state sequence, sojourn times arise

from transition-specific distributions, i.e., the sojourn time xi is drawn according to a

density function f (j,k) given that si−1 = j and si = k. The density f (j,k) is said to be the

sojourn time distribution for the j-to-k transition case. The MRP likelihood function

for a sequence of observed times and states is expressed by,{
n∏
i=1

p(si−1,si)f (si−1,si)(xi)

}{
S∑
k=1

p(sn,k)S(sn,k)(xc)

}
, (1.6)

where the first term accounts for both censoring due to T and the unobserved state

transition. Standard likelihood-based estimation for MRP models is facilitated by parti-

tioning the data by transition cases and independently considering sojourn times within

each case.

The modulated renewal process (ModRP) is a time-varying extension of the

HRP, falling under the broader family of inhomogeneous renewal processes. It consists

of an inter-arrival time hazard function h and a modulating function λ(t) that scales

the hazard at time t. The most common form of the ModRP conditional intensity

is multiplicative, λ(t|H(t)) ≡ λ(t)h(t − tN(t)), which shares roots with proportional

hazards survival models (Cox, 1972). Other forms have been studied such as an additive
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structure (Lin and Ying, 1994), but the multiplicative form is most common. The

likelihood function is obtained by substituting the conditional intensity expression into

Equation (1.2):

exp

(
−
∫ T

0
λ(t)h(t− tN(t))dt

) n∏
i=1

λ(ti)h(ti − ti−1) . (1.7)

An especially desirable property of modulated renewal processes is that they contain

both the HRP and the NHPP as special cases. This broad range of expressiveness makes

them effective for describing complex temporal structures. While the likelihood function

can be challenging to work with, success in developing a flexible and computationally

efficient model makes the effort worthwhile.

For a homogeneous renewal process, the conditional intensity depends on past

events only through the most recent event time. Developments in this dissertation focus

on stochastic models that maintain this structure. However, frameworks that facili-

tate higher order dependence between events are worth mentioning. Hawkes processes

(Hawkes, 1971; Hawkes and Oakes, 1974) model self-exciting behavior by incorporating

contributions from all past events into the conditional intensity. Kim (2021) provides

a recent review of temporal Hawkes processes and develops corresponding Bayesian

nonparametric estimation methods. A different direction is to incorporate higher-order

memory effects through a mixture transition density model (Le et al., 1996), such as

the Bayesian nonparametric model proposed by Zheng et al. (2024).
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1.3 Research objectives

The main objective of this dissertation is to develop stochastic modeling frame-

works for renewal processes that, by leveraging Bayesian nonparametric methods, are

flexible, computationally efficient, and capable of incorporating prior information in a

principled manner.

We begin in Chapter 2 by developing a nonparametric mixture model for ho-

mogeneous renewal process densities using stick-breaking priors for the weights. This

bears a resemblance to Dirichlet process mixture models (Antoniak, 1974), but with

constraints and additional adjustments following from the renewal process structure. In

particular, kernel selection is impacted both by the finite mean requirement and the de-

sire for tractable calculation of the renewal function. After discussing several candidate

mixing kernels, we develop a model using gamma densities as a general-purpose choice.

In addition, motivated by applications to earthquake recurrence modeling, we propose a

mixture using structured uniform distributions in order to model non-increasing density

shapes. Regarding the choice of stick-breaking priors, we consider both the Dirichlet

process (Ferguson, 1973; Sethuraman, 1994) and the logit stick-breaking process (Ren

et al., 2011). The logit stick-breaking prior model will be a critical building block for

subsequent Markov renewal process developments. We approach posterior simulation

using Markov Chain Monte Carlo (MCMC), specifically Gibbs sampling. In simula-

tion studies and an earthquake data application, we demonstrate that the proposed

model can accurately estimate the inter-arrival density and outperforms the standard
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parametric Weibull model.

Chapter 3 is concerned with Markov renewal processes. As will be shown,

the MRP likelihood function can be rewritten in terms of sojourn times partitioned

into transition cases. For a given j-to-k transition case, estimation of the correspond-

ing sojourn time distribution depends only on observations where the state transitions

are from state j to state k. In other words, individual observations contribute to the

likelihood only through their respective transition cases, having no influence on the

others The effect is that sojourn time distributions are in some sense independent of

each other, and therefore model fitting can be viewed as performing parallel density

estimation for each j-to-k transition case. This property has historically been essential

for developing efficient likelihood-based estimation methods for MRP models. However,

the assumption of independent sojourn time distributions is restrictive and may not

be appropriate in all settings. For many applications, it is reasonable to suppose that

certain transition cases share similar sojourn time characteristics. Additionally, this

structural independence assumption can be limiting when certain transition cases are

rarely or never observed, leading to unreasonably uncertain inferences.

Our goal in Chapter 3 is to develop a flexible model for Markov renewal pro-

cesses that facilitates borrowing of information between transition cases. We propose a

modeling framework using the logit stick-breaking process mixture developed for HRP

densities to describe the sojourn time distributions. To induce dependence between

transition cases, we develop a hierarchical dependence structure where correlation is

introduced in the mixture weights. The resulting construction supports a wide range
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of dependence patterns, including the HRP and the fully independent model as special

limiting cases. We discuss model assessment techniques and illustrate the proposed

model through simulation studies and an earthquake data application.

Returning to the homogeneous renewal process, recall the likelihood given in

Equation (1.3), which is perhaps most naturally expressed in terms of the inter-arrival

time density. The majority of existing HRP models are developed from this perspec-

tive, focusing on the density function as the primary object of interest. However, there

exist circumstances where directly modeling the inter-arrival hazard function is more

appropriate. Prior information in certain applications, such as those adjacent to sur-

vival analysis, may be most readily available on the scale of hazards. Furthermore, one

perspective may be more suitable than the other for developing individual extensions.

The Markov renewal process, for example, is most readily represented from the density

perspective, hence our efforts in developing a density-oriented HRP mixture model in

Chapter 2. Conversely, the modulated renewal process likelihood in Equation (1.7) is

formulated in terms of the HRP hazard function, suggesting that a homogeneous re-

newal model applied directly to inter-arrival hazards may be more easily adapted into a

ModRP. As an aside, part of our motivation for utilizing Bayesian nonparametric meth-

ods is that they support modeling from either perspective, allowing prior information

to be incorporated in the most appropriate manner for the circumstances.

In Chapter 4, we explore the development of flexible and computationally effi-

cient renewal process models from the hazard perspective. Central to our treatment is

the introduction of a novel basis representation model composed of log-logistic hazard
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functions. Basis representation models are characterized by a linear combination of ba-

sis functions that are either entirely known or depend only on a few global parameters.

This structure confines the target functional to the space spanned by the basis func-

tions, shifting the bulk of modeling effort to the combination weights. The log-logistic

basis system we propose is designed specifically for modeling hazards, and is supported

by a convergence result that speaks to its flexibility. We then develop a structured

Bayesian nonparametric prior for the combination weights and design a posterior sam-

pling algorithm that capitalizes on properties of the basis model. Through simulation

studies and real data examples, we examine model behavior and assess its performance

on homogeneous renewal data.

As a demonstration of hazard-oriented extensions, we also formulate a mod-

ulated renewal process model, using the log-logistic basis system. We employ a basis

representation model for the modulating intensity function, resulting in a flexible frame-

work for describing time-varying renewal structures. Leveraging basis representations

for both components enables the use of standard posterior sampling techniques that

have otherwise been challenging to apply to these models. We explore model properties

and apply it to a coal-mining disaster dataset and an earthquake recurrence dataset.
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Chapter 2

Nonparametric Mixture Modeling for

Homogeneous Renewal Process

Densities

Early foundational work on renewal theory focuses on mathematical proper-

ties, particularly those related to the renewal equation and asymptotic behavior (Feller,

1941; Doob, 1948; Skellam and Shenton, 1957; Smith, 1958; Cox, 1962). Additional the-

oretical attention has been given to the case of Weibull distributed inter-arrival times

due to its importance in reliability theory (Smith and Leadbetter, 1963; Lomnicki, 1966).

Comprehensive treatments of renewal theory can be found in Tijms (1994) and Daley

and Vere-Jones (2003), among others. Parametric models were the focus of early es-

timation and inference efforts. Popular parametric models that have been employed

include the exponential distribution (Maguire et al., 1952; Jarrett, 1979), the Weibull
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distribution (White, 1964; Alvarez, 2005; Epifani et al., 2014), the Pareto distribution

(Singhai et al., 2009), and others (Utsu, 1984; Ogata, 1999; Zhao and Nagaraja, 2011).

More recent work has focused on nonparametric estimation of the inter-arrival distribu-

tion. Pievatolo and Rotondi (2000) apply a Dirichlet process mixture with generalized

gamma base distribution to earthquake change-point data. Rotondi (2010) develops an

estimation method based on Pólya tree priors, also applied to earthquake recurrence.

Comte and Duval (2018) present a classical nonparametric estimator based on Laguerre

series expansions. Xiao et al. (2021) propose a nonparametric Erlang density mixture

and apply the model to both earthquake data and industrial accident data.

In this chapter, we develop a nonparametric mixture modeling framework for

the inter-arrival density of a renewal process. Inspired by Dirichlet process mixtures

(Ferguson, 1973; Antoniak, 1974), our proposed framework is designed to allow practi-

tioners to select the mixing kernel and stick-breaking prior that best suits a particular

use case. A wide variety of stick-breaking priors for modeling the mixing weights can be

used, but we will focus on the Dirichlet process stick-breaking construction (Sethura-

man, 1994) and the logit stick-breaking process Ren et al. (2011). In selecting a mixture

kernel, additional factors specific to renewal processes must be considered, namely the

finite mean condition and the desire for inference on the renewal function. We will

review various kernel choices, ultimately settling on the gamma kernel as a suitable

general-purpose option. Our discussion is motivated in part by the study of earthquake

inter-arrival times. There exist arguments in the seismology literature that underlying

earthquake mechanisms should produce inter-arrival times with a non-increasing density
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(Corral, 2005; Kumar et al., 2020). To that end, we will also present a structured uni-

form kernel that caters to applications like earthquakes where a non-increasing density

shape is expected or required.

2.1 Mixture modeling framework

Nonparametric mixture models are powerful tools for density estimation. They

possess a rich theoretical foundation and offer tremendous flexibility. Methods based on

stick-breaking constructions have become especially popular for their extensibility and

computational advantages (Ishwaran and James, 2001). Such stick-breaking mixtures

are structured as countable mixtures of kernel densities, where the kernel parameters

arise i.i.d. from some base distribution and the weights are generated from a prior with a

stick-breaking structure. Given a random discrete mixing distribution G =
∑∞

ℓ=1 ωℓδθℓ ,

a stick-breaking mixture model for a target density f can be expressed as,

f(x|G) =
∞∑
ℓ=1

ωℓfK(x|θℓ) , (2.1)

where fK denotes a known kernel density. The component-specific kernel parameters

θ = {θℓ : ℓ ≥ 1} are drawn i.i.d. from a base distribution G0. The mixture weights

ω = {ωℓ : ℓ ≥ 1} are defined with a stick-breaking process, where independent latent

variables ν = {νℓ : ℓ ≥ 1} determine the weights through ωℓ = νℓ
∏ℓ−1
r=1(1−νr). The prior

distribution on each νℓ depends on the specific stick-breaking process and is influenced

by potentially several hyperparameters α. The Dirichlet process mixture is a famous

example where the mixing distribution G follows a Dirichlet process (DP), resulting
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in i.i.d. kernel parameters drawn from G0 and weights generated from a stick-breaking

procedure using beta distributed latent variables. Specifically, νℓ|α
i.i.d.∼ Beta(1, α) where

α > 0 is the DP precision parameter.

Despite their popularity in other areas, stick-breaking mixtures have found lit-

tle use in the context of renewal processes. The Erlang mixture model proposed by Xiao

et al. (2021) is a notable application of Bayesian nonparametric methods to renewal pro-

cesses, but Erlang mixtures are more similar to basis expansions and differ substantially

in structure from stick-breaking mixtures. In standard univariate density estimation,

the choice of kernel and stick-breaking prior is often guided by prior knowledge and

the specific application. Our aim is to extend this methodology to a renewal process

setting, however, there are additional considerations unique to renewal processes that

must be addressed when selecting a kernel and stick-breaking prior.

2.1.1 Kernel selection

The choice of kernel is a critical component of any mixture model. In the

context of renewal processes, the kernel must satisfy two key properties: have marginal

support on R+ and meet the finite mean condition, possibly through parameter restric-

tions. Additionally, the kernel should produce mixtures that are flexible, computation-

ally tractable, and amenable to inference for the K-function.

The marginal support condition can be easily satisfied by selecting a kernel

with support on R+. Bounded kernels may also be used provided that a prior is specified

so that the resulting marginal density has the necessary support. For example, a uniform
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kernel with support on [0, θ] can be used if θ is given a prior with support on R+, such

as an exponential distribution. Careful treatment is required to ensure that the finite

mean condition is satisfied almost surely for realizations of the mixing distribution G.

We summarize a set of sufficient conditions in the following theorem.

Theorem 2.1. Let f be a density modeled by a stick-breaking mixture with kernel

fK, kernel parameter(s) θ with parameter space Θ, and base distribution G0. Define

Ef (G) =
∫∞
0 xf(x|G)dx as the first moment of f given mixing distribution G. Also

let EK(θ) =
∫∞
0 xfK(x|θ)dx be the first moment of the kernel density given θ. Then,

Ef (G) <∞ almost surely if:

(1) EK(θ) is finite for all θ ∈ Θ, and,

(2) E[EK(θ)] =
∫
ΘEK(θ)dG0(θ) <∞.

Proof. Begin by substituting the mixture expression f(x|G) =
∫
Θ fK(x|θ)dG(θ) into the

expectation Ef (G):

Ef (G) =

∫ ∞

0
x

(∫
Θ
fK(x|θ)dG(θ)

)
dx .

Assumption (1) requires that the kernel have finite mean for all parameter values. This

allows the use of Fubini’s theorem to rearrange the integrals and simplify:

Ef (G) =

∫
Θ

∫ ∞

0
xfK(x|θ)dxdG(θ) =

∫
Θ
EK(θ)dG(θ) =

∞∑
ℓ=1

ωℓEK(θℓ) .

Now consider the expectation of each term in the sum, which can be factored as

the weights and kernel parameters are independent: E[ωℓEK(θℓ)] = E[ωℓ]E[EK(θℓ)].
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Both terms are finite; the former by the bounded support of the weights and the

latter by assumption (2). Thus, the sum can be written as
∑∞

ℓ=1 E[ωℓ]E[EK(θℓ)] =

E[EK(θℓ)]
∑∞

ℓ=1 E[ωℓ]. Partial sums of the weights are bounded by 1 and converge

monotonically, hence,

E[EK(θℓ)]
∞∑
ℓ=1

E[ωℓ] = E[EK(θℓ)]E

[ ∞∑
ℓ=1

ωℓ

]
= E[EK(θℓ)] .

This established that
∑∞

ℓ=1 E[ωℓEK(θℓ)] <∞, which converges monotonically since each

term is non-negative, allowing it to be rewritten as,

∞∑
ℓ=1

E[ωℓEK(θℓ)] = E

[ ∞∑
ℓ=1

ωℓEK(θℓ)

]
= E[Ef (G)] ,

which implies that E[Ef (G)] <∞ and therefore Ef (G) <∞, almost surely.

The conditions given in Theorem 2.1 limit the choice of kernels that are viable

for modeling renewal processes with nonparametric stick-breaking mixtures. Regarding

condition (1), kernel densities like the Weibull or gamma distributions are suitable

options as they have finite mean for all parameter values. However, condition (1)

also allows for kernels such as the Lomax or inverse-gamma distributions provided an

appropriate constraint on the parameter space Θ is imposed. Condition (2) is more

restrictive and requires that the kernel be paired with a suitable base distribution G0.

This ultimately devalues kernels with heavier tails like the Lomax or inverse-gamma

distributions, requiring highly informative priors on the kernel parameters in addition

to parameter space restrictions. The Weibull kernel is unsuitable for the same reason;

although the mean is always finite, it grows extremely quickly as the shape parameter

approaches 0, violating condition (2) for many otherwise reasonable choices of G0.
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Recall from Equation (1.5) that the renewal function, and the K-function by

extension, are calculated from the Laplace transform of the inter-arrival density. Kernels

with closed-form Laplace transform expressions are particularly attractive as they allow

for direct calculation of the renewal function in Laplace space, requiring numerical

methods only for the inverse transform. We encounter significant stability issues when

numerically performing both the Laplace transform and the inverse step, discouraging

use of kernels where this is mandatory, such as the Weibull, log-logistic, Lomax, and

inverse-gamma distributions.

Mixture flexibility is another important consideration. The kernel mixture

should support a variety of density shapes, particularly those that differ from standard

parametric forms. Many distributions over R+ are limited to only unimodal shapes, in-

cluding the log-normal and Rayleigh distributions, or are strictly decreasing, such as the

exponential or half-normal distributions. In contrast, kernel densities that support both

unimodal and decreasing shapes are more versatile and better suited for our purposes.

Considering these factors, the gamma distribution emerges as a strong candi-

date for the kernel in a nonparametric mixture model for renewal processes. We denote

the gamma kernel by:

fK(x|θ) ≡ Ga(x|κ, λ) = 1

Γ(κ)λκ
xκ−1e−x/λ , (2.2)

where κ is the shape parameter and λ is the scale parameter. The gamma density has a

simple Laplace transform expression, LGa(κ,λ)(s) = (1+λs)−κ, making inference on the

renewal function more manageable. Gamma mixtures in various forms are supported
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by theoretical results affirming their flexibility (DeVore and Lorentz, 1993; Wiper et al.,

2001; Lee and Lin, 2010). More importantly, the gamma kernel very easily accommo-

dates the finite mean conditions from Theorem 2.1. The mean of the gamma distribution

is κλ, thus condition (1) is satisfied for all parameter combinations. To address con-

dition (2), we introduce relatively standard priors on the component shape parameters

κ = {κℓ : ℓ ≥ 1} and scale parameters λ = {λℓ : ℓ ≥ 1}. We assign κℓ|γκ
i.i.d.∼ Ga(aκ, γκ)

and λℓ|γλ
i.i.d.∼ inv-Ga(aλ, γλ), where inv-Ga denotes the inverse-gamma distribution

with density,

inv-Ga(x|α, β) = βα

Γ(α)
x−α−1e−β/x . (2.3)

Condition (2) is satisfied by aλ > 2, or equivalently by demanding a prior with finite

second moment for the scale parameter.

Another kernel we consider is a structured uniform density, given by,

fK(x|θ) ≡ Unif(x|0, θ) = 1

θ
I(0 < x < θ) , (2.4)

where θ is the upper bound parameter and I(·) denotes the indicator function that eval-

uates to 1 if the condition is true and 0 otherwise. The uniform kernel offers many of the

same advantages as the gamma kernel. Mixtures of these structured uniform densities

produce non-increasing shapes that are very flexible. Indeed, theoretical representa-

tion results indicate that all strictly non-increasing functions over R+ can be written as

mixtures of these uniform densities (Brunner and Lo, 1989). The Laplace transform of

the uniform kernel is available in closed form, LUnif(0,θ)(s) = (1 − e−θs)/(θs). In addi-

tion, the uniform kernel has an analytical expression for its survival function, which is
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convenient for handling the likelihood censoring term in Equation (1.3). For the kernel

parameters θ = {θℓ : ℓ ≥ 1}, we assign θℓ|ηθ, γθ
i.i.d.∼ inv-Ga(ηθ, γθ), where the restriction

ηθ > 1 ensures the finite mean condition holds.

Our interest in non-increasing density shapes is motivated by the application

area of earthquake recurrence modeling. Decreasing inter-arrival densities are com-

monly observed in earthquake datasets world-wide (Utsu, 1984; Altinok and Kolcak,

1999; Alvarez, 2005; Rotondi, 2010; Xiao et al., 2021). References in both seismology

and mechanical physics have suggested that decreasing density shapes are an expected

consequence of the physical processes that generate earthquakes (Corral, 2005; Kumar

et al., 2020). We develop the uniform kernel model to provide a method for incorporat-

ing this domain knowledge into the mixture structure.

2.1.2 Stick-breaking prior selection

For our purposes in this chapter, the exact choice of stick-breaking prior is

not critical. In practice, a researcher may select a stick-breaking prior based on desired

inferences, computational considerations, prior knowledge, convention, or other factors.

Our developments will focus on two popular stick-breaking models: the latent beta stick-

breaking procedure found in Dirichlet processes and the logit stick-breaking process.

As mentioned, stick-breaking priors are structured such that the weights ω =

{ωℓ : ℓ ≥ 1} are generated from a sequence of latent variables ν = {νℓ : ℓ ≥ 1} with

ωℓ = νℓ
∏ℓ−1
r=1(1 − νr). The stick-breaking construction of the Dirichlet process, first

introduced by Sethuraman (1994), assumes the latent variables are beta distributed,
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νℓ|α
i.i.d.∼ Beta(1, α). This model has been used extensively in the literature and

has many desirable properties, including multiple computational methods for poste-

rior inference. The logit stick-breaking process, first presented by Ren et al. (2011),

is an alternative construction that uses a logit transformation of the latent variables:

log(νℓ/(1−νℓ))|µ, σ2
i.i.d.∼ N(µ, σ2), where N(µ, σ2) denotes the normal distribution with

mean µ and variance σ2. Computation for this model is more challenging, although

recent advances in Pólya-gamma augmentation have made it more accessible (Polson

et al., 2013; Rigon and Durante, 2021). Our motivation for considering this prior is in

the capacity to develop certain extensions, namely the Markov renewal process model

we present in Chapter 3. In the context of homogeneous renewal processes, we find both

stick-breaking priors perform similarly in practice.

2.1.3 Hierarchical model and implementation details

To facilitate posterior inference, we adapt the standard blocked Gibbs sampler

for Dirichlet process mixtures to our renewal process setting. In this section we show the

hierarchical structures associated with the choices of kernel and stick-breaking prior. We

limit our comments on sampling steps to high-level summaries and notable departures

from the standard blocked Gibbs approach, presenting full posterior sampling details in

Appendix A.

Given an observed series of inter-arrival times x = {x1, . . . , xn} over the ob-

servation window (0, T ) with censored time xc = T − tn, the likelihood of our HRP
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mixture modeling framework is written as,(
L∑
ℓ=1

ωℓSK(xc|θℓ)

)
n∏
i=1

L∑
ℓ=1

ωℓfK(xi|θℓ) , (2.5)

where fK is the chosen kernel density and SK is the corresponding survival function.

Notice that the mixture has been truncated to a fixed number of components L, and thus

the set of kernel parameters θ = {θℓ : ℓ = 1, . . . , L} and weights ω = {ωℓ : ℓ = 1, . . . , L}

are also indexed up to L. To aid in posterior sampling, we introduce latent membership

variables z = {zi : i = 1, . . . , n}, where zi = ℓ indicates that xi has been assigned

to component ℓ with prior probability Pr(zi = ℓ|ω) = ωℓ. We also introduce a latent

variable zc for the censored time xc with similar prior probability Pr(zc = ℓ|ω) = ωℓ.

The augmented model likelihood can be expressed as,

SK(xc|θzc)
n∏
i=1

fK(xi|θzi) . (2.6)

Posterior sampling for the latent variables is standard, though the censored time xc

requires the kernel survival function rather than the density.

Details on the stick-breaking priors have been discussed previously, but we re-

peat those details here for completeness. The mixture weights arise from a stick-breaking

prior, ωℓ = νℓ
∏ℓ−1
r=1(1−νr), where νℓ is generated from the chosen stick-breaking process.

For the Dirichlet process, νℓ|α
i.i.d.∼ Beta(1, α). A gamma prior is assigned to the DP

precision parameter, denoted α ∼ Ga(aα, bα) with fixed hyperparameters aα and bα. We

use default values of aα = 1 and bα = 1, though these can be adjusted to suit particular

applications. For the logit stick-breaking process, log(νℓ/(1 − νℓ))|µ, σ2
i.i.d.∼ N(µ, σ2).

We assign conjugate priors µ ∼ N(mµ, s
2
µ) and σ2µ ∼ inv-Ga(aσ, bσ) with fixed hyper-
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parameters. Default values of mµ = 0, s2µ = 1, aσ = 2.5, and bσ = 1 tend to perform

well, but can be adjusted as needed. Fully conjugate updates for the logit stick-breaking

weights are available if latent Pólya-gamma variables are introduced. We give a brief

overview of this augmentation step in Chapter 3.4.1, where the logit stick-breaking pro-

cess plays a more prominent role, and include implementation details for the current

model in Appendix A.

