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ABSTRACT OF THE THESIS 

 
Illuminating Heterogeneous Catalyst Encapsulation with Electron Energy Loss Spectroscopy 

and Unsupervised Machine Learning Methods by 

Thomas Frederick Blum 

Master of Science in Physics 

University of California, Irvine, 2020 

Professor Xiaoqing Pan, Chair 

 

 

Encapsulating a permeable layer of oxide support on metal catalysts, as a type of strong 

metal-support interaction (SMSI), is often adapted to design heterogeneous catalysts with 

enhanced reactivity and catalytic activity. The success of such a design highly relies on the 

thickness of the encapsulation layer, often only one or two atomic layers, and its chemical 

composition and structure, which is highly delicate given its thickness and complex chemical 

environment. Precisely detecting such a trace layer and determining its chemistry however, is 

challenging. Scanning transmission electron microscopy (STEM), the most commonly used 

technique for such analysis, also suffers from a low signal strength due to the thickness and the 

electron beam sensitivity of the surface encapsulation layer. This can lead to the potential 

misinterpretation or overlooking of the encapsulation signal. Here, using Pd-TiO2 as a prototype 

system, we develop and demonstrate an unsupervised machine learning method that allows us 

to reveal the presence and chemical information of the SMSI encapsulation layer that is 

otherwise hidden in STEM-electron energy loss spectroscopy (EELS) datasets. This method not 

only provides a robust tool for the analysis of trace SMSI in catalysts, but is generally applicable 

to any materials and spectroscopy datasets of any material systems where revealing a trace 

signal is critical. 



1 
 

INTRODUCTION 
 

For decades machine learning algorithms have been widely used in numerous scientific 

fields, such as geospatial remote sensing, computer vision, and graph network analysis and have 

repeatedly proven their usefulness. Only recently, however, has the field of material science 

begun to incorporate these promising tools. To best make use of these techniques, these 

algorithms must be refined so that they are more applicable to materials applications, and it is 

important that the results the algorithms produce be interpretable with a physical meaning. 

Extracting trace signals from experimental data, which are not easily detectable by conventional 

data analysis, is a research topic that can significantly benefit from the integration of machine 

learning.  

Heterogeneous catalysts are the subject of intense scientific interest. They are critical to 

the development of fuel cell, energy storage, and emissions control technologies, for example. 

There are multiple types of SMSIs including metal-support charge transfer, metal-support 

interphase layer formation, and the encapsulation metal-support interaction among others.1 In 

particular, the encapsulation interaction shows promise as a potential mechanism for 

immobilizing oxide-supported nanoparticle catalysts and controlling their selectivity.2–4 

Reactions on heterogeneous catalysts occur at surfaces and are highly dependent on the atomic 

configuration of the surface, which can vary drastically between different crystal faces and 

interfaces between the catalyst and the support. These reactions are also greatly affected by the 

chemical bonding environment present at these surfaces. Understanding the encapsulation 

SMSI will lead to more control over crucial catalytic properties such as selectivity and activity. 

Surface scientists have studied this phenomenon with scanning tunneling microscopy 

(STM) and atomic force microscopy and have provided important information about the surface 

states of the catalytic materials.5 However these techniques cannot probe chemistry and 

structure simultaneously at the necessary spatial resolution, and often are limited to specific 
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sample configurations. For example, scanning probe microscopes require extremely flat 

surfaces, and STM further requires that the support be conductive and under ultra high vacuum. 

Transmission electron microscopy (TEM) offers the flexibility to work with catalysts synthesized 

for use in actual chemistry and even perform in situ studies without significantly sacrificing 

spatial resolution.6 TEM is also the only technique that allows examining the thin SMSI layer in 

the context of the structure of the small catalyst particles and their local oxide support.  

Scanning transmission electron microscopy (STEM) combined with electron energy loss 

spectroscopy (EELS) has been the primary technique for investigating the structure and 

chemistry of encapsulation SMSIs in recent years. The high resolution of aberration-corrected 

(AC) STEM and the chemical sensitivity of EELS allows researchers to identify thin 

encapsulation layers, differentiating between carbon and thin oxide layers. One of the limiting 

factors in the investigation of SMSIs with STEM and EELS, however, is the potential for 

complicated datasets where the EELS spectral signatures overlap or the signal strength is low, 

and thus cannot be analyzed using standard techniques. Traditional EELS analysis is also 

ineffective at displaying the spatial distribution of energy-loss near-edge structure (ELNES) 

changes, which can be used to gather information about the nature of the oxidation state of the 

SMSI layer. In one form of traditional EELS analysis the chemical composition is examined by 

integrating the scattered intensity of the EELS edge after the removal of the pre-edge 

background. For L edges, the white line ratio may also be characterized for information about 

the chemical composition, but background removal requires spectrum fitting and quantitative 

results require Fourier-ratio deconvolution of the zero-loss peak (ZLP) which often increases the 

weight of noise in the dataset hindering sensible fitting. 

It is widely believed that the chemistry of the encapsulation layer, and the transition 

metal in the encapsulation layer, if present, may have a different oxidation state than that in the 

bulk support. The encapsulation layer is very thin and its composition and chemical 
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characteristics vary significantly among different metal-oxide pairs, their treatment conditions, 

as well as the surface structure of the encapsulated metal catalyst particle and its atomic 

species.7 The spatial distribution of the encapsulation layer is important for understanding the 

active sites of the catalyst, and the local bonding configurations that can be revealed by EELS 

carry valuable information in understanding catalytic reaction mechanisms. The thin 

encapsulation layer produces a weak signal in EELS that, because of the necessity for a low 

electron dosage to avoid significant damage, can be difficult to detect. This leads to low signal 

intensities which make fitting algorithms impractical. In addition, the imaging conditions can 

vary between microscopes, affecting the spectral resolution and the spectral response. While 

thickness variations can be approximately removed by Fourier-ratio deconvolution, microscope 

variations effectively require that reference spectra be taken under the same imaging conditions 

as the region of interest for an accurate comparison. Moreover, core-hole induced multi-electron 

interactions make accurate theoretical modeling of L23 spectra challenging.8  

While not a panacea, machine learning can help with some of these challenges. 

