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THE COVARIANT. LIE-TRANSFORMED PLASMA ACTION PRINCIPLE 

Allan N. Kaufman 
Physics Department and Lawrence Berkeley Laboratory 

University of California 
Berkeley, CA 94720 

' The Lie Transform is a' systematic technique (1] for obtaining the nonlinear 
quasi-static effects of high-frequency phenomena. We consider, in particular, a 
plasma of charged particles in a self-consistent electromagnetic wave. Each 
particle oscillates about an •oscillation center• which undergoes non-oscillatory 
motion [2]. We obtain the so-called •ponderomotive• Hamiltonian for the 
oscillation center, in relativistically covariant fonn, and demonstrate, via the 
action principle, that it determines the dielectric susceptibility and wave 
propagation. 

We begin with the (eight) canonical variables z = (r,p), which satisfy the 
covariant Hamiltonian equations: 

drl'/d-r = aH/ap , 
}.1 

with the invariant Hamiltonian function H(z;A}, a functional of the Maxwell 
potential A(x). The correct particle evolution equations are obtained by the 
choice {c=l): 

noting that 

Consider the family of all phase-space trajectories z(-r), each parameterized 
(smoothly) by its proper time T. The seven-dimensional time-like surface-r= 0 
will be called the •initial-condition• surface. We introduce arbitrary 
coordinates " on this surface, and let g(T'I)d7" denote the number of particles 
(of a given species) in d7". With the trajectory z(-r;T'I) considered as an eight­
dimensional field on the eight-dimensional phase-space (T,T'I) (it•s actually a 
mapping of phase space onto itself], we construct the action functional for the 
system: 

S(z(T,TI),A(x)] = fd 1
" g(T'I) fd-r (p (-r,T'I)drl'(-r.T'I)/d -r- H(p~r;A)] 

}.1 

where F = a A - a A is the Maxwell field. 
}.IV }.1 V V \i 

Variation of S with respect to z(-r;n) yields the Hamiltonian equations (1), 

( 1) 

(2) 

(3) 

(4) 
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while variation with respect to A(x) yields the Maxwell equation 

with 

and 

jP{x;z) =- &H{z)/&Ap(X). 

Evaluation of {7), by (2), yields 

jP(x;z) =(elm) &4{x-r) {pP- eAP). 

We now define the (invariant) Vlasov distribution 

f(z) = jd1n g(n) fd~ &8{z- z{~.n)) , 

and derive the Ignatiev equation [3], 

{f(z), H{z)} = 0 , 
-

in terms of the convariant canonical Poisson bracket: 

To derive (10), we introduce the intermediate distribution 

g(z:~> = fd 1n g(n) &8{z- z(~.n)) 

and obtain, by (1), 

ag/a~ = -{g,H~. 

Integration over ~then yields (10), since g = 0 at infinite~. 
We now restrict the Maxwell potential to represent a single wave of eikonal 

fonn: 
A (x) =A (x) exp ie(x)/c + c.c. 

p p 

where the amplitude A and the gradient of the phase k (x) = a e{x) are slowly 
p p 

(5) 

(6) 

(7) 

(8) 

{9) 

(10) 

{ 11) 

(12) 

{13) 

(14) 

varying fields. We substitute (14) into {2), and then invoke the Lie Transform to 
eliminate rapidly oscillating terms. 

The new Hamiltonian K is related to the old H by the formula [1] 

K = [exp f {w,. ~ H, { 15) 

where w(z) is a su1tably chosen generating function. Expanding both H and K in 
powers of the amplitude A, w~ have K(O) = H< 0>, and 

K(l) = H(l) + {w, H(O) }. {lo) 

We can require K{l) to vanish, if we ignore the problems of resonant 

denominators. Solving {lo) for w(z), and proceeding to second order, we obtain 
K( 2){z), which we denote by ~(z;A), the relativistically invariant 
ponderomotive potential: 



,, .. , 
t::: ... ' 

4 * p v '!'(z;A) =fd x A (x) 'i' (x;z)A (x); 
p v 

where 

This may be expressed more concisely as 

'!' = rnldu/dT l2/(d9(r)/dT) 2, 

( 17) 

(19) 

'\ and reduces, in the rest-frame, to the familiar 

"'lwi 
/ I 

~, 

'f' = e21EI2 /rnc,2. ( 20) 

Invariance of the phase-space Lagrangian under a canonical transformation: 

(21) 

where the overbar denotes oscillation-center variables, converts the action to 

Defining the invariant oscillation-center distribution F(z) = Jd7n g(n)fd• 
68(z-z( •.n)), we obtain, in analogy to the steps leading to (10), the 
corresponding Ignatiev equation: 

{F(z), p2/2m + '!'(z;A)} = 0. 

In order to vary S with respect to A (x) and e(x), we first substitute (17) 
p 

into (22), obtaining (for the terms bilinear in A) 

(22) 

(23) 

s< 2>= fd4x A*{x)DP (x;F)J:l'(x), (24) 
p v 

where the dielectric matrix oP is the sum of its vacuum part 
v 

and the susceptibility 

The relation (26) is the •K-x theorem• [4], which is seen to be the essential 

ingredient of the action functional, coupling F(z) to A (x). 
p 

( 25) 

(26) 

We now express the dielectric matrix in terms of its local eigenvalues D (x) 
Ql 

and eigenvectors e (x): 
Ql . 

* oP (x) = r D (x)eP(x)e0 (X), (27) 
v Ql Ql Ql v 

whence 

{28) 
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with A (x) : ea *(x)A~(x), the projection of A on the a eigenvector. a , 

We now vary s< 2> with respect to A (x),. obtaining the eikonal equation for 
a 

the phase: 
D (x,k : ~/ax) : 0, 

a 

associated with polarization e . 
a 

This yields the covariant ray equations: 

dk /do : aD /axP . 
P a 

Variation with respect to e(x) yields the wave-action conservation law [5] 
aJ~(x}/ax~ : 0, where the wave-action density four-vector is 

(29) 

(30} 

JP(x) : - A (x) 2aD (x,k)/ak (31) 
a a p 

Since the eigenvalues D (x) are functionals of the oscillation-center 
a 

distribution F(z), by (26), we have thus obtained a closed self-consistent set of 
coupled equations for F(z) and the wave amplitude and phase. 

D. D. Holm was instrumental 1n the formulation of the principles presented 
here, at the Aspen Center for Physics. This research was supported by the Office 
of Energy Research of the u·.s. Department of Energy. 
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