Turning to the kernel parameters, the model hierarchy for the gamma kernel

is structured as follows:

xi|zi,κ,λ
i.i.d.∼ Ga(xi|κzi , λzi) , p(xc|zc,κ,λ) = SGa(xc|κzc , λzc) ,

κℓ|γκ
i.i.d.∼ Ga(aκ, γκ) , λℓ|γλ

i.i.d.∼ inv-Ga(aλ, γλ) ,

γκ ∼ inv-Ga(aκγ , b
κ
γ) , γλ ∼ Ga(aλγ , b

λ
γ) ,

(2.7)

where SGa denotes the gamma survival function. Metropolis steps are required for the

shape parameters κ, as well as the scale parameter λℓ for which zc = ℓ. The priors

on the hyperparameters are conjugate with fixed values for aκ, aλ, a
κ
γ , b

κ
γ , a

λ
γ , and b

λ
γ .

Recall that aλ > 2 is required to ensure the finite mean condition holds. We suggest

default values of aκ = 1, aλ = 2.5, aκγ = 2.5, bκγ = 1, aλγ = 1, and bλγ = 1. The uniform

kernel model hierarchy is similar in structure:

xi|zi,θ
i.i.d.∼ Unif(xi|0, θzi) , p(xc|zc,θ) = SUnif(xc|0, θzc) ,

θℓ|ηθ, γθ
i.i.d.∼ inv-Ga(ηθ, γθ) , γθ ∼ Ga(aθγ , b

θ
γ) , (ηθ − 1) ∼ Ga(aθη, b

θ
η) ,

(2.8)

where SUnif denotes the uniform survival function and the prior on ηθ is chosen to ensure

the finite mean condition holds. The updates for each θℓ are truncated inverse-gamma
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draws, and the hyperparameters aθγ , b
θ
γ , a

θ
η, and bθη are fixed. We recommend default

values of aθγ = 1, bθγ = 1, aθη = 2.5, and bθη = 1.

We find that the default hyperparameter values suggested here work well in

practice, with results being reasonably robust to moderate changes in these values.

Indeed, the mechanisms in which hyperparameters influence results mirror those of

standard Dirichlet process mixtures. For example, priors that emphasize larger values

of the precision parameter α can produce a larger number of mixture components in the

posterior. We will comment on the impact of key hyperparameter adjustments in the

real data example presented in Section 2.3, particularly in the context of the uniform

kernel model, but otherwise we direct the reader to the extensive literature on Dirichlet

process mixtures for more detailed insight on hyperparameter sensitivity.

Selecting an appropriate number of mixture components L is a common chal-

lenge in mixture modeling, with many methods available in the literature (Neal, 2000;

Ishwaran and James, 2001). A simple approach is to select L such that the expected

value of the total weight is within some tolerance of 1, i.e., 1 − E
[∑L

ℓ=1 ωℓ|α
]
< ϵ.

For the Dirichlet process prior, this amounts to solving (α/(α + 1))L < ϵ given a de-

sired tolerance ϵ. For example, setting α = 1 and ϵ = 10−4 implies a lower bound of

L > 14. The value of α can be fixed, either to the prior expectation or some other

informed value, or it can be marginalized over. A similar expression is available for the

logit stick-breaking process using a first order approximation of the weight expectation,

yielding the condition (1 + emµ)−L < ϵ. In this case, a lower bound of L > 14 arises

from mµ = 0 and ϵ = 10−4. For results that follow later in this chapter, we select
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L = 100 as a conservative choice for both kernel structures and stick-breaking priors.

Our reasoning relates to the different characteristics of the gamma and uniform kernels,

which we discuss in more detail in Section 2.4.

2.1.4 Model validation

Homogeneous renewal process modeling shares many similarities with stan-

dard density estimation, and thus many of the same model checking techniques can be

applied. Additional means to check the point process assumptions are available through

the time-rescaling theorem (Daley and Vere-Jones, 2003). Consider a general point pro-

cess with conditional intensity function λ(t|H(t)) and let the cumulative conditional

intensity be given by Λ(t|H(t)) =
∫ t
0 λ(u|H(u))du. The time-rescaling theorem states

that the transformed point pattern {t∗1, . . . , t∗n}, where t∗i = Λ(ti|H(ti)), is a realization

of a unit rate Poisson process. Moreover, the random variables u∗i = 1−exp(−(t∗i−t∗i−1))

are i.i.d. uniform on the interval (0, 1). In the context of HRP modeling, the cumu-

lative conditional intensity simplifies such that u∗i = F (xi) where F is the estimated

cumulative density function (CDF) of the inter-arrival time distribution.

A visual goodness-of-fit test can be constructed by plotting the empirical quan-

tiles of the estimated u∗i against the theoretical quantiles of the uniform distribution,

which we refer to as a time-rescaling QQ plot. Posterior samples of the inter-arrival

density can be used to calculate posterior samples of the u∗i , ultimately resulting in

uncertainty intervals on the QQ plot. Significant deviations from the diagonal line indi-

cate model misspecification. That misspecification occur either due to an inappropriate
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distributional assumption for the inter-arrival times, or a failure of the homogeneous

renewal process assumption. Given the flexibility of the nonparametric mixture model,

time-rescaling QQ plots applied to our proposed methods are more useful in diagnosing

the point process assumptions compared to standard parametric HRP models.

In addition to the visual check, we also implement a numerical goodness-of-fit

metric to enable more direct model comparison. We refer to this is the ECDF Error and

define it as, EE(b) =
∫∞
0 |F (b)(x) − F̂ (x)|dx, where F (b) is the estimated inter-arrival

CDF for the bth posterior sample and F̂ is the empirical cumulative density function

(ECDF) of the observed inter-arrival times. Smaller values of EE(b) indicate better

model fit, and the posterior distribution of EE(b) can be used to compare models with

uncertainty levels accounted for.

2.1.5 Hyperparameter effects on clustering

Here we explore the effects of hyperparameter choices on clustering behavior in

the prior model. The impact of stick-breaking hyperparameters is driven mainly by the

prior expected number of components, so we focus the discussion on the Dirichlet process

stick-breaking prior due to the corresponding interpretation of the precision parameter

α. We generate K-function realizations for a given mixture kernel density by selecting

values for α and the hyperparameters associated with G0, and then simulating values

for the weights and kernel parameters. Finally, the K-function is calculated from the

resulting inter-arrival density. For the gamma kernel mixture, only the hyperparameters

associated with the shape parameters κℓ have an impact on clustering behavior, where
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Figure 2.1: Realizations of the K-function from the prior mixture model with uniform kernel and
Dirichlet process prior for the mixing distribution under different choices for the hyperparameters α
and ηθ. Each panel shows six realizations under hyperparameter values indicated in the panel title.

hyperparameters that favor larger values of κℓ tend to produce declustering behavior

and vice versa. In this setting, neither α nor the hyperparameters associated with the

scale parameters λℓ have a meaningful effect on whether clustering or declustering is

produced.

The uniform kernel mixture exhibits more notable interactions, particularly

between the shape parameter ηθ and α. Figure 2.1 shows six realizations for each of

four hyperparameter combinations. The shape parameter ηθ has a similar effect as the

hyperparameters associated with κℓ in the gamma kernel model. Small values of ηθ

lead to more pronounced clustering behavior, while larger values lead to declustering.

The impact of α appears to be associated the value of ηθ, with smaller values biasing

sampled K-functions towards declustering. This is perhaps to be expected; uniformly

distributed inter-arrival times always exhibit declustering behavior. Small values of α

tend to produce mixtures with fewer components, giving rise to the observed declustering

behavior in the uniform kernel mixture. On the other hand, larger values of α yield

more mixture components, allowing the inverse-gamma G0 to drive clustering behavior,
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namely through ηθ. In short, when ηθ is small, the DP precision parameter α will

determine whether clustering or declustering is observed, whereas when ηθ is large,

declustering is observed regardless of the value of α.

2.2 Synthetic data examples

In this section we use simulated datasets to illustrate the ability of our pro-

posed nonparametric modeling framework to capture a wide range of renewal process

behaviors. We begin by considering results for the gamma mixture model with the

Dirichlet process stick-breaking prior. For this, we generate HRP point patterns from

four different generative distributions, each with unique density shapes and K-function

behaviors. The first is a Weibull distribution with shape parameter 1.5 and unit scale,

denoted Wei(1.5, 1). This case is characterized by a density with unimodal shape and

declustering behavior in the K-function. Our second scenario is a Lomax distribution

with shape parameter 5 and unit scale, denoted Lom(5, 1), where the Lomax distribu-

tion has density (α/λ)(1+x/λ)−(α+1) for shape α and scale λ. The Lomax distribution

has polynomial tails and produces clustering behavior. The third is a standard half-

normal distribution with density
√

2/π exp(−x2/2), which exhibits declustering along

with a strictly decreasing density shape. Finally, the fourth generative scenario is an

evenly weighted mixture of a Ga(2, 1) and a Ga(10, 0.5), which possesses a multimodal

shape for both the density shape and the K-function. For each scenario, we generate

inter-arrival times using a value of T such that the expected number of events is roughly
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Figure 2.2: Simulated data examples fit using the gamma kernel HRP mixture model with the
Dirichlet process stick-breaking prior. Generative distributions are, from left to right, Weibull, Lomax,
half-normal, and an evenly weighted mixture of two gamma distributions. The top row shows time-
rescaling QQ plots, the middle row shows K-function estimates, and the bottom row shows inter-
arrival density estimates.

1,000, then fit the model using the default hyperparameter values suggested previously.

The sampling algorithm is run for 5,000 iterations following a burnin period of 15,000.

Figure 2.2 shows posterior estimates and 95% uncertainty intervals for the inter-arrival

density, K-function, and the time-rescaling QQ plot for each scenario. Not only is the

model able to capture the true inter-arrival density shapes, but these results highlight

that the model is flexible in capturing a variety of K-function behaviors, including both

clustering and declustering.
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The uniform mixture is restricted to modeling non-increasing shapes. For this

reason, and for the sake of comparison, we reuse the data generated from the Lomax

and half-normal scenarios above. Notably, these distributions represent two extremes

in terms of behavior, with the Lomax having polynomial tails and a tendency towards

clustering, and the half-normal having exponential tails and presenting declustering

behavior. For each scenario, we fit the uniform kernel mixture model with the Dirichlet

process stick-breaking prior using default hyperparameter values and the same sampling

configuration. Resulting inferences are displayed in Figure 2.3. Figure 2.3 shows the

results of this analysis. Similar to the gamma kernel, the uniform kernel mixture is able

to recover the true inter-arrival density shapes, and is able to produce both clustering

and declustering behavior in the K-function estimates.

Though omitted here for brevity, we also repeat the simulation study using the

logit stick-breaking prior for both the gamma and uniform kernel models. Results are

remarkably similar to those obtained here, confirming that performance is consistent

across the two stick-breaking priors. Also omitted are inferences for both kernel models

using smaller datasets. We target datasets with roughly 1,000 events to be consistent

with the real data example in the next section, as well as to ensure that the sampled

point patterns are representative of their generative distributions. Applied to smaller

datasets, the model performs comparably to standard Dirichlet process mixtures, cap-

turing general function shapes but with increased uncertainty and some amount of

overfitting.
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Figure 2.3: Simulated data examples fit using the uniform kernel HRP mixture model with the
Dirichlet process stick-breaking prior. Generative distributions are Lomax on the top row and half-
normal on the bottom. Panels from left to right show time-rescaling QQ plots, K-function estimates,
and inter-arrival density estimates.

2.3 Southern California earthquake data application

Here we apply the proposed nonparametric mixture modeling framework to a

dataset of Southern California earthquakes. The Southern California Earthquake Data

Center (SCEDC, 2013) provides a catalog of earthquake events in Southern California

and surrounding regions. Details on the network history, measurement methods, and

current data collection practices can be found in Hutton et al. (2010). Our analysis

focuses on larger earthquakes, having magnitude greater than 4.0 and occurring between

the years 1981 and 2022. The starting year is chosen after a major upgrade in both
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the instrumentation and data collection practices of the Southern California Seismic

Network. In total, our dataset contains 1,248 observations with inter-arrival times

ranging from 0.86 seconds to 232 days, and with 25th, 50th, and 75th percentiles of

21.6 minutes, 22.8 hours, and 14.6 days; respectively.

These observed inter-arrival times are heavily skewed with both a long tail

and a pronounced concentration of values near zero. This polarized structure can be

a challenge for both parametric and nonparametric models to handle, including our

proposed mixture models. To adjust, we employ more informative prior distributions to

account for this behavior, namely by selecting a few non-default hyperparameter values,

aλ = 20, aκ = 5, and aθγ = bθγ = 5. These help to ensure that the quality of fit in the tails

remains high despite the data bulk being much closer to zero. We consider fitting all four

combinations of kernel and stick-breaking prior, using the same sampling configuration

as in the simulated data examples. We also include results from a parametric Weibull

model which is a common choice for earthquake inter-arrival modeling (Utsu, 1984;

Ogata, 1999; Alvarez, 2005).

On a 2022 Apple MacBook Pro with an M2 chip and 8 gigabytes of RAM,

the sampling process for both kernel models takes approximately 12.6 seconds per 1,000

posterior iterations. We use the same machine for all computations in latter chapters as

well. Samples for each parameter usually converge within 5,000 iterations, though we

use 15,000 burnin iterations as a more conservative choice. The effective sample size for

the inter-arrival density evaluated at various points is roughly between 100 and 120 per

1,000 posterior samples, which suggests either longer sampling or thinning by a factor
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Table 2.1: Posterior mean ECDF Errors for each model along with 95% credible intervals. Gamma
and uniform kernel models are shown for both the Dirichlet process (DP) and logit stick-breaking
processes. The parametric Weibull model is also included for comparison.

Kernel Model Stick-Breaking Mean ECDF Error 95% Interval

Weibull N/A 0.456 (0.279, 0.788)

Gamma DP 0.135 (0.072, 0.220)
Logit 0.159 (0.091, 0.234)

Uniform DP 0.014 (0.003, 0.048)
Logit 0.011 (0.004, 0.032)

of 10 may be necessary.

Figure 2.4 shows posterior estimates and 95% uncertainty intervals for the

inter-arrival density, K-function, and the time-rescaling QQ plot. Note that 88 ob-

servations have inter-arrival times larger than 50 days, but are not shown in the data

histogram in order to highlight behavior near the bulk of the data. We also show a table

of ECDF Error posterior distributions for each model in Table 2.1.

The QQ plots highlight the ability of each model to capture the polarized

behavior of the inter-arrival times. The Weibull model underestimates both the early

spike and the long tail, also producing a K-function estimate that is much higher than

the mixture models. In addition, the K-function calculation for the Weibull model is

computationally intensive and rather unstable, often resulting in inaccurate credible

intervals. The ECDF Error values also speak to the poor performance of the Weibull

model compared to the nonparametric mixtures. The gamma kernel mixtures are able

to capture the tail behavior well, but still struggle somewhat with the concentration

near zero. Results from the uniform kernel mixtures are the most promising, being able

to adequately capture both the tail behavior and the spike near zero. In some sense, this
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Figure 2.4: Posterior estimates and 95% uncertainty intervals for the Southern California earthquake
data analysis. Each column of panels corresponds to a different combination of kernel and stick-
breaking prior. From left to right, the columns show the parametric Weibull model, the gamma
kernel with Dirichlet process stick-breaking, gamma kernel with logit stick-breaking, uniform kernel
with Dirichlet process stick-breaking, and uniform kernel with logit stick-breaking. Time-rescaling
QQ plots are shown in the top row, K-function estimates in the middle row, and inter-arrival density
estimates in the bottom row. Note the different K-function scale for the Weibull model.

is not surprising given the localized structure of the uniform kernel. Finally, consistent

with our findings with simulated data, it appears that the choice of stick-breaking prior

in this setting has minimal impact on the quality of model fit, especially compared to

the choice of kernel.

2.4 Discussion

Our objective in this chapter was to develop a nonparametric mixture modeling

framework for homogeneous renewal processes. The methodology itself is quite similar
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to standard nonparametric density estimation methods based on Dirichlet process mix-

ture models. However, unique challenges arise in the context of renewal processes that

require careful consideration, namely the finite mean condition and the desire for infer-

ence on the K-function. This led us to consider the gamma kernel as a general choice

for the inter-arrival density kernel, and the uniform kernel as a more specialized option

for strictly decreasing densities. Through simulation study and a real data application,

we have shown that the proposed framework is successful in capturing a wide range

of renewal process behaviors, being an improvement over standard parametric models.

In addition, the earthquake data characteristics highlight the situational advantages of

the uniform kernel model when a decreasing density assumption is appropriate. The

choice of stick-breaking prior was comparatively less impactful than the choice of ker-

nel. However, as will be seen in Chapter 3, the logit stick-breaking process facilitates

development of certain HRP model extensions, hence our inclusion of it here.

A lingering item from this chapter is the choice of L. In Section 2.1.3 we

discussed a simple strategy for selecting L based on the expected total weight, differ-

ing slightly between stick-breaking priors. However, the uniform mixture and gamma

mixture are of a very different nature, making a common approach for selecting L less

straightforward. The gamma kernel structure more closely resembles location-scale mix-

tures where mixture components are strategically placed to capture various features of

the data. In contrast, the uniform kernel structure plays a role more similar to basis

expansions, and we should expect that a larger number of components will be needed

there. The above strategy for selecting L ignores these differences, focusing only on the
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prior model for the weights. Instead, we opt for the simple, yet conservative choice of

L = 100. We find that this value is more than sufficient in practice for both kernel

choices. More consequentially, this strategy carries over better to our developments in

Chapter 3 where complex strategies for selecting L are even more difficult to formulate.

With that in mind, designing a more informed approach for selecting L that accounts for

different mixture behaviors is an interesting area for future research. Perhaps marginal-

ized methods similar to Pólya urn schemes could be adapted to this setting, although

extensibility remains a concern.

We conclude this chapter with comments on discretized observations. Homo-

geneous renewal processes are defined on continuous time, but in practice observations

are often recorded on a discrete scale. For very fine discretizations of time, the use

of continuous inter-arrival time densities may still be appropriate, such as with the

Southern California earthquake data which is measured in seconds. However, in set-

tings where the discretization is quite coarse, it is possible that multiple events could

be observed in the same time bin. This case is challenging to handle because it violates

key assumptions of the underlying point process, even for discrete-time analogs of re-

newal theory. One possible approach, inspired by Ogata (1999), is to consider a latent

continuous-time process which treats observations as essentially rounded versions of the

true, hidden event times. Such a model would require a complex latent structure in or-

der to preserve homogeneous renewal process properties, but could be a useful direction

for future research.
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Chapter 3

Modeling Dependent Sojourn Time

Distributions in Markov Renewal

Processes

Markov renewal processes (MRPs) are an extension of the homogeneous case

where inter-arrival time behavior can be influenced by discrete state variables observed

with each event. Specifically, the state variables are assumed to follow a stationary

Markov chain, referred to as the embedded Markov chain, and inter-arrival times arise

from one of several conditional distributions, specified by the observed transition from

one state to another. Times between successive earthquakes, for instance, may vary

depending on whether the magnitude of the previous event was above or below a cer-

tain threshold. Markov renewal processes are used in a variety of applications, includ-

ing medical data (Chou et al., 2017), acoustics (Stowell and Plumbley, 2013), finance
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(Swishchuk and Islam, 2011), and, of course, earthquakes (Alvarez, 2005).

The aim of this chapter is to develop a nonparametric modeling framework

for Markov renewal processes. To achieve distributional flexibility, we adapt the stick-

breaking mixture model presented in Chapter 2 to the MRP setting. Furthermore, a

property common to many Markov renewal models is the conditional independence of

transition-specific inter-arrival time distributions, which aids in developing computa-

tional methods but can be a restrictive assumption in practice. We address this lim-

itation by introducing an approach to modeling dependence between these transition

cases, enabling the sharing of information common to multiple distributions.

3.1 Background and motivation

Theoretical foundations for Markov renewal processes stem from semi-Markov

theory, where Lévy (1954) and Smith (1955) are notable early references. See Howard

(1971) and more recently Limnios and Oprişan (2001) for comprehensive treatments of

semi-Markov processes. Markov renewal theory is more distinctly developed by Pyke

(1961a), Pyke (1961b), and Pyke and Schaufele (1964), where key limiting theorems

are proven and details connecting semi-Markov processes to the formal renewal setting

are clarified. Çinlar (1975) provides an overview of major results and applications at

the time, including the popular implementation of exponential and Weibull sojourn

time distributions in the context of reliability analysis. Subsequent efforts focus on

asymptotic properties and adjustments for censoring (Lagakos et al., 1978; Dinse and
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Larson, 1986; Greenwood and Wefelmeyer, 1996; Ouhbi and Limnios, 1999, 2003). More

recently, some attention has been given to Bayesian nonparametric approaches. Warr

and Woodfield (2020) directly model the sojourn time distributions using a Dirichlet

process in order to efficiently and flexibly estimate first-passage time distributions. A

nonparametric beta-Stacy prior model has been studied in connection with reinforced

semi-Markov processes by Bulla and Muliere (2007) and Arfè et al. (2021).

A realized point pattern from a Markov renewal process over the interval t ∈

(0, T ) is composed of a sequence of event times, {0 < t1 < . . . < tn < T}, and a

corresponding sequence of state variables, {s1, . . . , sn} where the state space si ∈ S is

labeled S = {1, . . . , S} for a finite number of states S. The inter-arrival times xi =

ti − ti−1 can be interpreted as the time spend transitioning from state si−1 to state

si. For this reason, inter-arrival times in MRP settings are commonly referred to as

sojourn times, which we adopt for the remainder of this chapter. The state variables

are assumed to follow a stationary Markov chain, where the probability of transitioning

from state j to state k is denoted p(j,k) = Pr(si = k|si−1 = j). A sojourn time xi is

conditionally drawn from a distribution with density f (j,k) given the observed transition

from si−1 = j to si = k. We refer to f (j,k) as the sojourn time distribution for the j-to-k

transition case. The joint likelihood of the observed states and sojourn times is then

given by, {
n∏
i=1

p(si−1,si)f (si−1,si)(xi)

}{
S∑
k=1

p(sn,k)S(sn,k)(xc)

}
, (3.1)

where S(j,k) is the survival function for the sojourn time distribution f (j,k) and xc =

T − tn is the observed censoring time. The sum in the second term accounts for the fact
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that the state of the censored observation is unknown.

Inference for Markov renewal process point patterns is often performed using

likelihood-based methods. A key property of the MRP likelihood is an implied par-

titioning of sojourn times based on the observed transition cases. To see this more

clearly, let x(j,k) = {xi : si−1 = j, si = k} denote the set of sojourn times belonging to

the j-to-k transition case, and let n(j,k) = |x(j,k)| denote the number of corresponding

observations. Introducing this notation into the likelihood function, we obtain,
S∏
j=1

S∏
k=1

(p(j,k))n
(j,k)

 ∏
xi∈x(j,k)

f (j,k)(xi)


{

S∑
k=1

p(sn,k)S(sn,k)(xc)

}
. (3.2)

This factorized representation of the MRP likelihood highlights that the sojourn time

distributions f (j,k) are independent in the sense that each density is informed only by

the corresponding sojourn times in x(j,k). In other words, likelihood-based estimation

for MRP models essentially reduces to modeling each j-to-k transition case separately.

Granted, the censoring term contributes a small amount of crossover between some

cases, but the extent of information sharing is minimal; transition case independence is

the dominant structure in the likelihood.

This partitioning structure is central to the development of currently available

MRP estimation methods. Alvarez (2005) presents a maximum likelihood procedure for

an MRP model with Weibull sojourn time distributions. Epifani et al. (2014) approach

the same model from a Bayesian perspective and design a Gibbs sampler for posterior

inference that similarly exploits the independence between sojourn time distributions.

Warr and Woodfield (2020) likewise leverage the conditional independence structure
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in developing their nonparametric first-passage time model. Although it is helpful in

designing computational strategies, separately estimating each sojourn time distribution

is not always appropriate. For many applications, it is reasonable to assume that certain

transition cases have similar distributional properties or some other form of dependence.

This could include being agnostic to the from-state j or the to-state k, having shared

properties for self-transitions (all j-to-j cases), or even maintaining that all sojourn time

distributions are equal, as in the case of a homogeneous renewal process. Additionally,

consider a setting where certain transition cases contain very few observations. Results

from estimations methods that treat each case independently will be unreliable for

these sparse cases. From the perspectives of both application relevance and inferential

quality, there is much to be gained from allowing sojourn time distributions to borrow

information from each other when supported by the data.