Unsupervised machine learning techniques can help characterize changes in the EELS spectrum 

but do not require reference information as the spectrum is not compared to models or external 

empirical examples. It is instead self-comparative, in that the spectral data is only compared to 

itself. This is useful as this technique does not require the use of a model or a reference, and 

therefore can be used to compare spectra that do not have a model or reference or spectra for 

materials where available models are not useful or inapplicable. Another key benefit is that this 

algorithm requires significantly less operator input than other methods, thus reducing the risk 

for operator bias. Here, we demonstrate the advancement of unsupervised machine learning 

methods to study encapsulation phenomena, one SMSI in heterogeneous catalysis, using 

palladium supported on titanium dioxide (Pd/TiO2) as a model system.  

Pd on TiO2 with an encapsulation SMSI serves as an ideal model heterogeneous catalyst 
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system to explore the capabilities of our new machine learning algorithm. While not its only 

application, Pd/TiO2 with an encapsulation SMSI is used in the hydrogenation of carbon dioxide 

to form methanol9, an important reaction for the production of alternative fuels. In addition to 

its importance in chemistry, this model system combines several of the complex problems faced 

in the context of EELS spectrum image unmixing including overlapping edges, changes in fine 

structure, and weak signals, which will be described in detail in the results section. It is also 

ideal because the process for generating an SMSI in this material system has been demonstrated 

consistently and the preparation method can be verified by CO adsorption measurements. 

Multivariate machine learning algorithms can be used to deconstruct a spectrum image 

and retrieve a defined set of spectral signatures, or components, that are present in the 

spectrum image as well as their spatial distribution. Among the most popular algorithms are 

principle component analysis (PCA) and non-negative matrix factorization (NMF). PCA 

produces abstracted representations of spectra because of the orthogonality requirement of the 

algorithm, which is not necessarily reflected in the spectra. Each physical component is then a 

linear combination of abstract spectral components which are difficult to interpret 

individually10. NMF, however, has been shown to produce more interpretable results with its 

requirement that the components and abundance maps be positive.11 NMF suffers though from a 

sensitivity to local minima and its minimization function is under-defined so that 

mathematically, it can produce many decompositions with the same numerical error. More 

constraints are, therefore, needed to produce a set of components that more uniquely fit the 

data. 

In this work, we demonstrate the advantage of using machine learning data analytics in 

the study of SMSIs. We introduce a new algorithm, automatic target generation process (ATGP) 

pre-conditioned Joint-NMF, that leverages de-noising and clustering properties to recover 

electron energy loss spectrum image information that would otherwise be obscured by noise. 

This new algorithm combines two existing algorithms, ATGP and Joint-NMF. The results from 
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this new algorithm are compared with those from scikit Non-Negative Matrix Factorization 

(NMF) and Principle Component Analysis (PCA) and show significant advantages over these 

pre-existing algorithms. These advantages include the removal of the orthogonality condition 

while retaining non-negativity, and utilization of a pre-conditioning step to aid in convergence, 

which are important to the analysis of STEM-EELS spectrum imaging datasets with weak and 

complex signals, such as the encapsulation strong metal-support interaction in the Pd/TiO2 

system.  
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CHAPTER 1: 
Background 

 
Scanning Transmission Electron Microscopy 
 

The physics of electron scattering off of atomic potentials is at the core of electron 

microscopy. In STEM there are many different ways of forming an image, each providing unique 

information about the material being imaged. These techniques are largely grouped into two 

types of physical interactions: elastic electron scattering and inelastic electron scattering.  

One of the most common STEM imaging techniques is high-angle annular dark field 

imaging, also called Z-contrast imaging. In this method, a beam of electrons is focused to a point 

and is generally raster-scanned across a region to be examined. An annular detector is placed 

around the transmitted electron beam in order to intercept elastically scattered electrons that 

have been scattered to a relatively high solid angle. The large scattering angle of these electrons 

can generally be attributed to electrons that have passed very close to the nucleus of a given 

atom in the sample. Thus, the scattering of these electrons closely follows that of Rutherford 

scattering of an electron off an unscreened nuclear potential. High-angle annular dark field 

imaging is also called Z-contrast imaging because of the relationship between the intensity of the 

scattered electrons and the atomic number of the material being imaged. Depending on the 

electron beam energy and the convergence angle of the electron beam, the number of electrons 

scattered to a high angle is roughly proportional to the atomic number of the atoms squared, 

referring to the atoms with which the beam is interacting. It is also roughly proportional to the 

thickness of the sample, or is at least a monotonically increasing function of the thickness of the 

sample. Bright-field imaging is a form of phase contrast imaging where elastically scattered 

electrons interact with un-scattered electrons coherently on a circular detector. All of the 

electrons on this detector are integrated into one signal and the image we see is a result of the 

interference of the scattered and un-scattered electrons. This phase contrast is particularly 

useful for imaging thin materials with low atomic numbers and in general when ignoring 
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interference effects, the thicker and denser the material is the darker the image will be in that 

area.  

 

Z-Contrast STEM imaging was introduced by Crewe in 1970 and 1975 and was re-

addressed by Pennycook in 1988 and Yamashita in 2018 and was recently reviewed by Treacy in 

2011. The principle comes from the expected scattering amplitude of an electron by an 

unscreened atomic nucleus, or Rutherford scattering, which is proportional to the atomic 

number Z, an expression for which is given below. In high-angle annular dark-field imaging we 

detect the intensity of this scattering rather than the amplitude so the contrast is approximately 

proportional to the square of Z. In practice, the exponent varies depending on the detector 

geometry and the accelerating potential of the microscope in addition to the effect of electron 

cloud screening. This mode of imaging is an incoherent mode of imaging as outlined in the 

textbook from Pennycook et. al. in 2011 and thus, unlike CTEM and the BF STEM, it does not 

Figure 1: 
Schematic diagram illustrating the beam-forming electron-optics and 
electron detectors in a STEM. 
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show a contrast reversal with changing defocus, and thus produces an image like that of a 

traditional camera. It is for these reasons that Z-Contrast STEM imaging has become one of the 

most popular methods in high-resolution electron microscopy. Mathematically these differences 

come about from two different ways to convolve the probe function of the microscope with the 

response function of the sample. If φ (R) is the response function of the sample and P (R) is the 

probe function of the microscope, then the expected intensity of the detected signal for bright-

field IBF (R) and the dark-field  IDF (R) are as follows: 

IBF (R) = |φ (R) ⊗ P (R)|2   IDF (R) = |φ (R)|2 ⊗| P (R)|2 

Thus IBF is a coherent interaction between the probe and the sample, so the image inherently 

contains phase contrast but is not directly interpretable. Conversely, IDF is the intensity of the 

dark field image and is a convolution of the intensity of the phase function and the intensity of 

the probe. The resulting image is then a result of an incoherent interaction between the beam 

and the sample and is thus directly interpretable. A useful derivation of these relationships is 

given in the text Scanning Transmission Electron Microscopy by Pennycook et. al.  in 2011.  

In a scanning transmission electron microscope the resolution is primarily dependent on 

three different factors: the image diameter of the electron source just after the gun lens, the 

diffraction limit from the accelerating potential, and spherical aberration in the electromagnetic 

lenses. The diffraction limit is simply the Rayleigh criterion d = 1.22 λ/α . The probe size, or gun 

image diameter, depends on several factors: the emission current, the brightness factor 𝛽, and 

the divergence angle 𝛼. In practice, we do not calculate the beam diameter but instead use 

imperial methods to measure it—either by adjusting the lenses to project an image of the beam 

intensity onto a camera or by using a knife edge where the edge is atomically sharp and there is 

full transmission of the beam on one side and full blocking of the beam just after the edge in the 

ideal case.   
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The improvement of the electron microscope’s resolving power has been a longstanding 

goal in the physics and materials science fields. Richard Feynman, in his well-known address, 

“There is Plenty of Room at the Bottom,” emphasized “the importance improving the electron 

microscope by a hundred times”12 Since then, scientists have continued this work and have 

made several advancements that have revolutionized the field of materials study, especially at 

the nanometer and sub-nanometer level. 

Recent advances in the design and control of electron lenses13–15 has enabled 

improvements in the resolving power of the STEM,16 and it is now common to see atomic 

resolution images. The first of these was the development of electron ptychography17–21 and 

holography22,23 which uses the principles of electron interference to retrieve the phase 

component of transmitted electron beam having been affected by the thin specimen under 

observation. With the ability to determine both the phase and amplitude of the transmitted 

beam rather than just the recorded intensity, the ability to compute the precise spherical 

aberration coefficients of the electron lenses would allow an increase in the resolving power of 

transmission electron microscopes.16 Further development of electron lens technology has also 

produced pre- and post-specimen spherical aberration correctors which have enabled straight 

forward atomic resolution first in parallel beam transmission electron microscopes then in 

converged beam scanning transmission electron microscopes. 

 

Electron Energy Loss Spectroscopy 
 

Developments in STEM lens technology have benefited other measurement techniques 

such as electron energy loss spectroscopy and energy dispersive X-ray spectroscopy allowing 

atomic resolution chemically sensitive spectrum imaging.24 The use of inelastically scattered 

electrons is another essential imaging technique. This method reveals more information about 

the chemistry and electronic structure and properties of the material being imaged.  
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In understanding the way a beam of electrons interacts with a material, it is important to 

remember that interactions at an atomic scale can have both local/short range interactions and 

long range collective interactions. Dark-field STEM imaging makes use of the short range 

interactions between electrons and nuclei. EELS, however, is dominated by both short range 

electron-electron interactions and intermediate to long range electron-electron cloud 

interactions. Thus, EELS provides information about the different elements that may be present 

in a given material and where they are and it also can provide information about local bonding 

behavior and the behavior of an electron gas in the material. 

In a scanning transmission electron microscope the electrons in the beam have 

predominantly a single energy in the range of 60-300 keV. The spread of the illumination 

energy is usually between 0.6-2 eV. When one of these high energy electrons passes through the 

sample it can interact with one of the electrons around a given atom and excite that electron to 

an empty higher energy state. The amount of energy that the incident electron loses as it excites 

this electron is the signal that we record.  

These excitations have strict transition rules and the available transitions reflect 

information about the elemental bonding with surrounding elements and the local electronic 

structure. This can give us information about the chemical and electronic properties of the 

material that we are investigating.  

The amount of energy lost by an electron as it passes through a material generally 

separates the signals into different spectral regions, each of which tells us something different 

about the material. The core-loss region is generally above 50eV and represents energy lost due 

to the excitation of an electron from the core levels of an atom into its available energy levels. 

Typically, these kinds of interactions are used to identify chemicals by their atomic number. As 

the energy decreases, below 50eV, we see more interaction from valence electrons which are 

easier to excite, and this reveals information about the electronic structure and states in the 
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material. This region also reflects electronic resonance in the valence electrons, such as surface 

plasmon-polaritons and bulk plasmons. Below 1eV, we start to see interactions analogous to 

optical IR spectroscopy which reveal information about the sample related to the strength of the 

chemical bonds as indicated by vibrations in the atomic structure. These low-energy excitations 

have only recently been enabled by the improvement in electron mono-chromation with the best 

energy resolution as measured by full-width half-maximum now at approximately 5meV.25  

Core-loss EELS is generally used to track chemical concentrations in materials. The 

shape of the core-loss edge close to its onset is referred to as the near-edge structure. It generally 

arises as a result of bonds between different atoms, either of the same atomic species or 

different atomic species, and acts as a kind of fingerprint that can give us information about the 

local bonding environment of the atoms present. The most well-known atomic energy 

approximations are the hydrogenic model and the Hartree-Slater model which both assume 

single atoms without the presence of any bonding. In order to explain the structure at the low 

end/beginning of the energy-loss edge, we have to examine the change in the electronic 

structure that results from a chemical bond and allowed electronic transitions from occupied 

states to unoccupied states. Bonding forms hybrid orbitals between atoms and this structure can 

be further affected by these bonds being in a repeating structure such as an atomic lattice. These 

available states are affected by these kinds of local changes in the bonding environment. The 

theory required to accurately describe this behavior is still an active field of investigation and 

accurate simulations of this behavior are still rare. The most useful theoretical frameworks that 

we have to describe this kind of bonding and its effect on electron energy loss spectra is 

multiplet theory.8,26–28  

Though the methods described later in the paper are applicable to spectrum imaging at 

all of these different ranges in the electron energy-loss spectrum, and even beyond electron 

spectroscopy to other forms of spectroscopy, in this thesis I will focus on energy loss near-edge 
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structure which exists in the core-loss range, and specifically I will focus on the transition metal 

titanium and its L23 edge.   