A motivating application for our efforts in this chapter is earthquake recurrence

modeling. Many of the earliest applications and extensions of MRP models were in the

context of studying seismic activity, where the magnitudes are categorized into a few

bins, e.g. low, medium, and high (Patwardhan et al., 1980; Cluff et al., 1980; Altinok and

Kolcak, 1999; Rotondi, 2021). Parametric Weibull models are common in this setting

(Alvarez, 2005; Epifani et al., 2014), though other distributions and extensions have

been explored as well (Garavaglia and Pavani, 2011; Masala, 2012; Votsi et al., 2012).

The idea that certain transition cases may share distributional properties is lightly

explored by Alvarez (2005), who proposes several constraints on the Weibull parameters

and performs post-hoc tests to determine if the constraints are supported by the data.

43



When binned by magnitude, earthquake transition cases with the high designation are

often sparse. The Turkey earthquake dataset analyzed in both Altinok and Kolcak

(1999) and Alvarez (2005) is a prime example: three out of the nine transition cases

contain less than four observations, and estimates for these cases are so poor that they

are omitted from the analysis altogether. The Southern California dataset analyzed in

Chapter 2.3 also exhibits this issue, which we explore later in this chapter. For this

application, and possibly many others, it is clear that assuming independence between

sojourn time distribution can undermine the inferential goals of an MRP model,

We refer to the independence of transition-specific sojourn time distributions

as the independent sojourns property, denoting Markov renewal process models with

this property as IS-MRP models. Our goal in this chapter is to develop a flexible

modeling framework for Markov renewal processes that supports dependence between

sojourn time distributions, i.e. a dependent sojourns Markov renewal process model, or

DS-MRP. Rather than rely on post-hoc testing, a DS-MRP model allows for organic

discovery of dependence structure. Our approach builds on the stick-breaking mixture

model developed in Chapter 2 by developing a hierarchical prior structure that enables

sharing of information through the mixture components.

3.2 Approach to modeling dependence

The mixture modeling framework developed in Chapter 2.1.3 is essential for

introducing dependence between sojourn time distributions. Specifically, we make use of
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a common-atoms structure to model the collection of sojourn time distributions {f (j,k) :

j, k ∈ S}, as in,

f (j,k)(x) =

L∑
ℓ=1

ω
(j,k)
ℓ fK(x|θℓ) , (3.3)

where ω(j,k) = {ω(j,k)
ℓ : ℓ = 1, . . . , L} denotes the set of mixture weights for the j-

to-k transition case, fK(x|θ) is a known kernel density function with parameter(s) θ,

and θ = {θℓ : ℓ = 1, . . . , L} denotes the set of mixture kernel parameters, which are

common across all transition cases. The common-atoms structure is key to inducing

dependence between sojourn distributions, as similar mixture weights ω(j,k) will lead to

similar densities f (j,k).

Recall from Chapter 2.1.2 that the logit stick-breaking process of Ren et al.

(2011) assumes the weights ω(j,k) are given by ω
(j,k)
ℓ = ν

(j,k)
ℓ

∏ℓ−1
m=1(1 − ν

(j,k)
m ), where

the latent ν
(j,k)
ℓ variables are i.i.d. following a logit-normal distribution, or in other

words, the transformed variables ψ
(j,k)
ℓ = log(ν

(j,k)
ℓ /(1−ν(j,k)ℓ )) are normally distributed.

Our approach to modeling dependence between sojourn time distributions is to assign

a multivariate normal prior with length S2 and carefully designed covariance to the

component-specific latent variables ψℓ = {ψ(j,k)
ℓ : j, k ∈ S}. However, we avoid directly

handling the covariance matrix by constructing a latent hierarchical structure which,

when the latent variables are marginalized out, leads to a covariance matrix with fa-

vorable properties. This preserves convenient conjugate updates and allows for efficient

posterior computation while supporting a wide range of dependence structures. The
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hierarchical structure is defined as follows:

ψ
(j,k)
ℓ |α(j)

ℓ , β
(k)
ℓ , σ2ψ ∼ N(α

(j)
ℓ + β

(k)
ℓ , σ2ψ) ,

α
(j)
ℓ |µℓ, σ2α ∼ N(µℓ/2, σ

2
α) , β

(k)
ℓ |µℓ, σ2β ∼ N(µℓ/2, σ

2
β) , µℓ|σ2µ ∼ N(mµ, σ

2
µ) .

(3.4)

Consider marginalizing this model over µℓ, α
(j)
ℓ , and β

(k)
ℓ . The marginal expectation

of ψ
(j,k)
ℓ is mµ for all j and k, and the expectation of ν

(j,k)
ℓ can be approximated as

(1 + exp(−mµ))
−1 using a first-order Taylor approximation. An interesting note is

that the analogous expectation under a Dirichlet process is (1 + α)−1, suggesting a

loose similarity between exp(−mµ) and the DP precision parameter α. The marginal

covariance between different transition cases is structured such that,

Cov(ψ
(j,k)
ℓ , ψ

(j,k)
ℓ |σ2ψ, σ2α, σ2β, σ2µ) = σ2ψ + σ2α + σ2β + σ2µ ,

Cov(ψ
(j,k)
ℓ , ψ

(j,n)
ℓ |σ2α, σ2µ) = σ2α + σ2µ for k ̸= n ,

Cov(ψ
(j,k)
ℓ , ψ

(m,k)
ℓ |σ2β, σ2µ) = σ2β + σ2µ for j ̸= m,

Cov(ψ
(j,k)
ℓ , ψ

(m,n)
ℓ |σ2µ) = σ2µ for j ̸= m and k ̸= n .

(3.5)

To better highlight the induced marginal dependence structure, below we show the

decomposed covariance matrix for the case where S = 2:

Cov





ψ
(1,1)
ℓ

ψ
(1,2)
ℓ

ψ
(2,1)
ℓ

ψ
(2,2)
ℓ




=



σ2
ψ 0 0 0

0 σ2
ψ 0 0

0 0 σ2
ψ 0

0 0 0 σ2
ψ


+



σ2
α σ2

α 0 0

σ2
α σ2

α 0 0

0 0 σ2
α σ2

α

0 0 σ2
α σ2

α


+



σ2
β 0 σ2

β 0

0 σ2
β 0 σ2

β

σ2
β 0 σ2

β 0

0 σ2
β 0 σ2

β


+



σ2
µ σ2

µ σ2
µ σ2

µ

σ2
µ σ2

µ σ2
µ σ2

µ

σ2
µ σ2

µ σ2
µ σ2

µ

σ2
µ σ2

µ σ2
µ σ2

µ


.

Note the implied conditioning on the variance parameters σ2ψ, σ
2
α, σ

2
β, and σ

2
µ, which are

omitted for brevity. If we ensure that the order of terms in ψℓ is similar, iterating over

each to-state k before moving to the next from-state j, then the marginal covariance
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matrix for any number of states S given the variance parameters can be written as,

σ2ψ(I ⊗ I) + σ2α(J ⊗ I) + σ2β(I ⊗ J) + σ2µ(J ⊗ J), where I denotes the S × S identity

matrix, J denotes the S×S matrix of ones, and ⊗ denotes the Kronecker product. This

highlights that the marginal covariance is a linear combination of four different depen-

dence structures. The diagonal structure σ2ψ(I⊗I) represents independent sojourn time

distributions, meaning that if σ2ψ is very large compared to the other variances, then

the logit stick-breaking elements will be independent across transition cases. However,

it should be noted that an IS-MRP model does not arise from this covariance decompo-

sition as a limiting case; independent weights do not imply independent densities due

to the common-atoms kernel structure. The structure σ2α(J ⊗ I) represents dependence

where the elements are shared within common from-states j. Similarly, the structure

σ2β(I ⊗ J) represents dependence where logit stick-breaking elements are equal within

common to-states k. Finally, the full matrix structure σ2µ(J ⊗ J) represents total de-

pendence where elements are equal across all transition cases, which corresponds to a

homogeneous renewal process. The relative magnitudes of the four marginal variances

determine the estimated dependence structure of the logit stick-breaking elements.

We note that this covariance decomposition does not form a basis for all co-

variance matrices, but it does cover a wide range of dependence structures. Although

one could opt for a more general covariance matrix, we find that the proposed structure

is sufficient for most applications and has a large advantage in terms of computational

ease. In addition, this more structured approach offers cleaner interpretation and better

complements common inference objectives when studying MRP point patterns.
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3.3 Hierarchical model formulation

Having developed the foundational dependence structure, our next step is to

select the kernel model and present the model hierarchy in full. The choice of kernel

density fK is crucial to the flexibility and properties of the model. Our discussion from

Chapter 2.1.1 is directly applicable here, suggesting the gamma and uniform kernels

as strong candidates. Recall the previous discussion on earthquake inter-arrival times

and the mechanistic evidence of decreasing density shapes (Corral, 2005; Kumar et al.,

2020). Given our motivation for modeling earthquake point patterns, we focus our devel-

opments on the uniform kernel. As a review, the uniform kernel density for component

ℓ is given by Unif(x|0, θℓ). The prior structure is unchanged from the HRP model:

θℓ|ηθ, γθ
i.i.d.∼ inv-Ga(ηθ, γθ) , γθ ∼ Ga(aθγ , b

θ
γ) , (ηθ − 1) ∼ Ga(aθη, b

θ
η) , (3.6)

where aθγ , b
θ
γ , a

θ
η, and b

θ
η are fixed hyperparameters.

To facilitate posterior computation, we introduce latent variables z = {zi : i =

1, . . . , n} such that Pr(zi = ℓ|si, si−1,ω) = ω
(si−1,si)
ℓ where ω = {ω(j,k) : j, k ∈ S} is

the full set of mixture weights. An additional latent variable zc is introduced for the

censored sojourn time xc = T − tn with Pr(zc = ℓ|sn, sc,ω) = ω
(sn,sc)
ℓ . We also treat the

unobserved state of the censored observation as a latent variable, denoted sc, following

the same Markov chain structure, Pr(sc = k|sn,p) = p(sn,k) where p = {p(j,k) : j, k ∈ S}

is the set of transition probabilities. Given these latent variables and the mixture model
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structure, the augmented data likelihood is given by,
S∏
j=1

S∏
k=1

(p(j,k))n
(j,k)

 ∏
xi∈x(j,k)

fK(xi|θzi)

{p(sn,sc)SK(xc|θzc)} , (3.7)

where SK is the survival function for the (uniform) kernel density fK. Let p(j) =

{p(j,k) : k = 1, . . . , S} denote the set of transition probabilities starting from state j.

For each j ∈ S, we assign a Dirichlet prior of length S to p(j), denoted p(j)|αp
i.i.d.∼

DirS(αp, . . . , αp) where αp is a fixed hyperparameter.

The mixture weights ω
(j,k)
ℓ arise from the logit stick-breaking prior structure

described in the previous section, which we repeat here for completeness:

ω
(j,k)
ℓ =

exp(ψ
(j,k)
ℓ )

1 + exp(ψ
(j,k)
ℓ )

ℓ−1∏
r=1

1

1 + exp(ψ
(j,k)
r )

,

ψ
(j,k)
ℓ |α(j)

ℓ , β
(k)
ℓ , σ2ψ ∼ N(α

(j)
ℓ + β

(k)
ℓ , σ2ψ) ,

α
(j)
ℓ |µℓ, σ2α ∼ N(µℓ/2, σ

2
α) , β

(k)
ℓ |µℓ, σ2β ∼ N(µℓ/2, σ

2
β) , µℓ|σ2µ ∼ N(mµ, σ

2
µ) ,

(3.8)

where mµ is a fixed hyperparameter. It is important to note that, because the final

weight ω
(j,k)
L is determined by the sum-to-one constraint of the weights, the only L− 1

stick-breaking elements ψ
(j,k)
ℓ are required for each transition case, hence the prior weight

structure is defined for ℓ = 1, . . . , L−1. We assign inverse-gamma priors to the variance

parameters: σ2ψ ∼ inv-Ga(aψσ , b
ψ
σ ), σ2α ∼ inv-Ga(aασ , b

α
σ), σ

2
β ∼ inv-Ga(aβσ, b

β
σ), and σ2µ ∼

inv-Ga(aµσ, b
µ
σ), where a

ψ
σ , aασ , a

β
σ, a

µ
σ, b

ψ
σ , bασ , b

β
σ, and b

µ
σ are fixed hyperparameters.

We conclude this section with a few notes on the fixed hyperparameter values.

Recall that aη > 1 is required for the uniform mixture model to satisfy the finite

mean sufficient conditions. Considering that the mixture kernel plays a similar role in

both HRP and MRP settings, we suggest the same default hyperparameter values as
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discussed in Chapter 2.1.1. Regarding the variance priors, our sensitivity experiments

suggest that results are quite robust to even very informative values. We suggest using

an inv-Ga(2.5, 1) for all marginal variance priors as a default. The impact of mµ is

similarly inconsequential, so we suggest mµ = 0 as a default. The value of αp controls

the influence of the Dirichlet prior on the transition probabilities. In settings where

some transition cases contain very few observations, standard choices such as αp = 1

can have meaningful effects on the posterior. We find that a lower default value of

αp = 0.1 allows the data in each transition case to be the strongest influence on the

posterior, even when the number of observations is small. Our comments in Chapters

2.1.3 and 2.4 on selecting L are applicable here as well, however, the presence of a

common-atoms structure complicates the decision as more components may be needed

if the sojourn time distributions are more diverse. For results that follow later in this

chapter, we select L = 200 as a conservative choice, which we find is more than sufficient

in practice.

3.4 Posterior inference

Here we outline notable details of the posterior inference scheme used to sample

from our proposed model and discuss additional inferences of interest. Emphasis is

given to the novel aspects of the model, and we refer the reader to Appendix B for a

full description of the sampling algorithm.
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3.4.1 Posterior simulation for model parameters

The modeling structures we have examined support conditionally conjugate up-

dates for many parameters, and straightforward sampling techniques such as Metropolis-

Hastings steps are available for several others. However, a level of care is required in

handling the latent variables zc and sc.

The update protocol for the kernel parameters follows the same structure as

in Chapter 2.1.3. Updates for latent variables z and zc are also similar, though the

expressions involving the mixture weights are now indexed by the corresponding j-to-

k transition case. Straightforward conjugate updates are possible for the transition

probabilities p(j) given the transition counts n(j,k), adding one to the transition case

that includes sn-to-sc. The missing state sc is sampled from a discrete distribution

based on zc, the mixture weights, and the transition probabilities p(sn). We draw the

marginal variances σ2ψ, σ
2
α, σ

2
β, and σ

2
µ, as well as the hierarchical variables α

(j)
ℓ , β

(k)
ℓ ,

and µℓ, using standard conjugate relationships.

The weights ω(j,k) are updated deterministically using the logit stick-breaking

elements ψ(j,k). To sample from the conditional distribution of ψ
(j,k)
ℓ , we rely on the

Pólya-Gamma data augmentation technique of Polson et al. (2013). This method makes

use of the following property:

(eψ)a

(1 + eψ)b
= 2−be(a−b/2)ψ

∫ ∞

0
e−ξψ

2/2PG(ξ|b, 0)dξ , (3.9)

where PG(x|b, 0) denotes the Pólya-Gamma density with shape parameter b and tilt

parameter 0. This property is leveraged by introducing a Pólya-Gamma random vari-
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able ξ
(j,k)
ℓ for each logit stick-breaking element ψ

(j,k)
ℓ . The result is a joint conditional

distribution that is sampled using a Gibbs step, where the latent variable ξ
(j,k)
ℓ is drawn

from a PG(nℓ+. . .+nL, ψ
(j,k)
ℓ ) distribution, where nℓ = |{i : zi = ℓ}|, and the logit stick-

breaking element ψ
(j,k)
ℓ is drawn from a N(nℓ + . . . + nL, ξ

(j,k)
ℓ ) distribution. Sampling

from the Pólya-Gamma distribution is not trivial, but very efficient rejection algorithms

are available (Polson et al., 2013; Windle et al., 2014). Implementation details connect-

ing this to the other hierarchical weight parameters are provided in Appendix B.

3.4.2 Model validation and additional inferences

Here we consider additional model inferences beyond estimation of model pa-

rameters and sojourn distribution densities, focusing on model validation and quantities

specific to earthquake recurrence analysis. For each of these, we provide a brief descrip-

tion of the computational details and discuss relevant interpretations.

Case-specific predictive coverage

This inference attempts to quantify how well each sojourn distribution aligns

with the corresponding observations. Notably, it ignores the embedded Markov chain

structure and focuses on each sojourn distribution in isolation. Readers are free to

consider a variety of well explored density estimation assessment techniques, but we

opt for the predictive coverage approach employed by Epifani et al. (2014). For each

j-to-k transition case, a single value is drawn from the modeled sojourn distribution

f (j,k). This is repeated for each MCMC iteration and the final collections of draws are
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used to construct posterior predictive intervals for a given coverage level, from which

the observed coverage rate is calculated as the proportion of observed sojourn times

falling within the corresponding predictive interval. An observed coverage rate being

close to the specified coverage level indicates that the model is well-calibrated for that

transition case.

In addition to predictive coverage, other factors such as predictive interval

width or asymmetry can be examined to paint a more complete picture of predictive

quality. As a compliment to the coverage rate, we also compute the interval scores

introduced by Gneiting and Raftery (2007). The interval score is a proper scoring rule

designed to favor predictive intervals that are both narrow and adequately calibrated.

For an observation x and (1 − α)×100% predictive interval (l, u), the interval score is

given by,

(u− l) +
2

α
(l − x)I(x < l) +

2

α
(x− u)I(x > u) , (3.10)

where I(·) is the indicator function. The interval score is calculated for each observation

according to its transition-specific predictive interval, and then the average interval

scores across all cases are reported and compared between models, with lower values

being preferred. We acknowledge that this scoring rule is not typically used in the

context of point processes. However, given the absence of a standard metric in this

setting, we find that it conveys useful information not captured by the coverage rate

alone.
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Predictive state recurrence assessments

Consider observing Markov renewal data and let t(j) = {ti : si = j} denote

the subset of event times corresponding to state j with n(j) = |t(j)|. We define the

state recurrence times as the times between consecutive observations of state j, denoted

r
(j)
i′ = t

(j)
i′ − t

(j)
i′−1 for i′ = 1, . . . , n(j). It has been shown that the state recurrence time

sequence forms a homogeneous renewal process (Pyke, 1961a; Limnios and Oprişan,

2001). This property suggests a framework for assessing MRP model performance that

incorporates both the Markov chain and renewal process structures. We note that

state recurrence time distributions are equivalent to the concept of first-passage time

distributions found in the semi-Markov process literature. Exact expressions for the

Laplace transforms of these distributions are available (see Warr and Woodfield, 2020 for

a recent review), but the computational burden of inverting several Laplace transform

terms for each MCMC iteration is prohibitively high. Instead, we opt for a posterior

predictive approach.

We begin by generating posterior predictive samples. For each MCMC itera-

tion, we use the current parameter values to simulate a Markov renewal point pattern

within the interval (0, T ), which involves iteratively generating states and conditionally

drawing sojourn times from the corresponding distributions. From this we construct the

corresponding sets of state recurrence times r(j) for each state j. Then the empirical

CDF of the simulated state recurrence times is evaluated at a dense grid of points and

stored. After completing this process for each MCMC iteration, we have a collection of
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empirical CDFs for each state and can report posterior predictive means and intervals

for each state recurrence time distribution. In addition, we make use of the ECDF

Error metric given in Chapter 2.1.4 to compare the empirical CDFs of the observed

and simulated state recurrence times. A small ECDF Error indicates that the model

predictions align well with the observed data for that state recurrence time distribution.

Note on the K-function and time-rescaling QQ plots

Absent from our inference discussion are comments on the K-function and

time-rescaling QQ plots. Recall that theK-function is used to assess clustering behavior

in point patterns and is often of interest in HRP modeling applications. However, there

is no analogous quantity in Markov renewal theory. The Markov renewal function, unlike

the homogeneous renewal function, does not summarize the entire point process, but is

instead a measure of state recurrence properties (Pyke, 1961a). K-function estimates

for the individual sojourn time distributions can be estimated, but this is an incomplete

picture of overall behavior and may not accurately reflect clustering properties.

Time-rescaling QQ plots are a useful tool for assessing the goodness-of-fit of a

point process model. The challenge in applying them to an MRP model lies in account-

ing for the Markov chain structure of the states in the conditional intensity function

(Daley and Vere-Jones, 2003). Obtaining the appropriate conditional intensity function

expression is a non-trivial theoretical task and is beyond the scope of this work.
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Earthquake recurrence features

In addition to model assessment, we consider inferences specific to earthquake

recurrence modeling. We briefly discuss two measures related to conditional probabili-

ties of state transitions: the cross state-probability and the transition risk profile. The

cross state-probability (CSP) is the probability of, starting at some time t0 and some

state j, transitioning to state k within some time interval ∆t:

CSP
(j,k)
t0|∆t =

p(j,k)(S(j,k)(t0)− S(j,k)(t0 +∆t))∑
k′ p

(j,k′)S(j,k′)(t0)
. (3.11)

These are often used to assess the predictive characteristics of specific earthquake events.

For example, Epifani et al. (2014) manually compare the CSP values for several earth-

quakes and visually check for non-uniform patterns as the time t0 is moved forward.

These manual comparisons are difficult to scale and appear to offer little in terms of

interesting application insights, instead being more of a crude model assessment tool.

However, they do inspire a similar inference quantity that we find to be more useful.

We define the transition risk profile (TRP) as the probability of transitioning

to a state k given that an event occurs immediately, the current state is j, and the time

since the last event is t:

TRP(j,k)(t) = Pr(si+1 = k|si = j, xi = t) =
p(j,k)f (j,k)(t)∑
k′ p

(j,k′)f (j,k′)(t)
. (3.12)

This quantity is similar to the CSP, but is conditioned on an event happening imme-

diately and allows for a more direct examination of the relative risk of different event

types and how that risk changes over time.
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3.5 Synthetic data examples

In this section we demonstrate the utility of the proposed DS-MRP mixture

model using simulated point patterns and compare the performance against that of

alternatives. The primary comparison we study is against an IS-MRP version of the

model, which independently applies the nonparametric mixture model from Chapter 2

to each transition case. We also include a parametric Weibull model (which also meets

the IS-MRP definition) as a benchmark for comparison.

We consider two simulation scenarios, one special case and one more general.

The special case, referred to as Scenario 1, is that of a homogeneous renewal process

along with an independent Markov chain of three states with even transition probabili-

ties of 1/3. In terms of an MRP, this is the simplest setting where all sojourn time distri-

butions are identical. We generate a point pattern using a common Ga(1/3, 3) sojourn

time distribution and a time bound T = 500, yielding approximately 500 events. The

other simulation scenario, Scenario 2, has varying sojourn time distributions between

transition cases. Specifically, we construct the j-to-k sojourn time distribution using an

evenly weighted mixture of a Lomax with shape 2 and scale 1, and a Ga(k − 2/3, 4/k)

distribution, also with even transition probabilities. The value of T = 1000 is chosen to

produce approximately 500 events in this scenario as well.
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Table 3.1: Posterior mean estimates and 95% uncertainty intervals for the marginal variance pa-
rameters for the proposed model, fit to a point pattern generated from Scenario 1. The relative
magnitude of these values reflect the prevalence of different dependence structures between sojourn
time distributions.

σ2ψ σ2α σ2β σ2µ
Posterior mean 0.30 0.34 0.35 5.88

95% interval (0.14, 0.62) (0.13, 0.69) (0.13, 0.65) (3.16, 11.54)

Scenario 1 - Common sojourn time distributions

This scenario is designed to assess the ability of the proposed model to re-

cover the common sojourn time distribution structure, and to highlight the impact that

information sharing across cases has on performance. We fit the model default hyper-

parameter values discussed previously. The MCMC algorithm is run for 5,000 iterations

following a burnin period of 15,000. In Table 3.1 we show the posterior mean and 95%

credible interval for the marginal variance parameters. The estimate for σ2µ is an order

of magnitude larger than the other variances, indicating strong evidence for a common

sojourn time distribution structure in the data.

For the sake of brevity, we move the density estimate plots for our proposed

DS-MRP mixture model, as well as the corresponding IS-MRP mixture and parametric

Weibull model results, to Appendix C. As a brief summary, the DS-MRP mixture model

provides a good fit to the true sojourn time distribution, with the IS-MRP mixture

model also performing well, but with more variability in the uncertainty intervals. The

IS-MRP Weibull model, as expected, struggles slightly to capture the true distribution

shape. As a numerical comparison, we report the predictive coverage rates and average

interval scores for each model in Table 3.2. These results demonstrate both the need
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Table 3.2: Predictive coverage rates and average interval scores for simulated sojourn times under
Scenario 1 for the proposed DS-MRP mixture model with uniform kernel, the corresponding IS-MRP
mixture model, and the parametric IS-MRP Weibull model. Value pairs are separated by a backslash
with the coverage rate as the first value and the average interval score as the second.

Transition case DS-MRP mixture IS-MRP mixture Weibull IS-MRP

1-to-1 0.932 \ 4.36 0.890 \ 3.19 0.945 \ 5.82
1-to-2 0.967 \ 7.03 0.900 \ 6.74 0.933 \ 7.07
1-to-3 0.904 \ 12.0 0.863 \ 12.1 0.932 \ 12.9

2-to-1 0.918 \ 5.93 0.885 \ 5.77 0.934 \ 8.71
2-to-2 0.964 \ 7.29 0.873 \ 7.48 0.964 \ 7.19
2-to-3 0.946 \ 8.60 0.875 \ 7.90 0.946 \ 8.81

3-to-1 0.901 \ 7.44 0.873 \ 7.37 0.930 \ 9.61
3-to-2 0.931 \ 10.6 0.897 \ 11.1 0.948 \ 13.0
3-to-3 0.908 \ 5.87 0.882 \ 5.42 0.947 \ 8.87

for multifaceted coverage evaluation and the performance advantages of the proposed

model. In terms of coverage alone, the IS-MRP Weibull model rates are slightly closer

to the desired level than the DS-MRP mixture model, while the IS-MRP mixture model

is substantially lower. However, the average interval scores tell a more detailed story.

In nearly all cases, the IS-MRP mixture model produces the lowest average interval

scores and the Weibull model produces the highest. This suggests that the Weibull

model coverage rates are created by overly wide intervals, whereas the IS-MRP mixture

model has comparatively narrow intervals that are not well-calibrated. Sitting between

these extremes is the DS-MRP mixture model, having decently calibrated intervals that

capture the data without being overly wide.

Turning attention to predictive state recurrence checks, Table 3.3 shows the

posterior means and 95% credible intervals for ECDF Error values. The comparison

between the IS-MRP mixture and the parametric Weibull model shows the value added

by having a flexible prior model for the sojourn time densities. The improvement of
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Table 3.3: Predictive state recurrence ECDF errors for sojourn times simulated under Scenario 1.
Posterior mean estimates and 95% uncertainty bounds are given for the DS-MRP mixture model,
the corresponding IS-MRP mixture, and the parametric Weibull IS-MRP model.

MRP Model Initial State Mean ECDF Error 95% Interval

DS-MRP Mixture 1 0.018 (0.004, 0.070)
2 0.026 (0.005, 0.091)
3 0.018 (0.004, 0.067)

IS-MRP Mixture 1 0.019 (0.004, 0.062)
2 0.051 (0.005, 0.090)
3 0.017 (0.003, 0.060)

Weibull IS-MRP 1 0.051 (0.009, 0.185)
2 0.071 (0.013, 0.247)
3 0.048 (0.008, 0.167)

the DS-MRP mixture model over the IS-MRP mixture model is less pronounced, being

evident in only one of the three states. This is due in part to the common sojourn

time distribution structure in Scenario 1, which results in identical recurrence time

characteristics for each state.

Scenario 2 - Varying sojourn time distributions

This scenario employs a more complex dependence structure between sojourn

time distributions. There is an element of commonality between all cases due to the

Lomax mixture component, but the varying gamma components also introduce diversity

between cases with different to-states k. We fit the same model as in Scenario 1 to a

point pattern generated from Scenario 2, with the same MCMC settings. Posterior

mean estimates and 95% credible intervals for the marginal variance parameters are

shown in Table 3.4. These results match what we would expect for this scenario. The

parameters σ2µ and σ2β are larger than the others, suggesting the presence of both a fully
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Table 3.4: Posterior mean estimates and 95% uncertainty intervals for the marginal variance pa-
rameters for the proposed model, fit to a point pattern generated from Scenario 2. The relative
magnitude of these values reflect the prevalence of different dependence structures between sojourn
time distributions.

σ2ψ σ2α σ2β σ2µ
Posterior mean 0.37 0.31 1.14 2.45

95% interval (0.14, 0.89) (0.12, 0.65) (0.49, 2.21) (0.93, 4.66)

Table 3.5: Predictive state recurrence ECDF errors for sojourn times simulated under Scenario 2.
Posterior mean estimates and 95% uncertainty bounds are given for the DS-MRP mixture model,
the corresponding IS-MRP mixture, and the parametric Weibull IS-MRP model.

MRP Model Initial State Mean ECDF Error 95% Interval

DS-MRP Mixture 1 0.037 (0.009, 0.136)
2 0.027 (0.006, 0.088)
3 0.033 (0.007, 0.111)

IS-MRP Mixture 1 0.045 (0.009, 0.168)
2 0.036 (0.006, 0.109)
3 0.043 (0.008, 0.149)

Weibull IS-MRP 1 0.052 (0.010, 0.201)
2 0.047 (0.011, 0.142)
3 0.052 (0.010, 0.176)

shared structure and a common to-state structure. The relative estimate magnitudes

are not as distinct though, but this improves if more data are included.

Comparing the density estimates for the three models in Scenario 2 (provided

in Appendix C), we see similar conclusions as those in Scenario 1. In particular, the

failure of the Weibull model to capture the true density shape is more clearly displayed.

The predictive coverage results mirror those from Scenario 1, with the DS-MRP mixture

providing the best balance between coverage and interval width. A table of coverage

and interval scores for this scenario is provided in Appendix C. Finally, we report

the predictive state recurrence ECDF errors in Table 3.5. With this metric, DS-MRP

mixture has a more pronounced advantage over the IS-MRP mixture model.
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To summarize, in both simulation scenarios, the proposed DS-MRP mixture

model produces favorable results compared to the IS-MRP mixture model and the

parametric Weibull IS-MRP model. The density estimates are more accurate, the trade-

off between predictive coverage and interval width is more reasonable, and the predictive

state recurrence ECDF errors are smaller. Together, these results demonstrate the

performance advantages that arise from incorporating dependence between sojourn time

distributions, especially in settings with limited amounts of data. As a final check to

validate these results, we conduct a simulation study using multiple datasets.

Simulation study with multiple datasets

Our goal for this simulation study is not to present a rigorous analysis, but

rather to dispel concerns that the previous findings could be attributed to idiosyncrasies

of a single dataset, as can happen when working with limited amounts of data. Though

admittedly crude, our approach is to generate 100 point patterns from both Scenario 1

and Scenario 2, as well as a third scenario with the same structure as Scenario 2, but with

uneven transition probabilities of p(j) = (0.6, 0.3, 0.1), common for all starting states

j. We compute the estimated state recurrence ECDF errors for each point pattern,

averaged across all initial states, and display boxplots of the estimated results in Figure

3.1. There is a clear trend in these results that is consistent with the previous findings,

all in favor of the proposed DS-MRP mixture model. Of course, this analysis is limited,

ignoring several other factors such as the uncertainty estimates for the ECDF errors,

as well as the other model evaluation metrics. Yet, even this basic assessment provides
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Figure 3.1: Boxplots of the estimated predictive state recurrence ECDF errors for the DS-MRP
mixture model, the IS-MRP mixture model, and the parametric Weibull IS-MRP model under three
different simulation scenarios. Each boxplot is based on 100 point patterns generated under the
given scenario and reports the mean ECDF error estimates for each model fit.

some reassurance that the previous conclusions are sound.

3.6 Southern California earthquake data application

In this section we apply our proposed methodology to the Southern California

earthquake dataset (SCEDC, 2013) using the proposed DS-MRPmixture model. Similar

results for the IS-MRP mixture model and the parametric Weibull IS-MRP model are

included in Appendix C. Recall that the dataset consists of 1,248 earthquakes, each with

a magnitude of at least 4.0 and a maximum observed magnitude of 7.3. We categorize the

magnitudes into three groups: low indicates a magnitude between 4.0 and 4.49, medium

indicates a magnitude between 4.5 and 4.99, and high indicates a magnitude larger than

5.0. These cutoffs are roughly consistent with similar MRP earthquake studies (Epifani

et al., 2014; Garavaglia and Pavani, 2011). From here, the data can be partitioned into

nine transition cases. The largest group is the low-to-low transition case, which contains

63



0
20

40
60

80
10

0
so

jo
ur

n 
tim

e 
(d

ay
s)

low−to−low
(n =619)

low−to−med
(n =185)

low−to−high
(n =72)

med−to−low
(n =191)

med−to−med
(n =58)

med−to−high
(n =19)

high−to−low
(n =66)

high−to−med
(n =25)

high−to−high
(n =12)

Figure 3.2: Boxplots of observed sojourn times for each transition case in the Southern California
earthquake dataset. Sample sizes are included below transition case labels. Not shown are 18
observations with sojourn times greater than 100 days, the largest of which is 232 days. The low-
to-low case contains 9 of these outliers, and all but 2 are in cases transitioning from the low state.

619 observations, and the smallest group is the high-to-high transition case, containing

just 12 observations. Boxplots of observed sojourn times for each transition case are

shown in Figure 3.2.

As an aside, which methodology is used to measure magnitude depends on

a number of factors and has changed over time as technology has improved. Because

magnitudes are reported using different methods, events in the full SCEDC dataset are

not directly comparable across large gaps in time. Our data begins in 1981, which co-

incides with both a significant upgrade in monitoring technology and the establishment

of a more standardized protocol for measuring earthquake magnitudes (Hutton et al.,

2010). In addition, using magnitude labels rather than numerical values may further

alleviate potential bias caused by mixing different measurement methods.

We fit the DS-MRP mixture model to the earthquake data using the same

hyperparameters and MCMC configuration as in the simulation study. Computation

time is comparable to the data analysis in Chapter 2.3, taking roughly 15 seconds per
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Table 3.6: Posterior mean estimates and 95% uncertainty intervals for the marginal variance pa-
rameters for the proposed model, fit to the Southern California earthquake dataset. The relative
magnitude of these values reflect the prevalence of different dependence structures between sojourn
time distributions.

σ2ψ σ2α σ2β σ2µ
Posterior Mean 0.19 0.32 0.22 8.71

95% Interval (0.09, 0.35) (0.13, 0.58) (0.10, 0.42) (5.49, 12.99)

1,000 iterations. Sampling efficiency for the sojourn densities is also similar. The esti-

mated sojourn time densities are shown in Figure 3.3. We note that the data histograms

are consistent with the decreasing density assumption, but as a sanity check, we also

implemented the model with the gamma kernel, which also produces decreasing density

estimates. Table 3.6 shows the posterior mean estimates and 95% uncertainty intervals

for the covariance structure parameters. The large posterior mean estimate for σ2µ sug-

gests a common sojourn time distribution structure across all transition cases, similar

to the structure of Scenario 1 from Section 3.5.

To assess the quality of model fit, we turn to the posterior predictive checks

described previously. Graphical and tabular results for the predictive state recurrence

ECDF errors are provided in Appendix C. Figure 3.4 shows 95% posterior predictive

coverage diagrams for the observed sojourn times. Given the variety of sample sizes

and the heavy concentration of observations near zero, the predictive coverage rates are

encouraging. Coverage rates for the small data cases are not as close to 95% as the

larger cases, but they are still within a reasonable range.

In combination, these posterior predictive checks suggest that the DS-MRP

mixture model is a good fit for the earthquake data. In Appendix C, we provide figures
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Figure 3.3: Posterior estimates and 95% uncertainty intervals for the sojourn time densities of
the Southern California earthquake dataset, estimated using the DS-MRP mixture model. Mean
estimates are shown as solid lines with 95% credible intervals as shaded regions.

and extended discussion comparing this model to the IS-MRP mixture model and the

parametric Weibull IS-MRP model. The main takeaway is that the proposed model

outperforms the other two in all measures we have considered. The Weibull model

performs particularly poorly, likely due to the high concentration of observed values
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Figure 3.4: Posterior predictive coverage diagram for the Southern California earthquake dataset
fit using the DS-MRP mixture model. Red lines are used to indicate the 95% predictive intervals
for each transition case. Data are partitioned by transition case and are shown as blue triangles if
excluded from the 95% predictive interval and as black ticks if included. Numerical coverage levels
are shown beneath the transition case labels.

near zero, producing excessively large predictive coverage intervals and highly variable

predictive state recurrence ECDFs. On the other hand, the IS-MRP mixture model

is prone to overfitting transition cases where data is sparse, yielding low predictive

coverage rates and predictive ECDF errors that are not as low as the DS-MRP model.

In summary, the flexibility of the mixture model and the ability to leverage dependence

across transition cases significantly improves the quality of model fit.

We conclude our analysis by examining the estimated transition risk profiles.

Recall that these aid in understanding how the risk of transitioning into a given state

varies over time following an event. In the context of earthquake recurrence, these
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Figure 3.5: Posterior mean estimates and 95% uncertainty intervals for the transition risk profiles for
the Southern California earthquake dataset. Initial states displayed are low, medium, and high, from
left to right, respectively.

could be used, for example, to study whether large aftershocks are more or less likely

immediately following a large earthquake. In Figure 3.5, we show the posterior mean

estimates and 95% uncertainty intervals for the transition risk profiles of each initial

state. Perhaps a little underwhelming at first glance, the relatively constant transition

risks across time are expected in the presence of a dominant σ2µ parameter. The impli-

cation for the Southern California earthquake data is that the relative risk of a large

magnitude earthquake occurring does not change significantly following an event.

3.7 Concluding remarks

Our goal in this chapter was to introduce a nonparametric modeling framework

for Markov renewal processes that facilitates borrowing of information across transition

cases. To achieve this, we combined the mixture modeling framework from Chapter 2

with a dependent prior structure, enabling organic discovery of dependence relationships

between sojourn time distributions. Through simulation study and a real data applica-

68



tion, The proposed model demonstrated improved performance over alternatives. We

focused our efforts on the uniform mixture model, consistent with the application area

of earthquake recurrence modeling. However, posterior simulation for the MRP kernel

parameters is very similar to that of the corresponding HRP parameters. Details for

the gamma mixture model follow similarly.

We conclude by discussing a possible improvement to the state recurrence

checks described in Section 3.4.2. For computational reasons, we opted for a predictive

approach rather than directly computing the state recurrence densities. The ECDF

Errors and plots are useful, but they are limited by the increased uncertainty inherent

in predictive checks. If the computational burden can be overcome, the state recurrence

densities could be used to construct time-rescaling QQ plots, which would be able to test

both the density shape and the point process structure of the state recurrence times.
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Chapter 4

The Log-logistic Basis Model for

Renewal Process Hazards

The majority of methods developed for homogeneous renewal processes focus

on the inter-arrival time density. This density-oriented perspective provides a tractable

likelihood and facilitates many well-known estimation techniques, which was critical to

our developments in Chapters 2 and 3. At the same time, an HRP can equivalently be

expressed through the inter-arrival hazard function. The hazard function plays a key

role in defining the HRP conditional intensity and is frequently of interest in applications

adjacent to survival analysis, including earthquake recurrence modeling (Ogata, 1999;

Rotondi, 2021). In these cases, prior information is often more naturally expressed on

the hazard scale, which may be difficult to incorporate into a density-oriented model,

particularly for nonparametric methods (such as in Xiao et al., 2021).

The fundamental objective of this chapter is to develop a flexible and com-
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putationally efficient model for the inter-arrival hazard of a renewal process. We will

introduce a novel basis representation for hazard functions composed of log-logistic haz-

ards, and develop a structured Bayesian nonparametric prior for the basis coefficients.

Prior information can be incorporated through the basis coefficients, and posterior sim-

ulation for the resulting hierarchical model can be implemented using latent variable

augmentation and standard MCMC methods. Our model also provides a more tractable

foundation for developing certain renewal process extensions that are focused on the haz-

ard scale. As a key example, we develop a nonparametric prior probability model for

modulated renewal processes, a time-varying extension of the homogeneous case.

4.1 Methodology for HRP hazards

4.1.1 Motivation and background

Although unused in the renewal process literature, Bayesian nonparametric

methods have been applied to hazard estimation in the broader context of survival

analysis. Neutral to the right processes, put forth by Doksum (1974), are a notable

class of priors for cumulative hazards, which include the beta process (Hjort, 1990)

and the gamma process (Ferguson and Phadia, 1979) as special cases. Direct hazard

estimation became available with the development of corresponding kernel mixtures,

most significantly the extended gamma process mixture (Dykstra and Laud, 1981; Lo

and Weng, 1989; Ishwaran and James, 2004). Multivariate extensions with depen-

dence of these methods have also been developed (Lijoi and Nipoti, 2014; Camerlenghi
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et al., 2021). Posterior sampling methods for these models largely rely on variations

of Blackwell-MacQueen Pólya urn schemes that marginalize over the random measures.

These facilitate standard MCMC algorithms but at the cost of limiting hazard function

inference to point estimates. Attempts to obtain posterior hazard credible intervals have

been made, though they face challenges. An approximation based on random measure

trajectory simulation has been explored, but this method only applies to certain model

structures and is challenging to implement (Nieto-Barajas and Walker, 2004; James,

2005; Nieto-Barajas, 2014). A moment-based approximation technique is developed in

Arbel et al. (2016) using Jacobi polynomials and importance sampling, yet closed-form

expressions are available only for an exponential base measure and may suffer from

numerical instability for higher-order moments.

In pursuit of a more tractable and extensible hazard modeling framework, we

propose an alternative approach rooted in basis representation models. Such models

represent a target function using a weighted combination of basis functions, denoted by,

L∑
ℓ=1

ωℓhB(x|bℓ, θ) , (4.1)

where L is the number of basis functions, ωℓ is the combination weight for component

ℓ, and hB(x|bℓ, θ) denotes the basis function evaluated at x, with common parameters

represented by θ and basis-specific fixed values (such as knot locations) given by bℓ.

Other parameters that are common to all basis functions are represented by θ. This

confines the target functional to the space spanned by the basis functions, often inducing

smoothness as a result (e.g., smoothing splines, de Boor, 1978), and shifts the bulk of
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modeling effort to the combination weights.

The Bernstein polynomial model is a well-known basis representation model

that has been used for both density and NHPP intensity estimation (Petrone, 1999a,b;

Zhao and Kottas, 2021). It utilizes Bernstein polynomials as basis functions, which are

essentially beta densities with a specific sequence of integer-valued shape parameters.

As the number of basis functions L approaches infinity, the Bernstein polynomial model

converges uniformly to any continuous target function over a bounded interval. The

Erlang mixture model is another powerful basis system using Erlang densities, i.e.,

gamma densities with integer shape parameters, as basis functions. The Erlang mixture

has one free parameter in the basis definition, the global scale parameter θ. The Erlang

density mixture converges point-wise to any continuous target density over the positive

real line as θ → 0 and L → ∞ (Lee and Lin, 2010). Erlang mixtures have been used

for both renewal process densities (Xiao et al., 2021) and NHPP intensities (Kim and

Kottas, 2022).

The Bernstein polynomial and Erlang mixture models have been used mainly

for density estimation, and they suggest three key properties that we seek in a hazard

basis system. First, the basis functions must be hazard functions themselves, ensuring

that a weighted combination will also be a valid hazard function. Second, the basis

function expressions should be available in closed form to facilitate posterior sampling.

Finally, the basis system must have some reassurance of flexibility, ideally with a con-

vergence result similar to either the Bernstein polynomial or Erlang mixture models.
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4.1.2 Log-logistic hazard basis system

Having considered many candidates, we now propose a basis system com-

posed of log-logistic hazard functions. This system satisfies all three desired prop-

erties, including a point-wise convergence result that we will present shortly. Let

hℓℓ(x|α, β) = (β/x){1 + (x/α)−β}−1 denote the log-logistic hazard function. We de-

fine the log-logistic basis function as,

hB(x|bℓ, θ) =
θ

bℓ
hℓℓ(x|bℓ, bℓ/θ) =

1

x
{1 + (x/bℓ)

−bℓ/θ}−1 , (4.2)

where θ is a global dispersion parameter and bℓ is a known knot location specific to each

basis function with b1 < b2 < · · · < bL. Figure 4.1 shows log-logistic basis functions

evaluated over the interval (0, 1] with an evenly spaced grid of knots and a variety of θ

values.

This basis draws inspiration from Erlang mixtures, though the role of θ is

notably different. For Erlang mixtures, the parameter θ controls both the location and

scale of the basis functions and, in conjunction with L, the effective range that can be

modeled (see Xiao et al. 2021 for more discussion). In contrast, the parameter θ in

our basis only affects the dispersion of each function, the general location being tied to

the knots bℓ and the effective range being controlled by the largest knot R = bL. In

addition, the value of θ influences whether a given basis function is unimodal or strictly

decreasing in shape, which occurs whenever bℓ ≤ θ. Inappropriately extreme values of θ

are detrimental to model flexibility. The left-most panels in Figure 4.1 show that overly

large θ leads to restrictive shapes over the effective range, while the right-most panels
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Figure 4.1: Log-logistic basis functions with an evenly spaced grid of knot locations bℓ over the
interval (0, 1]. Top row shows evaluations with L = 10 basis functions and bottom row shows
evaluations with L = 20. Left-to-right shows the parameter θ taking values of 1/2, 1/10, 1/20, and
1/100.

highlight that small θ yields functions whose contributions to the broad mixture are

too granular. The Erlang mixture structure suggests that having one strictly decreasing

basis function is ideal, which the log-logistic basis system achieves whenever b1 ≤ θ < b2.

For simplicity and computational manageability, we fix θ = b1, which for an evenly

spaced grid of L knots over (0, R] is b1 = R/L. Estimating θ confined to the interval

[b1, b2) is possible, but consider that smaller values of θ, i.e. closer to b1, offer more local

flexibility, and that the empirical effects of varying θ in such a small range tend to be

negligible anyway.

Another key similarity between the log-logistic hazard basis and the Erlang

mixture is the presence of a supporting convergence result. These results elevate their

respective models and add credibility to their use in place of Bayesian nonparametric
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kernel mixtures that have stronger theoretical support but may suffer from implemen-

tation challenges. The log-logistic basis convergence result is given in Theorem 4.1.

Theorem 4.1. Consider a continuous, differentiable function g(x) defined on x ∈ R+

such that limx→0+ g(x) is finite. Let ϕ(x) = d
dx(xg(x)) be called the weight function

and let hB(x|b, θ) be the log-logistic basis function as defined above. Choose any finite

R > 0 and let {bℓ = ℓR/L : ℓ = 1, . . . , L} be a corresponding set of evenly spaced knot

points. Then, for x ∈ (0, R), the following point-wise convergence result holds:

g(x) = lim
θ→0+

lim
L→∞

L∑
ℓ=1

R

L
ϕ(bℓ)hB(x|bℓ, θ) .

Similar to the Erlang mixture and Bernstein polynomial models, Theorem

4.1 confirms that the log-logistic hazard basis is sufficiently flexible to model a wide

range of functions. Indeed, the scope of convergence is all continuous and differentiable

functions g on R+, not just hazard functions. An important takeaway from this result

is the unique mapping of functions g to weight functions ϕ, indicating from a practical

standpoint that a prior model on the weight function induces a prior model on g. In

Figure 4.2 we show examples of weight functions ϕ corresponding to Weibull hazards

with different shape parameters. We note that the hazard function h shown in the figure

is more structured than the general g from Theorem 4.1.

In order to leverage Theorem 4.1 for hazard estimation, restrictions on ϕ must

be formulated to reduce the space of possible functions g to valid hazards. A partic-

ularly useful sufficient condition is to constrain ϕ(x) ≥ 0 for all x, or to equivalently

require xg(x) be non-decreasing. This condition is not strictly necessary – there exist
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Figure 4.2: Example weight functions ϕ and their corresponding hazard functions h. Distributions
shown from left to right are Wei(1.2, 1), Wei(0.8, 1), and an evenly weighted mixture of the two.

valid hazard functions such that ϕ(x) < 0 for some x – but it is both easy to accom-

modate in model development and advantageous for renewal processes. Regarding the

latter, recall that renewal process inter-arrival distributions must have a finite mean.