Interaction of Fast-Electrons with Solids 

 

EELS uses the interaction of a relativistic electron with the atomic potentials in a given 

material. When a fast-electron scatters off of an electron in a given state, it can excite that 

electron into an empty state according to the transition rules governed by the Pauli exclusion 

principle. This scattering probability can be represented by the following double differential 

expression, 

 

 

Where k is the momentum vector of the incident electron and k’ is the scattered electron 

momentum vector and q is the transferred momentum imparted on the excited electron. Z is the 

atomic number, mred is the reduced mass of the incident electron, and rho is the density of states 

function. 

We separate the electrons with given energies with a magnetic prism. A simplified 

schematic of the electron spectrometer is given below. 
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The electrons enter the spectrometer at the entrance aperture and then pass through a mostly 

uniform magnetic field inside a tube called the drift tube. The electrons’ paths are bent by the 

Lorentz force, and because they all have the same mass we can select and record an electron flux 

as a function of kinetic energy according to the position in a plane where the focal point has 

been dispersed by the different radii of curvature of their respective paths. This much is 

common to all the commonly used transmission electron spectrometers but there are a few 

different types which differ by how many channels are in the detector. Essentially there are two 

types of spectrometers. There are serial spectrometers in which the detector is scanned through 

the various energy loss channels. Then there are the parallel spectrometers which measure 

several channels of energy loss at one time. In this work all the data has been acquired with 

parallel spectrometers which use a cooled scintillator and camera to detect the incident 

electrons.  

  

Figure 2: 
Schematic diagram illustrating the working principle of the magnetic 
prism in an electron energy-loss spectrometer.  
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CHAPTER 2: 
 

 

 

Figure 3 shows bright-field and Z-contrast AC-STEM images of a typical Pd 

nanoparticle (~10nm) on a TiO2 support, as used in this study. While AC-STEM is well 

known for producing atomic resolution Z-contrast dark-field images, it is not always 

sufficient for analysis of an encapsulation layer. In Figure 1, though what appears to be 

an encapsulation structure is visible in the bright-field image, bright-field imaging 

cannot provide any information about the chemical structure. The dark-field Z-contrast 

image has chemical information but the thin encapsulation layer is not resolvable. EELS 

spectrum imaging, however, should be able to provide both the required resolution and 

chemical sensitivity. Further, the Ti L2,3 edge and the O K edge ELNES both exhibit 

a b 

 Figure 3: 

Scanning Transmission Electron micrographs of Pd nanoparticle on TiO2 
support. a.) Bright-field image showing thin encapsulation layer. b.) 
Simultaneous dark-field Z-contrast image. Note the lack of sufficient 
contrast to identify the light element encapsulation layer. Scale Bar: 5nm  
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changes encoding information on the local coordination of the O and Ti bonds. 

Variations in this near edge structure can be caused by a change in structural symmetry, 

as exhibited by different Magnelli phases of Ti oxides such as anatase and rutile.29,30  

Changes can also result from an altered Ti oxidation state, which in the case of an 

encapsulation SMSI of Pd/TiO2 has been used to indicate the growth of TiOx layers on 

the surface of the Pd particles. Such TiOx layers are often one or two monolayers in 

thickness and thus produce a very small signal in EELS compared to the TiO2 support or 

the Pd nanoparticle.31  

 

 

Figure 4 shows a typical single point EELS spectrum from a spectrum imaging 

dataset. The Pd M4,5 edge is clearly seen while the Ti L2,3 edge and O K edge are 
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Figure 4:  

EELS Spectrum (b) from single point showing a strong Pd signal and 
approximate locations for Ti and O signals. HAADF image (a) shows 
location from which the point was taken. The convergence semi-angle was 
about 30.0 mrad and the pixel exposure time was 0.1 s . The EELS 
acceptance semi-angle was  about 48.0 mrad. Scale Bar: 5 nm 
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practically invisible on the back of the Pd edge. These edges are essentially 

indistinguishable from the noise, but their presence is suggested after applying heavy 

spectral smoothing. This is an indication that the signal is present but obscured by 

Poisson statistical noise. The noise level and Pd edge distortion of the power-law in the 

pre Ti-edge region and the small Ti signal drastically increases the error of power-law 

background subtracted integration methods. For these reasons, we cannot use model 

fitting. For example, Figure S1 shows the extraction of elemental maps from a typical 

EELS-SI dataset using the traditional data analysis method, power-law background 

subtraction with no local averaging, provided in GMS (Digital Micrograph).24 Because of 

the limited EELS signal on the particle surface here, even the background subtraction 

introduced too many artifacts for the analysis to be reliable. As shown, the Ti L signal 

was only resolved on the TiO2 support, while the O map shows a signal on the particle 

but is comparable to the noise level. Machine learning methods adapted in this work are 

designed to address these challenges, enabling analysis where noise and signal strength 

cause issues for standard techniques.   
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CHAPTER 3: 

Data Pre-Treatment: Skipping Conventional Background 
Subtraction and Applying a Single Input Parameter 

 

Generally in the analysis of EELS spectra, pre-edge background subtraction is a 

standard procedure, after any known outliers such as X-ray or gamma-ray spikes in the 

spectrum image have been removed. Here we can depart from this convention. This is 

because while power-law background subtraction can be beneficial as a way to limit the 

analysis to the known elements and signals, the presence and close proximity of other 

EELS edges, such as the Pd and Ti edges mentioned above, can make the power-law 

approximation invalid for the energy loss range in front of the edge of interest. Also, in 

cases where the beam intensity and dwell time are small due to dose limitations, 

backgrounds can be challenging to fit accurately and stably, and thus background 

subtraction methods can introduce artifacts. Furthermore, in SIs with the presence of a 

vacuum interface, the datasets include an extremely small but crucial interface signal 

within the spectral range of interest—at or near the noise level of the detection camera 

— rendering background subtraction methods ineffective because of instability in the 

background fitting and the mixing of the Gaussian camera noise and Poissonian 

detection noise.  Not removing the background leaves open the possibility of the 

decomposition component signals having values below the background which maintains 

the overall positivity of the reconstructed signals but breaks the constraint that the 

components themselves be positive in the same way that the signals we are detecting are 

positive. 
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The machine learning algorithms we are using are unsupervised, and thus no pre-

existing labels are needed. Here, in order to allow for a reasonable computation time, a 

single parameter was taken as an input. Here, we selected the number of components 

(k) as the input parameter, which is determined using PCA. From a plot of the explained 

variance ratio produced by PCA shown in Figure S2 , using the elbow method,32 we 

determined k to be 6.  
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CHAPTER 4: 

Applying Existing NMF Machine Learning To EELS-SI Datasets 
 

The NMF algorithm, was first applied to the analysis of the SMSI datasets. NMF 

has been recently used for analysis of EELS33,34 and EDS SI datasets,33–35 focusing on 

differentiating overlapping signals. Its ability to reveal trace signals in spectroscopic 

datasets, however, has not yet been reported. In Figure 5, we show the decomposition 

from a standard NMF algorithm36 which features non-rigid orthogonality constraints 

applied to the full range of the spectrum image. Per common practice, the data analyzed 

through NMF was not scaled and X-ray and gamma-ray spikes were removed. Figure 5 

shows the result of analyzing the full spectrum image using NMF given an input of 6 

components. The default implementation of NMF in sklearn includes assumptions of 

orthogonality and sparsity which can introduce artifacts in the decomposition results. 

These artifacts present as dips in the spectral components. Examples of these artifacts 

particularly related to sparsity have been annotated in Figure 5 with colored bars. This is 

analogous to the way PCA spectral components include negative values in order to 

satisfy the orthogonality condition. 
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This method however is inadequate for the analysis of the chemical structure of the 

encapsulation layer, because it does not reveal the fine structure in the Ti L23 edge, 

particularly the edge onset, which is critical to the identification of the valence state of 

the oxide layer on the metal nanoparticle and in differentiating it from the oxide 

support. Additionally, NMF pulls out variations in the pre Pd background which could 

be the tail of the C K edge, obscuring the encapsulation layer. NMF also appears to be 

focusing on variations in the substrate fine-structure which could be due to the quickly 

changing thickness of the material as opposed to the fine structure difference between 

the Ti on the particle and in the support. 
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Scikit-learn NMF matrix decomposition of unscaled EELS spectrum 
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 To address the inadequacies of existing methods, including NMF, we developed 

the ATGP Pre-Conditioned Joint NMF algorithm. ATGP is an algorithm for determining 

component spectra and comes from geo-remote sensing research where simulation of 

component spectra is exceedingly difficult. As explained in the article by Ren and Chang 

in 2004, ATGP uses orthogonal geometric projections to find pixels that form the 

vertices of a polygon in the orthogonal coordinate space.37 Or, in other words, the ATGP 

algorithm finds the pixels that are the most different from within the dataset. ATGP is 

sensitive to large numerical values in the dataset and can generate spurious components 

particularly when there exist spectra with high valued outliers such as those introduced 

by X-rays generated in the spectrometer and cosmic rays which can occasionally hit the 

sensor during acquisition. Therefore, we first removed the largest and most obvious 

outliers from the dataset before processing by fitting a spline curve to the region before 

and after the spike, or outlier, and interpolating the missing value. To catch any small 

outliers which were less obvious, and to increase the signal-to-noise ratio, we applied a 

weak Gaussian blurring in the spatial dimensions (local averaging) and weak spectral 

smoothing in the spectral dimension to suppress some of these high intensity noise 

values. After finding the maximally different pixels (spectra) through ATGP, we use 

these as initial guesses for our decomposition algorithm. The spectra returned by ATGP 

are directly used as spectral component guesses, and each of these is fit to the spatial 

pixels to form initial guesses for the distribution maps. With these initial guesses, we use 

Joint-NMF to decompose the data matrix.38 While blurring and smoothing were applied 

to the data for initial ATGP analysis, they were not for analysis by Joint-NMF. 
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Joint-NMF is an algorithm which combines the standard NMF algorithm and the 

more recent symmetric-NMF factorization algorithm to incorporate the spectral 

denoising and clustering properties of each technique in one algorithm. All NMF 

algorithms suffer from the occurrence of multiple local minima during the algorithmic 

minimization. It is for this reason that we use ATGP to generate an initial 

approximation. The Joint-NMF algorithm has been chosen over the standard scikit-

learn NMF implementation because the scikit-learn implementation of NMF can 

introduce artifacts in the resulting spectral components and distribution maps, see 

detailed the description in the methods section.  



23 
 

CHAPTER 5: 

Application of ATGP Pre-Conditioned Joint-NMF to the EELS-SI 
Dataset 

 

Figure S3 shows the result of applying ATGP to the raw EELS dataset without 

blurring after the removal of anomalous X-ray and gamma ray spikes in the data. 