If a hazard function h produces asymptotically non-increasing behavior in xh(x), then

h(x) must decay at a rate at least as fast as 1/x, corresponding to a survival function

S(x) that decays at least as slow as 1/x, which therefore must have an infinite first

moment. By restricting the weight function ϕ to be non-negative we remove many

heavy-tailed distributions from the modeling space, though not all. Admittedly, the

constraint also removes hazards where xh(x) decreases temporarily but otherwise in-

creases asymptotically. In testing a variety of shapes, we find that this mainly affects

hazards with a sharp decline in the tail or with complex, multi-modal behavior, both

of which are rare in practice. In fact, we found no examples of common hazard func-

tions with finite mean that violate the constraint, including all parameter combinations

of the Weibull, log-normal, gamma, and Lomax distribution families. Considering the

immense modeling benefits gained, the constraint on ϕ arguably justifies the relatively
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minor and infrequent trade-offs.

The proof of Theorem 4.1 offers insight into both the exact form of the basis

functions and the role of the knot locations. It follows from two key supporting lemmas,

the first of which, Lemma 4.1, establishes an integral representation for the function g.

Lemma 4.1. Consider functions g(x) and ϕ(x) as in Theorem 4.1. Let I(·) denote the

indicator function which equals 1 if the argument is true and 0 otherwise. Then, for

R ≤ ∞, g can be represented by the following integral:

g(x) =

∫ R

0

1

x
I(u < x)ϕ(u)du .

Proof. Let Φ(x) = xg(x) be an antiderivative of ϕ. The restrictions on g imply that Φ

is differentiable and that limx→0+ Φ(x) = 0. Then,

g(x) =
1

x
Φ(x) =

1

x

∫ x

0
ϕ(u)du =

∫ R

0

1

x
I(u < x)ϕ(u)du ,

where x < R ≤ ∞ denotes a possibly infinite upper bound.

The integral representation in this lemma is a reasonable starting point for

constructing a basis model, but the corresponding basis functions x−1I(u < x) are

discontinuous at u = x. For a finite weighted combination of basis functions, the

discontinuity is not ideal. Lemma 4.2 addresses this issue by introducing the log-logistic

basis function.

Lemma 4.2. Let hB(x|bℓ, θ) be the log-logistic basis function as defined in Theorem

4.1. Then, for any bℓ > 0 and bℓ ̸= x,

lim
θ→0+

hB(x|bℓ, θ) =
1

x
I(bℓ < x) .
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Proof. Consider first the case that x < bℓ and thus bℓ/x > 1. The limit of (bℓ/x)
bℓ/θ

as θ approaches 0 grows without bound and therefore hB(x|bℓ, θ) approaches 0. Now

suppose that x > bℓ such that bℓ/x < 1. Then the term (bℓ/x)
bℓ/θ approaches 0 as θ

approaches 0 and thus hB(x|bℓ, θ) approaches 1/x.

To summarize, the log-logistic basis functions approach the discontinuous basis

functions from Lemma 4.1 as the dispersion parameter θ approaches zero, hinting at

their potential as a replacement in a finite mixture model. We note that the case of

x = b is excluded from the lemma due to the limit approaching neither zero nor 1/x,

however this discrepancy is a removable discontinuity and does not affect the proof of

Theorem 4.1. A rigorous treatment of this issue might involve formally defining a hole

in the basis function at x = b, but it is sufficient for our purposes to note its immaterial

impact and proceed with the limit as if it holds for all x. The proof of Theorem 4.1 is

completed by combining the results from Lemmas 4.1 and 4.2.

Proof of Theorem 4.1. Plugging the result from Lemma 4.2 into Lemma 4.1 yields,

g(x) =

∫ R

0
ϕ(u) lim

θ→0+
hB(x|u, θ)du .

Notice that the basis function hB(x|u, θ) is bounded above by 1/x for all u and θ. For

fixed x, or with respect to u, this bound is constant, thus for finite R the dominated

convergence theorem applies and the limit can be moved outside the integral:

g(x) = lim
θ→0+

∫ R

0
ϕ(u)hB(x|u, θ)du .
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We note that 1/x is unbounded as x decreases, indicating that convergence is point-

wise and not uniform with respect to x. Now observe that ϕ(u) and hB(x|u, θ) are both

continuous and bounded over u ∈ (0, R), and therefore their product is continuous and

bounded over the same interval. Hence, the integrand above is Riemann integrable over

(0, R). Using the set of evenly spaced knot points {bℓ}, we write the integral as the

limit of a right Riemann sum:

g(x) = lim
θ→0+

lim
L→∞

L∑
ℓ=1

R

L
ϕ(bℓ)hB(x|bℓ, θ) ,

which completes the proof of Theorem 4.1.

The proof of Theorem 4.1 helps to validate the log-logistic basis system as a

suitable choice for hazard estimation, both providing a foundation for model develop-

ment and satisfying an expectation of flexibility. It also illustrates the roles played by

the log-logistic basis functions, the dispersion parameter θ, and the knot locations bℓ.

On the basis of our previous discussion, going forward we fix θ = R/L. Regarding the

knot locations, we default to evenly spaced knots bℓ = ℓR/L for some finite R > 0. This

choice is motivated by the Riemann sum conditions required to prove Theorem 4.1 and

is simple to implement and interpret. In addition, evenly spaced knots are a standard

choice for basis models like the Erlang mixture model and B-splines. However, any knot

location scheme that satisfies the partitioning requirements of the Riemann sum can be

used should the application demand it.
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4.1.3 Model formulation

Our proposed approach to renewal process hazard estimation is to build a

basis representation model, as in Equation (4.1), using the log-logistic basis functions

defined in Equation (4.2). We proceed with L basis functions placed at evenly spaced

knot locations {bℓ = ℓR/L : ℓ = 1, . . . , L} over the interval (0, R]. For selecting R, we

suggest a value close to R = max{xi} since hazard estimation beyond the data range

tends to be unreliable without additional structure. We default to the 99.5% quantile

of the data range. As discussed previously, we fix the dispersion parameter θ = R/L

and restrict the weight function ϕ to be non-negative.

The model likelihood is given by,

exp

(
−

L∑
ℓ=1

ωℓHB(T − tn|bℓ, θ)−
n∑
i=1

L∑
ℓ=1

ωℓHB(xi|bℓ, θ)

)
n∏
i=1

L∑
ℓ=1

ωℓhB(xi|bℓ, θ) ,

where HB(x|bℓ, θ) = (θ/bℓ) log{1 + (x/bℓ)
(bℓ/θ)} is the cumulative basis function and

the combination weights are given by ωℓ. For notational brevity, we define H∗
ℓ =

HB(T − tn|bℓ, θ) +
∑n

i=1HB(xi|bℓ, θ) such that the likelihood can be simplified to,

exp

(
−

L∑
ℓ=1

ωℓH
∗
ℓ

)
n∏
i=1

L∑
ℓ=1

ωℓhB(xi|bℓ, θ) . (4.3)

Note that the censoring information term from the general renewal process likelihood ex-

pression is incorporated into each H∗
ℓ . Using aggregate data values to handle censoring

is quite convenient and is another advantage of basis models for renewal process haz-

ards over kernel mixtures, which often resort to more involved computational inference

techniques.
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With both the basis functions and likelihood defined, we focus our efforts on

developing a suitable model for the combination weights ω = (ω1, . . . , ωL). Theorem 4.1

endorses treating the weights as realizations of some function ϕ at the knot locations,

i.e., ωℓ = ϕ(bℓ). We propose modeling ϕ with the following log-Gaussian process prior:

log ϕ(x)|β0, β1, σ2, τ ∼ GP
(
µ(x), κ(x, x′)

)
µ(x) = β0 + β1 log(x); κ(x, x′) =

σ2τ

2
exp

(
−|x− x′|

τ

)
,

(4.4)

where GP denotes a Gaussian process, µ is the mean function, κ is the covariance kernel,

and β0, β1, σ
2, and τ are hyperparameters. The log-Gaussian process is both flexible

and non-negative, making it a natural choice for ϕ. In terms of the vector of mixture

weights ω, this induces a multivariate log-normal prior:

log(ω)|β0, β1, σ2, τ ∼ NL(Bβ,Σ) , (4.5)

where NL denotes a multivariate normal distribution in L dimensions, β = (β0, β1) is

the mean parameter vector, the L×2 matrix B contains a column of ones and a column

of log(bℓ) values, and Σ is the L × L covariance matrix formed by plugging in pairs of

knot locations into the covariance kernel κ. The mean function we use is motivated by

the Weibull hazard, given by αλxα−1, which has a log-logistic basis weight function of

log ϕ(x) = log(α2λ) + (α− 1) log(x). In other words, the nonparametric prior model is

centered on Weibull distributed inter-arrival times. The Weibull connection also implies

the constraint β1 > −1, which we adopt given the role that β1 plays in governing tail

behavior.

To get a better sense of the model structure, we generate a set of weights from
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Figure 4.3: Demonstration of the log-logistic hazard basis model prior: generated weight values and
corresponding hazard and density functions. Hyperparameters used for the top row are L = 50,
R = 5, β0 = −2.3, β1 = 1, σ2 = 4, and τ = 0.1. Hyperparameters used for the bottom row are the
same except β1 = −0.5.

the prior using L = 50, R = 5, β0 = −2.3, β1 = 1, σ2 = 4, and τ = 0.1. Figure 4.3 shows

the resulting weight values and corresponding hazard and density functions in the top

row, and another simulation with β1 = −0.5 in the bottom row. This highlights the role

that β1 plays in setting the slope of the weights and therefore the tail behavior of the

resulting hazard and density. Similar plots can be generated for the other parameters,

showing their effects on the weight functions. In summary, σ2 controls the individual

weight variability, τ governs the degree of similarity between neighboring weights, and

β0 influences the scale of the weights and the scale of the hazard.

The covariance κ is the Ornstein-Uhlenbeck (OU) covariance kernel with a
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marginal variance parameter σ2 and length scale τ . At first glance, a covariance kernel

that produces differentiable sample paths may seem more appropriate for ϕ given the

implied properties of g from Theorem 4.1. However, our initial efforts reveal that such

kernels lead to sampling convergence issues. This is in part due to the log-logistic basis

functions being correlated in the sense that, for any two components ℓ and ℓ′, the basis

function evaluations at x > max(bℓ, bℓ′) are effectively identical. Put differently, our pro-

posed basis functions have non-local effects to the right of their knot locations, implying

some degree of negative conditional correlation. The OU process is a continuous-time

extension of a first-order autoregressive process and supports negative conditional co-

variance in the induced off-diagonal elements of Σ−1. Compared to the positive values

generated by radial kernels, negative conditional covariance is better aligned with the

basis function behavior and matches empirical observations from posterior sampling.

For hyperparameter priors, we use conditionally conjugate normal distribu-

tions for β0 and β1 with means log(R/L) and 0, respectively, and a large shared variance

sβ = 10002. Centering β0 on log(R/L) mirrors the scaling of ϕ by R/L in Theorem

4.1. Also note the distribution for β1 is truncated below such that β1 > −1. We assign

a conditionally conjugate inverse gamma prior to σ2, with shape aσ = 2.5 to ensure a

finite prior variance, and a scale parameter of bσ = 1. Finally, we use an exponential

distribution as a prior model for τ centered on R/L, which is the distance between adja-

cent knot locations. Performing sensitivity analysis on these hyperparameters highlights

that inferences are fairly robust to changes in prior parameter values, which we discuss

further in Section 4.1.5.
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We conclude this section by considering the finite mean requirement for re-

newal processes. A well known result in survival analysis is that a positively valued

random variable X with survival function S(x) has expectation E[X] =
∫∞
0 S(x)dx. If

S(x) decays at a rate faster than 1/x, or rather S(x) is asymptotically bounded above

by a/xc for some a > 0 and c > 1, then E[X] is finite. In the context of the log-logistic

basis model, this implies that the finite mean restriction is satisfied as long as the total

weight Ω =
∑L

ℓ=1 ωℓ > 1. Explicitly enforcing this constraint in the prior probabil-

ity model is challenging. However, several structural choices in developing this model

(such as strictly positive weights and the prior constraint on β1) help alleviate the issue

without direct intervention. Indeed, using a wide range of hyperparameter values, prior

simulations suggest that the probability of Ω ≤ 1 is negligible. In practice, we find that

posterior samples of Ω are essentially always larger than 1, thus simply monitoring this

quantity is sufficient to ensure the finite mean requirement is satisfied.

4.1.4 Posterior simulation

Here, we outline a Gibbs sampling algorithm for the log-logistic basis represen-

tation model, given N(T ) = n observed events in the time interval (0, T ) and realized

inter-arrival times x = {xi : i = 1, . . . , n}. Considering that updates for the Gaussian

process hyperparameters are standard, the majority of exposition will focus on the com-

bination weights ω which require more specialized treatment. In short, update steps

for β and σ2 are conjugate and are sampled directly, while τ is updated using a ran-

dom walk Metropolis step. Complete details on the full conditional distributions are
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provided in Appendix D.

For more concise and general notation, we define the mean log-weight vector

µ = Bβ and the unscaled covariance matrix V such that Σ = σ2V . The notation

µ(β), V (τ), and Σ(σ2, τ) could to used to explicitly indicate particular hyperparameter

dependencies, but we forgo this to reduce clutter. To facilitate updates for ω, we

introduce latent membership variables z = {zi : i = 1, . . . , n}, where zi = ℓ indicates

that event i is associated with basis function ℓ, and Pr(zi = ℓ|ω) = ωℓ/Ω, where

Ω =
∑L

r=1 ωr. The augmented model likelihood can be expressed as,

exp

(
−

L∑
ℓ=1

ωℓH
∗
ℓ

)
n∏
i=1

ΩhB(xi|bzi , θ) . (4.6)

To draw from the joint full conditional of ω and z, we employ a Gibbs step, first sampling

z given ω from a categorical distribution, then sampling ω given z. The conditional

distribution of ω given z is given by,

p(ω|z,β, σ2, τ,x) ∝ p(ω|β, σ2, τ)×

{
n∏
i=1

(ωzi
Ω

)nℓ}
× Ωn exp

(
−

L∑
ℓ=1

ωℓH
∗
ℓ

)

∝ p(ω|β, σ2, τ)×
L∏
ℓ=1

Ga(ωℓ|nℓ + 1, (H∗
ℓ )

−1) , (4.7)

where nℓ = |{i : zi = ℓ}| is the number of events associated with basis function ℓ,

Ga(x|κ, λ) denotes a gamma density evaluated at x with mean given by κλ. Also recall

the induced prior on ω, p(ω|β, σ2, τ), is multivariate log-normal with log-scale mean

vector µ and covariance matrix Σ.

The distribution in (4.7) cannot be directly sampled, but the form lends itself

to slice sampling. We introduce a set of auxiliary variables u = {uℓ : ℓ = 1, . . . , L} such
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that the joint conditional distribution is given by,

p(ω,u|β, σ2, τ,x) ∝ p(ω|β, σ2, τ)×
L∏
ℓ=1

I(uℓ < Ga(ωℓ|nℓ + 1, (H∗
ℓ )

−1)) . (4.8)

We employ a Gibbs step to sample from this joint distribution. Given ωℓ, the slice

sampling variable uℓ is sampled uniformly between 0 and Ga(ωℓ|nℓ + 1, (H∗
ℓ )

−1). To

draw the weights ω given u, we invert the indicator function inequalities such that they

take the form I(Cℓ < ωℓ < Dℓ). Graphically, Cℓ and Dℓ represent the lower and upper

locations where the gamma density is equal to uℓ, and they are computed using the

Lambert-W function, which we elaborate on this further in Appendix D.

Given u and the corresponding boundary vectors C = {Cℓ : ℓ = 1, . . . , L}

and D = {Dℓ : ℓ = 1, . . . , L}, the full conditional distribution of ω is a multivariate

log-normal distribution where each element ωℓ is separately truncated to be between

Cℓ and Dℓ. Sampling such a distribution has historically been a challenge, but recent

advances have provided multiple efficient simulation methods. We make use of the

harmonic-HMC algorithm of Pakman and Paninski (2014) to draw samples from our

truncated log-normal distribution on the log-scale, i.e., drawing from a multivariate

normal distribution of length L with mean µ and covariance Σ, denotedNL(µ,Σ), where

each element is truncated to lie between log(Cℓ) and log(Dℓ). A code implementation

is available in the hdtg package for R (Zhang et al., 2022; R Core Team, 2024). This

algorithm is very efficient; we find that sampling proceeds comfortably for L as large as

500, which is more than sufficient in practice.

87



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uniform quantile

E
m

pi
ric

al
 q

ua
nt

ile

0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4
5

Inter−arrival time

H
az

ar
d

Inter−arrival time

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimate
Truth

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uniform quantile

E
m

pi
ric

al
 q

ua
nt

ile

0.0 0.5 1.0 1.5

0
1

2
3

4
5

Inter−arrival time

H
az

ar
d

Inter−arrival time

D
en

si
ty

0.0 0.5 1.0 1.5

0
1

2
3

4
5

Estimate
Truth

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uniform quantile

E
m

pi
ric

al
 q

ua
nt

ile

0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4
5

6

Inter−arrival time

H
az

ar
d

Inter−arrival time

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
4

0.
8

1.
2

Estimate
Truth

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Uniform quantile

E
m

pi
ric

al
 q

ua
nt

ile

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

Inter−arrival time

H
az

ar
d

Inter−arrival time

D
en

si
ty

0 2 4 6 8 10

0.
00

0.
10

0.
20

Estimate
Truth

Figure 4.4: Simulated data examples fit using the log-logistic basis model with L = 50 components.
Generative distribution are, from left to right, Weibull, Lomax, half-normal, and an evenly weighted
mixture of two gamma distributions. The top row shows time-rescaling QQ plots, the middle row
shows the estimated hazard functions, and the bottom row shows the estimated inter-arrival density
functions.

4.1.5 Synthetic data examples

In this section we explore properties and performance of the log-logistic basis

model applied to simulated data. Our simulations are designed to illustrate the flexibility

of the model in capturing a variety of hazard function shapes. We sample HRP point

patterns using the same generative procedure as the simulations in Chapter 2.2, which

we repeat here for clarity: a Weibull with shape parameter 1.5 and unit scale, a Lomax

with shape parameter 5 and unit scale, a standard half-normal, and an evenly weighted
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Figure 4.5: Sensitivity analysis for the log-logistic basis model using the gamma mixture generative
distribution. Each panel shows density estimates for the model fit with aσ set to 2.5, 10, 50, and
200, left to right respectively, and default values for the other hyperparameters.

mixture of a Ga(2, 1) and a Ga(10, 0.5). Recall the Lomax distribution has density

(α/λ)(1 + x/λ)−(α+1) where α is the shape parameter and λ is the scale. The standard

half-normal distribution has density
√

2/π exp(−x2/2). For each scenario, we generate

inter-arrival times using a value of T such that the expected number of events is roughly

1,000. We fit the model using L = 50 basis functions and default hyperparameter values.

The MCMC algorithm is run for 5,000 iterations following a burnin period of 15,000.

Figure 4.4 shows posterior estimates for the hazard function, the implied inter-arrival

time density, and time-rescaling QQ plots for each scenario. The overall conclusion from

Figure 4.4 is that the log-logistic basis model is able to effectively capture a variety of

hazard function shapes. Posterior intervals for the hazard and density functions capture

the generative functions well, and the QQ plots indicate a good fit for all scenarios.

We note that these results are relatively robust to changes in the hyperparam-

eter values, particularly those related to β0 and β1. To demonstrate the impact of more

informative priors on σ2, we repeat the simulations using the gamma mixture genera-

tive distribution and set aσ to increasingly large values, starting at the default 2.5 and
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Figure 4.6: Sensitivity analysis for the log-logistic basis model using the gamma mixture generative
distribution. Each column shows density estimates for the model fit with L set to 5, 20, 50, and 100,
left to right respectively, and default values for the other hyperparameters. The top row shows results
for a dataset with approximately 2,000 events, while the bottom row shows results for a dataset with
around 200 events.

going up to 200. Figure 4.5 shows the results of this sensitivity analysis, focusing on

estimates of the inter-arrival density, which show more clearly where discrepancies are

most pronounced. Although the effect is gradual, priors that emphasize large values of

σ2 lead to more variable weight functions and consequently fewer significant features in

the density estimates. In settings where overfitting is a concern, this behavior can be

leveraged to produce more conservative estimates.

By far the most impactful hyperparameter to select is the number of basis

functions L. Larger L allows for more flexible hazard estimates, but also increases

the computational burden. We study the impact of L on the model fit by repeating

the gamma mixture simulation with L set to 5, 20, 50, and 100. Figure 4.6 displays

estimated inter-arrival densities for each value of L in the top row. Additionally, in the
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Figure 4.7: Histograms of inter-arrival times for the NOAA Significant Earthquake Database data
for four regions: North America, Central America, the Caribbean, and South America.

bottom row we show the same simulation study but where T has been adjusted such

that the expected number of events is near 300. Unsurprisingly, when L is too small,

the model is unable to capture the complexity of the generative distribution. However,

the quality of fit rapidly improves as L increases.

4.1.6 Earthquake data application

We now consider applying the log-logistic hazard model to a real earthquake

dataset. These data are taken from the Significant Earthquake Database published and

maintained by NOAA National Centers for Environmental Information (NGDC/WDS,

2021). Earthquakes recorded in this database are rather destructive, satisfying at least

one of the following criteria: $1 million in damages, over 10 deaths, magnitude of at least

7.5, Modified Mercalli Intensity X or greater, or the earthquake generated a tsunami. We

consider earthquake events occurring in four regions: North America, Central America,

the Caribbean, and South America. The data contain events from Jan. 1, 1900 to Dec.

31 2019 and include 313 earthquakes for North America, 126 for Central America, 55 for

the Caribbean, and 367 for South America. Figure 4.7 shows histograms of the inter-
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Figure 4.8: Posterior inference for the hazards (middle), density functions (bottom) and time-
rescaling QQ plots (top) for the NOAA Significant Earthquake Database data.

arrival times for each region. The longest inter-arrival time in this dataset is 3,719 days

in the Caribbean region, occurring between an aftershock of the San Fermı́n earthquake

in Puerto Rico on Nov. 12, 1918 and the Cumaná earthquake off the coast of Venezuela

on Jan. 17, 1929.

We fit the model separately to each region, using L = 50 basis functions and

default hyperparameters mentioned previously. Using the same machine as in previous

chapters, the sampling algorithm for the North America region takes approximately 0.5

seconds per 1,000 posterior iterations. Samples for each parameter usually converge
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within 5,000 iterations, though we use 15,000 burnin iterations as a more conservative

choice. The effective sample size for the inter-arrival density evaluated at various points

is roughly between 100 and 120 per 1,000 posterior samples, thus we thin samples by a

factor of 10. Figure 4.8 shows the posterior mean of the hazard and density functions for

each region, along with time-rescaling QQ plots and 95% posterior uncertainty intervals.

The density estimates and QQ plots suggest that the model effectively captures the data

distribution in each region, with perhaps the exception of the Caribbean region, where

the data are unusually concentrated close to zero. The hazard function magnitudes also

clearly show differences in overall rates of large earthquakes between regions, with South

and North America being the most active. Also, recall from our discussion in Chapter

2.1.1 that there are mechanistic reasons to expect earthquake inter-arrival densities to

be decreasing. Despite no model structure to enforce this behavior, the model produces

decreasing densities for these data.

4.2 Bayesian nonparametric inference for modulated re-

newal processes

Many extensions have been proposed to incorporate time-varying behavior into

the homogeneous renewal process. A modulated renewal process (ModRP) is formed

by scaling the inter-arrival hazard function by a modulating intensity λ(t), yielding the

ModRP conditional intensity expression:

λ(t|H(t)) ≡ λ(t)h(t− tN(t)) , (4.9)
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where λ and h are required both to be non-negative and locally integrable. The resulting

inter-arrival time distribution is no longer stationary, being expressed by a conditional

inter-arrival time density:

f(x|tprev) = λ(tprev + x)h(x) exp

(
−
∫ x

0
λ(tprev + u)h(u)du

)
, (4.10)

where tprev is the time of the most recent event.

Modulated renewal processes have been used in several application areas, in-

cluding earthquake modeling (Lin and Fine, 2009), neural spike train analysis (Kass

and Ventura, 2001; Liu and Lengyel, 2023), medical event data (Dabrowska and Ho,

2006), and system reliability (Lawless and Thiagarajah, 1996; Kobbacy et al., 1998).

They were first introduced by Cox (1972), stemming from similar work on proportional

hazard models. Subsequent efforts focus on asymptotic properties and improving on the

partial likelihood estimation methods used originally (Berman, 1981; Oakes and Cui,

1994; Lawless and Thiagarajah, 1996). An additive form of the conditional intensity has

also been studied (Lin and Ying, 1994), though the multiplicative form is more common.