However, the resulting spectra are noisy, and multiple components are dominated by 

the TiO2 signal from the support. Such results indicate that the noise in a single 

spectrum and the strong TiO2 signal affect the pre-conditioning step with ATGP, and 

illustrate the importance of the blurring step prior to analyzing the raw data in the final 

version of the algorithm. The results of processing the data further with the ATGP Pre-

conditioned Joint-NMF algorithm are plotted in Figure S4. The algorithm has done a 

fairly good job at identifying the Pd particle in component 1 but has unfortunately split 

the TiO2 support into many components. One likely reason for the algorithm splitting 

the TiO2 support into so many components is the strong signal produced by the support 

TiO2 ELNES. ATGP is influenced by intensity in the spectral domain so the high 

intensity of the TiO2 support signal and the variation in it will bias the algorithm 

towards variations in the support. Further, the algorithm also fails in revealing the TiO2 

encapsulation layer. These results show that in order to identify the presence of the 

encapsulation layer through Ti-L edges, we need to scale the data properly so that the 

intensity change between the TiO2 on the particle and the TiO2 of the support is not so 

drastic.  

Importance of a Proper Data-Scaling 



24 
 

In the application of machine learning algorithms for materials science, an often 

ignored pre-treatment step is the proper scaling of the data. In the case of an EELS 

spectrum image where there are large changes in thickness, the intensity of the scattered 

electrons can vary significantly between thin and thick areas of the specimen. These 

changes in thickness can also affect the shape of the EELS edges through multiple-

scattering induced broadening. These large changes in intensity can be a hindrance to 

an accurate data fitting. Normalization or scaling must be properly performed to allow 

the algorithm to fit these variations. This is especially important for the study of ultra-

thin, potentially sub-nanometer thick, encapsulation layers on nanoparticles and 

supports with a thickness that is 2-3 orders of magnitude higher. In this experiment, 

two assumptions can be made: the noise floor of the detector was approximately 

normally distributed with a mean at a fixed non-negative value and the electron energy 

loss signal followed Poisson counting statistics which, to a good approximation, will also 

appear normally distributed, about some offset, for sufficient intensities in the energy 

loss spectrum. Thus, offsetting the data such that the minimum value is at least 1.0 and 

scaling the data by taking the logarithm, element-wise, should continue to allow the 

algorithms to find components and retain the non-negativity of the dataset. The 

distributions of the noise floor and the EELS signal should also remain approximately 

normally distributed about their expected values.39  

Application of ATGP Pre-Conditioned Joint-NMF to the Dataset 

In order to see the small variations in the Ti L23 edge we used a smaller energy 

window view (420-569eV) of the same dataset, which only includes the Ti L edges and O 

K-edge. As mentioned in the previous section, we took the natural logarithm of the 

dataset, element-wise, after shifting the data such that none of the channels have an 
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intensity below 1.0. This offset is consistent with a uniform background signal from the 

detector and a log scaling helps prevent the large intensity variations between the 

encapsulation layer and the Pd nanoparticle from drowning out the encapsulation 

layer’s signal. We verified the expected number of components, k = 6, from a PCA 

explained variance ratio plot via the elbow method as previously described and is 

plotted in Figure S5 We also applied NMF to scaled data, as mentioned above, which 

improved the results produced by NMF as expected. These results can be found plotted 

in Figure S6 in the supplementary information. Still, the results were inferior to those 

produced by pre-conditioned Joint-NMF.  
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Figure 6b and S7 show the results of running the log-scaled data through the pre-

conditioned Joint-NMF algorithm. It is immediately apparent from the abundance 

maps that the algorithm has separated the Pd nanoparticle and the TiO2 support, 

components 1 and 0 respectively. It is also apparent that the algorithm has captured the 

vacuum region on the left side of the spectrum image as indicated in the spectral 

endmembers in component 5 with nearly uniformly distributed noise. 
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Figure 6: 

Background subtracted spectral components a) and weight distribution maps b) from 
ATGP pre-conditioned joint NMF processing of the log-scaled spectrum image; where the 
energy loss has been cropped to the range between 420 & 560 eV. c) False-color 
composite of components 1 (red), 3 (green), 4 (blue) clearly showing how component 3 
encapsulates component 1. The six components which can be explained as: (0) the oxide 
support, (1) the Pd M45 background and a part of the Ti L23 ELNES signal of the SMSI , (2) 
modification of the TiO2 support, (3) the SMSI encapsulation layer, (4) the TiO2 surface / 
Pd interface (5) the vacuum region and detector noise. With the power-law background 
removed and scaled to better view the endmember structure related to the Ti L23 and O K 
ELNES. The structure of component 1 (orange) in a) clearly shows an onset at about 450 
eV  

Scale Bar: 5 nm;  

Energy loss (eV) at grey lines, left to right: 450.119, 454.432, 459.507, 462.299, 466.105, 
469.403, 505.181, 534.108, 547.557.  
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Figure 6c shows a false-color representation of component maps 1, 3, and 4. 

Component 3 appears to cover the surface of the Pd nanoparticle, indicating that it has 

captured information about the SMSI encapsulation layer. Since the Ti at the support 

surface should be reduced with respect to the bulk,40,41 component 4 therefore appears 

to result from this reduced surface material. Component 2 appears to be variation in the 

signal from the TiO2 support, with the intensity in the vacuum region being an artifact 

that is balanced by the peak that appears in the vacuum noise signal captured in 

component 5. It is interesting to note that the Ti signal at the Pd/TiO2 interface is 

represented by a combination of two components, component 1, which includes the Pd 

particle, and component 4, the support surface layer. It should also be noted that since 

the Pd nanoparticle is always co-located with some Ti, there is information from the Ti 

surface encapsulation layer contained in the component that has been identified as the 

Pd particle, component 1. Aside from relying on PCA for the number of components in 

order to reduce operator bias, it is possible that the splitting of the Ti surface 

encapsulation layer EELS signature into two components is a result of the presence of 

an orientation effect on the Ti ELNES or potentially indicating a real but small spatial 

separation in the Ti and O signals at the surface.  

A closer analysis of the Ti edge onsets and their spatial correlations allows us to 

assign each spectra to the constituents in the system, and is shown in Figure 4a, where 

these spectra were obtained by fitting and subtracting a power-law background function 

from the energy range just before the Ti L23 edge. Each spectrum was then normalized to 

the maximum value in the spectral range shown.  



28 
 

From the plots in Figure 4a, we can see that the Pd nanoparticle identified in 

component 1 has a peak in the onset region of the Ti L23 edge which is consistent with a 

reduction in the oxidation state of Ti as compared to component 0. Component 2 

appears to have captured a variation in the thickness and fine-structure of the Ti L23 

edge within the TiO2 support. It should be noted that in addition to the energy 

resolution, one reason why the Ti L23 splitting is not easily resolved in the components is 

that the Ti L23 peaks shift along the energy loss axis and continuous shifts are 

exceedingly difficult for multilinear decomposition algorithms, including ATGP Pre-

conditioned Joint-NMF, to resolve.  

While we cannot use the background subtracted plots in Figure 4a to 

quantitatively characterize the electronic states from their ELNES peak-height ratios in 

the different pieces of this heterogeneous catalyst system, we can use the differences in 

the characteristic spectra, particularly their edge onsets, to draw conclusions about 

changes within the electronic states present in the system. For example, as shown in 

Figure 6a, the Ti L23 ELNES spectrum is encoded with information from the electronic 

structure of the Ti atoms and its associated bonds. From the spatial maps we can see 

that components 1 and 3 correspond to the TiOx encapsulation layer. We can also see 

that component 1 indicates a lower onset energy of the Ti L23 peak on the surface of the 

Pd particle. This indicates a reduction in the Ti oxidation state on the surface of the 

particle due to the loss of an electron and the ELNES signatures are significantly 

different on the surface of the particle compared with the bulk of the material.  
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CHAPTER 6: 

Discussion & Conclusion 
We first tested the existing NMF and PCA algorithms for the analysis of EELS-SI 

datasets. While these methods have been shown to effectively differentiate overlapping 

peaks in EELS, they struggle in revealing trace signals in a complicated data 

environment when abrupt change in signal intensity is present among spectra, e.g. 

revealing the ultra-thin encapsulation layer that is adjacent to a thick high-signal oxide 

support.  

To address the challenges with using NMF in these cases, we proposed a new 

algorithm, ATGP Pre-conditioned Joint-NMF, which combines the advantages of the 

complementary algorithms ATGP and NMF. Our results show that while ATGP Pre-

conditioned Joint-NMF presents advantages over NMF and PCA in terms of revealing 

more of the weak signal information from the Pd particle surface, it fails in revealing 

components that can be straightforwardly associated to specific physical meaning.  

We discovered that proper data scaling is critical to maximize the advantages of 

ATGP Pre-conditioned Joint-NMF. By incorporating log-scaling before the application 

of ATGP Pre-conditioned Joint-NMF, we successfully revealed not only the presence, 

but also the chemistry and the oxidation states of Ti in the encapsulation layer along 

with those of the particle/support pair, information critical to the understanding of 

catalytic reaction mechanisms and potentially help develop better site-specific reaction 

models. The individual components of the decomposed spectrum image, as shown in 

Figure 6b and S7, qualitatively display the distribution of the different oxidation states 

of Ti and the location of the Pd particle. A closer analysis of the Ti and O edges, shown in 
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Figure 6a, reveals that the Ti L edge of the SMSI components has a lower onset energy 

relative to the TiO2 support, indicating the species of the oxide on the particle is in a 

reduced state, TiOx, compared to the TiO2 support congruent with prior reports.29 

Further, a comparison between the individual components shows qualitatively that 

differences in the peak height ratio have been identified by the algorithm. As shown in 

Figure 6a, there is a difference in the peak height ratio between components 2, 0, and 4, 

all representing changes within the TiO2 support and components 1 and 3 show distinct 

changes in the TiO2 ELNES as well.  

The algorithm, ATGP Pre-conditioned Joint-NMF, demonstrated here is expected 

to largely benefit the characterizations of heterogeneous catalysts, given the fact that a 

reliable method of detecting an encapsulation layer has been lacking and its ability of 

clearly revealing the hidden signals in SI datasets and quantifying their spatial 

distributions in a complicated signal environment. In fact, the application of this 

method can be readily extended to any STEM-EELS or EDX datasets, therefore, 

detecting challenging signals from trace dopants, impurities, as well as the distribution 

of chemical coordination at surfaces and interfaces in heterogeneous catalysts. Further, 

applying ATGP Pre-conditioned Joint-NMF is expected to benefit the analysis of in situ 

STEM spectrum imaging, as it would enable an effective separation of the signals related 

to the support membrane and the dispersed catalysts in large multi-dimensional 

datasets.  

Pre-conditioned Joint-NMF could have numerous benefits for the field at large, 

and it is generally applicable to datasets acquired from other spectroscopy techniques. It 

can track the relative presence of different components even if the spectral features 
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overlap and can reveal changes in fine structures even in spectra where background 

fitting is challenging. It can significantly reduce data acquisition time because of its high 

tolerance to low signal-to-background spectra, especially if it is combined with 

compressive sensing algorithms for sparse data acquisition. Further, since this method 

can be run completely unsupervised, the application of this method may allow us to 

discover new features or phenomena that were neglected previously. Besides the 

numerous advantages discussed above, it should be emphasized that this algorithm is 

new and further optimization could be performed, especially regarding its ability to 

separate components that are connected in the spatial domain. Potential future studies 

may include modifying the objective function to incorporate more physical constraints 

such as conserved quantities and known relationships. Largely, machine learning 

methods for materials science data analysis is still in its infancy. The largest challenge, 

which is also the key goal in advancing the algorithm in this work, is to extract 

components that are physically meaningful with minimum descriptors. Through this 

work, we also learned that proper pre-conditioning for narrowing the number of 

solutions to the minimization problem is critical to the extraction of meaningful 

components and preventing overfitting. Further work regarding discovering and 

incorporating new minimization constraints based on physical conservation rules 

should be explored.42  

In summary, we demonstrated a robust new machine learning algorithm, ATGP 

pre-conditioned Joint-NMF, for the analysis of unmixing spectrum imaging datasets, 

particularly for the study of the strong metal-support interaction encapsulation in 

heterogeneous catalysts, which has been challenging to conventional data analysis 
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methods. This algorithm successfully extracts components associated with specific 

physical meanings which reveal the presence and chemical composition and structure of 

the trace encapsulation layer. This information would otherwise be hidden in the raw 