Lin and Fine (2009) present an estimation method based on martingale equations that is

applicable to both the additive and multiplicative forms. Rao and Teh (2011) propose a

Bayesian semiparametric method where the modulating function is modeled by a trans-

formed Gaussian process and the hazard component follows a gamma distribution. The

associated posterior sampling algorithm is cleverly designed around uniformization, the

thinning approach used to simulate point process data (Daley and Vere-Jones, 2003),

and leverages the Gaussian process structure.
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In this chapter, we take an alternative approach to ModRP modeling. We

develop a fully nonparametric model for the ModRP conditional intensity, by combin-

ing the log-logistic basis system introduced in the previous section for the hazard, with

a structured basis mixture for the modulating intensity. We aim to provide a more

flexible hazard model than the gamma assumption used by Rao and Teh (2011) while

retaining similar flexibility in the modulating intensity. In addition, by directly mod-

eling both components using basis mixtures, a posterior sampling algorithm is more

straightforward to develop and can be implemented using standard MCMC methods.

4.2.1 ModRP properties

We follow the nomenclature of Rao and Teh (2011) in describing the com-

ponents of a modulated renewal process: the function h is referred to as the hazard

function, and λ(t) is called the modulating intensity or modulating function. When

h(x) = 1, the model reduces to an NHPP with intensity λ(t), whereas an HRP with

inter-arrival hazard h(x) emerges when λ(t) = 1, hence the terminology. However,

there is an interplay between h and λ that obfuscates their roles outside these special

cases. In this section we explore that interplay and the way it manifests in simulated

datasets. This will build intuition for the model structure and provide a foundation for

the development of our nonparametric ModRP model.

To begin, we simulate data with constant hazard and modulating intensity

functions. Figure 4.9 shows the generative functions under three different scenarios as

well as simulated event times for each. The density being shown is the exponential
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Figure 4.9: Simulated data from a modulated renewal process with constant hazard and modulating
intensity functions and upper time bound T = 500. The top panels show the modulating intensities
with small ticks showing the observed event times. The bottom panels show the exponential density
corresponding to the constant hazard function with a histogram of the observed inter-arrival times.
The interplay between the hazard and modulating intensity is evident from the inconsistency between
the observed inter-arrival times and the exponential density.

density associated with the constant hazard function. The left-most column shows the

special case of a point pattern from a homogeneous Poisson process with unit rate,

and the implied density from h expectedly matches the observed inter-arrival times.

However, h does not match the observations for the middle and right-most columns.

The middle column has the same unit conditional intensity as the left-most column and

therefore produces a similar point pattern, yet has different values for the constituent

functions. This highlights a fundamental consequence of the multiplicative ModRP

structure in Equation (4.9): the scales of h and λ are not identifiable. We emphasize
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Table 4.1: Simulation results for ModRP data with Wei(2, 1) hazard function, Beta(2, 2) modulating
density scaled to (0, T ), and various values of Λ and T . The number of data points n and the 90th
percentile of the inter-arrival times are shown.

T Λ n observations 90th percentile

50 50 59 1.41
50 100 75 1.13
50 200 109 0.80
200 50 115 2.76
200 100 152 2.25
200 200 222 1.59

that this is not a modeling limitation, but a fundamental overspecification of the point

process.

Rao and Teh (2011) take a heuristic approach to addressing this issue by

fixing the mean of the gamma distribution associated with the hazard function h, but

this is overly restrictive for our purposes and does not directly target the source of

the problem. To elaborate on the scale ambiguity, consider factoring the modulating

intensity as λ(t) = Λfλ(t), where Λ =
∫ T
0 λ(t)dt is the total modulating intensity over

the time interval (0, T ), and fλ(t) is a density over same interval. Going forward, we

refer to fλ as the modulating density. The value of Λ is not identifiable with respect to

the scale of h and must be fixed in some way. Theoretically, any positive value of Λ may

be chosen, but there is a corresponding impact on the effective support of the inter-

arrival times. To better understand this, we simulate data from a variety of ModRP

scenarios with a Wei(2, 1) hazard function h(x) = 2x, a Beta(2, 2) modulating density

scaled to (0, T ), and several values of Λ and T . Simulated point patterns are drawn using

the uniformization algorithm described in Rao and Teh (2011). We examine both the

number of data points and the effective support of the inter-arrival times as measured
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Figure 4.10: Simulated data from a modulated renewal process with Wei(2, 1) hazard function,
Beta(2, 2) modulating density scaled to the interval (0, T ), total intensity Λ = 50, and upper time
bound T = 50. Shown are the hazard function, modulating density, and realized conditional intensity.

by the 90th percentile. The results are shown in Table 4.1, and an example simulation

for Λ = 50 and T = 50 is shown in Figure 4.10. Note that, because the inter-arrival

times are non-stationary, we plot the realized conditional intensity as a more meaningful

data visualization.

Both T and Λ have positive effects on the sample size n as expected, but the

relationship is no longer linear as it would be for a Poisson process. The effective support

is interesting to study in preparation for extending our log-logistic basis model to the

ModRP case. Recall from the previous section that the value of R, the upper bound of

inter-arrival times for our log-logistic basis model, is chosen close to the largest observed

inter-arrival time. In contrast to the HRP case, our exploration of ModRP properties

shows that the effective support of simulated inter-arrival times is not a direct result

from the hazard function h, making the choice of R less clear. As a baseline, the 90th

percentile of the Wei(2, 1) distribution is approximately 1.52. From Table 4.1, we see

that the simulated 90th percentiles are closest to this value when Λ = T . Indeed, we
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find empirically that, under Λ = T , the effective support of the simulated inter-arrival

times roughly aligns with that implied by the hazard h for effectively any choice of fλ

and all but the heaviest-tailed choices for h. This suggests that, given the choice of

Λ = T , selecting R based on the upper percentiles of the observed inter-arrival times

is likely to be effective for the ModRP case. These insights are crucial for choosing

appropriate configuration parameters for our nonparametric ModRP model.

4.2.2 Model formulation

Our approach to modeling a modulated renewal process is to assign basis

mixture models to the constituent functions. For the hazard function h, we utilize the

log-logistic basis system introduced previously:

h(x) =

L∑
ℓ=1

ωhℓ hB(x|bℓ, θ) , (4.11)

where L is the fixed number of basis functions, θ = R/L is the global dispersion pa-

rameter, and bℓ = ℓR/L form an evenly spaced grid of knots. The prior model for

the weights ωh = {ωhℓ : ℓ = 1, . . . , L} is identical to the original HRP model, using a

log-Gaussian process to describe the weight function with hyperparameters β0, β1, σ
2,

and τ (see Section 4.1.3).

Turning to the modulating intensity, we address the scale identifiability issue

by factoring λ(t) = Λfλ(t) and fixing the total intensity Λ. Given our discussion on

the effective support, we set Λ = T , and select R based on an upper percentile of the

observed inter-arrival times. To model the modulating density fλ, we use the Bernstein
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polynomial basis system scaled to the interval (0, T ):

fλ(t) =
M∑
m=1

ωfmfB(t|m,M) , (4.12)

where M is the fixed number of basis functions, and fB(t|m,M) denotes the Bernstein

polynomial basis function evaluated at t ∈ (0, T ). Bernstein polynomial basis functions

are defined in terms of beta densities, which we rescale to support the interval (0, T ):

fB(t|m,M) =
1

T
Beta

(
t

T

∣∣∣∣m,M −m+ 1

)
, (4.13)

where Beta(t|a, b) denotes the beta density evaluated at t with shape parameters a and

b. The weights ωf = {ωf1 , . . . , ω
f
M} are given by increments of a random distribution

function G with support on (0, T ), which is assigned a Dirichlet process prior:

ωfm = G(mT/M)−G((m− 1)T/M); G|α ∼ DP(α,G0) , (4.14)

where DP(α,G0) denotes the Dirichlet process with precision parameter α and base

distribution G0. By selecting a uniform base distribution for G0 such that G0(t) = t/T

for t ∈ (0, T ), we obtain an implied (symmetric) Dirichlet prior for the vector of weights:

ωf |α ∼ DirM (α/M, . . . , α/M) , (4.15)

where DirM denotes an M -dimensional Dirichlet distribution. We assign a Ga(aα, bα)

prior to α with moderate values for hyperparameters aα and bα, generally near 1, though

our results tend not to be sensitive to this choice.

It should be noted that this model structure can only be used to model a

modulating intensity over the bounded interval (0, T )—it does not extend to the entire
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positive real line. This is a limitation both of the beta densities and the choice to factor

λ(t) into Λ and fλ(t). Restricting model support to the observation window (0, T ) is a

common practice in NHPP modeling, which is arguably also meaningful in the current

context given the similarities between an NHPP intensity and a ModRP modulating

intensity.

With priors assigned to both components, the likelihood function for our pro-

posed modulated renewal process model is given by,

exp

(
−
∫ T

0
λ(t)h(t− tN(t))dt

)
×

n∏
i=1

λ(ti)h(xi)

= exp

(
−

M∑
m=1

L∑
ℓ=1

ωfmω
h
ℓ Λ

∫ T

0
fB(t|m,M)hB(t−H(t)|bℓ, θ)dt

)

×
n∏
i=1

{
M∑
m=1

L∑
ℓ=1

ωfmω
h
ℓ ΛfB(ti|m,M)hB(xi|bℓ, θ)

}
,

where ti denotes the time of event i, xi = ti − ti−1 is the corresponding inter-arrival

time, and N(T ) = n is the total number of observed events. This expression can be

simplified by recognizing that the basis functions are parameter free. Let h∗m,ℓ(t, x) =

ΛfB(t|m,M)hB(x|bℓ, θ) be shorthand for the product of the basis evaluations for given

m and ℓ. Additionally, we define partial cumulative basis terms H∗
m,l,i =

∫ xi
0 h∗m,ℓ(x +

ti−1, x)dx, and denote the corresponding aggregate terms as H∗
m,l =

∑n
i=1H

∗
m,l,i +∫ T−tn

0 h∗m,ℓ(x+ tn, x)dx. The likelihood function can then be written as,

exp

(
−

M∑
m=1

L∑
ℓ=1

ωfmω
h
ℓH

∗
m,ℓ

)
×

n∏
i=1

{
M∑
m=1

L∑
ℓ=1

ωfmω
h
ℓ h

∗
m,ℓ(ti, xi)

}
. (4.16)

An important feature of this likelihood is that the H∗
m,ℓ and h

∗
m,ℓ(ti, xi) terms are fixed

quantities given the data, meaning that the values can be precomputed and reused for
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each iteration of MCMC sampling. This is a huge computational advantage and a key

motivation for our use of basis representation models for both functions. The integral

involved in each H∗
m,l,i cannot be solved analytically, but is easily computed numerically

given that the integrand is bounded and smooth. Gaussian quadrature is efficient and

quite accurate, though a variety of other methods could be used as well.

4.2.3 Posterior simulation

Gibbs sampling can be used effectively to sample from the posterior distribu-

tion of the proposed ModRP model. Similar to the HRP log-logistic basis model, we

introduce latent component membership variables zi = (zfi , z
h
i ) for each event time ti

such that,

Pr(zi = (m, ℓ)|ωf ,ωh) =
ωfmωhℓ∑M

m=1

∑L
ℓ=1 ω

f
mωhℓ

= ωfmω
h
ℓ (Ω

h)−1 , (4.17)

where Ωh =
∑L

ℓ=1 ω
h
ℓ denotes the total hazard weight. The augmented data likelihood

is then given by,

exp

(
−

M∑
m=1

L∑
ℓ=1

ωfmω
h
ℓH

∗
m,ℓ

)
×

n∏
i=1

Ωhh∗zi(ti, xi) , (4.18)

where h∗zi is shorthand for h∗
zfi ,z

h
i

. Using bivariate membership variables in this way

yields a conditional structure that essentially separates the sampling for the hazard

parameters from the modulating intensity parameters. Indeed, the hazard weights ωh

are still drawn from a multivariate truncated log-normal distribution using slice sampling

uniform variables, having only slightly modified parameter expressions compared to

the HRP model in order to account for the modulating intensity weights. Likewise,
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the modulating intensity weights ωf are updated using slice sampling variables and

a truncated Dirichlet distribution. The hyperparameters for the hazard weights are

conditionally independent of the modulating intensity weights and vice versa, enabling

the use of sampling protocols developed for both the HRP log-logistic model and the

Bernstein polynomial density model. Derivations for the full conditional distributions

and corresponding sampling algorithms for all parameters are provided in Appendix E.

4.2.4 Approach to model checking

A commonly used method of model checking for temporal point processes is

to lean on the time-rescaling theorem (Daley and Vere-Jones, 2003). Applying this to

a ModRP setting is similar to the approach discussed for the HRP model in Chapter

2.1.4, but we include a brief review here for completeness and to highlight a few key

differences.

The theorem is concerned with rescaling event times by the cumulative condi-

tional intensity. Letting Λ(t|H(t)) =
∫ t
0 λ(s|H(s))ds denote the cumulative conditional

intensity, the rescaled event times are given by t∗i = Λ(ti|H(ti)). Unlike the HRP case,

the integral for a ModRP conditional intensity is not generally expressed succinctly in

terms of the cumulative hazard or cumulative modulating intensity and must be com-

puted numerically. Assuming the observed point pattern arises from a process with the

given conditional intensity, then the rescaled times form a Poisson process with unit rate

and the transformed inter-arrival times are exponentially distributed. It is common to

transform the rescaled inter-arrival times by u∗i = 1− exp{−(t∗i − t∗i−1)}, which are uni-
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formly distributed under the assumed process, and then to visually compare quantiles

of these transformed times to the corresponding uniform quantiles in a QQ plot.

Time-rescaling QQ plots simultaneously check both the quality of the statisti-

cal model fit and whether the stochastic model assumptions implied by the conditional

intensity are met. In the case of our ModRP model, the flexibility of the basis mod-

els for both functions implies that the QQ plots are more useful for checking whether

the modulated renewal process structure is appropriate. Similar visualizations could

be constructed for flexible HRP and NHPP models as a way of checking whether these

special cases offer equivalent performance.

4.2.5 Synthetic data examples

Here we illustrate the performance of our proposed nonparametric ModRP

model using synthetic data based on known hazard and modulating intensity functions.

We consider the following five sets of generative functions:

1. λ(t) = 1 and h(x) = 1, corresponding to a homogeneous Poisson process.

2. λ(t) = 1 and h(x) = 2x, corresponding to a homogeneous renewal process with

Wei(2, 1) distributed inter-arrival times.

3. λ(t) = (0.33) sin(t/100) + 1 and h(x) = 1, corresponding to a nonhomogeneous

Poisson process with a sinusoidal intensity.

4. λ(t) = (0.33) sin(t/100) + 1 and h(x) = 2x, combining the previous two scenarios

into a non-trivial modulated renewal process.
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5. λ(t) = (t/500)(1 + sin(t/100)) + 0.25 and the hazard h corresponding to an even

mixture of Ga(2, 1/4) and Ga(4, 1/2) densities.

For each scenario, we sample event times with time bound T = 1000, yielding ap-

proximately 1,000 events for each simulation. We then fit our model using M = 30

modulating density basis functions, L = 30 hazard basis functions, and hyperparameter

values of aα = 1, bα = 1, aσ = 2.5, and bσ = 1, as well as the default values suggested

previously for the log-Gaussian process hyperparameters. The MCMC algorithm is run

for 5,000 iterations following a burnin period of 15,000.

Following from the previous discussion on identifiability, these generative func-

tions produce equivalent processes when proportionally rescaled. Practically, this means

that recovering the generative functions is not possible without additional scale infor-

mation, namely the value of Λ. For example, the scales given in scenario 5 produce a

total intensity of Λ ≈ 1406. We generate data from this scenario and fit our model using

both the default choice of Λ = T and the informed choice of Λ = 1406. Because visuals

play a key role in diagnosing the impact of Λ, we start with scenario 5 as it is the most

complex in terms of function shape. In Figure 4.11 we display time-rescaling QQ plots

and compare the estimated hazard and modulating intensity functions for both choices.

Not surprisingly, using the informed Λ recovers the generative functions well, while the

default choice misses the scale but otherwise captures the shapes. The QQ plots in

Figure 4.11 are virtually indistinguishable, confirming again that Λ is not identifiable

and indicating that the choice of Λ has no discernible impact on the quality of model

fit.
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Figure 4.11: Results of fitting the nonparametric ModRP model to synthetic data generated from
scenario 5. The top row shows model results using the informed choice of Λ = 1406, while the
bottom row shows results using the default choice of Λ = T . Middle and right-most panels show
the estimated modulating intensity and hazard functions, respectively, and the left-most panels show
time-rescaling QQ plots.

We also show posterior inference for conditional inter-arrival time densities in

Figure 4.12 for several values of previous times tprev. These are interesting on their own

as they provide insight on the inter-arrival time dynamics, but they also corroborate the

overall invariance of the model fit to the choice of Λ. The conditional density expression

in Equation (4.10) involves multiplying the hazard and modulating intensity, which is

itself unaffected by rescaling between the two functions. In other words, these quantities

are identifiable and should not depend on the choice of Λ. This is confirmed by the very

similar estimated densities between the top row (informed Λ) and bottom row (default

Λ) in Figure 4.12. In practice, minor differences appear in areas where the modulating
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Figure 4.12: Posterior inference for conditional inter-arrival time densities using the nonparametric
ModRP model fit to synthetic data generated from scenario 5. The top row shows model results
using the informed choice of Λ = 1406, while the bottom row shows results using the default choice
of Λ = T . The values of tprev are shown at the top of each column.

intensity is near extreme values, particularly on the lower side. This is due to the fact

that the priors on the basis coefficients are not scaled with the choice of Λ, and so have

slightly different levels of influence in these regions. Given the results in Figures 4.11

and 4.12, we conclude that the choice of Λ is essentially arbitrary for the purposes of

model fitting and that a default choice of Λ = T is generally sufficient. However, for the

sake of visual consistency in comparing our model estimates to the generative functions,

we use the correct values of Λ for the remaining scenarios.

We fit our model to data generated from scenarios 1 through 4 using the same

configuration parameters as for scenario 5. The results for the estimated hazards and

modulating intensities are shown in Figure 4.13. Note that we forgo the time-rescaling

QQ plots for these scenarios to save space and focus on the functional estimates. The

estimated QQ plots for all scenarios are very close to the unit line, as expected given

the flexibility of our model and the known ModRP structure of the data. Overall,
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Figure 4.13: Results of fitting the nonparametric ModRP model to synthetic data generated from
scenarios 1 through 4, shown in columns left to right. The top row shows the estimated hazard
functions, and the bottom row shows the estimated modulating intensity functions.

the model successfully recovers the generative functions for all scenarios, including the

special cases, though the modulating intensity functions exhibit some overfitting for

the constant intensity scenarios. This is in part due to the large number of basis

functions used to estimate a simple constant function. We omit them here for brevity,

but fitting the model with a much smaller value ofM (∼ 10) yields smoother modulating

intensity estimates, but also reduces the resolution of the sinusoidal intensity in scenarios

3 through 5. Similar observations follow from reducing L in estimating the hazard,

though it seems that the hazard estimates are less sensitive to large L. It should be noted

that when M is too large relative to the number of events n, the truncated Dirichlet

sampling steps can produce invalid truncation bounds. Sampling from a truncated

Dirichlet is a challenging problem in general, and while a more sophisticated approach

could be used, it is easier and more effective to simply reduce M in practice.
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Figure 4.14: Results of fitting the nonparametric ModRP model to synthetic data generated from
scenario 5 with a reduced modulating intensity producing a smaller number of events. The top row
from left to right shows the time-rescaling QQ plot, the estimated hazard function, and the estimated
modulating intensity. The bottom row shows the estimated conditional inter-arrival time densities
for several values of tprev.

Recall that these generated datasets consist of approximately 1,000 events

each. To explore model performance in the presence of fewer events, we generate data

from scenario 5 where the true modulating intensity has been scaled down by a factor

of 5, producing around 300 events. In Figure 4.14, we show the estimated hazard

and modulating intensity function, as well as a time-rescaling QQ plot and several

conditional inter-arrival time densities. In terms of recovering the truth, the model

does not perform as well as in the previous scenarios with more data. The modulating

intensity shape is captured well enough—the deviation near t = 500 has more to do

with idiosyncrasies in the generated data than the model fit—but the multimodal shape

of the hazard is missed. Yet, the model fit is still reasonable, recovering most of the

underlying structure and the overall pattern of the various functions.
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Figure 4.15: Results of fitting the nonparametric ModRP model to the coal-mining disasters dataset.
The top row from left to right shows the time-rescaling QQ plot, the estimated modulating intensity,
and the estimated hazard function. The bottom row shows the estimated conditional inter-arrival
time densities for several values of tprev.

4.2.6 Real data examples

Coal-mining disasters

The coal-mining disasters dataset from Jarrett (1979) is a classic target for

point process modeling that consists of 191 events recorded between 1851 and 1962.

The point pattern is known to exhibit time-varying intensity behavior, corresponding

to improvements in safety regulation and technology over the years. Our goal with this

analysis is to understand if the NHPP structure is sufficient to capture the underlying

dynamics or if a more complex ModRP model is needed. We note that this dataset

is frequently used as an illustration for NHPP models. For instance, both Taddy and

Kottas (2012) and Kim and Kottas (2022) develop nonparametric mixture models for

NHPP intensities and apply them to the coal-mining disasters data.
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We fit our model using M = 20, L = 20, and the same hyperparameter values

and MCMC configuration as in the synthetic data examples. Figure 4.15 shows the

estimated hazard and modulating intensity functions, as well as a time-rescaling QQ plot

and several conditional inter-arrival time densities. Looking at our results, in particular

the flatness of the estimated hazard function, it seems that the NHPP assumption

is reasonable. Moreover, our estimated modulating intensity is very similar in terms

of shape to the intensity functions in Taddy and Kottas (2012) and Kim and Kottas

(2022). Of course, the scale of the modulating intensity does not match, but this is to

be expected given the identifiability issues discussed earlier. Rao and Teh (2011) also

analyze this dataset using their proposed ModRP model, yet the modulating intensity

function estimated there does not mirror the other NHPP results as well as our method

does.

NOAA significant earthquakes

Recall the NOAA significant earthquake dataset presented in Section 4.1.6,

which consists of over 800 destructive earthquakes between 1900 and 2019 split between

four regions of the American continents. With our proposed methodology, we aim to

understand the underlying structure of these events and how they differ across regions.

We fit the model to each region separately using the same configuration parameters as

for the coal-mining dataset. Computation time and sampling efficiency are effectively

the same as for the HRP analysis in Section 4.1.6. A major driver for computational

savings here comes from the dimensionality of the covariance matrix Σ, which depends
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Figure 4.16: Results of fitting the nonparametric ModRP model to the NOAA significant earthquake
dataset. The specific regions are indicated at the top of each column. The time-rescaling QQ plot,
estimated modulating intensity, and estimated hazard function are shown in the top, middle, and
bottom rows, respectively.

on the number of basis functions, not the number of observations, and therefore scales

well with larger datasets. About 20% of the compute time is spent precomputing the

H∗ terms.

Figure 4.16 shows the estimated hazard and modulating intensity functions,

as well as a time-rescaling QQ plot for each region. The inter-arrival hazard shapes

(and their relative scales) are broadly consistent with those from the HRP data analysis

in Section 4.1.6. Interestingly, the modulating intensity estimates seems to suggest a
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rise in earthquake activity starting around 1980. This is consistent with advances in

detection technology implemented in California around that time (Hutton et al., 2010),

and we suppose that similar upgrades could have been made in other regions as well,

thus potentially explaining the increase in detected events. Despite this rise in the

intensity, the time-rescaling QQ plots are roughly similar to the HRP model results,

suggesting that the HRP assumption may be at least tolerable in practice.

4.3 Concluding remarks

Our goal in this chapter was to develop a flexible and computationally effi-

cient model for the inter-arrival hazard function of a renewal process. Inspired by basis

representation models such as Erlang mixtures and Bernstein polynomial models, we

proposed the log-logistic basis system and developed a corresponding nonparametric

prior probability model for the hazard function. To illustrate the utility of a hazard-

oriented renewal process model, we developed a nonparametric model for modulated

renewal processes by combining the log-logistic basis model with a nonparametric in-

tensity model. In both simulated and real data examples, our proposed methodologies

performed well, recovering true generative functions and providing meaningful insights

into the underlying dynamics of the real data.

The log-logistic hazard model has the capacity to be applied in many other

contexts. An obvious extension is to survival analysis, where hazard functions are

often of interest. Covariates could be incorporated through a structure similar to
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the Cox proportional hazards model, which shares roots with modulated renewal pro-

cesses. Indeed, the modulated renewal process originally developed by Cox (1972) is

formulated such that the inter-arrival hazard is modulated by a regression-like function

exp{β1x1(t)+. . .+βpxp(t)} where x1(t), . . . , xp(t) are time-varying covariates. A similar

structure could be used to incorporate covariates into the ModRP model through the

modulating intensity: λ(t) = λ0(t) exp{β1x1(t)+ . . .+βpxp(t)}, where λ0(t) is a baseline

intensity.

A notable drawback of the proposed HRP model is the difficulty of obtaining

inference for the K-function. The implied density function that arises from represent-

ing the hazard as a log-logistic basis mixture does not have a closed-form expression

for the Laplace transform, thus requiring numerical approximation routines to perform

both the Laplace transform and the inverse transform. Not only is this a significant

computational burden, overflows and precision issues frequently arise and lead to inac-

curate results. Future work focusing on developing more efficient and reliable methods

for obtaining the K-function when the Laplace transform is not analytically tractable

would be a valuable contribution to the field.

The ModRP model we develop performs well in practice, but there are several

areas for improvement. We mentioned previously the issue of truncated Dirichlet sam-

pling. The Gibbs sampling approach is tractable, but struggles with instability when

M is large. A promising alternative is to use multivariate slice sampling, requiring

more effort to determine the appropriate latent variable structure. Another area for

improvement would be making L and M random variables, but this seems quite dif-
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ficult due to computational limitations. A major source of computational savings for

our current model comes from the ability to precompute and reuse basis evaluations.

Allowing L and M to vary would necessitate recomputing these evaluations at each

iteration, bumping up compute time by many orders of magnitude. Rather than pursue

this direction, perhaps a more practical approach would be to explore regularizing the

basis coefficients through penalties or shrinkage priors.
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Chapter 5

Conclusion

The main objective of this dissertation is to develop stochastic modeling frame-

works for various types of renewal processes. Our developments aim to provide flexible

and computationally efficient methods that are capable of incorporating prior informa-

tion in a principled manner.

In Chapter 2, we have developed a nonparametric mixture modeling framework

for homogeneous renewal process densities. This framework is based on Dirichlet process

mixtures, but with specific constraints on the mixture kernel and prior specification

to ensure that the renewal process finite mean condition is met. We arrive at the

gamma density kernel as a suitable general-purpose choice that requires only a minor

restriction on the prior hyperparameters. In addition, motivated by the application area

of earthquake recurrence modeling, we present details for a structured uniform mixture

kernel. This kernel mixture produces flexible density estimates within a decreasing

shape constraint. We consider two stick-breaking prior models for the weights, one
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following the Dirichlet process and the other following logit stick-breaking, ultimately

finding that results are similar in a homogeneous renewal process context.

Chapter 3 is concerned with Markov renewal processes, a marked generaliza-

tion of the homogeneous renewal process where discrete state information is observed

with each event. These stochastic models are particularly relevant in earthquake recur-

rence modeling, where several key models in the literature are presented in this context.

The MRP likelihood function is structured such that observed sojourn times are parti-

tioned into transition cases, each with its own sojourn time distribution. Independent

treatment of each transition case is common in the literature, but can struggle in set-

tings with limited amounts of data and ignores possible dependencies that may exist

between cases. In combination with the homogeneous renewal process model to repre-

sent sojourn time densities, we propose a dependent nonparametric prior for the mixture

components that facilitates borrowing of strength between transition cases. Compared

with the traditional independent estimation approach, the resulting model has better

posterior predictive performance and can provide additional insights into the underlying

dependence structure.

In Chapter 4, we have considered modeling renewal processes from the perspec-

tive of the inter-arrival hazard function. We introduced a novel log-logistic hazard basis

system for directly modeling hazard functions. The proposed basis system is supported

by a convergence result that confirms its flexibility, and suggests a structured nonpara-

metric prior for the basis coefficients. Performance of the proposed hazard model is

similar to that of flexible density-based models, but the hazard-based approach offers
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two key advantages: prior information about the inter-arrival hazard can be more nat-

urally incorporated, and the model can be more easily adapted to time-varying renewal

process extensions. As a key example, we have also developed a nonparametric model

for modulating renewal processes. This model combines the hazard basis system with

a Bernstein polynomial representation for the modulating intensity function. A key

advantage of this model is in computation: having fixed basis representations for both

functions facilitates a more standard MCMC sampling approach that is computationally

efficient.

Throughout the development of these models, we have observed a few themes

that highlight some of the more unexpected outcomes of the dissertation. Perhaps

most prominent is the importance of flexible methods. It was surprising to find that

nonparametric mixture models have received limited attention in the renewal process

literature, despite their popularity in other areas. This applies also to the earthquake

applications, where parametric models are still somewhat common. In both simulation

and real data applications, we have seen that the nonparametric models can provide

more accurate and informative results than their parametric counterparts. However,

the preference for more structured models is understandable, as the theoretical details

for larger models can be difficult to manage, and the computational burden can be

substantial, especially for extensions. In this regard, accessibility to computationally

efficient methods is one of our more meaningful contributions.

The other surprising outcome worth noting is the effectiveness of the hazard-

oriented approach. Although we had hoped to develop a flexible basis model for hazard
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functions, discovering the convergence result that supports the log-logistic basis sys-

tem was unexpected, as was the emergence of a potential prior model from the proof.

Furthermore, despite the model being placed on the hazard scale, we found that the im-

plied estimate of the density function was competitive with other density-based models.

The approach to posterior simulation was also more straightforward than expected, a

boon that we attribute to the fixed basis functions and recent advances in truncated

multivariate normal sampling. Between the computational tractability, the theoretical

foundation, and our empirical results, we believe that the log-logistic hazard basis sys-

tem is a promising development that will prove useful in a variety of applications, even

beyond renewal processes.
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Appendix A

Posterior Computation for the HRP

Kernel Mixture Model

Here we present details for posterior computation for the HRP kernel mixture

model presented in Chapter 2. Our approach is based on Gibbs sampling, following a

somewhat standard blocked Gibbs algorithm. Many of the full conditional distributions

arise from conjugate prior relationships, or otherwise produce expressions correspond-

ing to well-known distributions. For parameters with full conditional expressions that

are not straightforward to sample, we use random walk Metropolis updates with a log-

normal proposal distribution. We implement the adaptive batching scheme of Roberts

and Rosenthal (2009) to tune the proposal variance, targeting an acceptance rate be-

tween 35% and 50%.
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A.1 Full conditionals for gamma kernel parameters

Sampling γκ

The full conditional for γκ is given by,

p(γκ|κ) ∝ p(γκ)

L∏
ℓ=1

p(κℓ|γκ) ∝ γ
−aκγ−1
κ exp

(
−
bκγ
γκ

) L∏
ℓ=1

γ−aκκ exp

(
−κℓ
γκ

)
,

which is proportional to an inv-Ga(a∗, b∗) distribution with shape a∗ = aκγ + Laκ and

rate b∗ = bκγ +
∑L

ℓ=1 κℓ. Sampling from this distribution is straightforward.

Sampling γλ

The full conditional for γλ is given by,

p(γλ|λ) ∝ p(γλ)
L∏
ℓ=1

p(λℓ|γλ) ∝ γ
aλγ−1

λ exp

(
−γλ
bλγ

) L∏
ℓ=1

γaλλ exp

(
−γλ
λℓ

)
,

which is proportional to a Ga(k∗, l∗) distribution with shape k∗ = aλγ + Laλ and scale

l∗ = ( 1
bλγ

+
∑L

ℓ=1
1
λℓ
)−1. Sampling from this distribution is straightforward.

Sampling κℓ

The full conditional for κℓ is given by,

p(κℓ|z, zc,λ, γκ,x, xc) ∝ p(κℓ|γκ)p(xc|κℓ)I(zc=ℓ)
∏
i∈zℓ

p(xi|κℓ)

∝ Ga(κℓ|aκ, γκ)(1− FGa(xc|κℓ, λℓ))I(zc=ℓ)
∏
i∈zℓ

Ga(xi|κℓ, λℓ) ,

where FGa is the CDF of the Gamma distribution, I(·) is the indicator function, and

zℓ = {i : zi = ℓ} is the set of indices corresponding with observations assigned to
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component ℓ. This is not a conjugate update, so we use a random walk Metropolis step

to sample from this conditional distribution.

Sampling λℓ

The full conditional for λℓ is given by,

p(λℓ|z, zc,κ, γλ,x, xc) ∝ p(λℓ|γλ)p(xc|λℓ)I(zc=ℓ)
∏
i∈zℓ

p(xi|λℓ)

∝ λ−aλ−1
ℓ exp

(
−γλ
λℓ

)
(1− FGa(xc|κℓ, λℓ))I(zc=ℓ)

∏
i∈zℓ

λκℓ−1
ℓ exp

(
−xi
λℓ

)
,

where nℓ = |zℓ| is the number of observations assigned to component ℓ. If zc ̸= ℓ, then

this expression is proportional to an inv-Ga(a∗, b∗) distribution with shape a∗ = aλ+nℓκℓ

and rate b∗ = γλ +
∑

i∈zℓ xi, which is straightforward to sample from. When zc = ℓ,

the term involving xc is present and the expression is no longer conjugate, so we use a

random walk Metropolis step for this case.

A.2 Full conditionals for uniform kernel parameters

Sampling ηθ

The full conditional for ηθ is given by,

p(ηθ|θ, γθ) ∝ p(ηθ)
L∏
ℓ=1

p(θℓ|ηθ, γθ) ∝ Ga(ηθ − 1|aθη, bθη)
L∏
ℓ=1

inv-Ga(θℓ|ηθ, γθ) .

This is not an easily sampled density, so we use a random walk Metropolis step.
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Sampling γθ

The full conditional for γθ is given by,

p(γθ|θ, ηθ) ∝ p(γθ)
L∏
ℓ=1

p(θℓ|ηθ, γθ) ∝ γ
aθγ−1

θ exp

(
−γθ
bθγ

) L∏
ℓ=1

γηθθ exp

(
−γθ
θℓ

)
,

which is proportional to a Ga(k∗, l∗) distribution with shape k∗ = aθγ + ηθL and scale

l∗ =
(

1
bθγ

+
∑L

ℓ=1
1
θℓ

)−1
. Sampling from this distribution is straightforward.

Sampling θℓ

The full conditional for θℓ is given by,

p(θℓ|ηθ, γθ, z, zc,x, xc) ∝ p(θℓ|ηθ, γθ)p(xc|θℓ)I(zc=ℓ)
∏
i∈zℓ

p(xi|θℓ)

∝ θ−nℓ−ηθ−1
ℓ exp

(
−γθ
θℓ

)
I
(
max
i∈zℓ

xi < θℓ

)(
(1− xc

θℓ
)I(xc < θℓ)

)I(zc=ℓ)
.

For the case zc ̸= ℓ, this is proportional to an inv-Ga(a∗, b∗) distribution with shape

a∗ = nℓ+ ηθ and rate b∗ = γθ, truncated with a lower bound of maxi∈zℓ xi. This can be

sampled directly using the inverse CDF method, which is made more stable by working

on the log-scale. When, zc = ℓ, the term involving xc is present and the expression is

no longer conjugate. We can avoid a random walk Metropolis step by introducing an

auxiliary uniform variable u such that joint conditional distribution is given by,

p(θℓ, u|−) ∝ inv-Ga(θℓ|nℓ + ηθ, γθ)I
(
max
i∈zℓ

xi < θℓ

)
I(xc < θℓ)I

(
u < 1− xc

θℓ

)
,

where the original full conditional is recovered by marginalizing over u. We sample from

this expression using a Gibbs step, drawing u from a Unif(0, 1−xc/θℓ) distribution and
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then sampling θℓ from an inv-Ga(nℓ + ηθ, γθ) distribution truncated above which ever

is larger between maxi∈zℓ xi and xc/(1− u).

A.3 Full conditionals for weight parameters

Sampling zi and zc

The full conditional for zi is given by Pr(zi = ℓ|θ,ω,x) ∝ ωℓfK(xi|θℓ), where fK is

the selected kernel density and θℓ are the corresponding kernel parameters. The full

conditional for zc is similarly given by Pr(zc = ℓ|θ,ω, xc) ∝ ωℓSK(xc|θℓ), where SK is

the selected kernel survival function. These are discretely valued with ℓ ∈ {1, . . . , L},

so we sample from these directly by calculating the expressions for each component and

normalizing.

Sampling ω under the Dirichlet process prior

Under the constructive definition of the Dirichlet process, the weights ω arise from stick-

breaking with beta latent variables (Sethuraman, 1994). When truncated to a mixture

of L < ∞ components, the prior on the weights is a generalized Dirichlet distribution

with probability density denoted by,

GDirL(ω|a, b) =

(
L−1∏
ℓ=1

Γ(aℓ + bℓ)

Γ(bℓ)Γ(aℓ)

)
ω
bL−1−1
L

L−1∏
ℓ=1

ωaℓ−1
ℓ

(
L∑
r=ℓ

ωr

)bℓ−1−(aℓ+bℓ)
 ,

where a and b are (L−1)-dimensional vectors of positive shape parameters. When trun-

cated, the Dirichlet process stick-breaking prior is equivalent to a generalized Dirichlet

distributed with aℓ = 1 and bℓ = α for ℓ ∈ {1, . . . , L− 1}. The full conditional for ω is
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then given by,

p(ω|α,z, zc) ∝ p(ω|α)p(z|ω) ∝ GDirL(ω|1,α)
L∏
ℓ=1

(
ω
I(zc=ℓ)
ℓ

n∏
i=1

ω
I(zi=ℓ)
ℓ

)
,

where 1 = {1, . . . , 1} and α = {α, . . . , α} are (L − 1)-dimensional vectors. This is

proportional to a GDir(ω|a∗, b∗) distribution with shape parameters a∗ℓ = 1 + n∗ℓ and

b∗ℓ = α+
∑L

r=ℓ+1 n
∗
r , where n

∗
ℓ = I(zc = ℓ)+

∑n
i=1 I(zi = ℓ) is the number of observations

assigned to component ℓ. This can be sampled directly using standard methods.

Sampling α

Recall that α is the precision parameter for the Dirichlet process stick-breaking prior.

The full conditional for α is a standard result given by,

p(α|ω) ∝ p(α)p(ω|α) ∝ αaα−1 exp

(
− α

bα

)
αL−1ωαL .

This is proportional to a Ga(aα+L−1, bα−log(ωL)), which is straightforward to sample

from, though some care is required to prevent numerical underflow issues when taking

the log of ωL.

Sampling ω under the logit stick-breaking prior

Under the logit stick-breaking prior, the weights ω arise from stick-breaking with trans-

formed normal latent variables, given by,

ωℓ =
exp(ψℓ)

1 + exp(ψℓ)

ℓ−1∏
r=1

1

1 + exp(ψr)
.
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We compute the weights deterministically from the latent variables ψ and draw the

latent variables from the conditional distribution given by,

p(ψℓ|µ, σ2, z, zc) ∝ N(ψℓ|µ, σ2)
L∏
ℓ=1

(
ω
I(zc=ℓ)
ℓ

n∏
i=1

ωI(zi=ℓ)
zi

)

∝ exp

(
−(ψℓ − µ)2

2σ2

)
exp(ψℓ)

nℓ (1 + exp(ψℓ))
−

∑L
r=ℓ nr ,

where nℓ = I(zc = ℓ) +
∑n

i=1 I(zi = ℓ) is the number of observations assigned to

component ℓ. This is not a standard distribution, but as mentioned in the main text,

we can avoid performing random walk Metropolis updates by introducing auxiliary

Pólya-Gamma variables (Polson et al., 2013). The procedure relies on the following

mixture identity:

(eψ)a

(1 + eψ)b
= 2−bemψ

∫ ∞

0
e−ξψ

2/2PG(ξ|b, 0)dξ ,

where m = a − b/2 and PG(b, 0) denotes the Pólya-Gamma distribution with shape b

and tilt z = 0. Using this, the full conditional distribution of ψℓ can be augmented by

a latent Pólya-Gamma variable ξℓ:

p(ψℓ, ξℓ|−) ∝ PG

(
ξℓ

∣∣∣∣ L∑
r=ℓ

nr, 0

)
exp

(
−(ψℓ − µ)2

2σ2

)
exp

(
mℓψℓ −

1

2
ξℓψ

2
ℓ

)
,

where mℓ = nℓ −
∑L

r=ℓ nr/2. We draw from this joint density using a Gibbs step. The

auxiliary Pólya-Gamma variable ξℓ is drawn from a conjugate PG(b∗, z∗) distribution

with shape b∗ =
∑L

r=ℓ nr and tilt z∗ = ψℓ. Efficient methods for sampling Pólya-

Gamma variables are presented in both Polson et al. (2013) and Windle et al. (2014).

Conditioned on ξℓ, the stick-breaking element ψℓ is sampled from a conjugate N(m∗, v∗)

distribution with v∗ = (1/σ2 + ξℓ)
−1 and m∗ = v∗

( µ
σ2 +mℓ

)
.
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Sampling µ and σ2

Recall that µ and σ2 are the mean and variance parameters for the logit stick-breaking

prior. The full conditional for µ and σ2 is given by,

p(µ, σ2|ψ) ∝ p(µ, σ2)p(ψ|µ, σ2) ∝ N(µ|mµ, s
2
µ)inv-Ga(σ2|aσ, bσ)

L−1∏
ℓ=1

N(ψℓ|µ, σ2) .

This is a standard normal-inverse-gamma conjugate update, which can be sampled

directly using standard methods. Our approach is to use a Gibbs step, sampling σ2 from

an inv-Ga(a∗, b∗) distribution with shape parameter a∗ = aσ +L/2 and rate parameter

b∗ = bσ +
∑L−1

ℓ=1 (ψℓ − µ)2/2, and then sampling µ from a N(m∗, v∗) distribution with

v∗ = 1
1/s2µ+L/σ

2 and m∗ = v∗(mµ/s
2
µ +

∑L−1
ℓ=1 ψℓ/σ

2).
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Appendix B

Posterior Computation for the MRP

Mixture Model

Here we present details for posterior simulation for the DS-MRP mixture model

described in Chapter 3. Most model parameters have conditionally conjugate full con-

ditional distributions, which suggests Gibbs sampling as a natural choice for posterior

simulation. In the case of parameters which are not conditionally conjugate, we use

a random walk Metropolis update with log-normal proposal distribution and proposal

variance dynamically tuned using the adaptive batching method of Roberts and Rosen-

thal (2009). Given that the MRP model is an extension of the uniform mixture presented

in Chapter 2, we can leverage the posterior simulation methods developed there. In par-

ticular, the updates for θ, ηθ, and γθ are identical to those given in Appendix A, so we

omit them here.

128



B.1 Full conditionals for data-level variables

Sampling zi and zc

The full conditional for zi is given by Pr(zi = ℓ|θ,ω,x, s) ∝ ω
(si−1,si)
ℓ fK(xi|θℓ), where

fK is the (uniform) kernel density and θℓ are the corresponding kernel parameters. The

full conditional for zc is similarly given by, Pr(zc = ℓ|θ,ω,x, s) ∝ ω
(si−1,si)
ℓ SK(xc|θℓ),

where SK is the corresponding kernel survival function. These are straightforward to

sample directly.

Sampling sc

The full conditional for sc is given by,

Pr(sc = k|zc,ω,p, s) ∝ Pr(sc = k|sn,p) Pr(zc = ℓ|sc = k,ω) ∝ p(sn,k)ω(sn,k)
zc .

This is a discrete distribution with S possible outcomes, which is straightforward to

sample directly.

Sampling p(j)

Recall that p(j) =
{
p(j,1),...,p

(j,S)
}
. The full conditional for p(j) is given by,

p(p(j)|s, sc) ∝ p(p(j))p(s, sc|p(j)) ∝
S∏
k=1

{
(p(j,k))αp+n

(j,k)−1
}
,

where n(j,k) = I(sn = j)I(sc = k)
∑n

i=1 I(si−1 = j)I(si = k) denotes the number

of observed transitions from state j to state k. This is a Dirichlet distribution with

parameters αp + n(j,k) for each k, which is simple to sample from.
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B.2 Full conditionals for hierarchical weight parameters

Sampling σ2µ

The full conditional for σ2µ is given by,

p(σ2µ|µ) ∝ p(σ2µ)

L−1∏
ℓ=1

p(µℓ|σ2µ)

∝ (σ2µ)
−aµσ−1 exp

(
− bµσ
σ2µ

)
(σ2µ)

−(L−1)/2 exp

(
− 1

2σ2µ

L−1∑
ℓ=1

(µℓ −m0)
2

)
,

where µ = {µ1, . . . , µL−1}. This is proportional to an inv-Ga(a∗, b∗) distribution with

a∗ = aµσ + (L− 1)/2 and b∗ = bµσ +
∑L−1

ℓ=1 (µℓ −m0)
2/2. Sampling from this distribution

is straightforward.

Sampling σ2α

The full conditional for σ2α is given by,

p(σ2α|α,µ) ∝ p(σ2α)
S∏
j=1

L−1∏
ℓ=1

p(α
(j)
ℓ |µℓ, σ2α)

∝ (σ2α)
−aασ−1 exp

(
− bασ
σ2α

)
(σ2α)

−S(L−1)/2 exp

− 1

2σ2α

S∑
j=1

L−1∑
ℓ=1

(α
(j)
ℓ − µℓ/2)

2

 ,

where α = {α(1)
1 , . . . , α

(S)
L−1}. This is proportional to an inv-Ga(a∗, b∗) distribution with

a∗ = aασ + S(L − 1)/2 and b∗ = bασ +
∑S

j=1

∑L−1
ℓ=1 (α

(j)
ℓ − µℓ/2)

2/2. Sampling from this

distribution is straightforward.
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Sampling σ2β

The full conditional for σ2β is given by,

p(σ2β|β,µ) ∝ p(σ2β)
S∏
k=1

L−1∏
ℓ=1

p(β
(k)
ℓ |µℓ, σ2β)

∝ (σ2β)
−aβσ−1 exp

(
− bβσ

σ2β

)
(σ2β)

−S(L−1)/2 exp

(
− 1

2σ2β

S∑
k=1

L−1∑
ℓ=1

(β
(k)
ℓ − µℓ/2)

2

)
,

where β = {β(1)1 , . . . , β
(S)
L−1}. This is proportional to an inv-Ga(a∗, b∗) distribution with

a∗ = aβσ + S(L − 1)/2 and b∗ = bβσ +
∑S

k=1

∑L−1
ℓ=1 (β

(k)
ℓ − µℓ/2)

2/2. Sampling from this

distribution is straightforward.

Sampling σ2ψ

The full conditional for σ2ψ is given by,

p(σ2ψ|ψ,α,β) ∝ p(σ2ψ)
S∏
j=1

S∏
k=1

L−1∏
ℓ=1

p(ψ
(j,k)
ℓ |αℓ, βℓ, σ2ψ)

∝ (σ2ψ)
−aψσ−1 exp

(
− bψσ

σ2ψ

)
(σ2ψ)

−S2(L−1)/2

× exp

− 1

2σ2ψ

S∑
j=1

S∑
k=1

L−1∑
ℓ=1

(ψ
(j,k)
ℓ − α

(j)
ℓ − β

(k)
ℓ )2

 ,

where ψ = {ψ(1,1)
1 , . . . , ψ

(S,S)
L−1 }. This is proportional to an inv-Ga(a∗, b∗) distribution

with a∗ = aψσ + S2(L − 1)/2 and b∗ = bψσ +
∑S

j=1

∑S
k=1

∑L−1
ℓ=1 (ψ

(j,k)
ℓ − α

(j)
ℓ − β

(k)
ℓ )2/2.

Sampling from this distribution is straightforward.
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Sampling µℓ

The full conditional distribution for µℓ is given by,

p(µℓ|α,β, σ2µ, σ2α, σ2β) ∝ N(µℓ|mµ, σ
2
µ)×

S∏
j=1

N
(
α
(j)
ℓ |µℓ/2, σ2α

)
×

S∏
k=1

N
(
β
(k)
ℓ |µℓ/2, σ2β

)
.