EELS dataset. This new algorithm was built on two existing algorithms, Joint-NMF and 

ATGP, which individually are not sufficient to reveal trace signals in a complex data 

environment in the spatial domain, e.g. the case of SMSI encapsulation. Its 

advancements were achieved by combining careful selection of data scaling methods, 

the introduction of the clustering effects of Joint-NMF, and the initialization from 

ATGP. The machine learning method we introduced here is generally applicable to any 

other spectra-imaging datasets for various material systems, for example, targeting trace 

or hidden signals when drastic changes in spectra are present in the spatial domain, 

which can occur when boundaries, interfaces, and surfaces are present in the region of 

interest.   
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Appendix A: METHODS 
Selection of Joint-NMF Over Standard NMF 

The Joint-NMF algorithm has been chosen over the standard scikit-learn NMF 

implementation because the scikit-learn implementation of NMF can introduce artifacts 

in the resulting spectral components and distribution maps. We believe this occurs due 

to a step taken to overcome an inherent weakness of the NMF objective function, the 

difference between the recorded data and the model, which is that the factoring of a 

single matrix into two matrices is inherently ill-defined as shown below. NMF attempts 

to optimize the following expression: 

min
!"#,			&"#

‖𝑋 −𝑊𝐻‖' 

𝑋 ∈ ℝ(
)×+, 𝑊 ∈ ℝ(

)×,, 𝐻 ∈ ℝ(
,×+, and k is the number of distinct components in the data. 

Given the ideal case where 𝑋 = 𝑊𝐻, WH can still be expanded so that 𝑋 = 𝑊𝐴-.𝐴𝐻 

making the solutions W and H not unique. Other constraints to the optimization must 

then be used to help guide the algorithm to a unique solution. Recently, Du et. al. 

proposed a new version of NMF termed Joint-NMF which optimizes a linear 

combination of the NMF objective function and that of Symmetric NMF, which attempts 

to optimize the following objective function: 

min
!"#

‖𝑆 − 𝐻$𝐻‖% 

where S is a kernel matrix that represents a pairwise measure of the similarity between 

the observations in the data matrix. When the symmetric NMF and normal NMF 

functions are combined, the effect is that the resulting components are inherently 

clustered.43 This additional optimization should help the algorithm pick components 
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that are closer to the real components and should help the algorithm find the global 

minimum and not get stuck in a local minimum.  

 

Scanning Transmission Electron Energy-loss Spectroscopic Imaging 

Z-contrast images and EELS spectrum images were acquired with a NiON UltraSTEM 

aberration-corrected STEM operated with an acceleration potential of 100 kV and 

outfitted with a Gatan Enfinia EELS spectrometer. The convergence semi-angle was 

about 30.0 mrad for both STEM images and the EELS spectrum image. The pixel 

exposure time for the EELS spectrum image was 0.1 s and the acceptance semi-angle 

was about 48.0 mrad.  

Sample Preparation 

The Pd/TiO2 catalyst was prepared by depositing Pd particles on anatase titanium 

dioxide powder via the deposition-precipitation method with urea. The Pd loading on 

the sample was 0.35 wt%. The encapsulation SMSI layer was formed by heating the 

sample in a tube furnace in 83% H2/Ar at 600 ℃ for 1h. Diffuse reflectance infrared 

Fourier transform spectroscopy (DRIFTS) of CO adsorption showed that ~70 % of Pd-

sites are covered when the sample is treated in 50% H2/Ar at  600 °C. Details on the 

sample preparation and CO adsorption measurements can be found in a separate 

manuscript in preparation by F.G., T.B. M.C., and Z.W..44 The H2/Ar treated catalyst 

powder was loaded onto a standard 3mm lacey carbon grid (Electron Microscopy 

Sciences) after the treatment by dropping a lacey carbon grid into a glass vial containing 

a few milligrams of the powder and gently agitating the vial. Then the grid was removed 

with tweezers and the excess particles gently shaken off. The sample was then loaded 

immediately into the microscope for imaging.  
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APPENDIX B: SUPPLEMENTARY FIGURES 

 

 

a) Simultaneous Z-contrast image of Pd nanoparticle on TiO2 support. b-d) Integrated intensity of Pd 
M4,5, Ti L2,3 , and O K edges respectively. e) summed and background subtracted spectra from inset of a). 
A demonstration of the traditional analysis technique for EELS  core-loss spectrum images. A power law 
background is subtracted from each core-loss edge and the signal integrated over an energy window 
placed after the ELNES fine structure. 
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Explained variance ratio plot versus component index from Principle 
Component Analysis of the unscaled EELS dataset in this work. Shows the elbow 
point at component 5 indicating a total number of 6 statistically relevant 
components. 
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ATGP spectral components a) and non-negative least squares  fitted distribution maps b) 
used for preconditioning. Each spectrum of a) corresponds to the entire map of b) Note 
the noise level in the spectra. Scale Bar: 5nm
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Figure S3:
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Figure S4:

b

Spectral components a) and weight maps b) from ATGP Pre-conditioned Joint-NMF 
decomposition of the unscaled and uncropped data set. These figures show poor 
contrast from the encapsulation layer and splitting of the support signal potentially due 
to outliers and thickness variations. Scale bar: 5nm
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Figure S5:
Explained variance ratio plot from Principle Component Analysis of the 
log-scaled dataset. The elbow at component 5 indicates 6 six 
statistically relevant components. 
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Figure S6: 

NMF Decomposition of log-scaled data. The log scaling has improved NMF’s ability 
to separate out what appears to be the encapsulation layer, as evidenced by the 
maps in b), but the effects of the sparsity constraint in the component spectra is 
apparent in a). Scale Bar: 5nm 
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Figure S7:
Spectral components from ATGP Pre-conditioned Joint-NMF 
decomposition of the log-scaled SI dataset before power-law 
background removal. 