This is a conjugate relationship, where the full conditional is a N(m∗, v∗) distribution

with v∗ =

(
1
σ2
µ
+ S

4σ2
α
+ S

4σ2
β

)−1

and m∗ = v∗
(
mµ
σ2
µ
+
∑S

j=1
α
(j)
ℓ

2σ2
α
+
∑S

k=1
β
(k)
ℓ

2σ2
β

)
. Sam-

pling from this distribution is straightforward.

Sampling α
(j)
ℓ

The full conditional distribution for α
(j)
ℓ is given by,

p(α
(j)
ℓ |µ,β,ψ, σ2α, σ2ψ) ∝ N(α

(j)
ℓ |µℓ/2, σ2α)

S∏
k=1

N
(
ψ
(j,k)
ℓ |α(j)

ℓ + β
(k)
ℓ , σ2ψ

)
.

This is a conjugate relationship, where the full conditional is a N(m∗, v∗) distribution

with v∗ =

(
1
σ2
α
+ S

σ2
ψ

)−1

and m∗ = v∗
(

µℓ
2σ2
α
+
∑S

k=1
ψ
(j,k)
ℓ −β(k)

ℓ

σ2
ψ

)
. Sampling from this

distribution is straightforward.

Sampling β
(k)
ℓ

The full conditional distribution for β
(k)
ℓ is given by,

p(β
(k)
ℓ |µ,α,ψ, σ2β, σ2ψ) ∝ N(β

(k)
ℓ |µℓ/2, σ2β)

S∏
j=1

N
(
ψ
(j,k)
ℓ |α(j)

ℓ + β
(k)
ℓ , σ2ψ

)
.

This is a conjugate relationship, where the full conditional is a N(m∗, v∗) distribution

with v∗ =

(
1
σ2
β
+ S

σ2
ψ

)−1

and m∗ = v∗
(

µℓ
2σ2
β
+
∑S

j=1
ψ
(j,k)
ℓ −α(j)

ℓ

σ2
ψ

)
. Sampling from this

distribution is straightforward.
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Sampling ψ
(j,k)
ℓ and ψ

(k,j)
ℓ

The full conditional distribution for ψ
(j,k)
ℓ is given by,

p(ψ
(j,k)
ℓ |z,α,β, σ2ψ) ∝ p(ψ

(j,k)
ℓ |α(j)

ℓ , β
(k)
ℓ , σ2ψ)

L∏
r=ℓ

∏
i∈z(j,k)

r

p(zi|ψ)

∝ N(ψ
(j,k)
ℓ |α(j)

ℓ + β
(k)
ℓ , σ2ψ)

L∏
r=ℓ

(
ω(j,k)
r

)n(j,k)
r

∝ exp

(
−(ψ

(j,k)
ℓ − α

(j)
ℓ − β

(k)
ℓ )2

2σ2ψ

)
exp

(
ψ
(j,k)
ℓ

)n(j,k)
ℓ

{
1 + exp

(
ψ
(j,k)
ℓ

)}−
∑L
r=ℓ n

(j,k)
r

,

where z
(j,k)
r denotes the set of indices i such that zi = r, si = k, and si−1 = j, with

n
(j,k)
r = |z(j,k)r | denoting the size. This is not an easily recognizable distribution, how-

ever, as mentioned in the main text, we implement Pólya-Gamma data augmentation to

avoid random walk Metropolis updates. The procedure relies on the following mixture

identity:

(eψ)a

(1 + eψ)b
= 2−bemψ

∫ ∞

0
e−ξψ

2/2PG(ξ|b, 0)dξ ,

where m = a − b/2 and PG(b, 0) denotes the Pólya-Gamma distribution with shape b

and tilt z = 0. Using this, the full conditional distribution of ψ
(j,k)
ℓ can be augmented

by a latent Pólya-Gamma variable ξ
(j,k)
ℓ :

p(ψ
(j,k)
ℓ , ξ

(j,k)
ℓ |−) ∝ PG

(
ξ
(j,k)
ℓ

∣∣∣∣ L∑
r=ℓ

n(j,k)r , 0

)
exp

(
−(ψ

(j,k)
ℓ − α

(j)
ℓ − β

(k)
ℓ )2

2σ2ψ

)

× exp

(
m

(j,k)
ℓ ψ

(j,k)
ℓ − 1

2
ξ
(j,k)
ℓ ψ

(j,k)2

ℓ

)
,

where m
(j,k)
ℓ = n

(j,k)
ℓ −

∑L
r=ℓ n

(j,k)
r /2. We draw from this distribution using a Gibbs

step, first sampling ξ
(j,k)
ℓ from its full conditional:

p(ξ
(j,k)
ℓ |ψ(j,k)

ℓ , z) ∝ PG

(
ξ
(j,k)
ℓ

∣∣∣∣ L∑
r=ℓ

n(j,k)r , 0

)
exp

(
1

2
ξ
(j,k)
ℓ ψ

(j,k)2

ℓ

)
.
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This is a conjugate relationship, proportional to a PG(b∗, z∗) distribution with shape

b∗ =
∑L

r=ℓ n
(j,k)
r and tilt z∗ = ψ

(j,k)
ℓ . Sampling from this distribution is not trivial, but

efficient rejection samplers are available (Polson et al., 2013; Windle et al., 2014). The

full conditional for ψ
(j,k)
ℓ given ξ

(j,k)
ℓ is then written as,

p(ψ
(j,k)
ℓ |ξ(j,k)ℓ , z,α,β, σ2ψ) ∝ p

(
ψ
(j,k)
ℓ |ξ(j,k)ℓ ,α,β, σ2ψ

)
p
(
ξ
(j,k)
ℓ |ψ(j,k)

ℓ , z
)

∝ exp

(
−(ψ

(j,k)
ℓ − α

(j)
ℓ − β

(k)
ℓ )2

2σ2ψ

)
exp

(
m

(j,k)
ℓ ψ

(j,k)
ℓ − 1

2
ξ
(j,k)
ℓ ψ

(j,k)2

ℓ

)
.

With some algebraic manipulation, this can be shown to be proportional to a N(m∗, v∗)

distribution with v∗ =
(
1/σ2ψ + ξ

(j,k)
ℓ

)−1
and m∗ = v∗

(
α
(j)
ℓ +β

(k)
ℓ

σ2
ψ

+m
(j,k)
ℓ

)
. Finally,

recall that the weights ω
(j,k)
ℓ are updated deterministically from ψ by,

ω
(j,k)
ℓ =

exp(ψ
(j,k)
ℓ )

1 + exp(ψ
(j,k)
ℓ )

L∏
r=ℓ+1

1

1 + exp(ψ
(j,k)
r )

.
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Appendix C

Additional Illustrations of the MRP

Mixture Model

Here we provide additional illustrations of results obtained from the DS-MRP

mixture model presented in Chapter 3. We include figures and tables for both simulated

and real data examples that were excluded from the main text for brevity.

C.1 Simulated data examples

Recall from Chapter 3.5 that we generate three-state MRP point patterns un-

der two scenarios, selecting values of T such that approximately 500 events are gener-

ated. Figure C.1 shows posterior density estimates obtained from fitting the DS-MRP

mixture model to a point pattern generated under scenario 1. Figures C.2 and C.3

show corresponding results obtained from fitting the IS-MRP mixture and parametric

Weibull models, respectively. As mentioned in the main text, the DS-MRP mixture
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Figure C.1: Sojourn time density estimates and 95% credible intervals obtained from fitting the
DS-MRP mixture model to a simulated point pattern generated under scenario 1.

provides a good fit, matching the generative sojourn time distributions. The IS-MRP

mixture model also performs well, but has more variability in the uncertainty bands.

The Weibull model, as expected, struggles slightly to capture the generative sojourn

time density shape.
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Figure C.2: Sojourn time density estimates and 95% credible intervals obtained from fitting the
IS-MRP mixture model to a simulated point pattern generated under scenario 1.
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Figure C.3: Sojourn time density estimates and 95% credible intervals obtained from fitting the
parametric Weibull mixture model to a simulated point pattern generated under scenario 1.
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Table C.1: Predictive coverage rates and average interval scores for simulated sojourn times under
Scenario 2 for the proposed DS-MRP model with uniform kernel, the corresponding IS-MRP mixture
model, and the parametric Weibull model. Value pairs are separated by a backslash with the coverage
rate as the first value and the average interval score as the second.

Transition case
Uniform mixture

DS-MRP
Uniform mixture

IS-MRP
Parametric Weibull

IS-MRP

1-to-1 0.788 \ 6.16 0.864 \ 5.98 0.939 \ 9.12
1-to-2 0.955 \ 15.1 0.910 \ 15.0 0.940 \ 15.1
1-to-3 0.961 \ 10.6 0.941 \ 10.9 0.961 \ 10.6

2-to-1 0.828 \ 5.61 0.862 \ 4.45 0.914 \ 7.42
2-to-2 0.986 \ 9.40 0.942 \ 7.70 1.000 \ 9.19
2-to-3 0.930 \ 13.1 0.965 \ 13.4 0.965 \ 13.8

3-to-1 0.900 \ 8.54 0.883 \ 8.42 0.917 \ 8.91
3-to-2 0.974 \ 11.3 0.974 \ 11.4 0.974 \ 11.4
3-to-3 1.000 \ 8.39 0.927 \ 7.62 0.982 \ 7.95

Figures C.4, C.5, and C.6 show the posterior density estimates for the DS-

MRP mixture, IS-MRP mixture, and Weibull IS-MRP models, respectively, for a point

pattern generated under scenario 2. As with the previous scenario, the DS-MRP mixture

model provides a good fit to the generative sojourn time distributions while the Weibull

model struggles to capture the shape. We also include predictive coverage values and

average interval scores for the three models in Table C.1, which were omitted from the

main text.
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Figure C.4: Sojourn time density estimates and 95% credible intervals obtained from fitting the
DS-MRP mixture model to a simulated point pattern generated under scenario 2.
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Figure C.5: Sojourn time density estimates and 95% credible intervals obtained from fitting the
IS-MRP mixture model to a simulated point pattern generated under scenario 2.
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Figure C.6: Sojourn time density estimates and 95% credible intervals obtained from fitting the
parametric Weibull mixture model to a simulated point pattern generated under scenario 2.
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C.2 Southern California earthquake data analysis

Chapter 3.6 presents results from fitting the DS-MRP mixture model to a

dataset of Southern California earthquakes. To complete our analysis, we fit the IS-MRP

mixture model and the parametric Weibull IS-MRP model to the same point pattern

and compare results. We begin by showing the posterior density estimates for the two

omitted models in Figures C.7 and C.8. With an uneven distribution of transition cases,

the differences between models are more pronounced than in the simulated examples.

As mentioned in the main text, the DS-MRP model recovers a strong fully common

dependence structure, hence the general shape and uncertainty bands for that model

are consistent across transition cases. In contrast, the IS-MRP mixture model fit is

quite poor for the transition cases with high magnitude states, and estimates shapes

are not consistent between cases.

Regarding posterior predictive performance, we compare predictive coverage

diagrams for all three models in Figure C.9. Corresponding coverage percentage values

and average intervals scores are provided in Table C.2. These results reinforce the

conclusions drawn from the simulation studies. The Weibull model produces excessively

large predictive intervals, especially for transitions with high magnitude states. The

uniform mixture models perform better in terms of interval scores, but the intervals for

the IS-MRP mixture are too narrow and have reduced coverage as a result. Even more

so than with the simulations, the DS-MRP mixture model strikes an attractive balance

between coverage and interval width for this point pattern.
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Figure C.7: Posterior estimates and 95% uncertainty intervals for the sojourn time densities of the
Southern California earthquake dataset, estimated using the IS-MRP mixture model. Mean estimates
are shown as solid lines with 95% credible intervals as shaded regions.
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Figure C.8: Posterior estimates and 95% uncertainty intervals for the sojourn time densities of the
Southern California earthquake dataset, estimated using the parametric Weibull MRP model. Mean
estimates are shown as solid lines with 95% credible intervals as shaded regions.
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Table C.2: Predictive coverage rates and average interval scores for the Southern California earth-
quake dataset, comparing the DS-MRP mixture model, the corresponding IS-MRP mixture model,
and the parametric Weibull IS-MRP model. Value pairs are separated by a backslash with the cov-
erage rate as the first value and the average interval score as the second.

Transition case DS-MRP mixture IS-MRP mixture Weibull IS-MRP

low-to-low 0.940 \ 1.33 0.717 \ 1.23 0.997 \ 1.87
low-to-med 0.930 \ 1.10 0.849 \ 1.03 1.000 \ 2.65
low-to-high 0.944 \ 1.98 0.694 \ 1.81 1.000 \ 11.0

med-to-low 0.937 \ 1.01 0.832 \ 1.23 1.000 \ 1.70
med-to-med 0.914 \ 0.74 0.638 \ 0.73 1.000 \ 2.67
med-to-high 1.000 \ 0.57 0.421 \ 0.55 1.000 \ 400.1

high-to-low 0.970 \ 0.53 0.742 \ 0.50 1.000 \ 1.76
high-to-med 0.880 \ 0.54 0.280 \ 0.57 1.000 \ 13.0
high-to-high 0.750 \ 0.54 0.250 \ 0.54 1.000 \ 15230.4
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Figure C.9: Posterior predictive coverage diagrams for the Southern California earthquake dataset,
fit using the DS-MRP mixture model (left), IS-MRP mixture model (middle), and parametric Weibull
MRP model (right). Red lines are used to indicate the 95% predictive intervals for each transition
case. Data are partitioned by transition case and are shown as blue triangles if excluded from the
95% predictive intervals and as black ticks if included.
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Table C.3: Predictive state recurrence ECDF errors for the southern California earthquake dataset.
Posterior mean estimates and 95% uncertainty bounds are given for the uniform mixture DS-MRP
model, the corresponding IS-MRP mixture, and the parametric Weibull model.

MRP Model Initial State Mean ECDF Error 95% Interval

DS-MRP Mixture Low 0.10 (0.01, 0.31)
Med 2.87 (1.24, 5.53)
High 7.02 (2.10, 17.64)

IS-MRP Mixture Low 0.16 (0.04, 0.41)
Med 3.55 (1.55, 6.70)
High 20.92 (3.19, 22.37)

Weibull IS-MRP Low 1.68 (0.27, 5.42)
Med 20.92 (0.85, 74.21)
High 95.39 (3.64, 1128.66)

Continuing with model comparison, we examine the predictive state recurrence

ECDFs for each model, shown graphically in Figure C.10. Numerical summaries of the

ECDF Error posterior distributions are provided in Table C.3. In all cases, the DS-

MRP mixture model outperforms both the IS-MRP mixture and parametric Weibull

IS-MRP models, with the Weibull performing the worst. One potential reason for the

poor performance of the Weibull distribution is found in the simulated predictive point

patterns, which have far fewer events than the observed data (approximately 500 events

versus 1,200). Indeed, around 2% of posterior predictive point patterns have no observed

events with the high magnitude state, hence the very wide predictive intervals in the

ECDF plot. Overall, these results indicate that the DS-MRP mixture model is not only

a good fit to the Southern California earthquake data, but performs better than the

other models in terms of visual results and predictive performance.
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Figure C.10: Predictive state recurrence ECDFs for the Southern California earthquake dataset, fit
using the DS-MRP mixture model (top), IS-MRP mixture model (middle), and parametric Weibull
MRP model (bottom).
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Appendix D

Posterior Computation for the

Log-logistic Hazard Basis Model

Here we show posterior computation details for the log-logistic HRP hazard

basis model presented in Chapter 4.1. Most model parameters have full conditional

distributions that are straightforward to sample from. For the remaining parameters,

we use random walk Metropolis updates with a log-normal proposal distribution. We

implement the adaptive batching scheme of Roberts and Rosenthal (2009) to tune the

proposal variance, targeting an acceptance rate between 35% and 50%. As a reminder

from Chapter 4.1.4, we use intermediary variables µ, Σ, and V to simplify notation.

Sampling zi

The full conditional for zi is given by Pr(zi = ℓ|ω,x) ∝ ωℓhB(xi|bzi , θ) where hB is the

log-logistic hazard function. This is discretely valued with ℓ ∈ {1, . . . , L} and can be
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sampled directly.

Sampling β

The full conditional for β is given by,

p(β|ω, σ2, τ) ∝ p(β)p(ω|β, σ2, τ) ∝ N2(β|mβ, s
2
βI)NL(log(ω)|Bβ,Σ) ,

where B is the L × 2 matrix containing a column of ones and a column of log(bℓ),

mβ = (R/L, 0) is the prior mean, s2β is the prior variance, and I is the identity matrix.

This is a standard multivariate normal conjugate update. The full conditional for β

is a N2(m
∗, S∗) distribution with covariance S∗ =

[
(1/s2β)I +BTΣ−1B

]−1
and mean

m∗ = S∗
[
(1/s2β)mβ +BTΣ−1 log(ω)

]
.

Sampling σ2

The full conditional for σ2 is given by,

p(σ2|ω,β, τ) ∝ p(σ2)p(ω|β, σ2, τ)

∝ (σ2)−aσ−1 exp

(
− bσ
σ2

)
(σ2)−L/2 exp

(
− 1

2σ2
(log(ω)− µ)TV −1(log(ω)− µ)

)
.

This is proportional to an inv-Ga(a∗, b∗) distribution with a∗ = aσ + L/2 and b∗ =

bσ+
1
2(log(ω)−µ)

TV −1(log(ω)−µ). Sampling from this distribution is straightforward.

Sampling τ

The full conditional for τ is given by,

p(τ |ω,β, σ2) ∝ p(τ)p(ω|β, σ2, τ) ∝ Exp(τ |R/L)NL(log(ω)|µ,Σ) ,
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where Exp(τ |θ) denotes the exponential distribution with mean θ. This is not an easily

sampled density, so we use a random walk Metropolis step with log-normal proposal

distribution and an adaptive proposal variance, following the batching scheme of Roberts

and Rosenthal (2009).

Sampling ω

Following our presentation in Chapter 4.1.4, we make use of auxiliary variables u =

{u1, . . . , uL} to sample the full conditional for ω. The joint full conditional is given by,

p(ω,u, |z,β, σ2, τ) ∝ p(ω|β, σ2, τ)
n∏
i=1

I(uℓ < Ga(ωℓ|nℓ + 1, (H∗
ℓ )

−1)) ,

which we sample from using a Gibbs step. Immediate from this expression is the uniform

full conditional for u, which can be sample directly. To draw the weights ω given u, we

invert the indicator function inequalities such that they take the form I(Cℓ < ωℓ < Dℓ).

The values of Cℓ and Dℓ correspond to the locations where the above gamma density is

equal to uℓ, which can be calculated using the Lambert-W function.

The Lambert-W function Wk(y) = x is a complex-valued function that gives

solutions to the equation y = xex. Although not available in closed form, values of

Wk(y) can be computed using widely available numerical techniques. The real-valued

solutions lie along the so-called principal branch with k = 0, and another branch with

k = −1. For our purposes, the solution for x for y = Ga(x|κ, λ) is given by,

x = −λ(κ− 1)Wk

(
−1

κ− 1
(λΓ(κ)y)

1
κ−1

)
.

For κ > 1, the lower bound Cℓ is given by the primary branch W0 and the upper bound
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Dℓ is given by theW−1 branch. When 0 < κ < 1, the density is strictly decreasing, thus

the lower bound cℓ = 0 and the only solution for Dℓ is given by the primary branch W0.

If κ = 1, the density is that of an exponential distribution, which has closed expressions

for the bounds Cℓ = 0 and Dℓ = −λ log(yλ).

With values determined for Cℓ and Dℓ, the full conditional for ωℓ is a multivari-

ate log-normal distribution with mean parameter µ and covariance Σ, truncated such

that each ωℓ lies in the interval (Cℓ, Dℓ). As discussed in Chapter 4.1.4, we sample from

this distribution using the harmonic-HMC algorithm of Pakman and Paninski (2014).
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Appendix E

Posterior Computation for the

Nonparametric Modulated Renewal

Process Model

Here we show posterior computation details the nonparametric modulated re-

newal process model presented in Chapter 4.2. As an application of the log-logistic

hazard basis model, the sampling details for the hazard function parameters are simi-

lar. Indeed, the full conditionals for β, σ2, and τ given ωh are identical to those given

in Appendix D. The full conditional for ωh is slightly different, given by,

p(ωh|β, σ2, τ, z)
L∏
ℓ=1

Ga

ωhℓ ∣∣∣∣nhℓ + 1,

{
M∑
m=1

ωfmH
∗
m,ℓ

}−1
 .

This expression yields different values for the bounds Cℓ and Dℓ, but otherwise the

sampling procedure remains the same. What remains to be shown in this appendix

are sampling details for the modulating function parameters ωf and α, as well as the
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bivariate membership variables z.

Sampling zi

The full conditional for zi is given by Pr(zi = (m, ℓ)|ωf ,ωh,x) ∝ ωfmωhℓ h
∗
m,ℓ(ti, xi). This

is discretely valued and can be sampled directly.

Sampling α

The full conditional for α is given by,

p(α|ωf ) ∝ p(α)p(ωf |α) ∝ Ga(α|aα, bα)DirL(ω
f |α/M, . . . , α/M) .

This is not an easily sampled density, so we use a random walk Metropolis step with log-

normal proposal distribution and an adaptive proposal variance, following the batching

scheme of Roberts and Rosenthal (2009).

Sampling ωf

The full conditional for ωf is given by,

p(ωf |ωh, α, z,x) ∝ p(z|ωf ,ωh)p(x|z,ωf ,ωh)p(ωf |α)

∝ DirM

(
ωf |nf1 + α/M, . . . , nfM + α/M

) M∏
m=1

exp

(
−ωfm

L∑
ℓ=1

ωhℓH
∗
m,ℓ

)
.

Similar to the hazard basis weights, we introduce uniform variables uf = {uf1 , . . . , u
f
M}

to sample from this full conditional, using a Gibbs step to draw the weights ωf given

uf and vice versa. The full conditional for ufm is a uniform distribution over the in-

terval from 0 to exp
(
−ωfm

∑L
ℓ=1 ω

h
ℓH

∗
m,ℓ

)
. The full conditional for ωf given uf is
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a DirM

(
nf1 + α/M + uf1 , . . . , n

f
M + α/M + ufM

)
distribution, truncated such that each

ωfm is bounded above by − log(ufm)∑L
ℓ=1 ω

h
ℓH

∗
m,ℓ

.

Sampling from a truncated Dirichlet distribution is challenging. We find that

updating each element using a Gibbs step is reasonably tractable. Consider a general set

of weights {ω1, . . . , ωM} arising from a truncated Dirichlet distribution with parameters

{α1, . . . , αM}, lower bounds {C1, . . . , CM}, and upper bounds {D1, . . . , DM}. Such a

distribution has non-empty support if and only if 0 ≤ Cm < Dm ≤ 1 for all m, and∑M
m=1Cm < 1 <

∑M
m=1Dm. To derive the full conditional of a single element, we must

account for the sum constraint. As such, we explicitly specify that ωM = 1−
∑M−1

m=1 ωm.

Without loss of generality, consider the distribution of ω1 given ω2, . . . , ωM−1. The sum

constraint implies that ω1 < 1−
∑M−1

m=2 ωm. Notice that 1−
∑M−1

m=2 ωm = ω1+ωM = ω∗
1

is a fixed quantity, representing the total available weight for ω1 given the other weights.

Indeed, for an unconstrained Dirichlet distribution, the conditional distribution is given

by,

ω1

ω∗
1

∣∣ω2, . . . , ωM−1 ∼ Beta(α1, αM ) .

Next we consider the impact of the truncation bounds, of which two are applicable for

ω1, namely C1 < ω1 < D1 and CM < ωM < DM . Combining both sets of constraints,

the boundaries applied to the above conditional distribution are expressed as,

max

(
C1

ω∗
1

, 1− DM

ω∗
1

)
<
ω1

ω∗
1

< min

(
D1

ω∗
1

, 1− CM
ω∗
1

)
.

Putting this back in the context of our Gibbs step for the intensity weights, each weight

ωfm can be drawn conditionally through the following procedure:
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1. Calculate the (current) available weight ω∗
m = ωm + ωM .

2. Find the conditional lower bound C∗ = max

{
0, 1 +

log(ufM )

ω∗
m

∑L
ℓ=1 ω

h
ℓH

∗
m,ℓ

}
3. Find the conditional upper bound D∗ = min

{
1, − log(ufm)

ω∗
m

∑L
ℓ=1 ω

h
ℓH

∗
m,ℓ

}
4. Draw a value ym from a Beta(nfm + α/M,nfM + α/M) distribution truncated be-

tween C∗ and D∗.

5. Save ωfm = ymω
∗
m and update ωfM = (1− ym)ω

∗
m.
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